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The almost closed range condition

GILLES CARRON

ABSTRACT. The almost closed range condition is presented and weiaxpla
how this notion can be used to give a topological interpiatatf the space of
L? harmonic forms on the Hilbert schemes2aéind3 points onC?2.

A Jacques

1. Introduction

When (M, g) is a compact manifold the celebrated theorem of Hodge and
de Rham says that the spacesIdf harmonic forms onM/ are isomorphic to
the cohomology spaces o1 ; that is, if we denote by

HE (M, g) = {a € L2(A* M), do = d*o: = 0}
the space of.? harmonick-forms,! then we have a natural isomorphism
HK(M, g) ~ H* (M, R).

When(M, g) is noncompact but complete, the space dharmonic forms
have an interpretation in terms of redudeti conomology. A general and naive
question is to understand how we can give some topologitatgretation for
these spaces af? harmonic forms. There are many results, as well as pre-
dictions and conjectures, in this direction. For instaritecker's conjecture
[32] about locally symmetric Hermitian spaces, eventuatijved by E. Looi-
jenga, L. Saper and M. Stern [18; 27] and extended by A. N, [@nd the
recent result of L. Saper [25; 26], as well as results for fiotas with flat ends
[6], manifolds with cylindrical end [2], and negatively mad manifolds with
finite volume [17; 30; 31]. AlsoL? harmonic forms have some significance

IHered™ is the formal adjoint of the exterior differentiation opead for the L2 structure induced by
the metricg.
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in modern physics and there are several predictions baseddomlity arising
in string theory: for instance there is Sen’s conjectureualtioe moduli space
of magnetic monopoles [28] and the Vafa—Witten conjectineua Nakajima’s
guiver manifolds [29; 13].

When M has a locally finite open coveringy = |, U, admitting a par-
tition of unity with bounded gradient such that on anyMf, Uy, Uy N Ug,
UsNUgNUy, ... theL?-range ofd is closed, then we can sometimes use sheaf
cohomology to obtain a topological interpretation of thapofZ? harmonic
forms. However, this is not always possible. Several toalsgetbeen developed
in order to circumvent this difficulty. For instance, psediffierential calculi
have been used successfully in several situations [19; 2012]. Here we
present the notion of almost closed range dowhich was introduced in [7].
We give some general results (including a Mayer—Vietorigusace) that are
true if this almost closed range condition is satisfied. Ve a&ixplain that this
condition has to be used with some care. In order to illusthatw this notion
is used in [7], we explain the arguments (and amongst theralthest closed
range condition) leading to the topological interpretatif the space of.>
harmonic forms on the Hilbert schemes2oénd3 points onC?2.

2. L? cohomology

We start with basic definitions, to present the setting anddiation.

2.1. Definitions. Let (M ", g) be an oriented Riemannian manifold. We endow
it with a smooth positive measuredvol, (wherey is a positive smooth func-
tion), so that we can define the spdcé(AkM) of differential k-forms which
are ianL(AkM). This is a Hilbert space when endowed with the norm

leel2 = /M (x)]2 1 dvolg (x).

The associated Hermitian scalar product will be denoted.by) ,.
We introduce the spacﬁl’j (M) of Li k-forms that are weakly closed:

ZZ(M) = {oz IS Li(AkM) : fMa Adp =0forall ¢ € Cgo(A”_l_kM)}
The spac@l’j(M) is in fact a subspace of the (maximal) domaindof
ZE(M) C Dk(d),

whereDX (d) is the maximal domain of on L2 (A* M). This is the space of
o€ LfL(AkM) such that there is a constafitwith

‘[ aANdy
M

<Cllgl, forallgeC(A"™ "*M).
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Whena € DX (d) we can defineloa € L2 (AKT1 M) by duality:
/ da A = (—1)kt! / andg forallp e CPA7FM).
M

By definition we have/ DX~ (d)  Zk (M), butd DX~ (d) is not necessarily a
closed subspace @f? W (ATM). Ifwe mtroduce the spach (M) = de 1(d),
thenBX (M) c Zk (M) sinceZk (M) is a closed subspace o (AkM)

DEFINITION 2.1. Thek-th reducedLi cohomology space is the quotient
k

Z, (M)
A .

B (M)

HE (M) =

Thek-th L;"L cohomology space is the quotient

k

Zy(M)
k_ 9
dDi~1(d)
which is not a Hilbert space but satisfies other good progeedf a cohomology
theory; for instance, a Mayer-Vietoris sequence holdslfﬁ)rcohomology.
Our aim is to circumvent the fact that in general we have gnoisl computing

reducedLi from local calculations because the Mayer—Vietoris exaqtience
does not hold in the reduced setting.

