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Unsolved problems in Combinatorial Games

RICHARD K. GUY AND RICHARD J. NOWAKOWSKI

We have sorted the problems into sections:

� A. Taking and Breaking

� B. Pushing and Placing Pieces

� C. Playing with Pencil and Paper

� D. Disturbing and Destroying

� E. Theory of Games

They have been given new numbers. The numbers in parentheses are the old

numbers used in each of the lists of unsolved problems given on pp. 183–189

of AMS Proc. Sympos. Appl. Math. 43 (1991), called PSAM 43 below; on

pp. 475–491 of Games of No Chance, hereafter referred to as GONC; and on

pp. 457–473 of More Games of No Chance (MGONC). Missing numbers are of

problems which have been solved, or for which we have nothing new to add.

References [year] may be found in Fraenkel’s Bibliography at the end of this

volume. References [#] are at the end of this article. A useful reference for

the rules and an introduction to many of the specific games mentioned below is

M. Albert, R. J. Nowakowski and D. Wolfe, Lessons in Play: An Introduction

to the Combinatorial Theory of Games, A K Peters, 2007 (LIP).

A. Taking and breaking games

A1 (1). Subtraction games with finite subtraction sets are known to have pe-

riodic nim-sequences. Investigate the relationship between the subtraction set

and the length and structure of the period. The same question can be asked

about partizan subtraction games, in which each player is assigned an individual

subtraction set. See Fraenkel and Kotzig [1987].

[A move in the game S.s1; s2; s3; : : : / is to take a number of beans from a

heap, provided that number is a member of the subtraction-set, fs1; s2; s3; : : : g.

Analysis of such a game and of many other heap games is conveniently recorded
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by a nim-sequence,

n0n1n2n3 : : : ;

meaning that the nim-value of a heap of h beans is nh; i.e., that the value of a

heap of h beans in this particular game is the nimber �nh.]

For examples see Table 2 in ~ 4 on p. 67 of the Impartial Games paper in

GONC.

It would now seem feasible to give the complete analysis for games whose

subtraction sets have just three members, though this has so far eluded us.

Several people, including Mark Paulhus and Alex Fink, have given a complete

analysis for all sets f1; b; cg and for sets fa; b; cg with a < b < c < 32.

In general, period lengths can be surprisingly long, and it has been suggested

that they could be superpolynomial in terms of the size of the subtraction set.

However, Guy conjectures that they are bounded by polynomials of degree at

most
�n

2

�
in sn, the largest member of a subtraction set of cardinality n. It would

also be of interest to characterize the subtraction sets which yield a purely peri-

odic nim-sequence, i.e., for which there is no preperiod.

Angela Siegel [18] considered infinite subtraction sets which are the comple-

ment of finite ones and showed that the nim-sequences are always arithmetic

periodic. That is, the nim-values belong to a finite set of arithmetic progres-

sions with the same common difference. The number of progressions is the

period and their common difference is called the saltus. For instance, the game

SfO4; O9; b26; b30g (in which a player may take any number of beans except 4, 9, 26

or 30) has a preperiod of length 243, period-length 13014 and saltus 4702.

For infinite subtraction games in general there are corresponding questions

about the length and purity of the period.

We note that Question A2 on the 2006-12-02 Putnam exam is the subtraction

game with subtraction set fp�1 W p primeg. Show that there are infinitely many

heap sizes which are P-positions.

A2 (2). Are all finite octal games ultimately periodic?

[If the binary expansion of the k-th code digit in the game with code

d0 � d1d2d3 : : :

is

dk D 2ak C 2bk C 2ck C : : : ;

where 0 � ak < bk < ck < : : : , then it is legal to remove k beans from a heap,

provided that the rest of the heap is left in exactly ak or bk or ck or . . . nonempty

heaps. See WW, 81–115. Some specimen games are exhibited in Table 3 of ~ 5

of the Impartial Games paper in GONC.]
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Resolve any number of outstanding particular cases, e.g., �6 (Officers), �04,

�06, �14, �36, �37, �64, �74, �76, �004, �005, �006, �007, �014, �015, �016, �024, �026,

�034, �064, �114, �125, �126, �135, �136, �142, �143, �146, �162, �163, �164, �166,

�167, �172, �174, �204, �205, �206, �207, �224, �244, �245, �264, �324, �334, �336,

�342, �344, �346, �362, �364, �366, �371, �374, �404, �414, �416, �444, �564, �604,

�606, �744, �764, �774, �776 and Grundy’s Game (split a heap into two unequal

heaps; WW, pp. 96–97, 111–112; LIP, p. 142), which has been analyzed, first

by Dan Hoey and later by Achim Flammenkamp, as far as heaps of 235 beans.

1401–

1024–

512–

256–

Figure 1. Plot of 11000000 nim-values of the octal game �007.

Perhaps the most notorious and deserving of attention is the game �007, one-

dimensional Tic-Tac-Toe, or Treblecross, which Flammenkamp has pushed to

225. Figure 1 shows the first 11 million nim-values, a small proportion of which

are � 1024; the largest, G.6193903/ D 1401 is shown circled. Will 2048 ever

be reached?

Achim Flammenkamp has settled �106: it has the remarkable period and

preperiod lengths of 328226140474 and 465384263797. For information on the

current status of each of these games, see Flammenkamp’s web page at http://

www.uni-bielefeld.de/~achim/octal.html.

A game similar to Grundy’s, and which is also unsolved, is John Conway’s

Couples-Are-Forever (LIP, p. 142) where a move is to split any heap except a

heap of two. The first 50 million nim-values haven’t displayed any periodicity.

See Caines et al. [1999]. More generally, Bill Pulleyblank suggests looking at

splitting games in which you may only split heaps of size > h, so that h D 1

is She-Loves-Me-She-Loves-Me-Not and h D 2 is Couples-Are-Forever. David

Singmaster suggested a similar generalization: you may split a heap provided
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that the resulting two heaps each contain at least k beans: k D 1 is the same as

h D 1, while k D 2 is the third cousin of Dawson’s Chess.

Explain the structure of the periods of games known to be periodic.

In Discrete Math., 44(1983) 331–334, Problem 38, Fraenkel raised questions

concerning the computational complexity (see E1 below) of octal games. In

Problem 39, he and Kotzig define partizan octal games in which distinct octals

are assigned to the two players. The article by Mesdal, in this volume, shows

that in many cases, if the game is “all-small” (WW, pp. 229–262, LIP, pp. 183–

207), then the atomic weights are arithmetic periodic. In Problem 40, Fraenkel

introduces poset games, played on a partially ordered set of heaps, each player

in turn selecting a heap and then removing a nonnegative number of beans from

this heap and from each heap above it in the ordering, at least one heap being

reduced in size. For posets of height one, new regularities in the nim-sequence

can occur; see Horrocks and Nowakowski [2003].

