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Part I. Correlation functions and Eisenstein series

1. The big picture

String theory
" #

2-d conformal field theory
" #

Vertex operator algebras
" #

Modular forms and elliptic functions
" #

L-series and zeta-functions

The leitmotif of these notes is the idea of a vertex operator algebra (VOA)
and the relationship between VOAs and elliptic functions and modular forms.
This is to some extent analogous to the relationship between a finite group and
its irreducible characters; the algebraic structure determines a set of numerical
invariants, and arithmetic properties of the invariants provides feedback in the
form of restrictions on the algebraic structure. One of the main points of these
notes is to explain how this works, and to give some reasonably interesting
examples.

VOAs may be construed as an axiomatization of 2-dimensional conformal
field theory, and it is via this connection that vertex operators enter into physical
theories. A sketch of the VOA-CFT connection via the Wightman Axioms can
be found in the introduction to [K1]. Although we make occasional comments
to relate our development of VOA theory to physics, no technical expertise in
physics is necessary to understand these notes. As mathematical theories go,
the one we are discussing here is relatively new. There are a number of basic
questions which are presently unresolved, and we will get far enough in the
notes to explain some of them.

To a modular form one may attach (via the Mellin transform) a Dirichlet
series, or L-function, and Weil’s Converse Theorem says that one can go the
other way too. So there is a close connection between modular forms and cer-
tain L-functions, and this is one way in which our subject matter relates to the
contents of other parts of this book. Nevertheless, as things stand at present,
it is the Fourier series of a modular form, rather than its Dirichlet series, that
is important in VOA theory. As a result, L-functions will not enter into our
development of the subject.
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The notes are divided into three parts. In Part I we give some of the foun-
dations of VOA theory, and explain how modular forms on the full modular
group (Eisenstein series in particular) and elliptic functions naturally intervene
in the description of n-point correlation functions. This is a general phenome-
non and the simplest VOAs, namely the free boson (Heisenberg VOA) and the
Virasoro VOA, suffice to illustrate the computations. For this reason we delay
the introduction of more complicated VOAs until Part II, where we describe
several families of VOAs and their representations. We also cover some aspects
of vector-valued modular forms, which is the appropriate language to describe
the modular properties of C2-cofinite and rational VOAs. We give some ap-
plications to holomorphic VOAs to illustrate how modularity impinges on the
algebraic structure of VOAs. In Part III we describe two current areas of active
research of the authors. The first concerns the development of VOA theory on
a genus-two Riemann surface and the second is concerned with the relationship
between exceptional VOAs and Lie algebras and the Virasoro algebra.

There are a number of exercises at the end of each subsection. They provide
both practice in the ideas and also a subtext to which we often refer during the
course of the notes. Some of the exercises are straightforward, others less so.
Even if the reader is not intent on working out the exercises, he or she should
read them over before proceeding.

These notes constitute an expansion of the lectures we gave at MSRI in the
summer of 2008 during the Workshop A window into zeta and modular physics.
We thank the organizers of the workshop, in particular Klaus Kirsten and Floyd
Williams, for giving us the opportunity to participate in the program.

2. Vertex operator algebras

2.1. Notation and conventions. Z is the set of integers, R the real numbers, C

the complex numbers, H the complex upper half-plane

HD f� 2 C j Im � > 0g:

All linear spaces V are defined over C; linear transformations are C-linear;
End.V / is the space of all endomorphisms of V . For an indeterminate z,

V ŒŒz; z�1�� D

�X
n2Z

vnzn
j vn 2 V

�
; V ŒŒz��Œz�1�D

� 1X
nD�M

vnzn
j vn 2 V

�
:

These are linear spaces with respect to the obvious addition and scalar multipli-
cation. The formal residue is

Resz

X
n2Z

vnzn
D v�1:
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For integers m; n with n� 0,�
m

n

�
D

m.m� 1/ : : : .m� nC 1/

n!
:

For indeterminates x;y we adopt the convention that

.xCy/m D
X
n�0

�
m

n

�
xm�nyn; (1)

i.e., for m< 0 we formally expand in the second parameter y.
We use the following q-convention:

qx D ex; q D q2� i� D e2�i� .� 2 H/; (2)

where x is anything for which ex makes sense.

2.2. Local fields. We deal with formal series

a.z/D
X
n2Z

anz�n�1
2 End.V /ŒŒz; z�1��: (3)

a.z/ defines a linear map V ! V ŒŒz; z�1�� by the rule

v‘
X
n2Z

an.v/z
�n�1:

The endomorphisms an are called the modes of a.z/. We often refer to the
elements in V as states, and call V the state-space or Fock space.

REMARK 2.1. The convention for powers of z in (3) is standard in mathe-
matics. A different convention is common in the physics literature. Whenever
a mathematician and physicist discuss fields, they should first agree on their
conventions.

DEFINITION 2.2. a.z/ 2 End.V /ŒŒz; z�1�� is a field if it satisfies the following
truncation condition 8 v 2 V :

a.z/v 2 V ŒŒz��Œz�1�:

That is, for v 2 V there is an integer N (depending on v) such that an.v/ D 0

for all n>N .

Set

F.V /D fa.z/ 2 End.V /ŒŒz; z�1�� j a.z/ is a fieldg:

F.V / is the field-theoretic analog of End.V /; it’s a subspace of End.V /ŒŒz; z�1��:
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The introduction of a second indeterminate facilitates the study of products
and commutators of fields. Set�X

m

amz�m�1
1 ;

X
n

bnz�n�1
2

�
D

X
m;n

Œam; bn�z
�m�1
1 z�n�1

2 ;

which lies in End.V /ŒŒz1; z
�1
1
; z2; z

�1
2
��: The idea of locality is crucial.

DEFINITION 2.3. Two elements a.z/; b.z/2End.V /ŒŒz; z�1�� are mutually local
if there is a nonnegative integer k such that

.z1� z2/
k Œa.z1/; b.z2/�D 0: (4)

If (4) holds, we write a.z/ �k b.z/ and say that a.z/ and b.z/ are mutually
local of order k. Write a.z/ � b.z/ if k is not specified. a.z/ is a local field if
a.z/ � a.z/. (4) means that the coefficient of each monomial zr�1

1
zs�1

2
in the

expansion of the left hand side vanishes. Explicitly, this means that

kX
jD0

.�1/j
�

k

j

�
Œak�j�r ; bj�s �D 0: (5)

Locality defines a symmetric relation which is generally neither reflexive nor
transitive.

Fix a nonzero state 1 2 V . We say that a.z/ 2 F.V / is creative (with respect
to 1) and creates the state a if

a.z/1D aC � � � 2 V ŒŒz��:

We sometimes write this in the form a.z/1D aCO.z/. In terms of modes,

an1D 0; n� 0; a�11D a:

EXERCISE 2.4. Let @a.z/ D
P

n.�n� 1/anz�n�2 be the formal derivative of
a.z/. Suppose that a.z/; b.z/2F.V / and a.z/�k b.z/. Prove that @a.z/2F.V /

and @a.z/�kC1 b.z/.

EXERCISE 2.5. (Locality-truncation relation) Suppose that a.z/; b.z/ are cre-
ative fields with a.z/ �k b.z/. By choosing s D 1 and r D k � n for n � k in
(5), show that anb D 0 for all n� k i.e., the order of truncation N is k � 1.
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2.3. Axioms for a vertex algebra. For various approaches to the contents of
this subsection, see [B], [FHL], [FLM], [Go], [K1], [LL], [MN].

DEFINITION 2.6. A vertex algebra (VA) is a quadruple .V;Y; 1;D/, where

Y W V ! F.V /; v‘ Y .v; z/D
X

vnz�n�1 is a linear map;

1 2 V; 1 6D 0;

D 2 End.V /; D1D 0;

and the following hold for all u; v 2 V :

localityW Y .u; z/� Y .v; z/;

creativityW Y .u; z/1D uCO.z/;

translation covarianceW ŒD;Y .u; z/�D @Y .u; z/:

We often refer to the Fock space V itself, rather than .V;Y; 1;D/, as a vertex
algebra. The element 1 is called the vacuum state and Y is the state-field corre-
spondence. The physical interpretation of creativity is that Y .u; z/ creates the
state u from the vacuum. This set-up models the creation and annihilation of
bosonic states from the vacuum. Most of the subtlety is tied to locality and its
consequences.

There are a number of equivalent formulations of these axioms. We discuss
some of them. Another approach, via so-called rationality ([FHL]) is also dis-
cussed in Section 10.1. The Jacobi Identity of [FLM] is equivalent to the identityX
i�0

�
p

i

�
.urCiv/pCq�i D

X
i�0

.�1/i
�

r

i

�˚
upCr�ivqCi � .�1/rvqCr�iupCi

	
;

(6)
which holds in a VA for all u; v 2 V and all p; q; r 2 Z. Conversely, if we have
creative fields Y .v; z/2F.V /, v 2V , with respect to 1 and they satisfy (6), then
.V;Y; 1;D/ is a vertex algebra with DuD u�21.

Specializing (6) in various ways leads to some particularly useful identities
first written down in [B]:

commutator W Œum; vn�D
X
i�0

�
m

i

�
.uiv/mCn�i ;

associator W .umv/n D
X
i�0

.�1/i
�

m

i

�
fum�ivnCi � .�1/mvmCn�iuig;

skew-symmetry W umv D
X
i�0

.�1/mCiC1 1

i!
DivmCiu:
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These identities may be stated more compactly using vertex operators, and it
is often more efficacious to use the vertex operator format. We state one more
consequence of (6), the associativity formula, in the operator format. For large
enough k, and recalling convention (1),

.z1C z2/
kY .u; z1C z2/Y .v; z2/w D .z1C z2/

kY .Y .u; z1/v; z2/w: (7)

THEOREM 2.7 [FKRW], [MP]. Let V be a linear space with 0 6D 12V and D 2

End.V /. Suppose S � F.V / is a set of mutually local, creative, translation-
covariant fields which generates V in the sense that

V D spanfa1
�n1

: : : ak
�nk

1 j ai.z/ 2 S; n1; : : : ; nk � 1; k � 0g:

Then there is a unique vertex algebra .V;Y; 1;D/ such that Y .ai
�1

1; z/D ai.z/.

EXERCISE 2.8. Prove that the state-field correspondence is injective.

EXERCISE 2.9. Prove that

Y .u; z/1D qD
z u

�
which equals

P
n�0

zn

n!
Dnu

�
:

EXERCISE 2.10. Deduce the commutator, associator and skew-symmetry for-
mulas from (6).

EXERCISE 2.11. Assume V is a linear space and

fY .v; z/ j v 2 V g � F.V /

are mutually local fields such that Y .v; z/ is creative (with respect to 1 6D 0) and
creates v. Prove that (6) and the associator formula are equivalent.

EXERCISE 2.12. A is a commutative, associative algebra with identity element
1 and derivation D. Show that there is a vertex algebra .A;Y; 1;D/ with

Y .a; z/b D
X

n��1

.D�n�1a/b

.�n� 1/!
z�n�1:

EXERCISE 2.13. .V;Y; 1;D/ is a VA. Assume either (a) Y .v; z/ 2 End.V /ŒŒz��
for v 2 V , (b) D is the zero map, or (c) dim V is finite. Prove in each case that
V is of the type described in Exercise 2.12.

EXERCISE 2.14. Show that the commutator formula is equivalent to the identity
Œum;Y .v; z/�D

P
i�0

�
m
i

�
Y .uiv; z/z

m�i .

EXERCISE 2.15. Show that the skew-symmetry formula is equivalent to the
identity Y .u; z/v D qD

z Y .v;�z/u.

EXERCISE 2.16. Show that qD
y Y .u;x/q�D

y D Y .u;xCy/.
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2.4. Heisenberg algebra. In this and the following Subsection we will use
Theorem 2.7 to construct two fundamental examples of VAs. We must look for
generating sets S of mutually local, creative, translation-covariant fields. In our
two examples, S consists of a single field. The construction relies on some basic
techniques from Lie theory (universal enveloping algebras, Poincaré–Birkhoff–
Witt Theorem, and so on) which are reviewed in the Appendix.

Let AD Ca be a 1-dimensional linear space. The affine algebra

OADAŒt; t�1�˚CK

is the Lie algebra with central element K and bracket

Œa˝ tm; a˝ tn�Dmım;�nK: (8)

REMARK 2.17. Set pmD
1
p

m
a˝tm(m> 0) and q�mD

1
p
�m

a˝tm (m< 0:)
Then (8) reads

Œpm; qn�D ım;nK: (9)

These are essentially the canonical commutator relations of quantum mechan-
ics.

Set OA� D ha˝ tn;K j n � 0i, OA� D ha˝ tn j n < 0g. These are a Lie ideal
and Lie subalgebra of OA respectively. Let Cvh be the 1-dimensional OA�-module
defined for a scalar h via

K:vh D vh; .a˝ tn/:vh D hın;0vh .n� 0/:

The induced (Verma) module is

Mh D IndU. OA/

U. OA�/
Cvh D U. OA/˝

U. OA�/
Cvh D U. OA�/˝Cvh (10)

where U. / denotes universal enveloping algebra and the third equality in the
last display is just a linear isomorphism.

Let an 2 End.Mh/ be the induced action of a ˝ tn on Mh, with a.z/ DP
n anz�n�1. In what follows we identify vh with 1˝ vh. Let

v D a�n1
: : : a�nk

:vh;

with n1 � : : : � nk � 1: For n > n1; an commutes with each a�ni
by (8).

Therefore, an:v D a�n1
: : : a�nk

an:vh D 0. This shows that a.z/ 2 F.Mh/. As
for locality,

2X
jD0

.�1/j
�

2

j

�
Œa2�j�r ; aj�s �D

2X
jD0

.�1/j
�

2

j

�
.2� j � r/ı2�j�r;s�j K

D
˚
.2�r/� 2.1�r/� r

	
ırCs;2K D 0: (11)
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By (5) this shows that a.z/�2 a.z/. Because

a.z/vh D hvhz�1
C

X
n��1

an:vhz�n�1;

we see that a.z/ is creative with respect to vh if (and only if) hD 0. In this case,
Theorem 2.7 and what we have shown imply:

THEOREM 2.18. There is a unique vertex algebra .M0;Y; v0;D/ generated by
a.z/ with Y .a; z/D a.z/ with aD a�1v0 2M0, and Dan:v0 D�nan�1v0.

REMARK 2.19. In terms of operators on M0, (9) reads Œpm; qn�D ım;nId. These
relations may be realized by taking pmD @=@x�m, qnDx�n acting on the Fock
space CŒx�1;x�2; : : :�. This affords an alternate way to understand M0.

M0 is variously called the (rank 1) Heisenberg VA, Heisenberg algebra, or free
boson. In CFT it models a single free boson. (As opposed to standard math-
ematical usage, free here means that the particle is not interacting with other
particles.)

2.5. Virasoro algebra. The Virasoro algebra is the Lie algebra with underlying
linear space

VirD
M
n2Z

CLn˚CK

and bracket relations

ŒLm;Ln�D .m� n/LmCnC
m3�m

12
ım;�nK: (12)

Set Vir� D hLn;K j n � 0i; Vir� D hLn j n < 0i, and let Cvc;h be the 1-
dimensional Vir�-module defined via

K:vc;h D cvc;h; Ln:vc;h D ın;0hvc;h .n� 0/:

with arbitrary scalars c; h. The induced (Verma) module is then

Mc;h D U.Vir/˝U.Vir�/ Cvc;h D U.Vir�/˝Cvc;h: (13)

By analogy with Theorem 2.18, Exercise 2.22 (below) suggests that there is
a VA with Fock space Mc;0 and vacuum1 vc;0, with L�1 playing the rôle of D.
This cannot be true as it stands because !.z/:vc;0DL�1:vc;0z�1C� � � is not cre-
ative. To cure this ill requires (at the very least) that we take a quotient of Mc;0

by a Vir-submodule that contains L�1:vc;0, and indeed it suffices to quotient out
the cyclic Vir-submodule generated by this state. We will abuse notation by iden-
tifying states, operators and fields associated with Mc;0 with the corresponding

1As in the case of the Heisenberg algebra, we identify vc;0 and 1˝ vc;0.
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states, operators and fields induced on the quotient Mc;0=U.Vir/L�1:vc;0. We
then arrive at

THEOREM 2.20. Set

Virc DMc;0=U.Vir/L�1:vc;0;

!DL�2:vc;0, and Y .!; z/D!.z/. Then .Virc ;Y; vc;0;L�1/ is a vertex algebra
generated by Y .!; z/.

Virc is called the Virasoro VA of central charge c.

EXERCISE 2.21. Show that L�1;L0 and L1 span a Lie subalgebra of Vir. What
Lie algebra is it?

EXERCISE 2.22. Identify elements of Vir with the endomorphisms they induce
on Mc;h and set !.z/D

P
Lnz�n�2 2 End.Mc;h/ŒŒz; z

�1��. Prove that !.z/ is
a local field of order 4, and ŒL�1; !.z/�D @!.z/.

EXERCISE 2.23. Give the details of the proof of Theorem 2.20.

2.6. Axioms for a vertex operator algebra. There is no consensus as to
nomenclature for the many variants of vertex algebra. Our definition of a vertex
operator algebra (VOA) is the one used by many practitioners of the art, but not
all.

DEFINITION 2.24. A VOA is a quadruple .V;Y; 1; !/, where V D
L

n2Z Vn is
a Z-graded linear space and

Y W V ! F.V /; v‘ Y .v; z/D
X

vnz�n�1;

1; ! 2 V; 1 6D 0:

The fields Y .v; z/ are assumed to be mutually local and creative, and certain
conditions must be satisfied:

� Y .!; z/D
P

Lnz�n�2 with a constant c such that

ŒLm;Ln�D .m� n/LmCnC
m3�m

12
ım;�nc IdV I

� Vn D fv 2 Vn j L0v D nvg;
� dim Vn <1; Vn D 0 for n� 0;
� Y .L�1u; z/D @Y .u; z/.

In effect, a VOA is a vertex algebra with a dedicated Virasoro field. This is the
field determined by the distinguished state !, called the conformal or Virasoro
vector. The modes of ! are operators Ln satisfying the Virasoro relations (12)
with K D cIdV . As in Theorem 2.20 we call c the central charge of V . The
mode L0 of !, called the degree operator, is required to be semisimple, to
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have eigenvalues lying in a subset of Z that is bounded below, and to have
finite-dimensional eigenspaces. We often write wt.v/ D n if v is an eigen-
state for L0 with eigenvalue n, the conformal weight. It is not hard to see that
ŒL�1;Y .u; z/�D @Y .u; z/, so that .V;Y; 1;L�1/ is a vertex algebra.

It should come as no surprise that the vertex algebra Virc has the structure
of a VOA of central charge c with vacuum vector vc;0 and conformal vector !.
To see this, note that fL�n1

: : :L�nk
:vc;0 jn1 � � � � � nk � 2g is a basis of the

Fock space. We have

L0L�n1
: : :L�nk

:vc;0D n1L�n1
: : :L�nk

:vc;0CL�n1
L0L�n2

: : :L�nk
:vc;0:

Now an easy induction shows that

L0:L�n1
: : :L�nk

:vc;0 D

�P
i

ni

�
:L�n1

: : :L�nk
:vc;0;

so that
wt.L�n1

: : :L�nk
:vc;0/D

P
i

ni :

The needed properties of L0 required for the next result follow easily, and we
obtain the following extension of Theorem 2.20:

THEOREM 2.25. Virc is a VOA of central charge c.

A pair of VOAs V;V 0 are called isomorphic if there is a linear isomorphism
' W V ! V 0; v‘ v0 such that '.!/D !0, and 'Y .v; z/'�1 D Y 0.'.v/; z/.

In the following exercises, V is a VOA.

EXERCISE 2.26. Complete the proof of Theorem 2.25.

EXERCISE 2.27. Prove the following: Y .1; z/ D Id; 1 2 V0; ! 2 V2;Ln1 D
0 for n� �1; .L�1v/n D�nvn�1.

EXERCISE 2.28. Suppose that v 2 V satisfies L�1v D 0. Prove that v 2 V0.

EXERCISE 2.29. Suppose that V0 D C1 (cf. Exercise 2.27). Prove that Vn D 0

for n< 0.

EXERCISE 2.30. Show that dim V is finite if, and only if, ! D 0 (cf. Exercise
2.13).

EXERCISE 2.31. Show that the Heisenberg theory M0 (cf. Section 2.4) is a
VOA with vacuum 1D v0; !D

1
2
a2
�1

1D 1
2
a�1a and central charge cD 1. This

is the theory of one free boson.

EXERCISE 2.32. Let U , V be linear spaces. Show that there is a natural injec-
tion F.U /˝ F.V /! F.U ˝ V /. Suppose in addition that U and V are Fock
spaces for VOAs with vacuum vectors 1; 10 and conformal vectors !;!0 respec-
tively. Show how to construct the tensor product VOA .U˝V;Y; 1˝10; !˝!0/.
What is the central charge of this VOA?
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EXERCISE 2.33. Let ' W V ! V 0 be an isomorphism of VOAs. Prove the
following: (i) V and V 0 have the same central charge; (ii) '.1/D 10.

2.7. VOAs on the cylinder and the square bracket formalism. There is a
sense in which we may think of a VOA as being ‘on the sphere’. This is closely
related to the axiomatic approach via rationality (cf. [FHL] and Section 10.1).
Here we want to describe the corresponding VOA that lives ‘on the cylinder’.
Roughly, this corresponds to a change of variable z! qz �1 which we call the
square bracket formalism. The main purpose is to construct vertex operators
that are automatically periodic in z with period 2� i . Let V D .V;Y; 1; !/ be a
VOA of central charge c. For v 2 V introduce2

Y Œv; z�D Y .qL0
z v; qz � 1/D

X
n2Z

vŒn�z�n�1: (14)

Here, q
L0
z is the operator

qL0
z W V ! V ŒŒz��; v‘ qkzv .v 2 Vk/; (15)

and our q-convention (2) is in force. Similar expressions will occur frequently
in what follows. The vŒn� are new operators on V , and for v 2 Vk are given by

vŒm�Dm!
X
i�m

c.k; i;m/vi (16)

for m� 0, with �
k � 1Cx

i

�
D

iX
mD0

c.k; i;m/xm: (17)

From (16) and (17) we findX
i�0

�
k

i

�
vi D

X
m�0

.kC 1� k/m

m!
vŒm�: (18)

These identities are proved in Section 13 (Appendix). We also have a new
conformal vector

Q! D ! �
c

24
1; (19)

with corresponding square bracket modes

Y Œ Q!; z�D
X

n

LŒn�z�n�2:

In particular, LŒ0� provides us with an alternative Z-grading structure on V :

V D
M

n

VŒn�; VŒn� D fu 2 V j LŒ0�uD nug:

2We write modes in the square bracket formalism as vŒn� rather than vŒn�.
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We write wtŒv�D n if v 2 VŒn�. The following can be proved.

THEOREM 2.34. The quadruple .V;Y Œ ; �; 1; Q!/ is a VOA of central charge c.

Given a VOA V , we say that its alter ego .V;Y Œ ; �; 1; Q!/ is ‘on the cylinder’.
VOAs on the cylinder play an important rôle in forging the connections with
modular forms.

EXAMPLE 2.35. In the square bracket formalism, the VOA .M0;Y Œ ; �; 1; Q!/ is
generated by a state a with wtŒa�D 1. It has a basis of Fock vectors of the form
aŒ�n1� : : : aŒ�nk �1; n1 � : : :� nk � 1 satisfying

ŒaŒm�; aŒn��DmımCn;0Id:

EXERCISE 2.36. Show that LŒ�1�DL�1CL0.

EXERCISE 2.37. A state v in a VOA V is called primary of weight k with
respect to the original Virasoro algebra fLng if, and only if, it satisfies Lnv D

kın;0v for n � 0. Prove that v is primary of weight k with respect to fLng if,
and only if, it is primary of weight k with respect to fLŒn�g.

EXERCISE 2.38. Prove the assertions of Example 2.35 in the more precise form
that .M0;Y; 1; !/ and .M0;Y Œ ; �; 1; Q!/ are isomorphic Heisenberg VOAs.

3. Modular and quasimodular forms

In this section we compile some relevant background involving elliptic mod-
ular forms. This is a standard part of analytic number theory, and there are many
excellent texts dealing with the subject, such as [Kn], [O], [Se], [Sc]. Because
it is so central to our cause, we describe what we need here, referring the reader
elsewhere for more details and further development.

