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More on the Sprague–Grundy function for
Wythoff’s game

GABRIEL NIVASCH

ABSTRACT. We present two new results on Wythoff’s Grundy function G.

The first one is a proof that for every integer g � 0, the g-values of G are

within a bounded distance to their corresponding 0-values. Since the 0-values

are located roughly along two diagonals, of slopes � and ��1, the g-values

are contained within two strips of bounded width around those diagonals. This

is a generalization of a previous result by Blass and Fraenkel regarding the

1-values.

Our second result is a convergence conjecture and an accompanying recur-

sive algorithm. We show that for every g for which a certain conjecture is true,

there exists a recursive algorithm for finding the n-th g-value in O.log n/ arith-

metic operations. Our algorithm and conjecture are modifications of a similar

result by Blass and Fraenkel for the 1-values. We also present experimental

evidence for our conjecture for small g.

1. Introduction

The game of Wythoff [10] is a two-player impartial game played with two

piles of tokens. On each turn, a player removes either an arbitrary number of

tokens from one pile (between one token and the entire pile), or the same number

of tokens from both piles. The game ends when both piles become empty. The

last player to move is the winner.

Wythoff’s game can be represented graphically with a quarter-infinite chess-

board, extending to infinity upwards and to the right (Figure 1). We number the

rows and columns sequentially 0; 1; 2; : : : . A chess queen is placed in some cell
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Figure 1. Graphic representation of Wythoff’s game.

of the board. On each turn, a player moves the queen to some other cell, except

that the queen can only move left, down, or diagonally down-left. The player

who takes the queen to the corner wins.

Wythoff found a simple, closed formula for the P -positions of his game. Let

� D .1C
p

5/=2 be the golden ratio. Then:

THEOREM 1.1 (WYTHOFF [10]). The P -positions of Wythoff’s game are given

by

.b�nc; b�2nc/ and .b�2nc; b�nc/; (1-1)

for nD 0; 1; 2; : : : .

1.1. Impartial games and the Sprague–Grundy function. We briefly review

the Sprague–Grundy theory of impartial games [1].

An impartial game can be represented by a directed acyclic graph GD .V; E/.

Each position in the game corresponds to a vertex in G, and edges join vertices

according to the game’s legal moves. A token is initially placed on some vertex

v 2 V . Two players take turns moving the token from its current vertex to one

of its direct followers. The player who moves the token into a sink wins.

Given two games G1 and G2, their sum G1 CG2 is played as follows: On

each turn, a player chooses one of G1, G2, and moves on it, leaving the other

game untouched. The game ends when no moves are possible on G1 nor on G2.

Let N D f0; 1; 2; : : :g be the set of natural numbers. Given a finite subset

S � N, let mex S D min.N n S/ denote the smallest natural number not in S .

Then, given a game G D .V; E/, its Sprague–Grundy function (or just Grundy

function) G W V !N is defined recursively by

G.u/Dmex
˚

G.v/
ˇ

ˇ .u; v/ 2E
	

; for u 2 V: (1-2)
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This recursion starts by assigning sinks the value 0.

The Grundy function G satisfies the following two important properties:

1. A vertex v 2 V is a P -position if and only if G.v/D 0.

2. If G D G1CG2 and v D .v1; v2/ 2 V1 �V2, then G.v/ is the bitwise XOR,

or nim-sum, of the binary representations of G.v1/ and G.v2/.

Clearly, the sum of games is an associative operation, as is the nim-sum opera-

tion. Therefore, knowledge of the Grundy function provides a winning strategy

for the sum of any number of games.

The following lemma gives some basic bounds on the Grundy function.

LEMMA 1.2. Given a vertex v, let nv be the number of direct followers of v,

and let pv be the number of edges in the longest path from v to a leaf . Then

G.v/� nv and G.v/� pv .

PROOF. The first bound follows trivially from equation (1-2). The second bound

follows by induction. ˜

The following lemma shows that the Grundy function of a game-graph can be

calculated up to a certain value g using the mex property.

LEMMA 1.3. Given a game-graph G D .V; E/ and an integer g � 0, let H be a

function H W V ! f0; : : : ; g;1g such that for all v 2 V ,

1. if H.v/� g then

H.v/Dmex fH.w/ j .v; w/ 2EgI
2. if H.v/D1 then

mex fH.w/ j .v; w/ 2Eg> g:

Then G.v/DH.v/ whenever H.v/� g, and G.v/ > g whenever H.v/D1.

In the function H, the labels1 are placeholders that indicate values larger than

g. Theorem 1.3 is easily proven by induction; see [6].

1.2. Notation and terminology. From now on, G will denote specifically the

Grundy function of Wythoff’s game. Thus, G W N�N!N is given by

G.x; y/Dmex
�

fG.x0; y/ j 0� x0 < xg [
fG.x; y0/ j 0� y0 < yg [ (1-3)

fG.x� k; y � k/ j 1� k �min .x; y/g
�

:

Table 1 shows the value of G for small x and y. This matrix looks quite

chaotic at first glance, as has been pointed out before [1]. And indeed, it is

still an open problem to compute G in time polynomial in the size of the input

(meaning, to compute G.x; y/ in time O..log xC log y/c/ for some constant c).
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15 15 16 17 18 10 13 12 19 14 0 3 21 22 8 23 20

14 14 12 13 16 15 17 18 10 9 1 2 20 21 7 11 23

13 13 14 12 11 16 15 17 2 0 5 6 19 20 9 7 8

12 12 13 14 15 11 9 16 17 18 19 7 8 10 20 21 22

11 11 9 10 7 12 14 2 13 17 6 18 15 8 19 20 21

10 10 11 9 8 13 12 0 15 16 17 14 18 7 6 2 3

9 9 10 11 12 8 7 13 14 15 16 17 6 19 5 1 0

8 8 6 7 10 1 2 5 3 4 15 16 17 18 0 9 14

7 7 8 6 9 0 1 4 5 3 14 15 13 17 2 10 19

6 6 7 8 1 9 10 3 4 5 13 0 2 16 17 18 12

5 5 3 4 0 6 8 10 1 2 7 12 14 9 15 17 13

4 4 5 3 2 7 6 9 0 1 8 13 12 11 16 15 10

3 3 4 5 6 2 0 1 9 10 12 8 7 15 11 16 18

2 2 0 1 5 3 4 8 6 7 11 9 10 14 12 13 17

1 1 2 0 4 5 3 7 8 6 10 11 9 13 14 12 16

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 1. The Grundy function of Wythoff’s game.

Nevertheless, as we will see now, several results on G have been established.

But let us first introduce some notation.

A pair .x; y/ is also called a point or a cell. If G.x; y/D g, we call .x; y/ a

g-point or a g-value.

Note that by symmetry, G.x; y/ D G.y; x/ for all x; y. We refer to this

property as diagonal symmetry.

We will consistently use the following graphical representation of G: The

first coordinate of G is plotted vertically, increasing upwards, and the second

coordinate is plotted horizontally, increasing to the right.

Thus, we call row r the set of points .r; x/ for all x � 0, and column c the

set of points .x; c/ for all x � 0. Also, diagonal e is the set of points .x; xCe/

for all x if e � 0, or the set of points .x� e; x/ for all x if e < 0. (Note that we

only consider diagonals parallel to the movement of the queen.)