Note that this includes, as particular cases, Subset Takeaway, Chomp or Divi-

sors, and Green Hackenbush forests. Compare Problems A3, D1 and D2 below.

A3 (3). Hexadecimal games have code digits dk in the interval from 0 to f

(= 15), so that there are options splitting a heap into three heaps. See WW,

116–117.

Such games may be arithmetically periodic. Nowakowski has calculated

the first 100000 nim-values for each of the 1-, 2- and 3-digit games. Richard

Austin’s theorem 6.8 in his thesis [1976] and the generalization by Howse and

Nowakowski [2004] suffice to confirm the arithmetic periodicity of several of

these games.

Some interesting specimens are �28 = �29, which have period 53 and saltus 16,

the only exceptional value being G.0/D0; �9c, which has period 36, preperiod 28

and saltus 16; and �f6 with period 43 and saltus 32, but its apparent preperiod of

604 and failure to satisfy one of the conditions of the theorem prevent us from

verifying the ultimate periodicity. The game �205200c is arithmetic periodic

with preperiod length of 4, period length of 40, saltus 16 except that 40k C 19

has nim-value 6 and 40k C 39 has nim-value 14. This regularity, (which also

seems to be exhibited by �660060008 with a period length of approximately

300,000), was first reported in Horrocks and Nowakowski [2003] (see Problem

A2.) Grossman and Nowakowski [7] have shown that the nim-sequences for

�200. . . 0048, with an odd number of zero code digits, exhibit “ruler function”

patterns. The game �9 has not so far yielded its complete analysis, but, as far

as analyzed (to heaps of size 100000), exhibits a remarkable fractal-like set of

nim-values. See Howse and Nowakowski [2004]. Also of special interest are �e;

�7f (which has a strong tendency to period 8, saltus 4, but, for n � 100; 000, has

14 exceptional values, the largest being G.94156/ D 26614); �b6 (which “looks
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octal”); �b33b (where a heap of size n has nim-value n except for 27 heap sizes

which appear to be random); and �817264517

Figure 2. Plot of 200000 nim-values for the hexadecimal game �817264517

[why 817264517 ?] whose nim-values appear to form a lattice of ruler functions

with slopes slightly less than 1
2

and �1
2

(see Figure 2). The largest value in the

range calculated is G.206265/ D 101458.

Other unsolved hexadecimal games are �1x, where x 2 f8; 9; c; d; e; f g;

�2x, a � x � f ; �3x, 8 � x � e; �4x, x 2 f9; b; d; f g; �5x, 8 � x � f ;

�6x, 8 � x � f ; �7x, 8 � x � f ; �9x, 1 � x � a; �9d; �bx, x 2 f6; 9; dg;

�dx, 1 � x � f ; �fx with x 2 f4; 6; 7g.

A4 (53). N -heap Wythoff Game. Given N � 2 heaps of finitely many tokens,

whose sizes are p1; : : : ; pN with p1 � � � � � pN . Players take turns removing

any positive number of tokens from a single heap or removing .a1; : : : ; aN / from

all the heaps — ai from the i-th heap — subject to the conditions (i) 0 � ai � pi

for each i , (ii)
PN

iD1 ai > 0, (iii) a1 ˚ � � � ˚ aN D 0, where ˚ is nim addition.

The player making the last move wins and the opponent loses. Note that the

classical Wythoff game is the case N D 2.

For N � 3, Fraenkel makes the following conjectures.

Conjecture 1. For every fixed set K WD .A1; : : : ; AN �2/ there exists an integer

m D m.K/ (i.e, m depends only on K), such that

.A1; : : : ; AN �2; AN �1
n ; AN

n /; AN �2 � AN �1
n � AN

n

with AN �1
n < AN �1

nC1
for all n � 1, is the n-th P-position, and

AN �1
n D mex

�
fAN �1

i ; AN
i W 0 � i < ng [ T

�
; AN

n D AN �1
n C n
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for all n � m, where T D T .K/ is a (small) set of integers.

That is, if you fix N � 2 of the heaps, the P-positions resemble those for

the classical Wythoff game. For example, for N D 3 and A1 D 1, we have

T D f2; 17; 22g, m D 23.

Conjecture 2. For every fixed K there exist integers a D a.K/ and M D M.K/

such that AN �1
n D bn�c C "n C a and AN

n D AN �1
n C n for all n � M , where

� D .1 C
p

5/=2 is the golden section, and "n 2 f�1; 0; 1g.

In Fraenkel and Krieger [2004] the following was shown, inter alia: Let t 2
Z�1, ˛ D .2 � t C

p
t2 C 4/=2 (˛ D � for t D 1), T � Z�0 a finite set,

An D .mex fAi ; Bi W 0 � i < ng [ T /, where Bn DAnCnt . Let sn WDbn˛c�An.

Then there exist a 2 Z and m 2 Z�1, such that for all n � m, either sn D a, or

sn D aC"n, "n 2 f�1; 0; 1g. If "n ¤ 0, then "n�1 D "nC1 D 0. Also the general

structure of the "n was characterized succinctly.

This result was then applied to the N -heap Wythoff game. In particular, for

N D 3 (so that K D A1) it was proved that A2
n D mex

�
fA2

i ; A3
i W 0 � i < ng[T

�
,

where T D

fx � K W 9 0 � k < K s:t: .k; K; x/ is a P � positiong [ f0; : : : ; K � 1g

The following upper bound for A3
n was established: A3

n � .K C3/A2
n C2K C2.

It was also proved that Conjecture 1 implies Conjecture 2.

In Sun and Zeilberger [2004], a sufficient condition for the conjectures to hold

was given. It was then proved that the conjectures are true for the case N D 3,

where the first heap has up to 10 tokens. For those 10 cases, the parameter

values m; M; a; T were listed in a table.

Sun [2005] obtained results similar to those in Fraenkel and Krieger [2004],

but the proofs are different. It was also proved that Conjecture 1 implies Con-

jecture 2. A method was given to compute a in terms of certain indexes of the

Ai and Bj .

A5 (23). Burning-the-Candle-at-Both-Ends. Conway and Fraenkel ask us

to analyze Nim played with a row of heaps. A move may only be made in

the leftmost or in the rightmost heap. When a heap becomes empty, then its

neighbor becomes the end heap.

