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Basic zeta functions
and some applications in physics

KLAUS KIRSTEN

1. Introduction

It is the aim of these lectures to introduce some basic zeta functions and
their uses in the areas of the Casimir effect and Bose–Einstein condensation. A
brief introduction into these areas is given in the respective sections; for recent
monographs on these topics see [8; 22; 33; 34; 57; 67; 68; 71; 72]. We will con-
sider exclusively spectral zeta functions, that is, zeta functions arising from the
eigenvalue spectrum of suitable differential operators. Applications like those
in number theory [3; 4; 23; 79] will not be considered in this contribution.

There is a set of technical tools that are at the very heart of understanding
analytical properties of essentially every spectral zeta function. Those tools are
introduced in Section 2 using the well-studied examples of the Hurwitz [54],
Epstein [38; 39] and Barnes zeta function [5; 6]. In Section 3 it is explained
how these different examples can all be thought of as being generated by the
same mechanism, namely they all result from eigenvalues of suitable (partial)
differential operators. It is this relation with partial differential operators that
provides the motivation for analyzing the zeta functions considered in these
lectures. Motivations come for example from the questions “Can one hear the
shape of a drum?”, “What does the Casimir effect know about a boundary?”,
and “What does a Bose gas know about its container?” The first two questions
are considered in detail in Section 4. The last question is examined in Section 5,
where we will see how zeta functions can be used to analyze the phenomenon of
Bose–Einstein condensation. Section 6 will point towards recent developments
for the analysis of spectral zeta functions and their applications.
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2. Some basic zeta functions

In this section we will construct analytical continuations of basic zeta func-
tions. From these we will determine the meromorphic structure, residues at
singular points and special function values.

2.1. Hurwitz zeta function. We start by considering a generalization of the
Riemann zeta function

�R.s/D
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nD1

1

ns
: (2-1)

DEFINITION 2.1. Let s 2 C and 0< a< 1. Then for Re s > 1 the Hurwitz zeta
function is defined by
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:

Clearly, �H .s; 1/D �R.s/. Results for aD 1C b > 1 follow by observing
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In order to determine properties of the Hurwitz zeta function, one strategy is to
express it in term of ’known’ zeta functions like the Riemann zeta function.

THEOREM 2.2. For 0< a< 1 we have
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PROOF. Note that for jzj< 1 we have the binomial expansion
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From here it is seen that sD1 is the only pole of �H .s; a/with Res �H .1; a/D1.
In determining certain function values of �H .s; a/ the following polynomials

will turn out to be useful.

DEFINITION 2.3. For x 2C we define the Bernoulli polynomials Bn.x/ by the
equation

zexz

ez � 1
D

1X
nD0

Bn.x/

n!
zn; where jzj< 2�: (2-2)

Examples are B0.x/ D 1 and B1.x/ D x � 1
2

. The numbers Bn.0/ are called
Bernoulli numbers and are denoted by Bn. Thus

z

ez � 1
D

1X
nD0

Bn

n!
zn; where jzj< 2�: (2-3)

LEMMA 2.4. The Bernoulli polynomials satisfy

(1) Bn.x/D
Pn

kD0

�
n
k

�
Bkxn�k ;

(2) Bn.xC 1/�Bn.x/D nxn�1 if n� 1;

(3) .�1/nBn.�x/D Bn.x/C nxn�1;

(4) Bn.1�x/D .�1/nBn.x/:

EXERCISE 1. Use relations (2-2) and (2-3) to show assertions (1)–(4).

We now establish elementary properties of �H .s; a/.

THEOREM 2.5. For Re s > 1 we have

�H .s; a/D
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0
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dt: (2-4)

Furthermore, for k 2 N0 we have
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BkC1.a/

kC 1
:

PROOF. We use the definition of the gamma function and have
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This shows the first part of the theorem,
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Furthermore we have

�H .s; a/ D
1
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The integral in the second term is an entire function of s. Given that the gamma
function has singularities at s D �k, k 2 N0, only the first term can possibly
contribute to the properties �H .�k; a/ considered. We continue and write

1
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which provides the analytical continuation of the integral to the complex plane.
From here we observe again

Res �H .1; a/ D B0.a/D 1:

Furthermore the second part of the theorem follows:
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The disadvantage of the representation (2-4) is that it is valid only for Re s > 1.
This can be improved by using a complex contour integral representation. The
starting point is the following representation for the gamma function [46].

LEMMA 2.6. For z … Z we have

� .z/D�
1

2i sin.�z/

Z
C
.�t/z�1e�tdt;

where the anticlockwise contour C consists of a circle C3 of radius " < 2� and
straight lines C1, respectively C2, just above, respectively just below, the x-axis;
see Figure 1.

PROOF. Assume Re z > 1. As the integrand remains bounded along C3, no
contributions will result as "! 0. Along C1 and C2 we parametrize as given in
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Figure 1. Contour in Lemma 2.6.

Figure 1 and thus for Re z > 1

lim
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Z
C
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0
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which implies the assertion by analytical continuation. �

This representation for the gamma function can be used to show the following
result for the Hurwitz zeta function.

THEOREM 2.7. For s 2 C, s … N, we have

�H .s; a/D�
� .1� s/

2� i

Z
C

.�t/s�1e�ta

1� e�t
dt;

with the contour C given in Figure 1.

PROOF. We follow the previous calculation to noteZ
C
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1� e�t
dt D�2i sin.�s/

Z 1
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t s�1 e�ta
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and we use [46]

sin.�s/� .s/D
�

� .1� s/

to conclude the assertion. �
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From here, properties previously given can be easily derived. For s 2 Z the
integrand does not have a branch cut and the integral can easily be evaluated
using the residue theorem. The only possible singularity enclosed is at t D 0

and to read off the residue we use the expansion

�.�t/s�2 .�t/e�ta

e�t � 1
D�.�t/s�2

1X
nD0

Bn.a/

n!
.�t/n:

2.2. Barnes zeta function. The Barnes zeta function is a multidimensional
generalization of the Hurwitz zeta function.

DEFINITION 2.8. Let s 2 C with Re s > d and c 2 RC, Er 2 Rd
C. The Barnes

zeta function is defined as

�B.s; cjEr/D
X
Em2Nd
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.cC Em � Er/s
: (2-6)

If c D 0 it is understood that the summation ranges over Em¤ E0.

For Er DE1d WD .1; 1; : : : ; 1; 1/, the Barnes zeta function can be expanded in terms
of the Hurwitz zeta function.

EXAMPLE 2.9. Consider d D 2 and Er D .1; 1/. Then
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EXAMPLE 2.10. Let e
.d/

k
be the number of possibilities to write an integer k as

a sum over d non-negative integers. We then can write
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On the other side, using the binomial expansion

1

.1�x/d
D

1X
kD0

� .d C k/

� .d/k!
xk
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1X
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.d C k � 1/!
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xk
D

1X
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�
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This shows

�B.s; cjE1d /D

1X
kD0

�
d C k � 1

d � 1

�
1

.cC k/s
;

which, once the dimension d is specified, allows to write the Barnes zeta func-
tion as a sum of Hurwitz zeta functions along the lines in Example 2.9.

It is possible to obtain similar formulas for ri rational numbers [27; 28].
For some properties of the Barnes zeta function the use of complex contour

integral representations turns out to be the best strategy.

THEOREM 2.11. We have the following representations:

�B.s; cjEr/ D
1

� .s/

Z 1
0

t s�1 e�ctQd
jD1 .1� e�rj t /

dt

D �
� .1� s/

2� i

Z
C
.�t/s�1 e�ctQd

jD1 .1� e�rj t /
dt;

with the contour C given in Figure 1.

EXERCISE 2. Use equation (2-5), and again Lemma 2.6, to prove Theorem 2.11.

The residues of the Barnes zeta function and its values at non-positive integers
are best described using generalized Bernoulli polynomials [70].

DEFINITION 2.12. We define the generalized Bernoulli polynomials B
.d/
n .xjEr/

by the equation

e�xtQd
jD1 .1� e�rj t /

D
.�1/dQd

jD1 rj

1X
nD0

.�t/n�d

n!
B.d/n .xjEr/:

Using Definition 2.12 in Theorem 2.11 one immediately obtains the following
properties of the Barnes zeta function.

THEOREM 2.13.