We also define, for every integer g � 0, the sequence of g-values that lie on

or to the right of the main diagonal, sorted by increasing row. Formally, we let

Tg D
�

.a
g
0
; b

g
0

/; .a
g
1
; b

g
1

/; .a
g
2
; b

g
2

/; : : :
�

(1-4)

be the sequence of g-values having a
g
n � b

g
n , ordered by increasing a

g
n . We also
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Figure 2. First terms of the sequences T0 (framed squares) and T20 (filled
squares).

let p
g
n D .a

g
n ; b

g
n /. Note that, by Theorem 1.1, we have

p0
n D .b�nc; b�2nc/:

For example, Figure 2 plots the first points in T0 and T20. A pattern is im-

mediately evident: The 20-values seem to lie within a strip of constant width

around the 0-values. This is true in general. In fact, we will prove something

stronger as one of the main results of this paper.

We also let d
g
n D b

g
n � a

g
n be the diagonal occupied by the point p

g
n .

Finally, we place the a, b, and d coordinates of g-points into sets, as follows:

Ag D fag
i j i � 0g; Bg D fbg

i j i � 0g; Dg D fdg
i j i � 0g: (1-5)

1.3. Previous results on Wythoff’s Grundy function. We now give a brief

overview of previous results on the Grundy function of Wythoff’s game.

It follows directly from formula (1-3) that no row, column, or diagonal of G

contains any g-value more than once. In fact, it is not hard to show that every row

and column of G contains every g-value exactly once [2; 4]. Furthermore, every

diagonal contains every g-value exactly once [2], although this is somewhat

harder to show. We will rederive these results in this paper.

It has also been shown that every row of G is additively periodic. This result

was first proven by Norbert Pink in his doctoral thesis [8] (published in [3]),

and Landman [4] later found a simpler proof. Both [3] and [4] derive an upper

bound of 2O.x2/ for the preperiod and the period of row x.
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The additive periodicity of G has important computational implications: It

means that G.x; y/ can be computed in time

2O.x2/CO.x2 log y/;

which is linear in log y for constant x. See [6] for details.

Blass and Fraenkel [2] obtained several results on the sequence T1 of 1-

values, as defined above (1-4). They showed that the n-th 1-value is within a

bounded distance to the n-th 0-value. Specifically,

8� 6� < a1
n��n < 6� 3� ;

�3� < b1
n ��2n < 8� 3�

(1-6)

(Theorem 5.6, Corollary 5.13 in [2]).

They also presented a recursive algorithm for computing the n-th 1-value

given n. We will not get into the details of the algorithm, but suffice it to say

that the recursion is carried out to a logarithmic number of levels. Further, if the

computation done at each level were shown to be constant, then the algorithm

would run in O.log n/ steps altogether. For the computation at each level to be

constant, certain arrangements in the sequence of 0- and 1-values must occur

infinitely many times with at least constant regularity. The authors did not man-

age to prove this latter property, so they left the polynomiality of their algorithm

as a conjecture.

1.4. Our results. In this paper we make two main contributions on the function

G. The first one is a generalization of the result for the 1-values described above.

We will prove that for every g, the point p
g
n is within a bounded distance to p0

n ,

where the bound depends only on g, not on n. Our theoretical bound turns

out to be much worse than the actual distances seen in practice. We present

experimental data and compare them to our theoretical result.

Our second contribution is a modification and generalization of Blass and

Fraenkel’s recursive algorithm. We present a conjecture, called the Convergence

Conjecture, which claims a certain property about the sequences T0 through

Tg. We show that for every g for which the conjecture is true, there exists an

algorithm that computes p
g
n in O.log n/ arithmetic operations, where the factor

implicit in the O notation depends on g.

We present experimental results that seem to support the conjecture for small

g. We finally use our recursive algorithm to predict the value of several points

p
g
n for small g and very large n.

1.5. Significance of our results. Suppose we are playing the sum of Wythoff’s

game with some other game, like a Nim pile. Our winning strategy, then, is to

make the Grundy values of the two games equal. Suppose that the position in
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Figure 3. A supporter from a row lower than x.

Wythoff has Grundy value m, and the Nim pile is of size n. Then, if m < n, we

should reduce the Nim pile to size m, and if m > n, we should move in Wythoff

to a position with Grundy value n.

How do the results in this paper help us in this scenario? The first result,

regarding the location of the g-values, is of no practical help: It gives us only

the approximate location of the g-values, not their precise position.

The recursive algorithm, on the other hand, has much more practical sig-

nificance. If the conjecture is true for small values of g, then we can play

on sums where the Nim pile is of size � g. And even if there are sporadic

counterexamples to the conjecture, the recursive algorithm will probably give

the correct answer in most cases, so it is a good heuristic.

1.6. Organization of this paper. The rest of this paper is organized as follows.

In Section 2 we prove the closeness of the g-values to the 0-values, and in Sec-

tion 3 we present the Convergence Conjecture and its accompanying recursive

algorithm. The Appendix (page 407) contains some proofs omitted from Section

2.5.

2. Closeness of the g-values to the 0-values

In this Section we will prove that for every g, the point p
g
n is within a bounded

distance to p0
n , where the bound depends only on g. We begin with some basic

results on G.

LEMMA 2.1 (LANDMAN [4]). Given x and g, there exists a unique y such that

G.x; y/D g. Moreover,

g�x � y � gC 2x: (2-1)

PROOF. Uniqueness follows trivially from the definition of G.

As for existence, for any x, y, the longest path from cell .x; y/ to the corner

.0; 0/ has length xCy, so by Lemma 1.2, g� xCy, implying the lower bound

in (2-1).
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Next, let y be an integer such that G.x; y0/ ¤ g for all y0 < y. At most g

such points .x; y0/ have a value smaller than g, so at least y�g of them have a

value larger than g. Each of the latter points must be “supported” by a g-point

in a lower row, either vertically of diagonally down (see Figure 3). No two such

supporters can share a row, so there are at most x of them. On the other hand,

each supporter can support at most two points in row x. Therefore, y�g � 2x,

yielding the upper bound of (2-1). ˜

The following result was also known already to Landman [5]:

LEMMA 2.2. Given g�0, there exists a unique integer x such that G.x; x/Dg.

Moreover,

g=2� x � 2g: (2-2)

PROOF. As before, uniqueness follows from the definition of G. And the lower

bound follows from equation (2-1).

For the upper bound, suppose x is such that G.y; y/ ¤ g for all y < x. At

most g of such points .y; y/ have value smaller than g, so at least x�g of them

have value larger than g. By diagonal symmetry, for each of the latter points

there exist two g-points, one to the left of .y; y/ and the other one below it.

Therefore, there are at least 2.x � g/ g-points below and to the left of point

.x; x/. No two of them can share a column, so 2.x�g/� x, or x � 2g. ˜

Recall the definition of the sets Ag, Bg, and Dg (1-5). By Lemmas 2.1 and 2.2,

together with diagonal symmetry, we have jAg \Bgj D 1 and Ag [Bg D N

for all g. Therefore, we could say that the sequences fag
i g and fbg

i g are “almost

complementary”. We will show later on that Dg D N for all g.

2.1. Algorithm WSG for computing Tg. On page 385 we show a greedy

algorithm that computes, given an integer g � 0, the sequences Th and the sets

Ah, Bh, Dh for 0� h� g. This algorithm was first described in [2].

The idea behind the algorithm is simple: We traverse the rows in increasing

order, and for each row, we go through the values h D 0; : : : ; g in increasing

order. If the current row needs an h-point on or to the right of the main diagonal

(because it contains no h-point to the left of the main diagonal), then we greedily

find the first legal place for an h-point, and insert the h-point there. We also

reflect the h-point with respect to the main diagonal, into a higher row (so that

higher row will not receive an h-point to the right of the main diagonal).

Of course, since this algorithm works row by row, it takes exponential time.

