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ABSTRACT. In a monotonic sequence game, two players alternately choose

elements of a sequence from some fixed ordered set. The game ends when the

resulting sequence contains either an ascending subsequence of length a or a

descending one of length d . We investigate the behaviour of this game when

played on finite linear orders or Q and provide some general observations for

play on arbitrary ordered sets.

1. Introduction

Monotonic sequence games were introduced by Harary, Sagan and West in

[6]. We paraphrase the description of the rules as follows:

From a deck of cards labelled with the integers from 1 through n, two

players take turns choosing a card and adding it to the right hand end of

a row of cards. The game ends when there is a subsequence of a cards in

the row whose values form an ascending sequence, or of d cards whose

values form a descending sequence.

The parameters a, d , and n are set before the game begins. There are two

possible methods for determining the winner of the game. In the normal form

of the game, the winner is the player who places the last card (which forms an

ascending or descending sequence of the required length). In the misère form

of the game, that player is the loser. In [6] these are called the achievement and

avoidance forms of the game respectively.

As a consequence of the Erdős–Szekeres theorem [5], the game cannot end

in a draw if n > .a � 1/.d � 1/. It is therefore natural to attempt to classify the

parameters .a; d; n/ according to whether the first player can force a win, the

second player can force a win, or either player can ensure at least a draw. Some

results towards such a classification were presented in [6] and the problem of

extending and generalising these results was posed there and by Sagan in [8].
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In this paper we will report on some progress on this and related problems.

As regards the original game, we have been able to extend the computer-assisted

analysis to decide many instances which were left open in [6]. We also provide

some general results concerning the long run behaviour of these games (that is,

for fixed a and d but large n). However, most of the work reported here deals

with variations of the original game. In particular, we consider the case where

the deck of cards is Q rather than a finite linear order. Finally, we examine some

other variations of the game obtained either by relaxing the rules, or by playing

with a deck of cards that is partially ordered. We list some open problems in the

final section of the paper.

We adopt, and in some cases adapt, the notation and terminology of Winning

Ways [1; 2; 3; 4] in discussing our results. This differs somewhat from that used

in [6] so, where necessary, we will also provide translations of the results from

that paper.

2. The general framework

Any version of the monotonic sequence game specifies at the outside, a deck

D which is simply some partially ordered set, and two positive integer param-

eters a and d which we call the critical lengths of ascending and descending

sequences respectively. There are two players, A and B (for convenience in

assigning pronouns, A is assumed to be male and B female), who alternately

choose an element which has not previously been chosen from the deck and add

it to a sequence whose elements consist of the cards chosen up to this point.

This sequence will be called the board. Conventionally, A plays first while B

plays second. In the basic form of the game the board is constructed from left to

right. That is, if the current board is bc � � � v and the next player chooses a value

w 2 D then the new board is bc � � � vw. An ascending subsequence of length a or

a descending subsequence of length d of the board is called a critical sequence.

As soon as the board contains a critical sequence the game ends. In normal play,

the winner is the player whose move terminated the game. In misère play that

player is the loser. We henceforth assume that a; d � 2 since the cases a D 1 or

d D 1 are completely trivial. If the deck is exhausted without creating a critical

sequence, then the game is considered drawn. If the deck is infinite then the

game is also considered drawn if play proceeds without termination. By default

we assume that normal play is being considered unless otherwise noted.

PROPOSITION 1. If D is finite and contains a chain of length greater than

.a � 1/.d � 1/, or D is infinite and contains no infinite antichain then no draws

are possible in either normal or misère play.
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PROOF. In the first case any supposedly drawn board would contain all the

elements of the specified chain. However, by the Erdős–Szekeres theorem any

such sequence contains a critical sequence. In the latter case a similar result

follows from the well-known observation that, as a consequence of Ramsey’s

theorem, any infinite sequence of elements from a partially ordered set contains

an infinite subsequence which is either ascending, descending, or an antichain.

Since the last possibility is ruled out by hypothesis, one of the former two must

apply, and the play producing that sequence could not have been drawn. ˜

OBSERVATION 2. If D has a fixed-point-free order-preserving involution then

the second player can force at least a draw.

B’s strategy is to play the image of A’s move under the involution, unless she

has an immediate win available. Since no chain can involve both a point and

its image she thereby never plays a suicidal move, that is one which makes it

possible for Alexander to win the game on his next turn, and hence she cannot

lose.

OBSERVATION 3. If a D d and D has a fixed point free order reversing involu-

tion i with the property that whenever x and xi are comparable, one is minimal

and the other maximal, then the second player can force at least a draw.