3.1. Modular forms on SL2.Z/. The (homogeneous) modular group is

� D SL2.Z/D

��
a b

c d

�
j a; b; c; d 2 Z; ad � bc D 1

�
;

with standard generators S D
�

0
1
�1

0

�
; T D

�
1
0

1
1

�
. The complex upper half-plane

H carries a left � -action by Möbius transformations

.
; �/‘ 
� D
a� C b

c� C d
; 
 D

�
a b

c d

�
2 �: (20)

In particular, T W �‘ �C1 and S W �‘�1=� . For k 2Z, there is a right action
of � on meromorphic functions in H given by

f jk
 .�/D .c� C d/�kf .
 �/: (21)
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A weak modular form of weight k on � is an invariant of this action. Thus
f jk
 .�/D f .�/ for 
 2 � , which amounts to

f .� C 1/D f .�/; f .�1=�/D �kf .�/:

By a standard argument the first of these equalities implies that f .�/ has a q-
expansion, or Fourier expansion at1,

f .�/D
X
n2Z

anqn; (22)

with constants an called the Fourier coefficients of f .�/. Here we are using our
q-convention (2).

We say that f .�/ is a meromorphic modular form of weight k if its q-expan-
sion has the form

f .�/D
X

n�n0

anqn (23)

for some n0. Assume that f .�/ 6D 0 with an0
6D 0. We then say that f .�/ has

a pole of order n0 at1 if n0 � 0 or a zero of order n0 if n0 � 0. In the latter
situation we also say that f .�/ is holomorphic at 1. f .�/ is a holomorphic
modular form of weight k if it is holomorphic in H [ f1g. f .�/ is almost
holomorphic if it is holomorphic in H (the behaviour at 1 being unspecified
beyond being at worst a pole). Modular forms of weight 0 are often called
modular functions, though we will not be consistent on this point. Let Mk

be the set of holomorphic modular forms of weight k. It is a C-linear space,
possibly equal to 0.

EXERCISE 3.1. Show that the kernel of the � -action (20) is the center of �
and consists of ˙I , where I is the 2� 2 identity matrix. (The quotient group
PSL2.Z/D Q� D �=f˙Ig is the inhomogeneous modular group.)

EXERCISE 3.2. (a) Show that torsion elements in Q� have order at most 3. (b)
Show that Q� has a unique conjugacy class of subgroups of order 2 or 3.

EXERCISE 3.3. Let z 2 H with Stab Q� .z/D f
 2
Q� j 
:z D zg the stabilizer of

z in Q� . Prove the following: (a) Stab Q� .z/ is a finite cyclic subgroup, (b) each
nontrivial torsion element in Q� stabilizes a unique point in H.

EXERCISE 3.4. Show that Q� acts properly discontinuously on H in the following
sense: every z 2H has an open neighborhood Nz with the property that if 
 2 Q�
then 
 .Nz/\NzD� if 
 … Stab Q� .z/ and 
 .Nz/\NzDNz otherwise. Conclude
that the orbit space � nH is a topological 2-manifold (a Hausdorff space such
that each point has an open neighborhood homeomorphic to R2).
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EXERCISE 3.5. Suppose that f .�/ is a nonzero weak modular form of weight
k. Show that k is even.

EXERCISE 3.6. Let E be the set of meromorphic modular functions of weight
zero. Show that E is a field3 containing C.

EXERCISE 3.7. Show that pointwise multiplication defines a bilinear product
Mk ˝Ml !MkCl , with respect to which M D

L
k Mk is a Z-graded com-

mutative C-algebra.

EXERCISE 3.8. Suppose that f .�/ is a meromorphic modular form of weight
zero. Show that f 0.�/ is a meromorphic modular form of weight 2.

3.2. Eisenstein series on SL2.Z/. Beyond the fact that constants in C are
modular functions of weight 0 (cf. Exercise 3.6), it is not so easy to construct
nonconstant modular functions of weight 0 or any nonzero modular form of
nonzero weight. We content ourselves with the description of some examples
chosen because of their relevance to VOA theory.

The most accessible nonconstant modular forms are the Eisenstein series. For
an integer k � 2, set

Ek.�/D�
Bk

k!
C

2

.k � 1/!

X
n�1

nk�1qn

1� qn

D�
Bk

k!
C

2

.k � 1/!

X
n�1

�k�1.n/q
n: (24)

Here, �k�1.n/D
P

d jn dk�1 and Bk is the k-th Bernoulli number defined by4

z

qz � 1
D

X
k�0

Bk

k!
zk
D 1� 1

2
zC 1

12
z2
C � � � (25)

The well-known identity of Euler

�.k/D�
.2� i/kBk

2.k!/
.k � 2 even/; (26)

permits us to reexpress the constant term of (24) in terms of zeta-values. The
basic fact is this: Let k � 3. Then Ek.�/ is a holomorphic modular form of
weight k; it is identically zero if, and only if, k is odd. We will see one way to
prove this in Section 5. We emphasize that E2.�/ is not a modular form.

The normalization employed in (24) is related to elliptic functions (Section
5). In fact B2k never vanishes, so we can renormalize so that the q-expansion

3Of course, field here is in the algebraic sense.
4Several different conventions are used to define Bernoulli numbers in the literature.
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begins 1C � � � . We single out the first three Eisenstein series corresponding to
k D 2; 4; 6 renormalized in this way, and rename them (following Ramanujan)

P D 1�24
X
n�1

�1.n/q
n; QD 1C240

X
n�1

�3.n/q
n; RD 1�504

X
n�1

�5.n/q
n:

P;Q;R are algebraically independent, so that they generate a weighted poly-
nomial algebra, denoted

QD CŒP;Q;R�; (27)

where P;Q;R naturally have weights (degree) 2; 4; 6 respectively. Q is the
algebra of quasimodular forms. Q contains every holomorphic modular form.
Indeed, we have (cf. Exercise 3.7)

THEOREM 3.9. The graded algebra MD
L

Mk of holomorphic modular forms
on � is the graded subalgebra CŒQ;R� of Q.

Theorem 3.9 follows from a careful study of the singularities (zeros and poles)
of modular forms, but we will not discuss this here. The Theorem contains a
lot of information about holomorphic modular forms. For example, there are
no such nonzero forms of negative weight or weight 2, holomorphic forms of
weight zero are necessarily constant, and dim Mk <1. Indeed, inasmuch as Q

and R are free generators in weights 4 and 6 respectively, the Hilbert–Poincaré
series of M isX

k�0

.dim Mk/t
k
D

1

.1� t4/.1� t6/

D 1C t4
C t6
C t8
C t10

C2t12
C t14

C2t16
C� � � : (28)

As we already mentioned, E2.�/ is not a modular form. Indeed, it satisfies
the transformation law

E2j2
 .�/DE2.�/�
c

2� i.c� C d/
; 
 D

�
a b

c d

�
: (29)

The importance of E2.�/ for us stems from its relation to derivatives of modular
forms. Suppose that f .�/ is a meromorphic modular form of weight k. We
define the modular derivative of f .�/ by

Dkf .�/DDf .�/D .� C kE2.�// fk.�/: (30)

where � D q d=dq. One can show without difficulty (cf. Exercise 3.13) that
Dfk.�/ is modular of weight kC 2, and is holomorphic if fk.�/ is.

EXERCISE 3.10. Prove that
qz

.1� qz/2
D

1

z2
�

X
k�2

Bk

k!
.k � 1/zk�2:
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Deduce that Bk D 0 for odd k � 3.

EXERCISE 3.11. Prove that E8 D
3
7
E2

4
and E10 D

5
11

E4E6.

EXERCISE 3.12. Show that (28) is equivalent to the formula dim M2k D Œk=6�

if k � 1 .mod 6/ and 1C Œk=6� otherwise.

EXERCISE 3.13. Prove that .Dkf /jkC2.�/DDk.f jk
 /.�/ for any meromor-
phic function f .�/. Conclude that Dk induces a linear map Mk !MkC2.

EXERCISE 3.14. Prove that DE4 D 14E6 and DE6 D
60
7

E2
4

.

EXERCISE 3.15. Let D WM!M be the linear map whose restriction to Mk

is Dk . Prove that D is a derivation of the algebra M.

3.3. Cusp-forms and modular functions on SL2.Z/. Thanks to Theorem 3.9,
every holomorphic modular form of weight k is equal to a unique homogeneous
polynomial in Q and R. In this subsection we describe some important examples
of particular relevance to VOAs. We start with the discriminant, defined by

�.�/D
Q3�R2

123
D q� 24q2

C � � � : (31)

�.�/ is evidently a holomorphic modular form of weight 12. It may alternatively
be described by a q-product which goes back to Kronecker, namely

�.�/D q
Y
n�1

.1� qn/24: (32)

This formula finds its natural place in the theory of elliptic functions. From
our present vantage point, the fact that (31) and (32) coincide is miraculous.
Beyond the product formula, the properties that make �.�/ important for us
are the following: it does not vanish in H, and (up to scalars) it is the unique
nonzero holomorphic modular form of least weight that vanishes at 1. The
nonvanishing property has a natural explanation in the theory of elliptic func-
tions. Concerning the second property, we introduce cusp forms defined by

Sk D ff .�/ 2Mk j f vanishes at1g; SD
M

k

Sk :

Our assertions then say that Sk D 0 for k < 12 and S12 D C�.�/. Using (31),
it follows that �.�/�1 is an almost holomorphic modular form of weight �12

with a pole of order 1 at 1. Applications of these facts are given in Exercise
3.16.

Closely related to�.�/ is the Dedekind �-function, whose q-expansion is the
24th root of that for �.�/:

�.�/D q1=24
Y
n�1

.1� qn/: (33)
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Note that �.�/ is not a modular form in our sense. It satisfies identity

�.�/�1
D q�1=24

X
n�0

p.n/qn

D q�1=24.1C qC 2q2
C 3q3

C 5q4
C � � �/;

(34)

where p.n/ is the unrestricted partition function. This identity goes back to
Euler.

Our next example is the famous j -function, defined by

j .�/D
Q3

�.�/
D q�1

C 744C 196884qC � � � (35)

As the quotient of two modular forms of weight 12, j .�/ has weight zero, and
because ��1 is almost holomorphic, so too is j .�/. In the notation of Exercise
3.6, j .�/2E. Let � nH be the orbit space for the action of � on H (cf. Exercise
3.4). Because the weight is zero, we see from (21) that j induces a map

j W � nH! C

which turns out to be a homeomorphism. It can be shown that E D C.j / is
exactly the field of rational functions in j .

EXERCISE 3.16. Considered as a subspace of the algebra M, show that S is
the principal ideal generated by �.

EXERCISE 3.17. Show that Mk DS2k ˚CE2k for k � 2.

EXERCISE 3.18. Prove that ��.�/D�1
2
�.�/E2.�/. Conclude that D12�.�/D

0. Give another proof of this by using Theorem 3.9.

EXERCISE 3.19. Regard D as a derivation of M as in Exercise 3.15. Show
that the space of D-constants (i.e., the subspace of M annihilated by D) is the
polynomial algebra CŒ��.

EXERCISE 3.20. Prove that the ring of almost holomorphic modular functions
of weight zero on � is the space CŒj � of polynomials in j .�/.

4. Characters of vertex operator algebras

Fix a VOA .V;Y; 1; !/ with Z-graded Fock space V D ˚Vn and central
charge c. In this section we introduce the idea of the character of V as a sort of
analog of the character of a group representation. This is essentially the theory
of 1-point correlation functions on V .
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4.1. Zero modes. We start with a useful calculation. Suppose that v 2 Vk ; w 2

Vm; n 2 Z. Remembering that Li D !iC1, we have

L0vnw D .Œ!1; vn�C vnL0/w D

�X
i

�
1
i

�
.Li�1v/nC1�i C vnL0

�
w

D
�
.L�1v/nC1C .L0v/nC vnL0

�
w D .mC k � n� 1/vnw:

Here, we used the commutator formula (cf. Section 2.3) for the second equality
and the last identity of Exercise 2.27 for the fourth equality. What we take from
this is that modes of homogeneous states are graded operators on V :

v 2 Vk ) vn W Vm! VmCk�n�1: (36)

In particular, let us define5 the zero mode o.v/ of a state v 2 Vk to be vk�1, and
extend this definition to V additively. From (36) we then have for all integers
m and states v that

o.v/ W Vm! Vm: (37)

The point of all this is that as an operator on Vm we can trace the zero mode
and form a generating function (cf. (15))

Z.v; q/D TrV o.v/qL0�c=24
D q�c=24

X
n

TrVn
o.v/qn: (38)

This is to be regarded as a formal q-expansion at this point. Apart from memori-
alizing the central charge, the factor q�c=24 may seem somewhat arbitrary. This
feeling will pass. Because the homogeneous spaces Vn vanish for small enough
n, we see that

Z.v; q/ 2 q�c=24CŒŒq��Œq�1�:

Z DZV defines the character of V , i.e., the linear map

Z W V ! q�c=24CŒŒq��Œq�1�; v‘Z.v; q/:

EXERCISE 4.1. Let U˝V be the tensor product of VOAs U;V (Exercise 2.32).
Prove that ZU˝V DZU ZV .

EXERCISE 4.2. Suppose that V is a VOA with v 2 V . Prove the identity
q

L0
x Y .v; z/q

�L0
x D Y .q

L0
x v; qxz/.

EXERCISE 4.3. Let a be the generating state of weight 1 for the Heisenberg
VOA (Section 2.4). Prove that the zero mode o.a/ is zero.

EXERCISE 4.4. Suppose that V0DC1 (cf. Exercise 2.29). Prove using (36) that
for a 2 Vn1

and b 2 Vn2
we have anb D 0 for all n � n1C n2. Using Exercise

2.5, deduce that Y .a; z/�k Y .b; z/ with order of locality k � n1C n2.

5The zero mode of v is generally not the zeroth mode v0 but rather the mode which has weight zero as an
operator. However, in the convention used for modes in CFT as practiced by physicists, it is the zero mode.



202 GEOFFREY MASON AND MICHAEL TUITE

4.2. Graded dimension. The most prominent Z-value is that obtained by
tracing the zero mode of the vacuum. From Exercise 2.26 we have Y .1; z/D IdV

and 1 2 V0. So the zero mode of 1 is IdV , whence

ZV .1/D TrV qL0�c=24
D q�c=24

X
n

dim Vnqn: (39)

This is variously called the graded dimension, q-dimension, 0-point function, or
partition function of V .

The graded dimensions of our two main examples M0 and Virc are readily
computed. This is because the Fock spaces are Verma modules, or closely re-
lated to them, and these are easy to handle. Let us start with the Fock space M0

for the free boson, which has central charge c D 1 (Theorem 2.18 and Exercise
2.32). In the notation of (10), M0 (considered as a Z-graded linear space) coin-
cides with U. OA�/ equipped with the natural product grading for which a˝ t�n

has weight n. Because of the PBW Theorem, the universal enveloping algebra
is itself isomorphic as graded space to the symmetric algebra S.

`
n�1 Cx�n/

with x�n having weight n. (In other words, M0 ‘is’ a polynomial algebra in
variables x�n. Compare with Remark 2.19.) As graded algebras, symmetric
algebras are multiplicative over direct sums. It follows that

ZM0
.1/D q�1=24

1Y
nD1

.q-dimension of CŒx�n�/

D q�1=24
1Y

nD1

.1C qn
C q2n

C � � �/D q�1=24
1Y

nD1

.1� qn/�1;

which is none other than the inverse eta-function (33), (34). Thus we have

ZM0
.1/D �.q/�1: (40)

For an integer n� 1, let M˝n
0

be the n-fold tensor product of M0 considered as
a VOA as described in Exercise 2.32. This is the theory of n free bosons. Using
Exercise 3.1 we deduce from (40) that

Z
M
˝n
0

.1/D �.q/�n: (41)

In particular, the graded dimension of the VOA M˝24
0

of 24 free bosons (the
bosonic string) is the inverse discriminant �.�/�1.

The calculation of the graded dimension of Virc is similar. Indeed, the Fock
space Mc;0 (13) is isomorphic as Z-graded linear space to M0. We must quotient
out the graded submodule U.Vir/L�1:vc;0, and this is isomorphic to Mc;0Œ1�,
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that is Mc;0 with an overall shift of C1 in the grading, because L�1:vc;0 has
weight 1 as an element of Mc;0. We find that

ZVirc
.1/D

q�c=24Q
n�2.1� qn/

; (42)

which is not the q-expansion of a modular form.
Next we consider the character value ZV .!/ for a VOA V . Because the zero

mode of the conformal vector is L0, which acts on Vn as multiplication by n,
we have

ZV .!/D q�c=24
X

n

n dim Vnqn:

This is almost, but not quite, equal to �ZV .1/ (� as in (30)). If instead we use
the square bracket conformal vector Q! 2 VŒ2� (19) we find

ZV . Q!/D q�c=24
X

n

.n�
c

24
/ dim Vnqn

D �.ZV .1//:

In the case of M0, for example, we obtain using Exercise 3.18 that

ZM0
. Q!/D ��.�/�1

D
E2.�/

2�.�/
:

This suggests that ‘nicer’ character values obtain by evaluating ZV on states
which are homogeneous in the square bracket formalism, i.e., lie in VŒk� for
some k.

4.3. The character of the Heisenberg algebra. It is generally a difficult prob-
lem to compute the 1-point functions ZV .v/ of a VOA V for a complete basis
of states. We describe the solution for the Heisenberg algebra M0 ([MT1]). It
well illustrates the principle suggested at the end of the previous Subsection.

THEOREM 4.5. Let MŒ0� D
L

n�0.M0/Œn� be the Fock space for M0 equipped
with the square bracket grading (cf . Section 2.7). Let Q be the graded algebra
of quasimodular forms (27). There is a surjection of graded linear spaces

MŒ0�!Q; v‘Qv.�/

such that ZM0
.v/DQv.�/=�.�/.

Up to a normalizing factor �.�/�1 then, every 1-point function is a quasimodular
form, and every quasimodular form of weight k arises in this way from a state v2
.M0/Œk� (cf. Exercise 4.7). There is an explicit description of the quasimodular



204 GEOFFREY MASON AND MICHAEL TUITE

form Qv.�/ attached to a state v with wtŒv�D k which goes as follows. A basis
of states for .M0/Œk� is given by

v� D aŒ�k1� : : : aŒ�kn�1 (43)

where kD k1C� � �Ckn and 1� k1� : : :� kn range over the parts of a partition
� of k. The quasimodular form Qv�.�/ is given by

Qv�.�/D
X

'D:::.rs/:::

Y
.rs/

.�1/rC1 .r C s� 1/!

.r � 1/!.s� 1/!
ErCs.�/; (44)

where the notation is as follows. Let ˚ D fk1; : : : ; kng be the parts of the
partition �. Then ' ranges over all fixed-point-free involutions in the symmet-
ric group ˙.˚/, so that ' can be represented as a product of transpositions
: : : .rs/ : : : with .r; s/ a pair of parts of �. For each such ', the product ranges
over the transpositions whose product (in ˙.˚/) is '. We will indicate how
(44) can be proved in the next Section. A detailed proof appears later in Section
11.1.

Assume formula (44) in the following exercises.

EXERCISE 4.6. Show that Qv�.�/ vanishes if � has either an odd number of
parts or an odd number of odd parts.

EXERCISE 4.7. Assume that � has both an even number of parts and an even
number of odd parts. Prove that Qv�.�/ has a nonzero constant term, and in
particular does not vanish.

EXERCISE 4.8. With the same assumptions as the previous Exercise, prove that
Qv�.�/ 2M if, and only if, � has at most one part equal to 1.

EXERCISE 4.9. Prove the assertion that every quasimodular form arises as the
trace of a state in M0.

5. Elliptic functions and 2-point functions

There is an extension of the idea of 1-point functions to n-point functions for
any (nonnegative) n. We mainly restrict ourselves here to the case of 2-point
correlation functions, which are related to elliptic functions.

5.1. Elliptic functions. Throughout this section, lattice means an additive
subgroup��C of rank 2. As such it is the Z-span of an R-basis .!1; !2/ of C.
An elliptic function is a function f .z/ which is meromorphic in C and satisfies
f .zC �/ D f .z/ for all � in some lattice �. Equivalently, f .zC!i/ D f .z/

for basis vectors !1; !2 of �. � is the period lattice of f .z/. Note that C=�
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has the structure of a complex torus (aka complex elliptic curve) and that f .z/
induces a map

f W C=�! CP1
D C[f1g:

The set of all meromorphic functions with period lattice � is a field M� (the
function field of the torus). We have C � M� where C is identified with the
constants, moreover f 0.z/ 2M� whenever f .z/ 2M�.

Two lattices �1; �2 are homothetic if there is ˛ 2 C with ˛�1 D �2. It is
usually enough to deal with some fixed lattice in a homothety class (the corre-
sponding complex tori are isomorphic), and every � is homothetic to a lattice
with basis .2� i; 2� i�/ and � 2 H. We let �� denote this lattice.

The classical Weierstrass }-function is6

}.z; �/D
1

z2
C

X0

m;n2Z

�
1

.z�!m;n/2
�

1

!2
m;n

�
: (45)

Here, !m;n D 2� i.m� C n/. The double sum is independent of the order of
summation and absolutely convergent. It defines a function with the following
properties: (a) double pole at each point of�� , (b) holomorphic in .C�H/n�� ,
(c) even in z, (d) period lattice �� . In particular, for fixed � 2H the }-function
}.z; �/ lies in the field M�� . It turns out that

M�� D C.}.z; �/; }0.z; �//

is a function field in one variable. Indeed the set of even elliptic functions is a
simple transcendental extension C.}/ and M�� � C.}/ a quadratic extension.

There is a natural left action of � on C�H extending (20). It is given by


 W .z; �/‘

�
z

c� C d
;

a� C b

c� C d

�
; 
 D

�
a b

c d

�
2 �; (46)

corresponding to a base change 2� i.�; 1/‘2� i.a�Cb; c�Cd/ of�� followed
by the homothety (conformal rescaling) z‘ z=.c� C d/. Then it follows that

}.
 .z; �//D .c� C d/2}.z; �/: (47)

This says that }.z; �/ is Jacobi form of weight 2 [EZ], though we will neither
explain nor pursue this idea here.

What we need is that }.z; �/ is invariant under �‘ �C1 as well as z‘ zC

2� i (from the elliptic property). It follows that }.z; �/ has a Fourier expansion

6Here and below, a prime appended to a summation indicates that terms rendering the sum meaningless,
in this case .m;n/D .0;0/, are to be omitted.
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in both q and qz . (Compare with the development in Section 3.1.) To describe
this we define

P1.z; �/D
X0

n2Z

qn
z

1� qn
�

1

2
; (48)

P2.z; �/D
d

dz
P1.z; �/D

X0

n2Z

nqn
z

1� qn
: (49)

The extra term �1
2

in (48) ensures that P1.z; �/ is odd in z. For nonzero z in
the fundamental parallelogram defined by the basis .2� i; 2� i�/ of �� we have
�2� Im � < Re z < 0, so that jqj < jqzj < 1. P1.z; �/ and its z-derivatives are
absolutely convergent in this domain. We can now give the Fourier expansion
of the }-function, which reveals a fundamental relationship with the Eisenstein
series of Section 3.2.

THEOREM 5.1. We have

}.z; �/D P2.z; �/�E2.�/D
1

z2
C

X
k�2

.2k � 1/E2k.�/z
2k�2:

We sketch the proof, which uses a key identity (cf. Exercise 5.3 below):X
n2Z

1

.x� 2� i n/2
D

qx

.1� qx/2
(50)

for x 6D 0. In the exceptional case,X0

n2Z

1

.2� i n/2
D

2�.2/

.2� i/2
D�

1

12
: (51)

Now

}.z; �/C
X
m2Z

�X
n2Z

1

!2
m;n

�
D

X
m2Z

�X
n2Z

1�
z�!m;n

�2�; (52)

where the convergent nested double sums depend on the order of summation.
For the lhs, use (50) with x D 2� im� 6D 0, (51) and jqj< 1 to obtain

X
m2Z

�X
n2Z

1

!2
m;n

�
D�

1

12
C

X
0 6Dm2Z

qm

.1� qm/2
D�

1

12
C 2

X
m;n>0

nqmn
DE2.�/

(cf. (24)). For the rhs of (52), use (50) with xD z�2� im� and argue similarly
using jqzqmj; jq�1

z qmj< 1 for m> 0 to get
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m2Z

qzqm

.1� qzqm/2
D

qz

.1� qz/2
C

X
m>0

�
qzqm

.1� qzqm/2
C

qzq�m

.1� qzq�m/2

�
D

qz

.1� qz/2
C

X
m>0

X
n>0

n.qn
z C q�n

z /qnm

D
qz

.1� qz/2
C

X
n>0

n
�
qn

z C q�n
z

� qn

1� qn

D

X
n>0

n

�
qn

z

1� qn
�

q�n
z

1� q�n

�
D P2.z; �/: (53)

This proves the first equality in the theorem. From (45) we see that

}.z; �/D
1

z2
C

X
k�3

.k � 1/ QEk.�/z
k�2;

with

QEk.�/D
X0

m;n2Z

1

!k
m;n

D
1

.2� i/k

X0

m;n2Z

1

.m� C n/k
: (54)

We can use (50) to identify QEk with the corresponding Eisenstein series Ek.�/

(24), in particular QEk.�/ is identically zero for k odd. This completes our dis-
cussion of Theorem 5.1.