Albert and Nowakowski [2001] have determined the outcome classes in im-

partial and partizan versions (called End-Nim, LIP, pp. 210, 263) with finite

heaps, and Duffy, Kolpin and Wolfe, in this volume, extend the partizan case to

infinite ordinal heaps. Wolfe asks for the actual values.

Nowakowski suggested to analyze impartial and partizan End-Wythoff: take

from either end-pile, or the same number from both ends. The impartial game is

solved by Fraenkel and Reisner, in this volume, Fraenkel [1982] asks a similar
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question about a generalized Wythoff game: take from either end-pile or take

k > 0 from one end-pile and ` > 0 from the other, subject to jk � `j < a, where

a is a fixed integer parameter (a D 1 is End-Wythoff).

There is also Hub-and-Spoke Nim, proposed by Fraenkel. One heap is the

hub and the others are arranged in rows forming spokes radiating from the hub.

Albert notes that this game can be generalized to playing on a forest, i.e., a graph

each of whose components is a tree. The most natural variant is that beans may

only be taken from a leaf (valence 1) or isolated vertex (valence 0).

The partizan game of Red-Blue Cherries is played on an arbitrary graph. A

player picks an appropriately colored cherry from a vertex of minimum degree,

which disappears at the same time. Albert et al.[1] show that if the graph has a

leaf, then the value is an integer. See also McCurdy [10].

A6 (17). Extend the analysis of Kotzig’s Nim (WW, 515–517). Is the game

eventually periodic in terms of the length of the circle for every finite move set?

Analyze the misère version of Kotzig’s Nim.

A7 (18). Obtain asymptotic estimates for the proportions of N-, O- and P-

positions in Epstein’s Put-or-Take-a-Square game (WW, 518–520).

A8. Gale’s Nim. This is Nim played with four heaps, but the game ends when

three of the heaps have vanished, so that there is a single heap left. Brouwer

and Guy have independently given a partial analysis, but the situation where the

four heaps have distinct sizes greater than 2 is open. An obvious generalization

is to play with h heaps and play finishes when k of them have vanished.

A9. Euclid’s Nim is played with a pair of positive integers, a move being to

diminish the larger by any multiple of the smaller. The winner is the player

who reduces a number to zero. Analyses have been given by Cole and Davie

[1969], Spitznagel [1973], Lengyel [2003], Collins [2005], Fraenkel [2005] and

Nivasch [2006]. Gurvich [8] shows that the nim-value, gC.a; b/ for the pair

.a; b/ in normal play is the same as the misère nim-value, g�.a; b/ except for

.a; b/ D .kFi ; kFiC1/ where k > 0 and Fi is the i-th Fibonacci number. In this

case, gC.kFi ; kFiC1/ D 0 and g�.kFi ; kFiC1/ D 1 if i is even and the values

are reversed if i is odd.

We are not aware of an analysis of the game played with three or more inte-

gers.

A10 (20). Some advance in the analysis of D.U.D.E.N.E.Y (WW, 521–523) has

been made by Marc Wallace, Alex Fink and Kevin Saff.

[The game is Nim, but with an upper bound, Y , on the number of beans that

may be taken, and with the restriction that a player may not repeat his opponent’s

last move. If Y is even, the analysis is easy.]
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We can, for example, extend the table of strings of pearls given in WW,

p. 523, with the following values of Y which have the pure periods shown,

where D=Y C2, E=Y C1. The first entry corrects an error of 128r C31 in WW.

256r C 31 DEE 512r C 153 DEE 1024r C 415 DEE

512r C 97 DDEDDDE 512r C 159 DEE 512r C 425 DE

1024r C 103 DE 512r C 225 DDE 512r C 487 DEE

128r C 119 DEE 512r C 255 E 1024r C 521 DDDE

1024r C 127 DEEE 512r C 257 DDDDE 1024r C 607 DDE

512r C 151 DDDEE 512r C 297 DDEDEDE 1024r C 735 DEEE

It seems likely that the string for Y D 22kC1 C 22k � 1 has the simple period E

for all values of k. But the following evidence of the fraction, among 2k cases,

that remain undetermined:

k D 3 5 6 7 8 9 10 11 12 13 14 15 16 17

fraction 1
2

5
16

9
32

11
64

21
128

33
256

60
512

97
1024

177
2048

304
4096

556
8192

974
16384

1576
32768

2763
65536

suggests that an analysis will never be complete.

Moreover, the periods of the pearl-strings appear to become arbitrarily long.

A11 (21). Schuhstrings is the same as D.U.D.E.N.E.Y, except that a deduction

of zero is also allowed, but cannot be immediately repeated (WW, 523–524). In

Winning Ways it was stated that it was not known whether there is any Schuh-

string game in which three or more strings terminate simultaneously. Kevin Saff

has found three such strings (when the maximum deduction is Y D 3430, the

three strings of multiples of 2793, 3059, 3381 terminate simultaneously) and he

conjectures that there can be arbitrarily many such simultaneous terminations.

A12 (22). Analyze Dude, i.e., unbounded D.U.D.E.N.E.Y, or Nim in which you

are not allowed to repeat your opponent’s last move.

Let Œh1; h2; : : : ; hk I m�, hi � hiC1, be the game with heaps of size h1 through

hk , where m is the move just made and m D 0 denotes a starting position. Then

[4], for k D 1 the P-positions are Œ.2s C1/22j I .2s C1/22j �; for k D 2 they are

Œ.2s C1/22j ; .2s C1/22j I 1�; and for k � 3 the heap sizes are arbitrary, the only

condition being that the previous move was 1. The nim-values do not seem to

show an easily described pattern.

A13. Nim with pass. David Gale would like to see an analysis of Nim played

with the option of a single pass by either of the players, which may be made

at any time up to the penultimate move. It may not be made at the end of the

game. Once a player has passed, the game is as in ordinary Nim. The game

ends when all heaps have vanished.

A14. Games with a Muller twist. In such games, each player specifies a

condition on the set of options available to her opponent on his next move.
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In Odd-or-Even Nim, for example, each player specifies the parity of the

opponent’s next move. This game was analyzed by Smith and Stănică [2002],

who propose several other such games which are still open (see also Gavel and

Strimling [2004]).

The game of Blocking Nim proceeds in exactly the same way as ordinary Nim

with N heaps, except that before a given player takes his turn, his opponent is

allowed to announce a block, .a1; : : : ; aN /; i.e., for each pile of counters, he

has the option of specifying a positive number of counters which may not be

removed from that pile. Flammenkamp, Holshouser and Reiter [2003, 2004]

give the P-positions for three-heap Blocking Nim with an incomplete block

containing only one number, and ask for an analysis of this game with a block

on just two heaps, or on all three. There are corresponding questions for games

with more than three heaps.

