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The game of End-Wythoff

AVIEZRI S. FRAENKEL AND ELNATAN REISNER

ABSTRACT. Given a vector of finitely many piles of finitely many tokens. In

End-Wythoff, two players alternate in taking a positive number of tokens from

either end-pile, or taking the same positive number of tokens from both ends.

The player first unable to move loses and the opponent wins. We characterize

the P -positions .ai ; K; bi/ of the game for any vector K of middle piles, where

ai ; bi denote the sizes of the end-piles. A more succinct characterization can

be made in the special case where K is a vector such that, for some n 2 Z�0,

.K; n/ and .n; K/ are both P -positions. For this case the (noisy) initial behav-

ior of the P -positions is described precisely. Beyond the initial behavior, we

have bi � ai D i , as in the normal 2-pile Wythoff game.

1. Introduction

A position in the (impartial) game End-Nim is a vector of finitely many piles

of finitely many tokens. Two players alternate in taking a positive number of to-

kens from either end-pile (“burning-the-candle-at-both-ends”). The player first

unable to move loses and the opponent wins. Albert and Nowakowski [1] gave

a winning strategy for End-Nim, by describing the P -positions of the game.

(Their paper also includes a winning strategy for the partizan version of End-

Nim.)

Wythoff’s game [8] is played on two piles of finitely many tokens. Two

players alternate in taking a positive number of tokens from a single pile, or

taking the same positive number of tokens from both piles. The player first

unable to move loses and the opponent wins. From among the many papers on

this game, we mention just three: [2], [7], [3]. The P -positions .a0

i; b0

i/ with

a0

i � b0

i of Wythoff’s game have the property: b0

i � a0

i D i for all i � 0.
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Richard Nowakowski suggested to one of us (F) the game of End-Wythoff ,

whose positions are the same as those of End-Nim but with Wythoff-like moves

allowed. Two players alternate in taking a positive number of tokens from either

end-pile, or taking the same positive number of tokens from both ends. The

player first unable to move loses and the opponent wins.

In this paper we characterize the P -positions of End-Wythoff. Specifically,

in Theorem 1 the P -positions .ai ; K; bi/ are given recursively for any vector of

piles K.

The rest of the paper deals with values of K, deemed special, such that .n; K/

and .K; n/ are both P -positions for some n 2 Z�0. Theorem 3 gives a slightly

cleaner recursive characterization than in the general case. In Theorems 4 and

5, the (noisy) initial behavior of the P -positions is described, and Theorem 6

shows that after the initial noisy behavior, we have bi � ai D i as in the normal

Wythoff game. Before all of that we show in Theorem 2 that if K is a P -

position of End-Wythoff, then .a; K; b/ is a P -position if and only if .a; b/ is a

P -position of Wythoff.

Finally, in Section 4, a polynomial algorithm is given for finding the P -

positions .ai; K; bi/ for any given vector of piles K.

2. P -positions for general End-Wythoff games

DEFINITION 1. A position in the game of End-Wythoff is the empty game,

which we denote by .0/, or an element of
S

1

iD1 Z
i
�1

, where we consider mirror

images identical; that is, .n1; n2; : : : ; nk/ and .nk ; nk�1; : : : ; n1/ are the same

position.

NOTATION 1. For convenience of notation, we allow ourselves to insert extra-

neous 0s when writing a position. For example, .0; K/, .K; 0/, and .0; K; 0/

are all equivalent to K.

LEMMA 1. Given any position K, there exist unique lK ; rK 2 Z�0 such that

.lK ; K/ and .K; rK / are P -positions.

PROOF. We phrase the proof for lK , but the arguments hold symmetrically for

rK .

Uniqueness is fairly obvious: if .n; K/ is a P -position and m ¤ n, then

.m; K/ is not a P -position because we can move from one to the other.

For existence, if K D .0/, then lK D rK D 0, since the empty game is a

P -position. Otherwise, let t be the size of the rightmost pile of K. If any of

.0; K/; .1; K/; : : : ; .2t; K/ are P -positions, we are done. Otherwise, they are all

N -positions. In this latter case, the moves that take .1; K/; .2; K/; : : : ; .2t; K/

to P -positions must all involve the rightmost pile. (That is, none of these moves

take tokens only from the leftmost pile. Note that we cannot make this guarantee
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for .0; K/ because, for example, .0; 2; 2/D .2; 2/ can reach the P -position .1; 2/

by taking only from the leftmost pile.)

In general, if L is a position and m < n, then it cannot be that the same move

takes both .m; L/ and .n; L/ to P -positions: if a move takes .m; L/ to a P -

position .m0; L0/, then that move takes .n; L/ to .m0 C n � m; L0/, which is an

N -position because we can move to .m0; L0/.

In our case, however, there are only 2t possible moves that involve the right-

most pile: for 1 � i � t , take i from the rightmost pile, or take i from both

end-piles. We conclude that each of these moves takes one of .1; K/, .2; K/,

: : : , .2t; K/ to a P -position, so no move involving the rightmost pile can take

.2t C 1; K/ to a P -position. But also, no move that takes only from the left-

most pile takes .2t C1; K/ to a P -position because .n; K/ is an N -position for

n < 2t C 1. Thus .2t C 1; K/ cannot reach any P -position in one move, so it is

a P -position, and lK D 2t C 1. ˜

We now state some definitions which will enable us to characterize P -positions

as pairs at the 2 ends of a given vector K. For any subset S � Z�0, S ¤ Z�0,

let mex S D min.Z�0 n S/ = least nonnegative integer not in S .