We note that P1 is not an elliptic function (cf. Exercise 5.6). Higher z-
derivatives P

.m/
1

.z; �/ for m � 1 are elliptic functions, and are derivatives of
}.z; �/ for m� 2. We have

P
.m/
1

.z; �/D
X0

n2Z

nmqn
z

1� qn

Dm!

�
.�1/mC1

zmC1
C

X
k�mC1

�
k � 1

m

�
Ek.�/z

k�m�1

�
: (55)

EXERCISE 5.2. Prove directly from the definition that an elliptic function which
is holomorphic is necessarily constant.

EXERCISE 5.3. Verify (50) by comparing poles.

EXERCISE 5.4. Prove that for even k � 4, QEk.�/ coincides with Ek.�/. (Use
(26).)

EXERCISE 5.5. Deduce from (47) that Ek.�/ 2Mk for even k � 4.

EXERCISE 5.6. Prove that P1.zC 2� i�; �/D P1.z; �/� 1.
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5.2. 2-Point correlation functions. Let .V;Y; 1; !/ be a VOA of central charge
c. For an integer n�0, the n-point correlation function for states u1; : : : ;un2V

is the formal expression

FV ..u
1; z1/; : : : ; .u

n; zn/; q/

D TrV Y .q
L0

1
u1; q1/ : : :Y .q

L0
n un; qn/q

L0�c=24; (56)

where qi D qzi
for variables z1; : : : ; zn. For n D 0 this reduces to the graded

dimension TrV qL0�c=24 as discussed in Section 4.2. If nD 1 and u1 2 Vk , the
expression in (56) equals

TrV Y .q
L0

1
u1; q1/q

L0�c=24
D qk

1

X
m

TrV u1
mq�m�1

1 qL0�c=24

D TrV o.u1/qL0�c=24
DZ.u1; q/;

where we used (36) to get the second equality. So for nD 1, (56) is the 1-point
function of Section 4, as expected. There are similar modal expressions for all
n-point functions, but for n� 2 they are unhelpful. Here we focus on the 2-point
function

FV ..u; z1/; .v; z2/; �/D TrV Y .q
L0

1
u; q1/Y .q

L0

2
v; q2/q

L0�c=24: (57)

We want to re-express the 2-point function as a 1-point function, and for this
we need be able to manipulate vertex operators. More precisely, we need to
manipulate expressions involving vertex operators which are traced over V . In
such a context the locality of operators (4) simplifies in the sense that

TrV Y .u; z1/Y .v; z2/q
L0 D TrV Y .v; z2/Y .u; z1/q

L0 ;

where the additional factor .z1 � z2/
k (loc. cit.) has conveniently disappeared.

Similar comments apply to the associativity formula (7), where we have

TrV Y .u; z1C z2/Y .v; z2/q
L0 D TrV Y .Y .u; z1/v; z2/q

L0 :

These and similar assertions fall under the heading of duality in CFT, which is
discussed in [FHL]. We shall use them below without further comment. Thus
with some changes of variables together with Exercise 4.2, we have

FV ..u; z1/; .v; z2/; �/D TrV Y .Y .q
L0

1
u; q1� q2/q

L0

2
v; q2/q

L0�c=24

D TrV Y .q
L0

2
Y ..qL0

z12
u; qz12

� 1/v; q2/q
L0�c=24

DZV .Y Œu; z12�v; �/; (58)
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where z12 D z1� z2. This is the desired 1-point function. Similarly,

FV ..u; z1/; .v; z2C2� i�/; �/D q�c=24 TrV Y .q
L0

1
u; q1/Y .q

L0q
L0

2
v; qq2/q

L0

D q�c=24 TrV Y .q
L0

1
u; q1/q

L0Y .q
L0

2
v; q2/

D q�c=24 TrV Y .q
L0

2
v; q2/Y .q

L0

1
u; q1/q

L0

D FV ..u; z1/; .v; z2/; �/;

Thus FV is periodic in z2 with period 2� i� , and the same holds for z1. It is
obvious that FV is also periodic in each zi with period 2� i . It follows that, at
least formally, the 2-point function FV (alias the 1-point function (58)) is elliptic
in the variable z12 with period lattice �� .

5.3. First Zhu recursion formula We continue to pursue the ellipticity of the
2-point function FV . It is the analytic of FV which needs to be established. To
this end we develop a recursion formula of Zhu (see [Z]), which finds a number
of applications.

THEOREM 5.7. We have

FV ..u; z1/; .v; z2/; �/

D TrV o.u/o.v/qL0�c=24
�

X
m�1

.�1/m

m!
P
.m/
1

.z12; �/ZV .uŒm�v; �/: (59)

The sum in (59) is finite since uŒm�vD 0 for m sufficiently large, and from Sec-
tion 5.1 P

.m/
1

.z12; �/ is elliptic for m� 1. Thus the ellipticity of FV is reduced
to the convergence of TrV o.u/o.v/ and the 1-point functions ZV .uŒm�v; �/.
This Theorem makes clear the deep connection between elliptic functions (and
therefore also modular forms) and VOAs. There is an analogous recursion for
all n-point functions.

To prove Theorem 5.7 we may assume that u 2 Vk , whence

FV ..u; z1/; .v; z2/; �/D
X
n2Z

q�n�1Ck
1

TrV

�
unY .q

L0

2
v; q2/q

L0�c=24
�
: (60)

Using (36), Exercise 4.2 and (18) we have�
un;Y .q

L0

2
v; q2/

�
D

X
i�0

�
n

i

�
Y .uiq

L0

2
v; q2/q

n�i
2 D qr

2Y .q
L0

2

X
i�0

�
n

i

�
uiv; q2/

D qr
2

X
m�0

rm

m!
Y .q

L0

2
uŒm�v; q2/;

where r D nC 1� k.
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Hence

TrV

�
unY .q

L0

2
v; q2/q

L0�c=24
�

D TrV

�
Œun;Y .q

L0

2
v; q2/�q

L0�c=24
�
CTrV

�
Y .q

L0

2
v; q2/unqL0�c=24

�
D qr

2

X
m�0

rm

m!
ZV .uŒm�v; �/C qr TrV

�
Y .q

L0

2
v; q2/q

L0�c=24un

�
:

From this we obtain

qr
2

X
m�0

rm

m!
ZV .uŒm�v; �/D .1� qr /TrV

�
unY .q

L0

2
v; q2/q

L0�c=24
�
;

so that for r ¤ 0 we have

TrV

�
unY .q

L0

2
v; q2/q

L0�c=24
�
D

qr
2

1� qr

X
m�1

rm

m!
ZV .uŒm�v; �/:

Finally, the term corresponding to r D 0 in (60) is TrV o.u/o.v/qL0�c=24. Sub-
stituting into (60), we find

FV ..u; z1/; .v; z2/; �/

D TrV

�
o.u/o.v/qL0�c=24

�
C

X
m�1

1

m!
ZV .uŒm�v; �/

X0

n2Z

rmq�n
z12

1� qn
;

and the theorem follows upon comparison with (55).

EXERCISE 5.8. Let a be the generating state for the Heisenberg VOA M0

(cf. Section 2.4). Prove that FM0
..a; z1/; .a; z2/; �/D P2.z12; �/=�.�/.

EXERCISE 5.9. For states u; v in a VOA V , show that ZV .uŒ0�v; q/D 0.

5.4. Second Zhu recursion formula. Theorem 5.7 allows us to obtain a related
recursion formula for 1-point functions.

THEOREM 5.10. For n� 1,

ZV .uŒ�n�v; �/D ın;1 TrV .o.u/o.v/q
L0�c=24/

C

X
m�1

.�1/mC1

�
nCm� 1

m

�
EnCm.�/ZV .uŒm�v; �/: (61)

To see this, note from (58) that

FV ..u; z1/; .v; z2/; �/D
X
n2Z

ZV .uŒ�n�v; �/z�n�1
12 :

Now compare this with the z12-expansion of the rhs of (59) using (55). Taking
n� 1 we obtain (61). (For n� 0 we get no information.)
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One can apply Theorem 5.10 in a number of contexts. If we work with states
u; v; : : : in V that are homogeneous with respect to the square bracket Virasoro
operator LŒ0�, then the 1-point functions occurring on the rhs of (61) are those
of states uŒm�v whose (square bracket) weight is strictly less than that of uŒ�n�v

for n � 1. Thus one might hope to proceed inductively (with respect to square
bracket weights) to show that 1-point functions are holomorphic in H. To illus-
trate, we introduce the important class of VOAs V of CFT-type defined by the
property that the zero weight space V0 is nondegenerate, i.e., spanned by the
vacuum vector. This implies (Exercise 2.29) that

V D C1˚V1˚ � � � (62)

Using Theorem 5.10 and the remarks following Theorem 5.7 we obtain:

LEMMA 5.11. Suppose that V is a VOA of CFT-type, and let S be a generating
set for V as in Theorem 2.7. Assume that TrV o.u/o.v/qL0�c=24 is holomorphic
in H for all u 2 S and v 2 V , and that the graded dimension ZV .1/ is holomor-
phic in H. Then every 1-point function for V is holomorphic in H, and every
2-point function for V is elliptic.

By way of example, consider the Heisenberg algebra M0, which is certainly
of CFT-type. It is generated by a single state a in weight 1, and o.a/ D 0

(cf. Exercise 4.3). Furthermore ZM0
.�/ is the inverse �-function (40) and hence

holomorphic in H. So the conditions of the Lemma apply to M0, so that all 1-
and 2-point functions for M0 have the desired analytic properties. Indeed, the
vanishing of the zero mode for a means that in the recursion (61), the anomalous
first term on the rhs is not present (taking uD a, as we may). We get a recursion
for 1-point functions which may be solved with some effort, and this is how one
proves Theorem 4.5 and (44). The details are described in Section 11.1.

EXERCISE 5.12. Give the details for the proof of Lemma 5.11.

EXERCISE 5.13. Show that the analysis of 1-point and 2-point functions asso-
ciated to the Heisenberg algebra goes through with the same conclusions for the
Virasoro algebra Virc .
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Part II. Modular-invariance and rational vertex
operator algebras

The representation theory of a VOA V , i.e., the study of V -modules and their
characters (correlation functions) is fundamental. In this Section we introduce
some of the ideas in this subject.

6. Modules over a vertex operator algebra

6.1. Basic definitions. Let V D .V;Y; 1; !/ be a VOA of central charge c. As
one might expect, a V -module is (roughly speaking) linear space M admitting
fields associated to states of V which satisfy axioms analogous to those satisfied
by the fields Y .v; z/. It is useful to introduce various types of modules, the most
basic of which is the following.

DEFINITION 6.1. A weak V -module is a pair .M;YM / where

YM W V ! F.M /; v‘ YM .v; z/D
X

n

vM
n z�n�1 is a linear map;

and the following hold for all u; v 2 V , w 2M :

vacuum W YM .1; z/D IdM ;

locality W YM .u; z/� YM .v; z/;

associativity W for large enough k;

.z1C z2/
kYM .u; z1C z2/YM .v; z2/w D .z1C z2/

kYM .Y .u; z1/v; z2/w:

There is no notion of creativity or translation covariance per se for V -modules. It
is not sufficient to assume only locality of operators here; the associativity axiom
(the analog of (7)) is crucial. Locality and associativity are jointly equivalent to
the analog of (6), namelyX

i�0

�
p

i

�
.urCiv/

M
pCq�i D

X
i�0

.�1/i
�

r

i

��
uM

pCr�iv
M
qCi � .�1/rvM

qCr�iu
M
pCi

�
:

As before, this is the modal version of the Jacobi Identity. For further details,
see [FHL] and [LL]. A weak V -module is essentially a module for a vertex
algebra.

DEFINITION 6.2. An admissible V -module is a weak V -module .M;YM /

equipped with an N-grading M D
L

n�0 Mn such that

v 2 Vk ) vM
n WMm!MmCk�n�1: (63)
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Admissible modules are also called N-gradable modules. Note that (63) is the
analog of (36). There is no requirement that the homogeneous spaces Mn have
finite dimension. An overall shift in the grading does not affect (63), so we may,
and usually shall, assume that M0 6D 0 if M 6D 0. We then refer to M0 as the
top level.

DEFINITION 6.3. A V -module is a weak V -module .M;YM / equipped with a
grading M D

L
�2C M� such that

dim M� <1;

8�;M�Cn D 0 for n� 0;

L0mD �m; m 2M�:

We frequently call a V -module as in Definition 6.3 an ordinary V -module if we
want to emphasize that it is not merely a weak or admissible module. There are
containments

fweak V -modulesg � fadmissible V -modulesg � fordinary V -modulesg;

which amounts to saying that ordinary V -modules can be equipped with an N-
grading making them admissible (cf. Exercise 6.6). A (weak, admissible, or
ordinary) V -module M is irreducible if no proper, nonzero subspace of V is
invariant under all modes vM

n . More generally, we can define submodules of M

in the usual way, though we will not go much into this here.
A VOA V is ipso facto an ordinary V -module in which Y D YM . It is called

the adjoint module. If the adjoint module is irreducible then we say that V is
simple. This is consistent with standard algebraic usage: it can be shown using
skew-symmetry that if U � V is a submodule of the adjoint module V then U

is a (2-sided) ideal in a natural sense, and that V =U has a well-defined structure
of VOA. See Exercise 6.11 for further details.

We want to define the partition function and character of a V -module M

along the lines of that for V itself, as discussed in Section 4. This makes no
sense unless M is equipped with a suitable grading. An important case when
this can be carried through is when M is an irreducible, ordinary V -module. In
this case, if � 2 C satisfies M�Cn 6D 0 for some integer n then

L
n2Z M�Cn is

invariant under all modes vM
n and hence coincides with M thanks to irreducibil-

ity. Relabeling, the grading on a (nonzero) irreducible, ordinary V -module M

takes the shape

M D
M
n�0

MhCn: (64)

Mh is the top level and h a uniquely determined scalar called the conformal
weight of M . It is an important numerical invariant of the module.
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The zero mode oM .v/ for v 2 V is the mode of YM .v; z/ which has weight
zero as an operator on M ; it is defined because of (63). We can now define
the character ZM of an irreducible V -module M of conformal weight h in the
expected manner, namely

ZM .v/D TrM oM .v/qLM
0
�c=24

D qh�c=24
X
n�0

TrMhCn
oM .v/qn: (65)

The partition function of M is

ZM .1/D TrM qLM
0
�c=24

D qh�c=24
X
n�0

dim MhCnqn

where, naturally, LM
0

is the corresponding zero mode for the Virasoro element.

The set of all irreducible modules over the Heisenberg VOA M0 is readily
described. As usual, let a be the weight one state that generates M0. In Section
2.4 we defined, for each h 2 C, the Verma module Mh and constructed a field
a.z/ 2 F.Mh/. It is more precise to denote this by ah.z/. Much as in the case
hD 0, one finds that each Mh is an irreducible M0-module of conformal weight
h with YMh

.a; z/ D ah.z/. In particular, M0 is a simple VOA. The Stone-von
Neumann Theorem is essentially the converse: for each h, Mh is the unique
(up to isomorphism7) irreducible module over M0 of conformal weight h. See
[FLM] for a proof. The construction of the Verma module Mh shows that

ZMh
.1/D qh=�.q/: (66)

The characters ZMh
can be understood along the same lines as the special

case of M0 that we described in Sections 4 and 5. As illustrated by (66), results
identical to Theorem 4.5 and (44) hold for Mh, except that an extra factor qh

must be included. Our development of the theory of 1- and 2-point functions
may be carried out, with essentially no change, for general V -modules rather
than just adjoint modules. It should be pointed out, however, that the extra factor
spoils the quasimodularity of the character values.

While ordinary V -modules are perhaps natural, the reader may be wonder-
ing how and why admissible V -modules are relevant. Here we will limit our-
selves here to a some general comments, and continue the discussion below.
See Exercises 6.8-6.10 for some details, and [DLM3], [Z] for complete proofs.
One considers certain subspaces O0 � O1 � � � � � V , the quotient spaces
An.V /D V =On.V /, and the inverse limit

A.V /D lim
 

An.V /:

7We have not defined morphisms of V -modules, but readers should be able to formulate it for themselves
without diffuclty.
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Each An.V / has natural structure of associative algebra such that the canon-
ical projection AnC1 ! An.V / is an algebra morphism. So A.V / is also an
associative algebra. A0.V / is called the Zhu algebra of V .

The representation theory of these algebras is intimately related to that of V

itself. There are functors

˝n W Adm V -Mod!An.V /-Mod

from the category of admissible V -modules to the category of An.V /-modules,
and because of the details of the construction the quotient functor ˝n=˝n�1

makes sense (˝�1 is trivial). For an admissible V -module M ,

˝n.M /=˝n�1.M /

is an An.V /-module that is not the lift of an An�1.V /-module. An.V / is de-
signed in such a way that it acts naturally on the sum of the first n graded pieces
of an admissible V -module, and this is how the functor ˝n is defined. It turns
out that there is another functor

Ln WAn.V /-Mod! Adm V -Mod (67)

which is a right inverse of the functor˝n=˝n�1, and which is harder to describe.
This is a key point. It is the existence of Ln which motivates the introduction of
admissible V -modules. Ln and ˝n=˝n�1 induce bijections between (isomor-
phism classes of) irreducible, admissible V -modules and irreducible An.V /-
modules which are not lifts of An�1.V /-modules. For nD0, this is just the set of
irreducible A0.V /-modules. To a large extent these functors reduce the study of
admissible V -modules to that of modules over the associative algebras An.V /,
which are more familiar objects, and they have led to a number of theoretical
advances. On the other hand, the computation of the Zhu algebra A0.V /, not
to mention the higher An.V /’s, is usually difficult. The complete structure has
been elucidated in only a relatively few cases, and computer calculations have
often been important.

Needless to say, there is much more that can be said about modules over a
VOA. There is a notion of dual module ([B], [FHL] and Section 10.3). There
is also a theory of tensor products of modules that is important. This is an
extensive subject in its own right, and we can do no more than refer the reader
to the literature (e.g., [HL], [HLZ]) for further details.

EXERCISE 6.4. Let .M;YM / be a weak V -module. Prove that YM .L�1v; z/D

@YM .v; z/.

EXERCISE 6.5. Show that

ŒLM
m ;LM

n �D .m� n/LM
m�nC .m

3
�m/=12ım;�ncIdM :
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(Thus, a weak module for V is ipso facto a module over the Virasoro algebra
with the same central charge as V .)

EXERCISE 6.6. Show that an ordinary V -module M is an admissible V -module
as follows. Let �� C consist of those � for which M�Ck D 0 whenever k is a
negative integer, and let Mn D

L
�2�M�Cn: Show that M D

L
n�0 Mn is an

N-grading on M satisfying (63).

EXERCISE 6.7. Give a complete proof that the Verma modules Mh are irre-
ducible modules over the Heisenberg algebra M0.

EXERCISE 6.8. Let M be an admissible V -module. Prove that for each v 2 V ,
the zero mode oM .LŒ�1�v/ annihilates M . (Use Exercises 6.4 and 2.36.)

EXERCISE 6.9. For n� 0;u 2 Vk ; v 2 V define

u ın v D ReszY .u; z/v
.1C z/kCn

z2nC2
:

Let On.V / be the span of all states u ın v and LŒ�1�u.
(a) Prove that if nD 0, the span of the states u ı0 v already contains LŒ�1�u.
(b) Prove that O0.V /�O1.V /� � � � .

EXERCISE 6.10. With the notation of Exercise 6.9, introduce the product

u�n v D

nX
mD0

�
mC n

n

�
ReszY .u; z/v

.1C z/kCn

znCmC1
:

(a) Show that On.V / is a 2-sided ideal with respect to the product �n.
(b) Show that �n induces a structure of associative algebra on the quotient space
An.V /D V =On.V /.

EXERCISE 6.11. V is a VOA and U � V a submodule of the adjoint module,
so that vnu 2 U for all u 2 U; v 2 V; n 2 Z. Prove that unv 2 V , and deduce
that if U 6D V then V =U inherits the structure of VOA.

6.2. C2-cofinite, rational and regular vertex operator algebras. We are
going to focus on some important classes of VOAs V which have the property
that they have only finitely many (inequivalent) irreducible modules. The reader
might well be surprised that there are any such VOAs at all beyond those of
finite dimension (cf. Exercises 2.12 and 2.13). We will also make the simpli-
fying assumption that V is of CFT-type (62) throughout the rest of these notes,
although for many of the results to be discussed this assumption is not necessary.

DEFINITION 6.12. (a) V is rational if every admissible V -module is completely
reducible, i.e., a direct sum of irreducible, admissible V -modules.
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(b) V is regular if every weak V -module is a direct sum of irreducible, ordinary
V -modules.
(c) V is C2-cofinite if the graded subspace C2.V /Dhu�2v j u; v 2V i has finite
codimension in V .

Based on what we said in the previous Subsection, it is easy to see that a regular
VOA V is a rational VOA. Indeed, an admissible V -module is a weak mod-
ule, hence a direct sum of irreducible, ordinary modules and ipso facto a direct
sum of irreducible admissible modules. It is also known (see [ABD], [Li]) that
regularity is equivalent to the conjunction of rationality and C2-cofiniteness.

While (a) and (b) of Definition 6.12 both assert that certain module categories
are semisimple, (c) is rather different. (a) and (b) are external conditions that
can be difficult to verify, whereas (c) is an internal condition that is easier to
deal with. On the other hand, regular VOAs have better modular invariance
properties than those which are C2-cofinite.

THEOREM 6.13. Suppose that V is a C2-cofinite VOA.
(a) Each An.V / is finite-dimensional.
(b) Every weak V -module is an admissible module.
(c) V has only finitely many isomorphism classes of irreducible, admissible
modules.

Note that for a finitely generated VOA V , (b) is equivalent to C2-cofiniteness.
For further discussion of (a), see [Z], [My1], [GN], [Bu]; (b) is proved in

[My1]. The approach in [GN] produces a sort of weak analog of the PBW
Theorem in Lie theory (cf. Appendix) which applies to weak modules. This
idea is very useful, and is used in [ABD], [My1], [Bu] and elsewhere in the
literature. (c) follows from (a) and the properties of the functors Ln and ˝n

discussed in Section 6.1.
The following omnibus result collects some of the main facts about rational

VOAs.

THEOREM 6.14 [DLM1], [DLM3]. Suppose that V is a rational VOA.
(a) A0.V / is semisimple.
(b) Each An.V / is finite-dimensional.
(c) V has only finitely many isomorphism classes of irreducible, admissible V -
modules,
(d) every irreducible, admissible V -module is an ordinary V -module.

Note that (b) is equivalent to rationality (loc. cit.)
Whether a rational VOA is necessarily C2-cofinite is presently one of the main

open questions in the representation theory of VOAs. If this is so, then there
would be no difference between rational and regular VOAs. In the early history
of VOA theory it was possible to believe that rationality and C2-cofiniteness
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were equivalent. That, however, has turned out to be a chimera. There are VOAs
which are C2-cofinite but have admissible (in fact ordinary) modules which are
not completely reducible. These are logarithmic field theories, a name that we
will justify in Section 9.

EXERCISE 6.15. Give two proofs that the Heisenberg VOA M0 is not a ra-
tional VOA: (a) by using Theorem 6.14, and (b) by explicitly constructing an
admissible M0-module that is not completely reducible.

EXERCISE 6.16. For any VOA V , show that the quotient space P .V / D

V =C2.V / carries the structure of a Poisson algebra in the following sense:
the products fu; vg D u0v;uv D u�1v afflict P .V / with (well-defined) struc-
tures of Lie algebra and commutative, associative algebra respectively, moreover
fuv;wg D ufv;wgC fu; vgw.

EXERCISE 6.17. Calculate the Poisson algebra P .M0/ associated to the Hei-
senberg VOA.

