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1. Introduction

Elliptic functions are known to appear in many problems, applied and theo-
retical. A less known application is in the study of exact solutions to Einstein’s
gravitational field equations in a Friedmann–Robertson–Lemaı̂tre–Walker, or
FRLW, cosmology [Abdalla and Correa-Borbonet 2002; Aurich and Steiner
2001; Aurich et al. 2004; Basarab-Horwath et al. 2004; Kharbediya 1976; Krani-
otis and Whitehouse 2002]. We will show explicitly how Jacobi and Weierstrass
elliptic functions arise in this context, and will additionally show connections
with theta functions. In Section 2, we review the definitions of various elliptic
functions. In Section 3, we record relations between elliptic functions and theta
functions. In Section 4 we introduce the FRLW cosmological model and we
then proceed to show how elliptic functions appear as solutions to Einstein’s
gravitational equations in sections 5 and 6. The author thanks Floyd Williams
for helpful discussions.

2. Elliptic functions

An elliptic integral is one of the form
R

R
�
x;
p

P .x/
�

dx, where P .x/ is
a polynomial in x of degree three or four and R is a rational function of its
arguments. Such integrals are called elliptic since an integral of this kind arises
in the computation of the arclength of an ellipse. Legendre showed that any el-
liptic integral can be written in terms of the three fundamental or normal elliptic
integrals

F.x; k/
def:
D

Z x

0

dtp
.1� t2/.1� k2t2/

;
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E.x; k/
def:
D

Z x

0

s
1� k2t2

1� t2
dt; (2.1)

˘.x; ˛2; k/
def:
D

Z x

0

dt

.1�˛2t2/
p
.1� t2/.1� k2t2/

;

which are referred to as normal elliptic integrals of the first, second and third
kind, respectively. The parameter ˛ is any real number and k is referred to as the
modulus. For many problems in which real quantities are desired, 0< k;x < 1,
although this is not required in the above definitions (for k D 0 and k D 1,
the integral can be expressed in terms of elementary functions and is therefore
pseudo-elliptic).

Elliptic functions are inverse functions of elliptic integrals. They are known to
be the simplest of nonelementary functions and have applications in the study
of classical equations of motion of various systems in physics including the
pendulum. One can easily show that if f .u/ denotes the inverse function of an
elliptic integral y.x/ D

R
R
�
x;
p

P .x/
�

dx, then since y.f .u// D u, which
implies y0.f .u//D 1=f 0.u/, we have

f 0.u/2 D
1

R
�
f .u/;

p
P .f .u//

�2 : (2.2)

The Jacobi elliptic function sn.u; k/ is the inverse of F.x; k/ defined above,
and eleven other Jacobi elliptic functions can be written in terms of sn.u; k/:
cn.u; k/ and dn.u; k/ satisfy sn2 uC cn2 u D 1 and k2 sn2 uC dn2 u D 1, re-
spectively, and

ns def:
D

1

sn
; nc def:

D
1

cn
; nd def:

D
1

dn
;

sc def:
D

sn
cn
; sd def:

D
sn
dn
; cd def:

D
cn
dn
;

cs def:
D

1

sc
; ds def:

D
1

sd
; dc def:

D
1

cd
:

(2.3)

By (2.2) and (2.3), one can see that the Jacobi elliptic functions satisfy the
differential equation

f 0.u/2C af .u/2C bf .u/4 D c (2.4)

for a; b; c in terms of the modulus k according to the following table.
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f .u/ a b c

sn.u; k/ 1Ck2 �k2 1

cn.u; k/ 1�2k2 k2 1�k2

dn.u; k/ k2�2 1 k2�1

ns.u; k/ 1Ck2 �1 k2

nc.u; k/ 1�2k2 k2�1 �k2

nd.u; k/ k2�2 1�k2 �1

sc.u; k/ k2�2 k2�1 1

sd.u; k/ 1�2k2 k2.1�k2/ 1

cd.u; k/ 1Ck2 �k2 1

cs.u; k/ k2�2 �1 1�k2

ds.u; k/ 1�2k2 �1 k2.k2�1/

dc.u; k/ 1Ck2 �1 k2

(The a-value for f .u/ D dn.u; k/ seen above corrects an error in [Basarab-
Horwath et al. 2004].)

