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1. Introduction

The interlacing of number theory with modern physics has a long and fruitful
history. Indeed, the inital seeds were sown by Riemann himself, from paving
the way to the Einstein equations with his introduction of the curvature tensor to
setting the stage for quantum correction to black hole entropy with his careful
study of the zeta function. This note indicates several elegant connections be-
tween two-dimensional gravitation, an eigenvalue problem of interest, extended
objects (1D bosonic strings), and zeta regularization in 2D quantum gravity; we
also note the presence of modular forms when possible and connect our results
to the classical three-dimensional theory. It is our aim to find points of tangency
with themes from the 2008 MSRI Summer School on Zeta and Modular Physics
and motivate the reader for further exploration.

2. JT Gravitation: A simple 2D metric-scalar field theory

Consider the vacuum Einstein equations with vanishing cosmological con-
stant

Rij �
R

2
gij D 0; 1� i; j � n (1)

where Rij and R denote the Ricci tensor and scalar curvature, respectively,
and the solution .M n;g/ is an n-dimensional Riemannian manifold with met-
ric tensor g D gij . A simple calculation shows that for dim M D n D 2,
Equation (1) is trivially satisfied. Thus, to make a meaningful interpretation
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of these field equations, one is compelled to modify the Einstein-Hilbert ac-
tion

R
M n R.g/

p
jdet gjdnx from which they arise [40]. Introducing a dilaton

� D �.x/ D �.x1;x2/, a scalar field in the two variables of the manifold, a
potential function V D V .y/, and a nonzero constant m, the modified action
becomes Z

M 2

�
R.g/� �m2V ı �

�p
jdet gj d2x: (2)

Standard variational principles yield a corresponding set of field equations

R.g/�m2.V 0 ı �/D0;

rirj� �
m2

2
gij .V ı �/D0: 1� i; j � 2 (3)

Here, rirj� denotes the Hessian of the field � computed with respect to the
metric gij [9]. The first equation in (3) is referred to as the Einstein equation of
the system, with the remainder being called equations of motion for the dilaton
� . In contrast to (1), solutions to the modified two-dimensional model consist of
a metric-dilaton pair .g; �/. This toy model has proved useful in understanding
several key problems of interest, including

- relating exact solutions of system (3) to nonlinear equations having known
special function solutions [5; 6; 41; 44],

- understanding the statistical origin for black hole entropy [20; 30],
- studying the endpoint of gravitational collapse [14; 21],
- examining the thermodynamics of black hole solutions in two and three di-

mensions [11; 12; 37],
- comparing 2D string gravity with higher dimensional counterparts [28; 45],
- providing a stepping stone for finding a consistent theory of quantum gravity

(e.g. computing a one-loop effective action in a 2D model [16; 18]).

To better understand (3), we will assume the potential takes the form V .y/D 2y

until otherwise indicated. Independently studied by Jackiw [25] in the context
of Liouville theory and Teitelboim [36] in the context of Hamiltonian dynam-
ics, this specific case of the action is known as the JT action having JT field
equations. Notice the Einstein equation of this system is a constant curvature
condition on the manifold, namely R.g/�2m2D0. Having reduced the problem
considerably with this choice of potential, we shall state a few solutions without
proof.

EXAMPLE 1. Let .x1;x2/D .T; r/. If one makes the simplification �.T; r/D
�.r/, then the remaining field equations may be solved to find a static solution
to the JT field equations:

ds2
bh D .M �m2r2/ dT 2

�
1

M �m2r2
dr2; �bh.T; r/Dmr; (4)
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for M a constant. Excluding the surface � D 0, one may show that the Pen-
rose diagram of this metric is identical to a two-dimensional section of the
Schwarzschild black hole [1; 11; 27]. We use this to justify using the subscript
“bh” in (4) and to refer to ds2

bh as a black hole metric.