7. Examples of regular vertex operator algebras

It is time to describe some further examples of VOAs beyond the Heisenberg
and Virasoro theories. In particular, we want to have available a selection of
regular VOAs. Our examples are fairly standard, but require some effort to
construct. For this reason, we will mainly limit ourselves to a description of the
underlying Fock spaces and generating fields.

7.1. Vertex algebras associated to Lie algebras. The reader might want to
look over Appendix 1 before reading this Subsection. We can construct a VOA
from a pair .g; . ; // consisting of a Lie algebra g equipped with a symmetric,
invariant, bilinear form . ; / W g˝ g! C. The details amount to an elaboration
of the case of the Heisenberg algebra discussed in Section 2.4, which is the 1-
dimensional case. The affine Lie algebra or Kac–Moody algebra associated to
.g; . ; // is the linear space

OgD g˝CŒt; t�1�˚CK D
M

n

g˝ tn
˚CK

with brackets

Œa˝ tm; b˝ tn�D Œa; b�˝ tmCn
Cm.a; b/ım;�nK; .a; b 2 g/; ŒOg;K�D 0:

The element Og has a triangular decomposition with Og˙D
L
˙n>0 g˝ tn and

Og0 D g˚CK. Here and below, we identify g with g˝ t0. Fix a g-module X

and a scalar l . We extend X to a OgC˚ Og0-module by letting OgC annihilate X
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and letting K act as multiplication by l called the level. We have the induced
Og-module

Vg.l;X /D Ind.X / (68)

(notation as in (208)). Following the Heisenberg case discussed in Section 2.4,
we can define fields on Vg.l;X / for each a 2 g by setting

YVg.l;X /.a; z/D
X

n

anz�n�1

where an is the induced action of a˝ tn. As in (11) we obtain

2X
jD0

.�1/j
�

2

j

�
Œa2�j�r ; bj�s �

D

2X
jD0

.�1/j
�

2

j

�
.Œa; b�2�r�sC .2�j�r/.a; b/lı2�j�r;s�j Id/

D
�
.2�r/� 2.1�r/� r

�
.a; b/lırCs;2IdD 0;

so that the fields fYVg.l;X /.a; z/ j a2 gg are mutually local of order two. Taking
X D C1 to be the trivial 1-dimensional g-module, one shows via Theorem
2.7 that the corresponding fields generate a vertex algebra with Fock space
Vg.l;C1/. Moreover, each Vg.l;X / is an admissible module.

To describe a conformal vector in Vg.l;C1/ and thereby obtain the structure
of VOA, it is convenient at this point to specialize to the case that g is a finite-
dimensional, simple Lie algebra of dimension d , say. We will also take . ; /
to be the Killing form, appropriately normalized.8 Note that this takes us out
of the regime of the Heisenberg theory, to which we return in Section 7.3. An
approach that covers both cases is described in [LL]. With our assumptions, one
shows that

! D
1

2

1

l C h_

dX
iD1

ui.�1/ui (69)

is the desired conformal vector with central charge cD ld=.lCh_/. Here, fuig

is a basis of g, fuig the basis dual to fuig with respect to the form . ; /, and h_

the dual Coxeter number of g. This is usually called the Sugawara construction.
Needless to say, we must also assume that l C h_ 6D 0.

The L0-grading on Vg.l;C1/ that obtains from the Sugawara construction is
the natural one in which the state an1 has weight �n for a 2 g and n � 0. In
particular the zero weight space is Vg.l;C1/0DC1, and the VOA is of CFT-type.
Because an ideal in the adjoint module is a graded submodule (cf. the discussion

8The normalization is an important detail, of course, but we will not need it.
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in Section 6.1), any proper ideal necessarily lies in
L

n�2 Vg.l;C1/n. It follows
that there is a unique maximal proper ideal, call it J , and the quotient space

Lg.l; 0/D Vg.l;C1/=J

is a simple VOA.
More generally, take X to be a finite-dimensional irreducible g-module. As

such it is a highest-weight module L.�/ indexed by an element � in the weight
lattice of g. The top level of Vg.l;L.�// is naturally identified with L.�/, and
because this is an irreducible g-module then there is a unique maximal proper
submodule J � Vg.l;L.�// (considered as Og-module). The quotient spaces

Lg.l; �/D Vg.l;L.�//=J

are ordinary, irreducible Vg.l;C1/-modules, and they are inequivalent for dis-
tinct choices of highest weight �. Thus the VOA Vg.l;C1/ has infinitely many
inequivalent ordinary, irreducible modules, and in particular it cannot be ratio-
nal (Theorem 6.14). Concerning the question of regularity of these VOAs, we
collect the main facts ([FZ], [DL], [DM1], [DLM2], [DLM4]):

THEOREM 7.1. Let g be a finite-dimensional simple Lie algebra. The simple
VOA Lg.l; 0/ is rational if , and only if , l is a positive integer. In this case it is
regular, and the ordinary, irreducible modules are the spaces Lg.l; �/ where �
satisfies �.�/� l and � is the longest positive root.

These theories are called WZW models in the physics literature.

7.2. Discrete series Virasoro algebras. Here we discuss some quotients of
Virasoro VOAs Virc (cf. Theorems 2.20 and 2.25) that turn out to be regular.
As in the last Subsection, it is the underlying Lie structure that makes the calcu-
lations manageable. The details are quite different, however, and depend on the
Kac determinant (e.g. [KR]) and the structure of the Verma modules (13) Mc;h

over the Virasoro algebra (these are Virc-modules) ([FF]). There is no space to
describe these results systematically here, although we discuss some examples
of Kac determinants in Subsection 10.4. So we give less detail compared to the
WZW models. The theories we are going to describe in this Subsection find im-
portant applications in the physics of phase transitions and critical phenomena.
See [FMS] for further background.

The Virasoro VOA Virc may, or may not, be a simple VOA, but there is
a unique maximal proper submodule J and Lc D Virc =J is a simple vertex
operator algebra of central charge c. It turns out that Virc is never rational
(cf. Exercise 7.4). As for the rationality of Lc , we have the following omnibus
result:
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THEOREM 7.2. The following are equivalent:
(a) Lc is a rational VOA.
(b) J 6D 0.
(c) c lies in the so-called discrete series, i.e., there are coprime integers p; q� 2

such that
c D cpq D 1�

6.p� q/2

pq
: (70)

In this case Lc is regular, the conformal weights of the ordinary irreducible
modules are

hr;s D
.pr � qs/2� .p� q/2

4pq
; 1� r � q� 1; 1� s � p� 1

(taking only one value of h for each pair hr;s; hq�r;p�s), and two ordinary ir-
reducible modules are isomorphic if , and only if , they have the same conformal
weight.9 Thus there are just .p� 1/.q� 1/=2 inequivalent ordinary irreducible
modules over Lc .

See [Wa] for the proof of rationality (also [DMZ]), where the idea is to compute
the Zhu algebra A0.Lc/. Regularity is shown in [DLM2]. The origin of the
values cp;q is discussed in Section 10.4

Apart from the trivial case when p D 2, q D 3, the two ‘smallest’ cases, i.e.,
those with the fewest number of ordinary irreducible modules, correspond to
.p; q/D .2; 5/ and .3; 4/. In the first case (the Yang–Lee model in physics) we
have c D�22=5 and conformal weights 0;�1=5. In the second case (the Ising
model) c D 1=2 with conformal weights 0; 1=2; 1=16.

EXERCISE 7.3. Prove that Virc has a unique maximal proper submodule J .

EXERCISE 7.4. Suppose that J D 0. Prove that Virc is not a rational VOA.

EXERCISE 7.5. Opine on the statement that the case p D 2; q D 3 is ‘trivial’.

7.3. Lattice theories. Lattice theories ([B], [FLM]) are VOAs whose connec-
tions with Lie algebras are of lesser importance compared to the examples in the
last two subsections. Their basic properties are of a more combinatorial nature,
and reflect features that one may expect in general rational theories. Because of
this and the fact that they are amenable to computation, lattice theories occupy
a central position in current VOA theory.

Let d be a positive integer and hDCd a rank d linear space equipped with a
nondegenerate symmetric bilinear form . ; /. Consideration of h as an abelian
Lie algebra leads to the affine algebra Oh as in Section 7.1. Let

M d
0 D Vh.1;C1/ (71)

9Generally, a VOA may have inequivalent irreducible modules with the same conformal weight.
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be the corresponding vertex algebra of level 1. The conformal vector! is defined
as in (69) with l D h_D 1. The resulting VOA has central charge cD d . This is
nothing more than a slightly different approach to the rank d Heisenberg VOA,
as discussed in Section 2.4 (cf. Exercise 7.7).

The irreducible h-modules are 1-dimensional and indexed by a weight in the
dual space of h. Identifying h with its dual via . ; /, we obtain M d

0
-modules

(68) with underlying linear space

Vh.1; ˛/D S.Oh�/˝ e˛ .˛ 2 h/:

Here 1˝e˛ (or just e˛) is notation for the spanning vector of the (1-dimensional)
top level of Vh.1; ˛/, and

ˇ˝ e˛ D ˇ0:e
˛
D .ˇ; ˛/1˝ e˛; ˇ 2 hD h˝ t0: (72)

In order to describe the Fock spaces of lattice theories we need a bit more
structure. Namely, we assume that .h; . ; // is the scalar extension of a Euclidean
space. Thus, E D Rd D hR is a real space equipped with a positive-definite
quadratic form Q W E ! R, h D C˝R E, and . ; / is the C-linear extension
of the bilinear form on E defined by Q, also denoted by . ; /. In particular,
Q.˛/D .˛; ˛/=2 for ˛ 2E. A lattice L�E is the additive subgroup spanned
by a basis of E. L is an even lattice if .˛; ˛/ 2 2Z for all ˛ 2 L, i.e., the
restriction of Q to L is integral.

For an even lattice L�E we introduce the linear space

VL D

M
˛2L

Vh.1; ˛/: (73)

Identifying
L
˛ Ce˛ with the group algebra10 CŒL� of the lattice, we can write

(73) more compactly as
VL D S.Oh�/˝CŒL�: (74)

There is a natural grading on VL that turns out to be the one defined by the
L0 operator. We take the tensor product grading on (74) in which S.Oh�/ has
the grading of the Fock space of the rank d Heisenberg algebra that it is, and
where e˛ has weight Q.˛/. Using (41), the partition function of VL is

ZVL
.1/D

P
˛2L qQ.˛/

�.q/d
: (75)

The numerator here is the theta function of L, a topic to which we shall return
in Section 8.

So far then, we have described the Fock space VL as a sum of Heisenberg
modules. We define Y .v; z/ for v 2M d

0
to be the operator whose restriction to

10We only explicitly use the linear structure of CŒL�, although the algebra structure also plays a rôle.
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Vh.1; ˛/ is just YVh.1;˛/.v; z/. In order to impose the structure of VOA on VL,
we must construct fields for all of the states in the Fock space (74). Because of
Theorem 2.7 it suffices to define Y .e˛; z/ for ˛ 2 L and establish locality, but
nothing that has come so far has prepared us for this. The generating fields we
have considered in detail for the Heisenberg, WZW and Virasoro theories have
modes an that are closely related to some Lie algebra, but in theories such as VL

this will generally not be the case. We content ourselves with the prescription
for Y .e˛; z/, referring the reader to [FLM], [K1] for further background and
motivation:

Y .e˛; z/D exp
�X

n>0

˛�n

n
zn

�
exp

�X
n<0

˛�n

n
zn

�
e˛z˛: (76)

Beyond the modes ˛n of Y .˛; z/, z˛ is a shift operator z˛ W v˝eˇ‘ z.˛;ˇ/v˝

eˇ .v 2 Oh�/, and e˛ W v˝eˇ‘ ".˛; ˇ/v˝e˛Cˇ for a certain bilinear 2-cocycle
" WL˝L! f˙1g (loc. cit.)

The ordinary, irreducible modules over VL are constructed in [Do]. The un-
derlying Fock spaces are very similar to (74), and are indexed by the cosets of
L in its Z-dual L0 (cf. Exercise 7.13). Precisely, they are

VLC� D

M
˛2L

Vh.1; ˛C�/D Oh
�
˝CŒLC��

for � 2L0, with partition functions

ZVLC�
.1/D

P
˛2L qQ.˛C�/

�.q/d
: (77)

The fields YVLC�
.v; z/ are similarly analogous to (76) (loc. cit.) Indeed, one

can usefully combine all of these fields and Fock spaces into a bigger and better
edifice. For this, see [DL]. For rationality and C2-cofiniteness, see [Do] and
[DLM4] respectively. Summarizing,

THEOREM 7.6. Let L be an even lattice. Then VL is a regular VOA, and
its ordinary, irreducible modules are the Fock spaces VLC�. It thus has just
jL0 WLj distinct ordinary, irreducible modules.

In the following exercises, L�E is an even lattice in Euclidean space as above.

EXERCISE 7.7. Show that the VOA (71) is isomorphic to the tensor product
M˝d

0
of d copies of the Heisenberg VOA M0 (cf. Exercise 2.32).

EXERCISE 7.8. Show that M d
0

is a simple VOA.

EXERCISE 7.9. Verify that if ˛ 2L then 1˝ e˛ has L0-weight Q.˛/.
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EXERCISE 7.10. In the definition of VL, what is the purpose of requiring L to
be an even lattice? What about positive-definiteness?

EXERCISE 7.11. Let ˛ 2L.
(a) Prove that Y .e˛; z/ is a creative field in F.VL/.
(b) Prove that Y .e˛; z/ and Y .v; z/ are mutually local (v 2 Oh�).

EXERCISE 7.12. Let L be an even lattice with L0Df˛ 2L jQ.˛/D 1g. Prove
that L0 is a semisimple root system with components of type ADE.

EXERCISE 7.13. The dual lattice of L is defined via

L0
D fˇ 2E j .˛; ˇ/ 2 Z for all ˛ 2Lg:

Prove that L�L0 is a subgroup of finite index.

EXERCISE 7.14. Let g be a finite-dimensional simple Lie algebra of type ADE.
(a) Show that the WZW model Lg.1; 0/ of level 1 is (isomorphic to) the lattice
theory VL where L is the root lattice associated to g.
(b) Compute the number of inequivalent ordinary, irreducible modules over
Lg.1; 0/ both by using Theorem 7.1, and by using Theorem 7.6.

EXERCISE 7.15. Let L1;L2 be a pair of even lattices.
(a) Show that the orthogonal direct sum L1 ?L2 is an even lattice.
(b) Prove that VL1?L2

Š VL1
˝VL2

(cf. Exercise 2.32).

8. Vector-valued modular forms

In order to formulate modular invariance for C2-cofinite and regular VOAs,
the idea of a vector-valued modular form is useful. This generalizes the theory
of modular forms that we discussed in Section 3, and includes as a special case
the theory of modular forms on a finite-index subgroup of SL2.Z/. We use the
notation of Section 3.

8.1. Basic definitions. Fix an integer k and let Fk be the space of holomorphic
functions11 in H regarded as a right � -module with respect to the action defined
in (20), (21). A weak vector-valued modular form of weight k may be taken to be
a finite-dimensional � -submodule V � Fk . Let12 F.�/D .f1.�/; : : : ; fp.�//

t

where the component functions fi.�/ are a set of (not necessarily linearly in-
dependent) generators for V . There is then a representation � W � ! GLp.C/

such that
�.
 /F.�/D F jk
 .�/; 
 2 �; (78)

11We could equally well deal with meromorphic functions.
12Superscript t denotes transpose.



VERTEX OPERATORS AND MODULAR FORMS 225

where jk is the obvious extension of the stroke operator to vector-valued func-
tions. We also call the pair .F; �/ a weak vector-valued modular form of weight
k. Given a pair .F; �/ satisfying (78), we recover V as the span of the compo-
nent functions of F.�/. The classical modular forms of Section 3 correspond to
the case when � is the trivial 1-dimensional representation of � .

To describe the extension of (22) to the vector-valued case, decompose V

into a direct sum of T -invariant indecomposable subspaces

V D V1˚ � � �˚Vr

corresponding to the Jordan decomposition of the action T W f .�/‘ f .� C 1/.
The characteristic polynomial on Vi is .x� e2�i�i /dim Vi . The basic fact is

THEOREM 8.1. There are q-expansions gj .�/ D q�i
P

n2Z aijnqn; .0 � j �

ni � 1/ such that the functions

g0.�/Cg1.�/ log qC � � �Cgm.�/.log q/m; 0�m� ni � 1; (79)

are a basis of Vi . In particular, V has a basis of functions of this form.

We call (79) a logarithmic, or polynomial,13 q-expansion.
Suppose that .F; �/ is a weak vector-valued modular form. Then the com-

ponent functions of F.�/ are linear combinations of polynomial q-expansions
(79). We say that .F; �/, or simply F.�/, is almost holomorphic if the compo-
nent functions are holomorphic in H and if the q-expansions gj .�/ are left-finite
or meromorphic at 1, i.e., for all i; j the Fourier coefficients aijn vanish for
n�0. Similarly, F.�/ is holomorphic if it is almost holomorphic and if aijnD0

whenever Re.�i/C n < 0. These definitions are independent of the choice of
gj .�/.

Fix an integer N � 1. We set

�.N /D h
T N 
�1
j 
 2 � i:

This is the smallest normal subgroup of � that contains T N . We say that a
subgroup G � � has level N if �.N /�G. A representation � W � !GLp.C/

has level N if ker� has level N (equivalently, �.T / has finite order dividing N ).
A vector-valued modular form .F; �/ has level N if � has level N . Now recall
that finite-order operators are diagonalizable. It follows from Theorem 8.1 that
if .F; �/ has level N then the component functions of F.�/ have q-expansions
that are free of logarithmic terms. Indeed, the eigenvalues of �.T / are N -th.
roots of unity, so that the q-expansions (79) reduce to a single q-expansion of
the form

gj .�/D qr=N
X
n�0

ajnqn (80)

13We may rewrite (79) using powers of � , or other polynomials in � , instead of powers of log q.
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for some integer r .
The principal congruence subgroup of level N is the subgroup of � given by

� .N /D f
 2 � j 
 � I2 .mod N /g:

We have �.N /E� .N /E� . While � .N / always has finite index in � , �.N /

has finite index if, and only if N � 5 ([KLN], [Wa]). A subgroup G � �

is a congruence subgroup if � .N / � G for some N ; � and .F; �/ are called
modular if ker� is a congruence subgroup. It follows that .F; �/ is modular if,
and only if, the component functions gj .�/ of F.�/ are such that gj jk
 .�/ has
a q-expansion of shape (80) for every 
 2� . This is precisely the definition of a
classical modular form of weight k and level N (we are assuming holomorphy
in H for convenience). The case of level 1 again reduces to the theory discussed
in Section 3.

Because � .N / has finite index in � it follows that the image �.� / is finite
whenever � is modular. However, the converse is false: it may be that the image
�.� / is finite, so that ker� has finite index in � and therefore has some finite
level, yet it is not a congruence subgroup. The existence of such subgroups goes
back to Klein and Fricke. In this case, a vector-valued modular form .F; �/ will
have some finite level N and its component functions have q-expansions (80),
however not all of them will be classical modular forms in the previous sense.
This is essentially the theory of modular forms on noncongruence subgroups.
Modular forms on noncongruence subgroups, and more generally component
functions of vector valued modular forms, share many properties in common
with classical modular forms and the differences between them can be subtle. It
can be difficult to determine whether a given vector-valued modular form .F; �/

is modular. A fundamental problem in this direction is the following:
Conjecture: Let .F; �/ be a vector-valued modular form of level N and weight
k, and suppose that the component functions of F.�/ are linearly independent14

and have rational integers Fourier coefficients. Then .F; �/ is modular.
We shall see how this fits into VOA theory in the next Section.

EXERCISE 8.2. Prove the following: (a) �.N / � � .N /E� , (b) if G � � is
a subgroup of finite index then �.N /�G for some N .

EXERCISE 8.3. Let � W� !GLp.C/ be a representation of level N . Show that
� is modular if, and only if, � .N /� ker�.

EXERCISE 8.4. : Let Q� be the inhomogeneous modular group (Exercise 3.1)
and let Q� .N / be the image of � .N / under the natural projection � ! Q� . Prove
that Q� .N / is torsion-free if, and only if, N � 2.

14This condition is harmless in practice, but is necessary to avoid trivial counterexamples, e.g. when
F D 0.
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EXERCISE 8.5. It is known that � can be abstractly defined by generators and
relations hx;y j x4 D y6 D x2y�3 D 1i. Use this to prove the following: (a)
�=� 0ŠZ12, (b) � 0 is a congruence subgroup of level 12. (� 0 is the commutator
subgroup of � .)

EXERCISE 8.6. Let V � Fk be a finite-dimensional � -submodule and let
.f1; : : : ; fp/ be a sequence of functions in V that contains a basis. Prove the
existence of a representation � satisfying (78). (Hint: first do the case that
.f1; : : : ; fp/ is a linearly independent set.)

8.2. Examples of vector-valued modular forms. One can construct a slew of
almost holomorphic vector-valued modular forms using modular linear differen-
tial equations (MLDE) [M]. We briefly explain this. Let k; n be integers with n

positive. The n-th iterate Dn
k

of the differential operator (30) is the intertwining
map

Dn
k DDkC2n�2 ı � � � ıDkC2 ıDk W Fk ! FkC2n:

For justification of the notation, see Exercise 3.13. A modular linear differential
equation is a differential equation of the form

.Dn
k Cg2.�/D

n�2
k C � � �Cg2n.�//f D 0; gi.�/ 2M2i : (81)

Using (30) one can write (81) as an ordinary differential equation with coeffi-
cients in the algebra of quasimodular forms Q. We can also write everything in
terms of the variable q (in the interior of the unit disk in the q-plane)

.�n
C h1.q/�

n�1
C � � �C h2n.q//f D 0; hi.q/ 2Q2i ; (82)

where we recall that � D q d=dq. Then one sees that q D 0 is a regular sin-
gular point ([H], [I]). By the theory of ODE, the space of solutions is an n-
dimensional linear space, and because the coefficients are holomorphic in H, so
too are the solutions. One sees that the space of solutions is a � -submodule of
FkC2n, and the theory of Frobenius–Fuchs (loc. cit.) shows that the solutions
have q-expansions which are meromorphic at 1 in the sense of Section 8.1.
A disadvantage of this approach is that it is hard to get information about the
representation of � furnished by the space of solutions.

We have seen that vector-valued modular forms naturally incorporate the
classical theory of level N modular forms. We complete this Subsection with a
discussion of an important class of such forms, namely theta functions. Let L

be an even lattice of rank d with associated positive-definite quadratic form Q

(Section 7.3). The theta function of L is defined by

�L.�/D
X
˛2L

qQ.˛/
D

X
n�0

jLnjq
n
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where Ln D f˛ 2 L j Q.˛/ D ng (cf. (75)). Hecke and Schoeneberg proved
([O], [Se], [Sc]) that if d is even then �L.�/ is a holomorphic modular form of
weight d=2 and a certain level N . A precise description of the level would take
us too far afield, but it divides twice the exponent of the finite abelian group
L0=L (cf. Exercise 7.13). In particular, suppose that L is self-dual in the sense
that LD L0. Then the level is 1, and as we explained this means that �L.�/ is
a holomorphic modular form of weight d=2 on the full group � .

There are various ways to prove the modularity of �L.�/. One method that
is useful in many other contexts is that of Poisson summation ([O], [Se]). The
approach in ([Sc]) shows that the space spanned by the theta functions corre-
sponding to the cosets of L in L0, i.e., the numerators of the expressions on
the rhs of (77), is a � -submodule of Fd=2. Note that the theta functions of
such cosets arise as the numerator in the expression (77) of the character of an
ordinary, irreducible module over a lattice VOA.

The reader may be wondering about the case when the rank d of L is odd.
One still has holomorphic theta functions as above, however they are of half-
integral weight and do not qualify as modular forms as we have defined them.
Odd powers of the eta function also have half-integral weight. These and other
examples demonstrate the significance of half-integer weight (vector-valued)
modular forms to our subject, but there is no time to develop the subject here.

EXERCISE 8.7. Use your knowledge of the theory of ODEs to verify the details
of the assertions following (81) leading to the result that the solution space is a
� -submodule of FkC2n.

EXERCISE 8.8. Why is there no term g1.�/D
n�1
k

in (81)?

EXERCISE 8.9. For a positive-definite, even lattice L of rank d , prove the
estimate jLnj DO.nd=2/, and deduce that �L.�/ is holomorphic in H.