DEFINITION 2. Let K be a position of End-Wythoff, and let l D lK and r D rK

be as in Lemma 1. For n 2 Z�1, define

dn D bn � an

An D f0; lg [ fai W 1 � i � n � 1g
Bn D f0; rg [ fbi W 1 � i � n � 1g
Dn D f�l; rg [ fdi W 1 � i � n � 1g;

where

an D mex An (1)

and bn is the smallest number x 2 Z�1 satisfying both

x … Bn; (2)

x � an … Dn: (3)

Finally, let

A D
1
[

iD1

ai and B D
1
[

iD1

bi :

Note that the definitions of A and B ultimately depend only on the values of

l and r . Thus, Theorem 1 below shows that if K and L are positions with

lK D lL and rK D rL, then the pairs .ai ; bi/ that form P -positions when placed

as end-piles around them will be the same.
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THEOREM 1.

PK D
1
[

iD1

.ai ; K; bi/

is the set of P -positions of the form .a; K; b/ with a; b 2 Z�1.

K D .1; 2/ K D .1; 3/ K D .2; 3/ K D .1; 2; 2/

l D 0 0 l D 4 –4 l D 5 –5 l D 1 –1

r D 0 0 r D 1 1 r D 3 3 r D 1 1

i ai bi di ai bi di ai bi di ai bi di

1 1 2 1 1 3 2 1 1 0 2 2 0

2 2 1 –1 2 2 0 2 4 2 3 5 2

3 3 5 2 3 6 3 3 2 –1 4 7 3

4 4 7 3 5 4 –1 4 5 1 5 3 –2

5 5 3 –2 6 10 4 6 10 4 6 10 4

6 6 10 4 7 5 –2 7 12 5 7 4 –3

7 7 4 –3 8 13 5 8 6 –2 8 13 5

8 8 13 5 9 15 6 9 15 6 9 15 6

9 9 15 6 10 7 –3 10 7 –3 10 6 –4

10 10 6 –4 11 18 7 11 18 7 11 18 7

11 11 18 7 12 20 8 12 8 –4 12 20 8

12 12 20 8 13 8 –5 13 21 8 13 8 –5

13 13 8 –5 14 23 9 14 23 9 14 23 9

14 14 23 9 15 9 –6 15 9 –6 15 9 –6

15 15 9 –6 16 26 10 16 26 10 16 26 10

Table 1. The first 15 outer piles of P -positions for some values of K.

PROOF. Since moves are not allowed to alter the central piles of a position, any

move from .a; K; b/ with a; b > 0 will result in .c; K; d/ with c; d � 0. Since

.l; K/ D .l; K; 0/ and .K; r/ D .0; K; r/ are P -positions, they are the only P -

positions with c D 0 or d D 0. Thus, to prove that PK is the set of P -positions

of the desired form, we must show that, from a position in PK , one cannot reach

.l; K/, .K; r/, or any position in PK in a single move, and we must also show

that from any .a; K; b/ … PK with a; b > 0 there is a single move to at least one

of these positions.

We begin by noting several facts about the sequences A and B.

(a) We see from (1) that anC1 D
�

an C 1; if an C 1 ¤ l

an C 2; if an C 1 D l
for n � 1, so A is

strictly increasing.
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(b) We can also conclude from (1) that A D Z�1 n flg.

(c) It follows from (2) that all elements in B are distinct. The same conclusion

holds for A from (1).

We show first that from .am; K; bm/ 2 PK one cannot reach any element of PK

in one move:

(i) .am � t; K; bm/ D .an; K; bn/ 2 PK for some 0 < t � am. Then m ¤ n but

bm D bn, contradicting (c).

(ii) .am; K; bm � t/ D .an; K; bn/ 2 PK for some 0 < t � bm. This implies that

am D an, again contradicting (c).

(iii) .am � t; K; bm � t/ D .an; K; bn/ 2 PK for some 0 < t � am. Then

bn � an D bm � am, contradicting (3).

It is a simple exercise to check that .am; K; bm/ 2 PK cannot reach .l; K/ or

.K; r/.

Now we prove that from .a; K; b/ … PK with a; b > 0, there is a single move

to .l; K/, .K; r/, or some .an; K; bn/ 2 PK .

If a D l , we can take all of the right-hand pile and reach .l; K/. Similarly, if

b D r , we can move to .K; r/ by taking the left-hand pile.

Now assume a ¤ l and b ¤ r . We know from (b) that a 2 A, so let a D an. If

b > bn, then we can move to .an; K; bn/. Otherwise, b < bn, so b must violate

either (2) or (3).

If b 2 Bn, then b D bm with m < n (because b ¤ r and b > 0). Since am < an

by (a), we can move to .am; K; bm/ by drawing from the left pile.

If, on the other hand, b � an 2 Dn, then there are three possibilities: if b �
an D bm � am for some m < n, then we can move to .am; K; bm/ by taking

b � bm D an � am > 0 from both end-piles; if b � an D �l , then drawing

b D an � l from both sides puts us in .l; K/; and if b � an D r , then taking

an D b � r from both sides leaves us with .K; r/. ˜

3. P -positions for special positions

Examining Table 1 reveals a peculiarity that occurs when l D r .

DEFINITION 3. A position K is special if lK D rK .

In such cases, if .ai ; bi/ occurs in a column, then .bi ; ai/ also appears in that col-

umn. Examples of special K are P -positions, where l D r D0, and palindromes,

where .l; K/ is the unique P -position of the form .a; K/, but .K; r/ D .r; K/

is also a P -position, so l D r . However, other values of K can also be spe-

cial. We saw .1; 2/—a P -position—and .1; 2; 2/ in Table 1; other examples are

.4; 1; 13/; .7; 5; 15/; and .3; 1; 4; 10/, to name a few.

We begin with the special case lK D rK D 0.
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THEOREM 2. Let K be a P -position of End-Wythoff . Then .a; K; b/ is a P -

position of End-Wythoff if and only if .a; b/ is a P -position of Wythoff .

