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On the geometry of combinatorial games:
A renormalization approach

ERIC J. FRIEDMAN AND ADAM S. LANDSBERG

ABSTRACT. We describe the application of a physics-inspired renormaliza-

tion technique to combinatorial games. Although this approach is not rigorous,

it allows one to calculate detailed, probabilistic properties of the geometry of

the P-positions in a game. The resulting geometric insights provide expla-

nations for a number of numerical and theoretical observations about various

games that have appeared in the literature. This methodology also provides

a natural framework for several new avenues of research in combinatorial

games, including notions of “universality,” “sensitivity-to-initial-conditions,”

and “crystal-like growth,” and suggests surprising connections between com-

binatorial games, nonlinear dynamics, and physics. We demonstrate the utility

of this approach for a variety of games — three-row Chomp, 3-D Wythoff’s

game, Sprague–Grundy values for 2-D Wythoff’s game, and Nim and its gener-

alizations — and show how it explains existing results, addresses longstanding

questions, and generates new predictions and insights.

1. Introduction

In this paper we introduce a method for analyzing combinatorial games based

on renormalization. As a mathematical tool, renormalization has enjoyed great

success in virtually all branches of modern physics, from statistical mechanics

[Goldenfeld 1992] to particle physics [Rivasseau 2003] to chaos theory [Feigen-

baum 1980], where it is used to calculate properties of physical systems or

objects that exhibit so-called ‘scaling’ behavior (i.e., geometric similarity on

different spatial scales). In the present context we adapt this methodology to the

study of combinatorial games. Here, the main “object” we study is the set of

This material is based in part upon work supported by the National Science Foundation under Grant No.
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Figure 1. The underlying geometries of combinatorial games. Shown are
the IN-sheet structures for Chomp, Nim, and 3-D Wythoff’s game.

P-positions1 of the game, viewed as a geometric entity in the abstract position

space of the game (see, e.g., Figure 1, which will be explained later). As we

will show, this geometric object exhibits a strong scaling property, and hence

can be analyzed via a suitably adapted renormalization technique. Since all

critical information about a game is encoded in this geometry, as a methodol-

ogy renormalization has broad explanatory powers and impressive (numerically

verifiable) predictive capabilities, as will be demonstrated through examples.

When we compare renormalization to other traditional analytical techniques

for analyzing combinatorial games, such as Sprague–Grundy theory, nimbers,

algebraic approaches, and so on [Berlekamp et al. 1979; Bouton 1902; Sprague

1936; Grundy 1939; Conway 1976], several significant distinctions, advantages,

and disadvantages emerge:

I: As a mathematical technique, the renormalization procedure described

here does not, at present, possess the strict level of rigor needed for formal

mathematical proof. In this respect, this renormalization procedure for games

‘suffers’ the same defect as the renormalization of modern physics: even though

renormalization is a highly successful, well-established technique in physics

1In games without ties or draws, every game position is either of type N (Next player to move wins) or P

(Previous player wins).
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that is routinely used to correctly predict physical phenomena with (sometimes

unwarranted!) accuracy, there are very few cases where it has been rigorously

proven to be correct. In this same spirit, we hope that the reader will find the

insights provided by the renormalization analysis of games to be sufficiently

compelling so as to warrant its serious consideration as a practical and powerful

method of analysis for combinatorial games, despite its non-rigorous status at

present.

II: Unlike Sprague–Grundy theory [Bouton 1902; Sprague 1936; Grundy

1939] and its extensions to numbers and nimbers [Berlekamp et al. 1979] which

have proven extremely successful for analyzing games that can be decomposed

(i.e., expressed as a disjunctive sum of simpler games) such as Dots-and-Boxes

[Berlekamp 2000] and Go endgames [Berlekamp 1994], the renormalization

approach to games works equally well for decomposable and non-decomposable

games. Indeed, many interesting games, such as the early play in chess and

Go, have resisted analysis using traditional methods due to their intrinsic non-

decomposability. Very little is in fact understood about the optimal strategies

in non-decomposable games, even such “elementary” ones as Chomp. We will

demonstrate how renormalization can readily handle a non-decomposable game

such as Chomp and raise the possibility that such an approach could be extended

to more complex games such as go, chess or checkers.

III: One of the interesting features of renormalization is that it results in

probabilistic information about the game, despite the fact that we consider only

purely deterministic games (i.e., games of no chance). In particular, rather

than providing a description of the exact locations (in position space) of the P-

positions of a game, renormalization only specifies the probability that a given

position is P. However, there are often relatively sharp boundaries associated

with these probabilities. So even though renormalization cannot give us the

precise (point-by-point) geometry of the game, it will allow us to calculate its

broad, overall geometric features, which in fact provides significant informa-

tion about the game. Indeed, we believe that this inherent “imprecision” in the

methodology, rather than being a shortcoming, is in fact what allows renormal-

ization to proceed and what gives it its power. We conjecture that for many

combinatorial games there do not exist any simple formulas or polynomial-time

algorithms for efficiently computing the exact location of the P-positions, but

that probabilistic information is possible. By sacrificing exact geometric infor-

mation about the game for probabilistic information, significant insights into

“hard” combinatorial games can be obtained. This is reminiscent of chaotic

dynamical systems and strange attractors in which there does not exist formu-

las for specific trajectories [Cvitanovic 1989], but global information about the

overall structure of attractor does exist. We discuss this further in later sections,
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but comment here that this view is supported by numerical evidence on the

“sensitive dependence on initial conditions” displayed by the game Chomp and

discussed in Section 3.2.

IV: The renormalization analysis brings to light several previously unex-

plored features of combinatorial games, and indeed in certain respects we con-

sider these new lines of inquiry to be one of the highlights of this new ap-

proach. In Section 3.1 we introduce the notion of universality, and describe

how renormalization provides a natural classification scheme for combinatorial

games, wherein games can be grouped into “universality classes” such that all

members of a class share key features in common. In Section 3.2 we show how it

is possible to discuss the “sensitivity” of a game to certain types of perturbations

(i.e., rule changes) within the renormalization framework. And in Section 3.3 we

describe how this method reveals unexpected similarities between the geometric

structures seen in games and various crystal-growth models and aggregation

processes in physics.

V: As a final comment, we emphasize that as a new approach to combinatorial

games, renormalization is still very much in its infancy; its limitations, short-

comings, and scope of applicability are not fully understood at present. Hence,

in what follows we will simply give a number of worked examples of this method

applied to specific games, so that the reader might develop a working feel for

how the procedure is actually implemented, and perhaps appreciate its potential

utility.

2. Renormalization framework

We begin with a schematic overview of the general renormalization proce-

dure.

The first step is to create a natural geometry for the game. Towards this end,

consider the abstract “space” of all positions of a game. Typically, this space can

be realized by mapping game positions to a subset of the integer lattice Z
d for

some dimension d > 1. The set of all P-positions in this d-dimensional position

space, which we call the “P-set”, is the key geometric ‘object’ for study.