The Weierstrass elliptic function

}.zI!1; !2/D
1

z2
C

X
.m;n/2Z�Z�f.0;0/g

1

.z�m!1� n!2/2
�

1

.m!1C n!2/2

(2.5)
is a doubly periodic elliptic function of z 2C with periods !1; !2 2C such that
Im.!1=!2/ > 0. The function } is the inverse of the elliptic integral

}�1.xIg2;g3/D

Z 1
x

1p
4t3�g2t �g3

dt (2.6)

where g2;g3 2 C are known as Weierstrass invariants. Given periods !1; !2,
the invariants are

g2 D 60
X

.m;n/2Z�Z�f.0;0/g

1

.m!1C n!2/4
;

g3 D 140
X

.m;n/2Z�Z�f.0;0/g

1

.m!1C n!2/6
:

(2.7)

Alternately given invariants g2;g3, periods !1; !2 can be constructed if the
discriminant � def:

D g3
2
� 27g2

3
is nonzero — that is, when the Weierstrass cubic

4t3�g2t�g3 does not have repeated roots (see 21�73 of [Whittaker and Watson
1927]). Therefore we refer to }.zI!1; !2/ as either }.z/ or }.zIg2;g3/ and
consider only cases where the invariants are such that g3

2
¤ 27g2

3
. By (2.2) and
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(2.6) one can see that the Weierstrass elliptic function satisfies

}0.z/2 D 4}.z/3�g2}.z/�g3: (2.8)

Note that in Michael Tuite’s lecture in this volume, !m;n there is equal to m!1C

n!2 here with our !1; !2 specialized to 2� i� and 2� i in his lecture.
In the special case that the discriminant�> 0, the roots of 4t3�g2t�g3 are

real and distinct, and are conventionally notated by e1>e2>e3 for e1Ce2Ce3D

0. In this case 4t3�g2t�g3D4.t�e1/.t�e2/.t�e3/, the Weierstrass invariants
are given in terms of the roots by

g2 D�4.e2e3C e1e3C e1e2/; g3 D 4e1e2e3; (2.9)

and } can be written in terms of the Jacobi elliptic functions by

}.z/D e3C 

2 ns2.
 z; k/;

}.z/D e2C 

2 ds2.
 z; k/;

}.z/D e1C 

2 cs2.
 z; k/

(2.10)

for e1 < z 2 R, 
 2 def:
D e1 � e3 and modulus k such that k2 D

e2�e3

e1�e3
(similar

equations hold if z 2 R and z is in a different range in relation to the real roots
e1; e2; e3, and alternate relations hold for nonreal roots when�< 0; see chapter
II of [Greenhill 1959]).

Note that the Jacobi elliptic functions solve a differential equation which con-
tains only even powers of f .u/, and } solves an equation with no squared or
quartic powers of }. Weierstrass elliptic functions have the advantage of being
easily implemented in the case that the cubic 4t3 � g2t � g3 is not factored in
terms of its roots. Elliptic integrals of the type

R
R.x/=

p
P .x/dx, where P .x/

is a cubic polynomial and R is a rational function of x, can be written in terms
of three fundamental Weierstrassian normal elliptic integrals although we will
not record the details here (see Appendix of [Byrd and Friedman 1954]). In
Section 6 we will see a method which allows one to write the elliptic integralR x

x0
1=
p

F.t/dt , for F.t/ a quartic polynomial, in terms of the Weierstrassian
normal elliptic integral of the first kind (2.6) by reducing the quartic to a cubic.