PROOF. Induction on a C b, where the base a D b D 0 is obvious. Suppose

the assertion holds for a C b < t , where t 2 Z�1. Let a C b D t . If .a; b/ is an

N -position of Wythoff, then there is a move .a; b/ ! .a0; b0/ to a P -position

of Wythoff, so by induction .a0; K; b0/ is a P -position hence .a; K; b/ is an N -

position. If, on the other hand, .a; b/ is a P -position of Wythoff, then every

follower .a0; b0/ of .a; b/ is an N -position of Wythoff, hence every follower

.a0; K; b0/ of .a; K; b/ is an N -position, so .a; K; b/ is a P -position. ˜

The remainder of this paper deals with other cases of special K. We will see

that this phenomenon allows us to ignore the distinction between the left and the

right side of K, which will simplify our characterization of the P -positions. We

start this discussion by redefining our main terms accordingly. (Some of these

definitions are not changed, but repeated for ease of reference.)

DEFINITION 4. Let r D rK , as above. For n 2 Z�1, define

dn D bn � an;

An D f0; rg [ fai W 1 � i � n � 1g;
Bn D f0; rg [ fbi W 1 � i � n � 1g;
Vn D An [ Bn;

Dn D frg [ fdi W 1 � i � n � 1g;

where

an D mex Vn (4)

and bn is the smallest number x 2 Z�1 satisfying both

x … Vn; (5)

x � an … Dn: (6)

As before, A D
S

1

iD1 ai and B D
S

1

iD1 bi .

With these definitions, our facts about the sequences A and B are somewhat

different:

(A) The sequence A is strictly increasing because 1�m<n÷ an D mex Vn >

am, since am 2 Vn.

(B) It follows from (5) that all elements in B are distinct.

(C) Condition (5) also implies that bn � an D mex Vn for all n � 1.

(D) A [ B D Z�1 n frg due to (4).
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(E) A \ B is either empty or equal to fa1g D fb1g. First, note that an ¤ bm

for n ¤ m, because m < n implies that an is the mex of a set containing

bm by (4), and if n < m, then the same conclusion holds by (5). If r D 0,

then bi � ai ¤ 0 for all i , so A \ B D ?. Otherwise r > 0, and for n D 1,

the minimum value satisfying (5) is mexf0; rg D a1, and in this case a1 also

satisfies (6); that is, 0 D a1 � a1 … frg. Therefore, b1 D a1, and bi � ai ¤ 0

for i > 1, by (6).

THEOREM 3. If K is special, then

PK D
1
[

iD1

.ai ; K; bi/ [ .bi ; K; ai/

is the set of P -positions of the form .a; K; b/ with a; b 2 Z�1.

Table 2 lists the first few such .ai ; bi/ pairs for several special values of K. Note

that the case K D .0/ corresponds to Wythoff’s game.

PROOF. As in the proof for general K, we need to show two things: from

a position in PK one cannot reach .r; K/, .K; r/, or any position in PK in a

single move, and from any .a; K; b/ … PK with a; b > 0 there is a single move

to at least one of these positions.

It is a simple exercise to see that one can reach neither .r; K/ nor .K; r/ from

.am; K; bm/ 2 PK , so we show that it is impossible to reach any position in PK

in one move:

(i) .am�t; K; bm/2PK for some 0< t �am. We cannot have .am�t; K; bm/D
.an; K; bn/ because it contradicts (B). If .am � t; K; bm/ D .bn; K; an/, then

an D bm, so m D n D 1 by (E). But then am � t D bn D am, a contradiction.

(ii) .am; K; bm � t/ 2 PK for some 0 < t � bm. This case is symmetric to (i).

(iii) .am � t; K; bm � t/ 2 PK for some 0 < t � am. We cannot have .am �
t; K; bm �t/ D .an; K; bn/ because it contradicts (6). If .am �t; K; bm �t/ D
.bn; K; an/, then bm � am D �.bn � an/. But (C) tells us that bm � am � 0

and bn � an � 0, so bm � am D bn � an D 0, contradicting (6).

Similar reasoning holds if one were starting from .bm; K; am/ 2 PK .

Now we prove that from .a; K; b/ … PK with a; b > 0 there is a single move

to .r; K/, to .K; r/, to some .an; K; bn/ 2 PK , or to some .bn; K; an/ 2 PK .

We assume that a � b, but the arguments hold symmetrically for b � a.

If a D r , we can move to .r; K/ by taking the entire right-hand pile. Other-

wise, by (D), a is in either A or B. If a D bn for some n, then b � a D bn � an.

Since .a; K; b/ … PK , we have b > an, so we can move b to an, thereby reaching

.bn; K; an/ 2 PK .
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K D .0/ K D .10/ K D .15; 15/ K D .8; 6; 23/

r D 0 r D 6 r D 10 r D 14

i ai bi di ai bi di ai bi di ai bi di

1 1 2 1 1 1 0 1 1 0 1 1 0

2 3 5 2 2 3 1 2 3 1 2 3 1

3 4 7 3 4 7 3 4 6 2 4 6 2

4 6 10 4 5 9 4 5 8 3 5 8 3

5 8 13 5 8 10 2 7 11 4 7 11 4

6 9 15 6 11 16 5 9 14 5 9 15 6

7 11 18 7 12 19 7 12 18 6 10 17 7

8 12 20 8 13 21 8 13 20 7 12 20 8

9 14 23 9 14 23 9 15 23 8 13 18 5

10 16 26 10 15 25 10 16 25 9 16 25 9

11 17 28 11 17 28 11 17 28 11 19 29 10

12 19 31 12 18 30 12 19 31 12 21 32 11

13 21 34 13 20 33 13 21 34 13 22 34 12

14 22 36 14 22 36 14 22 36 14 23 36 13

15 24 39 15 24 39 15 24 39 15 24 39 15

16 25 41 16 26 42 16 26 42 16 26 42 16

17 27 44 17 27 44 17 27 44 17 27 44 17

18 29 47 18 29 47 18 29 47 18 28 46 18

19 30 49 19 31 50 19 30 49 19 30 49 19

20 32 52 20 32 52 20 32 52 20 31 51 20

Table 2. The first 20 outer piles of P -positions for some values of K. Note
that B, while usually strictly increasing, need not always be, as illustrated
at K D .8; 6; 23/, i D 9.