EXERCISE 8.10. Show that E8 is the only finite dimensional simple Lie algebra
whose root lattice is even and self-dual.

EXERCISE 8.11. Show that the theta function �E8
.�/ of the E8 root lattice

coincides with the Eisenstein series Q of Section 3.

EXERCISE 8.12. Show that the partition functions of a lattice theory VL and
its ordinary, irreducible modules are classical, almost holomorphic, modular
functions of weight zero of some level N .

9. Vertex operator algebras and modular invariance

In this section we describe some of the main results concerning the connec-
tions between (vector-valued) modular forms and VOAs. We are concerned here
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exclusively with regular and C2-cofinite VOAs as discussed in Sections 6 and
7. We recall that V is always assumed to be of CFT-type.

9.1. The regular case. It is convenient to assume at the outset that V is a
C2-cofinite (but not necessarily rational) VOA of central charge c. By Theorem
6.13 there are only finitely many inequivalent, ordinary, irreducible V -modules,
and we denote them V DM 1;M 2; : : : ;M r . Let the conformal weight of M i

be hi (cf. (64) and attendant discussion), and let Zi be the character of M i (65).
The first basic fact is that 1-point functions are holomorphic in H. For ex-

ample, it follows from this and Theorems 5.7 and 5.10 that the 2-point func-
tions FV ..u1; z1/; .u2; z2// are elliptic functions. There are two approaches
to the holomorphy of 1-point functions. The first ([Z]) is to find a modular
linear differential equation (82) satisfied by f DZi.v; q/. In this case, because
the coefficients of the MLDE are holomorphic in H, then so are the solutions
(cf. Exercise 8.7). The second approach ([GN]) uses the PBW-type bases that
we already mentioned in Section 6.2.

We now take V to be regular. The main properties vis-à-vis modular invari-
ance are as follows:

THEOREM 9.1. Let the notation be as above, and assume that V is regular.
(a) The central charge c and conformal weights hi are rational numbers.
(b) There is a representation � W Q� ! GLr .C/ of the inhomogeneous modular
group (cf . Exercise 3.1) with the following property: if v 2 V has LŒ0�-weight
k and we set Fv D .Z1.v/; : : : ;Zr .v//, then .Fv; �/ is an almost holomorphic
vector-valued modular form of weight k and finite level N .

We have already discussed the holomorphy of Zi.v/. The heart of the matter -
that there is � such that .Fv; �/ is a vector-valued modular form of weight k - is
more difficult. It ultimately depends on the complete reducibility of admissible
V -modules into ordinary irreducible V -modules. See [Z], [DLM4] for details.
The argument shows that the representation � is independent of the state v. Once
the vector-valued modular form is available, one uses the theory of ODEs with
regular singular points [MA] to show that (a) holds. The argument, which is
arithmetic in nature, makes use of the fact that if v is taken to be the vacuum
vector then the component functions Zi.1/ of F1 are just the partition functions
of the ordinary irreducible modules over V , and as such have integral Fourier
coefficients. Also, because F1 has weight zero (because 12VŒ0�), ker� contains
˙I2 and so � descends to a representation of Q� . The rationality of conformal
weights and central charge implies that .Fv; �/ has finite level N (e.g., one can
take N to be the gcd of the denominators of the rational numbers hi � c=24).
There is a basic open problem here:

Modularity conjecture. In the context of Theorem 9.1, .Fv; �/ is modular.
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This is an article of faith in the physics literature. There are compelling argu-
ments (e.g., [Ba1], [Ba2], [FMS]) which, however, are not (yet) mathematically
rigorous. Note that this Conjecture follows from the conjectured modularity of
vector-valued modular forms of level N with integral Fourier coefficients stated
at the end of Section 8.1. There are other avenues via which the modularity of
.Fv; �/ might be established, in particular using the theory of tensor products
of modules over a VOA and tensor categories (cf. [HL]).

It hardly needs to be said that all known regular VOAs satisfy the Modularity
Conjecture. The case of lattice theories follows from Exercise 8.12. The case of
WZW models was studied prior to the advent of VOA theory using Lie theory
(cf. [KP], [K2]). A discussion of this case as well as that of the simple Virasoro
VOAs Lc in the discrete series may be found in [FMS].

9.2. The C2-cofinite case. One desires an analog of Theorem 9.1 for the more
general case of C2-cofinite VOAs, but any generalization must deal with the
fact that the span of the partition functions Zi.1/ of the ordinary irreducible
modules is generally not a � -module unless V is a regular VOA. Miyamoto’s
solution [My1] (see also [Fl]) involves generalized or pseudo trace functions.
The idea is to utilize the admissible V -modules Ln.X / constructed from a finite-
dimensional module X over the algebra An.V / (67). C2-cofiniteness implies
that An.V / is finite-dimensional (Theorem 6.13), and this leads to the fact that
each of the homogeneous pieces Ln.X /m are also finite-dimensional. Because
Ln.X / is admissible then the zero mode o.!/ D L0 of the conformal vector
operates on these homogeneous pieces (63). However, in the present context L0

may not be the degree operator, indeed L0 may not be a semisimple operator.
We decompose Ln.X /m into a direct sum of Jordan blocks for the action of

L0. On such a block B there is an L0-eigenvector with eigenvalue mC�; � 2

C; L0� .mC�/I is nilpotent, and the exponential operator

qL0 D qmC�
X
t�0

.2� i�.L0�m��//t

t !
(83)

on B reduces to a finite sum. If X is indecomposable, � is determined by the
action of !, which (when regarded as an element of An.V /) turns out to be
a central element and thus acts on X as a scalar. One can piece together the
exponentials (83) and incorporate zero modes o.v/ of other states as before.
However, the details are subtle, as one needs pseudotraces [My1], which is a
type of symmetric function on An.V / which replaces the usual trace.

The upshot of the analysis sketched above is this: we can define15 (pseudo)
trace functions Tr�

Ln.X /
o.v/qL0�c=24. Once these gadgets are introduced, one

15� denotes ‘pseudo’.
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can use the arguments in the regular case described in the previous Subsection
together with additional arguments (to account for the failure of An.V / to be
semisimple) to show that for each n and for v 2 VŒk�, the pseudo trace functions
define a (finite-dimensional) almost holomorphic vector-valued modular form of
weight k. Alternatively, they span a finite-dimensional � -submodule of Fk (no-
tation as in Section 8.1). In particular, the pseudo characters Tr�

Ln.X /
qL0�c=24

are seen to be linear combinations of characters of ordinary, irreducible V -
modules with coefficients in CŒ� �. That is, they are polynomial q-expansions
in the sense of Section 8.1. This is, of course, fully consistent with Theorem
8.1. Furthermore, one finds as in the regular case that the central charge and
conformal weights of the ordinary, irreducible V -modules again lie in Q.

It would take as too far afield to try to describe any VOAs for which the
pseudo trace functions actually involve log terms. Such theories are, naturally,
called logarithmic field theories in the physics literature. For some examples,
see e.g., [GK], [A] and references therein.

EXERCISE 9.2. Prove that the (image of) the conformal vector ! is a central
element of An.V / (cf. Exercises 6.9, 6.10).

9.3. The holomorphic case. We call a simple, regular VOA V holomorphic if it
has a unique irreducible module, namely the adjoint module V . It seems likely
that a simple VOA with a unique ordinary irreducible module is necessarily
regular, and therefore holomorphic, but this appears to be unknown. Be that
as it may, in the case of holomorphic VOAs Theorem 9.1 can be refined, and
in particular the Modularity Conjecture of Section 9.1 holds in this case. This
is because if a vector-valued modular form of weight k has a single compo-
nent f .�/ then it affords a 1-dimensional representation of � and so there is a
character ˛ W � ! C� such that

f jk
 .�/D ˛.
 /f .�/; 
 2 �: (84)

Since � 0 is a congruence subgroup of level 12 (Exercise 8.5) it follows that
f .�/ is a classical modular form of level dividing 12. Thanks to Theorem 9.1
all of this applies with f DZV .v; q/, indeed a bit more is true in this case: the
group of characters of � is cyclic of order 12 (Exercise 8.5) hence that of Q� is
cyclic of order 6; and one can argue (cf. Exercise 9.4) that S 2 ker˛, so that in
fact ˛ has order dividing 3 and each ˛.
 / in (84) is a cube root of unity. We
thus arrive at

THEOREM 9.3. Suppose that V is a holomorphic VOA of central charge c.
(a) If v 2 VŒk� then ZV .v; �/ is an almost holomorphic modular form of weight
k and level 1 or 3.
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(b) c is an integer divisible by 8. It is divisible by 24 if , and only if , ZV .v; q/

has level 1.

Lattice theories provide a large number of holomorphic VOAs. From Theorem
7.6 it is immediate that VL is holomorphic if, and only if, LD L0 is self-dual.
The partition function is �L.�/=�

c.�/ where c is the rank of L (75), and in this
case the modularity of the partition function follows directly from comments in
Section 8.2.

We also mention that the modules over a tensor product U ˝ V of VOAs
(Exercise 2.32) are just the tensor products M ˝N of modules M over U and
N over V ( [FHL]). In particular, if U;V are holomorphic then so too is U˝V .

EXERCISE 9.4. Let V be a holomorphic VOA, and let ˛ be the character of �
satisfying .�/ ZV .1/j0
 .�/ D ˛.
 /ZV .1/. Prove that ˛.S/ D 1. (Hint: take

 D S and evaluate .�/ at � D i .) Using this, give the details of the proofs of
(a) and (b) in Theorem 9.3.

EXERCISE 9.5. Let V be a holomorphic VOA of central charge c, and let v 2
VŒk�. Prove that ZV .v; �/D g.�/=�c.�/ where g.�/ is an almost holomorphic
modular form on � of weight kC c=2.

9.4. Applications of modular invariance. Theorem 9.1 places strong condi-
tions on the 1-point trace functions of a regular VOA, and in particular on the
partition function. If V is a holomorphic VOA the conditions are even stronger.
In this subsection we give a few illustrations of how modular invariance can be
used to study the structure of holomorphic VOAs.

By Exercise 9.5, ZV .1/ D g.�/=�c.�/ where g.�/ D 1C � � � 2Mc=2 is a
holomorphic modular form on � of weight c=2. There are no (nonzero) such
forms of negative weight, so we have c � 0. If c D 0 then g.�/D 1DZV .�/,
corresponding to the 1-dimensional VOA C1 (cf. Exercise 2.30) which is indeed
holomorphic.

Since 8jc, the next two cases are c D 8; 16, when g.�/ has weight 4 and 8

respectively. Because of the structure of the algebra M of modular forms on �
(Theorem 3.9 and (28)) there is only one choice for g.�/ in these cases, namely
g.�/DQ or Q2, so the partition function is uniquely determined as ZV .1/D
Q=�8.�/ or Q2=�16.�/D

�
Q=�8.�/

�2
(Exercise 8.11 is relevant here). We have

already seen holomorphic VOAs with these partition functions in Section 9.3,
namely the lattice theories VE8

and VE8?E8
�V ˝2

E8
(E8 refers to the root lattice

of type E8). In fact, there is a second even, self-dual lattice L2 of rank 16 not
isometric to E8?E8 and we obtain in this way a second holomorphic VOA VL2

.
It turns out that these are the only holomorphic VOAs (up to isomorphism) with
c D 8 or 16. This result requires additional techniques based on applications of
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the recursion in Theorem 5.10 and analytic properties of vector-valued modular
forms ([DM2], [DM3]). To summarize:

THEOREM 9.6. Suppose that V is a holomorphic VOA of central charge c� 16.
Then one of the following holds:
(a) c D 0 and V D C1.
(b) c D 8 and V D VE8

is the E8-lattice theory.
(c) c D 16 and V D VE8?E8

or VL2
is a lattice theory.

We now consider holomorphic VOAs V of central charge cD24. In some ways,
this is the most interesting case. If c�32 the number of isometry classes of even,
self-dual lattices of rank c is very large (see [Se] for further comments), so there
are a correspondingly large number of isomorphism classes of holomorphic
VOAs. For rank 24 there are just 24 isometry classes of even, self-dual lattices
(cf. [CS], [Se]), so one might hope that there are not too many holomorphic
VOAs with c D 24. In fact, Schellekens has conjectured that there are just 71

such theories [Sch]. Now ZV .1/D q�1C� � � is an almost holomorphic modular
function of weight zero and level 1 by Theorem 9.3. As such it is a polynomial
in the modular function j .�/D q�1C744C� � � (cf. (35) and Exercise 3.20). So
there is an integer d such that

ZV .1/D j .�/C .d � 744/D q�1
C d C 196884qC � � �

and the partition function is determined uniquely by d . Obviously d D dim V1,
so it is a nonnegative integer, but one cannot say more about d on the basis
of modular invariance alone because j .�/C c0 is a modular function for any
constant c0. It can in fact be proved that there are only finitely many choices of
d that correspond to possible holomorphic VOAs16. The arguments use Lie al-
gebra theory, starting with the Lie algebra structure on V1 (Exercise 9.7) as well
as modular forms (see [DM1], [DM2], [DM3], [Sch]). Of the 71 conjectured
holomorphic cD 24 VOAs, it seems that only 39 are known to exist. Beyond the
24 lattice theories, the other 15 are constructed as so-called Z2-orbifold models
of lattice theories [DGM]. The first construction of this type [FLM] leads to
the famous Moonshine Module, about which we will shortly say a bit more.
It is a major problem to decide whether the others also exist, and to develop
construction techniques when they do.

As a final example, we mention some recent work of E. Witten [Wi] where
certain holomorphic vertex operator algebras V .k/ are posited to exist which
are related, via the AdS-CFT correspondence, to phenomena concerning gravity
with a negative cosmological constant. V .k/ has central charge ck D 24k; k D

1; 2; : : : and a minimal structure compatible with the requirements of modular

16No more than a few hundred.
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invariance imposed by Theorem 9.3. To explain what this is supposed to mean,
recall (cf. Theorem 7.2) that Virck

D Lck
is simple, and the Lck

-submodule
of V .k/ generated by 1 is a graded subspace U naturally identified as the Fock
space for Lck

. By (42), the graded dimension of U is

q�k
Y
n�2

.1� qn/�1
D q�k

kX
nD0

dnqn
CO.q/

for integers d0; : : : dk . The posited minimal structure of V .k/ means that the
partition function of V .k/ also satisfies

ZV .k/.1/D q�k
kX

nD0

dnqn
CO.q/:

In other words, the first kC1 graded subspaces V
.k/

n .0�n�k/ of V .k/ coincide
with the corresponding graded pieces of U , so that they are as small as they can
be. We know that ZV .k/.1/ is a monic polynomial ˚k.j / of degree k in j .�/,
and it is clear that ˚k is uniquely determined by d0; : : : ; dk , and hence by k.

As in the case of the ‘missing’ holomorphic cD24 theories, the main question
here for the VOA theorist is whether V .k/ exists or not. The answer is unknown
for any k with the notable exception of the Moonshine module V \ ([B], [FLM],
[DGM], [My2]) corresponding to k D 1. In this case the graded dimension of
U is q�1CO.q/, the partition function of V \ is

ZV \.q/D j .q/� 744D q�1
C 0C 196884qC � � � ;

and the minimal structure is reflected in the vanishing of the constant term. In
this case the Lie algebra structure on the weight 1 subspace is absent, and one
must exploit instead the Griess algebra, i.e., the commutative algebra structure
on V

\
2

(cf. Exercise 9.9).
One of the main features of the Moonshine Module is its automorphism

group, which is the Monster sporadic simple group ([FLM], [G1], [G2]). In
order to develop this aspect of V \ as well as the Z2-orbifold construction that we
mentioned above and other features of VOAs, it would be necessary to develop
the theory of automorphism groups of VOAs. This will have to wait for another
day. A brief description of some of the connections between automorphism
groups and generalized modular forms can be found in [KM].

EXERCISE 9.7. Let V be a VOA of CFT-type. Prove the following:
(a) The product Œa; b�D a0b equips V1 with the structure of a Lie algebra.
(b) ha; bi D a1b defines a symmetric, invariant, bilinear form on V1.
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EXERCISE 9.8. Prove that the Fourier coefficients of the q-expansion of ˚k.j /

are nonnegative integers (a necessary condition for the existence of V .k/).

EXERCISE 9.9. Show that the product a1b .a; b 2 V
\

2
/ equips the weight 2

subspace of V \ with the structure of a commutative, nonassociative algebra.
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Part III. Two current research areas
10. Some preliminaries

10.1. VOAs and rational matrix elements. As noted in Section 2.6 there are
a number of equivalent sets of axioms for VOA theory. Here we discuss one of
these equivalent approaches wherein the properties of a VOA are expressed in
terms of the properties of matrix elements which turn out to be rational functions
of the formal vertex operator parameters. In many ways, this is the closest
approach to CFT (see [FMS], for example) in that the formal parameters can be
taken to be complex numbers with the matrix elements considered as rational
functions on the Riemann sphere.

We begin by defining matrix elements. In order to simplify the discussion,
we always assume that the VOA is of CFT-type (62). This condition is satisfied
in all examples we consider. We define the restricted dual space of V by [FHL]

V 0 D
M
n�0

V �n ; (85)

where V �n is the dual space of linear functionals on the finite dimensional space
Vn. Let h ; id denote the canonical pairing between V 0 and V . Define matrix
elements for a0 2 V 0, b 2 V and vertex operators Y .u1; z1/; : : :Y .u

n; zn/ by

ha0;Y .u1; z1/ : : :Y .u
n; zn/bid : (86)

In particular, choosing b D 1 and a0 D 10 we obtain the (genus zero) n-point
correlation function

F
.0/
V
..u1; z1/; : : : ; .u

n; zn//D h10;Y .u1; z1/ : : :Y .u
n; zn/1id : (87)

One can show in general that every matrix element is a homogeneous ratio-
nal function of z1; : : : ; zn [FHL], [DGM]. Thus the formal parameters of VOA
theory can be replaced by complex parameters on (appropriate subdomains of)
the genus zero Riemann sphere CP1. We illustrate this by considering matrix
elements containing one or two vertex operators. Recall from (36) that, for
u 2 Vn,

uk W Vm! VmCn�k�1: (88)

Hence it follows that for a0 2 V 0m0 , b 2 Vm and u 2 Vn we obtain a monomial

ha0;Y .u; z/bid D C u
a0bzm0�m�n; (89)

where C u
a0b
D ha0;umCn�m0�1bid .

We next consider the matrix element of two vertex operators to find (recalling
convention (1)):
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THEOREM 10.1. Let a0 2 V 0m0 , b 2 Vm, u1 2 Vn1
and u2 2 Vn2

. Then

ha0;Y .u1; z1/Y .u
2; z2/bidD

f .z1; z2/

z
mCn1

1
z

mCn2

2
.z1� z2/n1Cn2

; (90)

ha0;Y .u2; z2/Y .u
1; z1/bidD

f .z1; z2/

z
mCn1

1
z

mCn2

2
.�z2C z1/n1Cn2

; (91)

where f .z1; z2/ is a homogeneous polynomial of degree mCm0C n1C n2.

REMARK 10.2. The matrix elements (90), (90) are thus determined by a unique
homogeneous rational function which can be evaluated on CP1 in the domains
jz1j> jz2j and jz2j> jz1j respectively.

PROOF. Consider

ha0;Y .u1; z1/Y .u
2; z2/bid D

X
k�0

X
c2Vk

ha0;Y .u1; z1/cid hc
0;Y .u2; z2/bid ;

where c ranges over any basis of Vk and c0 2 V �
k

is dual to c. From (89) it
follows that

ha0;Y .u1; z1/Y .u
2; z2/bid D

z
m0�n1

1

z
mCn2

2

G
�

z2

z1

�
;

for infinite series
G.x/D

X
k�0

X
c2Vk

C u1

a0cC u2

c0bxk :

Hence the matrix element is homogeneous of degree m0�m�n1�n2. Similarly

ha0;Y .u2; z2/Y .u
1; z1/bid D

z
m0�n2

2

z
mCn1

1

H
�

z1

z2

�
;

for the infinite series

H.y/D
X
k�0

X
c2Vk

C u2

a0cC u1

c0byk :

But Y .u2; z2/ and Y .u1; z1/ are local of order at most n1Cn2 (cf. Exercise 4.4)
and hence

.z1� z2/
n1Cn2

z
mCn1

1
z

mCn2

2

zm0Cm
1

G
�

z2

z1

�
D
.z1� z2/

n1Cn2

z
mCn1

1
z

mCn2

2

zm0Cm
2

H
�

z1

z2

�
: (92)

It follows that

f .z1; z2/D zm0Cm
1

.z1� z2/
n1Cn2G

�
z2

z1

�
D zm0Cm

2
.z1� z2/

n1Cn2H
�

z1

z2

�
is a homogeneous polynomial of degree mCm0C n1C n2. �
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Properties (90) and (90) are equivalent to locality of Y .u1; z1/ and Y .u2; z2/ so
that the axioms of a VOA can be alternatively formulated in terms of rational
matrix elements [DGM], [FHL]. Theorem 10.1 can also be generalized for all
matrix elements. Furthermore, using the vertex commutator property (Exercise
2.14) one can also derive a recursive relationship in terms of rational functions
between matrix elements for n vertex operators and n� 1 vertex operators that
is the genus zero version of Zhu’s first recursion formula (Theorem 5.7).

EXERCISE 10.3. Prove (89).

EXERCISE 10.4. Show (92) implies that f .z1; z2/ is a polynomial.

10.2. Genus-zero Heisenberg correlation functions. We illustrate these struc-
tures by considering the example of the rank one Heisenberg VOA M0 generated
by a weight one vector a. Let

G.0/
n .z1; : : : ; zn/� F

.0/
M0
..a; z1/; : : : ; .a; zn//: (93)

denote the n-point correlation function for n Heisenberg vectors. This must be
a symmetric rational function in zi with poles of order two at zi D zj for all
i ¤ j from locality. We now determine its exact form. Since a01D 0 it follows
that G

.0/
1
.z1/D 0. The 2-point function is

G
.0/
2
.z1; z2/D

X
m�0

z�m�1
1 h10; amY .a; z2/1id ;

where (88) implies that there is no contribution for m < 0. Commuting am we
find

G
.0/
2
.z1; z2/D

X
m�0

z�m�1
1 h10; Œam;Y .a; z2/�1id ;

using am1 D 0 for m� 0. But the Heisenberg commutation relations imply

Œam;Y .a; z2/�Dmzm�1
2 ;

so that
G
.0/
2
.z1; z2/D

X
m�0

mz�m�1
1 zm�1

2 D
1

.z1� z2/2
: (94)

The general n-point function is similarly given by

G.0/
n .z1; : : : ; zn/D

X
m�0

z�m�1
1

nX
iD2

˝
10;Y .a; z2/ : : : Œam;Y .a; zi/� : : :Y .a; zn/1

˛
d
;

leading to a recursive identity

G.0/
n .z1; : : : ; zn/D

nX
iD2

1

.z1� zi/2
G
.0/
n�2

.z2; : : : ; Ozi : : : ; zn/; (95)
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where Ozi is deleted. Thus we may recursively solve to find G
.0/
n D 0 for n odd

whereas for n even, G
.0/
n is expressed as multiples of rational terms of the form

1=.zi � zj /
2 for all possible pairings zi ; zj . This can be equivalently described

in terms of the subset, denoted by F.˚/, of the permutations of the label set
˚ D f1; : : : ng consisting of fixed-point-free involutions. Thus a typical element
' 2F.˚/ is given by 'D : : : .ij / : : : , a product of n=2 disjoint cycles. We then
find (95) implies

THEOREM 10.5. G
.0/
n vanishes for n odd, whereas for n even

G.0/
n .z1; : : : ; zn/D

X
'2F.˚/

Y 1

.zi � zj /2
; (96)

where the product ranges over all the cycles of ' D : : : .ij / : : :.

REMARK 10.6. Using associativity one can show that G
.0/
n .z1; : : : ; zn/ is in

fact a generating function for all matrix elements of the Heisenberg VOA.

EXERCISE 10.7. Show that jF.˚/j D .n� 1/!!D .n� 1/:.n� 3/:.n� 5/ : : : .