For simplicity, we do not specify when the algorithm halts, although we could

make it halt after, say, computing the first n terms of Tg.

We will rely heavily on this algorithm later on, in our analysis of Tg.

The correctness of Algorithm WSG follows easily from Lemma 1.3; see [6]

for the details.
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Algorithm WSG (Wythoff Sprague–Grundy)

1. Initialize the sets Ah, Bh, Dh, and the sequences Th, to ?, for 0� h� g.

2. For r D 0; 1; 2; : : : do:

3. For hD 0; : : : ; g do:

4. If r 62 Bh then:

5. � find the smallest d D 0; 1; 2; : : : for which:

6. ı .r; r C d/ 62 Tk for all 0� k < h,

7. ı r C d 62Bh, and

8. ı d 62Dh;

9. � append .r; r C d/ to Th;

10. � insert r into Ah;

11. � insert r C d into Bh;

12. � insert d into Dh.

2.2. Statement of the main Theorem. Recall from Theorem 1.1 that the 0-

values of Wythoff’s game are given by

.a0
n; b0

n/D .b�nc; b�2nc/:

Graphically, the 0-values lie close to a straight line of slope ��1 that starts at

the origin.

Our main result for this Section is the following:

THEOREM 2.3. For every Grundy value g � 0 and every diagonal e � 0, there

exists an n such that

dg
n D e

(i.e., every diagonal e contains a g-value).

Further, for every g � 0 there exist constants ˛g, ˇg, such that

jag
n � a0

nj � ˛g; jbg
n � b0

nj � ˇg; for all n

(i.e., the n-th g-value is close to the n-th 0-value).

Our strategy for proving Theorem 2.3 is as follows. We first show that for every

g there is a g-value in every diagonal, and furthermore, for every g there exists

a constant ıg such that

jdg
n � nj � ıg for all n: (2-3)

In other words, the g-values occupy the diagonals in roughly sequential order.
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Figure 4. Queen in a triangular lattice.

Then we show how equation (2-3), together with the almost-complementarity

of the sequences fag
ng and fbg

n g, implies that jag
n � �nj and jbg

n � �2nj are

bounded.

Note that for g D 0, Theorem 1.1 gives us

d0
n D b0

n � a0
n D .b�ncC n/�b�nc D nI

in other words, the 0-values occupy the diagonals in sequential order. This can

be confirmed easily by following Algorithm WSG with g D 0.

2.3. Nonattacking queens on a triangle. The following is a variation on the

well-known “eight queens problem”. We will use its solution in proving bound

(2-3).

We are given a triangular lattice of side n, as shown in Figure 4. A queen

on the lattice can move along a straight line parallel to any of the sides of the

triangle. How many queens can be placed on the lattice, without any two queens

attacking each other?

LEMMA 2.4. The maximum number of nonattacking queens that can be placed

on a triangular lattice of side n is exactly

q.n/D
j2nC 1

3

k

:

A simple proof of this fact is given by Vaderlind et al. in [9, Problem 252].

Another proof is given in [7].

2.4. d
g
n is close to n. We will now prove bound (2-3). For convenience, in

this subsection we fix g, and we write an D a
g
n , bn D b

g
n , dn D d

g
n , pn D p

g
n .

Whenever we refer to h-points, h < g, we will say so explicitly.

Recall that the points pn are ordered by increasing row an, so that an > am

if and only if n > m.

In this subsection we will make extensive use of Algorithm WSG.
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Figure 5. Point pm skips diagonal e.

Observe that Algorithm WSG does not place a g-point on certain rows r ,

because it skips row r on line 4. Then such an r is not added to Ag (line 10).

We call such an r a skipped row.

Similarly, sometimes a certain column c is never inserted into Bg (line 11),

because no point pm falls on that column. In that case, we call column c a

skipped column.

Let us define the notion of a g-point skipping a diagonal. Intuitively, point

pm skips diagonal e if Algorithm WSG places point pm to the right of diagonal

e, while diagonal e does not yet contain a g-point (see Figure 5). Formally:

DEFINITION 2.5. Diagonal e is empty up to row r if there is no point pn with

dn D e and an � r .

DEFINITION 2.6. Point pm is said to skip diagonal e if dm > e and e is empty

up to row am.

Our goal in this subsection is to derive a bound on jdn � nj. We will derive

separately upper bounds for dn � n and n � dn. We do this by bounding the

number of diagonals that a given point can skip, and the number of points that

can skip a given diagonal:

LEMMA 2.7. If no point pn skips more than k diagonals, then dn � n � k for

all n. If no diagonal is skipped by more than k points, then n�dn � k for all n.

PROOF. For the first claim, suppose by contradiction that dn � n > k for some

n. Then, of the dn diagonals 0; : : : ; dn � 1, only n can be occupied by points

p0; : : : ; pn�1. Therefore, point pn skips at least kC 1 diagonals.

For the second claim, suppose by contradiction that n� dn > k for some n.

Then, of the n points p0; : : : ; pn�1, only dn can fall on diagonals 0; : : : ; dn�1.

Therefore, diagonal dn is skipped by at least kC 1 points. ˜

Let us inspect why a g-point skips a diagonal according to Algorithm WSG.

Suppose point pm skips diagonal e, and let C D .am; am C e/ be the cell on

diagonal e on the row in which pm was inserted. Then, point pm skipped di-

agonal e, either because cell C was already assigned some value k < g (WSG
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Figure 6. Points pm active with respect to diagonal e and row r .

line 6), or because there was already a point pm0 directly below cell C (WSG

line 7).

We need a further definition: Let e be a diagonal and r be a row, such that

diagonal e is empty up to row r �1. Draw a line from the intersection of row r

and diagonal e vertically down. If a point pm is strictly below row r , and on or

to the right of the said vertical line, then we say that pm is active with respect

to diagonal e and row r (see Figure 6). In other words:

DEFINITION 2.8. If diagonal e is empty up to row r�1, then point pm is active

with respect to diagonal e and row r if am < r and bm � r C e.

We can bound the number of active g-points:

LEMMA 2.9. The number of g-points active with respect to any diagonal e and

any row r is at most g.

PROOF. By assumption, diagonal e is empty up to row r � 1.

We will show that for every r 0 � r , if diagonal e contains k h-points, h < g,

below row r 0, then there can be at most k active g-points with respect to diagonal

e and row r 0. This implies our Lemma, since there are at most g h-points, h < g,

on diagonal e.

We prove the above claim by induction on r 0. If r 0 D 0 then clearly k D 0

and there are no active g-points with respect to e and r 0.

Suppose our claim is true up to row r 0, and let us examine Algorithm WSG

on row r 0 itself. If no point pm is inserted on row r 0, then the number of active

g-points does not increase when we go from row r 0 to row r 0C 1. And if point

pm is inserted on row r 0 and it skips diagonal e, it must be for one of the two

reasons mentioned above. If there is an h-point, h < g, on the intersection of

row r 0 with diagonal e, then the number k of our claim increases by 1 when we

go to row r 0C 1. And if there is no such h-point, then there must be an earlier

point pm0 directly below the intersection of e and r 0. But then pm0 is active with

respect to e and r 0, but not with respect to e and r 0C1, so the number of active

g-points stays the same when we go from row r 0 to row r 0C 1.
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Figure 7. pn� is the point pn with maximum dn.

So in either case, the inductive claim is also true for row r 0C 1. ˜

We can now bound the number of diagonals a given g-point can skip:

LEMMA 2.10. A point pm can skip at most 2g diagonals.