A15 (13). Misère analysis has been revolutionized by Thane Plambeck and

Aaron Siegel with their concept of the misère quotient of a game [13], though

the number of unsolved problems continues to increase.

Let A be some set of games played under misère rules. Typically, A is the

set of positions that arise in a particular game, such as Dawson’s Chess. Games

H; K 2 A are said to be equivalent, denoted by H � K, if H C X and K C X

have the same outcome for all games X 2 A. The relation � is an equivalence

relation, and a set of representatives, one from each equivalence class, forms the

misère quotient, QDA=�. A quotient map ˚ WA!Q is defined, for G 2A,

by ˚ W G D ŒG��.

Plambeck and Siegel ask the specific questions:

(1) The misère quotient of �07 (Dawson’s Kayles) has order 638 at heap size

33. Is it infinite at heap size 34? Even if the misère quotient is infinite at

heap 34 then, by Redei’s theorem [6, p. 142], [14], it must be isomorphic to

a finitely-presented commutative monoid. Call this monoid D34. Exhibit a

monoid presentation of D34, and having done that, exhibit D35, D36, etc, and

explain what is going on in general. Given a set of games A, describe an algo-

rithm to determine whether the misère quotient of A is infinite. Much harder:

if the quotient is infinite, give an algorithm to compute a presentation for it.

(2) A quotient map ˚ WA!Q is said to be faithful if, whenever ˚.G/ D ˚.H /,

then G and H have the same normal-play Grundy value. Is every quotient map

faithful?

(3) Let .Q;P/ be a quotient and S a maximal subgroup of Q. Must S \P be

nonempty? (Note: it’s easy to get a “yes” answer in the special case when S is

the kernel)
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(4) Give complete misère analyses for any of the (normal-play periodic) octal

games that show “algebraic-periodicity” in misère play. Some examples are �54,

�261, �355, �357, �516 and �724. Give a precise definition of algebraic periodic-

ity and describe an algorithm for detecting and generalizing it. This is a huge

question: if such an algorithm exists, it would likely instantly give solutions to

at least a half-dozen unsolved 2- and 3-digit octals.

(5) Extend the classification of misère quotients. We have preliminary results

on the number of quotients of order n � 18 but believe that this can be pushed

far higher.

(6) Exhibit a misère quotient with a period-5 element. Same question for period

8, etc. We’ve detected quotients with elements of periods 1, 2, 3, 4, 6, and

infinity, and we conjecture that there is no restriction on the periods of quotient

elements.

(7) In the flavor of both (5) and (6): What is the smallest quotient containing a

period 4 (or 3 or 6) element?

Plambeck also offers prizes of US$500.00 for a complete analysis of Daw-

son’s Chess, �137 (alias Dawson’s Kayles, �07); US$200.00 for the “wild qua-

ternary game”, �3102; and US$25.00 each for �3122, �3123 and �3312.

The website http://www.miseregames.org contains thousands of misère quo-

tients for octal games.

Siegel notes that Dawson first proposed his problem in 1935, making it per-

haps the oldest open problem in combinatorial game theory. [Michael Albert

offers the alternative “Is chess a first player win?”] It may be of historical interest

to note that Dawson showed the problem to one of the present authors around

1947. Fortunately, he forgot that Dawson proposed it as a losing game, was able

to analyze the normal play version, rediscover the Sprague–Grundy theory, and

get Conway interested in games.

B. Pushing and placing pieces

B1 (5). The game of Go is of particular interest, partly because of the loopiness

induced by the “ko” rule, and many problems involve general theory: see E4

and E5.

Elwyn writes:

I attach one region that has been studied intermittently over the past several

years. The region occurs in the southeast corner of the board (Figure 3).

At move 85 Black takes the ko at L6. What then is the temperature at

N4 ? This position is copied from the game Jiang and Rui played at MSRI

in July 2000. In 2001, Bill Spight and I worked out a purported solu-

tion by hand, assuming either Black komaster or White komaster. I’ve
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A B C D E F G H J K L M N

1

2

3

4

5

6

7

8

9

10

11

12

13

A B C D E F G H J K L M N

Figure 3. Jiang v. Rui, MSRI, July, 2000.

recently been trying to get that rather complicated solution confirmed by

GoExplorer, which would then presumably also be able to calculate the

dogmatic solution. I’ve been actively pursuing this off and on for the past

couple weeks, and haven’t gotten there yet.

Elwyn also writes:

Nakamura has shown [this volume] how capturing races in Go can be an-

alyzed by treating liberties as combinatorial games. Like atomic weights,

when the values are integers, each player’s best move reduces his oppo-

nent’s resources by one. The similarities between atomic weights and

Nakamura’s liberties are striking.

Theoretical problem: Either find a common formulation which includes much

or all of atomic weight theory and Nakamura’s theory of liberties, OR find some

significant differences.

Important practical applied problem: Extend Nakamura’s theory to include

other complications which often arise in Go, such as simple kos, either internal

and/or external.

B2. A simpler game involving kos is Woodpush (see LIP, pp. 214, 275). This

is played on a finite strip of squares. Each square is empty or occupied by a

black or white piece. A piece of the current player’s color retreats: Left retreats

to the left and Right to the right — to the next empty square, or off the board if

there is no empty square; except, if there is a contiguous string containing an

opponent’s piece then it can move in the opposite direction pushing the string

ahead of it. Pieces can be moved off the end of the strip. Immediate repetition
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of a global board positions is not allowed. A “ko” threat must be played first.

For example

Left Right Left Right

LRR˜ ! ˜LRR ! LR˜R ! ko-threat ! R˜˜R

Note that Right’s first move to LRR˜ is illegal because it repeats the immedi-

ately prior board position and Left’s second move to ˜LRR is also illegal so

he must play a ko-threat. Also note that in ˜LRR˜, Right never has to play

a ko-threat since he can always push with either of his two pieces — with Left

moving first,

Left Right

˜LRR˜ ! ˜˜LRR ! ˜LR˜R

! ko-threat ! Right answers ko-threat

! ˜˜LRR ! ˜LRR˜

Berlekamp, Plambeck, Ottaway, Aaron Siegel and Spight (work in progress) use

top-down thermography to analyze the three piece positions. What about more

pieces?

B3 (40). Chess. Noam Elkies [2002] has examined Dawson’s Chess, but played

under usual Chess rules, so that capture is not obligatory.

He would still welcome progress with his conjecture that the value �k occurs

for all k in (ordinary Chess) pawn endings on sufficiently large chessboards.