Again the strategy for B is to play a winning move if one exists, and otherwise

the image of A’s previous move. The minimality/maximality criterion guaran-

tees that in the resulting sequence of plays no chain can arise using both x and

xi unless a D d D 2 which is trivially a second player win.

This observation applies to play on the cube 2n or equivalently on the lattice

of subsets of a set. In particular it is easy to check that for a D d D 3 play on 23

is a second player win though cooperatively the two players can play to a draw.

Since D, a and d are fixed parameters of any particular game, all the relevant

information about a position is contained in its board. A board which could arise

in play may not have a proper prefix containing either an ascending sequence

of length a or a descending sequence of length d . Subject to this condition we

may define the type of a board to be one of N , P or D. We say that the type

is N (next) if the player whose turn it is to move (that is, the next player) has

a winning strategy. The type is P (previous) if the previous player (that is, the

player who is not next) has a winning strategy. Finally, the type is D (drawn) if

each player has a strategy that guarantees her or him at least a draw.

A board which contains the entire deck or which contains a critical sequence

is called a terminal board. A terminal board containing a critical sequence is of

type P in normal play and N in misère play, while a terminal board that does

not contain a critical sequence is of type D. Otherwise, the type of a board,

X , is determined by the set of types of the boards that can be obtained in one
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further move. We call these boards the children of X . If this set contains any

board of type P then the type of X is N . If all the boards in this set are of type

N then the type of X is P . Otherwise, the type of X is D.

These rules may not be immediately sufficient for determining the type of

an arbitrary board when arbitrarily long plays or even draws with infinite play

are possible. However, even in this case the boards are partitioned into the

three types above. The algorithm for performing the partitioning is to begin by

labelling all the terminal boards according to the winning conditions. Then in-

ductively any currently unlabelled boards which either have a child of type P , or

all of whose children have type N , are labelled appropriately. After completing

this induction, any boards remaining unlabelled are of type D.

Our principal goal will be to determine the type of the empty board – that

is, to determine whether the first player has a winning strategy, or failing that,

whether he can force a draw. We denote this type by Wnor.a; d; D/ for normal

play, or Wmis.a; d; D/ for misère play.

3. Double bumping

Given a sequence of distinct elements v D v1v2 � � � from a linearly ordered

set C , a well known algorithm due to Schensted [9] determines (explicitly) the

length of the longest increasing subsequence of any prefix v1v2 � � � vk and (im-

plicitly) the elements of such a sequence. This is sometimes called the “bump-

ing” algorithm. An increasing sequence w D w1w2 � � � wm is maintained as the

elements of v are processed in order. When vi is processed, w is modified as

follows: if wm < vi then vi is appended to w; otherwise vi bumps (that is,

replaces) the smallest element of w that is larger than vi .

It is easy to check that, after processing v1v2 � � � vk the element wj of w is the

least maximum element of an ascending subsequence of v1v2 � � � vk of length

j . In particular, the length of w is equal to the length of the longest ascending

subsequence obtained to that time.

Of course there is a dual algorithm that allows one to keep track of the length

of the longest descending subsequence. In this version an element is either

prepended to the sequence being maintained (if smaller than all the elements of

the sequence), or it bumps the immediately smaller element.

For the purposes of analysing some forms of the monotonic sequence game

it will be useful to be able to combine these two algorithms into a single one.

However, in doing so, we need to keep track of whether the elements in the

single ordered sequence which we are maintaining represent elements of the

ascending or descending type – that is, whether an element takes part in the

sequence w of the original algorithm, the corresponding sequence m in the dual

algorithm, or both.



MONOTONIC SEQUENCE GAMES 313

Initially we will do this by marking the elements with overlines (if they belong

to w), underlines (if they belong to m) or both (if both). Thus we maintain a

single marked sequence which we shall call the recording sequence. The double

bumping form of the combined algorithm can then be described as follows.

� Initially set the recording sequence to be empty, and process the elements of

the permutation in order from left to right.

� Repeatedly, until the permutation is exhausted:

– insert the next element of the permutation into the recording sequence with

both an underline and an overline (maintaining the increasing order of the

recording sequence);

– delete the first overline if any to its right and the first underline if any to its

left;

– remove any naked elements (ones which no longer have an underline or an

overline).

For example, when we process the permutation 514263 in this way we obtain

5 ! 15 ! 145 ! 1245 ! 1246 ! 12346

Frequently the precise identity of the elements of the recording sequences

will not be important, but only their type (that is, what decoration they have).

This remark will be exactly true when we deal with monotonic sequence games

on Q, and is still of some relevance in the case of monotonic sequence games

on finite chains. For typographical purposes it is easier to record type sequences

as colours rather than bars, and so we will also call them colour sequences.