If a D an for some n, then if b > bn, we can move to .an; K; bn/ 2 PK .

Otherwise we have, a D an � b < bn. We consider 2 cases.

I. b � an 2 Dn. If b � an D r , then we can take b � r D an from both ends

to reach .K; r/. Otherwise, b � an D bm � am for some m < n, and b � bm D
an �am > 0 since an > am by (A). Thus we can move to .am; K; bm/ 2 PK by

taking an � am D b � bm from both an and b.

II. b � an … Dn. This shows that b satisfies (6). Since b < bn and bn is the

smallest value satisfying both (5) and (6), we must have b 2 Vn. By assumption,

b > 0. If b D r , then we can move to .K; r/ by taking the entire left-hand pile.

Otherwise, since b � an > am for all m < n, it must be that b D bm with m < n.

We now see from (A) that am < an, so we can draw from the left-hand pile to

obtain .am; K; bm/ 2 PK . ˜
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LEMMA 2. For m; n 2 Z�1, if f0; : : : ; m � 1g � Dn, m … Dn and an C m … Vn,

then bn D an C m and f0; : : : ; mg � DnC1.

PROOF. We have x < an ÷ x 2 Vn, and an � x < an Cm ÷ x �an 2 Dn, so

no number smaller than an C m satisfies both (5) and (6). The number an C m,

however, satisfies both since, by hypothesis, an C m … Vn and m … Dn, so

bn D an C m. Since bn � an D m, f0; : : : ; mg � DnC1. ˜

LEMMA 3. For m 2 Z�1, if Dm D f0; : : : ; m � 1g, then bn D an C n for all

n � m.

PROOF. We see that m … Dm. Also, am C m … Vm: it cannot be in Am because

A is strictly increasing, and it cannot be in Bm because if it were, we would

get m D bi � am < bi � ai 2 Dm, a contradiction. So Lemma 2 applies, and

bm D am C m.

This shows that DmC1 D f0; : : : ; mg, so the result follows by induction. ˜

LEMMA 4. If 1 � m � r < am C m � 1 and Dm D fr; 0; 1; : : : ; m � 2g, then

dm D m � 1. Thus, for m � n � r , dn D n � 1.

PROOF. For 0 < i < m we have ai < am by (A) and di < m � 1 since we

cannot have di D r . Hence am C m � 1 > ai C di D bi . Also by hypothesis,

am Cm�1 > r , so am Cm�1 62 Vm. Since m�1 62 Dm, Lemma 2 (with n D m

and m D m � 1) implies dm D m � 1.

For m�n� r , the condition in the lemma holds inductively, so the conclusion

holds, as well. ˜

We will now begin to note further connections between the P -positions in End-

Wythoff and those in standard Wythoff’s Game, to which end we introduce some

useful notation.

NOTATION 2. The P -positions of Wythoff’s game—i.e., the 2-pile P -positions

of End-Wythoff, along with .0; 0/ D .0/—are denoted by
S

1

iD0.a0

i ; b0

i/, where

a0
n D bn�c and b0

n D bn�2c for all n 2 Z�0, and � D .1 C
p

5/=2 is the golden

ratio. We write A0 D
S

1

iD0 a0

i and B0 D
S

1

iD0 b0

i .

An important equivalent definition of A0 and B0 is, for all n 2 Z�0 (see [3]),

a0

n D mexfa0

i; b0

i W 0 � i � n � 1g;
b0

n D a0

n C n:

The following is our main lemma for the proof of Theorem 4.

LEMMA 5. Let n 2 Z�0. If a0
n C 1 < r , then anC1 D a0

n C 1. If b0
n C 1 < r , then

bnC1 D b0
n C 1.



338 AVIEZRI S. FRAENKEL AND ELNATAN REISNER

PROOF. Note that a0

0
C 1 D b0

0
C 1 D 1. If 1 < r , then a1 D mexf0; rg D 1, and

1 satisfies both (5) and (6), so b1 D 1. So the result is true for n D 0.

Assume that the lemma’s statement is true for 0 � i � n � 1 .n � 1/, and

assume further that a0
n C1 < r . Then a0 D 0 < a0

n C1. Also, a0

i C1 < a0
n C1 < r

for 0 � i � n � 1 because A0 is strictly increasing. But, aiC1 D a0

i C 1 for

0 � i � n � 1 by the induction hypothesis, so ai < a0
n C 1 for 1 � i � n. Thus,

we have shown that a0
n C 1 … AnC1.

Let m be the least index such that b0
m C 1 � r , and let j D minfm; ng. Then

b0

i�1
C 1 < r for 1 � i � j , so bi D b0

i�1
C 1 by the induction hypothesis. We

know that b0
r D a0

s ÷ r D s D 0, so b0

i�1
¤ a0

n because n � 1. Therefore

bi D b0

i�1
C 1 ¤ a0

n C 1, so a0
n C 1 … BjC1.

If j D n, then we have shown that a0
n C 1 … VnC1. Otherwise, j D m. For

k �mC1 we have dk �m by (6), since di Dbi�ai Db0

i�1
C1�.a0

i�1
C1/D i�1

for 1 � i � m by our induction hypothesis. Also, ai � amC1 for i � m C 1, by

(A). Therefore, for i � m C 1, bi D ai C di � amC1 C m D .a0
m C 1/ C m D

b0
m C 1 � r > a0

n C 1. Thus we see that a0
n C 1 … fbi W i � m C 1g, and we have

shown that a0
n C 1 … VnC1.