PROOF. Let e0 be the first diagonal skipped by point pm. For every diagonal e

skipped by pm, there must be either an active g-point with respect to diagonal

e0 and row am, or an h-point, h < g, on cell .am; amCe/. There can be at most

g of the latter, and by Lemma 2.9, at most g of the former. ˜

We proceed to bound the number of g-points that can skip a given diagonal. For

this we need a lower bound on the number of skipped columns in an interval of

consecutive columns:

LEMMA 2.11. An interval of k consecutive columns contains at least k=3�2g

skipped columns.

PROOF. Consider the points pn that lie within the given interval of columns.

Let pn� be the point pn with maximum dn (see Figure 7). The number of

points pn with n > n� is at most 2g by Lemma 2.10. And the points pn with

n < n� are confined to a triangular lattice; but this situation is isomorphic to the

nonattacking queens of subsection 2.3!

The triangular lattice has side at most k�2 (since the lattice cannot reach the

column of pn� nor the preceding column). Therefore, the number of points pn

with n < n� is at most

j2.k � 2/C 1

3

k

� 2k=3� 1:

Thus, the total number of points pn is at most 2k=3�1C2gC1D 2k=3C2g,

so the number of skipped columns is at least k=3� 2g. ˜
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Figure 8. Points pm0 between rows am and amC�.

COROLLARY 2.12. An interval of k consecutive rows contains at least k=3�2g

points pn.

PROOF. By diagonal symmetry: If column c is a skipped column, then row c

contains a point pn. ˜

LEMMA 2.13. Suppose point pm skips diagonal e, and let �Ddm�e. Suppose

diagonal e is empty up to row amC� (see Figure 8). Then �� 15g.

PROOF. Let us bound the number of points pm0 in the interval between row

amC 1 and row amC�. For every such pm0 , either dm0 < dm, or bm0 > bm,

or both (see Figure 8). In the former case, pm skips diagonal dm0 , and in the

latter case, pm0 is active with respect to diagonal e and row amC�C 1. So by

Lemmas 2.9 and 2.10, there are at most 3g such points pm0 .

Therefore, by Corollary 2.12, we must have

�=3� 2g � 3g;

so �� 15g. ˜

COROLLARY 2.14. The number of points pn that can skip a given diagonal e

is at most 16g.

PROOF. Every point that skips diagonal e must lie on a different diagonal.

Therefore, Lemma 2.13 already implies that diagonal e must eventually be oc-

cupied by a point pn.

Now, consider the points pm, m < n, that skip diagonal e D dn. Partition

these points into two sets: those having bm > bn and those having bm < bn.

By Lemma 2.9, there are at most g points in the first set, since each such

point is active with respect to the diagonal and row of pn. And every point in

the second set satisfies the assumptions of Lemma 2.13, so there are at most 15g

such points. Therefore, diagonal e is skipped by no more than 16g points. ˜
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We used somewhat messy arguments, but we have finally proven:

THEOREM 2.15. For every Grundy value g and every diagonal e, there exists a

g-point with d
g
n D e. Furthermore,

�16g � dg
n � n� 2g: ˜

2.5. The g-values are close to the 0-values. We proceed to show the existence

of the constants ˛g and ˇg of Theorem 2.3. In order to understand the idea

behind our proof, it is helpful to look first at the following proof that the ratio

between consecutive Fibonacci numbers tends to �:

CLAIM 2.16. Let Fn be the n-th Fibonacci number. Then Fn=Fn�1! �.

PROOF. Let xn D Fn��Fn�1. Then,

xnC1 D FnC1��Fn D .FnCFn�1/��Fn

D���1.Fn��Fn�1/D���1xn: (2-4)

Therefore, xn! 0, since j���1j< 1. Therefore,

Fn

Fn�1

D xn

Fn�1

C�! �: ˜

Next, we introduce the following notation, which will help make our arguments

clearer:

DEFINITION 2.17. Given sequences ffng and fgng, we write

fn � gn

if, for some k, jfn�gnj � k for all n.

Note that the relation � is transitive: If fn � gn and gn � hn, then fn � hn.

In this subsection we make a few claims that are intuitively obvious. We

therefore decided to defer their proofs to the Appendix, in order not to interrupt

the main flow of the arguments. Our first intuitive claim is the following:

LEMMA 2.18. Let fxng be a sequence that satisfies xnC1� cxn for some jcj<1.

Then fxng is bounded as a sequence.

The main result of this subsection is the following somewhat general theorem:

THEOREM 2.19. Let a0 < a1 < a2 < � � � be a sequence of increasing natural

numbers, and let b0; b1; b2; : : : be a sequence of distinct natural numbers. Let

AD fan j n� 0g, B D fbn j n� 0g. Suppose the following conditions hold:

1. jA\Bj is finite;

2. A[B D N;

3. bn� an � n.
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Then an � �n and bn � �2n.

Note that, in particular, our Wythoff sequences fag
ng and fbg

n g satisfy all of the

above requirements, so the above theorem yields Theorem 2.3, as desired.

PROOF OF THEOREM 2.19.

We start with the following claim, which we prove in the Appendix:

LEMMA 2.20. Regarding the sequences fang and fbng in the statement of the

Theorem:

(a) There is a constant k such that for all n, the number of bm > bn, m < n, is

at most k.

(b) There is a constant k 0 such that for all n, the number of bm < bn, m > n, is

at most k 0.

(c) an � an�1 and bn � bn�1.

(Note that, for our sequences fag
ng and fbg

n g, the lemmas of Section 2.4 already

give bounds on the number of m’s in Lemma 2.20(a,b). But we still want to

prove Theorem 2.19 in general.)

Now, for n� 0, define

xn D �n� an;

and let

f .n/D
ˇ

ˇA\f0; 1; 2; : : : ; bn� 1g
ˇ

ˇ

be the number of a’s smaller than bn.

By Lemma 2.20(a,b), the number of b’s smaller than bn is � n, so by condi-

tions 1 and 2 of our Theorem, the number of a’s smaller than bn is � bn � n.

And by condition 3 we have bn� n� an. Therefore,

f .n/� an: (2-5)

Further, af .n/ is the first a that is � bn (by the definition of f .n/), so af .n/�
bn by Lemma 2.20(c). Therefore (compare with (2-4)),

xf .n/ D �f .n/� af .n/ � �an� bn � �an� an� n

D ��1an� nD���1xn: (2-6)

The following lemma is proven in the Appendix:

LEMMA 2.21. There exists an integer n1 such that f .n/ > n for all n� n1.

Now, choose n1 as in Lemma 2.21, and recursively define the integer sequence

n1; n2; n3; : : : , by niC1Df .ni/. This sequence, therefore, is strictly increasing.

Also let n0 D 0.
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Define the sequence fyj g1jD0
by

yj D max
nj �i�nj C1

jxi j; for j � 0: (2-7)

We want to show that fyj g is bounded as a sequence, which would imply that

fjxnjg is bounded as a sequence. But it follows from equation (2-6) that:

LEMMA 2.22. The sequence fyj g satisfies yjC1 � ��1yj .

The full proof of Lemma 2.22 is given in the Appendix.

Lemmas 2.22 and 2.18 together imply that fyj g is bounded as a sequence,

so fjxnjg is bounded as a sequence, as desired. Therefore, an � �n, and by

condition 3 of our Theorem, bn � �2n. ˜

This completes the proof of the existence of the constants ˛g and ˇg of Theorem

2.3.

2.6. Experimental results. In this subsection we present experimental results

on a few aspects of the function G.

Experimental bounds on d
g
n�n. Let us compare the rigorous bound of�16g�

d
g
n � n� 2g given by Theorem 2.15 with data obtained experimentally.

