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Reductions of partizan games

J.P. GROSSMAN AND AARON N. SIEGEL

ABSTRACT. The reduced canonical form of a game G, denoted by G, is the

simplest game infinitesimally close to G. Reduced canonical forms were intro-

duced by Calistrate [2], who gave a simple construction for computing G. We

provide a new correctness proof of Calistrate’s algorithm, and show that his

techniques generalize to produce a family of reduction operators. In addition,

we introduce a completely new construction of G, motivated by Conway’s

original canonical-form construction.

1. Introduction

Although canonical forms sometimes reveal substantial information about the

structure of combinatorial games, they are often too complicated to be of any

great use. Many of the most interesting games — including Clobber, Amazons,

and Hare and Hounds — give rise to some massively complex canonical forms

even on relatively small boards. In such cases, a method for extracting more

specific information is highly desirable. The familiar temperature theory, and

the theory of atomic weights for all-small games, can be viewed as efforts to

address this problem.

In 1996, Dan Calistrate [2] introduced another type of reduction. Calistrate

observed that in certain situations, infinitesimal differences are of secondary

importance. He proposed associating to each game G a reduced canonical form,

G, such that G D H whenever G � H is infinitesimal.

Calistrate’s original construction defined G to be the simplest game equivalent

to G modulo an infinitesimal, where simplicity is measured in terms of the

number of edges in the complete game tree. He gave a method for calculating

G and claimed that the map G ‘ G was a homomorphism. However, his proof

of this assertion contained a flaw.
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Section 2 reviews Calistrate’s construction, introduces some important defi-

nitions and notation, and establishes some basic results regarding infinitesimals.

Section 3 introduces the group of even-tempered games. In Section 4, we give

a natural definition of reduced canonical form, and show that it matches Calis-

trate’s construction. In Section 5, we show that many of our results generalize to

a broad family of homomorphisms of the group of games. Section 6 establishes

the relationship between these homomorphisms and reduced canonical forms.

Finally, Section 7 poses some interesting open problems.

2. Preliminaries

Throughout this paper we use the equivalent terms form and representation to

denote a particular formal representation of a game G. Given a game G D fGL j

GRg, we will use the terms followers to mean all subpositions of G, including G

itself; proper followers to mean all subpositions of G, excluding G; and options

to mean the immediate subpositions GL, GR.

A game " is an infinitesimal if, for every positive number x, we have �x <

" < x. Let Inf denote the set of infinitesimals; clearly Inf is a subgroup of G,

the group of games. When G � H is infinitesimal, we say that G and H are

infinitesimally close, and write G �Inf H . We will sometimes say that H is

G-ish (G infinitesimally sh ifted).

DEFINITION 2.1. If G is a game (in any form) and "
 0 is an infinitesimal,

then G reduced by ", denoted by G", is defined by

G" D

�

G if G is a number;
˚

GL
"

� " j GR
"

C "
	

otherwise.

When no restriction is placed on the game ", this operation is commonly known

as unheating. It is not immediately evident that G" D H" whenever G D H ,

but this will emerge in Section 5. In fact, we will prove the stronger statement

that G" D H" if and only if G and H are infinitesimally close. The special case

" D � was first considered by Calistrate, who defined an additional operator to

effect a further reduction:

DEFINITION 2.2 (CALISTRATE). If G is a game (in any form), then the �-

projection of G, denoted by p.G/, is defined by

p.G/ D

�

x if G D x or x C � for some number x,
˚

p.GL/ j p.GR/
	

otherwise.

We can then define G D p.G�/. Calistrate claimed that G is the simplest game

infinitesimally close to G. While this statement is correct, Calistrate’s proof
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relied on the assertion that G ‘ G is a homomorphism, which is false. For

example, let G D f1j0g and H D f2k1j0g. Then G D G and H D H , so

G C H D G C H D f2; f3j2gk1g; but G C H D f3j2k1g:

We will give an alternate proof that G is the simplest game infinitesimally

close to G. We shall have occasion to consider other mappings that select rep-

resentatives of each Inf-equivalence class. Proceeding in maximum generality:

DEFINITION 2.3. A mapping � W G ! G is a reduction (modulo Inf) if

(i) for all G, �.G/ �Inf G;

(ii) if x is a number, then �.x/ D x; and

(iii) for all G; H with G �Inf H , we have �.G/ D �.H /.

If � is a reduction, then we say that �.G/ is the reduced form of G .under �/.

Note that we do not require our reductions to be homomorphisms. The definition

on its own is not terribly restrictive, but serves as a useful checklist for verifying

candidate mappings with other desirable properties. We will show that G ‘ G

is a reduction, and also that G ‘ G" is both a reduction and a homomorphism

for any infinitesimal "
 0.

Infinitesimals and stops. We will make extensive use of an equivalent def-

inition of infinitesimal that is given in terms of the stops of a game. Recall,

from Winning Ways, that the Left (Right) stop of G is equal to the first number

reached when G is played optimally in isolation, with Left (Right) moving first.