3. Jacobi theta functions

Jacobi theta functions are functions of two arguments, z 2C a complex num-
ber and � 2 H in the upper-half plane. Every elliptic function can be written as
the ratio of two theta functions. Doing so elucidates the meromorphic nature of
elliptic functions and is useful in the numerical evaluation of elliptic functions.
One must be cautious with the notation of theta functions, since many different
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conventions are used. We will use the notation of [Whittaker and Watson 1927]
to define

�1.z; �/
def:
D 2q1=4

1X
nD0

.�1/nqn.nC1/ sin..2nC 1/z/;

�2.z; �/
def:
D 2q1=4

1X
nD0

qn.nC1/ cos..2nC 1/z/;

�3.z; �/
def:
D 1C 2

1X
nD1

qn2

cos.2nz/;

�4.z; �/
def:
D 1C 2

1X
nD1

.�1/nqn2

cos.2nz/;

(3.1)

where q
def:
D e� i� is called the nome. We also define the special values �i

def:
D

�i.0; �/.
In terms of theta functions, the Jacobi elliptic functions are

sn.u; k/D
�3 �1.u=�

2
3
; �/

�2 �4.u=�
2
3
; �/

;

cn.u; k/D
�4 �2.u=�

2
3
; �/

�2 �4.u=�
2
3
; �/

;

dn.u; k/D
�4 �3.u=�

2
3
; �/

�3 �4.u=�
2
3
; �/

;

(3.2)

where � is chosen such that k2 D �4
2
=�4

3
. By [Whittaker and Watson 1927,

22 �11], if 0 < k2 < 1 there exists a value of � for which the quotient �4
2
=�4

3

equals k2.

4. The FRLW cosmological model

The Friedmann–Robertson–Lemaı̂tre–Walker cosmological model assumes
that our current expanding universe is on large scales homogeneous and iso-
tropic. On a d -dimensional spacetime this assumption translates into a metric
of the form

ds2
D�dt2

C Qa.t/2
�

dr2

1� k 0r2
C r2d˝2

d�2

�
; (4.1)

where Qa.t/ is the cosmic scale factor and k 0 2 f�1; 0; 1g is the curvature pa-
rameter.
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The Einstein field equations

Gij D��dTij C�gij

then govern the evolution of the universe over time. In these equations, the
Einstein tensor

Gij
def:
D Rij �

1
2
Rgij

is computed directly from the metric gij by calculating the Ricci tensor Rij

and the scalar curvature R. Also �d D 8�Gd , where Gd is a generalization of
Newton’s constant to d -dimensional spacetime and � > 0 is the cosmological
constant. The form of the energy-momentum tensor Tij depends on what sort
of matter content one is assuming, and in this lecture will be that of a perfect-
fluid — that is, Tij D .pC�/gi0gj0Cpgij , where �.t/ and p.t/ are the density
and pressure of the fluid, respectively.

For the metric (4.1), Einstein’s equations are

.d�1/.d�2/

2

�
H 2
C

k 0

Qa2

�
D �d�.t/C�; (i)

.d � 2/ PH C
.d�1/.d�2/

2
H 2
C
.d�2/.d�3/

2

k 0

Qa2
D��dp.t/C�; (ii)

for H.t/
def:
D PQa.t/= Qa.t/ and where dot denotes differentiation with respect to t . In

this lecture, only equation (i) will be required to relate Qa.t/ to elliptic and theta
functions. We rewrite equation (i) in terms of conformal time � by defining the
conformal scale factor a.�/

def:
D Qa.f .�//, where f .�/ is the inverse function of

�.t/, which satisfies P�.t/D 1= Qa.t/. In terms of a.�/, (i) becomes

a0.�/2 D z�a.�/4Cz�d�.f .�//a.�/
4
� k 0a.�/2; (4.2)

where we use notation z� def:
D 2�=.d �1/.d �2/, z�d

def:
D 2�d=.d �1/.d �2/ and

we take spacetime dimension d > 2.