Now, 02VnC1, and if 1�x <a0
nC1, then 0�x�1<a0

n, so x�12fa0

i ; b0

i W0�
i < ng. Thus, for some i with 0 � i < n, either x D a0

i C1 D aiC1 or x D b0

i C1 D
biC1 by the induction hypothesis, so x 2 VnC1. Hence a0

nC1 D mex VnC1. This

proves the first statement of the lemma: anC1 D mex VnC1 D a0
n C 1.

Note that if b0

i C 1 < r for some i 2 Z�0, then a fortiori a0

i C 1 < r . Hence

by the first part of the proof, aiC1 D a0

i C 1. Thus,

b0

i C 1 < r ÷ aiC1 D a0

i C 1: (7)

For the second statement of the lemma, assume that the result is true for

0 � i � n � 1 .n � 1/, and that b0
n C 1 < r . Then, for 0 � i � n � 1, we

know aiC1 D a0

i C 1 by (7), and biC1 D b0

i C 1 by the induction assumption.

Therefore di D i � 1 for 1 � i � n, so bnC1 cannot be smaller than anC1 C n.

Also anC1 D a0
n C 1 by (7).

Consider anC1 C n D a0
n C 1 C n D b0

n C 1. We have 0 < b0
n C 1 < r , and for

1 � i � n, ai � bi D b0

i�1
C 1 < b0

n C 1. This implies that b0
n C 1 … VnC1, and

we conclude that bnC1 D b0
n C 1. ˜

COROLLARY 1. Let n 2 Z�0. If anC1 < r , then anC1 D a0
n C 1. If bnC1 < r ,

then bnC1 D b0
n C 1.

PROOF. Note that anC1 > 0. Since A0 [ B0 D Z�0, either anC1 D a0

i C 1 or

anC1 D b0

i C1. If a0

i C1 D anC1 < r , then anC1 D a0

i C1 D aiC1 by Lemma 5,

so i D n. If b0

i C 1 D anC1 < r , then anC1 D b0

i C 1 D biC1 by Lemma 5, so

i D n D 0 by (E), and a1 D b1 D b0

0
C 1 D a0

0
C 1. The same argument holds

for bnC1. ˜
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COROLLARY 2. For 1 � n � r � 1, n 2 A if and only if n � 1 2 A0 and n 2 B if

and only if n � 1 2 B0.

PROOF. This follows from Lemma 5 and Corollary 1. ˜

THEOREM 4. If r D a0
n C 1, then for 1 � i � r , di D i � 1. Furthermore, for

1 � i � n, ai D a0

i�1
C 1 and bi D b0

i�1
C 1.

PROOF. If r D 1, then n D 0. In this case, note that a1 D b1 D 2, so d1 D 0,

and that the second assertion of the theorem is vacuously true.

Otherwise, r � 2, and we again let m be the least index such that b0
m C1 � r .

Note that m � 1 because b0

0
C 1 D 1 < r . Thus b0

m ¤ a0
n D r � 1, so in fact

b0
m C 1 > r . For 1 � i � m, since a0

i�1
� b0

i�1
and B0 is increasing, we have

a0

i�1
C 1 � b0

i�1
C 1 � b0

m�1
C 1 < r , so ai D a0

i�1
C 1 and bi D b0

i�1
C 1 by

Lemma 5. We see that di D i � 1 for 1 � i � m, so DmC1 D fr; 0; : : : ; m � 1g.

Notice that amC1 C m > r because either amC1 > r and the fact is clear, or

amC1 < r , so amC1 D a0
m C 1 by Corollary 1, which implies that amC1 C m D

a0
m C 1 C m D b0

m C 1 > r . Also, m C 1 � b0

m�1
C 2 (because 1 C 1 D b0

0
C 2

and B0 is strictly increasing) and b0

m�1
C 1 < r , so m C 1 � b0

m�1
C 2 � r . We

can now invoke Lemma 4 to see that di D i � 1 for m C 1 � i � r , so we have

di D i � 1 for 1 � i � r .

Since n � a0
n < r , in particular di D i �1 for 1 � i � n. With i in this range,

we know a0

i�1
C 1 < a0

n C 1 D r , so we get ai D a0

i�1
C 1 by Lemma 5, and

since di D i � 1, bi D ai C i � 1 D a0

i�1
C 1 C i � 1 D b0

i�1
C 1. ˜

THEOREM 5. If r D b0
n C 1, then for 1 � i � r , di D i � 1 except as follows:

� If n D 0, there are no exceptions.

� If a0
n C 1 2 B0, then dnC1 D n C 1 and dnC2 D n.

� If n D 2, then d3 D 3, d4 D 4 and d5 D 2.

� Otherwise, dnC1 D n C 1, dnC2 D n C 2, dnC3 D n C 3, and dnC4 D n.

PROOF. One can easily verify the theorem for 0 � n � 2—that is, when r D 1

(first bullet), 3 (second bullet), or 6 (third bullet). So we assume n � 3.

Lemma 5 tells us that for 1 � i � n, ai D a0

i�1
C1 and bi D b0

i�1
C1 because

a0

i�1
C1 � b0

i�1
C1 < b0

nC1 D r . This implies that di D i �1 for 1 � i � n. This

is not the case for dnC1: a0
n C1 < b0

n C1 D r , so anC1 D a0
n C1, but anC1 Cn D

b0
n C 1 D r , which cannot be bnC1. We must have bnC1 � anC1 C n, however,

and ai � bi < r D anC1 Cn for 1 � i � n, so we see that anC1 CnC1 … VnC1;

thus bnC1 D anC1 C n C 1 D a0
n C n C 2 D b0

n C 2, and dnC1 D n C 1.