On the other hand, setting .x1;x2/D .x; t/ and making the metric ansatz

ds2 g
D cos2 u.x; t/

2
dx2
� sin2 u.x; t/

2
dt2 (5)

for an arbitrary function u D u.x; t/, one finds the Einstein equation in (3) is
satisfied if and only if

4uDm2 sin u; (6)

i.e., u solves the elliptic sine-Gordon equation. This well-studied nonlinear
partial differential equation is completely integrable in the sense that it has in-
finitely many conservation laws, a Lax formulation, a Backlünd Transformation
and can be successfully treated with the inverse scattering technique [26; 32; 35;
48]. Consequently, equation (6) falls into a special class of nonlinear equations
possessing soliton solutions, or localised wave solutions which maintain their
shape and velocity upon collisions. Solving system (3) thus reduces to fixing a
soliton solution u of (6) in the metric ansatz above and solving the equations of
motion for the dilaton � D �.x; t/. We thus use the subscript “sol” and refer to
ds2

sol as a soliton metric.

EXAMPLE 2. Set u to be the simplest nontrivial solution to (6), namely the kink
soliton u.x; t/D 4 arctan em.x�vt/=a, with a; v constants such that a2D 1Cv2.
Then a solution of (3) is given by

ds2
sol D cos2 u

2
dx2
� sin2 u

2
dt2 �sol.x; t/D a sech

m

a
.x� vt/: (7)

EXAMPLE 3. Choosing a slightly more complicated solution to (6), the oscil-
lating kink-antikink soliton

uD u.x; t/D 4 arctan
v sinh amx

a cos vmt
;

with a and v as before, one may verify the pair

ds2
solDcos2 u

2
dx2
�sin2 u

2
dt2; �sol.x; t/D

4v2am sin vmt sinh amx

a2 cos2 vmtCv2 sinh2 amx
(8)

solves system (3). Further details as to the derivation of these two examples
may be found in [5; 44].
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Since one expects the two dimensional metrics ds2
bh and ds2

sol to be locally
equivalent, it is reasonable to pose whether it is possible to find an explicit
correspondence between the solution spaces .ds2

bh; �bh/ and .ds2
sol; �sol/. When

M D v2 in (4), an explicit map is known between the black hole metric and
the kink soliton metric described in Example 2 [44]. PDE conditions for a gen-
eral mapping �.x; t/ were later found, establishing a correspondence between
.ds2

sol; �.x; t// for an arbitrary solution u.x; t/ of (6) and a generalised black
hole solution .ds2

bh; �.T; r/Dmr/ of the form

ds2
bh D�

�
jr� j2sol ı	

�
=m2dT 2

Cm2=
�
jr� j2sol ı	

�
dr2:

The notation jr� j2sol denotes the length of the gradient of � with respect to the
soliton metric ds2

sol and 	.T; r/ D �.x; t/�1. To further elevate the status of
the dilaton, it is also worth noting that � plays a crucial role in determining the
geometry of the two-dimensional black hole, as the Killing vectors are known
once � is given [5; 20]. Remarkably, the mappings �;	 constructed in [5; 6]
turn out to be isometries. Specifically, they are transformations of the solution
spaces of the field equations defined by the Laplace Beltrami operators of the
soliton and black hole metrics.

3. Application of special functions to JT theory

3.1. Illuminating an eigenvalue problem. We rephrase the final statment of
the last section in a particularly useful way. If f D f .T; r/, then a mapping �
satisfying the PDE system found in [5] satisfies

4sol.f ı�/D .4bhf / ı�: (9)

Therefore,4bhf D �f if and only if4solF D �F with F Df ı�. This gives us
a mechanism by which to solve eigenvalue problems in soliton coordinates by
examining the vastly simpler equation4bhf D�f . Using the separation of vari-
ables f .T; r/D e!T h.r/, one obtains a differential equation of hypergeometric
type in r

�.r/h00.r/C �.r/ Q�.r/h0.r/C Q�.r/h.r/D 0; (10)

where � , and Q� and Q� are polynomials in r satisfying deg � , deg Q� � 2, deg
Q� � 1. Using the methods in [31; 43], Equation (10) is expressed in canonical
form and quantization conditions are derived, from which infinite families of
solutions may be written down. In special cases, the final solutions will involve
functions such as Jacobi elliptic functions, or Gauss’ hypergeometric functions,
among others [5; 6; 43].
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EXAMPLE 4. Under the mentioned separation of variables, the eigenvalue prob-
lem 4bhf D �f reduces to

