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The role of the Patterson–Selberg zeta function
of a hyperbolic cylinder in three-dimensional
gravity with a negative cosmological constant

FLOYD L. WILLIAMS

To the memory of Kenneth Hoffman

1. Introduction

A few years ago, the author took note of certain sums that appeared in the
physics literature in connection with thermodynamic of the BTZ black hole —
a three-dimensional solution discovered by M. Bañados, C. Teitelboim, and J.
Zanelli [1] of the Einstein gravitational field equations

Rij �
1
2
Rgij ��gij D 0 (1.1)

with negative cosmological constant �. Here Rij D Rij .g/;R D R.g/ are
the Ricci tensor and Ricci scalar curvature, respectively, of the solution metric
gD Œgij �. We describe the BTZ metric in equation (2.1) below. These sums were
used to express, for example, the nondivergent part of the effective BTZ action,
or corrections to classical Bekenstein–Hawking entropy [4; 13; 15] — sums that
physicists evidently did not realize were related to the Patterson–Selberg zeta
function Z� .s/ of a hyperbolic cylinder. The paper [21], for example, was
written to point out this relation and thus to establish a thermodynamics-zeta
function connection. Another such connection appears in my Lecture 6 of this
volume.

In [23; 25; 26], for example, we see that the Mann–Solodukhin quantum
correction to black hole entropy [15] is expressed, in fact, in terms of a suitable
“deformation” of Z� .s/. It is also possible to keep track of a corresponding
deformation of the black hole topology. We review the deformation of zeta, and
of the BTZ topology, in Section 4 below where we use it to set up a one-loop
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determinant formula (or an effective action formula) in the presence of conical
singularities.

In Section 3 we express the one-loop quantum field partition function, the
one-loop gravity partition function , and the full gravity partition function all
in terms of the zeta function Z� .s/. Using the holomorphic sector of the one-
loop gravity partition function and the classical elliptic modular function j .�/,
one can build up (with the help of Hecke operators) modular invariant partition
functions of proposed holomorphic conformal field theories with central charge
24k, where k is a positive integer — theories first defined by G. Höhn [12] and
proposed by E. Witten [28] as the holographic dual of pure 2C 1 gravity. That
is, these partition functions exist even if the theories do not (although for k D 1

existence has been established by I. Frenkel, J. Lepowsky, and A. Meurman
in [8]), and in Section 5 we take a close look (in Theorem 5.16, for example)
at their Fourier coefficients — the asymptotics of which provide for quantum
corrections to holomorphic sector black hole entropy.

The lecture, after this introduction, consists of four sections and an appendix:

� The BTZ black hole
� Patterson–Selberg zeta function and a one-loop determinant formula
� Determinant formula in the presence of conical singularities
� Extremal partition functions of conformal field theories with central charge

24k
� Appendix to Section 5: Computation of Zk.�/ for k D 2; 3
� References

The author dedicates this lecture to the memory of Professor Kenneth Hoffman.
His kind support and friendliness to me, as a young MIT postdoc, remains most
highly appreciated these many years later.

2. The BTZ black hole

The BTZ metric that solves the vacuum Einstein equations (1.1) in three di-
mensions with �< 0 is given (in Euclidean form) by

ds2
BTZ D�
N1.r/

2
Cr2N2.r/

2
�

d�2
CN1.r/

�2dr2
C2r2N2.r/ d� d�Cr2 d�2; (2.1)

in coordinates .r; �; �/ on a region of anti-deSitter space where for mass and
angular momentum parameters M > 0;J � 0, respectively,

N1.r/
2 def:
D�M ��r2

�J 2=4r2; N2.r/D�J=2r2: (2.2)

In equation (2.1), one has periodicity of the Schwarzschild variable �; i.e. there
is the identification � � � C 2�n for n 2 Z, the ring of integers. We return
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to this important point shortly. Not all scalar curvatures are created equal. So
in equation (1.1), our sign convention is such that RD �6� > 0; in particular
ds2

BTZ is a constant curvature solution. The metric ds2
BTZ is also a black hole

solution with outer and inner event radii rC; r� given by

r2
C D

M�2

2

�
1C

�
1C

J 2

M 2�2

�1=2�
; r� D�

�Ji

2rC
; (2.3)

where i2D�1 and �def:
D1=
p
��>0. Here rC>0, but r�2 iR is pure imaginary

(since we are working with the Euclidean form of BTZ). Note that

r2
� D

M�2

2

�
1�

�
1C

J 2

M 2�2

�1=2�
; jr�j D

�J

2rC
D i r�: (2.4)

Of course r� D 0 is equivalent to J D 0, which is the case of the nonspinning
black hole, in which case there is a single event horizon.

Given the periodicity � � �C 2�n, n 2 Z, of the Schwarzschild variable �,
as mentioned earlier, one can describe the topology of the space-time (where
ds2

BTZ lives, with � regarded as a time variable) as a quotient space

B� D � nH
3 (2.5)

where H3 def:
D f.x;y; z/ 2 R3 j z > 0g is hyperbolic 3-space, and where

� D �.a;b/
def:
D f
 n

j n 2 Zg for 
 D
�
eaCib 0

0 e�.aCib/

�
; (2.6)

with a
def:
D �rC=� > 0, and b

def:
D �jr�j=� D �J=2rC � 0; see equations (2.3).