Thea van Roode has suggested Impartial Chess, in which the players may

make moves of either color. Checks need not be responded to and Kings may

be captured. The winner could be the first to promote a pawn.

B4 (30). Low and Stamp [2006] have given a strategy in which White wins the

King and Rook vs. King problem within an 11 � 9 region.

B5. Nonattacking Queens. Noon and Van Brummelen [2006] alternately place

queens on an n � n chessboard so that no queen attacks another. The winner is

the last queen placer. They give nim-values for boards of sizes 1 � n � 10 as

1121312310 and ask for the values of larger boards.

B6 (55). Amazons. Martin Müller [11] has shown that the 5 � 5 game is a first

player win and asks about the 6 � 6 game.

B7. Conway’s Philosopher’s Football, or Phutball, is usually played on a

Go board with positions .i; j /, �9 � i; j � 9 and the ball starting at (0,0).

For the rules, see WW, pp.752–755. The game is loopy (see E5 below), and

Nowakowski, Ottaway and Siegel (see [17]) discovered positions that contained

tame cycles, i.e., cycles with only two strings, one each of Left and Right moves.

Aaron Siegel asks if there are positions in such combinatorial games which are
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stoppers but contain a wild cycle, i.e., one which contains more than one alter-

nation between Left and Right moves. Demaine, Demaine and Eppstein [2002]

show that it is NP-complete to decide if a player can win on the next move.

Phlag Phutball is a variant played on an n�n board with the initial position of

the ball at .0; 0/ except that now only the ball may occupy the positions .2i; 2j /

with both coordinates even. This eliminates “tackling”, and is an extension of 1-

dimensional Oddish Phutball, analyzed in Grossman and Nowakowski [2002].

The .3; 2nC1/ board (i.e. .i; j /, i D0; 1; 2 and �n�j �n) is already interesting

and requires a different strategy from that appropriate to Oddish Phutball.

B8. Hex. (LIP, pp. 264–265) Nash’s strategy stealing argument shows that Hex

is a first player win but few quantitative results are known.

Garikai Campbell [2004] asks:

(1) For each n, what is the shortest path on an n � n board with which the

first player can guarantee a win?

(2) What is the least number of moves in which the first player can guarantee

a win?

B9 (54). Fox and Geese. Berlekamp and Siegel [17, Chapter 2] and WW

pp.669–710, “analysed the game fairly completely, relying in part on results

obtained using CGSuite.” On p. 710 of WW the following open problems are

given.

1. Define a position’s span as the maximum occupied row-rank minus its

minimum occupied row-rank. Then quantify and prove an assertion such as

the following: If the backfield is sufficiently large, and the span is sufficiently

large, and if the separation is sufficiently small, and if the Fox is neither already

trapped in a daggered position along the side of the board, nor immediately

about to be so trapped, then the Fox can escape and the value is off.

2. Show that any formation of three Geese near the centre of a very tall board

has a “critical rank” with the following property: If the northern Goose is far

above, and the Fox is far below, then the value of the position is either positive,

HOT, or off, according as the northern Goose is closer, equidistant, or further

from the critical rank than the Fox.

3. Welton asks what happens if the Fox is empowered to retreat like a Bishop,

going back several squares at a time in a straight line ? More generally, suppose

his straight-line retreating moves are confined to some specific set of sizes. Does

f1,3g, which maintains parity, give him more or less advantage than f1,2g ?

4. What happens if the number of Geese and board widths are changed ?

In Aaron Siegel’s thesis there are several other questions:

5. In the critical position, with Geese at [we use the algebraic Chess notation

of a, b, c, d, . . . for the files and 1, 2, 3, . . . , n for the ranks] (b,n), (d,n), (e,n�1),
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(g,n�1), and Fox at (c,n�1), which has value 1C2�.n�8/ on an n�8 board with

n � 8 in the usual game, is the value �2nC11 for all n � 6 when played with

“Ceylonese rules” ? (Fox allowed two moves at each turn.)

6. On an n � 4 board with n � 5 and Geese at (b,n) and (c,n�1) do all Fox

positions have value over ? With the Geese on (b,n) and (d,n) are only other

values 0 at (c,n�1) and foverj0g at (b,n�2) and (d,n�2) ?

7. On an n� 6 board with n � 8 and Geese at (b,n), (d,n) and (e,n�1) do the

positions (a,n�2kC1), (c,n�2kC1), (e,n�2kC1), all have value 0, and those

at (b,n�2k), (d,n�2k), (f,n�2k) all have value Star?̇ And if the Geese are at

(b,n), (d,n) and (f,n) are the zeroes and Stars interchanged ?

B10. Hare and Hounds. Aaron Siegel asks if the positions of increasing board

length shown in Figure 4, on the left, are increasingly hot, and, on the right, have

arbitrarily large negative atomic weight. He also conjectures that the starting

position on a 6nC5 � 3 board, for n > 0, has value

�.n�1/ C

�
b; c j0k0



0



0 : : :





0

�

Figure 4. Sequences of Hare and Hounds positions.
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where there are 2n C 4 zeroes and slashes and

b D
˚
0; a



0; f0joffg
	
; c D

˚
0



 #!2�j0k0
	
; a D f0; #!2� j 0; #!2�g:

B11 (4). Extend the analysis of Domineering (WW, pp. 119–122, 138–142;

LIP pp. 1–7, 260).

[Left and Right take turns to place dominoes on a checker-board. Left ori-

ents her dominoes North-South and Right orients his East-West. Each domino

exactly covers two squares of the board and no two dominoes overlap. A player

unable to play loses.]

See Berlekamp [1988] and the second edition of WW, 138–142, where some

new values are given. For example David Wolfe and Dan Calistrate have found

the values (to within ‘-ish’, i.e., infinitesimally shifted) of 4 � 8, 5 � 6 and 6 � 6

boards. The value for a 5 � 7 board is

�
3
2

ˇ̌
ˇ̌˚5

4
j�1

2

	
;
n

3
2

ˇ̌
ˇ�1

2
;
˚

3
2
j�1

	


�1j�3
o 



 �1;

˚
3
2

ˇ̌
�1

2



�1
	ˇ̌
ˇ̌�3

�
:

Lachmann, Moore and Rapaport [2002] discovered who wins on rectangular,

toroidal and cylindrical boards of widths 2, 3, 5 and 7, but do not find their

values. Bullock [3, p. 84] showed that 19�4, 21�4, 14�6 and 10�8 are wins

for Left and that 10 � 10 is a first player win.

