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An introduction to L? cohomology

XIANZHE DAl

ABSTRACT. After a quick introduction ta.? cohomology, we discuss recent
joint work with Jeff Cheeger where we study, from a mostlydiggical stand-
point, theL 2-signature of certain spaces with nonisolated conicalsargies.
The contribution from the singularities is identified witkopological invariant
of the link fibration of the singularities, involving the spieal sequence of the
link fibration.

This paper consists of two parts. In the first, we give an guagion to
L? cohomology. This is partly based on [8]. We focus on the aitabspect
of L? cohomology theory. For the topological story, we refer tp 22; 31]
and of course the original papers [16; 17]. For the histoy @amprehensive
literature, see [29]. The second part is based on our joink with Jeff Cheeger
[11], which gives the contribution to the? signature from nonisolated conical
singularity.

Itis a pleasure to thank Eugenie Hunsicker for numerous cemsrand sug-
gestions.

1. L? cohomology: what and why

What is L2 cohomology? The de Rham theorem provides one of the most use-
ful connections between the topological and differentialgure of a manifold.
The differential structure enters the de Rham complex, wiscthe cochain
complex of smooth exterior differential forms on a manifdif], with the exte-

rior derivative as the differential:
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The de Rham Theorem says that the de Rham cohomology, thenotdgy

of the de Rham complexHé‘R(M) def kerdy /Im d;._;, is isomorphic to the
singular cohomology:
H(M) =~ H*(M ;R).

The situation can be further rigidified by introducing getmyénto the pic-
ture. Letg be a Riemannian metric oW . Theng induces anZ?-metric on
k(). As usual, lets denote the formal adjoint af. In terms of a choice of
local orientation forM , we havel = +x*d *, wherex is the Hodge star operator.
Define the Hodge Laplacian to be

A=ds+éd.

A differential formw is harmonic ifAw = 0.

The great theorem of Hodge then states that, for a closeddrigian mani-
fold M, every de Rham cohomology class is represented by a unigoehi
form. This theorem provides a direct bridge between topokgd analysis of
manifolds through geometry, and has found many remarkaiggcations.

Naturally, then, one would like to extend the theory to nanpact manifolds
and manifolds with singularity. The de Rham cohomology ilt defined (one
would restrict to the smooth open submanifold of a manifoith\singularity).
However, it does not capture the information at infinity otreg singularity.

One way of remedying this is to restrict to a subcomplex oltheal de Rham
complex, namely that of the square integrable differefitiahs — this leads us
to L? cohomology.

More precisely, le{Y, g) denote an open (possibly incomplete) Riemannian
manifold, let2! = 2/(Y) be the space af ® i-forms onY andL? = L?(Y)
the L? completion of2? with respect to theL.2-metric. Defined to be the
exterior differential with the domain

domd = {a € 21 (Y) N L*(Y); da € L*(Y)}.
Put i i 2
Q0,(¥) =2/ (V)N L*(Y).

Then one has the cochain complex
d d d
0% 1) 5 2L ) 5 24 1) S 25 1) - .

The L?-cohomology ofY is defined to be the cohomology of this cochain
complex: .
H(lz)(Y) = kerd,-/lm di_1.

Thus defined, thé&.? cohomology is in general no longer a topological invariant.
However, theL > cohomology depends only on the quasi-isometry class of the
metric.
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ExAMPLES. * The real line: For the real linR with the standard metric,
Hy(R) =0 if i =0,
H/, (R) is infinite-dimensional i = 1.

For the first part, this is because constant functions caerrmd.?, unless
they are zero. For the second part]-#orm ¢(x) dx, with ¢(x) having
compact support, is obviously closed ahd, but can never be the exterior
derivative of anL? function, unless the total integral ¢fis zero.

» Finite cone: LetC(N) = Cj,1j(N) = (0, 1) x N, where N is a closed
manifold of dimension:, with the conical metriz = dr2 + r2gx. Then a
result of Cheeger [8] gives

. _[HI(N) ifi<@n+1)/2,
He)(C(N)) = {o ifi>m+1)/2.

Intuitively this can be explained by the fact that some of diféerential
forms that define classes for the cylindér< (0, 1) cannot bel.? on the cone
if their degrees are too big. More specifically, detbe ani-form on N and
extend it trivially toC(V), sow is constant along the radial direction. Then

1
/ |w|§,dvo|g=/ / |w|gn " dx dr.
C(N) 0o JN

Thus, the integral is infinite if > (n + 1)/2.