Thus � � SL.2;C/ is the cyclic subgroup with generator 
 2 SL.2;C/. The
action of � on H3 is given by 
 n � .x;y; z/D .x0;y0; z0/ for

x0De2an.x cos 2bn�y sin 2bn/;

y0De2an.x sin 2bnCy cos 2bn/; (2.7)

z0De2anz:

A fundamental domain F for this action is given by

F D
˚
.x;y; z/ 2 H3

j 1<
p

x2Cy2C z2 < e2a
	
; (2.8)

a proof of which is given in Appendix A3 of [27], for example. In particular
� � SL.2;C/ is a Kleinian subgroup; that is, F has infinite hyperbolic volume:

vol F
def:
D

Z
F

dx dy dz=z3
D1: (2.9)

The description (2.5) is derived by way of a suitable change of variables
.r; �; �/ ! .x;y; z/; z > 0, whereby (remarkably) the BTZ metric ds2

BTZ in
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equation (2.1) is transformed, in fact, to a multiple ds2 of the standard hyper-
bolic metric .dx2C dy2C dz2/=z2 on H3:

ds2
D �2.dx2

C dy2
C dz2/=z2 (2.10)

where �2 D 1=.��/, by definition (2.3); see [7; 18], for example.

3. Patterson–Selberg zeta function and a one-loop determinant
formula

Going back to the fact that � is Kleinian, we can assign to the black hole
B� D � nH

3 a natural zeta function (an Euler product)

Z� .s/
def:
D

1Y
0�k1;k22Z

�
1� .e2bi/k1.e�2bi/k2e�.k1Ck2Cs/2a

�
; (3.1)

which is the Patterson–Selberg zeta function attached to the hyperbolic cylinder
� nH3; see [16; 21]. Z� .s/ is an entire function whose zeros are the numbers

Nk1;k2;n
def:
D�.k1C k2/C .k1� k2/

2bi

2a
C

2�ni

2a

for k1; k2; n2Z, k1; k2�0, that come from the zeros of its factors. In particular,
Z� .s/¤ 0 for Re s > 0. In fact, for Re s > 0, Z� .s/D elog Z� .s/, where

log Z� .s/
def:
D�

1X
nD1

e�.s�1/2an

4n
�
sinh2.an/C sin2.bn/

�
D�

1X
nD1

e�.s�1/2an

2n
�
cosh.2an/� cos.2bn/

� : (3.2)

In [10], the authors study the one-loop partition function of a free quantum
field � propagating in a locally anti-de Sitter background. The results they obtain
cover not only the BTZ case, but higher genus generalizations of it, as well as
the case of nonscalar fields � (say gauge and graviton excitations). In the special
BTZ case with � a scalar field, for example, the one-loop determinant formula
(equation (4.9) of [10])

� log det�D
1X

nD1

e�2�n
p

1Cm2 Im �

2nj sin�n� j2
(3.3)

is derived, where now �
def:
D

1
2�
.� C iˇ/ denotes the modular parameter corre-

sponding to the anti-de Sitter temperature ˇ�1 and angular potential � , where

K.t; r/D
e�.m

2C1/t�r2=4t

.4� t/3=2

r

sinh r
(3.4)
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is the scalar heat kernel on H3, and where in (3.3) the divergent contribution
proportional to vol F (see equation (2.9)) is disregarded. We indicate how
formula (3.3) also follows quite quickly from our result in [3], and we point
out that the right-hand side of (3.3) in fact coincides with the special value
�2 log Z� .1C

p
1Cm2/ (where we identify ˇ=2 with a and �=2 with b) — this

observation being an example of our initial remarks regarding sums appearing in
the physics literature that are expressible in terms of the zeta function Z� .s/—
a point unnoticed by physicists.

We start with the reminder that for z D x C iy 2 C, sin z D sin x cosh y C

i cos x sinh y: In particular j sin zj2 D sin2 x cosh2 yC cos2 x sinh2 y D sin2 x�

cosh2 yC.1�sin2 x/ sinh2 yD sin2 x.cosh2 y�sinh2 y/Csinh2 yD sin2 xC

sinh2 y ) j sin�n� j2
def:
D sin2

�
�n
2

�
C sinh2

�
ˇn
2

�
) the right-hand side of

formula (3.3) is (since Im �
def:
D

ˇ
2�

)

2

1X
nD1

e�
p

1Cm2ˇn

4n
h
sinh2

�
ˇn
2

�
C sin2

�
�n
2

�i ∴
D�2 log Z� .1C

p
1Cm2/; (3.5)

by definition (3.2).
On the other hand, we have considered in [3; 22] a truncated heat kernel

K��t .ep1; ep2/
def:
D

X
n2Z�f0g

Kt .p1; 

n
�p2/ (3.6)

for B� D� nH
3, t >0, where epj 2B� denotes the � -orbit of pj 2H3, j D1; 2,


 n �p2 is given by definition (2.7), and where

Kt .p1;p2/
def:
D

e�t�d.p1;p2/
2=4t

.4� t/3=2

d.p1;p2/

sinh.d.p1;p2//
(3.7)

(compare equation (3.4)) for d.p1;p2/ the hyperbolic distance between p1 and
p2, given by

cosh.d.p1;p2//D 1C
.x1�x2/

2C .y1�y2/
2C .z1� z2/

2

2z1z2

(3.8)

for pj D .xj ;yj ; zj /. The expression K��t . zp1; zp2/ gives rise to the theta func-
tion (or heat trace)

�� .t/D trace K��t
def:
D

Z Z Z
F

K��t . zp; zp/ dv.p/ (3.9)
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where dvD dx dy dz=z3 is the hyperbolic volume element; see (2.8) and (2.9).
We regard the integral

I.m/
def:
D

Z 1
0

e�m2t trace K��t

dt

t
(3.10)

as the meaning of the expression �log det� in the left-hand side of (3.3), with
the understanding that by restricting the summation to n ¤ 0 in (3.6), we dis-
regard the divergent termZ 1