5. FRLW and Jacobi elliptic and theta functions

In general, if f .u/ is a solution to f 0.u/2 C af .u/2 C bf .u/4 D c, then
g.u/D f̌ .˛u/ is a solution to

g0.u/2CAg.u/2CBg.u/4 D
A2bc

a2B
(5.1)

for ˛ D
p

A=a and ˇ D
p

Ab=.aB/, where we may choose either the positive
or negative square root for each of ˛ and ˇ. We will construct solutions to (4.2),
given that Jacobi elliptic functions solve (2.4), and also proceed to write these
solutions in terms of theta functions by the relations in (3.2).
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For the special case of density �.t/DD= Qa.t/4 with D > 0, (4.2) becomes

a0.�/2C k 0a.�/2� z�a.�/4 D z�dD: (5.2)

Therefore in (5.1) we take ADk 0;BD� z�, and a; b; c as in the table in Section
2. To restrict to real solutions we only consider entries in the table for which
the ratios a=A and b=B are positive, and we also restrict D to be such that the
right side of (5.2) agrees with the right side of (5.1).

For positive curvature k 0 D 1, and for D D k2

z�d
z�.1C k2/2

with 0 < k < 1,
we solve

a0.�/2C a.�/2� z�a.�/4 D k2

z�.1C k2/2
(5.3)

in conformal time in terms of Jacobi elliptic functions to obtain

asn.�/D
kp
z�.1Ck2/

sn
�

�
p

1Ck2
; k
�
D

�2�3q
z�.1C�4

2
�4

3
/

�1

�
�=

q
�4

2
C�4

3
;�
�

�4

�
�=

q
�4

2
C�4

3
;�
� ;

ans.�/D
1p
z�.1Ck2/

ns
�

�
p

1Ck2
; k
�
D

�2�3q
z�.1C�4

2
�4

3
/

�4

�
�=

q
�4

2
C�4

3
;�
�

�1

�
�=

q
�4

2
C�4

3
;�
� ;

acd.�/D
kp
z�.1Ck2/

cd
�

�
p

1Ck2
; k
�
D

�2�3q
z�.1C�4

2
�4

3
/

�2

�
�=

q
�4

2
C�4

3
;�
�

�3

�
�=

q
�4

2
C�4

3
;�
� ;

adc.�/D
1p
z�.1Ck2/

dc
�

�
p

1Ck2
; k
�
D

�2�3q
z�.1C�4

2
�4

3
/

�3

�
�=

q
�4

2
C�4

3
;�
�

�2

�
�=

q
�4

2
C�4

3
;�
� ;

(5.4)

where � is chosen such that k2 D �4
2
=�4

3
.

The first two solutions, asn.�/ and ans.�/, reduce to hyperbolic trigonometric
functions in the case of modulus k D 1, since sn.u; 1/D tanh.u/ and ns.u; 1/D
coth.u/. That is, two additional solutions in terms of elementary functions are

a1.�/D
1p
2 z�

tanh.�=
p

2/; a2.�/D
1p
2 z�

coth.�=
p

2/: (5.5)

For these two solutions, one may solve the differential equation P�.t/D 1= Qa.t/D

1=a.�.t// for �.t/, and therefore obtain the cosmic scale factor Qa.t/D a.�.t//

which solves the Einstein field equation (i) in Section 4 for �.t/DD= Qa.t/4 with
special value D D k2= z�z�d .1C k2/2. Doing so, we obtain

Qa1.t/D a1.�.t//D
1p
2 z�

tanh ln
�

e

p
z�t
C

q
e2
p
z�t � 1

�
;

Qa2.t/D a2.�.t//;D
1p
2 z�

coth ln
�

e

p
z�t
C

q
e2
p
z�t C 1

�
;

(5.6)

for t > 0.



286 JENNIE D’AMBROISE

For negative curvature k 0 D�1, and for

D D
1� k2

z� z�d .k
2� 2/2

with 0< k < 1, equation (5.2) becomes

a0.�/2� a.�/2� z�a.�/4 D
1� k2

.k2� 2/2 z�
: (5.7)

In terms of Jacobi elliptic functions and theta functions, we obtain the two so-
lutions for the scale factor in conformal time,

asc.�/D

p
1�k2

p
z�.2�k2/

sc
�

�
p

2�k2
; k
�
D

q
�4

3
��4

2q
z�.2�4

3
��4

2
/

�3 �1

�
�=�2

3

q
2�4

3
��4

2
;�
�

�4 �2

�
�=�2

3

q
2�4

3
��4

2
;�
� ;

acs.�/D
1p
z�.2�k2/

cs
�

�
p

2�k2
; k
�
D

�3 �4q
z�.2�4

3
��4

2
/

�2

�
�=�2

3

q
2�4

3
��4

2
;�
�

�1

�
�=�2

3

q
2�4

3
��4

2
;�
� ; (5.8)

where � is such that k2 D �4
2
=�4

3
.