(1) Res �B.z; cjEr/D
.�1/dCz

.z� 1/!.d � z/!
Qd

jD1 rj
B
.d/

d�z
.cjEr/; z D 1; 2; : : : ; d;

(2) �B.�n; cjEr/D
.�1/dn!

.d C n/!
Qd

jD1 rj
B
.d/

dCn
.cjEr/:
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EXERCISE 3. Use the first representation of �B.s; cjEr/ in Theorem 2.11 together
with Definition 2.12 to show Theorem 2.13. Follow the steps of the proof in
Theorem 2.5.

EXERCISE 4. Use the second representation of �B.s; cjEr/ in Theorem 2.11 to-
gether with Definition 2.12 and the residue theorem to show Theorem 2.13.

2.3. Epstein zeta function. We now consider zeta functions associated with
sums of squares of integers [38; 39].

DEFINITION 2.14. Let s 2C with Re s> d=2 and c 2RC, Er 2Rd
C: The Epstein

zeta function is defined as

�E.s; cjEr/D
X
Em2Zd

1

.cC r1m2
1
C r2m2

2
C � � �C rdm2

d
/s
:

If c D 0 it is understood that the summation ranges over Em¤ E0.

LEMMA 2.15. For Re s > d=2, we have

�E.s; cjEr/D
1

� .s/

Z 1
0

t s�1
X
Em2Zd

e�t.r1m2
1
C���Crd m2

d
Cc/dt:

PROOF. This follows as before from property (2-5) of the gamma function. �

As we have noted in the proof of Theorem 2.5, it is the small-t behavior of
the integrand that determines residues of the zeta function and special function
values. The way the integrand is written in Lemma 2.15 this t ! 0 behavior is
not easily read off. A suitable representation is obtained by using the Poisson
resummation [53].

LEMMA 2.16. Let r 2 C with Re r > 0 and t 2 RC, then
1X

lD�1

e�trl2

D

r
�

t r

1X
lD�1

e�
�2

r t
l2

:

EXERCISE 5. If F.x/ is continuous such thatZ 1
�1

jF.x/jdx <1;

then we define its Fourier transform by

OF .u/D

Z 1
�1

F.x/e�2�ixu dx:

If Z 1
�1

j OF .u/j du<1;
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then we have the Fourier inversion formula

F.x/D

Z 1
�1

OF .u/ e2�ixu du:

Show the following Theorem: Let F 2L1.R/. Suppose that the seriesX
n2Z

F.nC v/

converges absolutely and uniformly in v, and thatX
m2Z

j OF .m/j<1:

Then X
n2Z

F.nC v/D
X
n2Z

OF .n/e2�inv:

Hint: Note that
G.v/D

X
n2Z

F.nC v/

is a function of v of period 1.

EXERCISE 6. Apply Exercise 5 with a suitable function F.x/ to show the Pois-
son resummation formula Lemma 2.16.

In Lemma 2.16 it is clearly seen that the only term on the right hand side that
is not exponentially damped as t ! 0 comes from the l D 0 term. Using the
resummation formula for all d sums in Lemma 2.15, after resumming the EmDE0
term contributes

�
E0
E .s; cjEr/ D

1

� .s/

Z 1
0

t s�1 �d=2

td=2pr1 � � � rd

e�ctdt

D
�d=2

p
r1 � � � rd � .s/

Z 1
0

t s�d=2�1e�ctdt D
�d=2

p
r1 � � � rd

�
�
s� d

2

�
� .s/cs�d=2

:

All other contributions after resummation are exponentially damped as t ! 0

and can be given in terms of modified Bessel functions [46].

DEFINITION 2.17. Let Re z2 > 0. We define the modified Bessel function
K�.z/ by

K�.z/D
1

2

�z

2

�� Z 1
0

e
�t� z2

4t t���1dt:

Performing the resummation in Lemma 2.15 according to Lemma 2.16, with
Definition 2.17 one obtains the following representation of the Epstein zeta
function valid in the whole complex plane [34; 78].
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THEOREM 2.18. We have

�E.s; cjEr/D
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p
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�
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c
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�
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d
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d
2 /

K d
2
�s

�
2�
p

c

�
n2

1

r1

C � � �C
n2

d

rd

�1
2
�
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EXERCISE 7. Show Theorem 2.18 along the lines indicated.

From Definition 2.17 it is clear that the Bessel function is exponentially damped
for large Re z2. As a result the representation above is numerically very effective
as long as the argument of Kd=2�s is large. The terms involving the Bessel
functions are analytic for all values of s, the first term contains poles. As an
immediate consequence of the properties of the gamma function one can show
the following properties of the Epstein zeta function.

THEOREM 2.19. For d even, �E.s; cjEr/ has poles at sD d
2
; d

2
�1; : : : ; 1, whereas

for d odd they are located at sD d
2
; d

2
�1; : : : ; 1

2
;�2lC1

2
, l 2N0. Furthermore,

Res �E.j ; cjEr/ D
.�1/

d
2
Cj�

j
2 c

d
2
�j

p
r1 � � � rd � .j /�

�
d
2
� j C 1

� ;

�E.�p; cjEr/ D

8̂̂<̂
:̂

0 for d odd;
.�1/

d
2 p!�

d
2 c

d
2
Cp

p
r1 � � � rd �

�
d
2
CpC 1

� for d even:

EXERCISE 8. Use Theorem 2.18 and properties of the gamma function to show
Theorem 2.19.

This concludes the list of examples for zeta functions to be considered in what
follows. A natural question is what the motivations are to consider these zeta
functions. Before we describe a few aspects relating to this question let us
mention how all these zeta functions, and many others, result from a common
principle.

3. Boundary value problems and associated zeta functions

In this section we explain how the considered zeta functions, and others, are
all associated with eigenvalue problems of (partial) differential operators.
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EXAMPLE 3.1. Let M D Œ0;L� be some interval and consider the Dirichlet
boundary value problem.

P�n.x/ WD �
@2

@x2
�n.x/D �n�n.x/; �n.0/D �n.L/D 0:

The solutions to the boundary value problem have the general form

�n.x/DA sin.
p
�nx/CB cos.

p
�nx/:

Imposing the Dirichlet boundary condition shows we need

�n.0/D B D 0; �n.L/DA sin.L
p
�n/D 0;

which implies

�n D
n2�2

L2
; n 2 N:

We only need to consider n 2 N because non-positive integers lead to linearly
dependent eigenfunctions. The zeta function �P .s/ associated with this bound-
ary value problem is defined to be the sum over all eigenvalues raised to the
power .�s/, namely

�P .s/D

1X
nD1

��s
n ; Re s > 1

2
:

So here the associated zeta function is a multiple of the zeta function of Riemann,

�P .s/D

1X
nD1

�n�

L

��2s

D

�
L

�

�2s
�R.2s/:

EXAMPLE 3.2. The previous example can be easily generalized to higher di-
mensions. We consider explicitly two dimensions; for the higher dimensional
situation see [1]. Let M D f.x;y/jx 2 Œ0;L1�;y 2 Œ0;L2�g: We consider the
boundary value problem with Dirichlet boundary conditions on M , that is

P�n;m.x;y/ D

�
�
@2

@x2
�
@2

@y2
C c

�
�n;m.x;y/D �n;m�n;m.x;y/;

�n;m.0;y/ D �n;m.L1;y/D �n;m.x; 0/D �n;m.x;L2/D 0:

Using the process of separation of variables, eigenfunctions are seen to be

�n;m.x;y/DA sin
�

n�x

L1

�
sin
�

m�y

L2

�
;

with the eigenvalues

�n;m D

�
n�

L1

�2

C

�
m�

L2

�2

C c; n;m 2 N:
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The associated zeta function therefore is

�P .s/D

1X
nD1

1X
mD1

��
n�

L1

�2

C

�
m�

L2

�2

C c

��s

;

which can be expressed in terms of the Epstein zeta function given in Definition
2.14 as follows:

�P .s/D
1
4
�E

�
s; c

ˇ̌̌ ��
�

L1

�2
;
�
�

L2

�2��
�

1
4
�E

�
s; c

ˇ̌̌ �
�

L1

�2�
�

1
4
�E

�
s; c

ˇ̌̌ �
�

L2

�2�
C

1
4
c�s: (3-1)