If a0
n C1 2 B0, then a0

nC1
D a0

n C2 (because B0 does not contain consecutive

numbers) and a0

nC1
C1 D a0

nC3 � a0
nCn D b0

n D r �1, so Lemma 5 tells us that

anC2 D a0

nC1
C1D a0

nC3. Now, anC2CnD a0
nCnC3>a0

nCnC2D bnC1 �bi
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for all i � n C 1, so bnC2 D anC2 C n, and we see dnC2 D n. That is, we have

anC1; bi ; anC2; : : : ; r; bnC1; bnC2.

This gives us DnC3 D fr; 0; : : : ; n C 1g. Also, 5 < b0

2
C 1 D 6 so, since B0 is

strictly increasing and n C 3 � 5, we know n C 3 < b0
n C 1 D r . Furthermore,

r < bnC1 D anC1 C n C 1 < anC3 C n C 2. Therefore, we can cite Lemma 4 to

assert that di D i � 1 for n C 3 � i � r .

If, on the other hand, a0
n C 1 … B0, then a0

n C 1 D a0

nC1
. Note that a0

3
C 1 D

5 D b0

2
and a0

4
C 1 D 7 D b0

3
, so we can assume n � 5. We have a0

nC1
C 1 D

a0
n C 2 < a0

n C n D b0
n < r , so anC2 D a0

nC1
C 1 D a0

n C 2, and we find that

anC2 C n D a0
n C n C 2 D bnC1 2 VnC2. Also, a difference of n C 1 already

exists, but anC2 C n C 2 is not in VnC2, as it is greater than all of the previous

B values. So we get bnC2 D anC2 C n C 2, and dnC2 D n C 2. We have the

following picture: anC1; anC2; : : : ; r; bnC1; �; bnC2.

Now, since a0
n C 1 2 A0, a0

n C 2 must be in B0 because A0 does not contain

three consecutive values. Because a0
n C 3 � a0

n C n D b0
n D r � 1, we have

anC2 C 1 D a0
n C 3 2 B by Corollary 2. Also, a0

n C 3 2 A0 because B0 does not

contain consecutive values, and a0
n C 4 � r � 1, so a0

n C 4 2 A. We therefore

have anC1; anC2; bj ; anC3; : : : ; r; bnC1; �; bnC2. Since anC3 C n D bnC2 and

differences of n C 1 and n C 2 already occurred, we get bnC3 D anC3 C n C 3,

and dnC3 D n C 3, and the configuration is

anC1; anC2; bj ; anC3; : : : ; r; bnC1; �; bnC2; �; �; bnC3:

If n D 5, then r D b0

5
C 1 D 14, and one can check that anC3 D a8 D 12

and anC4 D a9 D 13 D anC3 C 1. If n � 6, then anC3 C 2 D anC1 C 5 �
anC1 C n � 1 D r � 1. The sequence B0 does not contain consecutive values,

so either anC3 2 A0 or anC3 C 1 2 A0, and therefore either anC3 C 1 2 A or

anC3 C 2 2 A. So regardless of the circumstances, either anC4 D anC3 C 1 or

anC4 D anC3 C 2.

This means that either anC4 C n D anC3 C n C 1 D bnC2 C 1 or anC4 C n D
anC3 C n C 2 D bnC2 C 2. In either case, this spot is not taken by an earlier bi ,

so bnC4 D anC4 C n, and dnC4 D n.

A few moments of reflection reveal that 4 � a3. Since A is strictly increasing,

this gives us that 5 � a4 and, in general, n C 5 � anC4. We now have n C 5 �
anC4 < r < bnC1 D anC1 CnC1 < anC5 CnC4, and DnC5 D fr; 0; : : : ; nC3g,

so Lemma 4 completes the proof. ˜

THEOREM 6. If n � r C 1, then dn D n.

PROOF. The smallest n which fall under each of the bullets of Theorem 5 are

n D 0, n D 1, n D 2, and n D 5, respectively. (n D 3 and n D 4 fall under the

second bullet.) Notice that nC2 � b0
n C1 when n � 1 since 1C2 � b0

1
C1 D 3

and B0 is strictly increasing. Similarly, n C 3 � b0
n C 1 when n � 2 since
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2C3 � b0

2
C1 D 6, and nC4 � b0

n C1 when n � 3 because 3C4 � b0

3
C1 D 8.

Therefore, we see that all of the exceptions mentioned in Theorem 5 occur before

index r C 1 D b0
n C 2.

Theorems 4 and 5, combined with this observation, reveal that DrC1 D
f0; : : : ; rg, whether r D a0

n C 1 or r D b0
n C 1. Thus, by Lemma 3, dn D n

for n � r C 1. ˜

4. Generating P -positions in polynomial time

Any position of End-Wythoff is specified by a vector whose components are

the pile sizes. We consider K to be a constant. The input size of a position

.a; K; b/ is thus O.log a C log b/. We seek an algorithm polynomial in this

size.

Theorem 6 shows that we can express A and B beyond r as

an = mex.X [ fai ; bi W r C 1 � i < ng/; n � r C 1,

bn = an C n; n � r C 1,

where X D VrC1. This characterization demonstrates that the sequences gen-

erated from special End-Wythoff positions are a special case of those studied

in [4], [5], [6]. In [4] it is proved that a0
n � an is eventually constant except

for certain “subsequences of irregular shifts”, each of which obeys a Fibonacci

recurrence. That is, if i and j are consecutive indices within one of these sub-

sequences of irregular shifts, then the next index in the subsequence is i C j .

This is demonstrated in Figure 1.

Relating our sequences to those of [4] is useful because that paper’s proofs

give rise to a polynomial algorithm for computing the values of the A and B

sequences in the general case dealt with there. For the sake of self-containment,

we begin by introducing some of the notation used there and mention some of

the important theorems and lemmas.