B.r/h00.r/� 2m2rB.r/h0.r/C .2m2.B.r/� �/h.r/D 0;

where B.r/DM �m2r2. Setting � D !2, it is possible to reduce the equation
to one of the form r.1 � r/v00.r/ C Œ
 C r.˛ C ˇ C 1/�v0.r/ � ˛ˇv.r/ D 0,
with m0 D 1=.m

p
M /, ˛ D 2Cj!jm0, ˇ D�1Cj!jm0, 
 D 1Cj!jm0 and

v.r/ D 1
2
h.m2m0r C 1/. The equation is now in the standard form of Gauss’

hypergeometric equation, having as solutions generalised hypergeometric func-
tions F.˛; ˇ; 
 I r/:

F.˛; ˇ; 
 I z/D

1X
nD0

.˛/n.ˇ/n

.
 /n
zn forjzj< 1; 
 ¤ Z�0; (11)

and where .a/n WD � .aC n/=� .a/ D a.aC 1/.aC 2/ � � � .aC n � 1/ is the
Pochhammer symbol [22; 43]. Thus, one solves the eigenvalue problem as
f .T; r/D e!T h.r/, with h.r/D F.˛; ˇ; 
 Imr=.2

p
M /C 1/, and ˛; ˇ; 
 de-

fined above. It is important to note that properties of this F (e.g., Saalschütz
Theorem, Dougall-Ramanujan identity, etc.), and consequently properties of the
solution f are intimately dependent on number theoretic and complex analytic
results of the Gamma function [15; 34; 39].

Interestingly, hypergeometric differential equations also lend themselves to the
study zero-weight modular forms and vertex operator algebras [38; 47].

3.2. Solitons and black hole entropy. A second way in which one may exam-
ine the interplay between the two-dimensional black hole and the soliton gauge,
is by computing quantities of physical interest, such as entropy. In explicating
a correspondence between ds2

bh and ds2
sol, one finds a relationship between the

black hole mass M and several soliton parameters (the constants a; v in (7), for
instance). In particular, we find the M is nonnegative in all the cases studied.
More, [20; 27] compute the ADM energy (mM=2G, with G=Newton’s cou-
pling constant), Hawking temperature (m

p
M =2�) and associated Bekenstein-

Hawking entropy .2�
p

M =G/ for the black hole solutions ds2
bh given in (4),

so each of these quantities may be expressed in terms of the soliton parameters
as well. The physical interpretation of these correspondences is still under in-
vestigation. Attempts have also been made to recover the asymptotic behaviour
of the entropy using N -solitons and partition functions [19]. We shall outline
a fairly speculative argument by Gegenberg and Kunstatter here with the hope
that further discussion can shed light on the matter. Takhtadjan and Faddeev [35]
compute the total energy for an N -soliton to be E D

PN
jD1

�
m2=ˇ2 C p2

j

�
2,

where pj is the canonical momentum of the j th wave packet and ˇ is a constant.
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The rest energy of the state is thus E0 D N m=ˇ. The claim is that “degener-
acy of the state comes from the fact that the wave packets of an N -soliton are
indistinguishable”; that is, degeneracy is the number of different ways to write
N as a sum of non-negative integers. The Hardy–Ramanujan partition function
p.N / counts precisely this value and is given asymptotically by

p.N /�
1

4N
p

3
eK
p

N ;

where K D �
p

2=3; see [23]. Thus, for large N , the entropy grows as S �

log p.N / �
p

N �
p

E0, up to order one multiplicative constant factors; this
coincides with the Bekenstein-Hawking entropy stated above, found in [3; 20].
We remark that in order to make any of the above discussion rigourous, it is first
necessary to make an argument which will include solutions of the sine-Gordon
equation which do not fit the form of an N -soliton (e.g., breathers, non-soliton
solutions). Furthermore, black hole energy has not been proven to be given by
the rest energy of the N -soliton solution. We remark that the partition function
can be cast as a special case of the Rademacher-Zuckerman formula for the
coefficients of a modular form of negative weight -1

2
[33]. It is possible that a

modular forms perspective will clarify these points.