EXERCISE 10.8. For n D 4 show that F.˚/ D f.12/.34/; .13/.24/; .14/.23/g

and G
.0/
4
.z1; z2; z3; z4/ is given by

1

.z1� z2/2.z3� z4/2
C

1

.z1� z3/2.z2� z4/2
C

1

.z1� z4/2.z2� z3/2
:

10.3. Adjoint vertex operators. The Virasoro subalgebra fL�1;L0;L1g gen-
erates a natural action on vertex operators associated with SL.2;C/ Möbius
transformations on z (cf. [B], [DGM], [FHL], [K1] and Exercise 2.21). Thus
under the translation z‘ zC� generated by L�1 we have (cf. Exercise 2.16)

q
L�1

�
Y .u; z/q

�L�1

�
D Y .u; zC�/: (97)

Under z‘ q�z generated by L0 we have (cf. Exercise 4.2)

q
L0

�
Y .u; z/q

�L0

�
D Y .q

L0

�
u; q�z/: (98)

Finally, under the transformation z‘ z=.1��z/ generated by L1 we find

q
L1

�
Y .u; z/q

�L1

�
D Y .q

L1

�.1��z/
.1��z/�2L0u;

z

1��z
/: (99)

Combining these it follows that the transformation z‘��2z�1 is described by
T� � q

L�1

�
q

L1

��1q
L�1

�
with

T�Y .u; z/T �1
� D Y .q

L1

�z��2.�
�2z2/�L0u;��2z�1/: (100)
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Taking �D
p
�1 in (100) corresponding to the inversion z‘ z�1 we find

Y |.u; z/� Tp
�1

Y .u; z/T �1p
�1
D Y .qL1

z .�z2/�L0u; z�1/: (101)

We call Y |.u; z/ the adjoint vertex operator17. For u of weight wt.u/ it follows
that Y |.u; z/D

P
n u

|
nz�n�1 has modes

u|
n D .�1/wt.u/

wt.u/X
kD0

1

k!
.Lk

1u/2wt.u/�n�k�2: (102)

For a quasiprimary state u (102) simplifies to

u|
n D .�1/wt.u/u2wt.u/�n�2: (103)

Thus for a weight one Heisenberg vector a we find

a|
n D�a�n: (104)

and for the weight two Virasoro vector ! we find that for L
|
n � !

|
nC1

L|
n DL�n: (105)

We also note that the adjoint vertex operators can be used to construct a
canonical V -module as follows. Define vertex operators YV 0 W V ! F.V 0/ by

hY 0.u; z/a0; bid D ha
0;Y |.u; z/bid ; (106)

for a0 2V 0 and b;u2V . Then .V 0;YV 0/ can be shown to be a V -module called
the dual or contragradient module [FHL].

EXERCISE 10.9. Prove (100).

EXERCISE 10.10. Show for a quasiprimary state u (i.e., L1u D 0) of weight
wt.u/ that under a Möbius transformation z! �.z/D .azC b/=.czC d/

Y .u; z/!

�
d�

dz

�wt.u/

Y .u; �.z//: (107)

EXERCISE 10.11. Hence show for n quasiprimary vectors ui of weight wt.ui/

that the rational n-point function (87) is associated with a (formal) Möbius-
invariant differential form on CP1

F
.0/
V
.u1; : : : ;un/D F

.0/
V
..u1; z1/; : : : ; .u

n; zn//
Y

1�i�n

dz
wt.ui /
i : (108)

17This terminology differs from that of [FHL]
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REMARK 10.12. F
.0/
V
.u1; : : : ;un/ is a conformally invariant global meromor-

phic differential form on CP1 if u1; : : : ;un are primary vectors i.e., Lnui D 0

for all n> 0.

EXERCISE 10.13. Prove (102).

EXERCISE 10.14. Show that .Y |.u; z//| D Y .u; z/.

10.4. Invariant bilinear forms. In this subsection we consider the construction
of a canonical bilinear form on V motivated by (106). We say a bilinear form
h ; i W V �V�C is invariant if for all a; b;u 2 V

hY .u; z/a; bi D ha;Y |.u; z/bi; (109)

with Y |.a; z/ the adjoint operator of (101). In terms of modes, (109) reads

huna; bi D ha;u|
nbi; (110)

using (102). Applying (105) it follows that

hL0a; bi D ha;L0bi: (111)

Thus for homogeneous a and b then ha; bi D 0 for wt.a/ 6D wt.b/.

Next consider a; b with wt.a/D wt.b/. Invariance and skew-symmetry (see
Exercise 2.15) give

h1;Y |.a; z/bi D .�z2/�wt.a/
h1;Y .qL1

z a; z�1/bi

D .�z2/�wt.b/
h1; qL�1

z�1 Y .b;�z�1/qL1
z ai

D h1; qL�1

z�1 Y |.qL1
z b;�z/qL1

z ai:

But (105) implies this is

hq
L1

z�11;Y |.qL1
z b;�z/qL1

z ai D h1;Y |.qL1
z b;�z/qL1

z ai:

Using invariance this becomes

hY .qL1
z b;�z/1; qL1

z ai:

Finally, using Exercise 2.9 and (105) this is

hqL�1
�z qL1

z b; qL1
z ai D hb; qL�1

z ai D hb;Y .a; z/1i:

Thus we have shown

hY .a; z/1; bi D hb;Y .a; z/1i:

In particular, considering the z0 term, this implies that the bilinear form is sym-
metric:

ha; bi D hb; ai: (112)
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Consider again a; b with wt.a/Dwt.b/. Using the creation axiom a�11D a

we obtain
ha; bi D h1; a|

�1
bi: (113)

with a
|
�1

b 2 V0. Thanks to the assumption that V is of CFT-type18 we have
a

|
�1

bD˛1 for some ˛ 2C with ha; biD ˛h1; 1i. Hence either h1; 1iD 0 so that
ha; bi D 0 for all a; b or else ha; bi is non-trivial and is uniquely determined up
to the value of h1; 1i ¤ 0 in which case we choose the normalization h1; 1i D 1.

It is straightforward to show that if h1; 1i ¤ 0 then L1V1 D 0 (cf. Exercise
10.16). Li has shown [Li] that the converse is also true: for a VOA of CFT-type,
then h1; 1i ¤ 0 if and only if L1V1 D 0. We say that a VOA is of Strong CFT-
type if it is of CFT-type and L1V1 D 0. Such a VOA therefore has a unique
normalized invariant bilinear form.

The pairing h ; i determines a standard map from V to the restricted dual
space V 0 defined by

a‘ ha ; � i: (114)

Let K denote the kernel of this map. h ; i is nondegenerate with K trivial if, and
only if, V is isomorphic to V 0 (in other words, V is self-dual). In this case, we
may identify h ; i with the canonical pairing h ; id and the dual module (106) is
isomorphic to the original VOA.

The nondegeneracy of h ; i is also related to the simplicity of the VOA V in
much that same way that nondegeneracy of the Killing form determines semi-
simplicity in Lie theory [Li]. Let I � V denote the maximal proper ideal of V

(cf. Exercise 6.11), so that
unb 2 I; (115)

for all b 2 I, u 2 V . V is simple if I is trivial (cf. Section 6). We now show that
assuming V is of strong CFT-type then I D K and hence V is simple if, and
only if, h ; i is nondegenerate.

We firstly note that 1 … I (otherwise uD u�11 2 I for all u 2 V ). Because V

is of CFT-type, then for all b 2 I it follows b … V0 and so

h1; bi D 0: (116)

Consider u 2 V and b 2 I. Then u
|
�1

b 2 I from (102) and so

hu; bi D h1;u|
�1

bi D 0;

for all u from (116). Hence we find I � K. Conversely, suppose that c 2 K.
Then

hY |.u; z/v; ci D 0;

18The general situation is discussed in [Li]).
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for all u; v 2 V . Invariance implies hv;Y .u; z/ci D 0 and hence unc 2K for all
un. But given V is of strong CFT-type then h ; i is nontrivial so that K¤ V and
hence K� I. Thus we conclude IDK.

Altogether we may summarize these results as follows:

THEOREM 10.15. Let V be a VOA. An invariant bilinear form h ; i on V is sym-
metric and diagonal with respect to the canonical L0-grading. Furthermore, if
V is of strong CFT-type, h ; i is unique up to normalization and is nondegenerate
if and only if V is simple.

The invariant bilinear form is equivalent to the chiral part of the Zamolodchikov
metric in CFT ([BPZ; FMS; P]) where (abusing notation)

ha; bi D lim
z1!0

lim
z2!0
hY .a; z1/1;Y .b; z2/1i

D lim
z1!0

lim
z2!0
h1;Y |.a; z1/Y .b; z2/1i

D “h1;Y .a; w1 D1/Y .b; z2 D 0/1i00; (117)

forw1D1=z1 following (101). We thus refer to the nondegenerate bilinear form
as the Li–Zamolodchikov metric on V or LiZ-metric for short19.

Consider the rank one Heisenberg VOA M0 generated by a weight one state
a with V spanned by Fock vectors

v D a
e1

�1
a

e2

�2
: : : a

ep

�p1; (118)

for nonnegative integers ei . Using (104), we find that the Fock basis consisting
of vectors of the form (118) is orthogonal with respect to the LiZ-metric with

hv; vi D
Y

1�i�p

.�i/ei ei !: (119)

Clearly h ; i is nondegenerate, so by Theorem 10.15 it follows that M0 is a
simple VOA (as already discussed in Section 6).

Consider the Virasoro VOA Virc generated by the Virasoro vector! of central
charge c. Using (111) it is sufficient to consider the nondegeneracy of h ; i on
each homogeneous space Vn. In particular, let Mn.c/ D .ha; bi/ be the Gram
matrix of .Virc/n with respect to some basis. The Kac determinant (see [KR]) is
det Mn.c/, which is conveniently considered as a polynomial in c. By Theorem
10.15, Virc is simple if, and only if, det Mn.c/¤ 0 for all n. For nD 2 we have
V2 D C! with Kac determinant

det M2.c/D h!;!i D h1;L2L�21i D
c

2
; (120)

19Although we use the term metric here, the bilinear form is not necessarily positive definite.
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with a zero at c D 0. For nD 4 we have V4 D ChL2
�2

1;L�41i with

M4.c/D

�
c.4C 1

2
c/ 3c

3c 5c

�
; (121)

and Kac determinant

det M4.c/D
1
2
c2.5cC 22/ (122)

with zeros at c D 0;�22
5

.
There is a general formula for the Kac determinant det Mn.c/ which turns

out to have zeros for central charge

c D cp;q D 1�
6.p� q/2

pq
; (123)

where .p� 1/.q � 1/D n for coprime p; q � 2. Thus Virc is a simple VOA iff
c ¤ cp;q for some coprime p; q � 2 (cf. Theorem 7.2).

EXERCISE 10.16. Show that if h1; 1i ¤ 0 then L1V1 D 0.

EXERCISE 10.17. Suppose that a 2 Vm; b 2 Vn and at least one of a or b is
quasiprimary. Prove that the 2-point correlation function is given by

h1;Y .a; z1/Y .b; z2/1i D
ha; bi

.z1� z2/2m
ım;n:

(The Zamolodchikov metric in CFT is often introduced in this way.)

EXERCISE 10.18. Verify (119).

11. The genus-two partition function for the Heisenberg VOA

In this section we will discuss some recent research by the authors wherein
we develop a theory of partition and n-point correlation functions on a Riemann
surface of genus-two [T1; MT2; MT3; MT4]. The basic idea is to construct a
genus-two Riemann surface by specific sewing schemes where we either sew
together two once punctured tori or self-sew a twice punctured torus (i.e., attach
a handle). The partition and n-point functions on the genus-two surface are then
defined in terms of correlation functions on the lower genus surfaces combined
together in an appropriate way. We will not explore the full details entailed in
this programme. Instead we will consider the example of the Heisenberg VOA
M0 and compute the partition function on the genus-two surface formed from
two tori.
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11.1. Genus-one Heisenberg 1-point functions. We first discuss the genus-
one 1-point correlation function for all elements of the Heisenberg VOA M0

generated by the weight one Heisenberg vector a [MT1]. We make heavy use
of the Zhu recursion formulas (Theorems 5.7 and 5.10). In particular, we prove
Theorem 4.5 by considering the 1-point function ZM0

.v; �/ for a Fock vector
in the square bracket formulation

v D aŒ�k1� : : : aŒ�kn�1; (124)

for ki � 1. The Fock vector v is of square bracket weight wtŒv� D
P

i ki . We
want to show that

Z
.1/
M0
.v; �/D

Qv.�/

�.q/
; (125)

for Qv.�/ 2 Q, the algebra of quasimodular forms. Qv.�/ is of weight wtŒv�
and is expressed in terms of

C.k; l/D C.k; l; �/D .�1/lC1 .kC l � 1/!

.k � 1/!.l � 1/!
EkCl.�/; (126)

for k; l � 1. Here En.�/ is the Eisenstein series of (24). We recall that En D 0

for n odd, E2.�/ is a quasimodular form of weight 2 and En is a modular form
of weight n for even n � 4. Thus C.k; l; �/ is a quasimodular form of weight
kC l . We also note that C.k; l/D C.l; k/.

Each Fock vector v is described by a label set ˚�D fk1; : : : ; kng which cor-
responds in a natural 1-1 manner with unrestricted partitions �D f1e1 ; 2e2 ; : : :g

of wtŒv� (where ei � 0). We write v D v.�/ to indicate this correspondence,
which will play a significant rôle later on. Define F.˚�/ to be the subset
of all permutations on ˚� consisting only of fixed-point-free involutions. Let
' D : : : .kikj / : : : , a product of disjoint cycles, denote a typical element of
F.˚�/.

We can now describe the 1-point function Z
.1/
M0
.v.�/; �/ of (125) [MT1]:

THEOREM 11.1. For even n

Qv.�/D
X

�2F.˚�/

� .�; �/; (127)

� .�; �/D
Y
.ki kj /

C.ki ; kj ; �/: (128)

for C of (126), where the product ranges over all the cycles of 'D : : : .kikj / : : :

in F.˚�/. Moreover Qv.�/ lies in Q and is of weight wtŒv�. For n odd Qv.�/

vanishes.
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PROOF. Let v.�/ D aŒ�k1�w for w D aŒ�k2� : : : aŒ�kn�1 and use the second
Zhu recursion formula (Theorem 5.10) to find

Z
.1/
M0
.aŒ�k1�w; �/D ık1;1 TrM0

.o.a/o.w/qL0�1=24/

C

X
m�1

.�1/mC1

�
k1Cm�1

m

�
Ek1Cm.�/Z

.1/
M0
.aŒm�w; �/:

But o.a/uD 0 for all u 2M and the Heisenberg commutation relations imply

Z
.1/
M0
.aŒ�k1�w; �/D 0C

nX
jD2

.�1/kjC1

�
k1Ckj�1

kj

�
Ek1Ckj .�/kj Z

.1/
M0
. Ow; �/

D

nX
jD2

C.k1; kj ; �/Z
.1/
M0
. Ow; �/;

where Ow denotes the Fock vector with label set fk2; : : : ; Okj : : : ; kng with the
index kj deleted. The result follows by repeated application of this recursive
formula until we obtain Ow D 1 for which Z

.1/
M0
.1; �/ D 1=�.q/. The resulting

expression for Qv.�/ is clearly a quasimodular form of weight wtŒv�D
P

i ki .
Thus Theorem 11.1 follows. �

Some further insight into the combinatorial structure of Qv.�/ can be garnered
by a consideration of the n-point function for n Heisenberg vectors which we
denote by

G.1/
n .z1; : : : ; zn; �/� F

.1/
M0
..a; z1/; : : : .a; z/; �/: (129)

This is a symmetric function in zi with a pole of order two at zi D zj for all
i ¤ j (from locality). For nD 1 we immediately find

G
.1/
1
.z1; �/D TrM0

o.a/qL0�1=24
D 0:

The 2-point function is easily computed via the first Zhu recursion formula (The-
orem 5.7):

G
.1/
2
.z1; z2; �/

D TrM0
o.a/o.a/qL0�1=24

�

X
m�1

.�1/m

m!
P
.m/
1

.z12; �/Z
.1/
M0
.aŒm�a; �/

D 0CP2.z12; �/
1

�.q/
; (130)

since aŒm�aD 1ım;1 and where, from Theorem 5.1, we recall

P2.z; �/D
d

dz
P1.z; �/D

1

z2
C

1X
nD2

.n� 1/En.�/z
n�2:
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(130) is the elliptic analogue of the genus zero formula (94) and reflects a deeper
geometrical structure underlying the Heisenberg VOA e.g. [MT4].

Using the n-point correlation function version of the first Zhu recursion we
can similarly obtain the genus-one analogue of Theorem 10.5 to find [MT1]:

THEOREM 11.2. For n even

G.1/
n .z1; : : : ; zn; �/D

1

�.q/

X
'2F.˚/

Y
.ij/

P2.zij ; �/; (131)

where the product ranges over all the cycles of ' D : : : .ij / : : : for ˚ D
f1; 2; : : : ; ng whereas for n odd G

.1/
n vanishes.

We may use this result to compute any genus-one n-point correlation function
for M0 by considering an appropriate analytic expansion of G

.1/
n .z1; : : : ; zn; �/

[MT1]. In particular, we can rederive (127) by making use of the identity

G.1/
n .z1; : : : ; zn; �/DZ

.1/
M0
.Y Œa; z1� : : :Y Œa; zn�1; �/

D

X
k1;:::kn

Z
.1/
M0
.v; �/z

k1�1
1

: : : zkn�1
n ; (132)

for Fock vector vD aŒ�k1� : : : aŒ�kn�1 for all ki . We may extract the nonnega-
tive values of k1; : : : ; kn from the expansion

P2.zij ; �/D
1

.zi � zj /2
C

1X
ki ;kj�1

C.ki ; kj ; �/z
ki�1
i z

kj�1

j ; (133)

for C of (126). Thus (131) implies the formula (127) of Theorem 11.1 found
for Qv.�/.

It is very useful to recast Theorem 11.1 in terms of graph theory as follows.
Consider a Fock vector v.�/ with label set˚�Dfk1; : : : ; kng and let � 2F.˚�/

be a fixed-point-free involution of˚� leading to a contribution � .�; �/ to Qv.�/

in (127). We may then associate to each � 2 F.˚�/ a �-graph 
� consisting of
n vertices labelled by ˚� of unit valence with n=2 unoriented edges connect-
ing the pairs of vertices .ki ; kj / determined by ' D : : : .kikj / : : : . Following
Exercise 10.7 there are .n� 1/!! such graphs for a given label set ˚�. Thus, in
Exercise 11.4 with v D aŒ�1�3aŒ�2�2aŒ�5�1 there are 15 independent �-graphs
(cf. Exercise 11.5). A �-graph for a fixed point involution � D .11/.22/.15/ is
shown in Figure 1.20

Given a �-graph 
� we define a weight function

� W f
� g�Q;

20Note that there are 3 distinct fixed point involutions notated by .11/.22/.15/.
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�
�

1 s
1 s

A
A

2s
2s

5
s

1
s

Figure 1. A �-graph for .11/.22/.15/.

as follows: for every edge E labeled as
k
� �

l
� define

�.E; �/D C.k; l; �/; (134)

with
�.
� ; �/D

Y
�.E; �/; (135)

where the product is taken over all edges of 
� . Thus the �-graph of Figure 1
has weight C.1; 1/C.2; 2/C.1; 5/D�30E2.�/E4.�/E6.�/.

Clearly Theorem 11.1 can now be restated in terms of graphs:

THEOREM 11.3. For a Fock vector v.�/ with label set ˚� D fk1; : : : ; kng and
even n

Qv.�/D
X

�

�.
� ; �/; (136)

where the sum is taken over all independent ��graphs for ˚�.

EXERCISE 11.4. For vD aŒ�1�3aŒ�2�2aŒ�5�1 of weight wtŒv�D 12 with ˚�D
f1; 1; 1; 2; 2; 5g and jF.˚�/j D 5!!D 15 (cf. Exercise 10.7) show that

Qv.�/D 6C.1;1/C.1;2/C.2;5/C 3C.1;1/C.2;2/C.1;5/C 6C.1;2/2C.1;5/

D 0� 90E2.�/E4.�/E6.�/C 0:

Thus only 3 elements of F.˚�/ make a nonzero contribution to Qv.�/.

EXERCISE 11.5. Find all the �-graphs for v D aŒ�1�3aŒ�2�2aŒ�5�1.

11.2. Sewing two tori. In this section we digress from VOA theory to briefly
review some aspects of Riemann surface theory and the construction of a genus-
two surface by sewing together two punctured tori. A genus-two Riemann sur-
face can also be constructed by sewing a handle to a torus but we do not consider
that situation here. For more details see [MT2], [MT4].

Let S.2/ denote a compact Riemann surface of genus-two and let a1; a2; b1; b2

be the canonical homology basis (see [FK], for example). There exists two
holomorphic 1-forms �i , i D 1; 2, which we may normalize byI

ai

�j D 2� iıij :
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The genus-two period matrix ˝ is defined by

˝ij D
1

2� i

I
bi

�j ; (137)

for i; j D 1; 2. Using the Riemann bilinear relations, one finds that ˝ is a
complex symmetric matrix with positive-definite imaginary part, i.e., ˝ 2 H2,
the genus-two Siegel complex upper half-space.

The intersection form � is a natural nondegenerate symplectic bilinear form
on the first homology group H1.S

.2/;Z/Š Z4, satisfying

�.ai ; aj /D�.bi ; bj /D 0; �.ai ; bj /D ıij ; i; j D 1; 2:

The mapping class group is given by the symplectic group

Sp.4;Z/D
˚

 D

�
A
C

B
D

�
2 SL.4;Z/ j

ABT
D BAT ; CDT

DDT C DADT
�BC T

D I2

	
;

where AT denotes the transpose of A. The group Sp.4;Z/ acts on H2 via


:˝D .A˝CB/.C˝CD/�1; (138)

and naturally on H1.S;Z/, where it preserves � .

We now briefly review a general method originally due to Yamada [Y] and
discussed at length in [MT2] for calculating the period matrix (and other struc-
tures) on a Riemann surface formed by sewing together two other Riemann
surfaces. In particular, we wish to describe˝ij on a genus-two Riemann surface
formed by sewing together two tori Sa for aD 1; 2 (Figure 11.2). Consider an
oriented torus SaDC=��a

with lattice ��a
with basis .2� i; 2� i�a/ for �a 2H,

the complex upper half plane. For local coordinate za 2 Sa consider the closed
disk jzaj � ra. This is contained in Sa provided ra <

1
2
D.qa/ where

D.qa/D min
�2��a ;�¤0

j�j; (139)

is the minimal lattice distance.
Introduce a sewing parameter " 2 C where j"j � r1r2 <

1
4
D.q1/D.q2/ and

excise the disk fza; jzaj � j"j=r Nag centered at za D 0 to form a punctured torus

OSa D Sanfza; jzaj � j"j=r Nag;

where we use the convention

1D 2; 2D 1: (140)

Define the annulus

Aa D fza; j"j=r Na � jzaj � rag �
OSa; (141)
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�
��&%
'$

�

z1 D 0

@@r1

�

j"j=r2

S1 �
��&%
'$
U

z2 D 0

��
r2 �

j"j=r1

S2

Figure 2. Sewing two tori.

We then identify A1 with A2 via the sewing relation

z1z2 D "; (142)

to obtain an explicit construction of a genus-two Riemann surface

S.2/ D OS1[
OS2[ .A1 'A2/;

which is parameterized by the domain

D"
D f.�1; �2; "/ 2 H�H1�C j j"j<

1

4
D.q1/D.q2/g: (143)

In [Y], Yamada describes a general method for computing the period matrix
on the sewn Riemann surface S.2/ in terms of data obtained from the two tori.
This is described in detail in [MT2] where we obtain the explicit form for ˝ in
terms of the infinite matrix Aa.�a; "/D .Aa.k; l; �a; "// for k; l � 1 where

Aa.k; l; �a; "/D
".kCl/=2

p
kl

C.k; l; �a/; (144)

and where C.k; l; �a/ is given in (126). Thus, dropping the subscript,

A.�; "/D

0BBBBB@
"E2.�/ 0

p
3"2E4.�/ 0 � � �

0 �3"2E4.�/ 0 �5
p

2"3E6.�/� � �p
3"2E4.�/ 0 10"3E6.�/ 0 � � �

0 �5
p

2"3E6.�/ 0 �35"4E8.�/ � � �
:::

:::
:::

:::
: : :

1CCCCCA :
The matrices A1;A2 not only play a central rôle here but also later on in our
discussion of the genus-two partition for the Heisenberg VOA M0. In particular,
the matrix I �A1A2 and det.I �A1A2/ (where I is the infinite identity matrix
here) are important, where det.I �A1A2/ is defined by

log det.I �A1A2/D Tr log.I �A1A2/D�
X
n�1

1

n
Tr..A1A2/

n/: (145)

These expressions are power series in QŒŒ"��. One finds:
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THEOREM 11.6 [MT2].
(a) The infinite matrix

.I �A1A2/
�1
D

X
n�0

.A1A2/
n; (146)

is convergent for .�1; �2; "/ 2D".
(b) det.I �A1A2/ is nonvanishing and holomorphic on D".