Specifically we associate the colour Blue with an underline, and Red with an

overline. Elements having both underlines and overlines will be called Purple.

An element is reddish if it is Red or Purple, and bluish if it is Blue or Purple.

The process of the double bumping algorithm on the permutation above, purely

in terms of colours is

P ! PB ! RPB ! RPBB ! RPBP ! RRPBB:

Of course the length of the colour sequence corresponding to a permutation

is not more than the length of the permutation itself. Different permutations

can easily have the same colour sequence (e.g. 231 and 213 both have colour

sequence PP ) and indeed permutations of different sizes can have the same

colour sequence (e.g. 312 and 2143 both have colour sequence RPB).

It is clear that only some sequences of colours can occur as a result of applying

the double bumping algorithm. We call such colour sequences admissible. In

terms of colour, when we add a new element, we insert a Purple somewhere

in the sequence and remove the red tinge from the first reddish element to the
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right (deleting it entirely if it were Red) and the blue tinge from the first bluish

element to the left. In particular, a colour sequence can never begin with Blue

nor end with Red. In fact we can completely characterise the admissible colour

sequences. Recall that a factor of a sequence is a subword consisting of a block

of consecutive elements from the sequence.

PROPOSITION 4. The language of admissible colour sequences consists pre-

cisely of the empty sequence, together with those sequences which contain at

least one P , do not begin with B nor end with R, and do not contain RB as a

factor.

PROOF. Necessity is relatively straightforward. Each insertion leaves a P so a

nonempty admissible sequence must contain a P . Of the remaining conditions,

the first two conditions are obviously preserved by any legitimate insertion. To

see that the final condition is preserved as well consider an insertion which

supposedly creates an RB factor. It could not create both the R and the B since

only an insertion between those two elements could do that. Suppose, without

loss of generality, that the newly created element was the B. Then previously

that element was represented by a P . But in order to eliminate its reddish tinge,

the insertion would have had to be after any preceding R, so we could not get

the RB factor as claimed.

The proof of sufficiency is by induction. We show that if w is a nonempty

sequence of the form described, then there is some parent word v also of the form

described such that w can be obtained from v by the bumping algorithm. That

this suffices is based on the observation that for any starting word u (admissible

or not), after ad C1 bumps the resulting word must contain at least d C1 bluish

or a C 1 reddish (red or purple elements). Thus the backwards chain of parents

from w is bounded in length by the product of the number of bluish elements

and the number of reddish elements in w, and can only terminate in the empty

sequence which is admissible.

If w D P the result is clear, so we may assume that the length of w is at least

two. Suppose first that w D Pu. If u D Bu0 let v D Pu0 (which still has the

form required) and note that v produces w by an insertion on the left hand side.

If u begins with a P or an R let v D Ru which is admissible and produces w

by an insertion on the left hand side.

Now suppose that w D RiPu with i > 0 and let w0 D Pu. Then w0 is

admissible, and by the case just proven we can find v0 which produces w0 by an

insertion into the first position. Let v D Riv0. Then v produces w by insertion

after the first block of R’s. ˜

The number of nonempty admissible words is enumerated by the sequence of

alternate Fibonacci numbers
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1; 3; 8; 21; 55; 144; : : :

This is easily established by standard transfer matrix approaches or by the ob-

servation that the association

R ! 01 B ! 10 P ! 00

almost provides a bijection between admissible colour sequences and binary

sequences of even length which contain no consecutive 1’s.

4. Finite chains

In this section we assume throughout that the deck is a finite chain which, for

convenience, we take to be

Œn� D f1; 2; : : : ; ng

with the usual ordering. This was the basic situation investigated by Harary,

Sagan and West in [6]. On the theoretical front we have relatively little to add to

their results in this area, however, we have extended their computational results

considerably.

PROPOSITION 5. For fixed a and d both sequences

Wnor.a; d; Œn�/ and Wmis.a; d; Œn�/

for n D 1; 2; 3; : : : are eventually constant.

PROOF. Since we know that a play of the game with parameters a and d cannot

last more than .a � 1/.d � 1/ C 1 moves, the existence of a winning strategy

for either player, in either termination condition, can be expressed as a first

order sentence in the language of linear orders. Consider, for example, the case

of a first player win in normal play. In this case this sentence begins with an

existential quantifier, followed by a long alternation of quantifiers representing

the moves which might be chosen by the two players. These quantifiers are fol-

lowed by a quantifier free formula expressing the condition “the first ascending

sequence of length a or descending sequence of length d arising in this play

occurred after a move made by the first player”. The other cases are all similar.