Berlekamp notes that the value of a 2�n board, for n even, is only known to

within“ish”, and that there are problems on 3 � n and 4 � n boards that are still

open.

Berlekamp asks, as a hard problem, to characterize all hot Domineering po-

sitions to within “ish”. As a possibly easier problem he asks for a Domineering

position with a new temperature, i.e., one not occurring in Table 1 on GONC,

p. 477. Gabriel Drummond-Cole (2002) found values with temperatures be-

tween 1.5 and 2. Figure 5 shows a position of value ˙2� and temperature 2.

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

9
>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

L R

Figure 5. A Domineering position of value ˙2�.
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Shankar and Sridharan [2005] have found many Domineering positions with

temperatures other than those shown in Table 1 on p. 477 of GONC. Blanco and

Fraenkel [2] have obtained partial results for the game of Tromineering, played

with trominoes in place of (or, alternatively, in addition to) dominoes.

C. Playing with pencil and paper

C1 (51). Elwyn Berlekamp asks for a complete theory of “Icelandic” 1 � n

Dots-and-Boxes, i.e., with starting position as in Figure 7.

Figure 6. Starting position for “Icelandic” 1 � n Dots-and-Boxes.

See Berlekamp’s book [2000] for more problems about this popular children’s

(and adults’) game and see also WW, pp. 541–584; LIP, pp. 21–28, 260.

C2 (25). Extend the analysis of the Conway–Paterson game of Sprouts in either

the normal or misère form. (WW, pp. 564–568).

[A move joins two spots, or a spot to itself by a curve which doesn’t meet

any other spot or previously drawn curve. When a curve is drawn, a new spot

must be placed on it. The valence of any spot must not exceed three.]

C3 (26). Extend the analysis of Sylver Coinage (WW, 575–597).

[Players alternately name different positive integers, but may not name a

number which is the sum of previously named ones, with repetitions allowed.

Whoever names 1 loses.] Sicherman [2002] contains recent information.

C4 (28). Extend Úlehla’s or Berlekamp’s analysis of von Neumann’s game

from directed forests to directed acyclic graphs (WW, 570–572; Úlehla [1980]).

[Von Neumann’s game, or Hackendot, is played on one or more rooted trees.

The roots induce a direction, towards the root, on each edge. A move is to delete

a node, together with all nodes on the path to the root, and all edges incident

with those nodes. Any remaining subtrees are rooted by the nodes that were

adjacent to deleted nodes.]

C5 (43). Inverting Hackenbush. Thea van Roode has written a thesis [15]

investigating both this and Reversing Hackenbush, but there is plenty of room

for further analysis of both games.

In Inverting Hackenbush, when a player deletes an edge from a component,

the remainder of the component is replanted with the new root being the pruning

point of the deleted edge. In Reversing Hackenbush, the colors of the edges are

all changed after each deletion. Both games are hot, in contrast to Blue-Red
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Hackenbush (WW, pp. 1–7; LIP, pp. 82, 88, 111–112, 212, 266) which is cold,

and Green Hackenbush (WW, pp. 189–196), which is tepid.

C6 (42). Beanstalk and Beans-Don’t-Talk are games invented respectively by

John Isbell and John Conway. See Guy [1986]. Beanstalk is played between

Jack and the Giant. The Giant chooses a positive integer, n0. Then J. and G. play

alternately n1, n2, n3, : : : according to the rule niC1 D ni=2 if ni is even, D

3ni ˙ 1 if ni is odd; i.e. if ni is even, there’s only one option, while if ni is odd

there are just two. The winner is the person moving to 1.

We still don’t know if there are any O-positions (positions of infinite remote-

ness).

C7 (63). The Erdős–Szekeres game [5] (and see Schensted [16]) was intro-

duced by Harary, Sagan and West [1985]. From a deck of cards labelled from 1

through n, Alexander and Bridget alternately choose a card and append it to a

sequence of cards. The game ends when there is an ascending subsequence of

a cards or a descending subsequence of d cards.

The game appears to have a strong bias towards the first player. Albert et al.,

in this volume, show that for d D 2 and a � n the outcome is N or P according

as n is odd or even, and is O (drawn) if n < a. They conjecture that for a � d � 3

and all sufficiently large n, it is N with both normal and misère play, and also

with normal play when played with the rationals in place of the first n integers.

They also suggest investigating the form of the game in which players take

turns naming pairs .i; �i/ subject to the constraint that the chosen values form

part of the graph of some permutation of f1; 2; : : : ; ng.

D. Disturbing and destroying

D1 (27). Extend the analysis of Chomp (WW, 598–599, LIP 19, 46, 216).

David Gale offers $300.00 for the solution of the infinite 3-D version where

the board is the set of all triples .x; y; z/ of non-negative integers, that is, the

lattice points in the positive octant of R
3. The problem is to decide whether it

is a win for the first or second player.

Chomp (Gale [1974]) is equivalent to Divisors (Schuh [1952]). Chomp is

easily solved for 2 � n arrays, Sun [2002], and indeed a recent result by Steven

Byrnes [2003] shows that any poset game eventually displays periodic behavior

if it has two rows, and a fixed finite number of other elements. See also the

Fraenkel poset games mentioned near the end of A2.

Thus, most of the work in recent years has been on three-rowed Chomp. The

situation becomes quite complicated when a third row is added, see Zeilberger

[2001] and Brouwer et al. [2005]. A novel approach (renormalization) is taken

by Friedman and Landsberg in their article in this volume (see also [12]). They
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demonstrate that three-rowed Chomp exhibits certain scaling and self-similarity

patterns similar to chaotic systems. Is there a deterministic proof that there is

a unique winning move from a 3 � n rectangle? The renormalization approach

is based on statistical methods and has caused some controversy and so the

technique seems worthy of further investigation.

Transfinite Chomp has been investigated by Huddleston and Shurman [2002].

An open question is to calculate the nim value of the position ! � 4; they con-

jecture it to be ! �2, but it could be as low as 46, or even uncomputable! Perhaps

the most fascinating open question in Transfinite Chomp is their Stratification

Conjecture, which states that if the number of elements taken in a move is < !i ,

then the change in the nim-value is also < !i .

D2 (33). Subset Take-away. Given a finite set, players alternately choose

proper subsets subject to the rule that once a subset has been chosen no proper

subset can be removed. Last player to move wins.

Many people play the dual, i.e. a nonempty subset must be chosen and no

proper superset of this can be chosen. We discuss this version of the game which

now can be considered a poset game with the sets ordered by inclusion.