Note that by the comments following equation (2.10), it is possible to express
the solutions obtained in this section in terms of Weierstrass functions. E. Ab-
dalla and L. Correa-Borbonet [2002] have also considered the Einstein equation
(i) with �.t/DD= Qa.t/4, and have found connections with Weierstrass functions
in cosmic time (as opposed to the conformal time argument given here). In Sec-
tion 6 of this lecture we will find more general solutions to the conformal time
equation (4.2) in terms of}, for arbitrary curvature k 0 and D-value. We will also
consider the density functions �.t/DD= Qa.t/3 and �.t/DD1= Qa.t/

3CD2= Qa.t/
4

in Section 6.

6. FRLW and Weierstrass elliptic functions

In general, if g.0/D x0 and g.u/ satisfies

g0.u/2 D F.g.u// (6.1)

for F.x/DA4x4CA3x3CA2x2CA1xCA0 any quartic polynomial with no
repeated roots, then the inverse function y.x/ of g.u/ is the elliptic integral

y.x/D

Z x

x0

dtp
F.t/

: (6.2)

For the initial condition g0.0/ D 0, x0 is a root of the polynomial F.x/ by
(6.1). In this case the integral (6.2) can be rewritten as

R1
� dz

ıp
P .z/, where

� D 1=.x � x0/ and P .z/ is a cubic polynomial. To do this, first expand F.t/
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into its Taylor series about x0 and then perform the change of variables z D

1=.t � x0/. Furthermore one may obtain the form
R1
� d�

ıp
Q.�/ for � D

1
4

�
F 0.x0/�C

1
6
F 00.x0/

�
, where Q.�/D 4�3�g2��g3. This is done by setting

zD .4��B2=3/=B3 where B2DF 00.x0/=2 and B3DF 0.x0/ are the quadratic
and cubic coefficients of P .z/ respectively. Note that since F.x/ has no repeated
roots, x0 is not a double root, F 0.x0/ ¤ 0 and the variable z is well-defined.
Therefore we have obtained

y

�
6F 0.x0/

24� �F 00.x0/
Cx0

�
D }�1.�/:

Writing this in terms of x, setting x D g.u/ and solving for g.u/, one obtains
the solution to (6.1):

g.u/D x0C
F 0.x0/

4}.uIg2;g3/�
1
6
F 00.x0/

; (6.3)

where

g2 DA0A4�
1
4
A1A3C

1
12

A2
2 and

g3 D
1
6
A0A2A4C

1
48

A1A2A3�
1

16
A2

1A4�
1

16
A0A2

3�
1

216
A3

2

(6.4)

are referred to as the invariants of the quartic F.x/. Since F.x/ has no repeated
roots, the discriminant �D g3

2
� 27g2

3
¤ 0. Here if x0 D 0, (6.3) becomes

g.u/D
A1

4}.uIg2;g3/�
1
3
A2

: (6.5)

If the initial condition on the first derivative is such that g0.0/ ¤ 0 then x0

is not a root of F.x/ and a more general solution to (6.1) is due to Weierstrass.
The proof (which we will not include here) was published by Biermann in 1865
(see [Biermann 1865; Reynolds 1989]). The solution is

g.u/Dx0C

p
F.x0/}

0.u/C 1
2
F 0.x0/

�
}.u/� 1

24
F 00.x0/

�
C

1
24

F.x0/F
000.x0/

2
�
}.u/� 1

24
F 00.x0/

�2
�

1
48

F.x0/F
0000
.x0/

(6.6)
where } is formed with the invariants of the quartic seen in (6.4) such that
�¤ 0. Here if x0 D 0, (6.6) becomes

g.u/D

p
A0}

0.u/C 1
2
A1

�
}.u/� 1

12
A2

�
C

1
4
A0A3

2
�
}.u/� 1

12
A2

�2
�

1
2
A0A4

: (6.7)