As we mentioned, thé.> cohomology is in general no longer a topological
invariant. Now clearly, there is a natural map

Hpy(Y) — H'(Y.R)

via the usual de Rham cohomology. However, this map is ghyeraither
injective nor surjective. On the other hand, in the case wheg) is a compact
Riemannian manifold with corner (for a precise definitior ske article by
Gilles Carron in this volume), the map above is an isomorphiscause thé?2
condition is automatically satisfied for any smooth forms.

Also, another natural map is from the compact supportedmootmgy to the
L? cohomology:

H.(Y)— H(’z)(Y).
As above, this map is also neither injective nor surjectivgeneral.

Instead, thel.2 cohomology of singular spaces is intimately related to the i
tersection cohomology of Goresky—MacPherson ([16; 1'4;ads0 Greg Fried-
man’s article in this volume for the intersection cohomegfpgrhis connection
was pointed out by Dennis Sullivan, who observed that Ché&efpecal com-
putation of L2 cohomology for isolated conical singularity agrees withttof
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Goresky—MacPherson for the middle intersection homoldgy[8], Cheeger
established the isomorphism of the two cohomology thedvesadmissible
pseudomanifolds. One of the fundamental questions has theetiopological
interpretation of the.? cohomology in terms of the intersection cohomology of
Goresky—MacPherson.

Reduced L2 cohomology and L2 harmonic forms. In analysis, one usually
works with complete spaces. That means, in our case, thé fuspace instead
of just smooth forms which ar&?. Now the coboundary operatar has well
defined strong closuré in L?: « € domd andda = 7 if there is a sequence
aj € domd such thaty; — o andda; — n in L2. (The strong closure is to
maked a closed operator. There are other notions of closures aedsians,
as in [15] for instance.) Similarlyj has the strong closuie

One can also define the2-cohomology using the strong closude Thus,
define

Hy oY) =kerd;/Imd,_; .
Then the natural map
(@) : Hip(Y) —> Hiy) ,(Y)

turns out to be always an isomorphism [8].

This is good, but does not produce any new information ... e crucial
observation is that, in general, the imageifafieed not be closed. This leads to
the notion of reduced.?-cohomology, which is defined by quotienting out by
the closure instead:

Hy(Y) =kerd;/Imd;_; .

The reduced.2-cohomology is generally not a cohomology theory but it is
intimately related to Hodge theory, as we will see.
Now we define the space @f?-harmonici-forms .‘H’(Z)(Y) to be

()(¥) =1{0 € 2" N L% db =50 = 0}.

Some authors define the?-harmonic forms differently; compare [31]. The def-
initions coincide when the manifold is complete. The adagatof our definition
is that, whenY” is oriented, the Hodge star operator induces

% 1 Hip (V) — H5 (),

which is naturally the Poincarduality isomorphism.
Now the big question is: Do we still have a Hodge theorem?
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Kodaira decomposition, L2 Stokes and Hodge theorems. To answer the
guestion, let's look at the natural map, the Hodge map

Hiyy(Y) —> Hip (Y).

The guestion becomes: When is this map an isomorphism?woficCheeger
[8], when the Hodge map is an isomorphism, we will say thastheng Hodge
theorem holds.

The most basic result in this direction is the Kodaira decositjpn [23] (see
also [14]),

L? =3, @d AL @sApt,
an orthogonal decomposition which leaves invariant thesgabes of smooth
forms. Here subscrigi denotes having compact support. This result is essen-
tially the elliptic regularity.
It follows from the Kodaira decomposition that
kerd; = 9{22) ®dATL
Therefore the question reduces to what the spacé;lmis in the decomposi-
tion. We divide the discussion into two parts:

SURJECTIVITY. If Im d is closed, then Ind O d A=, Hence, the Hodge map
is surjective in this case.
In particular, this holds if thd.2-cohomology is finite-dimensional.

INJECTIVITY. The issue of injectivity of the Hodge map has to do with ftte
Stokes theorem. We say that Stokes’ theorem hold§ for the L2 sense if

(da. B) = (. 5B)
for all « € domd, B € domé; or equivalently, if
(da, B) = (. 3p)

o € domd, § € doms.
If the .2 Stokes theorem holds, one has

@) Limd;_y.
so the Hodge map is injective in this case. Moreover,

H(iz)(Y) = ng)(Y) ®Imd;_1/Imd;_;.