The .nI k/ Subset Take-away game is played using all subsets of sizes 1

through k of a n-element set. In the .nI n/ game one has the whole set (i.e.

the set of size n) as an option, so a strategy-stealing argument shows this must

be a first player win.

1. Gale and Neyman [1982], in their original paper on the game, conjectured

that the winning move in the .nI n/ game is to remove just the whole set. This

is equivalent to the statement that the .nI n � 1/ game is a second-player win,

which has been verified only for n � 5.

2. A stronger conjecture states that .nI k/ is a second player win if and only

if k C 1 divides n. This was proved in the original paper only for k D 1 or 2.

See also Fraenkel and Scheinerman [1991].

D3 (39). Sowing or Mancala games. There appears to have been no advance on

the papers mentioned in MGONC, although we feel that this should be a fruitful

field of investigation at several different levels.

D4. Annihilation games. k-Annihilation. Initially place tokens on some of the

vertices of a finite digraph. Denote by �out.u/ the outvalence of a vertex u. A

move consists of removing a token from some vertex u, and “complementing”

t WD min.k; �out.u// (immediate) followers of u, say v1; : : : ; vt : if there is a

token on vj , remove it; if there is no token there, put one on it. The player

making the last move wins. If there is no last move, the outcome is a draw. For

k D 1, there is an O.n6/ algorithm for deciding whether any given position is in

P, N, or O; and for computing an optimal next move in the last 2 cases (Fraenkel
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and Yesha [1982]). Fraenkel asks: Is there a polynomial algorithm for k > 1?

For an application of k-annihilation games to lexicodes, see Fraenkel and Rahat

[2003].

D5. Toppling dominoes (LIP, pp. 110–112, 274) is played with a row of vertical

dominoes each of which is either blue or red. A player topples one of his/her

dominoes to the left or to the right.

David Wolfe asks if all dyadic rationals occur as a unique single row of domi-

noes and if that row is always palindromic (symmetrical).

D6. Hanoi Stick-up is played with the disks of the Towers of Hanoi puzzle,

starting with each disk in a separate stack. A move is to place one stack on top

of another such that the size of the bottom of the first stack is less than the size of

the top of the second; the two stacks then fuse (and) into one. The only relevant

information about a stack are its top and bottom sizes, and it’s often possible

to collapse the labelling of positions: so for instance, starting with 8 disks and

fusing 1and7 and 2and5

we have stacks 0 1 and 7 2 and 5 3 4 6

which can be relabelled 0 1 and 3 1 and 2 1 2 3

in which the legal moves are still the same. John Conway, Alex Fink and others

have found that the P-positions of height � 3 in normal Hanoi Stickup are

exactly those which, after collapsing, are of the form 0a 01b 1c 12d 2e with

min.a C b C c; c C d C e; a C e/ even, except that if a C e � a C b C c and

a C e � c C d C e then both a and e must be even (02 can’t be involved in a

legal move so can be dropped).

They also found the normal and misère outcomes of all positions with up to

six stacks, but there is more to be discovered.

D7 (56). Are there any draws in Beggar-my-Neighbor ? Marc Paulhus showed

that there are no cycles when using a half-deck of two suits, but the problem for

the whole deck (one of Conway’s “anti-Hilbert” problems) is still open.

E. Theory of games

E1 (49). Fraenkel updates Berlekamp’s earlier questions on computational com-

plexity as follows:

Demaine, Demaine and Eppstein [2002] proved that deciding whether a player

can win in a single move in Phutball (WW, pp. 752–755; LIP, p. 212) is NP-

complete. Grossman and Nowakowski [2002] gave constructive partial strate-

gies for 1-dimensional Phutball. Thus, these papers do not show that Phutball

has the required properties.
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Perhaps Nimania (Fraenkel and Nešetřil [1985]) and Multivision (Fraenkel

[1998]) satisfy the requirements. Nimania begins with a single positive integer,

but after a while there is a multiset of positive integers on the table. At move

k, a copy of an existing integer m is selected, and 1 is subtracted from it. If

m D 1, the copy is deleted. Otherwise, k copies of m � 1 are adjoined to the

copy m�1. The player first unable to move loses and the opponent wins. It was

proved: (i) The game terminates. (ii) Player I can win. In Fraenkel, Loebl and

Nešetřil [1988], it was shown that the max number of moves in Nimania is an

Ackermann function, and the min number satisfies 22n�2

� Min.n/ � 22n�1

.

The game is thus intractable simply because of the length of its play. This

is a provable intractability, much stronger than NP-hardness, which is normally

only a conditional intractability. One of the requirements for the tractability of

a game is that a winner can consummate a win in at most O.cn/ moves, where

c > 1 is a constant, and n a sufficiently succinct encoding of the input (this much

is needed for nim on 2 equal heaps of size n).

To consummate a win in Nimania, player I can play randomly most of the

time, but near the end of play, a winning strategy is needed, given explicitly.

Whether or not this is an intricate solution depends on the beholder. But it

seems that it’s of even greater interest to construct a game with a very simple

strategy which still has high complexity!

Also every play of Multivision terminates, the winner can be determined in

linear time, and the winning moves can be computed linearly. But the length of

play can be arbitrarily long. So let’s ask the following: Is there a game which

has

1. simple, playable rules,

2. a simple explicit strategy,

3. length of play at most exponential; and

4. is NP-hard or harder.

Theorem [Tung 1987]. Given a polynomial P .x; y/ 2 ZŒx; y�, the problem of

deciding whether 8x9yŒP .x; y/ D 0� holds over Z�0, is co-NP-complete.

Define the following game of length 2: player I picks x 2 Z�0, player II picks

y 2 Z�0. Player I wins if P .x; y/ ¤ 0, otherwise player II wins. For winning,

player II has only to compute y such that P .x; y/ D 0, given x, and there are

many algorithms for doing so.

Also Jones and Fraenkel [1995] produced games, with small length of play,

which satisfy these conditions.

So we are led to the following reformulation of Berlekamp’s question: Is

there a game which has

1. simple, playable rules,
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2. a finite set of options at every move,

3. a simple explicit strategy,

4. length of play at most exponential;

5. and is NP-hard or harder.

E2. Complexity closure. Aviezri Fraenkel asks: Are there partizan games G1,

G2, G3 such that: (i) G1, G2, G3, G1 CG2, G2 CG3 and all their options have

polynomial-time strategies, (ii) G1 C G3 is NP-hard?

E3. Sums of switch games. David Wolfe considers a sum of games G, each

of the form akbjc or ajbkc where a, b, and c are integers specified in unary. Is

there a polynomial time algorithm to determine who wins in G, or is the problem

NP-hard?

E4 (52). How does one play sums of games with varied overheating operators?