To generate a number of examples, we consider the conformal time Einstein
equation (4.2) for density �.t/ D D1= Qa.t/

3 CD2= Qa.t/
4 with D1;D2 > 0. In
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this case (4.2) becomes

a0.�/2 D z�a.�/4� k 0a.�/2Cz�dD1a.�/Cz�dD2 (6.8)

and we take A4D
z�;A3D0;A2D�k 0;A1Dz�dD1 and A0Dz�dD2. The most

general solution seen here is with initial conditions a0.0/¤ 0 so that a.0/
def:
D a0

is not a root of the polynomial

F.t/D z�t4
� k 0t2

Cz�dD1t Cz�dD2: (6.9)

The solution is given by (6.6) as

a.�/D a0C

p
F.a0/}

0.�/C 1
2
F 0.a0/

�
}.�/� 1

24
F 00.a0/

�
C

1
24

F.a0/F
000.a0/

2
�
}.�/� 1

24
F 00.a0/

�2
�

1
48

F.a0/F
0000
.a0/

;

(6.10)
with Weierstrass invariants

g2 D
z�z�dD2C

1
12
.k 0/2 and

g3 D�
1
6
z�z�dD2k 0� 1

16
z�z�2

dD2
1 C

1
216
.k 0/3

(6.11)

restricted to be such that�Dg3
2
�27g2

3
¤ 0 so that F.t/ does not have repeated

roots.
Since D2; z�d > 0, by (6.9) zero is not a root of F.t/ and therefore for initial

condition a0.0/¤ 0 and a0 D 0, the solution to (6.8) is given by (6.7) as

a.�/D

p
z�dD2}

0.�/C 1
2
z�dD1

�
}.�/C k0

12

�
2
�
}.�/C k0

12

�2
�

1
2
z�z�dD2

(6.12)

for invariants g2;g3 as in (6.11) with � ¤ 0. One can compare this with the
results in papers by Aurich, Steiner and Then, where curvature is taken to be
k 0 D�1 [Aurich and Steiner 2001; Aurich et al. 2004].

For a0.0/D 0 and a0 a root of F.t/ in (6.9), the solution to (6.8) is given by
(6.3),

a.�/D a0C
F 0.a0/

4}.�/� 1
6
F 00.a0/

(6.13)

again with invariants (6.11) such that �¤ 0.
For a more concrete example, consider the density function �.t/DD= Qa.t/3

for D > 0 so that conformal time equation (4.2) becomes

a0.�/2 D z�a.�/4� k 0a.�/2Cz�dDa.�/: (6.14)

Here zero is a root of the polynomial F.t/with A4D
z�;A3DA0D0;A2D�k 0

and A1D z�dD. Therefore with initial conditions a0.0/D a.0/D 0, the solution
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to (6.14) is given by (6.5) as

a.�/D
3z�dD

12}.�/C k 0
(6.15)

with invariants

g2 D
1

12
.k 0/2 and g3 D�

1
16
z�z�2

dD2
C

1
216
.k 0/3 (6.16)

restricted to be such that �¤ 0. As noted in the comments following equations
(2.10), one can write this solution in terms of Jacobi elliptic functions (by using
equations (2.10) if the roots of the reduced cubic 4t3 � g2t � g3 are real). To
demonstrate this, we choose

D D
1

z�d

s
2

27 z�

and k 0D 1, so that g3D 0 and g2D
1

12
. For this positive curvature case, (6.15)

becomes

a.�/D

p
2p

3 z�
�
12}.�/C 1

� ; (6.17)

and the reduced cubic is 4t3�.1=12/t D 4t.t�1=4
p

3/.tC1=4
p

3/. Applying
(2.10) with e3 D �1=4

p
3, e2 D 0, e1 D 1=4

p
3, (6.17) can be equivalently

written in terms of Jacobi elliptic functions as

a.�/D

p
2= z�

p
3� 3C 6 ns2

�
�=
p

2
p

3; 1=
p

2
� D

p
2= z�

p
3C 6 ds2

�
�=
p

2
p

3; 1=
p

2
�

D

p
2= z�

p
3C 3C 6 cs2

�
�=
p

2
p

3; 1=
p

2
�
;