4. Other two-dimensional considerations: Strings and quantum
gravity

Two-dimensional theory is not restricted to the study of the JT field equations,
of course. We touch upon two possible directions of exploration by altering the
potential function V appearing in the action (2) and consequently, the resulting
field equations (3).

4.1. 1D bosonic strings. If we now assume V .y/D
y˛, the original model not
only encompasses the JT Theory (
 D 2, ˛D 1), but several other gravitational
theories of interest, including string-inspired gravity and spherically symmetric
gravity as well. We shall only discuss the first of these two. Let ˛ D 0 so that
V .y/D 
 � 0. Correspondingly, the action appearing in (2) is modified to

I Œg; � �D

Z
M 2

�
R.g/� �m2


�p
jdet.g/j d2x; (12)

and first field equation becomes R.g/D 0. Thus, the metric ansatz in (5) gives
rise to the harmonicity condition4uD 0, rather than the sine-Gordon equation.
In this sense, the integrable systems content of the field equations changes qual-
itatively. However, under the conformal change of coordinates Og D ge' , one
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may, in fact, recover the classical Polyakov (bosonic) string action [7; 28; 29]

I Œ Og; '; ˇ�D

Z
M 2

�
R. Og/� 4jr'j2

Og
Cˇ

�
e�2'

p
jdet Ogj d2x; (13)

for ˇ D m2
 and � D e�2' . The physical and geometric role of the dilaton
appears in a new context, as the square of the conformal factor. Although the two
actions are related, black hole solutions exist in the string model having vastly
different geometry than the static Schwarzschild-type case we have discussed.
An example of this follows.

EXAMPLE 5. Consider the target space action given in [28]

S.g; ';T /D

Z
M 2

�
R.g/�4jr'j2CjrT j2CV .T /

�
e�2'

p
jdet gj d2x; (14)

where g is a two-dimensional metric, ' and T are scalar fields, known as the
dilaton field and the tachyon field, respectively, and V is a polynomial potential
satisfying V .0/D 0. Supposing the tachyon field vanishes and '.T; r/D �r for
some constant �, the field equations reduce to an inhomogeneous second order
ODE, which yield the metric-dilaton solution

ds2
D�.1� aeQr / dT 2

C
1

1� aeQr
dr2 '.T; r/D

Q

2
r; (15)

where Q2D�C is related to the central charge. The asymptotic and topological
behaviour of this solution is clearly not of Schwarzschild type. Investigations
of this example and string theories in general are detailed in [2; 28; 45].

In connection to the previous section, we comment that the parition function
p.N / has been used to count the microstates of a bosonic string; for further
details, see [14; 46] and references therein.

4.2. From classical to quantum gravity: Zeta regularization. In a dimen-
sionally reduced model, it is often possible to exactly compute various quantities
of interest, both classically and quantum mechanically. We mention the value of
two-dimensional models in the context of quantum gravity and zeta functions.
Elizalde and Odintsov consider the actionZ

M 2

�
R

1

�
RC�

�p
jdet gj d2x (16)

of induced two-dimensional gravity on the background M 2 D R1 � S1; R D

R.g/ is the scalar curvature, 1
�

is the resolvent operator, and� is a constant [16;
18]. Upon consideration of the one-loop gauge-independent effective action,
the effective potential V is computed via regularization. Derived in terms of the
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differential operator � (see [17]) and a particular constant ˇ, the zeta function
is given by

���Cm2

� s

2

�
D�

S

�

Z 1
0

C1X
nD�1

�
k2
C

2�n

ˇ
Cm2

��s=2
dk: (17)

Defining the variables x D �=4.2� a/ and y D R
p

x, with a Dconstant, the
effective potential is computed as

V D
p

x

�
8�.2� a/yC

y

8
.1� ln x/�

1

4
C

1

24y
�F.y/

�
; (18)

for

F.y/D
1

4�

1X
kD0

�
.16�/�k

k!
y
�k�1

2

kY
jD1

�
4�.2j�1/2

� 1X
nD1

n
�k�3

2 e�2�ny

�
:

From this, a minimum for V is found and the authors conclude the compactifica-
tion is stable [18]. The result is in marked contast to multidimensional quantum
gravity on Rd �S1, which is known to be one-loop unstable [10; 24].