Formally:

DEFINITION 2.4. The Left and Right stops of G, denoted by L0.G/ and R0.G/,

are defined recursively by

L0.G/ D

�

G if G is a number,

max R0.GL/ otherwise;

R0.G/ D

�

G if G is a number,

min L0.GR/ otherwise.

The following facts about stops, and their relationship to infinitesimals, will be

used throughout the rest of this paper. Some proofs can be found in [3]; the rest

are simple exercises left to the reader.

PROPOSITION 2.5. Let G; H be any games.

(a) G is an infinitesimal if and only if L0.G/ D R0.G/ D 0.

(b) R0.G/ C R0.H / � R0.G C H / � R0.G/ C L0.H /;

L0.G/ C L0.H / � L0.G C H / � R0.G/ C L0.H /.
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(c) If G � H , then L0.G/ � L0.H / and R0.G/ � R0.H /.

(d) L0.G/ � R0.GL/ and R0.G/ � L0.GR/ for all GL; GR, even when G is

a number.

Infinitesimal comparisons. We can define infinitesimal comparisons in a man-

ner similar to our definition of infinitesimally close:

DEFINITION 2.6. G �Inf H if and only if G � H C " for some infinitesimal ";

G �Inf H is defined similarly.

Note that G �Inf H if and only if G �Inf H and G �Inf H . We will see shortly

that in these definitions it suffices to take " to be some multiple of " or #. We

begin with:

LEMMA 2.7. If R0.G/ � 0, then G � n � # for some n.

PROOF. Choose n > birthday.G/ C 1. Then Left, playing second, can win

GCn�" as follows: He makes all of his moves in G, playing optimally, until that

component reaches a number x. Then, since L0.H / � R0.H / for all followers

H of G, we must have x � 0. By the assumptions on n, Left still has a move

to 0 available in the n � " component (even if all of Right’s moves were in that

component), so he wins on his next move. ˜

By symmetry, if L0.G/ � 0, then G � n � " for some n.

COROLLARY 2.8. Let G and H be games.

(a) G �Inf H if and only if G � H � n � # for some n.

(b) G is infinitesimal if and only if n � # � G � n � " for some n.

PROOF. Follows immediately from Lemma 2.7 and Proposition 2.5(a). ˜

Lemma 2.7 also allows us to restate a well-known incentive theorem in terms

of infinitesimal comparisons:

THEOREM 2.9. If G is not a number, then G has at least one Left incentive and

at least one Right incentive that are �Inf 0.

PROOF. Let GL be any Left option with R0.GL/ D L0.G/. Then

R0.GL � G/ � R0.GL/ C R0.�G/ D L0.G/ � L0.G/ D 0:

Hence GL�G �Inf 0 by Lemma 2.7. The proof for Right incentives is identical.

˜

We conclude with a theorem that is intuitive yet difficult to prove without the

preceding machinery; the theorem states that if the options of a game are in-

finitesimally perturbed, the resulting game is infinitesimally close to the original.
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THEOREM 2.10. If G D fGL j GRg is not a number and G0 D fGL0

j GR0

g is

a game with GL0

�Inf GL and GR0

�Inf GR , then G0 �Inf G.

PROOF. By symmetry it suffices to show that G � G0 �Inf 0, or equivalently

(Corollary 2.8) that G �G0 Cn �" � 0 for sufficiently large n. If Right moves in

G or �G0, Left answers with the corresponding move in �G0 or G and wins with

n large enough by Corollary 2.8. If Right moves to G�G0C.n�1/ �"�, then by

Theorem 2.9 there is some GR �Inf G, so Left moves in �G0 to �GR0

�Inf �GR .

Again, Left wins with n large enough by Corollary 2.8 since G �GR0

�Inf 0. ˜

Note that Theorem 2.10 fails if G is a number. For example, 0 �Inf �, but

f0j1g D 1

2
and f�j1g D 0.

3. Temper

By Proposition 2.5, infinitesimal differences do not change the final score

of a game; they affect only who has the move when that score is reached.

This observation motivates one of the most natural reduced-form constructions.

Loosely speaking, call a game G even-tempered if, no matter how G is played,

the first player will have the move when G reaches a number. If G and H are

infinitesimally close and even-tempered then we should expect that G D H ,

since we have effectively discarded the particularities of who has the move and

when. This is indeed the case, and in fact we can prove a stronger statement:

For any game G, G� is the unique even-tempered game infinitesimally close to

G. We begin with a formal definition of temper.

DEFINITION 3.1. Let G be a fixed representation of a game.

(a) G is even-tempered if G a number, or every option of G is odd-tempered;

(b) G is odd-tempered if G is not a number and every option of G is even-

tempered;

(c) G is well-tempered if G is even-tempered or odd-tempered.

