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An introduction to L2 cohomology
XIANZHE DAI

ABSTRACT. After a quick introduction toL2 cohomology, we discuss recent
joint work with Jeff Cheeger where we study, from a mostly topological stand-
point, theL2-signature of certain spaces with nonisolated conical singularities.
The contribution from the singularities is identified with atopological invariant
of the link fibration of the singularities, involving the spectral sequence of the
link fibration.

This paper consists of two parts. In the first, we give an introduction to
L2 cohomology. This is partly based on [8]. We focus on the analytic aspect
of L2 cohomology theory. For the topological story, we refer to [1; 22; 31]
and of course the original papers [16; 17]. For the history and comprehensive
literature, see [29]. The second part is based on our joint work with Jeff Cheeger
[11], which gives the contribution to theL2 signature from nonisolated conical
singularity.

It is a pleasure to thank Eugenie Hunsicker for numerous comments and sug-
gestions.

1. L2 cohomology: what and why

What is L2 cohomology? The de Rham theorem provides one of the most use-
ful connections between the topological and differential structure of a manifold.
The differential structure enters the de Rham complex, which is the cochain
complex of smooth exterior differential forms on a manifoldM , with the exte-
rior derivative as the differential:

0 !˝0.M /
d
! ˝1.M /

d
! ˝2.M /

d
! ˝3.M /! � � �
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The de Rham Theorem says that the de Rham cohomology, the cohomology

of the de Rham complex,H k
dR.M /

def
D kerdk=Im dk�1, is isomorphic to the

singular cohomology:
H k

dR.M /Š H k.M I R/:

The situation can be further rigidified by introducing geometry into the pic-
ture. Letg be a Riemannian metric onM . Theng induces anL2-metric on
˝k.M /. As usual, letı denote the formal adjoint ofd . In terms of a choice of
local orientation forM , we haveıD ˙�d�, where� is the Hodge star operator.
Define the Hodge Laplacian to be

�D dıC ıd:

A differential form! is harmonic if�! D 0.
The great theorem of Hodge then states that, for a closed Riemannian mani-

fold M , every de Rham cohomology class is represented by a unique harmonic
form. This theorem provides a direct bridge between topology and analysis of
manifolds through geometry, and has found many remarkable applications.

Naturally, then, one would like to extend the theory to noncompact manifolds
and manifolds with singularity. The de Rham cohomology is still defined (one
would restrict to the smooth open submanifold of a manifold with singularity).
However, it does not capture the information at infinity or atthe singularity.

One way of remedying this is to restrict to a subcomplex of theusual de Rham
complex, namely that of the square integrable differentialforms — this leads us
to L2 cohomology.

More precisely, let.Y;g/ denote an open (possibly incomplete) Riemannian
manifold, let˝i D˝i.Y / be the space ofC 1 i-forms onY andL2 D L2.Y /

the L2 completion of˝i with respect to theL2-metric. Defined to be the
exterior differential with the domain

domd D f˛ 2˝i.Y /\ L2.Y /I d˛ 2 L2.Y /g:

Put
˝i

.2/.Y /D˝i.Y /\ L2.Y /:

Then one has the cochain complex

0 !˝0
.2/.Y /

d
! ˝1

.2/.Y /
d
! ˝2

.2/.Y /
d
! ˝3

.2/.Y /! � � � :

The L2-cohomology ofY is defined to be the cohomology of this cochain
complex:

H i
.2/.Y /D kerdi=Im di�1 :

Thus defined, theL2 cohomology is in general no longer a topological invariant.
However, theL2 cohomology depends only on the quasi-isometry class of the
metric.
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EXAMPLES. � The real line: For the real lineR with the standard metric,

H i
.2/.R/D 0 if i D 0;

H i
.2/.R/ is infinite-dimensional ifi D 1:

For the first part, this is because constant functions can never beL2, unless
they are zero. For the second part, a1-form �.x/ dx, with �.x/ having
compact support, is obviously closed andL2, but can never be the exterior
derivative of anL2 function, unless the total integral of� is zero.

� Finite cone: LetC.N / D CŒ0;1�.N / D .0; 1/ � N , whereN is a closed
manifold of dimensionn, with the conical metricg D dr2 C r2gN . Then a
result of Cheeger [8] gives

H i
.2/.C.N //D

�

H i.N / if i < .n C 1/=2;

0 if i � .n C 1/=2:

Intuitively this can be explained by the fact that some of thedifferential
forms that define classes for the cylinderN �.0; 1/ cannot beL2 on the cone
if their degrees are too big. More specifically, let! be ani-form onN and
extend it trivially toC.N /, so! is constant along the radial direction. Then

Z

C.N /

j!j2gd volg D

Z 1

0

Z

N

j!jgN
rn�2idx dr:

Thus, the integral is infinite ifi � .n C 1/=2.