EXAMPLE 3.3. Similarly one can consider periodic boundary conditions instead
of Dirichlet boundary conditions, this means the manifold M is given by M D

S1 �S1. In this case the eigenfunctions have to satisfy

�n;m.0;y/ D �n;m.L1;y/;
@

@x
�n;m.0;y/D

@

@x
�n;m.L1;y/;

�n;m.x; 0/ D �n;m.x;L2/;
@

@y
�n;m.x; 0/D

@

@y
�n;m.x;L2/:

This shows that

�n;m.x;y/DAei2�nx=L1 ei2�my=L2 ;

which implies for the eigenvalues

�n;m D

�
2�n

L1

�2
C

�
2�m

L2

�2
C c; .n;m/ 2 Z2:

The associated zeta function therefore is

�P .s/D �E

�
s; cjEr

�
; Er D

��2�

L1

�2
;
�2�

L2

�2�
:

Clearly, in d dimensions one finds

�P .s/D �E

�
s; cjEr

�
; Er D

��2�

L1

�2
; : : : ;

� 2�

Ld

�2�
:

EXAMPLE 3.4. As a final example we consider the Schrödinger equation of
atoms in a harmonic oscillator potential. In this case M D R3, and the eigen-
value equation reads
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�
„2

2m
�C

m

2

�
!1x2

C!2y2
C!3z2

��
�n1;n2;n3

.x;y; z/

D �n1;n2;n3
�n1;n2;n3

.x;y; z/:

This differential equation is augmented by the condition that eigenfunctions
must be square integrable, �n1;n2;n3

.x;y; z/ 2 L2.R3/: As is well known, this
gives the eigenvalues

�n1;n2;n3
D „!1

�
n1C

1
2

�
C„!2

�
n2C

1
2

�
C„!3

�
n3C

1
2

�
;

for .n1; n2; n3/ 2 N3
0
. This clearly leads to the Barnes zeta function

�P .s/D �B.s; cjEr/;

where

c D 1
2
„.!1C!2C!3/; Er D „ .!1; !2; !3/ :

If M D R is chosen the Hurwitz zeta function results.

The examples above illustrate how the zeta functions considered in Section 2 are
all related in a natural way to eigenvalues of specific boundary value problems.
In fact, zeta functions in a much more general context are studied in great detail.
For our purposes the relevant setting is the setting of Laplace-type operators on
a Riemannian manifold M , possibly with a boundary @M . Laplace-type means
the operator P can be written as

P D�gjk
r

V
j r

V
k �E;

where gjk is the metric of M , rV is the connection on M acting on a smooth
vector bundle V over M , and where E is an endomorphism of V . Imposing
suitable boundary conditions, eigenvalues �n and eigenfunctions �n do exist,

P�n.x/D �n�n.x/;

and assuming �n > 0 the zeta function is defined to be

�P .s/D

1X
nD1

��s
n

for Re s sufficiently large. If there are modes with �n D 0 those have to be
excluded from the sum. Also, if finitely many eigenvalues are negative the zeta
function can be defined by choosing nonstandard definitions of the principal
value for the argument of complex numbers, but we will not need to consider
those cases.
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4. Some motivations to consider zeta functions

There are many situations where properties of zeta functions in the above
context of Laplace-type operators are needed. In the following we present a few
of them, but many more can be found for example in the context of number
theory [3; 4; 23; 79] and quantum field theory [8; 14; 15; 16; 26; 30; 31; 33;
41; 42; 57; 74].

4.1. Can one hear the shape of a drum? Let M be a two-dimensional mem-
brane representing a drum with boundary @M . The drum is fixed along its
boundary. Then possible vibrations of the drum and its fundamental tones are
described by the eigenvalue problem

�

�
@2

@x2
C
@2

@y2

�
�n.x;y/D �n�n.x;y/; �n.x;y/j.x;y/2@M D 0:

Here, .x;y/ denotes the variables in the plane, the eigenfunctions �n.x;y/ de-
scribe the amplitude of the vibrations and �n its fundamental tones. In 1966
Kac [56] asked if just by listening with a perfect ear, so by knowing all the
fundamental tones �n, it is possible to hear the shape of the drum. One problem
in answering this question is, of course, that in general it will be impossible to
write down the eigenvalues �n in a closed form and to read off relations with the
shape of the drum directly. Instead one has to organize the spectrum intelligently
in form of a spectral function to reveal relationships between the eigenvalues and
the shape of the drum. In this context a particularly fruitful spectral function is
the heat kernel

K.t/D

1X
nD1

e��nt ;

which as t tends to zero clearly diverges. Given that some relations between the
fundamental tones and properties of the drum are hidden in the t ! 0 behavior
let us consider this asymptotic behavior very closely. Before we come back
to the setting of the drum, let us use a few examples to get an idea what the
structure of the t ! 0 behavior of the heat kernel is expected to be.

EXAMPLE 4.1. Let M D S1 be the circle with circumference L and let P D

�@2=@x2. Imposing periodic boundary conditions eigenvalues are

�k D

�
2�k

L

�2

; k 2 Z;

and the heat kernel reads

KS1.t/D

1X
kD�1

e�.2�k=L/2t :



BASIC ZETA FUNCTIONS AND SOME APPLICATIONS IN PHYSICS 115

From Lemma 2.16 we find the t ! 0 behavior

KS1.t/D
1
p

4� t
LC .exponentially damped terms/ :

With the obvious notation this could be written as

KS1.t/D
1
p

4� t
vol M C .exponentially damped terms/ :

EXAMPLE 4.2. The heat kernel for the d -dimensional torus M DS1�� � ��S1

with P D�� clearly gives a product of the above and thus

KM .t/DKS1.t/� � � � �KS1.t/D
1

.4� t/d=2
vol M C e.d.t.

EXAMPLE 4.3. To avoid the impression that there is always just one term that
is not exponentially damped consider M as above but P D��Cm2. Then

K.t/ D e�m2tKM .t/D e�m2t

�
1

.4� t/d=2
vol M C e.d.t.

�
D

1

.4�/d=2
vol M

1X
`D0

.�1/`

`!
m2`t`�

d
2 C e.d.t.

In fact, the structure of the heat kernel observed in this last example is the struc-
ture observed for the general class of Laplace-type operators.

THEOREM 4.4. Let M be a d -dimensional smooth compact Riemannian mani-
fold without boundary and let

P D�gjk
r

V
j r

V
k �E;

where gjk is the metric of M , rV is the connection on M acting on a smooth
vector bundle V over M , and where E is an endomorphism of V . Then as
t ! 0,

K.t/�

1X
kD0

ak tk�d=2

with the so-called heat kernel coefficients ak .

PROOF. See, e.g., [44]. �

In Example 4.3 one sees that

ak D
1

.4�/d=2

.�1/k

k!
m2k vol M:
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In general, the heat kernel coefficients are significantly more complicated and
they depend upon the geometry of the manifold M and the endomorphism E

[44].
Up to this point we have only considered manifolds without boundary. In

order to consider in more detail questions relating to the drum, let us now see
what relevant changes in the structure of the small-t heat kernel expansion occur
if boundaries are present.

EXAMPLE 4.5. Let M D Œ0;L� and P D �@2=@x2 with Dirichlet boundary
conditions imposed. Normalized eigenfunctions are then given by

'`.x/D

r
2

L
sin

�`x

L

and the associated eigenvalues are

�` D
�
�`

L

�2
; ` 2 N:

Using Lemma 2.16 this time we obtain

K.t/D
1
p

4� t
vol M � 1

2
C .exponentially damped terms/: (4-1)

Notice that in contrast to previous results we have integer and half-integer pow-
ers in t occurring.

EXERCISE 9. There is a more general version of the Poisson resummation
formula than the one given in Lemma 2.16, namely

1X
`D�1

e�t.`Cc/2
D

r
�

t

1X
`D�1

e�
�2

t
`2�2� i`c : (4-2)

Apply Exercise 5 with a suitable function F.x/ to show equation (4-2).

EXERCISE 10. Consider the setting described in Example 4.5. The local heat
kernel is defined as the solution of the equation�

@

@t
�
@2

@x2

�
K.t;x;y/D 0

with the initial condition

lim
t!0

K.t;x;y/D ı.x;y/:

In terms of the quantities introduced in Example 4.5 it can be written as

K.t;x;y/D

1X
`D1

'`.x/'`.y/e
��`t :
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Use the resummation (4-2) for K.t;x;y/ and the fact that

K.t/D

Z L

0

K.t;x;x/dx

to rediscover the result (4-1).