To proceed, we next define various sets of .d � 1/-dimensional hyperplanes

(“sheets”) that foliate position space. Here, we will let x 2 Z specify the index

of a sheet, and y 2 Z
d�1 the coordinates on the sheet. As we will see, there exist

various types of recursion relations and nonlinear operators that relate the differ-

ent sheets to one another. These sheets will prove instrumental for determining

the overall geometric structure of the game’s P-set.

There are several basic types of foliating sheets to consider. The first are the

P-sheets. These simply mark the location of the game’s P-positions within each

hyperplane. More precisely, define Px , the P-sheet at level x, to be a .d � 1/-
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dimensional, semi-infinite matrix consisting of zeros and ones, with ones mark-

ing the locations of the P-positions (i.e., Px.y/ D 1 if game position Œx; y� 2 Z
d

is a P-position and 0 otherwise). We will be interested in the geometric patterns

(of the ones and zeros) on these sheets, since, taken together, they capture the

full geometry of the P-set in d-dimensional position space.

A second type of foliating sheets are the instant-N sheets (IN-sheets for short).

They are constructed as follows: Following [Zeilberger 2004], we declare an N-

position in the game, Œx; y�, to be an IN if there exists a legal move from that

position to some P-position Œx0; y0� on a lower sheet, x0 < x. The IN-sheets are

simply hyperplanes through position space that mark the locations of the IN’s

(i.e., defining matrix Wx to be the IN-sheet at level x, set Wx.y/ D 1 if position

Œx; y� is an IN and 0 otherwise). As we will see, their key significance lies in the

fact that the P-sheets (and, ultimately, the P-set itself) can be computed directly

from the IN-sheets via the relation Px D MWx , where M denotes a “supermex”

operator (a generalization of the standard Mex operator). Hence, we can think

of the IN-sheets as effectively encoding the critical information about the game.

Moreover, they will prove useful for visualizing a game’s geometric features.

Now, in many examples (e.g., the first three discussed in this paper), it is

possible to write down a recursion relation on the IN-sheets:

Wx D RWx�1:

As will become clear, this is the key step in the renormalization analysis, since

it allows the IN-sheet at level x to be generated directly from its immediate

predecessor.2

We note, however, that in general it is not always possible to construct a

recursive formulation on the IN-sheets themselves, as shown in our 4th example.

In such cases, we show how to construct auxiliary sheets V 1
x ; : : : ; V k

x for which

a (vector) recursion relation of the form Vx D RVx�1 does exist. (The Wx can

then be computed from the vector of sheets Vx .) For ease of presentation we

will assume for the remainder of this section that there exists a direct recursion

relation for the IN-sheets themselves (making auxiliary sheets unnecessary);

however, we will demonstrate the alternate case in an example.

Thus far, the overall scheme is as follows (see Figure 2): We first recursively

generate the IN-sheets using the recursion operator R, then use the supermex

operator M to construct the P-sheets. The final key to the renormalization

2We remark that for all the games considered here, a judicious choice of position-space coordinates allows

one to recursively compute the P-sheet at level x, Px , from all the preceding sheets, P0; P1; : : : Px�1.

However, this type of ‘infinite’-dimensional recursive formulation is not directly useful for renormalization

purposes, since one has to know all preceding sheets just to compute the current one; to apply renormalization

effectively we require a ‘finite’-dimensional recursion relation, like that for the IN-sheets. (Nonetheless, the

assumption that Px can be expressed in terms of all preceding sheets is useful for other parts of the analysis,

and we will assume that this is always the case.)
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Figure 2. Foliating sheets and associated operator relations.

scheme is the observation that the IN-sheets exhibit a form of ‘geometrical

invariance’. Loosely speaking, the geometric patterns on sheets at different x

levels all look similar to one another (i.e., they exhibit “scaling” — here, shape-

preserving growth with increasing x). This allows for a compact description of

Wx for large x. In the examples considered we will see that, in some sense,

the sheets Wx converge to a specific geometry. However, understanding and

defining this ‘convergence’ relies on two key observations:

The first is that since the geometric structures (i.e. patterns of 0’s and 1’s) on

these IN-sheets ‘grow’ with increasing x (but maintain their overall shape), we

must re-scale (shrink) the sheets with larger x values to see the convergence.

We will introduce a rescaling operator S for this purpose. Second, while the

precise structure (point by point) of the IN-sheets does not converge, the overall

probabilistic structure (i.e., densities of points) on the IN-sheets does converge.

Formally, we must define a probability measure on the sheets for this purpose.

Hence, the asymptotic behavior of the IN-sheets (i.e., their ‘invariant geom-

etry’) is described by the limiting probability measure W D limx!1.SR/xW0.

Here, we think of the operator R as ‘growing’ an IN-sheet at a given level to

the next higher level (since RWx D WxC1), and we think of the operator S as

inducing a simple geometrical rescaling of the grown sheet back to the original

size. Repeated application of these growing and rescaling operators, starting at

the initial sheet W0, yields the desired limiting probability measure W. How-

ever, since this limit is independent of the initial sheet W0 for most interesting

cases, we can alternatively express W as a fixed point of the equation

W D SRW:

This “renormalization” equation (with SR the “renormalization operator”) is

our key equation. It states that the invariant measure on a sheet is unchanged if

you grow the sheet and then rescale it, thereby expressing the invariance of the
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Figure 3. The game of Chomp. Left: the starting configuration of three-
-row (M D 3) Chomp. Right: a sample game configuration after play has
begun (describable by coordinates Œx; y; z�).

geometry on the different IN-sheets. The solution to this equation will provide

a complete probabilistic description of the game (including the geometry of its

P-positions), and will allow us to understand much about the game. As will be

illustrated, in practice the above renormalization equation is most easily solved

by deriving a series of related algebraic self-consistency conditions.

We now present several examples. All the games we have chosen share

certain features in common. First, they are all impartial games, and do not

allow draws or ties. They are also all poset games for which it is possible

to define a complete ordering on position space such that the position values

strictly decrease during play. Whether these conditions are inherent limitations

on the scope of applicability of the renormalization methodology remains to be

seen, although we strongly suspect that they are not. For convenience, we have

chosen all of our examples to have three-dimensional position spaces, so as to

make the visualization of the resulting patterns (and the analytic calculations)

more transparent.

2.1. Chomp. We focus first on the game of Chomp, which is, in some sense,

among the simplest of the “unsolved” games. Its history is marked by some

significant theoretical advances [Gale 1974; Schuh 1952; Zeilberger 2001; Zeil-

berger 2004; Sun 2002; Byrnes 2003], but it has yet to succumb to a complete

analysis in the 30 years since its introduction by Gale [1974] and Schuh [1952].

(Chomp is an example of a non-decomposable game, where traditional methods

so far have not proven to be especially effective.)

The rules of Chomp are easily explained. Play begins with an M � N array

of tokens, with the (dark) token in the southwest corner considered “poison”

(Figure 3, left). On each turn a player selects a token and removes (“chomps”)

it along with all tokens to the north and east of it. (Figure 3, right, shows a

sample token configuration after two chomps.) Players alternate turns until one

player takes the poison token, thereby losing the game.