(6.18)

since k2 D
e2�e3

e1�e3
D

1

2
and 
 2 D e1� e3 D

1

2
p

3
. In terms of theta functions,

this is

a.�/D

p
2= z��2

3
�2

1

�
�=
p

2
p

3 �2
3
; �
��p

3� 3
�
�2

3
�2

1

�
�=
p

2
p

3 �2
3
; �
�
C 6 �2

2
�2

4

�
�=
p

2
p

3 �2
3
; �
�

D

p
2= z��4

3
�2

1

�
�=
p

2
p

3 �2
3
; �
�

p
3 �4

3
�2

1

�
�=
p

2
p

3 �2
3
; �
�
C 6 �2

2
�2

4
�2

3

�
�=
p

2
p

3 �2
3
; �
�

D

p
2= z��2

3
�2

1

�
�=
p

2
p

3 �2
3
; �
��p

3C 3
�
�2

3
�2

1

�
�=
p

2
p

3 �2
3
; �
�
C 6 �2

4
�2

2

�
�=
p

2
p

3 �2
3
; �
� (6.19)

where � is taken such that 1
2
D �4

2
=�4

3
.
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As a final example, we return to �.t/ D D= Qa.t/4 for D > 0 considered in
Section 5. That is, we will obtain alternate solutions to equation (5.2). Since
D > 0, zero is not a root of the polynomial F.t/ with A4 D

z�;A3 D A1 D

0;A2 D �k 0 and A0 D z�dD. Therefore for initial conditions a0.0/ ¤ 0 and
a.0/D 0, (6.7) gives the solution

a.�/D

p
z�dD}0.�/

2.}.�/C 1
12

k 0/2� 1
2
z�z�dD

(6.20)

for invariants

g2 D
z�z�dDC 1

12
.k 0/2 and g3 D�

1
6
z�z�dDk 0C 1

216
.k 0/3 (6.21)

restricted to be such that�¤0. (6.20) is more general than the solutions to (5.2)
in Section 5, since here the curvature k 0 and the constant D are unspecified. To
see this solution expressed in terms of Jacobi elliptic functions, take curvature
k 0D 1 and DD 1=.36 z�z�d / for 0< k < 1 so that g3D 0 and g2D

1
9

. Then the
reduced cubic is 4t3�

1
9
t D 4

�
t � 1

6

��
t C 1

6

�
so that e3 D�

1
6

, e2 D 0, e1 D
1
6

and (6.20) becomes

a.�/D
.12=

p
z�/ }0.�/

144.}.�/C 1
12
/2� 1

: (6.22)

By (2.8) and (2.10), we write this solution in terms of Jacobi elliptic functions
and obtain

a.�/D

r
2� 3 sn2

�
�
p

3
; 1p

2

�
C sn4

�
�
p

3
; 1p

2

�
p

6 z�
�
2 ns

�
�
p

3
; 1p

2

�
� sn

�
�
p

3
; 1p

2

��

D
1

2
p

3 z� ds
�
�
p

3
; 1p

2

�
vuuut 2 ds2

�
�
p

3
; 1p

2

�
� 1

2 ds2
�
�
p

3
; 1p

2

�
C 1

D

cs
�
�
p

3
; 1p

2

�
p

6 z�

r�
1C cs2

�
�
p

3
; 1p

2

�� �
1C 2 cs2

�
�
p

3
; 1p

2

�� (6.23)

where each of the positive and negative square roots solve (5.2) for k 0 D 1,
D D 1=.36 z�z�d / and where 
 2 D e1 � e3 D