As we mentioned, theL2 cohomology is in general no longer a topological
invariant. Now clearly, there is a natural map

H i
.2/.Y /� H i.Y;R/

via the usual de Rham cohomology. However, this map is generally neither
injective nor surjective. On the other hand, in the case when.Y;g/ is a compact
Riemannian manifold with corner (for a precise definition see the article by
Gilles Carron in this volume), the map above is an isomorphism because theL2

condition is automatically satisfied for any smooth forms.
Also, another natural map is from the compact supported cohomology to the

L2 cohomology:
H i

c .Y /� H i
.2/.Y /:

As above, this map is also neither injective nor surjective in general.
Instead, theL2 cohomology of singular spaces is intimately related to the in-

tersection cohomology of Goresky–MacPherson ( [16; 17]; see also Greg Fried-
man’s article in this volume for the intersection cohomology). This connection
was pointed out by Dennis Sullivan, who observed that Cheeger’s local com-
putation ofL2 cohomology for isolated conical singularity agrees with that of
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Goresky–MacPherson for the middle intersection homology.In [8], Cheeger
established the isomorphism of the two cohomology theoriesfor admissible
pseudomanifolds. One of the fundamental questions has beenthe topological
interpretation of theL2 cohomology in terms of the intersection cohomology of
Goresky–MacPherson.

Reduced L2 cohomology and L2 harmonic forms. In analysis, one usually
works with complete spaces. That means, in our case, the fullL2 space instead
of just smooth forms which areL2. Now the coboundary operatord has well
defined strong closured in L2: ˛ 2 domd andd˛ D � if there is a sequence

j̨ 2 domd such that̨ j ! ˛ andd j̨ ! � in L2. (The strong closure is to
maked a closed operator. There are other notions of closures and extensions,
as in [15] for instance.) Similarly,ı has the strong closureNı.

One can also define theL2-cohomology using the strong closured . Thus,
define

H i
.2/;#.Y /D kerd i=Im d i�1 :

Then the natural map

�.2/ W H i
.2/.Y /� H i

.2/;#.Y /

turns out to be always an isomorphism [8].
This is good, but does not produce any new information . . . yet! The crucial

observation is that, in general, the image ofd need not be closed. This leads to
the notion of reducedL2-cohomology, which is defined by quotienting out by
the closure instead:

NH i
.2/.Y /D kerd i=Im d i�1 :

The reducedL2-cohomology is generally not a cohomology theory but it is
intimately related to Hodge theory, as we will see.

Now we define the space ofL2-harmonici-formsH
i
.2/
.Y / to be

H
i
.2/.Y /D f� 2˝i \ L2I d� D ı� D 0g:

Some authors define theL2-harmonic forms differently; compare [31]. The def-
initions coincide when the manifold is complete. The advantage of our definition
is that, whenY is oriented, the Hodge star operator induces

� W H
i
.2/.Y /! H

n�i
.2/ .Y /;

which is naturally the Poincaré duality isomorphism.
Now the big question is: Do we still have a Hodge theorem?
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Kodaira decomposition, L2 Stokes and Hodge theorems. To answer the
question, let’s look at the natural map, the Hodge map

H
i
.2/.Y /� H i

.2/.Y /:

The question becomes: When is this map an isomorphism? Following Cheeger
[8], when the Hodge map is an isomorphism, we will say that thestrong Hodge
theorem holds.

The most basic result in this direction is the Kodaira decomposition [23] (see
also [14]),

L2 D H
i
.2/ ˚ d�i�1

0
˚ ı�iC1

0
;

an orthogonal decomposition which leaves invariant the subspaces of smooth
forms. Here subscript0 denotes having compact support. This result is essen-
tially the elliptic regularity.

It follows from the Kodaira decomposition that

kerd i D H
i
.2/ ˚ d�i�1

0
:

Therefore the question reduces to what the space Imd i�1 is in the decomposi-
tion. We divide the discussion into two parts:

SURJECTIVITY. If Im d is closed, then Imd � d�i�1
0

. Hence, the Hodge map
is surjective in this case.

In particular, this holds if theL2-cohomology is finite-dimensional.

INJECTIVITY. The issue of injectivity of the Hodge map has to do with theL2

Stokes theorem. We say that Stokes’ theorem holds forY in theL2 sense if

hd˛; ˇi D h˛; Nıˇi

for all ˛ 2 domd , ˇ 2 dom Nı; or equivalently, if

hd˛; ˇi D h˛; ıˇi

˛ 2 domd , ˇ 2 domı.
If the L2 Stokes theorem holds, one has

H
i
.2/.Y /? Im d i�1;

so the Hodge map is injective in this case. Moreover,

H i
.2/.Y /D H

i
.2/.Y /˚ Im d i�1=Im d i�1:

Here, by the closed graph theorem, the last summand is either0 or infinite-
dimensional. Note also, since it follows that

H
i
.2/.Y /? Im d i�1 ;
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that
NH i
.2/.Y /Š H

i
.2/.Y /:

That is, when theL2 Stokes theorem holds, the reducedL2 cohomology is
simply the space ofL2 harmonic forms.