5. Relation to the 3D BTZ black hole

Two-dimensional models are studied with the ultimate goal of understanding
higher dimensional theories. Naturally, we would like to connect the dilaton
theory to higher dimensions in an explicit fashion. The Einstein Equations,
arising from the classical Einstein-Hilbert action from the first section have also
been examinined for three dimensions viaZ

M 3

.R.g/� 2�/
p
jdet.g/jd3x; (19)

with x D .x1;x2;x3/ and � a constant. One solution of particular interest is
the black hole metric discovered by Bañados, Teitelboim and Zanelli

ds2
BT Z D�N.r/2dT 2

C
1

N.r/2
dr2
C r2

�
N �.r/ dT C d�

�2
; (20)

where x D .T; r; �/, N.r/ D �r2 �M C J 2=.4r2/ and N �.r/ D �J=.2r/;
see [4]. The constants M and J correspond to the mass and angular momen-
tum of the black hole, respectively. The field equations afforded by the three-
dimensional case have been carefully studied, with the geometry and physics of
the BTZ black hole outlined in [1; 3; 4; 11]. We notice an immediate relationship
between the BTZ black hole and the JT black hole from Section 1. Keeping
the �-coordinate constant and setting J D 0, � D m2, the two-dimensional
metric in (4) is recovered as a static slice of (20). This motivates the following
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discussion: let x D .x1;x2; �/ and impose axial symmetry on the 3D metric g

as ds2 D hij . Qx/ dxi dxj C �. Qx/ d�2, for Qx D .x1;x2/, 1� i; j � 2. Then (19)
reduces to a two-dimensional action from which the JT field equations arise

I Œg; � �D

Z
.R.h/� 2m2/�. Qx/

p
jdet.h/j d2

Qx; (21)

where R.h/ is the scalar curvature of the two dimensional metric hDhij .x1;x2/

and �. Qx/D �.x1;x2/ is the dilaton, as before; compare with (2) for V .y/D 2y.
In this way, the scalar field � can be viewed as a radius along the direction of
symmetry (the �� direction) of the the surface defined by the metric h. Clearly
then, the soliton content of the three-dimensional case can be considered, as
well as pertinent questions on the presence of exact solutions involving special
functions and physical quantities of interest. In this context, modular forms of
negative weight also appear. The Rademacher-Zuckerman formula asymptoti-
cally yields the Cardy entropy formula of conformal field theory and as a special
case, the statistical derivation of the Bekenstein-Hawking entropy of the BTZ
black hole [8; 13; 14]. Further, quantum correction to entopy can be realised
as a deformation of zeta and thus close connections between zeta functions and
BTZ black hole thermodynamics have been suggested [42]. It is an interesting
question whether the integrability structure in two dimensions sheds any light
on the three dimensional case. Such avenues are currently under exploration
and will be discussed in a future communication.

6. Conclusion

In the context of classical two-dimensional gravitation, we have only touched
upon the possible mergers of pure mathematics with black hole physics and
cosmology. For further exploration, consult the references.
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[4] Máximo Bañados, Claudio Teitelboim, and Jorge Zanelli. Black hole in three-
dimensional spacetime. Phys. Rev. Lett., 69(13):1849–1851, 1992.



304 SHABNAM BEHESHTI

[5] Shabnam Beheshti. Solutions to the dilaton field equations with applications to the
soliton-black hole correspondence in generalised JT gravity. Ph.D. Thesis, University
of Massachusetts, Amherst, MA (2008). Department of Mathematics.

[6] Shabnam Beheshti and Floyd L. Williams. Explicit soliton–black hole correspon-
dence for static configurations. J. Phys. A, 40(14):4017–4024, 2007.