Furthermore we may obtain an explicit formula for the genus-two period matrix
on S.2/:

THEOREM 11.7. The sewing procedure determines a holomorphic map

F " WD"
! H2; .�1; �2; "/‘˝.�1; �2; "/; (147)

where ˝ D˝.�1; �2; "/ is given by

2� i˝11 D 2� i�1C ".A2.I �A1A2/
�1/.1; 1/;

2� i˝22 D 2� i�2C ".A1.I �A2A1/
�1/.1; 1/;

2� i˝12 D�".I �A1A2/
�1.1; 1/:

Here .1; 1/ refers to the .1; 1/-entry of a matrix.

D" is preserved under the action of

G ' .SL.2;Z/�SL.2;Z//o Z2;

the direct product of the left and right torus modular groups, which are inter-
changed upon conjugation by an involution ˇ as follows:


1:.�1; �2; "/D
�

a1�1Cb1

c1�1Cd1
; �2;

"

c1�1Cd1

�
;


2:.�1; �2; "/D
�
�1;

a2�2Cb2

c2�2Cd2
;

"

c2�2Cd2

�
;

ˇ:.�1; �2; "/D .�2; �1; "/; (148)

for .
1; 
2/ 2 SL.2;Z/�SL.2;Z/ with 
i D

�
ai bi

ci di

�
.

There is a natural injection G ! Sp.4;Z/ in which the two SL.2;Z/ sub-
groups are mapped to

�1 D

8̂̂<̂
:̂
2664

a1 0 b1 0

0 1 0 0

c1 0 d1 0

0 0 0 1

3775
9>>=>>; ; �2 D

8̂̂<̂
:̂
2664

1 0 0 0

0 a2 0 b2

0 0 1 0

0 c2 0 d2

3775
9>>=>>; ; (149)



252 GEOFFREY MASON AND MICHAEL TUITE

and the involution is mapped to

ˇ D

2664
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

3775 : (150)

Thus as a subgroup of Sp.4;Z/, G also has a natural action on the Siegel upper
half plane H2 as given in (138). This action is compatible with respect to the map
(147) which is directly related to the observation that Aa.k; l; �a; "/ of (144) is a
modular form of weight kC l for kC l > 2, whereas Aa.1; 1; �a; "/D "E2.�a/

is a quasimodular form. The exceptional modular transformation property of
the latter term (29) leads via Theorem 11.7 to the following result:

THEOREM 11.8. F " is equivariant with respect to the action of G; i.e., there is
a commutative diagram for 
 2G,

D" F "- H2

D"



? F "- H2



?

EXERCISE 11.9. Show that to O."4/

2� i˝11 D 2� i�1CE2.�2/"
2
CE2.�1/E2.�2/

2"4;

2� i˝22 D 2� i�2CE2.�1/"
2
CE2.�1/

2E2.�1/
2"4;

2� i˝12 D�"CE2.�1/E2.�2/"
3:

11.3. The genus-two partition function for the Heisenberg VOA. In this sec-
tion we define and compute the genus-two partition function for the Heisenberg
VOA M0 on the genus-two Riemann surface S.2/ described in the last section.
The partition function is defined in terms of the genus-one 1-point functions
Z
.1/
M0
.v; �a/ on Sa D C=��a

for all v 2M . The rationale behind this definition,
which is strongly influenced by ideas in CFT, can be motivated by considering
the following trivial sewing of a torus S1DC=��1

to a Riemann sphere CP1. Let
z1 2 S1 and z2 2CP1 be local coordinates and define the sewing by identifying
the annuli ra � jzaj � j"jr

�1
Na via the sewing relation z1z2 D " (adopting the

same notation as above). The resulting surface is a torus described by the same
modular parameter �1.

Let V be a VOA with LiZ metric h ; i and consider an n-point function21

F
.1/
V
..v1;x1/; : : : .v

n;xn/; �1/ for xi 2 A1, the torus annulus (141). This can

21Here and below we include a superscript .1/ to indicate the genus of the Riemann torus.
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be expressed in terms of a 1-point function ([MT1], Lemma 3.1) by

F
.1/
V
..v1;x1/;:::.v

n;xn/;�1/DZ
.1/
V
.Y Œv1;x1�:::Y Œv

n;xn�1;�1/

DZ
.1/
V
.Y Œv1;x1n�:::Y Œv

n�1;xn�1n�v
n;�1/; (151)

for xinDxi�xn (see (132)). Denote the square bracket LiZ metric by h ; isq, and
choose a basis fug of VŒr � with dual basis f Nug with respect to h ; isq. Expanding
in this basis we find that for any 0� k � n� 1

Y ŒvkC1;xkC1� : : :Y Œv
n;xn�1D

X
r�0

X
u2VŒr �

h Nu;Y ŒvkC1;xkC1� : : :Y Œv
n;xn�1isqu;

so that

F
.1/
V
..v1;x1/; : : : .v

n;xn/; �1/D
X
r�0

X
u2VŒr �

Z
.1/
V
.Y Œv1;x1� : : :Y Œv

k ;xk �u; �1/

:h Nu;Y ŒvkC1;xkC1� : : :Y Œv
n;xn�1isq:

Using (151) we have

Z
.1/
V
.Y Œv1;x1� : : :Y Œv

k ;xk �u; �1/

D Resz1
z�1

1 F
.1/
V
..v1;x1/; : : : .v

k ;xk/; .u; z1/; �1/: (152)

Let us now assume that each vi is quasiprimary of LŒ0� weight wtŒvi � and let
yi D "=xi 2 CP1. Then (109), (112), (98) and (103) respectively imply

h Nu;Y ŒvkC1;xkC1� : : :Y Œv
n;xn�1isq

D h1;Y |Œvn;xn� : : :Y
|ŒvkC1;xkC1� Nuisq

D h1; "LŒ0�Y |Œvn;xn�"
�LŒ0� : : : "LŒ0�Y |ŒvkC1;xkC1�"

�LŒ0�"LŒ0�
Nuisq

D "r
h1;Y Œvn;yn� : : :Y Œv

kC1;ykC1� Nuisq

Y
kC1�j�n

�
�
"

x2
j

�wtŒvj �

D "r Resz2
z�1

2 Z
.0/
V
..vn;yn/; : : : .v

kC1;ykC1/; . Nu; z2//
Y

kC1�j�n

�
dyj

dxj

�wtŒvj �
:

We are also making use here of the isomorphism between the round and square
bracket formalisms in the identification of the genus zero correlation function.
The result of these calculations is that, for any 0� k � n� 1,

F
.1/
V
.v1; : : : ; vn

I �1/� F
.1/
V
..v1;x1/; : : : ; .v

n;xn/; �1/
Y

1�i�n

dxi
wtŒvi �

D
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�
��&%
'$vi

xi

S �
��&%
'$

yi

CP1

Figure 3. Equivalent insertion of vi at xi or yi D "=xi .

D

X
r�0

"r
X

u2VŒr �

�
Resz1

z�1
1 F

.1/
V
..v1;x1/; : : : .v

k ;xk/; .u; z1/; �1/

�Resz2
z�1

2 F
.0/
V
..vkC1;ykC1/; : : : .v

1;y1/; . Nu; z2//

�

Y
1�i�k

dxi
wtŒvi �

Y
kC1�j�n

dyj
wtŒvj �

�
: (153)

Following Exercises 10.10 and 10.11 the (formal) form F
.1/
V
.v1; : : : ; vnI �1/ is

invariant with respect to Möbius transformations. (Similarly to Remark 10.12,
we note that F

.1/
V
.v1; : : : vnI �1/ is a conformally invariant global form on S1

for primary v1; : : : ; vn). Geometrically, (153) is telling us that we express
F
.1/
V
.v1; : : : ; vnI �1/ via the sewing procedure in terms of data arising from

F
.1/
V
.v1; : : : ; vk ;uI �1/ and F

.0/
V
.vkC1; : : : ; v1; Nu/ (cf. (108)). Furthermore, we

may choose to consider the contribution from a quasiprimary vector vi as arising
from either an “insertion” at xi 2 S1 or at the identified point yi D "=xi 2CP1.

A special case of (153) is the partition (0-point) function for which we find
the trivial identity

Z
.1/
V
.�1/D

X
r�0

"r
X

u2VŒr �

Z
.1/
V
.u; �1/Resz2

z�1
2 F

.0/
V
. Nu; z2/DZ

.1/
V
.�1/C 0;

(154)
since F

.0/
V
. Nu; z2/D 0 for Nu … VŒ0�.

Motivated by this example, we define the genus-two partition function where
we effectively replace the Riemann sphere in Figure 3, right, by a second torus
S2 D C=��2

as described in the Section 11.2. Thus replacing the genus-zero
1-point function F

.0/
V
. Nu; 0/ of (154) by Z

.1/
V
. Nu; �2/ we define the genus-two

partition function for a VOA V with a LiZ metric by

Z
.2/
V
.�1; �2; "/D

X
r�0

"r
X

u2VŒr �

Z
.1/
V
.u; �1/Z

.1/
V
. Nu; �2/: (155)

The inner sum is taken over any basis fug for VŒr � with dual basis f Nugwith respect
to the square bracket LiZ metric. Although the definition is associated with the
specific genus-two sewing scheme, it is regarded at this stage as a purely formal
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expression which can be computed to any given order in ". One can also define
genus-two correlation functions by inserting appropriate genus-one correlation
functions in (155). We do not consider these here.

Let us now compute the genus-two partition function for the rank one Heisen-
berg VOA M0 generated by a of weight 1. We employ the square bracket Fock
basis of (124) which we alternatively notate here (cf. (118)) by

v D v.�/D aŒ�1�e1 : : : aŒ�p�ep 1; (156)

for nonnegative integers ei . We recall that v.�/ is of square bracket weight
wtŒv�D

P
i iei and is described by a label set ˚� D f1; : : : ;pg with nD

P
ei

elements corresponding to an unrestricted partition � D f1e1 : : :pepg of wtŒv�.
The Fock vectors (156) form a diagonal basis for the LiZ metric h ; isq with

Nv D
1Q

1�i�p.�i/ei ei !
v; (157)

from (119). Following (155), we find

Z
.2/
M0
.�1; �2; "/D

X
v2V

"wtŒv�Q
i.�i/ei ei !

Z
.1/
M0
.v; �1/Z

.1/
M0
.v; �2/; (158)

where the sum is taken over the basis (156). Z
.2/
M0
.�1; �2; "/ is given by the

following closed formula [MT4]:

THEOREM 11.10. The genus-two partition function for the rank one Heisenberg
VOA is

Z
.2/
M0
.�1; �2; "/D

1

�.�1/�.�2/
.det.I �A1A2//

�1=2; (159)

with Aa of (144).

PROOF. The proof relies on an interesting graph-theoretic interpretation of
(158). This follows the technique introduced in Theorem 11.3 for graphically
interpreting the genus-one 1-point function Z

.1/
M0
.v.�/; �1/ in terms the sum of

weights for the �-graphs. We sketch the main features of the proof leaving the
interested reader to explore the details in [MT4].

Since v.�/ is indexed by unrestricted partitions � D f1e1 ; 2e2 ; : : :g we may
write (158) as

Z
.2/
M0
.�1; �2; "/D

X
�Dfiei g

1Q
i ei !

Q
i

�
"i

�i

�ei

Z
.1/
M0
.v.�/;�1/Z

.1/
M0
.v.�/;�2/: (160)
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�
�

1 s1 AA
A
A

1 s
2

2s
1

2 2s
5
s

1

A
A

1
s2

Figure 4. A chequered diagram.

Theorem 11.3 implies Z
.1/
M0
.v.�/; �1/D 0 for odd nD

P
ei whereas for n even

Z
.1/
M0
.v.�/; �1/Z

.1/
M0
.v.�/; �2/D

1

�.�1/�.�2/

X

�1

X

�2

�.
�1
; �1/�.
�2

; �2/;

where 
�1
; 
�2

independently range over the ��graphs for˚�. Any pair 
�1
;
�2

can be naturally combined to form a chequered diagram D consisting of n ver-

tices labelled by ˚� of valence 2 with n unoriented edges
k
�

a
�

l
� consecutively

labelled by aD 1; 2 as specified by �a D : : : .kl/ : : : . Following Exercise 10.7
there are .n!!/2 chequered diagrams for a given v.�/. We illustrate an example
of such a diagram in Figure 4 for v D aŒ�1�3aŒ�2�2aŒ�5�1 with �1 of Figure 1
and a separate choice for �2 with cycle shape .11/.22/.15/

For � D f1e1 : : :pepg the symmetric group ˙.˚�/ acts on the chequered
diagrams which have ˚� as underlying set of labeled nodes. We define Aut.D/,
the automorphism group of D, to be the subgroup of ˙.˚�/ which preserves
node labels. Aut.D/ is isomorphic to˙e1

�� � ��˙ep
of order jAut.D/jD

Q
i ei !.

We may thus express (160) as a sum over the isomorphism classes of chequered
diagrams D with

Z
.2/
M0
.�1; �2; "/D

1

�.�1/�.�2/

X
D

�.D/

jAut.D/j
;

and

�.D/D
Y

i

�
"i

i

�ei

�.
�1
; �1/�.
�2

; �2/; (161)

where D is determined by 
�1
; 
�2

and noting that
Q

i .�1/ei D 1 for n even.
From (135) we recall that �.
�a

; �1/ is a product of the weights of the a labelled
edges. Then �.D/ can be more naturally expressed in terms of a weight function
on chequered diagrams defined by

�.D/D˘E�.E/; (162)

where the product is taken over the edges E of D and where for an edge E
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labeled
k
�

a
�

l
� we define

�.E/D
"

kCl
2

p
kl

C.k; l; �a/DAa.k; l; �a; "/;

for Aa of (144).
Every chequered diagram can be formally represented as a product

D D
Y

i

L
mi

i ;

with D a disjoint union of unoriented chequered cycles (connected diagrams)
Li with multiplicity mi (e.g. the chequered diagram of Figure 4 is the product
of two disjoint cycles). Then Aut.D/ is isomorphic to the direct product of the
groups Aut.Lmi

i / of order
ˇ̌
Aut.Lmi

i /
ˇ̌
D jAut.Li/j

mi so that

jAut.D/j D
Y

i

jAut.Li/j
mi mi !:

But from (162) it is clear that �.D/ is multiplicative over disjoint unions of
diagrams, and we findX

D

�.D/

jAut.D/j
D

Y
L

X
m�0

�.L/m

jAut.L/jmm!
D exp

X
L

�.L/

jAut.L/j
;

where L ranges over isomorphism classes of unoriented chequered cycles. Fur-
ther analysis shows that [MT4]X

L

�.L/

jAut.L/j
D

1
2

Tr
X
n�1

1

n
.A1A2/

n
D�

1
2

Tr log.1�A1A2/;

so that we find X
D

�.D/

jAut.D/j
D .det.1�A1A2//

�1=2;

following (145). Thus Theorem 11.10 holds. �

The convergence and holomorphy of the determinant is the subject of Theorem
11.6 (b) so that having computed the closed formula (159) we may conclude
that Z

.2/
M0
.�1; �2; "/ is not just a formal function but can be evaluated on D" to

find

THEOREM 11.11. Z
.2/
M0
.�1; �2; "/ is holomorphic on the domain D".

We next consider the automorphic properties of Z
.2/
M0
.�1; �2; "/ with respect to

the modular group G�Sp.4;Z/ of (148) which acts on D". We first recall a little
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from the classical theory of modular forms (cf. Section 3). For a meromorphic
function f .�/ on H, k 2 Z and 
 D

�
a
c

b
d

�
2 SL.2;Z/, we define the right action

f .�/jk
 D f .
 �/ .c� C d/�k ; (163)

where, as usual


� D
a� C b

c� C d
:

f .�/ is called a weak modular form for a subgroup � � SL.2;Z/ of weight k

if f .�/jk
 D f .�/ for all 
 2 � .
We have already discussed the (genus-one) partition function for the rank n

Heisenberg VOA V DM˝n
0

in Section 4.2 (cf. (41)). In particular, for n D 2

we have

Z
.1/

M 2
0

.�/DZ
.1/
M0
.�/2 D

1

�.�/2
:

Then we find
Z
.1/

M 2
0

.�/j�1
 D �.
 /Z
.1/

M 2
0

.�/; (164)

where � is a character of SL.2;Z/ of order 12 (cf. Exercise 8.5 and [Se]), and

Z
.1/

M 24
0

.�/�1
D�.�/: (165)

Similarly, we consider the genus-two partition function for the rank two
Heisenberg VOA given by

Z
.2/

M 2
0

.�1; �2; "/DZ
.2/
M0
.�1; �2; "/

2
D

1

�.�1/2�.�2/2 det.I �A1A2/
: (166)

Analogously to (163), we define for all 
 2G

f .�1; �2; "/jk
 D f .
 .�1; �2; "// det.C˝CD/�k ; (167)

where the action of 
 on the right-hand-side is as in (148) and ˝.�1; �2; "/

is determined by Theorem 11.7. Then (167) defines a right action of G on
functions f .�1; �2; "/. We next obtain a natural genus-two extension of (164).
Define the a character �.2/ of G by

�.2/.
1
2ˇ
m/D .�1/m�.
1/�.
2/; 
i 2 �i ; i D 1; 2:

with �i ; ˇ of (149) and (150). �.2/ takes values which are twelfth roots of
unity. Then, much as for Theorem 11.7, the exceptional transformation law of
Aa.1; 1; �a; "/DE2.�a/ implies that

THEOREM 11.12. If 
 2G then

Z
.2/

M 2
0

.�1; �2; "/j�1
 D �
.2/.
 /Z

.2/

M 2
0

.�1; �2; "/:
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The definition (167) is analogous to that for a Siegel modular form for the
symplectic group Sp.4;Z/ defined as follows (e.g. [Fr]). For a meromorphic
function F.˝/ on H2, k 2 Z and 
 2 Sp.4;Z/, we define the right action

F.˝/jk
 D F.
:˝/ det.C˝CD/�k ; (168)

with 
:˝ of (138). F.˝/ is called a modular form for � � Sp.4;Z/ of weight
k if F.˝/jk
 D F.˝/ for all 
 2 � .

Theorem 11.12 implies that for the rank 24 Heisenberg VOA M 24
0

Z
.2/

M 24
0

.�1; �2; "/j�12
 DZ
.2/

M 24
0

.�1; �2; "/; (169)

for all 
 2 G. This might lead one to speculate that, analogously to the genus-
one case in (165), Z

.2/

M 24
0

.�1; �2; "/
�1 is a holomorphic Siegel modular form

of weight 12. Indeed, there does exist a unique holomorphic Siegel 12 form,
�
.2/
12 .˝/, such that

�
.2/
12 .˝/!�.�1/�.�2/;

as "! 0, but explicit calculations show that Z
.2/

M 24
0

.�1; �2; "/
�1 ¤ �

.2/
12 .˝/. In

any case, we cannot naturally extend the action of G on D" to Sp.4;Z/. These
observations are strongly expected to be related to the conformal anomaly [BK]
in string theory and to the non-existence of a global section for the Hodge line
bundle in algebraic geometry [Mu2].

Siegel modular forms do arise in the determination of the genus-two partition
function for a lattice VOA VL for even lattice L of rank l (and conjecturally for
all rational theories) as follows. We recall the genus-one partition function for
VL is (cf. Section 7.3)

Z
.1/
VL
.�/DZ

.1/

M l
0

.�/�
.1/
L
.�/; (170)

for � .1/
L
.�/ D

P
˛ q.˛;˛/=2. In the genus-two case, we may define the Siegel

lattice theta function by [Fr]

�
.2/
L
.˝/D

X
˛;ˇ2L

exp.� i..˛; ˛/˝11C 2.˛; ˇ/˝12C .ˇ; ˇ/˝22//:

�
.2/
L
.˝/ is a Siegel modular form of weight l=2 for a subgroup of Sp.4;Z/. The

genus-one result (170) is naturally generalized to find [MT4]:

THEOREM 11.13. For a lattice VOA VL we have

Z
.2/
VL
.�1; �2; "/DZ

.2/

M l
0

.�1; �2; "/�
.2/
L
.˝/:
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EXERCISE 11.14. Show that Z
.2/
M0
.�1; �2; "/ to O."4/ is given by

1

�.�1/�.�2/

�
1C 1

2
E2.�1/E2.�2/"

2

C
�

3
8

E2.�1/
2E2.�2/

2
C

15
2

E4.�1/E4.�2/
�
"4
�
:

EXERCISE 11.15. Verify (159) to O."4/ by showing that

det.I �A1A2/D 1�E2.�1/E2.�2/"
2
� 15 E4.�1/E4.�2/"

4
CO."6/:

12. Exceptional VOAs and the Virasoro algebra

In this section we review some recent research concerning a rôle played by
the Virasoro algebra in certain exceptional VOAs [T2], [T3]. We will mainly
concern ourselves here with simple VOAs V of strong CFT-type for which
dim V1 > 0. We construct certain quadratic Casimir vectors from the elements
of V1 and examine the constraints on V arising from the assumption that the
Casimir vectors of low weight are Virasoro descendants of the vacuum. This
sort of assumption is similar to that of ‘minimality’ in the holomorphic VOAs
V .k/ that we discussed in Section 9.4. In particular we discuss how a special set
of simple Lie algebras: A1;A2;G2;D4;F4;E6;E7;E8, known as Deligne’s
exceptional series [De], arises in this context. We also show that the genus-one
partition function is determined by the same Virasoro condition. These con-
straints follow from an analysis of appropriate genus zero matrix elements and
genus-one 2-point functions. In particular, we will make a relatively elementary
use of rational matrix elements, the LiZ metric, the Zhu reduction formula and
modular differential equations. As such, this example offers a useful and explicit
application of many of the concepts reviewed in these notes.

12.1. Quadratic Casimirs and genus-zero constraints. Consider a simple
VOA V of strong CFT-type of central charge c with d D dim V1 > 0. From
Theorem 10.15, V possesses an LiZ metric h ; i, i.e., a unique (nondegenerate)
normalized symmetric bilinear form. For a; b 2 V1 define Œa; b� � a0b. From
Exercise 9.7 this defines a Lie algebra on V1 with invariant bilinear form h ; i.
We denote this Lie algebra by g. The modes of elements of V1 satisfy the Kac–
Moody algebra (cf. Exercise 12.7)

Œam; bn�D Œa; b�mCn�mha; biımCn;0: (171)

which we denote by Og.
Let fu˛ j ˛ D 1 : : : dg and f Nuˇ j ˇ D 1 : : : dg denote a g-basis and LiZ dual

basis respectively. Define the quadratic Casimir vectors by

�.n/ D u˛1�n Nu
˛
2 Vn; (172)
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where ˛ is summed. Since u˛ 2V1 is a primary vector it follows that ŒLm;u
˛
n �D

�nu˛mCn and hence

Lm�
.n/
D .n� 1/�.n�m/ for m> 0: (173)

Let Virc denote the subVOA of V generated by the Virasoro vector !. We
then find:

LEMMA 12.1. The LiZ metric is nondegenerate on Virc .

PROOF. Let v DL�n1
L�n2

: : :L�nk
1 2Virc . Then (105) gives

hv; ai D h1;Lnk
: : :Ln2

Ln1
ai D 0;

for a 2 V nVirc . Since h ; i is nondegenerate on V it must be nondegenerate on
Virc . �

REMARK 12.2. This implies from Theorem 10.15 that Virc is simple with
c ¤ cp;q of (123).

We now consider the constraints on g that follow from assuming that �.n/ 2Virc

for small n.22 Firstly let us note [Mat]

LEMMA 12.3. If �.n/ 2Virc then �.m/ 2Virc and is uniquely determined for all
m� n.