0

e�m2t

�Z Z Z
F

e�t

.4� t/3=2
dv

�
dt

t
D

vol F

.4�/3=2

Z 1
0

e�.1Cm2/te�3=2�1dt:

(3.11)
Namely, nD 0 implies

Kt .p; 

n
�p/DKt .p;p/D e�t .4� t/�3=2;

by (3.7) and (3.8), and this expression is independent of p2H3. Thus if we were
to include the term for n D 0 in (3.6), there would be a manifest contributionRRR

F e�t .4� t/�3=2dv to (3.9), which in turn would lead to the contributionR1
0 e�m2t

� RRR
F

e�t

.4� t/�3=2 dv
�
dt=t to (3.10). This explains the divergent term

mentioned in (3.11), where one notes not only the “infrared” divergence vol F

(by (2.9)), but also the “ultraviolet” divergence reflected by the negative �3=2

in the integral J.m/
def:
D
R1

0 e�.1Cm2/t t�3=2�1dt . Given the formulaZ 1
0

e�.1Cm2/t tv�1dt D
� .v/

.1Cm2/v
(3.12)

for positive v, the authors in [10] (also compare [5]) remove the ultraviolet
divergence by assigning to J.m/ the value

� .�3=2/

.1Cm2/�3=2
D

4
p
�

3
.1Cm2/3=2:

Thus, in summary, the divergent term being disregarded is (by (3.11)) equal to

vol F

.4�/3=2

4
p
�

3
.1Cm2/3=2 D

.1Cm2/3=2

6�
vol F;

and we regard the one-loop determinant formula (3.3) as the statement that

I.m/
.3:10/
D

Z 1
0

e�m2t trace K��t

dt

t
D�2 log Z� .1C

p
1Cm2/; (3.13)

since we have noted that the right-hand side of (3.3) is the right-hand side of
equation (3.5).
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Now formula (3.13) is easy to prove since the theta function �� .t/D trace K��t

was computed in [3]; also compare [4; 15; 17]. Namely

�� .t/D
a
p

4� t

1X
nD1

e�.tCn2a2=t/

sinh2.na/C sin2.nb/
: (3.14)

Also by formula 32. on page 1145 of [11]Z 1
0

t�3=2e�A=4te�Btdt D 2

r
�

A
e�.AB/1=2

(3.15)

for A> 0;B � 0. Commutation of the integration in (3.13) with the summation
in (3.14) is okay:

I.m/D
a
p

4�

1X
nD1

1

sinh2.na/C sin2.nb/

Z 1
0

t�3=2e�4n2a2=.4t/e�.1Cm2/dt

.3:15/
D

a
p

4�

1X
nD1

1

sinh2.na/C sin2.nb/
2

r
�

4n2a2
e�Œ4n2a2.1Cm2/�1=2

D 2

1X
nD1

e�
p

1Cm22an

4n
�
sinh2.na/C sin2.nb/

�
D�2 log Z� .1C

p
1Cm2/; (3.16)

as desired (again by (3.2)).
Given formula (3.13), we can go a step further and obtain in terms of Z� .s/

the one-loop partition function denoted by Z
1-loop
scalar .�; �/ in [10]. By definition,

it equals .det�/�1=2, which we take to mean .e�I.m//�1=2. Thus, by (3.13),

Z
1-loop
scalar .�; �/D

1

Z� .1C
p

1Cm2/
: (3.17)

Let q
def:
D e2�i� D e2bi�2a, NqD e�2bi�2a, h

def:
D .1C

p
1Cm2/=2, and note that

for 0� k1; k2 2 Z one has

qk1Ch. Nq/k2Ch
D e.2bi�2a/.k1Ch/e.�2bi�2a/.k2Ch/

D .e2bi/k1.e�2bi/k2e�.k1Ck2C2h/2a:

Therefore by definition (3.1) we can also write

1

Z� .1C
p

1Cm2/
D

Y
0�k1;k22Z

1

1� qk1Ch. Nq/k2Ch
(3.18)
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where, as noted in [10], the right-hand side has the form trace qL0 NqL0 for Vi-
rasoro operators L0;L0 that generate scale transformations (in the language of
boundary conformal field theory).

The one-loop gravity partition function Z
1-loop
gravity.�/ is also computed in [10].

The result is

Z
1-loop
gravity.�/D

1Y
mD2

1

j1� qmj2
D

1Y
mD2

1

j1� e2mbie�2amj2
; (3.19)

from which one obtains the full gravity partition function

Zgravity.�/D jqj
�2kZ

1-loop
gravity.�/: (3.20)

for the Chern–Simon coupling constant k D �=16G (see (2.3)), G being the
Newton constant; see [10; 14; 28]. We claim that Z

1-loop
gravity.�/ can also be ex-

pressed in terms of the zeta function Z� .s/. We have a factorization

Z
1-loop
gravity.�/DZhol.�/Zhol.�/ (3.21)

for

Zhol.�/
def:
D

1Y
mD2

1

1� qm
(3.22)

its holomorphic sector. Since a > 0, we have jqmj D e�2am < 1 for m > 0;
hence log.1� qm/D�

P1
nD1 qmn=n. That is,

log Zhol.�/D�

1X
mD2

log.1� qm/D

1X
nD1

1

n

1X
mD2

.qn/m

D

1X
nD1

1

n

q2n

.1� qn/

1� Nqn

1� Nqn
D

1X
nD1

e4bnie�4an.1� e�2bnie�2an/

nj1� qnj2

D

1X
nD1

e4bnie�4an� e2bnie�4ane�2an

nj1� qnj2
: (3.23)