Summarizing, if theL2-cohomology ofY has finite dimension and Stokes’
theorem holds onY in theL2-sense, then the Hodge theorem holds in this case,
and theL2-cohomology ofY is isomorphic to the space ofL2-harmonic forms.
Therefore, whenY is orientable, Poincaré duality holds as well. Consequently,
theL2 signature ofY is well defined in this case.

There are several now classical results regarding theL2 Stokes theorem.
Gaffney [15] showed that theL2 Stokes theorem holds for complete Riemann-
ian manifolds. On the other hand, for manifolds with conicalsingularityM D

M0 [ C.N /, the general result of Cheeger [9] says that theL2 Stokes theo-
rem holds provided thatL2 Stokes holds forN and in addition the middle-
dimensional (L2) cohomology group ofN vanishes if dimN is even. In partic-
ular, if N is a closed manifold of odd dimension, orH dimN=2.N /D 0 if dim N

is even, theL2 Stokes theorem holds forM .

REMARK . There are various extensions ofL2, for cohomology example, co-
homology with coefficients or Dolbeault cohomology for complex manifolds.

2. L2 signature of nonisolated conical singularities

Nonisolated conical singularities.We now consider manifolds with nonisolated
conical singularity whose strata are themselves smooth manifolds. In other
words, singularities are of the following type:

(i) The singular stratum consists of disjoint unions of smooth submanifolds.
(ii) The singularity structure along the normal directionsis conical.

More precisely, a neighborhood of a singular stratum of positive dimension can
be described as follows. Let

Zn ! M m �
! Bl (2-1)

be a fibration of closed oriented smooth manifolds. Denote byC�M the map-
ping cylinder of the map� W M ! B. This is obtained from the given fibration
by attaching a cone to each of the fibers. Indeed, we have

CŒ0;1�.Z/! C�M ! B :

The spaceC�M also comes with a natural quasi-isometry class of metrics.
A metric can be obtained by choosing a submersion metric onM :

gM D ��gB C gZ :
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Then, on the nonsingular part ofC�M , we take the metric

g1 D dr2 C��gB C r2gZ : (2-2)

The general class of spaces with nonisolated conical singularities as above
can be described as follows. A spaceX in the class will be of the form

X D X0 [ X1 [ � � � [ Xk ;

whereX0 is a compact smooth manifold with boundary, and eachXi (for i D

1; : : : ; k) is the associated mapping cylinderC�i
Mi for some fibration.Mi ; �i/,

as above.
More generally, one can consider the iterated constructionwhere we allow

manifolds in our initial fibration to have singularities of the type considered
above. However, we will restrict ourselves to the simplest situation where the
initial fibrations are all modeled on smooth manifolds.

REMARK . An n-dimensional stratified pseudomanifoldX is a topological space
together with a filtration by closed subspaces

X D Xn D Xn�1 � Xn�2 � � � � � X1 � X0

such that for each pointp 2 Xi � Xi�1 there is a distinguished neighborhood
U in X which is filtered homeomorphic toC.L/� Bi for a compact stratified
pseudomanifoldL of dimensionn�i �1. Thei-dimensional stratumXi �Xi�1

is ani-dimensional manifold. Aconical metriconX is a Riemannian metric on
the regular set ofX such that on each distinguished neighborhood it is quasi-
isometric to a metric of the type (2-2) withB D Bi ;Z D L andgB the standard
metric onBi , gZ a conical metric onL. Such conical metrics always exist on
a stratified pseudomanifold.

L2 signature of generalized Thom spaces. A generalized Thom spaceT is
obtained by coning off the boundary of the spaceC�M .

Namely,

T D C�M [M C.M /

is a compact stratified pseudomanifold with two singular strata:B and a single
point (unlessB is a sphere).

EXAMPLE . Let �
�
! B be a vector bundle of rankk. We have the associated

sphere bundle

Sk�1 ! S.�/
�
! B:

The generalized Thom space constructed out of this fibrationcoincides with the
usual Thom space equipped with a natural metric.
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Now consider the generalized Thom space constructed from anoriented fibration
(2-1) of closed manifolds, i.e., both the baseB and fiberZ are closed oriented
manifolds and so is the total spaceM . ThenT will be a compact oriented
stratified pseudomanifold with two singular strata. Since we are interested in
theL2 signature, we assume that the dimension ofM is odd (so dimT is even).
In addition, we assume the Witt conditions; namely, either the dimension of the
fibers is odd or its middle-dimensional cohomology vanishes. Under the Witt
conditions, the strong Hodge theorem holds forT . Hence theL2 signature of
T is well defined.