Sentestrat and Top-down thermography (LIP, p. 214):

David Wolfe would like to see a formal proof that sentestrat works, an algo-

rithm for top-down thermography, and conditions for which top-down thermog-

raphy is computationally efficient.

Aaron Siegel asks the following generalized thermography questions.

(1) Show that the Left scaffold of a dogmatic (neutral ko-threat environment;

LIP, p. 215) thermograph is decreasing as function of t. (Note, this is NOT

true for komaster thermographs.) [Dogmatic thermography was invented by

Berlekamp and Spight. See [19] for a good introduction.]

(2) Develop the machinery for computing dogmatic thermographs of double

kos (multiple alternating 2-cycles joined at a single node).

In the same vein as (2):

(3) Develop a temperature theory that applies to all loopy games.

Siegel thinks that (3) is among the most important open problems in combi-

natorial game theory. The temperature theory of Go appears radically different

from the classical combinatorial theory of loopy games (where infinite plays

are draws). It would be a huge step forward if these could be reconciled into a

“grand unified temperature theory”. Problem (2) seems to be the obvious next

step toward (3).

Conway asks for a natural set of conditions under which the mapping G ‘R
�

G is the unique homomorphism that annihilates all infinitesimals.

E5. Loopy games (WW, pp. 334–377; LIP, pp. 213–214) are partizan games

that do not satisfy the ending condition. A stopper is a game that, when played

on its own, has no ultimately alternating, Left and Right, infinite sequence of

legal moves. Aaron Siegel reminds us of WW, 2nd ed., p.369, where the authors

tried hard to prove that every loopy game had stoppers, until Clive Bach found

the Carousel counterexample. Is there an alternative notion of simplest form
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that works for all finite loopy games, and, in particular, for the Carousel? The

simplest form theorem for stoppers is at WW, p.351.

Siegel conjectures that, if Q is an arbitrary cycle of Left and Right moves

that contains at least two moves for each player, and is not strictly alternating,

then there is a stopper consisting of a single cycle that matches Q, together

with various exits to enders, i.e., games which end in a finite, though possibly

unbounded, number of moves. [Note that games normally have Left and Right

playing alternately, but if the game is a sum, then play in one component can

have arbitrary sequences of Left and Right moves, not just alternating ones.]

A long cycle is tame if it alternates just once between Left and Right, other-

wise it is wild. Aaron Siegel writes:

I can produce wild cycles “in the laboratory,” by specifying their game

graphs explicitly. So the question is to detect one “in nature”, i.e., in an

actual game with (reasonably) playable rules such as Phutball [Problem

B7].

Siegel also asks under what conditions does a given infinitesimal have a well-

defined atomic weight, and asks to specify an algorithm to calculate the atomic

weight of an infinitesimal stopper g. The algorithm should succeed whenever

the atomic weight is well-defined, i.e., whenever g can be sandwiched between

loopfree all-smalls of equal atomic weight.

E6 (45). Elwyn Berlekamp asks for the habitat of �2, where �2 D f0; �j0; �g.

Gabriel Drummond-Cole [2005] has found Domineering positions with this

value. See, for example, Figure 7, which also shows a Go position, found by

Nakamura and Berlekamp [2003], whose chilled value is �2. The Black and

White groups are both connected to life via unshown connections emanating

upwards from the second row. Either player can move to � by placing a stone

at E2, or to 0 by going to E1.

¨ ¨

¨

¨ ¨

A B C D E F G H

1

2

3

Figure 7. A Domineering position and a Chilled Go position of value �2.

E7. Partial ordering of games. David Wolfe lets g.n/ be the number of games

born by day n, notes that an upper bound is given by g.nC1/ � g.n/C2g.n/C2,



UNSOLVED PROBLEMS IN COMBINATORIAL GAMES 487

and a lower bound for each ˛ < 0 is given by g.nC1/ � 2g.n/˛

, for n sufficiently

large, and asks us to tighten these bounds.

He also asks what group is generated by the all-small games (or — much

harder — of all games) born by day 3. Describe the partial order of games born

by day 3, identifying all the largest “hypercubes” (Boolean sublattices) and how

they are interconnected. These questions have been answered for day 2; see

Wolfe’s article “On day n” in this volume.

Berlekamp suggests other possible definitions for games born by day n, Gn,

depending on how one defines G0. Our definition is 0-based, as G0 D f0g. Other

natural definitions are integer-based (where G0 are integers) or number-based.

These two alternatives do not form a lattice, for if G1 and G2 are born by day

k, then the games

Hn WD
n
G1; G2




 G1; fG2j�ng
o

form a decreasing sequence of games born by day k C 2 exceeding any game

G � G1; G2, and the day k C 2 join of G1 and G2 cannot exist. What is the

structure of the partial order given by one of these alternative definitions of

birthday?

The set of all short games does not form a lattice, but Calistrate, Paulhus

and Wolfe [2002] have shown that the games born by day n form a distributive

lattice Ln under the usual partial order. They ask for a description of the exact

structure of L3. Siegel describes L4 as “truly gigantic and exceedingly difficult

to penetrate” but suggests that it may be possible to find its dimension and the

maximum longitude, long4.G/, of a game in L4, which he defines as

longn.G/ D rankn.G _ G�/ � rankn.G/

where rankn.G/ is the rank of G in Ln and G� is the companion of G,

G� D

8
ˆ̂<
ˆ̂:

� ifG D 0

f0; .GL/� j .GR/�gif G > 0

f.GL/� j 0; .GR/�gif G < 0

f.GL/� j .GR/�g if G k 0

The set of all-small games does not form a lattice, but Siegel forms a lattice

L0
n by adjoining least and greatest elements 4 and 5 and asks: do the elements

of L0
n have an intrinsic “handedness” that distinguishes, say, .n�1/�" from .n�1/�"

C � ?

E8. Aaron Siegel asks, given a group or monoid, K, of games, to specify a

technique for calculating the simplest game in each K-equivalence class. He

notes that some restriction on K might be needed; for example, K might be the

monoid of games absorbed by a given idempotent.
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E9. Siegel also would like to investigate how search methods might be integrated

with a canonical-form engine.

E10 (9). Develop a misère theory for unions of partizan games (WW, p. 312).

E11. Four-outcome-games. Guy has given a brute force analysis of a par-

ity subtraction game [9] which didn’t allow the use of Sprague–Grundy theory

because it wasn’t impartial, nor the Conway theory, because it was not last-

player-winning. Is there a class of games in which there are four outcomes,

N ext, Previous, Left and Right, and for which a general theory can be given?
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