However, it is well known that the theory of finite linear orders admits quan-

tifier elimination (see [7], specifically sections 2.7 and A.6 and their exercises).

In particular, any sentence in this language is either true in .Œn�; </ for all suf-

ficiently large n or false in .Œn�; </ for all sufficiently large n. Since one of the

statements “the game is of type N ” and “the game is of type P” must be true

for every n > .a�1/.d �1/, it must be the case that the same one is true for all

sufficiently large n. ˜
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The proof above is a little unsatisfying from the standpoint of attempting to

understand the structure of the monotonic sequence game played with a finite

deck. By essentially recreating the quantifier elimination for the theory of finite

linear orders but tailoring it to the situation at hand we can make it somewhat

more concrete. As a side-effect we obtain improved bounds for the onset of the

“long term behaviour” of such games.

Specifically, consider boards that arise in the play of the monotonic sequence

game. Suppose that the colour sequence at this point c1c2 � � � ck . There is an

associated sequence of gap lengths g0; g1; � � � gk where gi is the number of cards

remaining in the deck between the elements representing ci�1 and ci . Note that

this is not necessarily the same as the difference between these elements minus

one, as some of the intervening elements may have been played earlier but no

longer form part of the colour sequence.

The basic idea of the argument is to divide gaps into two categories large and

small. All gaps whose length is larger than a certain number (which may depend

on the colour sequence and the position of the gap relative to that sequence) will

be considered large. We aim to show that if two boards have the same colour

sequences and corresponding gaps are either both large or both small and of

equal length then we can emulate the following play in one game within the other

game and vice versa. This Tweedledum–Tweedledee argument then establishes

that the two games have the same outcome type (and in fact the same nim-value

or Grundy number). The first part of the argument must establish just what the

bounds are for large gaps.

Imagine for the moment that the next play of the game will be a card from

the deck that lies in some particular gap. Among the values in the board below

this card there will be some maximal increasing sequence whose length, r , is

the number of reddish elements lying below the gap. Likewise there is some

maximal decreasing sequence on the board whose length, b is the number of

bluish elements lying above the gap. Within this particular gap, the game will

certainly end if we create an increasing sequence of length a�r or a decreasing

one of length d � b. That is, within the gap we are essentially playing a game

with parameters a � r and d � b (the play within this gap may influence plays

in other gaps, but only by reducing their associated parameters). Suppose that

we temporarily let B.x; y/ denote some value which is “big enough” to define

a large gap for parameters x and y. A play into such a gap leaves two gaps, a

lower one with parameters x and y �1 and an upper one with parameters x �1

and y. Since we must ensure that we can match small gaps exactly and create

corresponding large gaps it will be sufficient to have

B.x; y/ � B.x � 1; y/ C B.x; y � 1/ C 1:
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If we choose equality and note that we may take B.x; 1/ D B.1; y/ D 1 then

simple algebraic manipulation shows that we may choose

B.x; y/ D 2

�

x C y � 2

x � 1

�

� 1:

Henceforth we take this as the definition of B.x; y/ and hence of what consti-

tutes a large gap.

PROPOSITION 6. For fixed a and d , any two boards having the same colour

sequence with the property that corresponding gaps are either both large, or

otherwise equal have the same outcome type.

PROOF. As promised, the proof is what is known as a Tweedledum–Tweedledee

argument [1] or a back and forth argument [7]. The idea is that any move made

in either position has one or more matching moves on the other position which

preserve the equality of colour sequences and corresponding gaps. Specifically,

a move in a small gap is mirrored by the obvious corresponding move of the

other position. A move in a large gap leaves either large gaps on either side or

one small gap and one large gap. In either case there is a corresponding move

in the other position leaving two large gaps, or one small gap (of the same size)

and a large gap.

Suppose, for the sake of argument, that the first position has a second player

winning strategy. We devise a second player winning strategy in the second

position as follows. Given a move in the second game to which we must reply,

we consider a matching move in the first game. Our strategy there will dictate

a certain response to this move. We make the matching response in the second

game. Proceeding in this way, we cannot fail to win in the second game (in

fact we will win in precisely the same number of moves as we win the matched

sequence of plays in the first game). All the other cases are very similar. ˜

In particular, any two games beginning with an empty board and having decks

of size 2
�

aCd�2
a�2

�

� 1 or larger must have the same outcome type. As indicated

by the computations below, this bound appears to be somewhat extravagant,

though not as much so as the naı̈ve bound arising from a direct translation of

the quantifier elimination for the theory of finite linear orders which would be

2.a�1/.d�1/ � 1.

4.1. Computational results: normal play. We will assume throughout that

a � d because the outcome type for parameters .a; d/ is the same as that for

parameters .d; a/. We begin by recapitulating results from [6] recast into our

notation.