We will call a game even- (odd-, well-) tempered if it has some even- (odd-,

well-) tempered representation. Although temper is a property of the form of

a game and can be destroyed by adding new dominated options, the following

provides justification for treating it as a property of games:

THEOREM 3.2. Let G be a game in any form. If G is even- (odd-) tempered,

then so is its canonical form.

PROOF. If G is a number then both G and its canonical form are necessarily

even-tempered, so assume that it is not. By induction we may assume that

all proper followers of G are canonical. It then suffices to show that temper is
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preserved when dominated options are eliminated or reversible moves bypassed.

For dominated options this is trivial, so suppose some GLR � G.

Consider the case where GLR is a number. Then G ¤GLR, so by the Number

Avoidance Theorem, Left has a winning move from G � GLR to some GL0

�

GLR . Thus GL0

�GLR . But since GLR is a number, we have GLR >GLRL, so

any GLRL is dominated by GL0

and hence does not contribute to the canonical

form of G.

If GLR is not a number then neither is GL (since it was assumed canonical),

and since GL is odd- (even-) tempered, so is every GLRL. ˜

A simple corollary is that a game cannot be both odd- and even- tempered since

its canonical form cannot be both. The main theorem of this section is the

following:

THEOREM 3.3. Let G be a game in any form. Then G� is the unique G-ish

even-tempered game.

Theorem 3.3 implies that G� D H� whenever G D H , which is not immediately

clear from the definition of G�. For now, we must specify a representation for

G in order to compute G�. Several lemmas are critical to the proof of Theorem

3.3.

LEMMA 3.4. Let G; H be any games.

(a) If G and H are both even- (odd-) tempered, then G C H is even-tempered.

(b) If G is even-tempered and H is odd-tempered, then GCH is odd-tempered.

PROOF. If G and H are both numbers then so is G C H , and the conclusion

follows. If G is a number and H is not, then by the Number Avoidance Theorem

G C H D
˚

G C H L j G C H R
	

:

By induction G C H L and G C H R have the same temper as H L and H R .

Finally, if neither G nor H is a number, then

G C H D
˚

GL C H; G C H L j GR C H; G C H R
	

:

By induction and assumption on G; H all options have the same temper. Fur-

thermore, they are odd-tempered if G and H have the same temper, and even-

tempered otherwise. ˜

LEMMA 3.5. Let G be a game in any form. Then G� is even-tempered and

infinitesimally close to G.

PROOF. The conclusion is trivial if G is a number. If G is not a number then

G� D
˚

GL
� C � j GR

� C �
	

, and the result follows from induction, Lemma 3.4,

Theorem 2.10, and the fact that � is odd-tempered. ˜
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LEMMA 3.6. If G is even-tempered and R0.G/ � 0, then G � 0.

PROOF. We may assume that G is in canonical form. Since R0.G/ � 0, Left,

playing second, can assure that when the play reaches a number, the result is

� 0. By Theorem 3.2, this necessarily happens after an even number of moves,

so Left has made the last move. Thus, Left can win G as second player. ˜

PROOF OF THEOREM 3.3. Lemma 3.5 shows that G� is even-tempered. For

uniqueness, suppose G and H are infinitesimally close even-tempered games.

Then R0.G �H / D 0. But G �H is even-tempered, so by Lemma 3.6, we have

G � H � 0; by symmetry G � H D 0. ˜

As a simple corollary, G� C � is the unique odd-tempered game infinitesimally

close to G. A more substantial corollary is the following theorem.

THEOREM 3.7. The map G ‘ G� is a well-defined homomorphism of the group

of games.

PROOF. First, Theorem 3.3 shows that G� does not depend on the form of G.

Now fix games G; H . Lemma 3.5 implies that

.G C H /� �Inf G C H �Inf G� C H�:

Also, from Lemmas 3.4 and 3.5, we know that .G CH /� and G� CH� are both

even-tempered. It follows from Theorem 3.3 that they are equal. ˜

As a final note, Lemma 3.4 shows that the well-tempered games W and the

even-tempered games E are subgroups of the group of games. Moreover, the

mapping G ‘ G C � induces a perfect pairing of even- and odd- tempered

games, so that

W D E [ fG C � W G 2 Eg:

Thus, the index of E in W is 2.

4. Reduced canonical forms

In this section we will show that every game G has a reduced canonical form

G. G is infinitesimally close to G, and it is the simplest such game, in a sense

that we will define shortly.

DEFINITION 4.1. Let G be any game.

(a) A Left option GL is Inf-dominated if GL �Inf GL0

for some other Left

option GL0

.

(b) A Left option GL is Inf-reversible if GLR �Inf G for some GLR .

The definitions for Right options are similar.
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EXAMPLE (i). Let G D f1; f2j1gk0g. Then 1 is an Inf-dominated Left option of

G, since f2j1g � 1 C " � 0.

EXAMPLE (ii). Let H D f1; f2j0gk0g. Then f2j0g is Inf-reversible through 0,

since H � 0 C " � 0.