For simplicity, we consider here the case of three-row .M D 3/ Chomp, a

subject of recent study [Zeilberger 2001; Zeilberger 2004; Sun 2002; Byrnes
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2003]. To start, note that the token configuration at any stage of play can be

described (using Zeilberger’s coordinates) by the position p D Œx; y; z�, where

x; y; z specify the number of columns of height three, two, and one, respectively

(Figure 3, right). (Note here that the first coordinate x will eventually serve as

our sheet index, and Œy; z� the coordinates within a sheet.)

In these coordinates, the game’s starting position is Œx; 0; 0�, while the opening

move must be to a position of the form Œx�r; r; 0�, Œx�s; 0; s� or Œx�t; 0; 0� (these

are the “children” of the starting position). Every position may be classified

as either an N-position — if a player starting from that position can guarantee

a win under perfect play — or as a P-position otherwise (draws and ties not

being possible). The computation of N- and P-positions rests on the standard

observation that all children of a P-position must be N-positions, and at least

one child of an N-position must be a P-position. For example, position Œ0; 0; 1�

(where only the poison token remains) is a P-position by definition, so Œ0; 1; 0�

must be an N-position since its child is Œ0; 0; 1�. (Note that a winning move in

the game is always from an N-position to a P-position.)

An intriguing feature of Chomp, as shown by Gale [1974], is that the player

who moves first can always win under optimal play (i.e., Œx; 0; 0� is an N-

position). The proof uses an elegant strategy-stealing argument: Consider the

“nibble” move to Œx � 1; 1; 0�. If this is a winning move, then we are done. If it

is not a winning move, then the second player must have a winning response, in

which case the first player could have chosen this as the opening move instead

of the nibble, leading to a win. Observe that this argument provides no infor-

mation as to what the desired opening move for the first player should be (or

even whether it is unique), only that it exists — a longstanding question that the

renormalization analysis will address.

In previous numerical studies of the game by Brouwer [2004] and others,

several linear scaling relations were noticed. For example, for every x (under

� 80; 000) there is a P-position of the form Œx; 0; z� where z D 0:7x˙1:75; other

sequences with similar linear scaling behavior were also observed. Zeilberger

[2001], Sun [2002] and Byrnes [2003] also find more complex patterns in the

P-positions, including periodic orbits and intimations of possible chaotic-like

behavior. The existence of these numerically observed scaling behaviors pro-

vides the first hint that some type of renormalization approach may be possible,

as we now describe.

To begin, we introduce the foliating sheets, indexed by their x values, as

in [Zeilberger 2004]. (As noted previously, sheet index x here corresponds to

the first coordinate of Chomp’s three-dimensional position space Œx; y; z�.) For

any x, recall that the P -sheet Px is a two-dimensional, semi-infinite matrix

that marks the location of all P -positions at the specified x value. The .y; z/th
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element of this matrix is denoted Px.y; z/. (We note for future reference the

easily proven fact that for every x there exists at most one z, call it z�.x/,

such that Œx; 0; z�.x/� is a P-position, i.e. Px.0; z�.x// D 1.) The IN-sheets

are defined as in the previous section: Wx.y; z/ D 1 if Œx; y; z� is an IN, and 0

otherwise3.

As noted earlier, the IN-sheet Wx contains all the necessary information for

computing the corresponding P -sheet Px , and, moreover, one can calculate

WxC1 directly from Wx . To see this, we define the following operators:

Identity I : for any sheet A, let .IA/.y; z/ D A.y; z/.

Left shift L: for any sheet A, let .LA/.y; z/ D A.y C 1; z/.

Diagonal D: for any x the action of D on the P-sheet Px is given by

.DPx/.z�.x/ � t; t/ D 1 for 0 � t � z�.x/;

.DPx/.y; z/ D Px.y; z/ otherwise.

Supermex M: for any x the action of M on Wx is defined via the following

algorithm:

(1) Set MWx D 0, Tx D Wx , y D 0.

(2) Let zs be the smallest z such that Tx.y; z/ D 0 and set .MWx/.y; zs/ D 1,

Tx.y C t; zs � t/ D 1 for all 0 � t � zs .

(3) If zs D 0 stop; else let y ! y C 1 and go to step 2.

A direct computation shows (see [Friedman and Landsberg 2007] for details):

Px D MWx; WxC1 D L.I C DM/Wx :

Thus, defining R � L.I C DM/ yields WxC1 D RWx : (These relations all

follow simply from a careful application of the game rules.) This provides the

setting for a renormalization analysis. (For future reference, we also mention

one additional relation which is sometimes of use: Wx D
Px

tD1
Lt DPx�t ,

where all sums are binary and interpreted as logical OR’s. This relation follows

from the observation that the IN positions at level x are generated from the

parents4 of P-positions at all lower levels.)

Numerical solution of the recursion equation WxC1 D RWx reveals an inter-

esting structure for the IN-sheets (Wx), characterized by several distinct regions

(Figure 4a). Most crucially, the IN-sheets at different x levels ‘scale’ (see, e.g.,

Figure 4b): their overall geometric structures are identical (in a probabilistic

sense) up to a linear scale factor. In particular, the boundary-line slopes and

densities of points in the interior regions of the sheets Wx are the same for all

3This definition differs in a small but important way from the “instant-winner” sheets introduced in [Zeil-

berger 2004].

4A parent of position p is defined as any position from which it is possible to reach p in a single move.
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Figure 4. The geometry of Chomp. (a) the IN-sheet geometry Wx for
three-row Chomp, shown for x D 700. Here, IN locations in the y-z plane
(i.e., the 1’s in the matrix) are shown in black. (b) The IN-sheet Wx for
x D 350. Comparison with W700 illustrates the geometric invariance of
the sheets. (c) The geometry of Px , shown for x D 350. The P-sheets
also exhibit geometrical invariance, i.e., the Px for all x exhibit identical
structure (in the probabilistic sense) up to an overall scale factor.

x (though the actual point-by-point locations of the instant-N positions within

the sheets will differ).

Thus, the invariant geometry W of the sheets satisfies the renormalization

fixed-point equation W D SRW, with operators S and R defined above. We

now show how to analyze this equation, and ultimately determine the structure of

Chomp’s P-set. We point out that a direct, formal assault on the renormalization

equation would require that the renormalization operator be carefully defined on
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the space of probability distributions over IN-sheets, which proves somewhat

delicate. In practice, the desired result can be more easily obtained through a

somewhat less formal procedure, as we now describe.

We begin by considering the structure of a typical P-sheet Px (Figure 4c).

Numerically, it is found to consist of three (diffuse) lines (heretofore called P-

lines) that may be characterized by six fundamental geometric parameters: a

lower P-line of slope mL and density of points �L, an upper line of slope mU

and density �U , and a flat line extending to infinity. The upper and lower P-lines

originate from a point whose height (i.e., z-value) is ˛x. The flat line (with

density one) is only present with probability 
 in randomly selected P -sheets.