[7] A. Belavin and A. Polyakov. Metastable states of two-dimensional isotropic ferro-
magnets. JETP Letters, 22:245–247, (1975).

[8] Danny Birmingham and Siddhartha Sen. Exact black hole entropy bound in confor-
mal field theory. Phys. Rev. D (3), 63(4):047501, 2001.

[9] William M. Boothby. An introduction to differentiable manifolds and Riemannian
geometry, volume 120 of Pure and Applied Mathematics. Academic Press Inc.,
Orlando, FL, second edition, 1986.

[10] I. L. Buchbinder, P. M. Lavrov, and S. D. Odintsov. Unique effective action in
Kaluza-Klein quantum theories and spontaneous compactification. Nuclear Phys. B,
308(1):191–202, 1988.

[11] Mariano Cadoni. 2D extremal black holes as solitons. Phys. Rev. D (3), 58(10):
104001, 1998.

[12] Mariano Cadoni and Salvatore Mignemi. Nonsingular four-dimensional black
holes and the Jackiw-Teitelboim theory. Phys. Rev. D (3), 51(8):4319–4329, 1995.

[13] John L. Cardy. Operator content of two-dimensional conformally invariant theo-
ries. Nuclear Phys. B, 270(2):186–204, 1986.

[14] S. Carlip. Logarithmic corrections to black hole entropy, from the Cardy formula.
Classical Quantum Gravity, 17(20):4175–4186, 2000.

[15] J. Dougall. On Vandermonde’s theorem and some more general expansions. Proc.
Edinburgh Math. Soc., 25:114–132, 1907.

[16] E. Elizalde and S. D. Odintsov. Spontaneous compactification in 2D induced
quantum gravity. Modern Phys. Lett. A, 7(26):2369–2376, 1992.

[17] E. Elizalde and A. Romeo. Regularization of general multidimensional Epstein
zeta-functions. Rev. Math. Phys., 1(1):113–128, 1989.

[18] Emilio Elizalde. Ten physical applications of spectral zeta functions, volume 35
of Lecture Notes in Physics. New Series m: Monographs. Springer-Verlag, Berlin,
1995.

[19] J. Gegenberg and G. Kunstatter. From two-dimensional black holes to sine-Gordon
solitons. In Solitons (Kingston, ON, 1997), CRM Ser. Math. Phys., pages 99–106.
Springer, New York, 2000.

[20] J. Gegenberg, G. Kunstatter, and D. Louis-Martinez. Classical and quantum me-
chanics of black holes in generic 2-D dilaton gravity. In Heat kernel techniques and
quantum gravity (Winnipeg, MB, 1994), volume 4 of Discourses Math. Appl., pages
333–346. Texas A & M Univ., College Station, TX, 1995.



INTEGRABLE SYSTEMS AND 2D GRAVITATION 305

[21] J. Gegenberg, G. Kunstatter, and D. Louis-Martinez. Observables for two-dimen-
sional black holes. Phys. Rev. D (3), 51(4):1781–1786, 1995.

[22] I. S. Gradshteyn and I. M. Ryzhik. Table of integrals, series, and products.
Elsevier/Academic Press, Amsterdam, seventh edition, 2007. Translated from the
Russian, Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger,
With one CD-ROM (Windows, Macintosh and UNIX).

[23] G. H. Hardy. Ramanujan: twelve lectures on subjects suggested by his life and
work. Chelsea Publishing Company, New York, 1959.

[24] S. R. Huggins, G. Kunstatter, H. P. Leivo, and D. J. Toms. The Vilkovisky-DeWitt
effective action for quantum gravity. Nuclear Phys. B, 301(4):627–660, 1988.

[25] R. Jackiw. Liouville field theory: a two-dimensional model for gravity? In Quan-
tum theory of gravity, pages 403–420. Hilger, Bristol, 1984.

[26] Peter D. Lax. Integrals of nonlinear equations of evolution and solitary waves.
Comm. Pure Appl. Math., 21:467–490, 1968.
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