On the other hand, sin2.bn/C sinh2.an/D 1
2

�
cosh.2an/�cos.2bn/

�
— this

identity was used in (3.2) and will be used later in (4.8). Thus

j1� qnj2

4jqjn
D

1� qn� NqnCjqj2n

4jqjn
D

1� e2bnie�2an� e�2bnie�2anC e�4an

4e�2an

D
1
4
.e2an

� 2 cos.2bn/C e�2an/

D
1
2

�
cosh.2an/� cos.2bn/

�
D sin2.bn/C sinh2.an/: (3.24)
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That is, 1

j1�qnj2
D

1

e�2an4
�
sinh2.an/Csin2.bn/

� , which by (3.23) lets us
write

log Zhol.�/D

1X
nD1

e4bnie�2an� e2bnie�4an

4n
�
sinh2.an/C sin2.bn/

�
D

1X
nD1

e�.�
2b
a iC1/2an

� e�.�
b
a iC2/2an

4n
�
sinh2.an/C sin2.bn/

�
D� log Z�

�
2�

2b

a
i
�
C log Z�

�
3�

b

a
i
�

(3.25)

by definition (3.2). By definition (3.1), Z� .s/ D Z� .Ns/. By equation (3.25)
we have therefore established:

THEOREM 3.26. For � D b

�
C

ai

�
, Zhol.�/DZ�

�
3�

b

a
i
�.

Z�

�
2�

2b

a
i
�

. In
particular, by (3.21),

Z
1-loop
gravity.�/D

Z�

�
3�

b

a
i
�
Z�

�
3C

b

a
i
�

Z�

�
2�

2b

a
i
�
Z�

�
2C

2b

a
i
� ; (3.27)

and thus by equation (3.20), Zgravity.�/ also has the explicit expression e4ak

(the right-hand side of equation (3.27)) in terms of the Patterson–Selberg zeta
function Z� .s/.

4. Determinant formula in the presence of conical singularities

We will now extend the one-loop determinant formula (3.13) to the BTZ black
holes B� .˛/ with conical singularities. Here we fix 0< ˛ � 1 and for


˛
def:
D

�
ei�˛ 0

0 e�i�˛

�
we define � .˛/ to be the subgroup of SL.2;C/ generated by 
 and 
˛, for 
 as
in (2.6):

� .˛/
def:
D f
 n
m

˛ j n;m 2 Zg: (4.1)

� .˛/ acts on H3 by .
 n
m
˛ / � .x;y; z/D .x

0;y0; z0/, where

x0 D e2an
�
x cos 2.bnC�˛m/�y sin 2.bnC�˛m/

�
;

y0 D e2an
�
x sin 2.bnC�˛m/Cy cos 2.bnC�˛m/

�
; (4.2)

z0 D e2anz:
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This action, like that defined in equation (2.7), is the restriction of the standard
action of SL.2;C/ on H3. We take

B� .˛/
def:
D � .˛/nH3:

If ˛ D 1, then � .˛/ D � and B� .˛/ D B� . However, in general, B� .˛/ is not
a smooth manifold since the action of � .˛/ is not free. For example each point
.0; 0; z/; z > 0, on the positive z-axis is a fixed point of 
m

˛ , by definition (4.2).
To understand the topology of B� .˛/ a little better, consider the action of Z

on R2 given by

m �

�
x

y

�
def:
D

�
x cos.2�m˛/�y sin.2�m˛/

x sin.2�m˛/Cy cos.2�m˛/

�
D

�
cos.2�m˛/ � sin.2�m˛/

sin.2�m˛/ cos.2�m˛/

� �
x

y

�
(4.3)

for m 2 Z and x;y 2 R.
Thus the action is a rotation, the angle of rotation being 2�m˛. Let .ZnR2/.˛/

denote the corresponding quotient space, and let S1 D fz 2 C j jzj D 1g denote
the unit circle. In [24] we construct a well-defined surjective homeomorphism
 ˛ W B� .˛/ ! .ZnR2/.˛/ �S1. In fact, given .x;y; z/ 2 H3 define

rDr.x;y; z/
def:
D
�

a
log z (since z > 0),

uDu.x;y; z/
def:
D

x

z
cos rb

�
C

y

z
sin rb

�
; (4.4)

vDv.x;y; z/
def:
D�

x

z
sin rb

�
C

y

z
cos rb

�
:

If B.x;y; z/ 2 B� .˛/ denotes the � .˛/-orbit of .x;y; z/ 2 H3, and A.u; v/ 2
.ZnR2/.˛/ denotes the Z-orbit of .u; v/ 2 R2, then

 ˛.B.x;y; z//def:
D .A.u; v/; eir

D ei �a log z/: (4.5)

Similarly, the inverse function  �1
˛ W .ZnR2/.˛/ � S1 ! B� .˛/ is explicated

in [24]. If ˛ D 1= l with 2 � l 2 Z, for example, then one computes that a
fundamental domain for the Z action in (4.3) is given by a cone in R2 with
vertex at .0; 0/, and with opening angle 2�= l D 2�˛. Given that the black
holes B� .˛/ have the topology .ZnR2/.˛/ � S1, as just indicated, we see that
they have conical singularities. In particular B� has the topology R2 �S1, as
is well-known.

The family fB� .˛/g0<˛�1 of topological spaces is a “deformation” of B�
in the sense that B� .1/ D B� , as we have noted. Similarly, as indicated in
the introductory remarks, we have constructed a family fZ� .˛/g0<˛�1 of zeta
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functions such that Z� .1/ D Z� in (3.1). We review this construction as it is
the key to the extension of formula (3.13). For convenience we will also write
Z.sI˛/ for Z� .˛/.s/.