Our goal is to determine analytical values for these six geometric parameters that

characterize the P-set. (Recall that the IN-sheet geometry can be directly linked

with this P -sheet geometry via Wx D
P

x

tD1
Lt DPx�t .) Hence, a determination

of the parameters mL; �L; mU ; �U ; ˛; 
 will provide a complete probabilistic

description of the entire geometric structure of the game5

To get at this geometry, we will derive a set of algebraic self-consistency

equations relating the six geometric parameters. Intuitively, these equations

arise from the demand that as an IN-sheet at level x (Wx) ‘grows’ to WxC1

under the action of the recursion operator R, its overall geometry is preserved.

The key to actually implementing this analysis is to observe that the P-positions

in sheet Px (i.e., the 1’s of the matrix; see Figure 4c) are constrained to lie along

certain boundaries in Wx (Figure 4b); the various interior regions of Wx remain

“forbidden” to P-positions. Geometric invariance of the sheets demands that

these forbidden regions be preserved as an IN-sheet grows under the recursion

operator. Each such forbidden region yields a constraint on the allowable geom-

etry of the Wx’s, and may be formulated as an algebraic equation relating the

hitherto unknown parameters mL; �L; mU ; �U ; ˛; 
 that define the P-sheets. In

all, we find six independent geometric constraints:

�U

1 C mU

D 1; (2-1)

1

1 C ˛
� �L

1 C mL

D 1; (2-2)

5Here, we will not be addressing the interesting issue of the small ‘scatter’ of points around the P-lines.

Numerical simulations show that the range of scatter is in fact extremely narrow (e.g., the distance from a

P-position to the idealized P-line is always less than 5 for x < 1; 000, and does not appear to increase with

x). Despite its smallness, the scatter is not at all irrelevant, and indeed, we believe it is largely the scatter

that makes a purely deterministic analysis of Chomp hard. Our probabilistic description provides a means of

bypassing much of this difficulty while still extracting useful information about the game. We will revisit this

notion briefly in Section 4.
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.
 � 1/
mL

˛ � mL

C 1

1 C ˛
D 1; (2-3)

�U C �L D 1; (2-4)

˛�L

˛ � mL

�

mU � mL

.mU � mL/˛ C mL


�

C 1

1 C ˛
D 1; (2-5)

�L

˛ � mL

� ˛

˛ C 1

�

1 � �U

˛ � mU

�

D 0: (2-6)

These six constraints arise as follows (see Figure 4a): (1) arises from for-

bidden region III; (2) from region II; (3) from the bottom row of region I; (4)

from operator M in regions I,II,III; (5) from the lower part of region I; and (6)

from the upper part of region I. To illustrate we derive constraint (3) here. (For

detailed derivations of the others see [Friedman and Landsberg 2007].)

Recall that Wx D
Px

tD1
LtDPx�t , so that the IN-sheet at level x is ‘built up’

from a series of earlier P-lines (coming from lower-level sheets) and diagonal

lines (associated with operator D). Constraint (3) arises because the lower P-

lines and diagonal lines each contribute points (i.e., instant-N’s) to the bottom-

most row of region I and completely fill it up, thereby rendering it forbidden.

Now, the density of the diagonal lines along the bottom row of Wx can be

computed from elementary geometry to be .1C ˛/�1. The density of the lower

P-lines is �mL=.˛ � mL/. However, each lower P-line will only contribute a

point to the bottom row (at z D 0) with probability .1�
 /, since this equals the

probability that the flat P-line doesn’t exist (by step 3 in the supermex algorithm).

Hence, the actual density of points contributed by the lower P-lines to the bottom

row becomes �.1 � 
 /mL=.˛ � mL/. Summing this density with that of the

diagonals and equating to unity yields constraint (3) (i.e., this is the condition

that the bottom row of the IN-sheets always remains forbidden to P-positions

even as the sheets grow.)

Taken together, the above six constraints may be solved exactly, yielding

precise values for the geometric parameters of the game. These are:

˛ D 1p
2
; �L D 1 � 1p

2
; �U D 1p

2
;

mL D �1 � 1p
2
; mU D �1 C 1p

2
; 
 D

p
2 � 1:

Thus, we have found the renormalization fixed point, and hence have a com-

plete (probabilistic) characterization of the game of Chomp — i.e., the global

geometric structure of its P-set.

With this geometric insight, it becomes straightforward to explain virtually all

numerical properties of the game previously reported in the literature, including
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various numerical conjectures by Brouwer [2004], along with a variety of new

results. As an illustration of its utility, we show how this geometric result lets

us decide (in a probabilistic sense) the optimal first move of the game, which

has been a longstanding open question.

To start, recall that the possible opening moves from the starting position

Œx; 0; 0� are to positions of the form Œx�r; r; 0�, Œx�s; 0; s� or Œx�t; 0; 0� (bearing

in mind that the desired (winning) opening move will be to a P-position). The

last of these, Œx � t; 0; 0�, can never be a P-position, by Gale’s strategy-stealing

argument. Next consider Œx � r; r; 0�, which we will refer to as an “r”-position.

From the geometric structure of the P -sheets, a simple calculation shows that the

only accessible P-position of this form is for r.x/ � ˛x=.˛ � mL/. Likewise,

the only possible P-position of the form Œx � s; 0; s� (i.e., an “s”-position) is

for s.x/ � ˛x=.˛ C 1/. (Note that we use � here since these are asymptotic

values; for any finite x there are small deviations owing to the slight scatter

of P-positions around the P-lines in Figure 4c.) Thus, the P-set geometry has

allowed us to identify the asymptotic locations of the only two possible winning

opening moves in the game! Moreover, since r.x/ < s.x/, the “s”-position is a

child of the “r”-position, so only one of these two positions can be an actual P-

position (for a given x). Hence the winning opening move is unique — a result

which was previously only known numerically [Brouwer 2004] for x values up

to a certain level. Taking this further, we can also compute the probabilities

that this unique winning opening move will be to the “r”-position or to the “s”-

position, as follows: For each starting position Œx; 0; 0� from x D 1 : : : xmax there

is an associated “r”-position Œx � r.x/; r.x/; 0�, which may or may not be a P-

position. The total number of actual “r”-type P-positions with an x-value less

than or equal to xmax �r.xmax/ is just 
 .xmax �r.xmax//. So the fraction of “r”-

positions which are actually P-positions is 
 .xmax � r.xmax//=xmax D
p

2 � 1:

Thus, the winning opening move is to the “r”-position with probability
p

2 �1,

and to the “s”-position with probability 2 �
p

2.

The ease with which the above results were obtained (once the P-set geometry

was determined) illustrates the utility of this geometrically based, renormaliza-

tion approach as a potentially powerful tool for analyzing games.