Figure 9 shows a histogram of d
g
n �n for gD 30, counting points up to row

5 � 106.

Table 2 shows the extreme values of d
g
n �n achieved for different g by points

lying in rows up to 5 � 106. In each case we show the earliest appearance of the

extremal value.

We notice an interesting phenomenon: For g � 7 the maximum is achieved

by the zeroth point p
g
0
D .0; g/. This phenomenon is due to the fact that the

sequence Tg tends to start with an anomalous behavior that “smooths out” over

time.

-30 -20 -10 0 10 20 30
dn
g
-n1

10

100

1000

10000

100000.

count

Figure 9. Histogram of d
g
n � n for g D 30, counting points up to row

5 � 106.
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Table 3 shows the maximum d
g
n � n achieved by points having n � 100, for

g � 7. We see that as g grows, the maximum achieved decreases substantially

from Table 2.

g min d
g
n � n n max d

g
n � n n

0 0 0 0 0

1 �4 57 2 282

2 �6 35745 3 38814

3 �8 149804 4 2335

4 �10 569350 5 15486

5 �11 1245820 6 2638

6 �11 30165 7 1974933

7 �11 75459 7 0

8 �12 701260 8 0

9 �13 17972 9 0

10 �13 516328 10 0

11 �14 722842 11 0

12 �16 2853838 12 0

13 �17 2860809 13 0

14 �18 2814039 14 0

15 �18 2597774 15 0

16 �18 1027151 16 0

17 �18 2979529 17 0

18 �19 789978 18 0

19 �20 22347 19 0

20 �21 2548028 20 0

21 �19 277362 21 0

22 �20 30200 22 0

23 �23 1412268 23 0

24 �22 684205 24 0

25 �23 349878 25 0

26 �24 2087092 26 0

27 �24 617166 27 0

28 �24 2343474 28 0

29 �26 27 29 0

30 �27 1872274 30 0

Table 2. Extreme values of d
g
n � n for given g, for points p

g
n having

a
g
n � 5 � 106.
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g max d
g
n � n n g max d

g
n � n n

7 7 131307 19 14 594141

8 8 20735 20 14 2482469

9 9 1056831 21 14 90130

10 9 258676 22 15 347510

11 10 987102 23 15 323425

12 10 1295870 24 16 129240

13 10 90426 25 17 1880006

14 11 453415 26 17 36662

15 11 61780 27 18 332552

16 12 509772 28 18 370321

17 12 86093 29 19 2425182

18 13 32439 30 18 444272

Table 3. Maximum value of d
g
n � n for given g, for points p

g
n having

n� 100 and a
g
n � 5 � 106.

The conclusion from these observations is the following: The bounds ob-

served experimentally for d
g
n �n are much tighter than those given by Theorem

2.15. Therefore, either the theoretical bound is much looser than necessary, or

it is a worst-case bound that is achieved very rarely in practice.

The converse of Theorem 2.3. Theorem 2.3 implies that if G.a; b/ is bounded

with a � b, then jb � �aj is bounded. Is the converse also true? Namely, does

a bound on jb � �aj imply a bound on G.a; b/? Or, on the contrary, are there

arbitrarily large values very close to 0-values? We do not know the answer, but

we explored this question experimentally.

We looked for the cells with the largest Grundy value lying at a given Man-

hattan distance from the closest 0-value. (The Manhattan distance between

.a1; b1/ and .a2; b2/ is defined as ja2� a1j C jb2 � b1j.) We looked up to row

106, calculating points up to g D 199. Our results are shown in Table 4.

The first column in Table 4 lists the cell with the largest Grundy value at

a given Manhattan distance from the closest 0-value, for cells in rows � 106.

Some cells are labelled “� 200” because they were not assigned any Grundy

value � 199.

The second column in Table 4 lists the cell with the largest Grundy value at

a given Manhattan distance from the closest 0-value, restricted to cells between

rows 600 and 106. (Only entries differing from the first column are shown.)

We see a very significant difference in the Grundy values between the first

and second columns. This phenomenon is due to the fact that the sequences Tg
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row � 600

distance cell G value cell G value

1 (283432, 458601) 82

2 (944634, 1528447) 96

3 (44, 67) 89 (82399, 133320) 81

4 (49, 86) 115 (665224, 1076349) 82

5 (58, 86) 116 (402997, 652071) 103

6 (62, 110) 147 (538568, 871413) 99

7 (97, 168) � 200 (839162, 1357804) 108

8 (95, 167) � 200 (182922, 295987) 115

9 (87, 155) � 200 (319656, 517229) 122

10 (85, 154) � 200 (927492, 1500730) 125

Table 4. Large Grundy values at a given Manhattan distance from the
closest 0-value.

Figure 10. First terms of the sequence T200.

tend to start by passing very close to the 0-points, before “smoothing out”. This

can be seen in Figure 10, which plots the beginning of T200.

3. A recursive algorithm for the n-th g-value

In this Section we will present our so-called Convergence Conjecture and

show how, if the conjecture is true, it leads to a recursive algorithm for find-



MORE ON THE SPRAGUE–GRUNDY FUNCTION FOR WYTHOFF’S GAME 397

ing the n-th g-point in O.f .g/ log n/ arithmetic operations, where f is some

function on g.

To do this, we will first show how Algorithm WSG (page 385) can be consid-

ered, in a certain sense, as a finite-state automaton that receives input symbols

and jumps from state to state as it calculates rows one by one.

Consider Algorithm WSG as it is about to start inserting points in row r . For

each h, 0 � h � g, there are cells on row r that cannot take an h-point: some

because they have an h-point below them, some because they have an h-point

diagonally below, and others because they have already been assigned a value

k < h.

We will show how we can represent this information about row r , which we

will call its state, in such a way that there is a finite number of states among

all rows. We will further consider the set of h-points to be inserted in row r

as a single symbol out of a finite alphabet of symbols. Then, knowing the state

of row r and the said symbol, we can correctly place along row r the relevant

h-points, and compute the state of row r C 1.

(Here we ignore the fact that the points to be inserted at row r are determined

by the points inserted in lower rows.)

Let us develop these ideas formally.

3.1. A finite-state algorithm. Let us fix g. The variable h will always take the

values 0� h� g.

In this Section, whenever we refer to an h-point, we mean a point .x; y/

with G.x; y/D h and x � y. Points with x � y will be referred to as reflected

h-points. A point with x D y is both reflected and unreflected.

DEFINITION 3.1.

1. indexh.r/ D
ˇ

ˇAh \ f0; : : : ; r � 1g
ˇ

ˇ is the number of h-points strictly below

row r . It is also the index of the first h-point on a row � r .

2. Dh.r/Dfdh
n j 0�n < indexh.r/g is the set of diagonals occupied by h-points

on rows < r .

3. firstdh.r/Dmex Dh.r/ denotes the first empty diagonal on row r .

4. ocdiagh.r/ D fd 2 Dh.r/ j d > firstdh.r/g is the set of occupied diagonals

after the first empty diagonal on row r .

Note that

indexh.r/D firstdh.r/Cjocdiagh.r/j: (3-1)

This is because there are indexh.r/ occupied diagonals on row r : diagonals

0 through firstdh.r/� 1, and jocdiagh.r/j additional ones.

5. Similarly, Bh.r/D fbh
n j 0 � n < indexh.r/g is the set of columns occupied

by h-points on rows < r .



398 GABRIEL NIVASCH

6. We let occolh.r/D fb� r j b 2 Bh.r/; b � r � firstdh.r/g. This set has the

following interpretation: Identify each cell on row r by the diagonal it lies

on, i.e., cell .r; b/ is identified by b� r . Then occolh.r/ represents the set of

cells on row r on a diagonal � firstdh.r/ that lie on a column occupied by a

lower h-point.