If d D 2 then any move other than the smallest remaining element at that time

gives your opponent a “win in one”. So the outcome type is determined by the
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parity of a and we have

Wnor.a; 2; n/ D

8

ˆ

<

ˆ

:

D if n < a;

N if a � n is odd;

P if a � n is even.

For d D 3 then, depending on parity, the first player can choose to play either

the largest or second largest element of the deck as his first move. This more or

less reduces the game to the d D 2 case, and provided that n > a and a is even,

or n > a C 1 and a is odd Wnor.a; 3; n/ D N , with the remaining cases being

drawn.

Finally, [6] showed that Wnor.4; 4; n/ D N for n � 9. A winning strategy is

to play near the middle, and to ensure after your second move that all remaining

moves must be the smallest or largest remaining element.

We implemented a straightforward game tree traversal algorithm to determine

the outcome type of the empty board for various combinations of the parameters

.a; d; n/. Although the observations made in the proof of Proposition 6 could

improve the efficiency of this algorithm (by storage and reuse of previously

computed outcomes for equal or equivalent colour and gap sequences) such

time improvement would come at significant cost in space, and complexity of

the underlying code. Since we could extend the results of [6] considerably using

just the raw improvement in computing power between 1983 and now, we did

not choose to pursue these improvements. Our program permitted computations

with deck sizes up to 20 in a few minutes on a standard desktop machine. Note

that whenever a type P position is found, two other positions are immediately

known to be of type N , namely

Wnor.a; d; n/ D P )

Wnor.a C 1; d; n C 1/ D N and Wnor.a; d C 1; n C 1/ D N ;

since the first player can reduce the game to the preceding case by playing the

smallest (respectively largest) element as his first move.

We give our new computational results in the following form: first we specify

the smallest nondrawn game of that type and its winner; then a sequence of

values until we (appear) to reach an eventually constant block. Thus, the first

line below means that Wnor.5; 4; n/ D D for n � 10, and Wnor.5; 4; n/ D N for

11 � n � 20.

.5; 4; 11/ 2 N

.6; 4; 14/; .6; 4; 15/ 2 P; .6; 4; 16/ 2 N

.5; 5; 15/ 2 N

.7; 4; 15/; .7; 4; 16/ 2 N ; .7; 4; 17/ 2 P; .7; 4; 18/ 2 N :
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4.2. Computational results: misère play. We also computed results for

misère play. In this case it appears to be true that the game is drawn much

less frequently, and so the data include some more interesting observations. In

this case, the table below lists the sequence of outcome types for the various

combinations of parameters a and d with n ranging from 1 through 20.

a d Misère winner

3 3 DDDNN NNNNN NNNNN NNNNN

4 3 DDDDP NNNNN NNNNN NNNNN

5 3 DDDDD NPPPN NNNNN NNNNN

6 3 DDDDD DDNNN NNNNN NNNNN

7 3 DDDDD DDDPN NNNNN NNNNN

8 3 DDDDD DDDDN PPNNN NNNNN

9 3 DDDDD DDDDD DNNNN NNNNN

4 4 DDDDD NPNNN NNNNN NNNNN

5 4 DDDDD DDNNN PNNNN NNNNN

6 4 DDDDD DDDDN PNPPN NNNNN

7 4 DDDDD DDDDN PNNNN NNNNN

8 4 DDDDD DDDDD DNNND NNNNP

9 4 DDDDD DDDDD DDDNP NPNND

5 5 DDDDD DDDDD DNPNP NNNNN

6 5 DDDDD DDDDD DNPNN NPNNN

7 5 DDDDD DDDDD DNDNP NPNNP

Most of the blocks of trailing N ’s do seem to represent long run behaviour.

The evidence supporting this is that the smallest winning first move is also con-

stant across these blocks.

The cases a D 8; 9, d D 4 seem particularly interesting. First of all, with

a D 8 there is the interposed D at n D 15. Thus, with a 14 or 16 card deck the

first player can force the second player to make an ascending sequence of size

8 or a descending one of size 4 but with a 15 card deck he cannot! A further

oddity of this sequence concerns the fact that for a D 9, d D 4, the second player

wins n D 15. This means that the second player can force the first to create an

ascending sequence of length 9 or a descending one of length 4 in a 15 card deck,

but can’t force an ascending sequence of length 8 or a descending sequence of

length 4 in the same deck. Why can’t the first player simply follow an “at least

draw” strategy from the latter case to get the same result in the former case?

Because there is a hidden assumption in this strategy – that the second player

will never create an ascending sequence of length 8 or a descending sequence

of length 4 either.