2.2. Nim. We next consider three-heap Nim [Bouton 1902]. Note that this

simple game is decomposable and “solvable” (in the sense that a simple criterion

exists for deciding if a given position is N or P). In this game we let Œx; y; z�

represent the heights of the three heaps. An allowed move in Nim consists of

reducing a single position coordinate by an arbitrary amount. As in Chomp, we

will let the various hyperplanes be indexed by x, and the coordinates within each

plane by Œy; z�. (Note that while these coordinates break the natural permutation

symmetry of the heaps, the resulting analysis is not affected.)
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Figure 5. IN-sheet geometry for ordinary Nim: W128 (left) and W256

(right). (Note here that the instant-N positions have been color-coded
based on the order in which they were recursively generated; the black
background corresponds to non-instant-N’s.

A straightforward calculation based on the game rules shows that the IN-

sheets are related to the P-sheets by

Wx D
x�1
X

x0D0

Px0 ; .�/

where addition denotes the logical OR operation. This relation simply reflects

the fact that the IN’s at level x are, by definition, determined by the parents of

the P-positions at the lower levels.

We define the action of the supermex operator M on Wx via the following

algorithm:

(1) Set MWx D 0, Tx D Wx , y D 0.

(2) Let zs be the smallest z such that Tx.y; z/ D 0 and set .MWx/.y; zs/ D 1,

Tx.y C t; zs/ D 1 for all 0 � t .

(3) Let y ! y C 1 and go to step 2.

This yields the relation,

Px D MWx; .��/

as the reader may verify. Combining .�/ and .��/ yields the desired recursion

formula,

WxC1 D RWx;

with R D I C M and I the identity operator.

The IN-sheets are readily constructed using this recursion operator. Figure 5

displays the sheet geometry Wx for x D 128 and x D 256. Again, we observe
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that the geometry of the game’s IN-sheets scale (linearly with x), just as in

the preceding case of Chomp. As before, one could construct algebraic self-

consistency conditions that exploit this scaling, and thereby develop a geomet-

ric characterization of the sheets. This is unnecessary here since the game of

Nim is easily solvable, and all sheets can be directly constructed using nimbers

instead. So for the moment we will content ourselves with having set up the

basic renormalization framework for the game. However, we will revisit this

issue when we discuss a modified (nontrivial) version of Nim later in this paper.

Before moving to our next example, we remark briefly on one unique feature

of Nim (not seen in the earlier Chomp example). In Chomp, all Wx’s (regard-

less of x) look geometrically similar up to linear rescaling. In Nim, the sheets

exhibit linear scaling, but also display a periodicity (in x) in powers of 2. For

instance, the sequence W128; W256; W512; : : : exhibits geometric invariance (up

to rescaling), as does the sequence W100; W200; W400; : : :. However, the basic

patterns for these two sequences will differ somewhat (e.g., Figure 1b illustrates

the geometry for this second sequence.) The existence of this periodicity means

that the original renormalization equation will not have a true fixed point; how-

ever, in practice this can be handled by using a slightly modified renormalization

equation which exploits this periodicity (loosely speaking, W2x D .SR/xWx),

but we do not pursue this further. (Nim is the only one of our examples to

display this feature.)

2.3. 2-D Wythoff’s game and Sprague–Grundy values. In our next example

we show how renormalization can be used to compute the Sprague–Grundy

values of a game. We illustrate here with Wythoff’s game [Wythoff 1907],

whose Grundy values have been the subject of a recent study by Nivasch [2004].

Wythoff’s game is equivalent to two-heap Nim, where in addition to removing

an arbitrary number from either heap a player can also remove the same number

from both heaps. Thus if coordinates Œy; z� represent the heights of the two heaps

then a legal move reduces either of the coordinates by an arbitrary amount, or

both by the same amount.

It is well known that the P-positions of Wythoff’s game are all of the form

.b�kc; b�2kc/ and .b�2kc; b�kc/ for all positive integers k > 0, where � D

.
p

5 C 1/=2 is the golden ratio [Wythoff 1907]. Thus, they lie near the lines

through the origin with slopes � and ��1. However, the characterization of

the Sprague–Grundy values for Wythoff’s game is significantly more difficult.

Nivasch [2004] has shown that these Grundy values also lie ‘close’ to these

lines; specifically, that a position with Grundy value g is bounded within a

distance O.g/ of these lines. We show that this result follows directly from a

straightforward renormalization analysis — although our proof is not rigorous,

whereas Nivasch’s is.
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The general procedure for computing the Sprague–Grundy values of a game

via renormalization is straightforward: Add a single Nim heap to be played in

conjunction (i.e., disjunctive sum) with the game of interest, and then do ordi-

nary renormalization on the combined game. In the present case we represent

the position space of the combined game by coordinates Œx; y; z�, where a player

can either move in Wythoff’s game, Œy; z�, or play on the Nim pile by reducing x

by an arbitrary amount. Then, a standard argument shows that Wythoff position

Œy; z� has Grundy value x if Œx; y; z� is a P-position of the combined game.

Thus the sheets Px correspond to the set of all positions in Wythoff’s game

with Grundy value x.

As in Nim, we use the IN-sheets and note that6

Wx D
x�1
X

x0D0

Px0 :

One can compute M from the properties of Wythoff’s game:

(1) Set MWx D 0, Tx D Wx , y D 0.

(2) Let zs be the smallest z such that Tx.y; z/ D 0 and set .MWx/.y; zs/ D 1,

Tx.y C t; zs/ D 1; Tx.y C t; zs C t/ D 1 for all 0 � t .

(3) Let y ! y C 1 and go to step 2.

Combining this supermex algorithm with the preceding expression yields the

recursion operator

R D I C M:

We now analyze the invariant geometry of the game, and show how it explains

Nivasch’s result.

A representative IN-sheet and P-sheet are shown in Figure 6. We will focus

on the outer regions of these graphs (i.e., the large Œy; z� regime), avoiding the

more complicated structures near the origin. Here, the IN-sheet consists of two

(thick) lines, an upper and lower one, whose slopes we denote by mU ; mL. The

P-sheet also exhibits two related lines (P-lines) of the same slopes as in the

IN-sheet (we neglect the fact that closer inspection shows that each P-line is a

double line, as this will not affect the calculation). We let �U ; �L denote the

density of points (i.e., P-positions) along these lines (per unit horizontal).

The renormalization analysis of the invariant geometry is simplified by the

observation that the regions of Figure 6 labeled I, II, III, IV are entirely devoid

of P-positions. (More precisely, if the P-sheet and IN-sheet plots are superim-

posed, the P-positions do not appear in the four labeled regions.) These four

regions are thus “forbidden.” The fact that they contain no P-positions provides

6This holds true for a sum of any game with a single Nim pile, which arises whenever one analyzes the

Sprague–Grundy values.
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Figure 6. IN-sheet and P-sheet associated with the Sprague–Grundy val-
ues of Wythoff’s game: W100 (left) and P100 (right). Note that a 45o-line
has been artificially added to the W100 plot so as to demarcate regions II
and III.

constraints that allow us to compute analytical values for the four parameters

mU ; mL; �U ; �L that characterize the invariant geometry of the P-set.