Here, by the closed graph theorem, the last summand is ditieerinfinite-
dimensional. Note also, since it follows that

@) Limd;_;.
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that B .
H(’z)(Y) ~ J{’(z)(Y).

That is, when thel.? Stokes theorem holds, the reduc&d cohomology is
simply the space of.> harmonic forms.

Summarizing, if theL2-cohomology ofY has finite dimension and Stokes’
theorem holds o in the L2-sense, then the Hodge theorem holds in this case,
and theL?-cohomology ofY is isomorphic to the space éf-harmonic forms.
Therefore, whert is orientable, Poincarduality holds as well. Consequently,
the L2 signature oft is well defined in this case.

There are several now classical results regarding/theStokes theorem.
Gaffney [15] showed that the? Stokes theorem holds for complete Riemann-
ian manifolds. On the other hand, for manifolds with consiaularity M =
M,y U C(N), the general result of Cheeger [9] says that flfeStokes theo-
rem holds provided thaf.?> Stokes holds forN and in addition the middle-
dimensional {.?) cohomology group ofV vanishes if dimV is even. In partic-
ular, if N is a closed manifold of odd dimension, BIM™N/2(N) = 0 if dim N
is even, thel.? Stokes theorem holds fa¥/ .

REMARK. There are various extensions bf, for conomology example, co-
homology with coefficients or Dolbeault cohomology for cdexpmanifolds.

2. L2 signature of nonisolated conical singularities

Nonisolated conical singularities.\We now consider manifolds with nonisolated
conical singularity whose strata are themselves smoothifolds In other
words, singularities are of the following type:

(i) The singular stratum consists of disjoint unions of sthagsubmanifolds.
(i) The singularity structure along the normal directiosgonical.

More precisely, a neighborhood of a singular stratum oftp@sdimension can
be described as follows. Let

T

Z" > M" S B! (2-1)

be a fibration of closed oriented smooth manifolds. Denot€by/ the map-
ping cylinder of the mapr : M — B. This is obtained from the given fibration
by attaching a cone to each of the fibers. Indeed, we have

C[O,l](Z) — CR—M — B.

The space”,; M also comes with a natural quasi-isometry class of metrics.
A metric can be obtained by choosing a submersion metrig/on

gmM=n"gp+gz.



AN INTRODUCTION TO L2 COHOMOLOGY 7
Then, on the nonsingular part 6f, M, we take the metric
gr=dr’+n*gp+rigz. (2-2)

The general class of spaces with nonisolated conical snges as above
can be described as follows. A spaken the class will be of the form

X =XoUX;U---UXy,

where X is a compact smooth manifold with boundary, and edglffor i =
1,...,k)isthe associated mapping cylind€y, M; for some fibration(M;, ;),
as above.

More generally, one can consider the iterated construatioere we allow
manifolds in our initial fibration to have singularities dfet type considered
above. However, we will restrict ourselves to the simpléstasion where the
initial fibrations are all modeled on smooth manifolds.

REMARK. An n-dimensional stratified pseudomanifotdis a topological space
together with a filtration by closed subspaces

X=X,=X,—12X,—2D---DX1 DX

such that for each point € X; — X;_; there is a distinguished neighborhood
U in X which is filtered homeomorphic t6(L) x B! for a compact stratified
pseudomanifold. of dimensiom —i —1. Thei-dimensional stratunk; — X;_;

is ani-dimensional manifold. Aonical metricon X is a Riemannian metric on
the regular set oft such that on each distinguished neighborhood it is quasi-
isometric to a metric of the type (2-2) with = B!, Z = L andgp the standard
metric onB’, g~ a conical metric orl.. Such conical metrics always exist on
a stratified pseudomanifold.

L? signature of generalized Thom spaces. A generalized Thom spacE is
obtained by coning off the boundary of the sp&ageM .
Namely,

T =CxMUp C(M)
is a compact stratified pseudomanifold with two singulaatstrB and a single
point (unlessB is a sphere).
EXAMPLE. Leté& % B be a vector bundle of rank. We have the associated
sphere bundle
sk 5 5¢6) S B.

The generalized Thom space constructed out of this fibratamcides with the
usual Thom space equipped with a natural metric.
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Now consider the generalized Thom space constructed framemed fibration

(2-1) of closed manifolds, i.e., both the baBeand fiberZ are closed oriented
manifolds and so is the total spadé¢. ThenT will be a compact oriented
stratified pseudomanifold with two singular strata. Sinaeawve interested in
the L? signature, we assume that the dimensiotofs odd (so dint" is even).