LEMMA 3.2. The expression

�

max ocdiagh.r/
�

� firstdh.r/ (3-2)

is bounded for all r , and so is jocdiagh.r/j.

PROOF. Expression (3-2) corresponds to the maximum distance between a free

diagonal and a subsequent occupied diagonal on row r ; and this is bounded by

Theorem 2.3. And since ocdiagh.r/ only contains integers > firstdh.r/, its size

is also bounded. ˜

LEMMA 3.3. max occolh.r/ < max ocdiagh.r/ for all h; r .

PROOF. Suppose a cell on row r lies on a column occupied by a lower h-point.

Then a cell on row r further to the right lies on the diagonal occupied by that

h-point. ˜

LEMMA 3.4. For g D 0 we can compute explicitly the quantities of Definition

3.1. In particular,

index0.r/D firstd0.r/D d��1re; (3-3)

ocdiag0.r/D occol0.r/D?: (3-4)

PROOF. index0.r/ is the index of the first 0-point on a row� r . Since a0
nDb�nc,

the first n that gives a0
n� r is nDd��1re. (3-3) follows from the fact that the 0-

points fill the diagonals in sequential order. And the second part of (3-3) follows

from (3-1). ˜

DEFINITION 3.5. We define the following “normalized” quantities by subtract-

ing index0.r/:

n indexh.r/Dindexh.r/� index0.r/;

n firstdh.r/Dfirstdh.r/� index0.r/;

n ocdiagh.r/Dfd � index0.r/ j d 2 ocdiagh.r/g;
n occolh.r/Dfc � index0.r/ j c 2 occolh.r/g:

LEMMA 3.6. The quantities n indexh.r/ and n firstdh.r/, as well as the ele-

ments of n ocdiagh.r/ and n occolh.r/, are bounded in absolute value for all r .

PROOF. This follows from Theorem 2.3. ˜
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DEFINITION 3.7. The state of a given row r consists of

n indexh.r/; n firstdh.r/; n ocdiagh.r/; n occolh.r/;

for 0� h� g.

By Lemma 3.6 we have:

COROLLARY 3.8. There is a finite number of distinct states among all rows

r � 0. ˜

Note that the state of a row r always satisfies

n indexh.r/D n firstdh.r/Cjn ocdiagh.r/j: (3-5)

Note also that if g D 0 there is a single state for all rows:

n index0.r/D n firstd0.r/D 0; n ocdiag0.r/D n occol0.r/D?:

DEFINITION 3.9. Given row r , we denote by

insert.r/D fh j r 2Ah; 0� h � gg

the set of h-points that Algorithm WSG must insert in this row.

Definitions 3.7 and 3.9 enable us to reformulate Algorithm WSG as a finite-

state automaton that jumps from state to state as it reads symbols from a finite

alphabet ˙ . The automaton is in the state of row r when it begins to calculate

row r , and after reading the symbol insert.r/, it goes to the state of row r C 1.

The input alphabet is ˙ D 2f0;:::;gg, the set of all possible values of insert.r/.

Algorithm FSW (page 400) spells out in detail this finite-state formulation.

(This algorithm is not equivalent to Algorithm WSG because it does not calcu-

late the sets insert.r/ from previous rows, but only receives them as input.)

3.2. Convergence of states. Suppose we run Algorithm FSW starting from

some row r1, giving it as input the correct values of insert.r1/, insert.r1C 1/,

: : : , but with a different initial state

n index0
h; n firstd0

h; n ocdiag0
h; n occol0h; 0� h� g; (3-7)

instead of (3-6). Then the algorithm will output 4-tuples .h; n; ah
n; b0h

n/, where

the b-coordinates of the points will not necessarily be correct.

Could it happen that at some row r > r1 the algorithm reaches the correct

state for row r? If that happens, then for all subsequent rows the algorithm will

be in the correct state, since the state of a row depends only on the state of the

previous row. Therefore, for all rows � r the algorithm will output the correct

4-tuples .h; n; ah
n; bh

n/.
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Algorithm FSW (Finite-State Wythoff)

Input: Integer g; integers r1, r2 (initial and final rows); state at row r1, given

by the variables

n indexh; n firstdh; n ocdiagh; n occolh; for 0� h� gI (3-6)

sets insert.r1/; : : : ; insert.r2/ (points to insert in rows r1; : : : ; r2).

Output: h-points in rows r1 through r2, given as 4-tuples

.h; n; ah
n; bh

n/ for 0� h� g; r1 � ah
n � r2:

1. For r D r1; : : : ; r2 do:

2. � Let S  ? [location of points inserted in this row].

3. � For hD 0; : : : ; g do:

4. ı If h 2 insert.r/ then:

5. � find the smallest d�n firstdh which is in none of the sets n ocdiagh,

n occolh, and S ;

6. � output the 4-tuple
�

h; n indexhC index0.r/; r; r C d C index0.r/
�

[note that index0.r/ can be calculated by Lemma 3.4];

7. � let n indexh n indexhC 1;

8. � insert d into n ocdiagh, n occolh, and S ;

9. � while n firstdh 2 n ocdiagh do n firstdh n firstdhC 1.

10. ı Subtract 1 from each element of n occolh [since r increases by 1: see

Definition 3.1–6].

11. ı Remove from n ocdiagh and n occolh all elements < n firstdh.

12. � If n index0 D 1 then [renormalize]:

13. ı subtract 1 from n indexh and n firstdh for all h;

14. ı subtract 1 from each element of n ocdiagh and n occolh for all h.

Denote by

n index0
h.r/; n firstd0

h.r/; n ocdiag0
h.r/; n occol0h.r/; 0� h� g; r � r1;

the state of the algorithm at row r when run with the initial state (3-7). We

assume that the initial state (3-7) is consistent with property (3-5).

Observe that if n index0
h.r1/ ¤ n indexh.r1/, this difference will persist in

all subsequent rows, since changes to n indexh (at lines 7 and 13 of Algorithm
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FSW) depend only on the input symbol insert.r/. Therefore, convergence can

only occur if the initial state contains the correct values of n indexh.r1/ for all

h.

Now, we make the following conjecture:

CONJECTURE 3.10 (CONVERGENCE CONJECTURE). For every g there exists

a constant Rg such that for every row r1, if Algorithm FSW is run starting from

row r1 with the initial “dummy” state

n index0
h D n firstd0

h D n indexh.r1/;

n ocdiag0
h D n occol0h D?;

for 0� h� g; (3-8)

and with the correct values of insert.r1/, insert.r1C 1/; : : : , then the algorithm

will converge to the correct state within at most Rg rows.

3.3. Experimental evidence for convergence. We tested Conjecture 3.10

experimentally as follows: For some constant rmax we precalculated the state

of row r and the value of insert.r/ for all r between 0 and rmax. We then

ran Algorithm FSW starting from each row r , 0 � r � rmax, with the dummy

initial state (3-8), comparing at each step whether the algorithm’s internal state

converged to the correct state of the current row. We carried out this experiment

for different values of g.

Our results are as follows: For gD 0 convergence always occurs after 0 rows;

i.e., convergence is immediate.

For gD 1 the maximum time to convergence found was 45 rows. In fact, up

to row 107 there are 3019 instances of convergence taking 45 rows.

For g D 2 the maximum found was 72 rows. Below row 107 there are 91

instances of convergence taking 72 rows.

For g D 3 the maximum of 140 rows to convergence is achieved only once

below row 107.