The absence of P-positions in the forbidden regions is due to the fact that

these empty regions get completely filled up (during the supermex operation

Px D MWx) by parents of the P-positions. (Note that these parents cannot

themselves be P-positions.) Within any given sheet, the parents of a position

Œy; z� lie along three lines (one vertical, one horizontal, and one diagonal): V D
fŒy Ck; z� j k > 0g, H D fŒy; z Ck� j k > 0g, and D D fŒy Ck; z Ck� j k > 0g.

Forbidden region (I) gets completely covered by the vertical lines V arising from

(parents of) P-positions along the lower and upper P-lines. The density of these

(per unit y) is given by �LC�U which must equal 1, since they can’t overlap and

must completely fill the region. Likewise, Forbidden region (IV) is completely

filled by horizontal lines arising from the upper and lower P-lines. Since their

densities (per unit z) are �i=mi ; i DL; U , it follows that �L=mLC�U =mU D1.

Forbidden region (II) is filled by the diagonal lines emerging from the upper P-

line. Elementary geometry shows the density of these lines to be �U =.mU �1/,

yielding �U =.mU �1/ D 1. (We note that horizontal lines from the upper P-line

and vertical lines from the lower P-line also contribute to region (II), but since

neither of these — either alone or in combination — is sufficient to completely

fill the region, and since they are not well correlated with the diagonal line, it

must be the case that the diagonal lines alone are sufficient to fill the region.)

A similar argument for region (III) shows that the diagonals emerging from the

lower P-line completely fill the region, yielding �L=.1 � mL/ D 1.

Solving these four constraints we find that mU D � D m�1

L
and �U D ��1,

�L D 1 � ��1, which agree with numerical observations. Thus, we see that
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the Sprague–Grundy values lie near the rays defined by the game’s P-positions,

in agreement with Nivasch’s result. It is also straightforward to show that the

deviation from these lines must be O.x/ (where x corresponds to the Grundy

value). This follows from the game’s recursion relation, WxC1 D .I CM/Wx D
Wx C Px , which shows that an IN-sheet at level x is built up from a series of

lower-level P-sheets (whose total number is x). Since the P-positions in the P-

sheets can never overlap with one another as they are being laid down to form

the IN-sheet, it follows that the width of the two N-sheet lines must be O.x/,

also in agreement with [Nivasch 2004].

The geometric picture emerging from our analysis actually suggests a way to

compute a crude estimate for the tightness of this bound. This bound is related

to the width of the two (thick) lines in the sheet Wx , which we can calculate as

follows: Consider a section of horizontal extent S of one of these lines. The area

occupied by this section of line is just that of a rectangle with length S
p

1 C m2

and thickness w (where m denotes the slope of the line, either mU or mL). The

total number of points making up this area is just �Sx (since the thick line is

built from x P-lines, each one contributing �S points, with �D�U or �L). Since

this area is completely filled, it must have density 1. Solving, we find that the

line thickness is w D x=.�
p

1 C �2/. Thus, our probabilistic estimate is that,

asymptotically speaking, a game position with Grundy value g will roughly lie

within a distance of g=.�
p

1 C �2/ of the known P-lines. (Here, asymptotic

refers to game positions with suitably large values of Œy; z�, so that we are far

from the complex structure located near the origin of Figure 6.)

In summary, this analysis illustrates how the renormalization method can be

used to rather easily (albeit nonrigorously) obtain results that are difficult to ob-

tain by more traditional methods, including Sprague–Grundy results. Moreover,

this type of geometric analysis reveals insights that are less apparent by other

means. In the present case, for instance, we find a complex structure near the

origin of the IN- and P-sheets, which (to our knowledge) has not been recognized

before. Separate treatments of the local and asymptotic structures in this game

would presumably allow one to derive even tighter analytical bounds than were

obtained in [Nivasch 2004].

2.4. Three-dimensional Wythoff’s game. As our last example, we consider a

3-D generalization of the ordinary (2-D) Wythoff’s game, for which, as far as

we know, relatively little is known. Here, we will not carry out the complete

renormalization analysis, but will derive the necessary analytical operators and

recursion relations (which in this case will require the use of auxiliary sheets in

addition to the IN-sheets), and also numerically illustrate the geometric scaling

property of these sheets.



RENORMALIZATION AND THE GEOMETRY OF COMBINATORIAL GAMES 367

The rules of the game are as follows: Letting Œx; y; z� denote the three heap

sizes, one can remove one or more tokens from a single heap, or the same

number from any pair of heaps. Other versions of the game are also possible:

For instance, one could replace the rule about removing tokens from any pair of

heaps with one allowing removal of an equal number of tokens from all three

heaps, or keep all the original rules and supplement them with this additional

one. In any case, the derivation of the recursion operators for these alternate

versions will be entirely analogous to the game version we will illustrate here.

We note that in this example there does not exist a recursion relation among

the IN-sheets. This is related to the set of legal moves in the game. In this

case, there are three distinct types of legal moves from a higher sheet at level

x to a lower sheet at level x0, with x0 < x. These are the ‘straight’ move

Œx; y; z� ! Œx0; y; z� and the two ‘diagonal’ moves Œx; y; z� ! Œx0; y�.x�x0/; z�

and Œx; y; z� ! Œx0; y; z � .x � x0/�. We will require one auxiliary sheet for

each of these moves, V 1; V 2; V 3. The first sheet, associated with the straight

move, is constructed as a sum (logical OR’s): V 1
x D

Px�1

x0D0
Px0 . The second

sheet is constructed via right-shifted sums (i.e., shifts along the y-axis in Œy; z�

space) V 2
x D

Px�1

x0D0 Yx�x0

Px0 and the third via ‘upward’-shifts along the z-axis,

V 3
x D

P

x�1

x0D0
Zx�x0

Px0 .7 We also note that the IN-sheets can be expressed as

sums (logical ORs) of the auxiliary sheets, Wx D V 1
x C V 2

x C V 3
x , and that the

supermex operator for this game is the same as that for our previous example,

the Sprague–Grundy values for 2-dimensional Wythoff’s game. Thus Px D
MWx D M.V 1

x C V 2
x C V 3

x ).

The key observation is that the auxiliary sheets have been constructed so as

to obey a recursion relation:

V 1

xC1
D V 1

x C M.V 1
x C V 2

x C V 3
x /;

V 2

xC1
D YV 2

x C YM.V 1
x C V 2

x C V 3
x /;

V 3

xC1
D ZV 2

x C ZM.V 1
x C V 2

x C V 3
x /;

and hence can be recursively generated from one another. The IN-sheets and

the P-sheets can in turn be derived from these.

Plots of the IN-sheets and P-sheets for this game are given in Figure 7. They

display complex probabilistic geometrical structures (which, as in our other ex-

amples, exhibit scaling behavior). In theory one should be able to compute

the fixed points of the renormalization operator for this game, although this is

clearly a complicated calculation that we leave for the future.