Z� .˛/.s/DZ.sI˛/
def:
DY

0�k1;k22Z

�
1� .e2bi=˛/k1.e�2bi=˛/k2e�.k1Ck2C˛s/2a=˛

�
�

Y
0�k1;k2;k32Z

1� e�2.k3C1/2a.e2bi=˛/k1.e�2bi=˛/k2e�.k1Ck2C˛s/2a=˛

1� e�2.k3C1=˛/2a.e2bi=˛/k1.e�2bi=˛/k2e�.k1Ck2C˛s/2a=˛
:

(4.6)

For ˛D 1, the product over k1; k2; k3 � 0 here is 1. So clearly Z� .1/ DZ� .s/

by definition (3.1). On the other hand, it is proved in [27] that we can also write

Z.sI˛/ D
Y

0�k1;k22Z

�
1� e.ib�a/2k1=˛e�4ak2e�2as

�
�

Y
0�k1;k22Z

�
1� e�.ibCa/.2=˛/ .k1C1/e�4ak2e�2as

�
; (4.7)

which shows that Z.sI˛/ is an entire function. A third expression for Z.sI˛/

is also proved in [27]. The definition (4.6) might appear to be a bit opaque, but
there are physical motivations for it. Namely, the author’s interest was to find
a zeta function meaning of results in [15]. By deforming Z� .s/, we wished to
construct a statistical mechanics type function log Z.sI˛/ such that the evalu-
ation .˛ @=@˛ � 1/ log Z.sI˛/

ˇ̌
˛D1

, for a special value of s, would capture the
quantum correction of R. Mann and S. Solodukhin to BTZ black hole entropy;
see [23; 25; 26]. From definition (4.6) one can obtain for Re s > 0 the equality
Z.sI˛/D elog Z.sI˛/, where

log Z.sI˛/
def:
D�

1X
nD1

sinh.2an=˛/ e�.s�1/2an

4n sinh.2an/
�
sinh2 .an=˛/C sin2.bn=˛/

�
D�

1X
nD1

sinh.2an=˛/ e�.s�1/2an

2n sinh.2an/
�
cosh.2an=˛/� cos.2bn=˛/

� : (4.8)

Of course the formulas in (4.8) reduce to those in (3.2) in case ˛ D 1.
A final ingredient needed is an extension of the trace formula (3.14). Fortu-

nately, this is available from [27] in case ˛ D 1= l (again) for 1 � l 2 Z, which
we therefore assume. By averaging the heat kernel K��t . zp1; zp2/ in (3.6) over
the finite group lZnZ we obtain the truncated heat kernel (for t > 0)

K��
.˛/

t . zp1; zp2/
def:
D

l�1X
mD0

K��t

�
zp1;B
m

˛ �p2

�
; (4.9)



340 FLOYD L. WILLIAMS

which equals

1

.4� t/3=2

l�1X
mD0

X
n2Z�f0g

e�t�d.p1;.

n
m
˛ /�p2/

2=4t d.p1; .

n
m
˛ / �p2/

sinh d.p1; .
 n
m
˛ / �p2/

for B� .˛/ , from which we can define (compare definition (3.9)) the theta func-
tion (for t > 0)

�� .˛/.t/D trace K��
.˛/

t
def:
D

Z Z Z
F .˛/

K
�.˛/
t . zp; zp/ dv.p/; (4.10)

where F .˛/ �H3 is defined in terms of spherical coordinates xD � sin� cos � ,
y D � sin� sin � , z D � cos�, with � � 0, 0� � < 2� , 0� � < �=2:

F .˛/
def:
D f.x;y; z/ 2 H3

j
1<�<e2a

2�.1�˛/� � � 2� g: (4.11)

Thus F .˛/ is the upper hemispherical region in R3 between the spheres of radii
1 and e2a, but with � at least 2�.1� ˛/, called the defect angle. If we choose
�1 D 2�.1�˛/ and �2 D 2� in formula (4.8) of [27] we obtain, for t > 0:

THEOREM 4.12. For ˛ D 1= l , with 1� l 2 Z, one has

�� .˛/.t/D
˛a

2
p

4� t

X
n2Z�f0g

m2Z
0�m�l�1

e�t�a2n2=t

sinh2.an/C sin2.bnC�˛m/
:

This theorem generalizes the trace formula (3.14). Similarly the following the-
orem generalizes the one-loop determinant formula (3.13):

THEOREM 4.13. For ˛ D 1= l , with 1� l 2 Z, one hasZ 1
0

e�m2t trace K��
.˛/

t

dt

t
D�2 log Z� .˛/.1C

p
1Cm2/: (4.14)

PROOF. We follow the argument above in the proof of (3.13), given Theorem
4.12.Z 1

0

e�m2t trace K��
.˛/

t

dt

t
D

˛a

2
p

4�

X
n¤0

0�m�l�1

1

sinh2.an/C sin2.bnC�˛m/

Z 1
0

t�3=2e�4n2a2=4te�.1Cm2/tdt

.3:15/
D

˛a

2
p

4�

X
n¤0

0�m�l�1

1

sinh2.an/C sin2.bnC�˛m/
2

r
�

4n2a2
e�
p

4n2a2.1Cm2/
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D
˛

2

X
n¤0

0�m�l�1

e�2jnja
p

1Cm2

jnj 2
�
sinh2.an/C sin2.bnC�˛m/

�
D
˛

2

X
n¤0

0�m�l�1

e�2jnja
p

1Cm2

jnj
�
cosh.2an/� cos 2.bnC�˛m/

� : (4.15)

To proceed further we employ the identity1

l�1X
mD0

1

cosh u� cos.v� 2�m= l/
D

l sinh.lu/
sinh u

�
cosh.lu/� cos.lv/

� : (4.16)

We apply it with u
def:
D 2an and vdef:

D�2bn to rewrite the last sum in (4.15) as

˛

2

X
n2Z�f0g

e�2jnja
p

1Cm2
l sinh.l2an/

jnj sinh.2an/
�
cosh.l2an/� cos.l2bn/

�
D 2

1X
nD1

sinh.2an=˛/ e�2an
p

1Cm2

2n sinh.2an/
�
cosh.2an=˛/� cos.2bn=˛/

�
D�2 log Z� .˛/.1C

p
1Cm2/;

(4.17)

by definition (4.8), which concludes the proof of Theorem 4.13. �

In the effective action formula (4.14) we have assumed that ˛�1 2 Z. This
assumption can be removed and thus a more general formula can be presented
if we appeal to an old contour integral formula that goes back to A. Sommerfeld
in 1897, in his amazing diffraction studies. The reader can consult the references
[13; 15], for example, on this point — references which of course do not employ
the zeta function Z� .˛/.s/.

5. Extremal partition functions of conformal field theories with
central charge 24k

In this section we consider the modular invariant partition function Zk.�/

of a holomorphic conformal field theory (CFT) with central charge c D 24k,
k D 1; 2; 3; 4; : : : . Such a theory was introduced by G. Höhn [12], and is called
an extremal CFT (ECFT) — which according to a bold proposal of E. Witten [28]
is the dual to 3-dimensional pure gravity with a negative cosmological constant;

1Formula (4.16) corrects a misprint in [27]. Namely, the expression sin.lu/ in formula (4.10) of [27]
should read sinh.lu/. Also in equations (4.5) and (4.6) of [27] the often occurring expression 
 .˛/m should
read 
m

˛ .
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also compare [14]. Apart from the case k D 1, however, there is uncertainty
regarding the existence of ECFT’s. I. Frenkel, J. Lepowsky, and A. Meurman
(FLM) [8] have indeed constructed a holomorphic CFT with central charge cD

24 (i.e., with k D 1) and with Z1.�/D j .�/� 744, where j .�/ is the classical
elliptic modular invariant (see (5.6) below).

An important point regarding the FLM construction is monster symmetry: the
states of the theory transform as a representation of the finite, simple, Fischer–
Griess group M , of order jM j D 246 � 320 � 59 � 76 � 112 � 132 � 17 � 19 � 23 � 29 �

31 � 41 � 47 � 59 � 71� 1054, called the monster (or the friendly giant). However
for k D 2, D. Gaiotto [9] has slain the “two-headed monster”: there exists no
self-dual ECFT for c D 48 with monster symmetry.

We begin by indicating how Zk.�/ (defined for Im � > 0) can be explicitly
constructed from the FLM Z1.�/ and the one-loop partition function Zhol.�/ of
definition (3.22), with help of Hecke operators.

Fix k D 1; 2; 3; 4; : : : , and for � 2 C with Im � > 0 set q D q.�/
def:
D e2�i� , so

jqj< 1. Define

Z0.�/
def:
D q�kZhol.�/

def:
D q�k

1Q
nD2

1

1� qn
I (5.1)

compare definition (3.22). The full gravity partition function of definition (3.20)
therefore admits the factorization

Zgravity.�/DZ0.�/Z0.�/; (5.2)

by equation (3.21).
Let p denote the partition function on ZC; that is, p.n/ is the number of

ways of writing a positive integer n as a sum of positive integers, without regard
to order. Euler’s formula (equation (9.10) of my introductory lectures, page 72)
says that

1Q1
nD1.1� zn/

D

1P
nD0

p.n/zn (5.3)

for jzj< 1, where p.0/
def:
D 1. Therefore we can write

Z0.�/D q�k.1� q/
1Q

nD1

1

1� qn
D q�k.1� q/

1P
nD0

p.n/qn

D

1P
nD0

p.n/qn�k
�

1P
nD0

p.n/qnC1�k :

Collecting coefficients here we see that

Z0.�/D
1P

rD�k

ar .k/q
r (5.4)
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for
ar .k/

def:
D p.r C k/�p.r C k � 1/; r � �k; (5.5)

where we set p.�1/
def:
D 0.

As mentioned in my introductory lectures (equations (4.44) and (4.45) on
page 42), the modular j -invariant has a q-expansion with all Fourier coefficients
cn 2 Z. That is, defining

j .�/
def:
D

1728.60G4.�//
3

.60G4.�//3� 27.140G6.�//2
; (5.6)

we have

j .�/D
1

q
C

1X
nD0

cnqn with

c0 D 744;

c1 D 196;884;

c2 D 21;493;760;

c3 D 864;299;970;

c4 D 20;245;856;256;

c5 D 333;202;640;600;

c6 D 4;252;023;300;096:

(5.7)

The denominator in (5.6) is the Dedekind–Klein discriminant form�.�/, and
Gl.z/ is the holomorphic Eisenstein series of weight l given in definition (4.4)
of the introductory lectures (page 31). Here we depart from convention in using
J.�/ not in the classical sense but to denote the function j .�/� c0:

J.�/
def:
D j .�/� 744D

1

q
C 196;884 qC 21;493;760 q2

C

864;299;970 q3
C 20;245;856;256 q4

C � � � : (5.8)

Now recall the n-th Hecke operator T .n/ of weight w acting on a function
f .�/, Im � > 0, where n; w 2 Z, n � 1, w � 0. As seen in (3.22) of the
introductory lectures (page 28), it is given by

.T .n/f /.�/
def:
D nw�1

X
d>0
d jn

d�1X
aD0

d�wf

�
n� C da

d2

�
: (5.9)