DEFINITION 5. Let c 2 Z�1. (For Wythoff’s game, c D 1.)

a0

n D mexfa0

i; b0

i W 1 � i < ng; n � 1I
b0

n D a0

n C cn; n � 1I
m0 D minfm W am > max.X /gI
sn D a0

n � an; n � m0I
˛n D anC1 � an; n � m0I
˛0

n D a0

nC1 � a0

n; n � 1I
W D f˛ng1

nDm0
I

W 0 D f˛0

ng1

nD1:
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Figure 1. With r D 6, the distance between consecutive indices of
P -positions which differ from Wythoff’s game’s P -positions. (That is,
ni is the subsequence of indices where .an; bn/ ¤ .a0

n; b0
n/.) Note that

every third point can be connected to form a Fibonacci sequence.

F W f1; 2g� ! f1; 2g� is the nonerasing morphism

F W 2 ! 1c2;

1 ! 1c�12:

A generator for W is a word of the form u D ˛t � � � ˛n�1, where an D bt C1;

similarly, a generator for W 0 is a word u0 D ˛0
r � � � ˛0

m�1
, where a0

m D b0
r C 1.

We say that W; W 0 are generated synchronously if there exist generators u; u0,

such that u D ˛t � � � ˛n�1; u0 D ˛0
t � � � ˛0

n�1
(same indices t; n), and

8k � 0; Fk.u/ D ˛g � � � ˛h�1 ” Fk.u0/ D ˛0

g � � � ˛0

h�1;

where ah D bg C 1.

A well-formed string of parentheses is a string # D t1 � � � tn over some alphabet

which includes the letters ‘(’, ‘)’, such that for every prefix � of # , j�j. � j�j/
(never close more parentheses than were opened), and j#j. D j#j/ (don’t leave

opened parentheses).

The nesting level N.#/ of such a string is the maximal number of opened

parentheses. More formally, let p1; : : : ; pn satisfy pi D 1 if ti D . , pi D �1 if

ti D / , and pi D 0 otherwise. Then
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N.#/ D max1�k�n

� k
X

iD1

pi

�

:

With these definitions in mind, we cite the theorems, lemmas, and corollaries

necessary to explain our polynomial algorithm.

THEOREM 7. There exist p 2 Z�1; 
 2 Z, such that, either for all n � p; sn D 
 ;

or else, for all n � p; sn 2 f
 � 1; 
; 
 C 1g. If the second case holds, then:

1. sn assumes each of the three values infinitely often.

2. If sn ¤ 
 then sn�1 D snC1 D 
 .

3. There exists M 2 Z�1, such that the indices n � p with sn ¤ 
 can be

partitioned into M disjoint sequences, fn.i/
j g1

jD1
; i D 1; : : : ; M . For each of

these sequences, the shift value alternates between 
 � 1 and 
 C 1:

s
n

.i/

j

D 
 C 1 ÷ s
n

.i/

j C1

D 
 � 1I

s
n

.i/

j

D 
 � 1 ÷ s
n

.i/

j C1

D 
 C 1:

THEOREM 8. Let fnj g1

jD1
be one of these subsequences of irregular shifts. Then

it satisfies the following recurrence:

8j � 3; nj D cnj�1 C nj�2:

COROLLARY 3. If for some t � m0; bt C1 D an and b0
t C1 D a0

n, then the words

u D ˛t � � � ˛n�1;

u0 D ˛0

t � � � ˛0

n�1;

are permutations of each other.

LEMMA 6 (SYNCHRONIZATION LEMMA). Let m1 be such that am1
D bm0

C1.

Then there exists an integer t 2 Œm0; m1�, such that bt C1 D an and b0
t C1 D a0

n.

COROLLARY 4. If for some t � m0, bt C 1 D an and b0
t C 1 D a0

n, then W; W 0

are generated synchronously by u; u0, respectively.

In comparing u and u0, it will be useful to write them in the following form:
�

u

u0

�

D
�

˛t � � � ˛n�1

˛0
t � � � ˛0

n�1

�

;

and we will apply F to these pairs:

F

��

u

u0

��

WD
�

F.u/

F.u0/

�

:

Since u; u0 are permutations of each other by Corollary 3, if we write them out

in this form, then the columns
�

1
2

�

and
�

2
1

�

occur the same number of times.
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Thus we can regard
�

u
u0

�

as a well-formed string of parentheses: put ‘�’ for
�

1
1

�

or
�

2
2

�

, and put ‘(’, ‘)’ for
�

1
2

�

,
�

2
1

�

alternately such that the string remains well-

formed. That is, if the first nonequal pair we encounter is
�

1
2

�

, then ‘(’ stands

for
�

1
2

�

and ‘)’ stands for
�

2
1

�

until all opened parentheses are closed. Then we

start again, by placing ‘(’ for the first occurrence different from
�

1
1

�

;
�

2
2

�

.

EXAMPLE 1.
�

122

221

�

� .�/;

�

1221

2112

�

� . /. /;

�

22211211

21112122

�

� �..�/. //:

LEMMA 7 (NESTING LEMMA). Let u.0/ 2 f1; 2g�, and let u0.0/ be a permu-

tation of u.0/. If c D 1 and u.0/ or u0.0/ contains 11, put u WD F.u.0//; u0 WD
F.u0.0//. Otherwise, put u WD u.0/; u0 WD u0.0/. Let # 2 f�, (, )g� be the paren-

theses string of
� u

u0

�

. Then successive applications of F decrease the nesting

level to 1. Specifically,

(I) If c > 1, then N.#/ > 1 ÷ N.F.#// < N.#/.

(II) If c D 1,

(a) N.#/ > 2 ÷ N.F.#// < N.#/;

(b) N.#/ D 2 ÷ N.F2.#// D 1.