In addition, we assume the Witt conditions; namely, eitherdimension of the
fibers is odd or its middle-dimensional cohomology vanisHdsder the Witt

conditions, the strong Hodge theorem holds TarHence thel? signature of

T is well defined.

QUESTION. What is theL? signature ofl'?
Let’s go back to the case of the usual Thom space.
EXAMPLE (continued). In this case,

sign ;) (T') = —sign(D(§)),

the signature of the disk bundie(¢) (as a manifold with boundary).
Let @ denote the Thom class andthe Euler class. Then the Thom isomor-
phism gives the commutative diagram

H R (DE).SE) © HH(DE).SE) R
a*(HUP (- )u
H*(B) ® H*(B) R
" v [ Uy U A[B].

Thus, sig, (T) is the signature of this bilinear form oli*(B).

We now introduce the topological invariant which gives fhe-signature for a
generalized Thom space. In [13], in studying adiabatictirof eta invariants,
we introduced a global topological invariant associateth i fibration. (For
adiabatic limits of eta invariants, see also [32; 5; 10; 3} (E,, d,) be the
E,.-term with differential,d,, of the Leray spectral sequence of the fibration
(2-1) in the construction of the generalized Thom spBc®efine a pairing

E,QFE, —R
dRY (- -dr. &),

whereé, is a basis forE”* naturally constructed from the orientation. In case
m = 4k — 1, when restricted t& " ~"/2, this pairing becomes symmetric. We
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definer, to be the signature of this symmetric pairing and put

T = E Ty .

r=2

When the fibration is a sphere bundle with the typical fibét a 1)-dimen-
sional sphere, the spectral sequence satigfes --- = E, Ex+1 = Ex With
dy=---=dr_; =0, dp(¥) = ¢ U x. Hencer coincides with the signature
of the bilinear form from the Thom isomorphism theorem. Thamresult of
[11] is this:

THEOREM 1 (CHEEGER-DAI). Assume either the fibéf is odd-dimensional
or its middle-dimensional cohomology vanish@&ken theL2-signature of the
generalized Thom spadeis equal to—z:

signy(T) = —.

In spirit, our proof of the theorem follows the example of gghere bundle
of a vector bundle. Thus, we first establish an analog of Teassmorphism
theorem in the context of generalized Thom spaces. In ddg,consists of
identifying the L2-cohomology of7 in terms of the spectral sequence of the
original fibration; see [11] for complete details.

COROLLARY 2. For a compact oriented spack with nonisolated conical sin-
gularity satisfying the Witt conditionshe L2-signature is given by

k
sign) (X) = sign(Xo) + Z T(X;).

i=1

The study of thd.2-cohomology of the type of spaces with conical singulasitie
discussed here turns out to be related to work on/the&ohomology of non-
compact hyper&hler manifolds which is motivated by Sen’s conjecture; me
example, [19] and [18]. Hype#hler manifolds often arise as moduli spaces of
(gravitational) instantons and monopoles, and so-calleldi&ity predicts the
dimension of thel 2-cohomology of these moduli spaces (Sen’s conjecture).
Many of these spaces can be compactified to give a space witisahated
conical singularities. In such cases, our results can bkegppWe also refer
the reader to the work [18] of Hausel, Hunsicker and Mazzduchvstudies
the L2-cohomology and.2-harmonic forms of noncompact spaces with fibered
geometric ends and their relation to the intersection callogy of the compact-
ification. Various applications related to Sen’s conjegtare also considered
there.
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Combining the index theorem of [4] with our topological camsggtion of the
L?-signature ofl’, we recover the following adiabatic limit formula of [13k&
also [32; 5; 9; 3].

COROLLARY 3. Assume that the fibef is odd-dimensionalThen we have the
following adiabatic limit formula for the eta invariant dii¢ signature operator

: REB\

lim n(A) = /B LB nite
In the general case, that is, with no dimension restrictianttee fiber, the
L>2-signature for generalized Thom spaces is discussed in [Bi]particu-
lar, Theorem 1 is proved for the general case in [21]. Howewee of the
ingredients there is the adiabatic limit formula of [13]thex than the direct
topological approach taken here. One of our original mtbvas was to give
a simple topological proof of the adiabatic limit formula [P0], the methods
and techniques in [11] are used in the more general situédiaerive a very
interesting topological interpretation for the invariapt On the other hand, in
[7], our result on the generalized Thom space, together thighresult in [13],
is used to derive the signature formula for manifolds witimisolated conical
singularity.
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