1
3

and k2 D .e2 � e3/=.e1 � e3/

D
1
2

. Writing (6.23) in terms of theta functions, and defining �D �=
p

3�3
3

, we
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find that

a.�/D
�3�1.�/

q
2�4

2
�4

4
.�/� 3�2

2
�2

3
�2

1
.�/�2

4
.�/C �4

3
�4

1
.�/p

6 z� �2�4.�/
�
2�2

2
�2

4
.�/� �2

3
�2

1
.�/

�
D

�2
3
�1.�/

2
p

3 z� �2�4�3.�/

vuut 2�2
2
�2

4
�2

3
.�/� �4

3
�2

1
.�/

2�2
2
�2

4
�2

3
.�/C �4

3
�2

1
.�/

D
�4�3�2.�/�1.�/q

6 z�
�
�2

3
�2

1
.�/C �2

4
�2

2
.�/

� �
�2

3
�2

1
.�/C 2�2

4
�2

2
.�/

� (6.24)

by the theta function representations for sn, ds and cs respectively. Here the �
that forms the theta functions is suppressed and is taken to satisfy 1

2
D �4

2
=�4

3
.

7. Summary

There are a number of ways to see that elliptic and theta functions solve
the d -dimensional Einstein gravitational field equations in a FRLW cosmology
with a cosmological constant. Here we considered a scenario with no scalar
field and with density functions �.t/DD1= Qa.t/

3CD2= Qa.t/
4, �.t/DD= Qa.t/3

and �.t/ D D= Qa.t/4 scaling in inverse proportion to the scale factor Qa.t/. In
these cases the first Einstein equation (i) takes the form PQa.t/2 D an expression
containing negative powers of the cosmic scale factor Qa.t/. At this point, one
could have introduced the inverse function y.x/ of Qa.t/ to obtain an expression
for y.x/ as the integral of a power of x divided by the square root of a polyno-
mial in x. That is, y.x/ would be an elliptic integral that is not normal; other
authors have taken this approach [Abdalla and Correa-Borbonet 2002; Kraniotis
and Whitehouse 2002]. Here, we switched to conformal time by a change of
variables a.�/

def:
D Qa.f .�//. This produced an equation of the form a0.�/2 D an

expression containing nonnegative powers of the conformal scale factor a.�/.
After reviewing the definitions and properties of elliptic and theta functions

in sections 2 and 3, we introduced the FRLW cosmological model in Section
4. In Section 5 for �.t/ D D= Qa.t/3, we obtained a differential equation for
a.�/ containing only even powers of a.�/ and constructed solutions in terms
of Jacobi elliptic functions, restricted to particular values of the constant D,
parameterized by modulus 0 < k < 1. The equivalent theta function represen-
tations for these solutions were recorded, and we noted the special cases for
which the elliptic solutions reduce to elementary functions and the correspond-
ing solution in cosmic time was also computed. In Section 6, we considered
each of �.t/ D D1= Qa.t/

3 CD2= Qa.t/
4, �.t/ D D= Qa.t/3 and �.t/ D D= Qa.t/4
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with various initial conditions and obtained solutions in terms of Weierstrass
functions for general curvature k 0 and constants D1;D2;D> 0. By considering
these solutions restricted to certain D-values (again, parameterized by modulus
0 < k < 1), we wrote a.�/ equivalently in terms of Jacobi elliptic and theta
functions.

In current joint work with Floyd Williams [D’Ambroise and Williams �
2010], we have seen that elliptic functions also appear in the presence of a
scalar field �.t/, for both the FRLW and Bianchi I d -dimensional cosmological
models with a �¤ 0 and with a similar density function scaling in inverse pro-
portion to Qa.t/. There we note that the equations of each of these cosmological
models can be rewritten in terms of a generalized Ermakov–Milne–Pinney dif-
ferential equation [Lidsey 2004; D’Ambroise and Williams 2007], a type which
the square root of the second moment of the wave function of the Bose–Einstein
condensate (BEC) also satisfies. On the cosmological side of the FRLW-BEC
correspondence, imposing an equation of state ��.t/Dwp�.t/ (w constant) on
the density ��.t/ and pressure p�.t/ of the scalar field �.t/ allows one to obtain
the differential equation for an elliptic function on the side of the BECs.
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