In particular

n.T .n/f /.�/
def:
D

X
d>0
d jn

d�1X
aD0

f

�
n� C da

d2

�
(5.10)
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for w D 0, which is the only case we will need, since J.�/ in (5.8) has weight
zero. Of course T .1/f D f for any weight w. We can now define the main
object, where we have fixed an integer k > 0:

Zk.�/
def:
D a0.k/C

kX
rD1

a�r .k/r.T .r/J /.�/

D p.k/�p.k�1/C

kX
rD1

�
p.k�r/�p.k�r�1// r.T .r/J /.�/ (5.11)

by definition (5.5), where r.T .r/J /.�/ is given by equation (5.10) applied
to f D J . Since p.0/ D p.1/ D 1, p.�1/ D 0, and T .1/f D f we see
that Z1.�/ � J.�/, which (as remarked on earlier) is the partition function of
the FLM holomorphic CFT of central charge c D 24, with monster symmetry.
Frenkel, Lepowsky, and Meurman also conjecture that this ECFT is unique — a
result that remains unproved at the present time.

To be a bit more precise, these authors construct a graded, infinite-dimensional
M -module V \D V0˚V1˚V2˚V3˚V4˚� � � (the moonshine module), where
V0 is the trivial representation � of M , V1 D f0g, V2 D �1˚ �196;833, V3 D

�1 ˚ �196;883 ˚ �21;296;876, and so on; �d is the irreducible representation
of M of degree d , for d � 1. A remarkable observation, first made by John
McKay in 1978, is that the early Fourier coefficients cn in (5.7) are integral
linear combinations of the degrees d ; thus c1 D 196;884D 1C 196; 883, c2 D

21;493;760D 1C 196;883C 21;296;876, and

c3 D 864;299;970D 2� 1C 2� .196;883/C 21;296;876C 842;609;326:

V \ has the structure, in fact, of a vertex operator algebra (VOA), a subject
thoroughly discussed by G. Mason and M. Tuite in their lectures in this book.
The submodule V2 is actually an algebra (which is commutative but not associa-
tive), the Griess algebra, which has the monster M as its full symmetry group
(i.e., as its automorphism group).

By equations (5.7), (5.8) we have the Fourier expansion J.�/D
P

n��1 cnqn,
where c�1 D 1; c0 D 0. Accordingly, .T .n/J /.�/ has Fourier expansion

.T .n/J /.�/D
X

m��n

c.n/m qm;

where

c.n/m D

X
d>0

d jn;d jm

cmn=d2

d
; m�1I c

.n/
0
Dc0

X
d>0
d jn

1

d

∴
D 0D c.n/�m; 1�m<nI

c.n/�n D
1

n
: (5.12)
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That is,

.T .n/J /.�/D
q�n

n
C

1X
mD1

c.n/m qm (5.13)

which we use in definition (5.11):

Zk.�/D a0.k/C

kX
rD1

a�r .k/

�
q�r
C r

1X
nD1

c.r/n qn

�
:

Collecting coefficients here, we see that

Zk.�/D a�k.k/q
�k
C � � �C a�2.k/q

�2
C a�1.k/q

�1

C a0.k/C

1X
nD1

bk;nqn; (5.14)

where

a�k.k/D 1; bk;n
def:
D

kX
rD1

ra�r .k/c
.r/
n ; n� 1; (5.15)

with a�r .k/D p.k�r/�p.k�r�1/ for 1 � r � k given by (5.5), and c
.r/
n DP

d crn=d2=d given by (5.12).
Before commenting on the important physical significance of the coefficients

bk;n in (5.15), we state the following result:

THEOREM 5.16. For k; n 2 Z; k; n� 1, let

b1k;n
def:
D ke4�

p
kn=
p

2.kn/3=4: (5.17)

Then bk;n equals

b1k;n

�
1�

3

32�
p

kn
C "knCT .k; n/

C
1

k1=4

k�1X
rD1

r1=4a�r .k/

e4�
p

n.
p

k�
p

r/

�
1�

3

32
p

rn
C "rnCT .r; n/

��
; (5.18)

where j"mj � :055=m for integer m � 1, and 0 � T .r; n/ is bounded above by
both r3=2�

�
3
2

�
=.2e2�

p
rn/ and n3=2�

�
3
2

�
=.2e2�

p
rn/ for 1� r � k, where �.s/

is the Riemann zeta function.

In setting up the proof of Theorem 5.16, the author relied heavily on the follow-
ing result of N. Brisebarre and G. Philibert [2] (as mentioned in equation (9.32)
on page 76 of my introductory lectures): For m� 1

cm D
e4�
p

m

p
2m3=4

�
1�

3

32�
p

m
C "m

�
; (5.19)
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where again j"mj � :055=m. Equation (5.19) immediately implies the weaker
asymptotic result (see equation (9.31) on page 76)

cm � e4�
p

m=
p

2m3=4 as m!1; (5.20)

due to H. Petersson in 1932 and H. Rademacher in 1938, who was unaware
of Petersson’s proof. Similarly, Theorem 5.16 immediately implies the weaker
asymptotic result

bk;n � b1k;n
def:
D ke4�

p
kn=
p

2.kn/3=4 as n!1 (5.21)

for every fixed k, as observed by E. Witten in Section 3 of [28]. Actually Witten
assumes that k is large with n=k fixed, but we see that this assumption is un-
necessary for the statement (5.21).