320 ALBERT, ALDRED, ATKINSON, HANDLEY, HOLTON, MCCAUGHAN, AND SAGAN

4.3. Computation: further remarks. As noted above the program used to ob-

tain these results was exceedingly straightforward. Essentially, every response

to every move was examined from lowest to highest. Only when a response

of type P was found (permitting the current board to be labelled as N ) was

any pruning done. Likewise, no heuristic choices of responses were considered.

This alone would probably improve the efficiency of the program considerably

since it was observed that in many cases if y was a good countermove to first

move x (and was quite different from x) then it was also a good countermove

to x C 1. Secondly, storage and reuse of previously computed results, or some

form of “orderly” generation based on Proposition 6 would permit even more

pruning. For example, the first three moves 10; 5; 20 and 10; 20; 5 result in

identical colour sequences and gaps, so have the same outcome type.

However, beyond some obvious observations and conjectures which we pro-

pose in the final section, our opinion is that the data (particularly for the misère

version) suggest rather “noisy” behaviour for small values of n. So, the benefits

of pursuing these optimisations seems rather limited.

5. Dense linear order

We now consider playing the monotonic sequence game with Q (or any other

dense linear order without endpoints) as the deck.

PROPOSITION 7. For any a; d � 1, Wnor.a; d; Q/ D Wmis.a � 1; d � 1; Q/.

PROOF. In order to win the normal game, you cannot ever create an ascending

chain of length a � 1 or a descending chain of length d � 1 since your oppo-

nent would then have the opportunity to win immediately. Conversely, if your

opponent creates such a sequence on the board then you can win immediately.

So the outcome of the misère .a � 1; d � 1; Q/ game is the same as that of the

normal .a; d; Q/. ˜

We note that the proposition above requires only that the deck not have a max-

imal or minimal element. Owing to this proposition we restrict our attention to

the normal form of the game.

The outcome type of a particular board depends only on the relative ordering

among the elements currently on the board. This is clear, since with two boards

having the same relative ordering among their elements, there is an order pre-

serving bijection from Q to itself which maps one board to the other. Any

strategy which applies to the first board, then also applies to the second by

taking its image under this bijection. However, in fact all that we need to know

in order to determine the outcome of a game is the colour sequence of the board.

As noted previously, different boards and even boards of different sizes can have

the same colour sequence.
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PROPOSITION 8. For any a; d � 1, and playing with Q as a deck, the outcome

type of a particular board is determined by the colour sequence of that board.

PROOF. First we observe that the colour sequence of the board is sufficient to

determine whether or not the game has ended since the length of the longest

ascending (descending) sequence on the board is equal to the number of reddish

(bluish) elements of its colour sequence.

Next we note that given the colour sequence of a board, the possible colour

sequences which can be obtained by making a single move are determined. Any

move involves the insertion of a P somewhere in the existing colour sequence,

and then “first higher red reduction” and “first lower blue reduction”. Moreover,

because the deck is dense, any such insertion can be made.

So, in terms of determining the outcome, we need only know the colour

sequence of the current board, exactly as claimed. ˜

In considering the basic form of the monotonic sequence game with parameters

.a; d; Q/ we will work almost exclusively with the colour sequences. We define

the children of a colour sequence to be all those sequences that can be obtained

from it in a single move. A colour sequence is terminal if it contains a reddish,

or d bluish elements.

As before, we will assume that a � d and for a few values of d we are able

to determine the type of the general game with parameters .a; d; Q/.

THEOREM 9. For d � 5 the types of the monotonic sequence games with pa-

rameters .a; d; Q/ are as follows:

(i) For a � 2, Wnor.a; 2; Q/ D P .

(ii) For a � 3, Wnor.a; 3; Q/ D N precisely when a is odd.

(iii) For a � 4, Wnor.a; 4; Q/ D N .

(iv) For a � 5, Wnor.a; 5; Q/ D N .

PROOF. Throughout the argument we consider an equivalent version of the

monotonic sequence game with parameters .a; d; Q/. In this version, a suicidal

move i.e. one which creates an ascending sequence of length a�1 or a descend-

ing sequence of length d �1 on the board is forbidden, unless forced. Since the

player with a winning strategy in the original game will never make a suicidal

move, and the other player may choose not to so until forced, the outcome type

of the modified game is the same as that of the original.

For parameters .a; 2; Q/ the game is truly trivial, since the very first move is

suicidal.