LEMMA 8. Under the hypotheses of the previous lemma, if N.#/ D 1, then

F2.#/ has the form

� � � . / � � � . / � � � . / � � � ; (8)

where the dot strings consist of ‘�’ letters and might be empty. Further appli-

cations of F preserve this form, with the same number of parentheses pairs; the

only change is that the dot strings grow longer.

We now have the machinery necessary to sketch the polynomial algorithm for

generating the sequences A and B. There is a significant amount of initial

computation, but then we can use the Fibonacci recurrences from Theorem 8 to

obtain any later values for sn, and thus for an and bn as well. Here are the initial

computations:

� Compute the values of A and B until an D bt C 1 and a0
n D b0

t C 1. The

Synchronization Lemma assures us that we can find such values with m0 �
t � m1, where m1 is the index such that am1

D bm0
C 1. Corollary 4 tells us

that W; W 0 are generated synchronously by uD˛t : : : ˛n�1; u0 D˛0
t : : : ˛0

n�1
.

� Iteratively apply F to u and u0 until the parentheses string of w D Fk.u/ and

w0 D Fk.u0/ is of the form (8). We know this will eventually happen because

of Lemmas 7 and 8.

� Let p and q be the indices such that w D p̨ : : : ˛q and w0 D ˛0
p : : : ˛0

q .

Compute A up to index p, and let 
 D a0
p � ap . At this point, noting the
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differences between w and w0 gives us the initial indices for the subsequences

of irregular shifts. Specifically, if letters i; i C 1 of the parentheses string of
�

w
w0

�

are ‘( )’, then i C 1 is an index of irregular shift. Label these indices of

irregular shifts n
.1/
1

; : : : ; n
.M /
1

and, for 1 � i � M , let

oi D s
n

.i/

1

� 
 2 f�1; 1g:

(The oi indicate whether the i-th subsequence of irregular shifts begins offset

by C1 or by �1 from the regular shift, 
 .)

� Apply F once more to w and w0. The resulting sequences will again have

M pairs of indices at which w0 ¤ w; label the indices of irregular shifts

n
.1/
2

; : : : ; n
.M /
2

.

With this initial computation done, we can determine an and bn for n � n
.1/
1

as

follows: for each of the M subsequences of irregular shifts, compute successive

terms of the subsequence according to Theorem 8 until reaching or exceeding n.

That is, for 1 � i � M , compute n
.i/
1

; n
.i/
2

; : : : until n
.i/
j � n. Since the n

.i/
j are

Fibonacci-like sequences, they grow exponentially, so they will reach or exceed

the value n in time polynomial in log n. If we obtain n D n
.i/
j for some i; j ,

then

sn D
�


 C oi if j is odd;


 � oi if j is even;

since each subsequence alternates being offset by C1 and by �1, by Theorem 7.

If, on the other hand, every subsequence of irregular shifts passes n without

having a term equal n, then sn D 
 . Once we know sn, we have an D a0
n � sn

and bn D an C n. This implies bnC1 � bn 2 f2; 3g, hence the mex function

implies anC1 �an 2 f1; 2g. Therefore an � 2n, and the algorithm is polynomial.

In the case of sequences deriving from special positions of End-Wythoff, we

must compute the value of r before we can begin computing A and B. After

that, the initial computation can be slightly shorter than in the general case, as

we are about to see.

The only fact about m0 that is needed in [4] is that anC1 � an 2 f1; 2g for

all n � m0. For the A and B sequences arising from special positions of End-

Wythoff, this condition holds well before m0, as the following proposition il-

lustrates.

PROPOSITION 1. For all n � r C 1, 1 � anC1 � an � 2.

PROOF. n � r C 1 implies that bnC1 � bn D anC1 C n C 1 � an � n D anC1 �
an C1 � 2. That is, from index r C1 onward, B contains no consecutive values.

Therefore, since we know that r C1 � arC1 � an, (D) tells us that if an C1 … A,

then an C 1 2 B, so an C 2 … B, so an C 2 2 A, again by (D). This shows that

anC1 � an � 2. ˜
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Therefore, in the first step of the initial computation, we are guaranteed to reach

synchronization with r C 1 � t � m, where m is the index such that am D
brC1 C1. Now, am0

> br because br 2 VrC1 D X . Also, br � ar , so am0
> ar

and am0
� arC1, which implies by (A) that m0 � r C 1. Thus, this is an

improvement over the bounds in the general case. Furthermore, note that as r

grows larger, this shortcut becomes increasingly valuable.

5. Conclusion

We have exposed the structure of the P -positions of End-Wythoff, which

is but a first study of this game. Many tasks remain to be done. For ex-

ample, it would be useful to have an efficient method for computing lK and

rK . The only method apparent from this analysis is unpleasantly recursive: if

K D .n1; : : : ; nk/, then to find lK , compute the P -positions for .n1; : : : ; nk�1/

until reaching .lK ; n1; : : : ; nk�1; nk/, and to find rK , compute P -positions for

.n2; : : : ; nk/ until reaching .n1; n2; : : : ; nk ; rK /.

Additionally, there are two observations that one can quickly make if one

studies special End-Wythoff positions for different values of r . Proving these

conjectures would be a suitable continuation of this work:

� For r 2 Z�0, 
 D 0.

� If r 2 f0; 1g, then M , the number of subsequences of irregular shifts, equals

0. If r D b0
n C 1 and a0

n C 1 2 B0, then M D 1. Otherwise, M D 3.

Furthermore, evidence suggests that, with the appropriate bounds, Theorem 6

can be applied to any position of End-Wythoff rather than only special positions.

In general, it seems that bn �an D n for n > maxflK ; rK g, if we enumerate only

those P -positions with the leftmost pile smaller than or equal to the rightmost

pile. This is another result that would be worth proving.
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