DEFINITION 4.2. A game G is said to be in reduced canonical form if, for every

follower H of G, either

(i) H is a number in simplest form, or

(ii) H is not numberish, and contains no Inf-dominated or Inf-reversible op-

tions.

This definition of reduced canonical form appears radically different from Cal-

istrate’s, but we will soon see that his construction meets our criteria. The main

theorems exactly parallel the corresponding results for canonical forms [3]:

THEOREM 4.3. For any game G, there is a game G in reduced canonical form

with G �Inf G.

THEOREM 4.4. Suppose that G and H are in reduced canonical form. If G �Inf

H , then G = H .

Theorem 4.4 guarantees that the G found in Theorem 4.3 is unique. The fol-

lowing lemma is instrumental to the proof of Theorem 4.3.

LEMMA 4.5. Let G be a well-tempered game.

(a) If G �Inf x for some number x, then G D x or x C �.

(b) If G is in canonical form, then G has no Inf-dominated or Inf-reversible

options.

(c) p.G/ �Inf G.

PROOF. (a) x is the unique even-tempered x-ish game, so if G is even-tempered

then G D x. Likewise, x C � is the unique odd-tempered x-ish game, so if G

is odd-tempered then G D x C �.

(b) First suppose (for contradiction) that GL �Inf GL0

for distinct Left options

GL; GL0

. Since G is even- (odd-) tempered, both GL and GL0

are odd- (even-)

tempered. Therefore GL0

� GL is even-tempered. But since GL �Inf GL0

, we

know that R0.GL0

�GL/ � 0. By Lemma 3.6, this implies that GL0

�GL � 0,

contradicting the assumption that G is in canonical form.

Next suppose (for contradiction) that GLR �Inf G. Consider the case where

GL is a number. Then GLR is also a number and GL < GLR . Furthermore, by

Theorem 2.9, there is some GL0

�Inf G. Hence

GL < GLR �Inf G �Inf GL0

:
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Since GLR and GL necessarily differ by more than an infinitesimal, this gives

us GL < GL0

, contradicting the assumption that G is in canonical form.

Finally, if GL is not a number, then GLR is well-tempered and has the same

temper as G. So G � GLR is even-tempered. But R0.G � GLR/ � 0, so by

Lemma 3.6 we have G � GLR � 0, again contradicting the assumption that G

is in canonical form.

(c) follows immediately from induction and Theorem 2.10. ˜

PROOF OF THEOREM 4.3. We will show that p.G�/ has the desired properties,

where we use the canonical form of G� to compute p.G�/. Let H be a follower

of p.G�/; then H D p.H 0/ for some follower H 0 of G�. Since G� is well-

tempered and in canonical form, the same is true of H 0.

If H is numberish, then by Lemma 4.5(c), so is H 0. By Lemma 4.5(a), we

have H 0 D x or x C � for some number x; then by definition, H D x. This

verifies condition (i) in the definition of reduced canonical form.

If H is not numberish, then by Lemma 4.5(c), neither is H 0. By Lemma

4.5(b), H 0 has no Inf-dominated or Inf-reversible options. Since all followers

of H are infinitesimally close to followers of H 0, the same must be true of H .

This completes the proof. ˜

We are now ready to prove uniqueness (Theorem 4.4).

PROOF OF THEOREM 4.4. Suppose G and H are in reduced canonical form and

G �Inf H . If either of G; H is numberish then both must be, so by the definition

of reduced canonical form, both are numbers; hence G D H .

Now suppose that neither G nor H is numberish, and consider H �G. Since

R0.H � G/ � 0, by Corollary 2.8 we have

H � G C n � " � 0

for suitably large n. Consider the game after Right moves to �GL:

H � GL C n � "

Left must have a winning response. It cannot be to any H � GLR C n � ", since

this would imply

G �Inf H �Inf GLR;

contradicting the assumption that G has no Inf-reversible options. Furthermore,

by Theorem 2.9, H has a Left incentive that exceeds n � # (assuming n is suffi-

ciently large). Since n � # is the unique Left incentive of n � ", Left must have a

winning move in H , to

H L � GL C n � ":
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Therefore H L �Inf GL. By an identical argument, there is some GL0

with

GL0

�Inf H L. But G has no Inf-dominated options, so in fact

GL0

�Inf H L �Inf GL:

By induction, GL D H L, so every Left option of G is a Left option of H .

Symmetrical arguments show that G and H have exactly the same Left and

Right options. ˜

If G is any game, the value of G is unchanged when dominated options are elim-

inated or reversible ones bypassed. We can similarly eliminate Inf-dominated

options and bypass Inf-reversible ones, preserving the value of G up to an in-

finitesimal.

LEMMA 4.6. If G is not a number and G0 is obtained from G by eliminating an

Inf-dominated option, then G0 �Inf G.