QUESTION. What is theL2 signature ofT ?

Let’s go back to the case of the usual Thom space.

EXAMPLE (continued). In this case,

sign.2/.T /D �sign.D.�//;

the signature of the disk bundleD.�/ (as a manifold with boundary).
Let˚ denote the Thom class and� the Euler class. Then the Thom isomor-

phism gives the commutative diagram

H �Ck.D.�/;S.�// ˝ H �Ck.D.�/;S.�// - R

H �.B/

��. � /[˚

6

˝ H �.B/

��. � /[˚

6

- R

�  - Œ� [ [��ŒB� :

Thus, sign.2/.T / is the signature of this bilinear form onH �.B/.

We now introduce the topological invariant which gives theL2-signature for a
generalized Thom space. In [13], in studying adiabatic limits of eta invariants,
we introduced a global topological invariant associated with a fibration. (For
adiabatic limits of eta invariants, see also [32; 5; 10; 3].)Let .Er ; dr / be the
Er -term with differential,dr , of the Leray spectral sequence of the fibration
(2-1) in the construction of the generalized Thom spaceT . Define a pairing

Er ˝ Er � R

�˝ ’ h� � dr ; �r i;

where�r is a basis forEm
r naturally constructed from the orientation. In case

m D 4k �1, when restricted toE.m�1/=2
r , this pairing becomes symmetric. We
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define�r to be the signature of this symmetric pairing and put

� D
X

r�2

�r :

When the fibration is a sphere bundle with the typical fiber a.k � 1/-dimen-
sional sphere, the spectral sequence satisfiesE2 D � � � D Ek , EkC1 D E1 with
d2 D � � � D dk�1 D 0; dk. / D  [ �. Hence� coincides with the signature
of the bilinear form from the Thom isomorphism theorem. The main result of
[11] is this:

THEOREM 1 (CHEEGER–DAI ). Assume either the fiberZ is odd-dimensional
or its middle-dimensional cohomology vanishes. Then theL2-signature of the
generalized Thom spaceT is equal to�� :

sign.2/.T /D ��:

In spirit, our proof of the theorem follows the example of thesphere bundle
of a vector bundle. Thus, we first establish an analog of Thom’s isomorphism
theorem in the context of generalized Thom spaces. In part, this consists of
identifying theL2-cohomology ofT in terms of the spectral sequence of the
original fibration; see [11] for complete details.

COROLLARY 2. For a compact oriented spaceX with nonisolated conical sin-
gularity satisfying the Witt conditions, theL2-signature is given by

sign.2/.X /D sign.X0/C

k
X

iD1

�.Xi/ :

The study of theL2-cohomology of the type of spaces with conical singularities
discussed here turns out to be related to work on theL2-cohomology of non-
compact hyperk̈ahler manifolds which is motivated by Sen’s conjecture; see, for
example, [19] and [18]. Hyperkähler manifolds often arise as moduli spaces of
(gravitational) instantons and monopoles, and so-called S-duality predicts the
dimension of theL2-cohomology of these moduli spaces (Sen’s conjecture).
Many of these spaces can be compactified to give a space with nonisolated
conical singularities. In such cases, our results can be applied. We also refer
the reader to the work [18] of Hausel, Hunsicker and Mazzeo, which studies
theL2-cohomology andL2-harmonic forms of noncompact spaces with fibered
geometric ends and their relation to the intersection cohomology of the compact-
ification. Various applications related to Sen’s conjecture are also considered
there.
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Combining the index theorem of [4] with our topological computation of the
L2-signature ofT , we recover the following adiabatic limit formula of [13]; see
also [32; 5; 9; 3].

COROLLARY 3. Assume that the fiberZ is odd-dimensional. Then we have the
following adiabatic limit formula for the eta invariant of the signature operator:

lim
"!0

�.AM;"/D

Z

B

L

�

RB

2�

�

^ Q�C �:

In the general case, that is, with no dimension restriction on the fiber, the
L2-signature for generalized Thom spaces is discussed in [21]. In particu-
lar, Theorem 1 is proved for the general case in [21]. However, one of the
ingredients there is the adiabatic limit formula of [13], rather than the direct
topological approach taken here. One of our original motivations was to give
a simple topological proof of the adiabatic limit formula. In [20], the methods
and techniques in [11] are used in the more general situationto derive a very
interesting topological interpretation for the invariant�r . On the other hand, in
[7], our result on the generalized Thom space, together withthe result in [13],
is used to derive the signature formula for manifolds with nonisolated conical
singularity.
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