EXERCISE 11. Let M D Œ0;L� and

P D�
@2

@x2
Cm2

with Dirichlet boundary conditions imposed. Find the small-t asymptotics of
the heat kernel.

EXERCISE 12. Let M D Œ0;L�� S1 � � � � � S1 be a d -dimensional manifold
and

P D�
@2

@x2
Cm2:

Impose Dirichlet boundary conditions on Œ0;L� and periodic boundary condi-
tions on the circle factors. Find the small-t asymptotics of the heat kernel.

As the examples and exercises above suggest, one has the following result.

THEOREM 4.6. Let M be a d -dimensional smooth compact Riemannian mani-
fold with smooth boundary and let

P D�gjk
r

V
j r

V
k �E;

where gjk is the metric of M , rV is the connection on M acting on a smooth
vector bundle V over M , and where E is an endomorphism of V . We impose
Dirichlet boundary conditions. Then as t ! 0,

K.t/�

1X
kD0;

1
2
;1;:::

ak tk�d=2

with the heat kernel coefficients ak .

PROOF. See, e.g., [44]. �

As for the manifold without boundary case, Theorem 4.4, the heat kernel coeffi-
cients depend upon the geometry of the manifold M and the endomorphism E,
and in addition on the geometry of the boundary. Note, however, that in contrast
to Theorem 4.4 the small-t expansion contains integer and half-integer powers
in t .
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The same structure of the small-t asymptotics is found for other boundary
conditions like Neumann or Robin, see [44], and the coefficients then also de-
pend on the boundary condition chosen. In particular, for Dirichlet boundary
conditions one can show the identities

a0 D .4�/
�d=2 vol M; a1=2 D .4�/

�.d�1/=2
�
�

1
4

�
vol @M; (4-3)

a result going back to McKean and Singer [66]. In the context of the drum,
what the formula shows is that by listening with a perfect ear one can indeed
hear certain properties like the area of the drum and the circumference of its
boundary. But as has been shown by Gordon, Webb and Wolpert [45], one
cannot hear all details of the shape.

EXERCISE 13. Use Exercise 12 to verify the general formulas (4-3) for the heat
kernel coefficients.

Instead of using the heat kernel coefficients to make the preceding statements,
one could equally well have used zeta function properties for equivalent state-
ments. Consider the setting of Theorem 4.6. The associated zeta function is

�P .s/D

1X
nD1

��s
n ;

where it follows from Weyl’s law [80; 81] that this series is convergent for
Re s > d=2. The zeta function is related with the heat kernel by

�P .s/D
1

� .s/

Z 1
0

t s�1K.t/dt; (4-4)

where equation (2-5) has been used. This equation allows us to relate residues
and function values at certain points with the small-t behavior of the heat kernel.
In detail,

Res �P .z/ D
a.d=2/�z

� .z/
; z D

d

2
;
d�1

2
; : : : ;

1

2
;�

2nC1

2
; n 2 N0; (4-5)

�P .�q/ D .�1/qq!a d
2
Cq; q 2 N0: (4-6)

Keeping in mind the vanishing of the heat kernel coefficients ak with half-integer
index for @M D∅, see Theorem 4.4, this means for d even the poles are actually
located only at zDd=2; d=2�1; : : : ; 1. In addition, for d odd we get �P .�q/D0

for q 2 N0.

EXERCISE 14. Use Theorem 4.6 and proceed along the lines indicated in the
proof of Theorem 2.5 to show equations (4-5) and (4-6).
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Going back to the setting of the drum properties of the zeta function relate with
the geometry of the surface. In particular, from (4-3) and (4-5) one can show
the identities

Res �P .1/D
vol M

4�
; Res �P

�
1
2

�
D�

vol @M
2�

;

and the remarks below equation (4-3) could be repeated.

4.2. What does the Casimir effect know about a boundary? We next con-
sider an application in the context of quantum field theory in finite systems.
The importance of this topic lies in the fact that in recent years, progress in
many fields has been triggered by the continuing miniaturization of all kinds of
technical devices. As the separation between components of various systems
tends towards the nanometer range, there is a growing need to understand every
possible detail of quantum effects due to the small sizes involved.

Very generally speaking, effects resulting from the finite extension of systems
and from their precise form are known as the Casimir effect. In modern technical
devices this effect is responsible for up to 10% of the forces encountered in
microelectromechanical systems [19; 20]. Casimir forces are of direct practi-
cal relevance in nanotechnology where, e.g., sticking of mobile components in
micromachines might be caused by them [76]. Instead of fighting the occur-
rence of the effect in technological devices, the tendency is now to try and take
technological advantage of the effect.

Experimental progress in recent years has been impressive and for some con-
figurations allows for a detailed comparison with theoretical predictions. The
best tested situations are those of parallel plates [12] and of a plate and a sphere
[20; 21; 62; 63; 69]; recently also a plate and a cylinder has been considered [13;
37]. Experimental data and theoretical predictions are in excellent agreement,
see, e.g., [8; 25; 61; 64]. This interplay between theory and experiments, and
the intriguing technological applications possible, are the main reasons for the
heightened interest in this effect in recent years.

In its original form, the effect refers to the situation of two uncharged, parallel,
perfectly conducting plates. As predicted by Casimir [17], the plates should at-
tract with a force per unit area, F.a/�1=a4, where a is the distance between the
plates. Two decades later Boyer [10] found a repulsive pressure of magnitude
F.R/ � 1=R4 for a perfectly conducting spherical shell of radius R. Up to
this day an intuitive understanding of the opposite signs found is lacking. One
of the main questions in the context of the Casimir effect therefore is how the
occurring forces depend on the geometrical properties of the system considered.
Said differently, the question is “What does the Casimir effect know about a
boundary?” In the absence of general answers one approach consists in accu-
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mulating further knowledge by adding bits of understanding based on specific
calculations for specific configurations. Several examples will be provided in
this section and we will see the dominant role the zeta functions introduced play.
However, before we come to specific settings let us briefly introduce the zeta
function regularization of the Casimir energy and force that we will use later.

We will consider the Casimir effect in a quantum field theory of a non-
interacting scalar field under external conditions. The action in this case is [55]

S Œ˚�D�
1

2

Z
M

˚.x/ .��V .x// ˚.x/ dx; (4-7)

describing a scalar field ˚.x/ in the background potential V .x/. We assume the
Riemannian manifold M to be of the form M D S1�Ms , where the circle S1

of radius ˇ is used to describe finite temperature T D 1=ˇ and Ms , in general,
is a d -dimensional Riemannian manifold with boundary. For the action (4-7)
the corresponding field equations are

.��V .x//˚.x/D 0: (4-8)

If Ms has a boundary @Ms , these equations of motion have to be supplemented
by boundary conditions on @Ms . Along the circle, for a scalar field, periodic
boundary conditions are imposed.

Physical properties like the Casimir energy of the system are conveniently
described by means of the path-integral functionals

ZŒV �D

Z
e�S Œ˚� D˚; (4-9)

where we have neglected an infinite normalization constant, and the functional
integral is to be taken over all fields satisfying the boundary conditions. For-
mally, equation (4-9) is easily evaluated to be

� ŒV �D� ln ZŒV �D 1
2

ln det
�
.��CV .x//=�2

�
; (4-10)

where � is an arbitrary parameter with dimension of a mass to adjust the dimen-
sion of the arguments of the logarithm.

EXERCISE 15. In order to motivate equation (4-10) show that for P a positive
definite Hermitian .N �N /-matrix one hasZ

Rn
e�.x;Px/=2.dx/D .det P /�1=2;

where
.dx/D dnx.2�/�n=2:

For P D��CV .x/ and interpreting the scalar product .x;Px/ as an L2.M /-
product, one is led to (4-10) by identifying D˚ with .dx/.
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Equation (4-10) is purely formal, because the eigenvalues �n of��CV .x/ grow
without bound for n!1 and thus expression (4-10) needs further explanations.