For larger values of g we ran our experiment until row 106. Table 5 shows our

findings. In each case we indicate the largest number of rows to convergence,

and the starting row that achieves the maximum (or the first such starting row

in case there are several).

Finally, Figure 11 shows a histogram of the time to convergence for g D 10

up to row 106. The shape of the curve suggests that there might be instances

of higher convergence times that occur very rarely. However, we still find it

plausible that a theoretical maximum Rg exists.

Note that Conjecture 3.10 could also be true only up to a certain value of g.
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rows to starting

g convergence row

0 0 0

1 45 2201

2 72 72058

3 140 804421

4 180 862429

5 235 732494

6 395 685531

7 395 685531

8 461 827469

9 630 59948

10 909 443109
:::

15 2041 8662
:::

20 4136 896721

Table 5. Maximum number of rows to convergence for different g up to
row 106, and first starting row that achieves the maximum.
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Figure 11. Histogram of the number of rows to convergence for g D 10,
up to row 106.

3.4. The recursive algorithm. We now show how Conjecture 3.10 leads to an

algorithm for computing point p
g
n in O.f .g/ log n/ arithmetic operations, where

f is some function on the constant Rg of Conjecture 3.10 and the constants ˛g,

ˇg of Theorem 2.3.
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Algorithm RW below is a recursive algorithm that receives as input an integer

g and an interval Œr1; r2� of rows, and calculates all h-points, 0� h� g, in that

interval.

Algorithm RW (Recursive Wythoff)

Input: Integer g; integers r1, r2 (initial and final rows).

Output: indexh.r1/ for 0 � h � g; set S of h-points in rows r1 through r2,

given as 4-tuples .h; n; ah
n; bh

n/ for 0� h� g; r1 � ah
n � r2.

1. Let r0 r1�Rg.

2. Let L and H be lower and upper bounds for ah
n���1bh

n for 0� h� g and

all n, according to Theorem 2.3. [Note that ah
n < ��1rCL implies bh

n < r ,

and ah
n > ��1r CH implies bh

n > r .]

3. Let r 0
1
 d��1r0CLe; r 0

2
 b��1r2CHc.

4. If r 0
2
� r0 or r 0

1
� 2g then:

5. � calculate and return the desired points by starting from row 0 using Al-

gorithm WSG;

6. else:

7. � call Algorithm RW recursively and get indexh.r 0
1
/ and the set S 0 of h-

points in rows r 0
1

through r 0
2

for 0� h� g;

8. � calculate insert.r0/; : : : ; insert.r2/ as

insert.r/D
˚

h
ˇ

ˇ @n for which .h; n; ah
n; r/ 2 S 0

	

for r0 � r � r2;

9. � let th be the number of h-points in S 0 with bh
n < r0, for 0� h� g;

10. � calculate indexh.r0/ as indexh.r0/D r0C1�indexh.r 0
1
/�th, for 0�h�g

[see explanation];

11. � calculate n indexh.r0/ as n indexh.r0/ D indexh.r0/ � index0.r0/, for

0� h� g;

12. � run Algorithm FSW from rows r0 to r2 starting from the dummy state

n index0
h D n firstd0

h D n indexh.r0/;

n ocdiag0
h D n occol0h D?;

0� h� g;

using insert.r0/; : : : ; insert.r2/; get set T of 4-tuples .h; n; ah
n; b0h

n/ for

r0 � ah
n � r2;

13. � return indexh.r1/ for 0� h� g, and the 4-tuples in T with r1 � ah
n � r2.
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Figure 12. Points and reflected points in rows r0 through r2.

The idea behind Algorithm RW is the following: To calculate the h-points

between rows r1 and r2, we run Algorithm FSW starting from row r0 D r1 �
Rg and the dummy initial state (3-8). Then, by Conjecture 3.10, the 4-tuples

obtained from row r1 on will be the correct ones .h; n; ah
n; bh

n/.

We face two problems, however:

� To run Algorithm FSW we also need to know insert.r0/; : : : ; insert.r2/, i.e.,

which h-points to insert between rows r0 and r2.

� For the dummy initial state (3-8) we need to know indexh.r0/ for 0� h� g,

i.e., how many h-points there are below r0.

We solve both problems with a recursive call, in which we calculate all the

reflected h-points that lie between rows r0 and r2, to the left of the main diagonal

(see Figure 12). By the definition of L and H (line 2 of Algorithm RW), all

these reflected h-points lie between columns r 0
1

and r 0
2

as computed in line 3. Of

course, finding these reflected h-points is equivalent to finding the unreflected

originals.

Once we have the reflected h-points, constructing insert.r0/; : : : ; insert.r2/

is simple, since every row r , r0� r � r2 that does not contain a reflected h-point

must contain an h-point, and vice versa.

And computing indexh.r0/ is also no problem, once we know indexh.r 0
1
/

from the recursive call. Recall that indexh.r0/ is the number of h-points on rows

0; : : : ; r0�1. Let kh be the number of reflected h-points on rows 0; : : : ; r0�1.

Then

indexh.r0/C kh D r0C 1;

since there is one h-point on the main diagonal, which is counted twice.

To calculate kh, note that all reflected h-points before column r 0
1

lie below

row r0, and there are indexh.r 0
1
/ such reflected h-points. Therefore,

kh D indexh.r 0
1/C th;
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where th is the number of reflected h-points below row r0 that lie on or after

column r 0
1
, as in line 9. Putting all this together, we get

indexh.r0/D r0C 1� indexh.r 0
1/� th;

as in line 10.

The above calculation is only valid if the h-point on the main diagonal lies

before column r 0
1
. That is why we check for the case r 0

1
� 2g at line 4 (recall

Lemma 2.2).

Finally, the check r 0
2
� r0 at line 4 prevents making a recursive call if the new

interval Œr 0
1
; r 0

2
� is not strictly below the old interval Œr0; r2�.

If we cannot make a recursive call (for either of the two possible reasons), we

calculate the h-points in the standard way, using Algorithm WSG starting from

row 0.

3.5. Algorithm RW’s running time. If we want to use Algorithm RW to cal-

culate a single point p
g
n , we must first estimate its row number a

g
n . By Theorem

2.3, we can bound it between r1 D d�nCL0e and r2 D b�nCH 0c for some

constants L0, H 0 that depend on g.

Whenever Algorithm RW makes a recursive call, it goes from an interval of

length �r D r2� r1 to an interval of length �r 0 D r 0
2
� r 0

1
, where

�r 0 D ��1�r C .H �LC��1Rg/

(ignoring the rounding to integers). After repeated application of this transfor-

mation, the interval length converges to the constant

�r� D �2.H �L/C�Rg:

The number of recursive calls is O.log n/, since each interval is � times

closer to the origin than its predecessor. And in the base case of the recursion,

Algorithm WSG runs for at most a bounded number of rows, taking constant

time.

Therefore, altogether Algorithm RW runs in O.f .g/ log n/ steps, for some

function f that depends on the constants Rg, ˛g, and ˇg, as claimed.

3.6. Application of Algorithm RW. Let us discuss how to apply Algorithm RW

to the problem raised in the Introduction, namely playing the sum of Wythoff’s

game with a Nim pile.

Suppose we are given the sum of a game of Wythoff in position .a; b/, a� b,

with a Nim pile of size g, where a and b are very large and g is relatively small.

Suppose Conjecture 3.10 is true for this value of g, and we know the value of

Rg.
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Figure 13. Intervals in which to look for a successor with Grundy value g

to position .a; b/.