Now from log bk;n, say for n sufficiently large, one obtains both the classical,
holomorphic sector Bekenstein–Hawking black hole entropy Shol D 4�

p
kn

(the leading asymptotic term) and corrections (subleading asymptotic terms) to
that entropy:

log b1k;n D 4�
p

knC
�

1
4

log k � 3
4

log n� 1
2

log 2
�
; (5.22)

by (5.21).
We offer further explanation regarding equation (5.22). In particular we ex-

plain why the leading term Shol D 4�
p

kn there was referred to as the holo-
morphic sector entropy. In formulas (2.3), (2.4), the outer and inner black hole
radii for the BTZ metric in Euclidean form (2.1) are given by

r2
˙ D

M�2

2

�
1˙

r
1C

�
J

M�

�2 �
:

For convenience, we also consider the Lorentzian form of the metric

ds2
L D

�
�N1.r/

2
C r2N2.r/

2
�

dt2
CN1.r/

�2dr2

C 2r2N2.r/ d� dt C r2 d�2; (5.23)

where now

N1.r/D

�
�8GM C

r2

�2
C

16G2

r2
J 2

�1=2

; (5.24)

with the gravitational constant G also included for generality. We omit the
definition of N2.r/, which will not be needed. The corresponding radii, which
we again denote by r˙, are (by definition) solutions of the quartic equation
N1.r/D 0 W

r2
˙ D 4GM�2

�
1˙

r
1�

�
J

M�

�2 �
: (5.25)
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Here we assume (so ds2
L

can have a black hole structure) that 1�.J=�M /2� 0,
which is to say jJ j � �M ; then r˙ � 0. The key point here is that the classical
Bekenstein–Hawking entropy, given by

SBH D
�rC

2G
; (5.26)

is also given by the formula of J. Cardy [6] (see equation (9.3) on page 70)

SBH D 2�

r
cL0

6
C 2�

r
cL0

6
; (5.27)

where L0 and L0 are eigenvalues of the holomorphic and antiholomorphic Vi-
rasoro generators, respectively, and where the central charge c equals 3�=2G.
To check equation (5.27) we use the equalities

L0 D .�M CJ /=2; L0 D .�M �J /=2: (5.28)

By definition (5.25) we can write r2
C C r2

� D 8GM�2 and rCr� D 4G�J ;
therefore .rC˙ r�/

2 D 8GM�2˙ 8G�J D 16G�.�M ˙J /=2, which yields

L0 D .rCC r�/
2=16G�; L0 D .rC� r�/

2=16G�: (5.29)

By (5.26), the right-hand side of equation (5.27) is then

2�

r
c

6

�
rCC r�C rC� r�

4
p

G�

�
D �rC=2G D SBH

for c D 3�=2G, which verifies equation (5.27).
Recall the Chern–Simon coupling constant k D �=16G following equation

(3.20). Since c D 3�=2G, we see that c D 24k. Thus our ongoing assumption
c 2 24ZC amounts now to the “quantization” of k; that is, k D �=16G is a
positive integer. If we call the first term 2�

p
cL0=6 in equation (5.27) the

holomorphic sector entropy Shol (for obvious reasons), then for c D 24k we
have Shol D 2�

p
24kL0=6D 4�

p
kL0, which is the leading asymptotic term

in equation (5.22), where n there is identified with the Virasoro eigenvalue L0.
This is a justification for referring to that leading term as holomorphic sector
entropy.

Appendix to Section 5: Computation of Zk.�/ for k D 2; 3

The explicit formulas (5.14) and (5.15) are sufficient for the direct computa-
tion of the initial terms of Zk.�/, say for small values of k. One could employ



348 FLOYD L. WILLIAMS

a computer program to deal with larger values of k. For example, take k D 2.
Then, by (5.5) and (5.15),

a�1.2/D p.2� 1/�p.2� 2/D 1� 1D 0;

a�2.2/D 1;

a0.2/D p.2/�p.1/D 1:

Also (5.15) gives, for n� 1,

b2;nD

2X
rD1

ra�r .2/
X
d>0

d jr;d jn

1

d
crn=d2

∴
D 2

X
d>0

d j2;d jn

1

d
c2n=d2 D

�
2c2n if 2 - n,
2c2nC cn=2 if 2 j n,

leading to
b2;1 D 2c2 D 42;987;520;

b2;2 D 2c4C c1 D 40;491;909;396;

b2;3 D 2c6 D 8;540;046;600;192;

by (5.7). Therefore by (5.14)

Z2.�/D

q�2
C 1C 42;987;520qC 40;491;909;396q2

C 8;504;046;600;192q3
C � � � :

Of course,

Z1.�/
def:
D J.�/

def:
D j .�/� 744D

q�1
C 196;884qC 21;493;760q2

C 864;299;970q3
C 20;245;856;256q4

C� � � ;

by equation (5.8).
Similarly for kD3 we have a0.3/D1, a�1.3/D1, a�2.3/D0, a�3.3/D1,

so that

b3;n D

3X
rD1

ra�r .3/
X
d>0

d jr;d jn

1

d
crn=d2 D cnC 3

X
d>0

d j3;d jn

1

d
c3n=d2 ;

which leads to

b3;1 D c1C 3c3 D 2;593;096;794;

b3;2 D c2C 3c6 D 12;756;091;394;048;

and hence

Z3.�/D q�3
C q�1

C 1C 2;593;096;794qC 12;756;091;394;048q2
C � � � :



PATTERSON–SELBERG ZETA FUNCTION AND THREE-DIMENSIONAL GRAVITY 349

References
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Added in proof

The author has discovered that a (slightly incorrect) version of formula (3.27), page
337, has been obtained, independently, by A. Bytsenko and M. Guimarães, (see formula
(4.13) in their Truncated heat kernel and one-loop determinants for the BTZ geometry,
Eur. Phys. J. C 58 (2008), pp. 511–516).

The following reference provides for further connections of the Patterson–Selberg
zeta function to BTZ physics: D. Diaz, Holographic formula for the determinant of the
scattering operator in thermal AdS, preprint, arXiv:0812.2158v3 (2009).
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