Lastly we remark that the IN-sheets for the other versions of 3-D Wythoff

mentioned above can be constructed straightforwardly, and display similar (but

7Note that when right-shifting (resp. up-shifting), we fill in new columns (resp. rows) with 0’s.
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Figure 7. IN-sheet and P-sheet for three-dimensional Wythoff’s game:
W100 (left) and P100 (right).

not identical) complex geometrical structure and obey analogous scaling rela-

tions.

3. Implications and new directions

Apart from being a practical tool for garnering new insight into specific

games, the renormalization methodology opens up several interesting new lines

of inquiry into combinatorial games in general, as we now discuss.

3.1. Perturbations, structural stability, and universality in combinatorial

games. Having established a renormalization framework, it is natural to inquire

about the stability of the associated renormalization fixed point. In other words,

is the underlying geometry of a game stable to perturbations? In the present

context, we perturb a game by adding one (or more) new points to one of its

IN-sheets. We then repeatedly operate on the modified sheet with the recursion

operator R, and examine the perturbation’s effect on the asymptotic geometry.

We can think of such a perturbation to an IN-sheet as creating a variant of the

original game with slightly modified rules: In these variant games, one or more

of the P-positions of the original game have been arbitrarily “declared” (by the

perturbation) to now be N-positions. How does the geometry of these variant

games compare to the original?

In the game of three-row Chomp, a numerical analysis shows that for a wide

range of perturbations the system quickly returns to the same renormalization

fixed point (in the probabilistic sense) as in the original game, i.e., the overall

geometric structure seen in Figure 4 re-emerges. Thus, adopting terminology

from physics, we would say that these variant games lie in the same “univer-

sality class” as ordinary Chomp. In this manner, renormalization provides a

natural classification scheme for combinatorial games: games can be grouped



RENORMALIZATION AND THE GEOMETRY OF COMBINATORIAL GAMES 369

y

Z

200 400 600

200

400

600

Figure 8. The geometry of generic Nim, illustrated for W256.

into universality classes based on the nature of their associated renormalization

fixed point. (We note that, like Chomp, the three-dimensional Wythoff’s game

discussed in the preceding section also appears to be structurally stable.)

Interestingly, not all games are stable to perturbations (i.e., the perturbation

may create a game in a different universality class). For the game of ordinary

Nim [Bouton 1902] considered earlier, we find that its IN-sheet geometry is

structurally unstable to perturbations (i.e., the renormalization fixed point is

unstable), resulting in a radically different geometry. Figure 8 shows the ge-

ometry8 of a typical variant of Nim. We emphasize that this new geometry is

stable and reproducible — it is the typical geometry that one observes if one

makes a random perturbation to ordinary Nim. Hence we think of these variants

of Nim as forming their own universality class, with Nim an outlier. In this

manner we can see that Nim has a highly delicate (and non-generic) underlying

geometric structure.

Why do some games like Chomp and 3-D Wythoff’s game possess stable

underlying geometries, while a game like Nim does not? We observe that Nim,

unlike Chomp, is a solvable9, decomposable game, and we believe that its in-

herent instability in the renormalization setting says something deep about the

computational complexity of the game. Thus, we are led to this conjecture:

8We note that the Wx sheets display a weak periodicity in x in powers of 2, as was the case for ordinary

Nim.

9i.e., a simple algorithm exists for determining if a given position in Nim is N or P
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Conjecture: Solvable combinatorial games are structurally unstable to per-

turbations (and hence have unstable sheet geometries), while generic, complex

games will be structurally stable.

— a suggestion which, if true, would relate geometric structure, dynamical sta-

bility, and computational complexity! We note an analogous feature from dy-

namical systems theory — that of integrability in Hamiltonian systems. For in-

tegrable systems, the solution to the problem can be reduced to quadratures and

is characterized by simple behaviors: fixed points, periodic and quasiperiodic

orbits. However, integrable systems are highly susceptible to perturbations, and

adding a random perturbation will typically render the system non-integrable,

destroying (some of) its simple structures and leading to much more complex

dynamics, as described by the Poincaré–Birkhoff theorem[Arnold and Avez

1968]. Indeed, most many-degree-of-freedom Hamiltonian systems are non-

integrable; integrable ones are exceptional. In this same way, our intuition here

is that games which are solvable are rather non-generic — i.e., solvability is a

delicate, rare feature that will break under most perturbations.

3.2. Sensitivity to initial conditions. One of the hallmarks of the modern

understanding of dynamical systems and chaos theory is the concept of “sensi-

tivity to initial conditions.” Colloquially, this is the idea that a butterfly flapping

its wings in New York can alter the weather in Chicago a few days later. More

formally, it implies that one cannot predict the long term behavior of a dynamical

system due to the rapid growth of small uncertainties. (See [Devaney 1986] for

an elementary introduction.)

In this section, we will show that games can exhibit a related behavior. To

do this, we will view the game’s asymptotic distribution (i.e., the IN-sheet or

P-sheet geometry) as a type of attractor.

We start, as in the preceding section, by perturbing an IN-sheet Wx in a

game, and then iterate (with R). Here, we explicitly assume the game to be

structurally stable. We then examine how the precise locations of P-positions in

sheets Px0 , x0 � x are affected by the initial perturbation. (Recall that by the

structurally stability assumption, the same probabilistic structure will emerge in

the perturbed and unperturbed cases, but the actual point-by-point locations of

the P-positions in the P-set will differ.)

We illustrate this idea with the game of Chomp. Consider Figure 9. The blue

data demonstrates that Chomp’s attractor appears to exhibit a form of sensitivity

to initial conditions. It was generated by changing a single IN on sheet W100

and then plotting (as a function of iteration number) the fractional discrepancy

between the locations of the P-positions for the perturbed and unperturbed initial

conditions (restricting here to P-positions on the lower and upper P-lines in Px).



RENORMALIZATION AND THE GEOMETRY OF COMBINATORIAL GAMES 371

0 100 200 300 400
0

0.25

0.5

0.75

1

iteration

fr
ac

tio
na

l v
ar

ia
tio

n

Figure 9. Dependence on initial conditions. The figure shows the fraction
of P-positions affected by a small initial perturbation to an IN-sheet, as a
function of iteration number.

Remarkably, after only 25 iterations, over half the losing positions have shifted

their locations, while still remaining on the attractor. (The red data is similarly

computed for an initial perturbation to P400, while the green data shows a rolling

average of the corresponding effect for P-positions lying on the flat line of Px .)

Note that despite the strong sensitivity on initial conditions, it is somewhat sur-

prising that the growth of a perturbation appears to be roughly linear, rather than

exponential. The resolution of this remains an open problem (as does the formal

definition and analysis of Lyapunov exponents in this setting).

3.2.1. Renormalization and correlations. This sensitivity to initial conditions

provides some justification for the renormalization procedure. We note that

the main (unproven) assumption used in the renormalization analysis is that

the various P-lines (at different x levels sufficiently far apart) were essentially

uncorrelated with one another. (This was used implicitly, for instance, in the

derivation of a few of the algebraic constraints given in Sections 2.1 and 2.3.)