In order to motivate the basic definition let P be a Hermitian .N �N /-matrix
with positive eigenvalues �n. Clearly

ln det P D

NX
nD1

ln�n D�
d

ds

NX
nD1

��s
n

ˇ̌̌̌
sD0

D �
d

ds
�P .s/

ˇ̌̌̌
sD0

;

and the determinant of P can be expressed in terms of the zeta function associ-
ated with P . This very same definition, namely

ln det P D��0P .0/ (4-11)

with

�P .s/D

1X
nD1

��s
n (4-12)

is now applied to differential operators as in (4-10). Here, the series repre-
sentation is valid for Re s large enough, and in (4-11) the unique analytical
continuation of the series to a neighborhood about s D 0 is used.

This definition was first used by the mathematicians Ray and Singer [73] to
give a definition of the Reidemeister–Franz torsion. In physics, this regulariza-
tion scheme took its origin in ambiguities of dimensional regularization when
applied to quantum field theory in curved spacetime [29; 51]. For applications
beyond the ones presented here see, e.g., [14; 15; 26; 30; 31; 41; 42; 74].

The quantity � ŒV � is called the effective action and the argument V indicates
the dependence of the effective action on the external fields. The Casimir energy
is obtained from the effective action via

E D
@

@ˇ
� ŒV �D�

1

2

@

@ˇ
�0
P=�2.0/: (4-13)

Here, we will only consider the zero temperature Casimir energy

ECas D lim
ˇ!1

E (4-14)

and we will next derive a suitable representation for ECas. We want to concen-
trate on the influence of boundary conditions and therefore we set V .x/ D 0.
The relevant operator to be considered therefore is

P D�
@2

@�2
��s;
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where � 2 S1 is the imaginary time and �s is the Laplace operator on Ms . In
order to analyze the zeta function associated with P we note that eigenfunctions,
respectively eigenvalues, are of the form

�n;j .�;y/ D
1

ˇ
e2�in�=ˇ'j .y/;

�n;j D

�
2�n

ˇ

�2
CE2

j ; n 2 Z;

with

��s'j .y/DE2
j 'j .y/;

where y2Ms . For the non-self-interacting case considered here, Ej are the one-
particle energy eigenvalues of the system. The relevant zeta function therefore
has the structure

�P .s/D

1X
nD�1

1X
jD1

��
2�n

ˇ

�2
CE2

j

��s

: (4-15)

We repeat the analysis outlined previously, namely we use equation (2-5) and
we apply Lemma 2.16 to the n-summation. In this process the zeta function

�Ps
.s/D

1X
jD1

E�2s
j

and the heat kernel

KPs
.t/D

1X
jD1

e�E2
j

t
�

1X
kD0;

1
2
;1;:::

ak tk�.d=2/

of the spatial section are the most natural quantities to represent the answer,

�P .s/D
1

� .s/

1X
nD�1

Z 1
0

t s�1e�.2�n=ˇ/2tKPs
.t/ dt

D
ˇ
p

4�

�
�
s�1

2

�
� .s/

�Ps

�
s�1

2

�
C

ˇ
p
� � .s/

1X
nD1

Z 1
0

t
s�3

2 e
�

n2ˇ2

4t KPs
.t/ dt:
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For the Casimir energy we need (D D d C 1)

�0
P=�2.0/D �

0
P .0/C �P .0/ ln�2

D�ˇ
�
FP �Ps

�
�

1
2

�
C 2.1� ln 2/Res �Ps

�
�

1
2

�
�

1

ˇ
�P .0/ ln�2

�
C

ˇ
p
�

1X
nD1

Z 1
0

t�3=2e
�

�
n2ˇ2

4t

�
KPs

.t/ dt

D�ˇ

�
FP �Ps

�
�

1
2

�
�

1
p

4�
aD=2

�
.ln�2/C 2.1� ln 2/

��
C

ˇ
p
�

1X
nD1

Z 1
0

t�3=2e
�

n2ˇ2

4t KPs
.t/ dt; (4-16)

with the finite part FP of the zeta function and where equations (4-5) and (4-6)
together with the fact that

KM .t/DKS1.t/ KPs
.t/

have been used, in particular

Res �Ps

�
�

1
2

�
D�

aD=2

2
p
�
; �P .0/D

ˇ
p

4�
aD=2: (4-17)

At T D 0 we obtain for the Casimir energy, see equations (4-13) and (4-14),

ECas D lim
ˇ!1

E D
1

2
FP �Ps

�
�

1
2

�
�

1

2
p

4�
aD=2 ln Q�2; (4-18)

with the scale Q� D .�e=2/. Equation (4-18) implies that as long as aD=2 ¤ 0

the Casimir energy contains a finite ambiguity and renormalization issues need
to be discussed. Note from (4-17) that whenever �Ps

�
�

1
2

�
is finite no ambiguity

exists because aD=2D0. In the specific examples chosen later we will make sure
that these ambiguities are absent and therefore a discussion of renormalization
will be unnecessary.

In a purely formal calculation one essentially is also led to equation (4-18). As
mentioned, in the quantum field theory of a free scalar field the eigenvalues of a
Laplacian are the square of the energies of the quantum fluctuations. Writing the
Casimir energy as (one-half) the sum over the energy of all quantum fluctuations
one has

ECas D
1

2

1X
kD0

�
1=2

k
; (4-19)

and a formal identification “shows” that

ECas D
1
2
�Ps

�
�

1
2

�
: (4-20)
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Clearly, the expression (4-19) is purely formal as the series diverges. However,
when �Ps

�
�

1
2

�
turns out to be finite this formal identification yields the correct

result. Otherwise, the ambiguities given in (4-18) remain as discussed above.
An alternative discussion leading to definition (4-18) can be found in [7].
As a first example let us consider the configuration of two parallel plates a

distance a apart analyzed originally by Casimir [17]. For simplicity we con-
centrate on a scalar field instead of the electromagnetic field and we impose
Dirichlet boundary conditions on the plates. The boundary value problem to be
solved therefore is

��uk.x;y; z/D �kuk.x;y; z/;

with uk.0;y; z/D uk.a;y; z/D 0.
For the time being, we compactify the .y; z/-directions to a torus with perime-

ter length R and impose periodic boundary conditions in these directions. Later
on, the limit R!1 is performed to recover the parallel plate configuration.
Using separation of variables one obtains normalized eigenfunctions in the form

u`1`2`.x;y; z/D

r
2

aR2
sin �`x

a
ei2�`1y=Rei2�`2z=R

with eigenvalues

�`1`2` D

�
2�`1

R

�2
C

�
2�`2

R

�2
C

�
�`

a

�2
; .`1; `2/ 2 Z2; ` 2 N:

This means we have to study the zeta function

�.s/D
X

.`1;`2/2Z2

1X
`D1

��
2�`1

R

�2
C

�
2�`2

R

�2
C

�
�`

a

�2��s

: (4-21)

As R!1 the Riemann sum turns into an integral and we compute using polar
coordinates in the .y; z/-plane

�.s/ D
�

R

2�

�2 1X
`D1

Z 1
�1

Z 1
�1

�
k2

1 C k2
2 C

�
�`

a

�2��s

dk2 dk1

D

�
R

2�

�2 1X
`D1

2�

Z 1
0

k

�
k2
C

�
�`

a

�2��s

dk

D
R2

2�

1

2.1�s/

1X
`D1

�
k2
C

�
�`

a

�2��sC1 ˇ̌̌1
0

D �
R2

4�.1�s/

1X
`D1

�
�`

a

�2.�sC1/
D�

R2

4�.1�s/

�
�

a

�2�2s
�R.2s� 2/:
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Setting s D�1
2

as needed for the Casimir energy we obtain

�
�
�

1
2

�
D�

R2

4�

2

3

�
�

a

�3
�R.�3/D�

R2�2

720a3
: (4-22)

The resulting Casimir force per area is

FCas D�
@

@a

ECas

R2
D�

�2

480a4
: (4-23)

Note that this computation takes into account only those quantum fluctuations
from between the plates. But in order to find the force acting on the, say, right
plate the contribution from the right to this plate also has to be counted. To find
this part we place another plate at the position x DL where at the end we take
L!1. Following the preceding calculation, we simply have to replace a by
L� a to see that the associated zeta function produces

�
�
�

1
2

�
D�

R2�2

720.L� a/3

and the contribution to the force on the plate at x D a reads

FCas D
�2

480.L� a/4
:

This shows the plate at xD a is always attracted to the closer plate. As L!1

it is seen that equation (4-23) also describes the total force on the plate at xD a

for the parallel plate configuration.