PROOF. Suppose that GL0

�Inf GL for Left options GL, GL0

of G. Then we

can find H �Inf GL such that GL0

� H , so, by Theorem 2.10,

G D fGL; GL0

; : : : j GRg �Inf fGL0

; H; : : : j GRg D fGL0

; : : : j GRg: ˜

LEMMA 4.7. If G is not numberish and G0 is obtained from G by bypassing an

Inf-reversible option, then G0 �Inf G.

Note that the assumption of Lemma 4.7 (G not numberish) is stronger than the

assumption of Lemma 4.6 (G not a number). If G is numberish, Inf-reversible

moves cannot in general be bypassed. For example, let G D 	2 D f2j0k0g.

Then GLR D 0 �Inf G, but if we replace GL D f2j0g with the Left options of

0, then the resulting game is G0 D fj0g D �1 6�Inf G.

PROOF OF LEMMA 4.7. Suppose that G is not numberish, and G0 is obtained

from G by bypassing some Inf-reversible option GL0 through GL0R0 . We must

show that G � G0 C n � " � 0 and G0 � G C n � " � 0 for sufficiently large n.

First consider G � G0 C n � " � 0. Right has three possible opening moves; we

show that, in each case, Left has a winning response.

(a) If Right moves to G �G0 C .n�1/ �"�, then by Theorem 2.9 Left can move

to G � GR C .n � 1/ � "� with GR �Inf G which wins for large enough n.

(b) Suppose Right moves to G �GL0R0L Cn �". Since GL0R0 �Inf G, we have

G � GL0R0 C n � " � 0 for large enough n, so G � GL0R0L C n � "
 0 and

therefore Left has a winning move.

(c) If Right makes any other move in G or �G0, Left makes the corresponding

move in the other component leaving n � ".

Now consider G � G0 C n � " � 0. Once again, there are three cases.
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(d) Suppose that Right moves to G0 �G C.n�1/ �"�. Since G is not a number,

by Theorem 2.9 we can choose some GL �Inf G. If we can choose GL ¤ GL0 ,

Left moves to GL � G C .n � 1/ � "� and wins for large n. If GL0 is the only

choice, the proof of Theorem 2.9 shows that R0.GL0/ D L0.G/. We also have

from Proposition 2.5 that R0.GL0R0/ � R0.G/ since GL0R0 �Inf G. Finally,

since G is not numberish, we have R0.G/ < L0.G/. Putting these inequalities

together gives us

R0.GL0R0/ � R0.G/ < L0.G/ D R0.GL0/ � L0.GL0R0/

and therefore GL0R0 is not a number. It follows that L0.GL0R0/ � L0.G0/

since every Left option of GL0R0 is also a Left option of G0 (by Proposition

2.5(d) this is true even if G0 is a number). Similarly, R0.G0/ � R0.G/, since

they have the same Right options and G is not a number. Hence

R0.G0/ � R0.G/ < L0.G/ � L0.GL0R0/ � L0.G0/

so in fact G0 is also not a number. It follows from Theorem 2.9 that Left can

win by moving to G0 � GR C .n � 1/ � "�, where GR �Inf G0.

(e) If Right moves to G0 � GL0 C n � " then Left moves to G0 � GL0R0 C n � ",

which we now show is a loss for Right.

If Right moves to either GR � GL0R0 C n � " or G0 � GL0R0 C .n � 1/ � "�,

Left can win with n large enough since �GL0R0 �Inf �G and we have already

shown that GR � G C n � "
 0 and G0 � G C .n � 1/ � "�
 0. If Right moves

to G0 �GL0R0L C n � ", Left makes the corresponding move in G0 leaving n � "

and wins.

(f) Finally, if Right makes any other move in G0 or �G, Left makes the corre-

sponding move in the other component leaving n � ". ˜

Lemmas 4.6 and 4.7 suggest an algorithm for computing G. If G is numberish,

we take G D L0.G/. Otherwise, by Theorem 2.10, we may assume that every

option of G is in reduced canonical form. G can then be obtained by iteratively

eliminating Inf-dominated options and bypassing Inf-reversible ones until none

remain.

This algorithm bears a pleasing similarity to the classical procedure for com-

puting the canonical form of G, but it is somewhat less efficient than simply

calculating p.G�/. Nonetheless, Theorem 2.10 and Lemmas 4.6, 4.7 can be

useful in practice; see, for example, Mesdal [4, Section 7] in this volume.

THEOREM 4.8. If G is not numberish, then G can be computed by repeating

the following steps in any order:

(i) Replacing options with simpler options infinitesimally close to the original;

(ii) Eliminating Inf-dominated options;
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(iii) Bypassing Inf-reversible options.