PROOF. If �.n/ 2 Virc then �.n/ D
P
v2.Virc/n

h Nv; �.n/iv summing over a basis
for .Virc/n. But h Nv; �.n/i is uniquely determined by repeated use of (173) and
Exercise 12.8. Furthermore, for m�n we have �.m/D 1

n�1
Ln�m�

.n/2 .Virc/m.
�

It follows that �.2/ 2 Virc implies

�.2/ D�
2d

c
!; (174)

where c¤ 0 following Remark 12.2. Note that for g simple, this is the standard
Sugawara construction for ! of (69). Similarly �.4/ 2 Virc implies

�.4/ D�
3d

c .5cC 22/

�
4L2
�21C .2C c/L�41

�
; (175)

with c ¤ 0;�22
5

following Remark 12.2. �

22The original motivation, due to Matsuo [Mat], for considering quadratic Casimirs is that both they and
Virc are invariant under the automorphism group of V . Matsuo considered VOAs for which the automorphism
invariants of Vn consist only of Virasoro descendents for small n. Hence for these VOAs it necessarily follows
that �.n/ 2 Virc .
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We next consider the constraints on g if either (174) or (175) hold. We do
this by analysing the following genus zero matrix element

F.a; bIx;y/D ha;Y .u˛;x/Y . Nu˛;y/bi; (176)

where ˛ is summed and a; b 2 V1. Using associativity and (172) we find

F.a; bIx;y/D ha;Y .Y .u˛;x�y/ Nu˛;y/bi

D
1

.x�y/2

X
n�0

ha; o.�.n//bi
�

x�y

y

�n
; (177)

where o.�.n//D �n�1 from (37). Thus Exercise 12.8 implies

F.a; bIx;y/D
1

.x�y/2

�
�dha; biC 0Cha; o.�.2//bi

�
x�y

y

�2
C � � �

�
:

(178)
Alternatively, we also have

F.a; bIx;y/D ha;Y .u˛;x/eyL�1Y .b;�y/ Nu˛i

D ha; eyL�1Y .u˛;x�y/Y .b;�y/ Nu˛i

D heyL1a;Y .u˛;x�y/Y .b;�y/ Nu˛i

D ha;Y .u˛;x�y/Y .b;�y/ Nu˛i

D
1

y2

X
m�0

ha;u˛m�1b1�m Nu
˛
i

�
�y

x�y

�m

D
1

y2

�
ha;u˛

�1b1 Nu
˛
i � ha;u˛0b0 Nu

˛
i

y

x�y
C � � �

�
;

using skew-symmetry and translation (cf. Exercises 2.15 and 2.16), invariance
of the LiZ metric and that a is primary. The leading term is

ha;u˛
�1b1 Nu

˛
i D �ha;u˛ihb; Nu˛i D �ha; bi:

The next to leading term is

�ha;u˛0b0 Nu
˛
i D hu˛; a0b0 Nu

˛
i DK.a; b/;

the Lie algebra Killing form

K.a; b/D T rg.a0b0/: (179)

Thus we have

F.a; bIx;y/D
1

y2

�
�ha; biCK.a; b/

y

x�y
C � � �

�
: (180)
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From Theorem 10.1 we know that F.a; bIx;y/ is given by a rational function

F.a; bIx;y/D
f .a; bIx;y/

x2y2.x�y/2
; (181)

where f .a; bIx;y/ is a homogeneous polynomial of degree 4. Furthermore
f .a; bIx;y/ is clearly symmetric in x;y so that it may parameterized

f .a; bIx;y/D p.a; b/x2y2
C q.a; b/xy.x�y/2C r.a; b/.x�y/4; (182)

for some bilinears p.a; b/, q.a; b/ and r.a; b/. We find:

PROPOSITION 12.4. p.a; b/; q.a; b/; r.a; b/ are given by

p.a; b/D�dha; bi; (183)

q.a; b/DK.a; b/� 2ha; bi; (184)

r.a; b/D�ha; bi: (185)

PROOF. Expanding (181) in .x�y/=y we have

F.a; bIx;y/D
1

.x�y/2

�
p.a; b/C q.a; b/

�
x�y

y

�2
C � � �

�
; (186)

whereas expanding (181) in y=.x�y/ gives

F.a; bIx;y/D
1

y2

�
r.a; b/C .�2r.a; b/C q.a; b//

y

x�y
C � � �

�
: (187)

Comparing to (178) and (180) gives the result. �

We next show that if �.2/ 2Virc then the Killing form is proportional to the LiZ
metric:

PROPOSITION 12.5. If �.2/ 2 Virc then

K.a; b/D�2ha; bi
�

d

c
� 1

�
; (188)

so that

f .a; bIx;y/D�ha; bi
�
dx2y2

C
2d

c
xy.x�y/2C .x�y/4

�
: (189)

PROOF. Equation (174) implies o.�.2// D �
2d

c
L0. Comparing the next to

leading terms in (178) and (186) we find

q.a; b/D ha; o.�.2//bi D �
2d

c
ha; bi;

which implies the result. �
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Since the LiZ metric is nondegenerate, it follows from Cartan’s criterion in Lie
theory that g is solvable for d D c and is semisimple for d ¤ c, i.e.,

gD g1
˚ g2

˚ � � �˚ gr ;

for simple components gi of dimension d i . The corresponding Kac–Moody
algebra Ogi has level l i D �

1
2
h˛i ; ˛ii where ˛i is a long root23 so that the dual

Coxeter number is
h_i D l i

�
d

c
� 1

�
: (190)

Furthermore, (174) implies that !D
P

1�i�r !
i with !i the Sugawara Virasoro

vector for central charge ci D l id i=.l i C h_i / for the simple component Ogi . It
follows that for each component

d i

ci
D

d

c
; (191)

so that

�i.2/
D�

2d

c
!i ; (192)

for the quadratic Casimir on gi .
We next show that if �.4/ 2 Virc then g must be simple. Let Li

n denote the
modes of !i and Ln D

P
i Li

n denote the modes of ! with ŒLi
m;L

j
n � D 0 for

i ¤ j . Using �.4/ D
P

i �
i.4/ (for quadratic Casimirs on gi) it follows from

(173) that
Li

2�
.4/
D 3�i.2/: (193)

Since Li
n satisfies the Virasoro algebra of central charge ci we find

Li
2L2
�21D 8!i

C ci!; Li
2L�41D 6!i :

If �.4/ 2 Virc then (175) holds and hence

Li
2�
.4/
D�

3d

c .5cC 22/

�
.44C 6c/!i

C 4ci!
�
:

Equating to (193) and using (192) implies that

!i
D

ci

c
!:

But since the Virasoro vectors !1; : : : !r are independent it follows that r D 1;
i.e., g is a simple Lie algebra.

If (175) holds one also finds that

ha; o.�.4//bi D �
9d.6C c/

c .5cC 22/
ha; bi:

23Then .a;b/i��ha;bi=li is the unique nondegenerate form on Og.li /

i
with normalization .˛i; ˛i /iD2.
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Comparing to the corresponding term in (177) this results in a further constraint
on the parameters d; c in (189) given by

d D
c .5cC 22/

10� c
: (194)

Notice that the numerator vanishes for c D 0;�22=5, the zeros of the Kac de-
terminant det M4.c/ (122).

For integral d > 0 there are only 42 rational values of c satisfying (194). This
list is further restricted by the possible values of d for g simple. The level l is
necessarily rational from (190). Restricting l to be integral (for example, if V

is assumed to be C2-cofinite [DM1]) we find that l D 1 and g must be one of
Deligne’s exceptional Lie algebras:

THEOREM 12.6. Suppose �.4/ 2 Virc .
(a) g is a simple Lie algebra.
(b) If c is rational and the level l of Og is integral then

gDA1;A2;G2;D4;F4;E6;E7 or E8;

with dual Coxeter number

h_ D
d

c
� 1D

12C 6c

10� c
;

for central charge c D 1; 2; 14
5
; 4; 26

5
; 6; 7; 8 respectively and level l D 1.

The simple Lie algebras appearing in Theorem 12.6 are known as Deligne’s
exceptional Lie algebras [De]. These algebras are of particular interest because
not only is the dimension d of the adjoint representation g described by a rational
function of c in (194) but also the dimensions of the irreducible representations
that arise in decomposition of up to four tensor products of g. In Deligne’s
original calculations, these dimensions were expressed as rational functions of
a convenient parameter �. In this VOA setting we instead employ the canonical
parameter c, where

�D
c � 10

2C c
:

EXERCISE 12.7. Verify (171).

EXERCISE 12.8. Show that �.0/ D�d1 and �.1/ D 0.

EXERCISE 12.9. Verify (174).

EXERCISE 12.10. Verify (175) using (121).
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12.2. Genus-one constraints from quadratic Casimirs. We next consider
the constraints on the genus-one partition function ZV .�/ that follow if �.4/ 2
Virc . We will show that in this case, ZV .�/ is the unique solution to a second
order Modular Linear Differential Equation (MLDE) (cf. Section 8.2). As a
consequence, we prove that V D Lg.1; 0/, the level 1 WZW VOA where g is
an Deligne exceptional series. To prove this we apply both versions of Zhu’s
recursion formulas (Theorems 5.7 and 5.10). In particular, we evaluate the 1-
point correlation function for a Virasoro descendent of the vacuum from where
an MLDE naturally arises. This is similar in spirit to Zhu’s [Z] analysis of
correlation functions for the modules of C2-cofinite VOAs but has the advantage
of being considerably less technical.

We recall the genus-one partition function

ZV .�/D TrV .q
L0�c=24/;

the 1-point correlation function for a 2 V

ZV .a; �/D TrV o.a/qL0�c=24; (195)

and the 2-point correlation function which can be expressed in terms of 1-point
functions by

FV ..a;x/; .b;y/; �/DZV .Y Œa;x�Y Œb;y�1; �/ (196)

DZV .Y Œa;x�y�b; �/; (197)

for square bracket vertex operators Y Œa; z�D Y .q
L0
z a; qz � 1/:

We define quadratic Casimir vectors in the square bracket VOA formalism

�Œn� D u˛ Œ1� n� Nu˛ 2 VŒn�;

(for ˛ summed) for basis fu˛g and square bracket LiZ dual basis f Nu˛g. Consider
the genus-one analogue of (176) given by the 2-point function

FV ..u
˛;x/; . Nu˛;y/; �/DZV .Y Œu

˛;x�Y Œ Nu˛;y�1; �/;

(˛ summed). Associativity (196) implies the genus-one analogue of (177) so
that

FV ..u
˛;x/; . Nu˛;y/; �/D

X
n�0

ZV .�
Œn�; �/.x�y/n�2: (198)

From Zhu’s first recursion formula (Theorem 5.7) we may alternatively ex-
pand F..u˛;x/; . Nu˛;y/; �/ in terms of Weierstrass functions as follows:
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FV ..u
˛;x/; . Nu˛;y/; �/D TrV

�
o.u˛/o. Nu˛/qL0�c=24

�
C

X
m�1

.�1/mC1

m!
P
.m/
1

.x�y; �/ZV .u
˛ Œm� Nu˛; �/

D TrV

�
o.u˛/o. Nu˛/qL0�c=24

�
� dP2.x�y; �/ZV .�/:

Recalling Theorem 5.1 we may compare the .x � y/2 terms in this expression
and (198) to obtain

ZV .�
Œ4�; �/D�3dE4.�/ZV .�/: (199)

Since .V;Y . /; 1; !/ is isomorphic to .V;Y Œ �; 1; Q!/ it follows that �.n/ 2Virc

iff �Œn� 2 Virc . Thus assuming �.4/ 2 Virc we have

ZV .�
Œ4�; �/D

�3d

c.5cC22/

�
4ZV .LŒ�2�21; �/C .2Cc/ZV .LŒ�4�1; �/

�
; (200)

by (175). The Virasoro 1-point functions ZV .LŒ�2�21; �/, ZV .LŒ�4�1; �/ can
be evaluated via Zhu’s second recursion formula (Theorem 5.10). In particular
taking u D Q! and v of LŒ0� weight k in (61) we obtain the general Virasoro
recursion formula

ZV .LŒ�n�v; �/D ın;2 TrV .o. Q!/o.v/q
L0�c=24/

C

X
0�m�k

.�1/m
�

mCn�1

mC 1

�
EmCn.�/ZV .LŒm�v; �/: (201)

But o. Q!/DL0� c=24 and hence

TrV .o. Q!/o.v/q
L0�c=24/D �ZV .v; �/;

where � D q d=dq. It follows that

ZV .LŒ�2�v; �/DDkZV .v; �/C
X

2�m�k

E2Cm.�/ZV .LŒm�v; �/; (202)

where Dk D � C kE2.�/ is the modular derivative (30). (Zhu makes extensive
use of the identities (201) and (202) in his analysis of correlation functions for
C2-cofinite VOAs [Z]. This is the origin of MLDEs as discussed in Section 9).

We immediately find from (201) that ZV .LŒ�4�1; �/D 0 and

ZV .LŒ�2�21; �/DD2ZV .LŒ�2�1; �/CE4.�/ZV .LŒ2�LŒ�2�1; �/

D
�
D2
C

1
2
cE4.�/

�
ZV .�/;

where D2 DD2D0 D .q d=dq/2C 2E2.�/q d=dq. Substituting into (200) we
find ZV .�/ satisfies the following second order MLDE:�

D2
�

5
4
c.cC 4/E4.�/

�
ZV .�/D 0: (203)
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(203) has a regular singular point at q D 0 with indicial roots �c=24 and
.c C 4/=24. Applying (194) it follows that there exists a unique solution with
leading q expansion ZV .�/D q�c=24.1CO.q//. Furthermore, since E4.�/ is
holomorphic then ZV .�/ is also holomorphic for 0 < jqj < 1. In summary, we
find:

THEOREM 12.11. If �.4/ 2Virc then ZV .�/ is a uniquely determined holomor-
phic function in H.

An immediate consequence of Theorems 12.6 and 12.11 is:

THEOREM 12.12. V DLg.1; 0/ the level one WZW model generated by g.

PROOF. Clearly Lg.1; 0/ � V with !; �.2/; �.4/ 2 Lg.1; 0/. Thus Lg.1; 0/

satisfies the conditions of Theorem 12.11 for the same central charge c. Hence
ZLg.1;0/.�/DZV .�/ and so Lg.1; 0/D V . �

It is straightforward to substitute Z.�/ D q�c=24
P

n dim Vnqn into (203) and
solve recursively for dim Vn as a rational function in c. In this way we recover
dim V1 D d of (194). The next two terms are

dim V2 D
c.804C 508cC 175c2C 25c3/

2.22� c/.10� c/
;

dim V3 D
c.33344C 148872cC 68308c2C 10330c3C 975c4C 125c5/

6.34� c/.22� c/.10� c/
:

These dimension formulas can be further refined as follows. Consider the
Virasoro decomposition of V2:

V2 D C!˚L�1g˚P2; (204)

where P2 is the space of weight two primary vectors. Let p2 D dim P2. Then
dim V2 D 1C d Cp2 with

p2 D
5.5cC 22/.cC 2/2.c � 1/

2.22� c/.10� c/
: (205)

Comparing with Deligne’s analysis of the irreducible decomposition of tensor
products of g we find that

p2 D dim Y �2 ;

where Y �
2

denotes an irreducible representation of g in Deligne’s notation [De].
This is explored further in [T3].

Similarly for V3 we find

V3 D CŒL�1!�˚L2
�1g˚L�2g˚L�1P2˚P3;
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where P3 is the space of weight three primary vectors. Let p3 D dim P3. Then
dim V3 D 1C 2d Cp2Cp3 with

p3 D
5c.5cC 22/.c � 1/.cC 5/.5c2C 268/

6.34� c/.22� c/.10� c/
D dim X2C dim Y �3 ;

where X2;Y
�
3

denote two other irreducible representations of g in Deligne’s
notation of dimension

dim X2 D
5c.5cC22/.cC6/.c�1/

2.10�c/2
;

dim Y �3 D
5c.5cC22/.cC2/2.c�8/.5c�2/.c�1/

6.10�c/2.22�c/.34�c/
:

12.3. Higher-weight constructions. We can generalize the arguments given
above to consider a VOA V with dim V1 D 0. Here we construct Casimir
vectors from the weight two primary space P2 (provided dim P2 > 0) and ob-
tain constraints on V that follow from such Casimirs being Virasoro vacuum
descendents. If dim P2 D 0 we consider primaries of weight 3 and so on. In
general, let V be a VOA with primary vector space PK of lowest weight K; i.e.,
Vn D .Virc/n for all n<K, so that

ZV .�/D q�c=24

� X
n<K

dim.Virc/nqn
CO.qK /

�
: (206)

(Recall from (42) that
P

n�0 dim.Virc/nqn D
Q

m�2.1 � qm/�1 D 1C q2 C

q3 C 2q3 C � � � .) We construct Casimir vectors, as in (172), from a Pk basis
fu˛g and LiZ dual basis f Nu˛g

�.n/ D u˛2K�1�n Nu
˛
2 Vn:

We find the following natural generalization of Theorems 12.11 and 12.12:

THEOREM 12.13. Let V be a VOA with primary vectors of lowest weight KD 2

or 3. If �.2KC2/ 2 Virc , then
(a) ZV .�/ of (206) is a holomorphic function in H and is the unique solution to
a MLDE of order KC 1; and
(b) V is generated by PK .

REMARK 12.14. We conjecture that Theorem 12.13 holds for all K.

For K D 2 the elements of P2 satisfy a commutative nonassociative algebra
with invariant (LiZ) form known as a Griess algebra (cf. Exercise 9.9). Theorem
12.13 implies the dimension of the Griess algebra is

dim P2 D
1

2

.5cC 22/.2c � 1/.7cC 68/

c2� 55cC 748
: (207)
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This result originally appeared in [Mat] subject to stronger assumptions. Fol-
lowing Remark 12.2 we note that the zeros of the numerator are the zeros cp;q

of the Kac determinant det Mn.c/ for n � 6. There are 37 rational values of
c for which dim P2 is a positive integer. Furthermore, we may solve ZV .�/

iteratively for dim Vn as rational functions in c. There are 9 values of c for
which dim Vn is a positive integer for n� 400 given by [T3]:

c: �44
5

8 16 47
2

24 32 164
5

236
7

40

dim P2: 1 155 2295 96255 196883 139503 90117 63365 20619

The first five cases can all be realized by explicit constructions. Of particular
interest is the case c D 24 realized by the FLM Moonshine Module V \ with
ZV \.�/D j .�/� 744 for which P2 is the original Griess algebra of dimension
196883 and whose automorphism group is the Monster group (cf. Section 9.4).
There are constructions for cD 32 and 40 with the appropriate partition function
but it is not known if �.6/ 2Virc . There are no known constructions for cD 164

5

and 236
7

.
For K D 3 we find

dim P3 D
.5cC 22/.2c � 1/.7cC 68/.5cC 3/.3cC 46/

�5c4C 703c3� 32992c2C 517172c � 3984
;

where the zeros of the numerator are Kac determinant zeros cp;q for .p � 1/�

.q � 1/D n � 8. Iteratively solving the appropriate MLDE for ZV .�/ we find
dim P3 and dim Vn are positive integral for only 3 rational values of c:

c: �114
7

4
5

48

dim P3: 1 1 42987519

The first two examples can be realized by known VOAs. For c D 48 we find
ZV .�/ D J.�/2 � 393767 which, intruigingly, is the partition function of the
minimal holomorphic VOA V .2/ briefly discussed in Section 9.4.
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Part IV. Appendices
13. Lie algebras and representations

An associative algebra is a linear space A equipped with a bilinear, associa-
tive product A˝A!A, denoted by juxtaposition. Thus a˝ b‘ ab and

.ab/c D a.bc/:

A Lie algebra is a linear space L equipped with a bilinear product (usually
called bracket) Œ � WL˝L!L such that

Œab�D�Œba� .skew-commutativity/

ŒaŒbc��C ŒbŒca��C ŒcŒab��D 0 .Jacobi identity/

An associative algebra A gives rise to a Lie algebra A� on the same linear
space by defining Œab� D ab � ba. A basic example is End.V / for a linear
space V , where the associative product is composition of endomorphisms. This
situation can be exploited using another basic associative algebra, the tensor
algebra

T .V /D
M
n�0

V ˝n
D C˚V ˚V ˝V ˚ � � �

over V . Let � W V ! T .V / be canonical identification of V with the degree
1 piece of T .V /. The universal mapping property (UMP) for tensor algebras
says that any linear map f W V !A into an associative algebra A has a unique
extension to a morphism of associative algebras ˛ W T .V /!A:

V
f - A

�

T .V /

˛
6

-

with f D ˛ ı �.
A representation of a Lie algebra L is a linear map � WL! End.V / for some

V such that
�.Œab�/D �.a/�.b/��.b/�.a/:

That is, � W L! End.V /� is a morphism of Lie algebras. We call V an L-
module.

UMP provides an extension of � to a morphism of associative algebras ˛ W
T .L/! End.V /. Identifying a 2 L with its image in T .L/, we see that for
a; b 2L

˛.a˝ b� b˝ a� Œab�/D ˛.a/˛.b/�˛.b/˛.a/�˛.Œab�/

D �.a/�.b/��.b/�.a/��.Œab�/D 0:
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Let J � T .L/ be the 2-sided ideal generated by a˝b�b˝a� Œab�; a; b 2L,
and set

U.L/D T .L/=J:

This is the universal enveloping algebra of L. Thus every representation � of
L extends canonically to a representation of the universal enveloping algebra:

L
�- End.V /

�0

U.L/

˛
6

-

where �0 is the composition L
�
! T .L/! U.L/.

THEOREM 13.1 (POINCARÉ–BIRKHOFF–WITT, OR PBW). Fix an ordered
basis x1;x2; : : : of L, with Nxi the image of xi in U.L/. Then

f Nxi1
Nxi2
: : : Nxik

j i1 � i2 � � � � � ik � 1g

is a basis for U.L/.

From PBW we see that �0 is injective. Then for a representation of U.L/, re-
striction to the subspace LD �.L/ furnishes a representation of L. In this way,
representations of L and U.L/ determine each other in a canonical fashion - a
statement that can be better stated using categories of modules.

The Lie algebra L has a triangular decomposition if it decomposes as

LDLC˚L0
˚L�

such that L˙;L0 are Lie subalgebras, and the bracket satisfies

ŒLCL���L0; ŒL˙L0��L˙:

Use of PBW and an appropriate choice of (ordered) basis leads to an identifica-
tion

U.L/D U.L�/˝U.L0/˝U.LC/:

Noting that L0˚LC � L is a Lie subalgebra, let � W L0˚LC! End.V /
be a representation. The induced module is

Ind.V /D IndU.L/

U.L0˚LC/
V WD U.L/˝U.L0˚LC/ V D U.L�/˝V: (208)

It is a U.L/-module, hence also an L-module upon restriction. A ubiquitous
special case occurs when V is an L0-module, which then becomes an L0˚LC-
module by letting LC annihilate V .
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EXERCISE 13.2. Show that the following Lie algebras have natural triangular
decompositions:
(a) Heisenberg algebra OA with

OAC D
M
n>0

Ca˝ tn; OA� D
M
n<0

Ca˝ tn; OA0
D Ca˝ t0

˚CK:

(b) Virasoro algebra Vir with

VirC D
M
n>0

CLn; Vir� D
M
n<0

CLn; Vir0
D CL0˚CK:

(c) Finite-dimensional simple Lie algebra (equipped with a choice of Cartan
subalgebra and root system) with LCDfpositive root spacesg, L�Dfnegative
root spacesg, L0 D fCartan subalgebrag.

14. The square bracket formalism

We prove Equations (16)–(18) of Section 2.7. The square bracket vertex
operator (14), (15) is

Y Œv; z�D qwt.v/
z Y .v; qz � 1/:

Thus the square bracket modes of Y Œv; z�D
P

m2Z vŒm�z
�m�1 are given by

vŒm�D ReszY .v; qz � 1/zmqwt.v/
z

D ReszY .v; qz � 1/
d

dz
.qz � 1/zmqwt.v/�1

z :

We may rewrite this in terms of wD qz�1D zCO.z2/ by means of a (formal)
chain rule [FHL], [Z] so that

vŒm�D ReswY .v; w/z.w/mq
wt.v/�1

z.w/

D ReswY .v; w/ ln.1Cw/m.1Cw/wt.v/�1:

Defining c.wt.v/; i;m/ for i �m� 0 byX
i�m

c.wt.v/; i;m/wi
D

1

m!
ln.1Cw/m.1Cw/wt.v/�1;

we obtain (16).
Next note that

P
m�0

1

m!
ln.1Cw/mxm D .1Cw/x . Hence we find

X
i�0

iX
mD0

c.wt.v/; i;m/wixm
D .1Cw/wt.v/�1Cx;
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from which (17) follows. Finally,X
m�0

.kC 1�wt.v//m

m!
vŒm�D

X
m�0

X
i�m

c.wt.v/; i;m/.kC 1�wt.v//mvi

D

X
i�0

vi

iX
mD0

c.wt.v/; i;m/.kC 1�wt.v//m;

D

X
i�0

�
k

i

�
vi :

giving (18).
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