We have to determine whether G.a; b/ is larger than, smaller than, or equal

to g. By Theorem 2.3, we can only have G.a; b/� g if jb��aj � kg for some

constant kg that depends on ˛g and ˇg.

Therefore, if jb��aj> kg, we know right away that G.a; b/ > g. If, on the

other hand, jb � �aj � kg, then we use Algorithm RW to find all the h-points,

h� g, in the vicinity of .a; b/, and we check whether .a; b/ is one of them.

If we find that G.a; b/D g, then the overall game is in a P -position, so there

is no winning move. If G.a; b/ D h < g, then our winning move is to reduce

the Nim pile to size h. And if G.a; b/ > g, then our winning move consists

of moving in Wythoff’s game to a position with Grundy value g. There are at

most three alternatives to check — moving horizontally, vertically, or diagonally.

Therefore, the winning move can be found by making at most three calls to

Algorithm RW with bounded-size intervals, as shown schematically in Figure

13.
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g p
g

1012
g p

g

1012
g p

g

1012

0 .aC 49; bC 49/ 7 .aC 50; bC 46/ 14 .aC 49; bC 54/

1 .aC 50; bC 50/ 8 .aC 51; bC 51/ 15 .aC 47; bC 51/

2 .aC 49; bC 50/ 9 .aC 51; bC 56/ 16 .aC 49; bC 43/

3 .aC 50; bC 49/ 10 .aC 49; bC 52/ 17 .aC 53; bC 51/

4 .aC 50; bC 51/ 11 .aC 51; bC 49/ 18 .aC 48; bC 52/

5 .aC 50; bC 52/ 12 .aC 49; bC 53/ 19 .aC 52; bC 61/

6 .aC 49; bC 51/ 13 .aC 50; bC 55/ 20 .aC 49; bC 39/

where aD 1 618 033 988 700 and b D 2 618 033 988 700.

Table 6. Predicted value of p
g

1012
for 0� g � 20.

3.7. Algorithm RW in practice. We wrote a C++ implementation of Algorithm

RW. For the constants L and H we used experimental lower and upper bounds

for a
g
n � ��1b

g
n , to which we added safety margins. For the constant Rg we

added a safety margin to the values shown in Table 5.

We checked our program’s results against those produced by the nonrecursive

Algorithm WSG. The results were in complete agreement as far as we tested.

We also used our recursive program to predict the trillionth g-values for g

between 0 and 20. We used L D �15:0, H D 15:0 (which are a safe distance

away from the experimental bounds of�12:4 and 11:3), and R20D8000 (almost

twice the value in Table 5).

Our predictions are shown in Table 6. The program actually performed this

calculation in just twenty seconds. These predictions might be verified one day

with a powerful computer.

To conclude, note that if there are only sporadic counterexamples to Conjec-

ture 3.10 for a certain value of Rg, then Algorithm RW is still likely to give

correct results in most cases. Algorithm RW will only fail if one of the rows r0

in the different recursion levels constitutes the initial row of a counterexample

to Conjecture 3.10. But, as we showed earlier, the number of recursion levels is

logarithmic in the magnitude of the initial parameters.

Appendix: Lemmas of Section 2.5

We relegated some proofs in Section 2.5 to this Appendix.

LEMMA 2.18. Let fxng be a sequence that satisfies xnC1� cxn for some jcj<1.

Then fxng is bounded as a sequence.

PROOF. Let k be the constant such that jxnC1�cxnj � k, as in Definition 2.17;

and let d D k=.1�jcj/. Let I be the real interval I D Œ�d; d �. It can be verified
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that if xn 2 I , then xnC1 2 I , and if xn 62 I , then jxnC1j�d � jcj .jxnj�d/; in

other words, the distance between xn and I is multiplied by a factor of at most

jcj. Therefore, since jcj< 1, the sequence fxng is “attracted” towards I . ˜

LEMMA 2.20. Regarding the sequences fang and fbng in the statement of The-

orem 2.19:

(a) There is a constant k such that for all n, the number of bm > bn, m < n, is

at most k.

(b) There is a constant k 0 such that for all n, the number of bm < bn, m > n, is

at most k 0.

(c) an � an�1 and bn � bn�1.

PROOF. According to condition 3 in the Theorem, let L and H be such that

nCL � bn� an � nCH for all n:

Suppose bm > bn, with m < n. Then

bn � anC nCL; bm � amCmCH:

But an� am � n�m, so 0 < bm� bn � 2.m� n/CH �L; so

m > n� H �L

2
:

Therefore, for every n there are at most .H �L/=2 possible values for m. This

proves claim (a). Claim (b) follows analogously.

For claim (c), let k D an � an�1. Then, by condition 2 in the Theorem, the

interval

I D fan�1C 1; : : : ; an� 1g;
whose size is k�1, is a subset of B. Let i be the smallest index and j the largest

index such that both bi and bj are in I . Then bj �bi � k�2 and j � i � k�2.

But we have

bj � aj C j CL; bi � ai C i CH; aj � ai � j � i;

so

k � 2� bj � bi � 2.j � i/CL�H � 2k � 4CL�H;

so

k �H �LC 2;

proving that an � an�1. Moreover

bn� bn�1 � .anC nCH /� .an�1C n� 1CL/ � 2.H �L/C 3

and

bn� bn�1 � .anC nCL/� .an�1C n� 1CH / �L�H C 2;
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since an� an�1 � 1. Therefore, bn � bn�1. ˜

LEMMA 2.21. There exists an integer n1 such that f .n/ > n for all n� n1.

PROOF. The number of a’s smaller than an is exactly n, so the number of b’s

smaller than an is � an � n. On the other hand, bn � bn�1, so the number of

b’s smaller than an goes to infinity as n!1. Therefore, an � n!1. But

an � f .n/ (equation (2-5) in Section 2.5). Therefore, f .n/�n!1, which is

even stronger than our claim. ˜

LEMMA 2.22. The sequence fyj g defined in (2-7) satisfies yjC1 � ��1yj .

PROOF. First note that if fcng and fdng are sequences such that cn � dn, then

by equation (2-5) and Lemma 2.20(c) we have f .cn/ � f .dn/. We also have

xcn
� xdn

.

For each j � 0, let m.j /, nj � m.j / � njC1, be the index for which the

maximum yj D jxm.j/j is achieved.

We claim that for each j � 1 there exists an integer p.j / in the range nj �
pj � njC1 such that

f .p.j //�m.j C 1/: (A-9)

Indeed, at the one extreme we have f .nj /DnjC1�m.jC1/, while at the other

we have f .njC1/ D njC2 � m.j C 1/. Thus, there exists some intermediate

value p.j / such that f .pj /�m.jC1/ and f .pjC1/�m.jC1/. This choice

of p.j / satisfies (A-9).

Therefore, using equation (2-6),

yjC1 D jxm.jC1/j � jxf .p.j//j � ��1jxp.j/j � ��1jxm.j/j D ��1yj :

So

yjC1 � hj � ��1yj (A-10)

for some sequence fhj g.
Similarly, for each j � 1 there exists an integer q.j / in the range nj � q.j /�

njC1 such that

f .m.j //� q.j C 1/

for all j � 1. Specifically, let

q.j C 1/Dmin
˚

max ff .m.j //; njC1g; njC2

	

:

(It is not hard to show that if f .n/>f .n0/, n<n0, then f .n/�f .n0/ is bounded.)

Therefore, using again equation (2-6),

yjC1 � jxq.jC1/j � jxf .m.j//j � ��1jxm.j/j D ��1yj I

so yjC1 � h0
j � ��1yj for some sequence fh0

j g. This, together with (A-10),

implies that yjC1 � ��1yj . ˜
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