EXERCISE 16. Consider the Casimir energy that results in the previous discus-
sion when the compactification length R is kept finite. Use Lemma 2.18 to give
closed answers for the energy and the resulting force. Can the force change sign
depending on a and R?

More realistically plates will have a finite extension. An interesting setting that
we are able to analyze with the tools provided are pistons. These have received
an increasing amount of interest because they allow the unambiguous prediction
of forces [18; 52; 58; 65; 77].

Instead of having parallel plates let us consider a box with side lengths L1;L2

and L3. Although it is possible to find the Casimir force acting on the plate at
xDL1 resulting from the interior of the box, the exterior problem has remained
unsolved until today. No analytical procedure is known that allows to obtain the
Casimir energy or force for the outside of the box. This problem is avoided by
adding on another box with side lengths L�L1;L2 and L3 such that the wall
at x D L1 subdivides the bigger box into two chambers. The wall at x D L1

is assumed to be movable and is called the piston. Each chamber can be dealt
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with separately and total energies and forces are obtained by adding up the two
contributions. Assuming again Dirichlet boundary conditions and starting with
the left chamber, the relevant spectrum reads

�`1`2`3
D

�
�`1

L1

�2
C

�
�`2

L2

�2
C

�
�`3

L3

�2
; `1; `2; `3 2 N; (4-24)

and the associated zeta function is

�.s/D
X

`1;`2;`32N

��
�`1

L1

�2
C

�
�`2

L2

�2
C

�
�`3

L3

�2��s

: (4-25)

One way to proceed is to rewrite (4-25) in terms of the Epstein zeta function in
Definition 2.14.

EXERCISE 17. Use Lemma 2.18 in order to find the Casimir energy for the
inside of the box with side lengths L1;L2 and L3 and with Dirichlet boundary
conditions imposed.

Instead of using Lemma 2.18 we proceed as follows. We write first

�.s/D
1

2

1X
`1D�1

1X
`2;`3D1

��
�`1

L1

�2
C

�
�`2

L2

�2
C

�
�`3

L3

�2��s

�
1

2

1X
`2;`3D1

��
�`2

L2

�2
C

�
�`3

L3

�2��s

: (4-26)

This shows that it is convenient to introduce

�C.s/D

1X
`2;`3D1

��
�`2

L2

�2
C

�
�`3

L3

�2��s

: (4-27)

We note that this could be expressed in terms of the Epstein zeta function given
in Definition 2.14. However, it will turn out that this is unnecessary.

Also, to simplify the notation let us introduce

�2
`2`3
D

�
�`2

L2

�2
C

�
�`3

L3

�2
:

Using equation (2-5) for the first line in (4-26) we continue

�.s/D
1

2� .s/

1X
`1D�1

1X
`2;`3D1

Z 1
0

t s�1 exp
�
�t
��
�`1

L1

�2
C�2

`2`3

��
dt�1

2
�C.s/:
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We now apply the Poisson resummation in Lemma 2.16 to the `1-summation
and therefore we get

�.s/D
L1

2
p
� � .s/

1X
`1D�1

1X
`2;`3D1

Z 1
0

t s�3=2 exp
�
�

L2
1
`2

1

t
� t�2

`2`3

�
dt

�
1
2
�C.s/: (4-28)

The `1 D 0 term gives a �C-term, the `1 ¤ 0 terms are rewritten using (2.17).
The outcome reads

�.s/ D
L1�

�
s� 1

2

�
2
p
� � .s/

�C
�
s� 1

2

�
�

1
2
�C.s/

C
2L

sC
1
2

1
p
� � .s/

1X
`1;`2;`3D1

�
`2

1

�2
`2`3

�1
2
.s�

1
2
/

K1
2
�s
.2L1`1�`2`3

/: (4-29)

We need the zeta function about sD�1
2

in order to find the Casimir energy and
Casimir force.

Let s D�1
2
C ". In order to expand equation (4-29) about "D 0 we need to

know the pole structure of �C.s/. From equation (2.18) it is expected that �C.s/
has at most a first order pole at s D�1

2
and that it is analytic about s D�1. So

for now let us simply assume the structure

�C
�
�

1
2
C "

�
D

1

"
Res �C

�
�

1
2

�
CFP �C

�
�

1
2

�
CO."/;

�C.�1C "/ D �C.�1/C "�0C.�1/CO."2/;

where Res �C
�
�

1
2

�
and FP �C

�
�

1
2

�
will be determined later. With this structure

assumed, we find
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2
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�
D

1

"

�
L1

4�
�C.�1/� 1

2
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�
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�
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�

1

�
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`1;`2;`3D1

ˇ̌̌̌
�`2`3

`1

ˇ̌̌̌
K1

�
2L1`1�`2`3

�
: (4-30)

This shows that the Casimir energy for this setting is unambiguously defined
only if �C.�1/D 0 and Res �C

�
�

1
2

�
D 0.
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EXERCISE 18. Show the following analytical continuation for �C.s/:

�C.s/ D �
1

2

�
L3

�

�2s

�R.2s/C
L2�

�
s� 1

2

�
2
p
� � .s/

�
L3

�

�2s�1

�R.2s� 1/ (4-31)

C
2L

sC1=2
2

p
� � .s/

1X
`2D1

1X
`3D1

�
`2L3

�`3

�s�1=2

K 1
2
�s

�
2�L2`2`3

L3

�
:

Read off that �C.�1/D Res �C
�
�

1
2

�
D 0.

Using the results from Exercise 18 the Casimir energy, from equation (4-30),
can be expressed as

ECas D
L1

8�
�0C.�1/� 1

4
FP �C

�
�

1
2

�
�

1

2�

1X
`1;`2;`3D1

ˇ̌̌̌
�`2`3

`1

ˇ̌̌̌
K1.2L1`1�`2`3

/:

(4-32)

EXERCISE 19. Use representation (4-31) to give an explicit representation of
the Casimir energy (4-32).

For the force this shows

FCas D�
1

8�
�0C.�1/C

1

2�

1X
`1;`2;`3D1

ˇ̌̌̌
�`2`3

`1
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@

@L1

K1.2L1`1�`2`3
/: (4-33)

EXERCISE 20. Use Definition 2.17 to show that K�.x/ is a monotonically
decreasing function for x 2 RC.

EXERCISE 21. Determine the sign of �0C.�1/. What is the sign of the Casimir
force as L1!1? What about L1! 0?

Remember that the results given describe the contributions from the interior of
the box only. The contributions from the right chamber are obtained by replacing
L1 with L�L1. This shows for the right chamber

ECas D
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�0C.�1/� 1
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/;
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1X
`1;`2;`3D1

ˇ̌̌̌
�`2`3

`1

ˇ̌̌̌
@

@L1

K1.2.L�L1/`1�`2`3
/:
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Adding up, the total force on the piston is

F tot
Cas D

1

2�

1X
`1;`2;`3D1

ˇ̌̌̌
�`2`3

`1
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�`2`3
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ˇ̌̌̌
@
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K1.2.L�L1/`1�`2`3
/: (4-34)

This shows, using the results of Exercise 20, that the piston is always attracted
to the closer wall.

Although we have presented the analysis for a piston with rectangular cross-
section, our result in fact holds in much greater generality. The fact that we
analyzed a rectangular cross-section manifests itself in the spectrum (4-24),
namely the part �

�`2

L2

�2

C

�
�`3

L3

�2

is a direct consequence of it. If instead we had considered an arbitrary cross-
section C, the relevant spectrum had the form

�`1i D

�
�`1

L1

�2

C�2
i ;

where, assuming still Dirichlet boundary conditions on the boundary of the
cross-section C, �2

i is determined from

�

�
@2

@y2
C
@2

@z2

�
�i.y; z/D �

2
i �i.y; z/; �i.y; z/

ˇ̌̌
.y;z/2@C

D 0:

Proceeding in the same way as before, replacing �`2`3
with �i and introducing

�C.s/ as the zeta function for the cross-section,

�C.s/D

1X
iD1

��2s
i ;

equation (4-28) remains valid, as well as equations (4-29) and (4-30). So also for
an arbitrary cross-section the total force on the piston is described by equation
(4-34) with the replacements given and the piston is attracted to the closest wall.