For the parameters .a; 3; Q/, any move below an element already played is

suicidal. So, in the modified form, the two players alternately add to an increas-

ing sequence, and clearly the first player wins only if a is odd.
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Now consider parameter sequences of the form .a; 4; Q/. We will show that

the set of colour sequences representing nonterminal P-positions in this game

is

P4 D fP; Ra�3PBg [ fRiP 2 j 0 � i � a � 5g:

To establish this result we must show that for any position which can arise in

the play of .a; 4; Q/, if it is not in P4 then it has a child which is in P4 or a

terminal position, and if it is in P4 then there is no such child. The second part

is easily checked.

Suppose that we have a colour sequence w which is not terminal and not in

P4. If it has three or more bluish elements, then it has a terminal child. Suppose

that w has exactly one bluish element. Then it is of the form RiP for some

0 < i � a � 2. If i D a � 2 it has a terminal child. If i < a � 2 then an insertion

just before the last R yields Ri�1P 2 which is in P4 unless i D a � 3. In that

case, inserting before the P yields Ra�3PB.

Next consider the case where w has two bluish elements, both purple. Ig-

noring positions with terminal children, it must be of the form RiPRj P where

either j > 0 or i D a � 4. If j > 0 inserting before the last R yields RiCj P 2

while inserting before the last P yields RiCjC1PB and one of these two is in

P4. If j D 0 and i D a�4 then inserting between the two P ’s yields Ra�3PB.

Finally consider the case of one purple and one blue element. Then w is

RiPB for some i . If i � a � 5 then moving at the right hand end produces

RiP 2, while if i D a � 4, moving just after the P produces Ra�3PB.

Thus for the parameters .a; 4; Q/ we have established that P 2 P and hence

the initial position is in N .

We give a similar argument for the parameter sequences of the form .a; 5; Q/.

In this case though we do not provide an exhaustive listing of the type P nonter-

minal colour sequences, but only a sufficient set of these. By this we mean that

we provide a set P5 of colour sequences, and an argument that the following

conditions hold:

� P 2 P5;

� if w 2 P5 and v is a child of w, then v has a child which is either terminal or

in P5;

� no w 2 P5 has a terminal child.

This establishes that P 2P , since from any position not in P5 the player whose

turn it is to move can simply take either the immediate win, or the move guar-

anteed by the second of the conditions above. We take

P5 D
˚

P; RPB
	

[
˚

RiPRPB W 0 � i � a � 6
	

[
˚

RiRPBP W 0 � i � a � 6
	

[
˚

Ra�5P 3; Ra�3PB2
	

:
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The first part of the verification is routine. From the initial position P the sec-

ond player can ensure that after her play, the resulting code will be RPB by

always replying “in the second position”. Likewise from RPB she can always

guarantee that her opponent’s next move will be from one of PRPB or RPBP .

Now suppose that 0 � i � a � 7 and that a single move has been made from

RiPRPB or RiRPBP . If this move occurs below the first P it creates a descent

of length 4 and can be countered by an immediate win (i.e. it is suicidal). In

all of the remaining cases there is a counter move to one of RiC1PRPB or

RiC1RPBP .

If a single move has been made from Ra�6PRPB or Ra�6RPBP which is

nonsuicidal, then again there are only a few positions near the end of the colour

sequence that need to be examined, and each of these allows a response to either

Ra�5P 3 or Ra�3PB2.

The final cases to consider are moves from Ra�5P 3. There are only two

nonsuicidal moves and they both permit replies to Ra�3PB2. ˜

We have strong experimental evidence that the monotonic sequence game with

parameters .a; d; Q/ and a; d � 4 always has type N . Computation has estab-

lished this result for 4 � d � 8 and any a with d � a � 16. We can establish

this result for the symmetrical form of the game:

THEOREM 10. Let a � 4. The monotonic sequence game with parameters

.a; a; Q/ has type N .

PROOF. The argument we provide uses a form of strategy stealing together with

symmetry. That is, we show that if the second player had a winning strategy

then the first player could appropriate it for his own use. This contradiction

implies that it must be the first player who has a winning strategy.

If the result were false then the type of the colour sequence P would have

to be N . As the moves from P to RP and PB are symmetrical (under order

reversal) both these positions would have to be of type P .

In particular the two children PP and RPB of RP would both lie in N . The

children of PP are PBP , RPB and PRP . By assumption, RPB 2 N . By

symmetry PBP and PRP have the same type, so these two positions would

have type P . The children of PRP and PBP would all be of type N . These

include the positions

RPP; RRPB; RPB2; PPB:

However, these are all the children of RPB, so RPB must be of type P , con-

tradicting our assumption. ˜

Finally, for this section, we consider an extended form of the monotonic se-

quence game when the deck is Q. In this extension, a chosen card can be inserted
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anywhere in the board, in other words you are allowed to choose the position as

well as the value of the next element to insert in the sequence. A useful model

of this game is that the players alternately choose points in the open unit square

(or the plane, but using the square saves paper) subject to the condition that no

two chosen points can lie on a vertical or horizontal line. The game ends when

there are either a points such that the segments connecting them all have positive

slope, or d such that the segments connecting them all have negative slope. We

refer to such sequences of points as increasing or decreasing respectively.