In the limit of large x we believe that this is justified because these lines are

determined by sheets with large differences in x values, and since the system

displays sensitive dependence on initial conditions, the precise point-by-point

details of distant sheets should be uncorrelated in the limit.10 Thus, we see

that the renormalization analysis and assumptions about correlations are self-

consistent.

10We remark that this lack of correlation is not a universal trait of all renormalization analyses. For

example, in one of the most famous uses of renormalization, the phase transition in Ising Models (and many

other phase transitions), in the ‘frozen’ case, correlation lengths in fact become infinite. [Ising 1925; Cipra

1987].
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3.3. Accretion, crystal growth, and tightness of bounds. We observe here that

the “growth” (with increasing x) of the geometric structures Wx (e.g., Figure 1)

for games such as Wythoff’s game, Nim and Chomp is suggestive of certain

crystal growth and aggregation processes in physics [Gouyet 1995; Bar-Yam

1997]. This semblance arises because the recursion operators governing the

game evolution (in particular, the supermex operator M) typically act by attach-

ing new points to the boundaries of the current (IN-sheet) structures. Although

the details vary, this type of attachment-to-boundaries process is a common fea-

ture of many physical growth models (e.g., crystal growth, diffusion-limited

aggregation, directional solidification, etc.). Viewed this way, the procedure

offers a means of transforming the study of a combinatorial game into that

of a shape-preserving growth process - and with it the hope that some of the

tools which physicists have developed for analyzing such growth models may

be brought to bear on combinatorial games. Most promising in this context

would be a PDE description of the evolving boundaries in the game geometry,

or a non-markovian diffusion formulation.

4. Open questions

Clearly this work raises many open questions and research problems. We

provide a list of some of the key ones below:

1. Making renormalization rigorous: Despite its apparent practical capa-

bilities as a tool for analyzing combinatorial games, it would be extremely

valuable to make this renormalization approach mathematically rigorous. A

first step would be to prove that, for stable games, the fixed point of the

renormalization procedure is globally attracting, i.e., all initial conditions

converge to the fixed point, or as is more likely, almost all converge. The

local version of this stability problem is far more tractable, as it reduces to

the computation of the spectrum of the linearization of the renormalization

operator at the fixed point and standard techniques should suffice.

2. 3-D Wythoff’s Game and Generic (‘perturbed’) Nim: Solve analytically

for the invariant geometry in these games, which have interesting and com-

plex IN-sheets.

3. Four-row Chomp: Solve for the renormalization fixed point in four-row

Chomp. Two approaches seem promising and both could be combined with

automated procedures described in Item 5 below.

(i) Consider three-dimensional sheets and apply the analogous renormal-

ization procedure as used for three-row Chomp. (This can be done in a

straightforward manner.)
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(ii) Given a four-row position .w; x; y; z/; fix w and then apply this analysis

of Chomp to the subgame with the last three coordinates. Note that in this

case, the renormalization equations become inhomogeneous, of the form

W D RW C B, where B comes from the solutions with smaller w.

4. Sprague–Grundy values for (2-D) Wythoff’s game Analyze the complex

structure of the sheets found near the origin (i.e., for small position values).

5. Automated Renormalization: Design an algorithm for analytically com-

puting the renormalization fixed point, in the spirit of Zeilberger’s automated

analysis of Chomp. (An example of an automated renormalization procedure,

in a very different setting is given in [Friedman and Landsberg 2001].)

6. NP-Hardness of Combinatorial Games: Prove that some game which can

be solved by renormalization techniques is NP-hard.

7. Hardness of Perturbed Games: Provide a class of solvable games such

that ‘most’ perturbations lead to games that are ‘difficult’ to solve.

8. Partisan Games: Apply renormalization techniques to partisan games.

9. Accretion and Partial Differential Equations: Apply modern tools from

accretion theory to a combinatorial game. In particular, find a PDE approxi-

mation to the renormalization operator to compute the fixed points.

10. Lyapunov Exponents: Formally define and calculate Lyapunov exponents

to describe the sensitivity to initial conditions of an interesting game.

11. Our analysis of Chomp appears to suggest that one can answer the following

two new and fundamental questions in complexity theory in the affirmative.

(i) Probabilistic Solutions of Hard Problems (“betting on NP”): Our re-

sults suggest that the computation of P-positions in 3-rowed Chomp is not

polynomial. (Note that it is not clear whether the problem is in NP or

even NP-hard.) Thus we do not expect to find simple formulas or fast

algorithms. Nonetheless, this analysis implies that we can compute prob-

abilistic estimates. This raises the question of whether such estimates are

possible in complexity theory and raises the following challenging (but

fundamental) problem: For an NP-complete (or NP-hard) problem, find a

polynomial time algorithm which can accurately estimate the probability

that a word is in the language. This would not allow one to solve NP-

hard problems (which is not possible if P 6D NP ), but would allow one

to “bet effectively” on such problems. Clearly one needs a more precise

formulation to allow one to sensibly evaluate the notion of ‘probability’.

One possibility is a computational formulation of the notion of ‘calibration’

from Bayesian analysis [Dawid 1982].

(ii) Stochastic NP-Hard Problems: A dual to the previous problem is to

consider a set of NP-complete (or NP-hard) languages, generated stochas-

tically and ask whether there exists a polynomial time algorithm which,
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given a word, can estimate the fraction of languages that it is a member of.

For example, one could take a traveling salesman problem on a computer

network and assume that each link exists with probability p 2 Œ0; 1�. Then

one could ask for the probability that a given graph has an expected tour

less than some fixed length.

12. Difficult Combinatorial Games: Clearly the proof of this new approach

is in the pudding. What other combinatorial games can be analyzed using

these methods?

5. On the application of renormalization to games

First, we want to emphasize that (at least) some games of no chance have

interesting and revealing underlying geometric structures. This suggests that

simply computing the geometric structure in a game’s position space could, in

and of itself, lead to new and potentially powerful insights into a game (even

in the absence of a full-blown renormalization analysis). For example, as we

saw, the plot of Sprague–Grundy values for 2-D Wythoff’s game reveals an

interesting structure near the origin.

Second, we wish to reiterate that the renormalization approach to games

is still very much in its infancy, with much unexplored terrain — its scope of

applicability and limitations are not fully understood. Its primary limitation at

present is that, like many renormalization procedures, making it fully rigorous is

likely to prove challenging, and most renormalization results do not constitute

formal mathematical proofs. Nonetheless, at a minimum, one can view the

renormalization results for a game as representing strong conjectures, and then

seek independent formal proofs of these conjectures. An alternative is that one

can ignore rigor and simply compute — as is done in modern physics — to help

understand the complex structure of non-decomposable combinatorial games.

Given our lack of knowledge about the solutions of such games, we suggest that

this last approach might be extremely valuable.
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