EXERCISE 22. In going from equation (4-28) to (4-29) we used the fact that
�2
`2`3

> 0. Above we used �2
i > 0 which is true because we imposed Dirichlet

boundary conditions. Modify the calculation if boundary conditions are chosen
(like Neumann boundary conditions) that allow for d0 zero modes �2

i D 0 [58].
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We have presented the piston set-up for three spatial dimensions, but a similar
analysis can be performed in the presence of extra dimensions [58]. Once this
kind of calculation is fully understood for the electromagnetic field it is hoped
that future high-precision measurements of Casimir forces for simple config-
urations such as parallel plates can serve as a window into properties of the
dimensions of the universe that are somewhat hidden from direct observations.

As we have seen for the example of the piston, there are cases where an
unambiguous prediction of Casimir forces is possible. Of course the set-up we
have chosen was relatively simple and for many other configurations even the
sign of Casimir forces is unknown. This is a very active field of research; some
references are [8; 36; 43; 67; 68; 75]. Further discussion is provided in the
Conclusions.

5. Bose–Einstein condensation of Bose gases in traps

We now turn to applications in statistical mechanics. We have chosen to apply
the techniques in a quantum mechanical system described by the Schrödinger
equation �

�
„2

2m
�CV .x;y; z/

�
�k.x;y; z/D �k�k.x;y; z/; (5-1)

that is we consider a gas of quantum particles of mass m under the influence
of the potential V .x;y; z/. Specifically, later we will consider in detail the
harmonic oscillator potential

V .x;y; z/D
m

2
.!1x2

C!2y2
C!3z2/

briefly mentioned in Example 3.4, as well as a gas confined in a finite cavity.
Thermodynamic properties of a Bose gas, which is what we shall consider in

the following, are described by the (grand canonical) partition sum

q D�

1X
kD0

ln
�
1� e�ˇ.�k��/

�
; (5-2)

where ˇ is the inverse temperature and � is the chemical potential. We assume
the index k D 0 labels the unique ground state, that is, the state with smallest
energy eigenvalue �0. From this partition sum all thermodynamical properties
are obtained. For example the particle number is

N D
1

ˇ

@q

@�

ˇ̌̌̌
T;V

D

1X
kD0

1

eˇ.�k��/� 1
; (5-3)
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where the notation .@q=@�jT;V / indicates that the derivative has to be taken with
temperature T and volume V kept fixed. The particle number is the most im-
portant quantity for the phenomenon of Bose–Einstein condensation. Although
this phenomenon was predicted more than 80 years ago [9; 32] it was only rela-
tively recently experimentally verified [2; 11; 24]. Bose–Einstein condensation
is one of the most interesting properties of a system of bosons. Namely, under
certain conditions it is possible to have a phase transition at a critical value of
the temperature in which all of the bosons can condense into the ground state.
In order to understand at which temperature the phenomenon occurs a detailed
study of N , or alternatively q, is warranted. This is the subject of this section.

We first note that from the fact that the particle number in each state has to be
non-negative it is clear that �< �0 has to be imposed. It is seen in (5-2) that as
ˇ! 0 (high temperature limit) the behavior of q cannot be easily understood.
But contour integral techniques together with the zeta function information pro-
vided makes the analysis feasible and it will allow for the determination of the
critical temperature of the Bose gas.

Let us start by noting that from

ln.1�x/D�

1X
nD1

xn

n
; for jxj< 1;

the partition sum can be rewritten as

q D

1X
nD1

1X
kD0

1

n
e�ˇ.�k��/n: (5-4)

The ˇ ! 0 behavior is best found using the following representation of the
exponential.

EXERCISE 23. Given that
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1
2/ log z �z .1C o.1// ;

as jzj !1, show that

e�a
D

1

2� i

Z �Ci1

��i1

a�t � .t/ dt; (5-5)

valid for � > 0, jarg aj<
�

2
� ı, 0< ı � �=2.
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Before we apply this result to the partition sum (5-4) let us use a simple example
to show how this formula allows us to determine asymptotic behavior of certain
series in a relatively straightforward fashion. From Lemma 2.16 we know that

1X
`D1

e�ˇ`
2

D
1

2

1X
`D�1

e�ˇ`
2
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ˇ

1X
`D1

e�
�2

ˇ
`2

: (5-6)

As ˇ! 0 it is clear that the series on the left diverges and Lemma 2.16 shows
that the leading behavior is described by a 1=

p
ˇ term, followed by a constant

term, followed by exponentially damped corrections. Let us see how we can
easily find the polynomial behavior as ˇ! 0 from (5-5). We first write

1X
`D1

e�ˇ`
2

D

1X
`D1

1

2� i

Z �Ci1

��i1

.ˇ`2/�t� .t/dt:

Here, � > 0 is assumed by Exercise 23. However, in order to be allowed to
interchange summation and integration we need to impose � > 1

2
and find

1X
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e�ˇ`
2

D
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2� i
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ˇ�t� .t/

1X
`D1

`�2tdt

D
1

2� i

Z �Ci1

��i1

ˇ�t� .t/�R.2t/dt:

In order to find the small-ˇ behavior, the strategy now is to shift the contour
to the left. In doing so we cross over poles of the integrand generating poly-
nomial contributions in ˇ. For this example, the right most pole is at t D 1

2

(pole of the zeta function of Riemann) and the next pole is at t D 0 (from the
gamma function). Those are all singularities present as �R.�2n/D 0 for n 2N.
Therefore,

1X
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D ˇ�1=2 �
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Z Q�Ci1

Q��i1

ˇ�t� .t/�R.2t/dt;

where Q� < 0 and where contributions from the horizontal lines between Q�˙ i1

and �˙i1 are neglected. For the remaining contour integral plus the neglected
horizontal lines one can actually show that they will produce the exponentially
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damped terms as given in (5-6). How exactly this actually happens has been
described in detail in [35].

EXERCISE 24. Argue how
P1

nD1 e�ˇn˛ ; ˇ > 0; ˛ > 0, behaves as ˇ! 0 by
using the procedure above. Determine the leading three terms in the expansion
assuming that the contributions from the contour at infinity can be neglected.

EXERCISE 25. Find the leading three terms of the small-ˇ behavior of

1X
nD1

log.1� e�ˇn/

assuming that the contributions from the contour at infinity can be neglected.

We next apply these ideas to the partition sum (5-4). As a further warmup, for
simplicity, let us first set �D 0. Not specifying �k for now and using

�.s/D

1X
kD0

��s
k

for Re s >M large enough to make this series convergent, we write

q D
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��t
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�
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D
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2� i

Z �Ci1

��i1

ˇ�t� .t/�R.t C 1/�.t/dt:

Here � >M is needed for the algebraic manipulations to be allowed. It is clearly
seen that the integrand has a double pole at t D 0. The right most pole (at M )
therefore comes from �.t/, and the location of this pole determines the leading
ˇ! 0 behavior of the partition sum.

For the harmonic oscillator potential, in the notation of Example 3.4, the
Barnes zeta function occurs and we have

q D
1

2� i

Z �Ci1

��i1

ˇ�t� .t/�R.t C 1/�B.t; cjEr/dt: (5-7)

The location of the poles and its residues are known for the Barnes zeta function,
see Definition 2.12 and Theorem 2.13, in particular one has

Res �B.3; cjEr/D
1

2„3˝3
;



134 KLAUS KIRSTEN

where, as is common, the geometric mean of the oscillator frequencies

˝ D .!1!2!3/
1=3

has been used. The leading order of the partition sum therefore is

q D
�4

90

1

.ˇ„˝/3
CO.ˇ�2/:

EXERCISE 26. Use Definition 2.12 and Theorem 2.13 to find the subleading
order of the small-ˇ expansion of the partition sum q.

EXERCISE 27. Consider the harmonic oscillator potential in d dimensions and
find the leading and subleading order of the small-ˇ expansion of the partition
sum q.

If instead of considering a Bose gas in a trap we consider the gas in a finite three-
dimensional cavity M with boundary @M we have to augment the Schrödinger
equation (5-1) by boundary conditions. We choose Dirichlet boundary condi-
tions and thus the results for the heat kernel coefficients (4-3) are valid.