PROOF. Since each step simplifies the game, the steps must at some point come

to an end. Theorem 2.10 shows that step (i) does not change the game by more

than an infinitesimal, and Lemmas 4.6 and 4.7 show that neither do steps (ii)

or (iii). Thus, the final game is infinitesimally close to the original, and if no

more steps are possible then all numberish followers are numbers and there are

no Inf-dominated or Inf-reversible moves. It follows by Theorem 4.4 that this

game is G. ˜

5. Reduction by "

Having observed one reduction that is also a homomorphism, it is natural to

look for others. In this section we show that for any infinitesimal " 
 0, the

mapping G ‘ G" is both a reduction and a homomorphism. In the process we

will show that G" is well-defined, but for now we must still agree upon a specific

representation of G in order to compute G".

LEMMA 5.1. L0.G"/ D L0.G/ and R0.G"/ D R0.G/.

PROOF. This is immediate if G is a number. Otherwise, by induction and

Proposition 2.5, we have

L0.G"/ D maxfR0.GL
"

� "/g D maxfR0.GL
"

/g D maxfR0.GL/g D L0.G/;

and similarly for R0. ˜

LEMMA 5.2. If R0.G/ � 0, then G" � 0; if L0.G/ � 0, then G" � 0.

PROOF. Suppose R0.G/ � 0. If G" is a number, then G" D R0.G"/ D R0.G/ �

0. Otherwise, suppose that Right moves in G" to GR
"

C ". If GR
"

is a number,

then

GR
"

D L0.GR
"

/ D L0.GR/ � R0.G/ � 0;

so by choice of ", GR
"

C "
 0 and Left has a winning move. Finally, if GR
"

is

not a number, Left moves to GRL
"

, choosing GRL so that R0.GRL/ D L0.GR/.

Since L0.GR/ � R0.G/ � 0, by induction GRL
"

� 0, so Left wins. The proof

for L0.G/ is identical. ˜

THEOREM 5.3. G is infinitesimal if and only if G" D 0.

PROOF. If G is infinitesimal then R0.G/ D L0.G/ D 0, so 0 � G" � 0 by

Lemma 5.2. Conversely, suppose G" D 0. Then by Lemma 5.1,

R0.G/ D R0.G"/ D 0 D L0.G"/ D L0.G/;

so G is infinitesimal. ˜
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THEOREM 5.4. Using the representation �G D f�GR j �GLg, we have

.�G/" D �.G"/:

PROOF. Trivial if G is a number; otherwise, by induction:

.�G/" D
˚

.�GR/" � " j .�GL/" C "
	

D
˚

�.GR
"

/ � " j �.GL
"

/ C "
	

D �
˚

GL
"

� " j GR
"

C "
	

D �.G"/: ˜

LEMMA 5.5. Let G; H be any games.

(a) If G C H � 0, then G" C H" � 0.

(b) If G C H 
 0, then G" C H" C "
 0.

PROOF. If G and H are numbers, (a) and (b) are immediate. Otherwise, we

may assume that G is not a number, and we proceed by simultaneous induction

on (a) and (b).

(a) Suppose that GCH �0 and that Right moves in G"CH" to GR
"

CH"C" (we

can assume that Right’s move is in G" by symmetry and the Number Avoidance

Theorem). Since GR C H 
 0, by induction GR
"

C H" C "
 0, so Left wins;

hence G" C H" � 0.

(b) If G C H 
 0 then Left has a winning move, say to GL C H � 0 (again,

by symmetry and the Number Avoidance Theorem we can assume that Left’s

winning move is in G). Then GL
"

C H" � 0 by induction, so Left also has a

winning move from G" C H" C ". ˜

COROLLARY 5.6. If G � H , then G" � H".

PROOF. Using Theorem 5.4 and Lemma 5.5,

G C .�H / � 0 ) G" C .�H /" � 0 ) G" � H": ˜

THEOREM 5.7. If G D H , then G" D H".

PROOF. Follows immediately from Corollary 5.6 since G � H and H � G. ˜

By Theorem 5.7, G" does not depend on the formal representation of G. There-

fore, the mapping G ‘ G" is well-defined. We next show that it is a homomor-

phism.

LEMMA 5.8. If x is a number, then .G C x/" D G" C x.
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PROOF. The conclusion is trivial if G is a number. Otherwise, G C x is not a

number, so by induction and the Number Translation Theorem

.G C x/" D
˚

GL C x j GR C x
	

"

D
˚

.GL C x/" � " j .GR C x/" C "
	

D
˚

GL
"

� " C x j GR
"

C " C x
	

If G" is not a number, then this is equal to G" C x by the Number Translation

Theorem. Otherwise, there is some number z such that

GL
"

� "� z�GR
"

C ":

Translating by x, we have that

GL
"

� " C x� z C x�GR
"

C " C x;

and since .G C x/" D fGL
"

� " C x j GR
"

C " C xg, it follows that .G C x/" is a

number. Then by Lemma 5.1, we conclude that

.G Cx/" D L0..G Cx/"/ D L0.G Cx/ D L0.G/Cx D L0.G"/Cx D G" Cx:

˜

The following theorem establishes that reduction by " is a projection: an idem-

potent homomorphism.