This extra power reduces the analysis of the game to a simple parity argument

owing to the following lemma:

LEMMA 11. Let a set of fewer than rs points in the open unit square be given

no two of which lie on a horizontal or vertical line. If the longest increasing

sequence of points has length at most r and the longest decreasing sequence of

points has length at most s then it is possible to add an additional point without

creating a sequence of r C 1 increasing or s C 1 decreasing points.

PROOF. View the points as a permutation. To avoid trivialities, suppose that

there is indeed an increasing subsequence of length r and a decreasing subse-

quence of length s. Under these conditions, it is well known that the permutation

has a decomposition into s disjoint increasing subsequences, I1 through Is ,

each of length at most r which can be obtained by a simple greedy algorithm.

Since the number of elements of the permutation is less than rs, one of these

subsequences, without loss of generality I1, will contain at most r � 1 points.

Now consider a decomposition of the permutation into r disjoint decreasing sub-

sequences D1 through Dr each of length at most s (which can also be obtained

by a greedy algorithm). Since for each i and j , jDi \ Ij j � 1 any of the Di of

size s must intersect each Ij . However, some Di has empty intersection with I1

(since there are r D’s and at most r �1 points in I1). Without loss of generality,

suppose it is D1 and note that necessarily jD1j < s.

Now return to thinking of the elements of the permutation as points in the

square. It is possible to find a point .x; y/ whose addition to D1 forms a de-

creasing sequence, and whose addition to I1 forms an increasing sequence. Such

a point can be obtained by “connecting the dots” for D1, and connecting the ends

horizontally to the sides of the square. Do likewise for I1 only connect the ends

vertically. The resulting two paths have a point P in common. Suppose that P

lies in a vertical or horizontal line determined by any of the finitely many points

in the set. In that case, it is possible to perturb P slightly, so that this is no

longer true and so that P ’s addition to D1 forms a decreasing sequence, and its

addition to I1 forms an increasing one, without otherwise changing P ’s relative

horizontal or vertical position with respect to the elements of the set. The point

P thus satisfies the lemma since its addition still permits the partitioning of the
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set of points into r decreasing sequences of size at most s, and s increasing

sequences of size at most r . ˜

In terms of the extended monotonic sequence game with parameters .a; d; Q/

the lemma above implies that for the first .a � 2/.d � 2/ moves neither player

can be forced to play suicidally. However, at this point, by the Erdős–Szekeres

theorem the next move is necessarily suicidal. Since the parity of ad is the same

as that of .a � 2/.d � 2/ we obtain:

THEOREM 12. The extended monotonic sequence game with parameters

.a; d; Q/

has type N if ad is odd, and type P if ad is even.

6. Observations and open problems

It appears that the monotonic sequence game, particularly with normal ter-

mination criteria, has a fairly strong bias towards the first player. Specifically,

our computational results suggest the following pair of conjectures:

� For any a � d � 3 and all sufficiently large n, Wnor.a; d; n/ D Wmis.a; d; n/ D

N .

� For any a � d � 3, Wnor.a; d; Q/ D N .

We would be surprised (assuming the correctness of these conjectures) if similar

results did not also hold for other infinite linear orders (not models of the theory

of almost all finite partial orders) such as N or Z.

In the finite form of the game it appears that the last D occurring in the

sequence Wmis.a; d; n/ is generally closer to position a C d than to position

.a � 1/.d � 1/. It would be of interest to determine a good upper bound for

the position of this last D (the same observation and question applies to the

sequence Wnor.a; d; n/ though the computational evidence is less compelling).

Likewise, the “long run behaviour” of these games seems to become established

well before the bound obtained using the argument of Proposition 6. That the

trailing sequences of N ’s observed in the computational results do generally rep-

resent long run behaviour is supported by a more detailed examination of these

positions showing that there is a large central block of equivalent moves, which

extends by a single element each time the deck size is increased (extensions to

CGSUITE [10] were used for some of these computations).

Another area of interest to investigate would be the behaviour of the extended

form of the game played with a finite deck. In this form, players take turn

naming pairs .i; �i/ subject to the constraint that the chosen values form part

of the graph of some permutation of f1; 2; : : : ; ng (and with termination based
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on increasing or decreasing sequences as normally). An equivalent formulation

has the players placing nonattacking rooks on a (generalised) chessboard.
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