From equation (4-5) we also conclude that the rightmost pole of �.s/ is lo-
cated at s D 3=2 and that

Res �
�

3
2

�
D

a0

�
�

3
2

� D vol M

4�2
I

furthermore the next pole is located at s D 1. For this case, the leading order of
the partition sum therefore is

q D
1

.4�ˇ/3=2
�R
�

5
2

�
vol M CO.ˇ�1/:

One way to read this result is that the Bose gas does know the volume of its
container because it can be found from the partition sum. This is completely
analogous to the statement for the drum where we used the heat kernel instead
of the partition sum.

Subleading orders of the partition sum reveal more information about the
cavity, see the following exercise. But as for the drums, the gas does not know all
the details of the shape of the cavity because there are different cavities leading
to the same eigenvalue spectrum [45]. Those cavities cannot be distinguished
by the above analysis.

EXERCISE 28. Consider a Bose gas in a d -dimensional cavity M with boundary
@M . Use (4-3) and (4-5) to find the leading and subleading order of the small-
ˇ expansion of the partition sum q. What does the Bose gas know about its
container, meaning what information about the container can be read of from
the high-temperature behavior of the partition sum?
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In order to examine the phenomenon of Bose–Einstein condensation we have to
consider non-vanishing chemical potential. Close to the phase transition, as we
will see, more and more particles have to reside in the ground state and the value
of the chemical potential will be close to the smallest eigenvalue, which is the
’critical’ value for the chemical potential, �cD�0. Near the phase transition, for
the expansion to be established, it will turn out advantageous to rewrite �k ��

such that the small quantity �c �� appears,

�k ��D �k ��c C�c ��D �k ��0C�c ��:

Given the special role of the ground state, we separate off its contribution and
write

q D q0C

1X
nD1

1X
kD1

1

n
e�ˇn.�k��0/ e�ˇn.�c��/:

Note that the k-sum starts with k D 1, which means that the ground state is not
included in this summation. Employing the representation (5-5) only to the first
exponential factor and proceeding as before we obtain

q D q0C
1

2� i

Z �Ci1

��i1

ˇ�t� .t/Li1Ct

�
e�ˇ.�c��/

�
�0.t/dt; (5-8)

with the polylogarithm

Lin.x/D
1X
`D1

x`

`n
; (5-9)

and the spectral zeta function

�0.s/D

1X
kD1

.�k ��0/
�s:

In order to determine the small-ˇ behavior of expression (5-8) let us discuss
the pole structure of the integrand. Given �c � � > 0, the polylogarithm
Li1Ct .e

�ˇ.�c��// does not generate any poles. Concentrating on the harmonic
oscillator, we find

Res �0.3/D
1

2.„˝/3
; Res �0.2/D
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2„2

�
1

!1!2

C
1

!1!3

C
1

!2!3

�
:

Note that �0.s/ is the Barnes zeta function as given in Definition 2.8 with cD 0

where we have to exclude Em D E0 from the summation. However, clearly the
residues at sD 3 and sD 2 can still be obtained from Theorem 2.13 with c! 0

taken.
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Shifting the contour to the left we now find

q D q0C
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In order to find the particle number N we need the relation for the polylogarithm
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x
Lin�1.x/;

which follows from (5-9). So
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EXERCISE 29. Use (5-5) and (5-9) to show

Lin
�
e�x

�
D �R.n/�x�R.n� 1/C � � �

valid for n> 2. What does the subleading term look like for nD 2?

As the critical temperature is approached � ! �c and with Exercise 29 the
particle number close to the transition temperature becomes

N D N0C
�R.3/

.ˇ„˝/3
C
�R.2/

2.ˇ„/2

�
1
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C
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C
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�
C � � � (5-10)

The second and third terms give the number of particles in the excited levels (at
high temperature close to the phase transition).

The critical temperature is defined as the temperature where all excited levels
are completely filled such that lowering the temperature the ground state pop-
ulation will start to build up. This means the defining equation for the critical
temperature Tc D 1=ˇc in the approximation considered is

N D
1

.ˇc„˝/3
�R.3/C

1

2.ˇc„/2
�R.2/

�
1

!1!2

C
1

!1!3

C
1

!2!3

�
:(5-11)

Solving for ˇc one finds

Tc D T0

�
1�

�R.2/

3�R.3/2=3
ıN�1=3

�
:

Here, T0 is the critical temperature in the bulk limit (N !1)

T0 D „˝

�
N

�R.3/

�1=3
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and

ı D 1
2
˝2=3

�
1

!1!2

C
1

!1!3

C
1

!2!3

�
:

Different approaches can be used to obtain the same answers [47; 48; 49; 50].
If only a few thousand particles are used in the experiment the finite-N

correction is actually quite important. For example the first successful experi-
ments on Bose–Einstein condensates were done with rubidium [2] at frequencies
!1 D !2 D 240�=

p
8 s�1 and !3 D 240�s�1. With N D 2000 one finds

Tc � 31:9nKD 0:93 T0 [59], a significant correction compared to the thermo-
dynamic limit.

EXERCISE 30. Consider the Bose gas in a d -dimensional cavity. Find the
particle number and the critical temperature along the lines described for the
harmonic oscillator. What is the correction to the critical temperature caused by
the finite size of the cavity? (For a solution to this problem see [60].)

6. Conclusions

In these lectures some basic zeta functions are introduced and used to analyze
the Casimir effect and Bose–Einstein condensation for particular situations. The
basic zeta functions considered are the Hurwitz, the Barnes and the Epstein
zeta function. Although these zeta functions differ from each other they have
one property in common: they are based upon a sequence of numbers that is
explicitly known and given in closed form. The analysis of these zeta functions
and of the indicated applications in physics is heavily based on this explicit
knowledge in that well-known summation formulas are used.

In most cases, however, an explicit knowledge of the eigenvalues of, say,
a Laplacian will not be available and an analysis of the associated zeta func-
tions will be more complicated. In recent years a new class of examples where
eigenvalues are defined implicitly as solutions to transcendental equations has
become accessible. In some detail let us assume that eigenvalues are determined
by equations of the form

F`.�`;n/D 0 (6-1)

with `; n suitable indices. For example when trying to find eigenvalues and
eigenfunctions of the Laplacian whenever possible one resorts to separation of
variables and ` and n would be suitable ’quantum numbers’ labeling eigenfunc-
tions. To be specific consider a scalar field in a three dimensional ball of radius
R with Dirichlet boundary conditions. The eigenvalues �k for this situation,
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with k as a multiindex, are thus determined through

���k.x/D �k�k.x/; �k.x/jjxjDR D 0:

In terms of spherical coordinates .r; ˝/, a complete set of eigenfunctions may
be given in the form

�l;m;n.r; ˝/D r�1=2JlC1=2

�p
�l;nr

�
Yl;m.˝/;

where Yl;m.˝/ are spherical surface harmonics [40], and J� are Bessel func-
tions of the first kind [46]. Eigenvalues of the Laplacian are determined as zeroes
of Bessel functions. In particular, for a given angular momentum quantum num-
ber l , imposing Dirichlet boundary conditions, eigenvalues �l;n are determined
by

JlC1=2

�p
�l;nR

�
D 0: (6-2)

Although some properties of the zeroes of Bessel functions are well understood
[46], there is no closed form for them available and we encounter the situation
described by (6-1). In order to find properties of the zeta function associated with
this kind of boundary value problems the idea is to use the argument principle
or Cauchy’s residue theorem. For the situation of the ball one writes the zeta
function in the form

�.s/D

1X
lD0

.2l C 1/
1

2� i

Z



k�2s @

@k
ln JlC1=2.kR/ dk; (6-3)

where the contour 
 runs counterclockwise and must enclose all solutions of
(6-2). The factor .2lC1/ represents the degeneracy for each angular momentum
l and the summation is over all angular momenta. The integrand has singulari-
ties exactly at the eigenvalues and one can show that the residues are one such
that the definition of the zeta function is recovered. More generally, in other
coordinate systems, one would have, somewhat symbolically,

�.s/D
X

j

dj
1

2� i

Z



k�2s @

@k
ln Fj .k/ dk; (6-4)

the task being to construct the analytical continuation of this object. The de-
tails of the procedure will depend very much on the properties of the special
function Fj that enters, but often all the information needed can be found [57].
Nevertheless, for many separable coordinate systems this program has not been
performed but efforts are being made in order to obtain yet unknown precise
values for the Casimir energy for various geometries.
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