THEOREM 5.9. Let G, H be any games. Then:

(a) .G C H /" D G" C H".

(b) G" �Inf G.

(c) .G"/" D G".

PROOF. (a) This reduces to Lemma 5.8 if either G or H is a number. Otherwise,

there are two cases. First, if x D G C H is a number, then by Theorem 5.4 and

Lemma 5.8 we have

.G C H /" � G" D x � G" D .x � G/" D H":

Finally, if none of G, H , G C H are numbers, then by induction

.G CH /" D
˚

.GL CH /" �"; .G CH L/" �" j .GR CH /" C"; .G CH R/" C"
	

D
˚

.GL
"

�"/CH"; G" C.H L
"

�"/ j .GR
"

C"/CH"; G" C.H R C"/
	

D G" CH":

(b) follows by induction and Theorem 2.10.

(c) Using (a), (b), and Theorem 5.3, we obtain

0 D .G" �G/" D .G"/" �G": ˜
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THEOREM 5.10. The mapping G ‘ G" is a reduction.

PROOF. G �Inf G" by Theorem 5.9, and x" D x for numbers x by definition.

Finally, if G �Inf H , then G D H C ı for some infinitesimal ı, so by Theorems

5.3 and 5.9, G" D H" C ı" D H". ˜

We conclude with a theorem on incentives for games reduced by " whose elegant

proof makes it deserving of presentation.

THEOREM 5.11. If G" is not a number, then G" has at least one Left incentive

and at least one Right incentive that are � �".

PROOF. By Theorem 2.9, there is some Left option GL
"

� " of G" and some

infinitesimal ı such that

.GL
"

� "/ � G" � ı:

Reducing by " gives .GL
"

/" � "" � .G"/" � ı" by Theorem 5.9(a) and Corollary

5.6, which implies GL
"

� G" � 0 by Theorems 5.3 and 5.9(c), and finally

.GL
"

� "/ � G" � �":

The proof for Right incentives is identical. ˜

6. All-small reductions

Our final task is to relate the two reductions presented thus far. Recall that a

game is all-small if all of its followers are infinitesimal. We will see that when

" is all-small, G" can be computed by adding appropriate multiples of " to the

stops of G. We begin with a simple observation:

LEMMA 6.1. If G" is not a number, then there is some GL
"

with R0.GL
"

/ >

R0.G"/.

PROOF. Since G" is not a number, G is not numberish. Hence L0.G/ > R0.G/,

so we can choose any GL
"

where R0.GL/ D L0.G/. ˜

The following theorem strengthens Theorem 2.9 when " is all-small.

THEOREM 6.2 (ALL-SMALL AVOIDANCE THEOREM). If " 
 0 is all-small

and G" is not a number, then G" has at least one Left incentive and at least one

Right incentive that exceed every incentive (Left and Right) of ".

The hypothesis that " is all-small is essential. For example, if we take G D ˙1

and " D 2, then G" D ˙f3j1k1g. We can verify that the Left incentive of G" is

less than the Right incentive of 2.

PROOF OF THEOREM 6.2. We will show that G" has a Left incentive that ex-

ceeds every incentive of "; the proof for Right incentives is identical. First, for
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any game H , we define the Left and Right parities pL.H /, pR.H / as follows.

If H is numberish, then pL.H / D pR.H / D 0. Otherwise,

pL.H / D

�

1 if pR.H L/ D 0 for every H L with R0.H L/ D L0.H /,

0 if pR.H L/ D 1 for any such H L.

pR.H / is defined similarly, with L and R interchanged.

Since G" is not a number, neither is G, so there is some GL with R0.GL/ D

L0.G/. If pL.G/ D 0 then we can choose such GL with pR.GL/ D 1, so we

can guarantee that at least one of pR.GL/, pL.G/ is 1. We claim that for each

(Left or Right) incentive � of ",

.GL
"

� "/ � G" � �:

Observe that pR.�H / D pL.H / and pL.�H / D pR.H / (proof by simple

induction). It therefore suffices to prove the following: if Right moves from any

position of the form

A" CB" �"��; with R0.A/CR0.B/ D 0, pR.A/CpR.B/ � 1; (6-1)

then Left can either win outright, or respond to another position of the same

form. The following proof makes heavy use of the inequality R0.A C B/ �

R0.A/ C R0.B/ from Proposition 2.5(b).

Since pR.A/ C pR.B/ � 1, A" and B" cannot both be numbers. It follows

that Right can never move in .�" � �/, since by Lemma 6.1 this would allow

Left to move in one of A" or B" leaving a position H with R0.H / > 0 (here

we use the fact that " is all-small which implies that none of its incentives or

followers contribute to the stops of the entire game).

Next suppose that Right moves in A" from (6-1). By the Number Avoidance

Theorem, we may assume that A" is not a number. There are three cases.

Case 1: AR
"

is not a number. Then Left moves to ARL
"

with R0.ARL/ D

L0.AR/ � R0.A/. In this case the position is

H D ARL
"

C B" � " � �; with R0.ARL/ C R0.B/ � 0.

If the inequality is strict, then since �"�� is infinitesimal, R0.H / > 0 and Left

wins outright. Otherwise, either pR.B/ D 1 or pR.A/ D 1; in the latter case

pL.AR/ D 0, so Left can choose ARL with pR.ARL/ D pR.A/ D 1. In both

cases, Left leaves a smaller position of the form (6-1).

Case 2: AR
"

is a number, but B" is not. Then R0.AR/ D L0.AR/ � R0.A/, so

by Lemma 6.1 Left can move in B" leaving a position H with R0.H / > 0, and

Left wins outright.
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Case 3: Both AR
"

and B" are numbers. Then AR
"

D L0.AR/ � R0.A/ D

�R0.B/ D �B". If the inequality is strict, then Left wins outright. Otherwise,

the overall position is

.AR
"

C "/ C B" � " � � D ��:

But � is an incentive, so necessarily �� 0, whence ��
 0.

This exhausts Right’s moves in A" from (6-1). The situation is identical if

Right moves in B", so the proof is complete. ˜

COROLLARY 6.3 (ALL-SMALL TRANSLATION THEOREM). If G is not a num-

ber, n is an integer and "
 0 is all-small, then G" C n � " D fGL
"

C .n � 1/ � " j

GR
"

C .n C 1/ � "g.

PROOF. This is trivial if n = 0. Otherwise the game is either G" C"C"C� � � or

G" �"�"�� � �; in either case the Left and Right incentives of ˙" are dominated

by incentives of G" by Theorem 6.2. ˜

This translation theorem allows us to quickly compute G" from its definition

by absorbing the ˙" terms in the followers of G" until we reach the stops. It is

straightforward (although the notation is cumbersome) to determine the multiple

of " which must be added to each stop:

DEFINITION 6.4. Let GX Y Z ::: be a follower of G where each of X; Y; Z; : : :

denotes a Left or Right option. The weight wG.GX Y Z :::/ of GX Y Z ::: is the

number of Left options in X; Y; Z; : : : minus the number of Right options in

X; Y; Z; : : :

Note that we have already encountered the concept of weight disguised as temper

in Section 3; a representation of a game is even- (odd-) tempered if the stops

all have even (odd) weight. As an example, in the game f2k1j0g, the stop 2

has weight 1 since it is reached by a single Left move, the stop 1 has weight 0

since it is reached by a Right move followed by a Left move, and the stop 0 has

weight -2 since it is reached by two Right moves.

THEOREM 6.5. If "
 0 is all-small, then G" is the game obtained from G by

replacing each stop H with H � w
G

.H / � ".

PROOF. Since G �Inf G, we have G" D .G/". With this observation, the theorem

follows immediately from Corollary 6.3 and the definition of reduction by "

applied to G. ˜

For example, if G D f2k1j0g then G" D f2#k1j*g. Note that for " D �, Theorem

6.5 agrees with our results from Sections 3 and 4 as it states that G� is obtained

from G by adding � to the stops having odd weight.
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7. Conclusion and open problems

The reduced canonical form is a valuable tool in the study of combinatorial

games; see [4, Section 7] in this volume for an example of its successful appli-

cation. However, there are several potentially useful directions in which these

ideas can be extended.

Section 5 does not completely characterize the reductions that are also ho-

momorphisms. For example, the reader might wish to verify that the mapping

� given by

�.G/ D

�

G if G is a number,
˚

�.GL/��;�.GL/��2 j �.GR/C�;�.GR/C�2
	

otherwise

is both a reduction and a homomorphism. In fact, we could replace � and

�2 by any finite set of infinitesimals 
 0: the results of Section 5 all apply

with virtually unchanged proofs. It would be interesting to investigate other

reduction-homomorphisms (if indeed they exist).

OPEN PROBLEM. Give a complete characterization of all reduction-homo-

morphisms � W G ! G.

Another important question is: to what extent can these constructions be gen-

eralized to groups other than Inf? In particular, if K is any subgroup of G, then

we can define a reduction modulo K as a map that isolates a unique element of

each K-equivalence class.

As a typical example, consider the group of infinitesimals of order n:

Infn D fG W k � #n < G < k � "n for some kg:

OPEN PROBLEM. Give an effective construction for reduction modulo Infn (or

some other useful class of games).

There are many interesting games in which all positions are infinitesimals, and

reduction modulo Inf is obviously unhelpful in studying such games. The theory

of atomic weights is sometimes useful, but quite often one encounters large

classes of positions with atomic weight zero. In such cases, reduction modulo

Inf2 could be a productive tool.

Generalizing beyond short games, reduced canonical forms can be suitably

defined for a certain class of well-behaved loopy games known as stoppers (see

[1] or [6] for a definition). That construction is beyond the scope of this paper,

but see [5, Section 5.4] for a complete discussion.
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