2.2. Some general properties of reducedi cohomology

Quasi-isometry invarianceThe first general fact is a consequence of the defini-
tion: Li (reduced or not) cohomology spaces depend only oanpB:)poIogy;
hence ifgy andg; are two Riemannian metrics such thgt < g, <go/efora
certaine > 0, and if g, 1 are positive smooth functions such that/w; and
W1/ o are bounded, then

HEK (M, go) = HE (M. gy).

Smooth forms inZ? cohomology.Using de Rham’s smoothing operator of (see
[10] and also [9]), we can show that reduced and nonredlliq?pdohomology
can be computed using only smooth forms; that is,

Zkryncoeak )
dDk=1(d) N C®(AFM) N C®(Ak M)

This smoothing argument also shows thabdf is a closed manifold, reduced
and nonreducedeL cohomology are both isomorphic to de Rham cohomology.
The smoothing operator gives additional results in theotaihg setting: As-

sume thatM is an open subset in a manifoM such that near every point of the

HE (M) ~
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boundaryp € aM = M \ M there is a submersion= (xi,...,xg): U — R*
on a neighborhood gf such thatc(p) =0andUNM ={x; >0,...,x; > 0}.
Such a manifold will be called a manifold with corners. Cadiesia Riemannian
metric onM which extends smoothly t&/. Moreover, assume th&d/, g) is
metrically completgthat is, for any € M andr > 0 then the closur& (o, r) N M

is compact inM . This is automatically the case whenextends to a smooth
geodesically complete metric o¥i.

Then we can define two spaces of smooth forlﬁ§?(AkM) is the set of
smooth forms with compact support i andC(g’o(AkM) is the set of smooth
forms with compact support id/. This is illustrated in Figure 1. Then a
smoothing argument shows:

PROPOSITION2.2. If (M, g) is a Riemannian manifold with corner whose
closure is metrically complefehen Cg°(A*~1 M) is dense ifD%~1(d) when
the domain ot/ is endowed with the graph norm

o> /llellf + lldell

2.3. Harmonic forms and Li cohomology. When the Riemannian manifold
(M, g) isgeodesically complefgaence boundaryless), redudaﬂ cohomology
has an interpretation in terms of appropriate harmdrﬁdorms. We introduce
dy;, the formalLi adjoint of the operataf; it is defined through the integration
by parts formula

The support is in M

The supportisin M

X,

Figure 1. The support of an element of C(;X’(Ak M) and the support of an
element of C(‘)’O(Ak]\?). Here M is the positive quadrant {x; > 0, x5 > 0}
in the plane.
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Then we have

HE (M) ~ {a € L2 (A" M) : do = d o = 0}
={oe LL(A*M) : (d}id + dd}})e = 0}.

3. The almost closed range condition

From now we assume théd, g) is a manifold with corner whose closure is
metrically complete.

3.1. Good primitives. A natural question, which leads to a better understanding
of reducedeL cohomology, is how arLfL smooth closed form

a e L2 (AR MynCc>® A% M)

can be zero in reduceﬁi cohomology.
A result of de Rham [10, Theorem 24] implies that for suchvarhere is
always a € C*®°(A¥ M) such that

o =dp,

but this 8 will not generally be inL2. By Proposition 2.2, the vanishing of the
reducedLi cohomology class aof is equivalent to the existence of a sequence
of smooth forms8; € C°(AK~1 M) such that

dp = Li-jimm dp;.

Hence the problem is to understand what growth conditionthemrimitive
B imply the existence of such a sequence of smooth compagipyosted forms,
(Bj)-

It is clear that if3 € L2 then the class of = df is zero inHK (M). A
natural way to obtain a more general condition is to find a eeqe of cut-off

Lipschitz functionsy; satisfying the following conditions:
* x; tends tol uniformly on the compact sets of .
o Li—limj_,oodxj /\,3 =0.

We always havey; € Dl’j—l (d) andd(xj AB) =dx;j AB+ xjdB; hence these
conditions would implye = df = LfL —limj_ dB;. The notion of para-
bolic weights, which we’re about to introduce is used to descthe regulation
required on the growth of a primitivg at infinity needed for this idea to work.

2j.e., with compact support oM.
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3.2. Parabolic weights

DEFINITION 3.1. A positive functiorw : M — (0, +o0) is called aparabolic
weightwhen there is a functiog : (0, +00) — (0, +00) such that

« for a fixed pointo € M andr(x) = d(o, x) we havew > 21 , and
00 ve(r)
dr_ = +00
1 ()

LEMMA 3.2. Assume that € Zl’j(M) satisfiesx = df, with 8 szu for some
parabolic weightw. Then the reduceﬂi class ofx is zera

We will not give a proof of this result, but we note that theglalic condition
makes possible the choice of a good sequence of cutoff furets described
in the last subsection. We will instead explain where thifiniteon comes from.
Parabolicity for a weighted Riemannian manif¢i, g, v) has several equiva-
lent definitions in terms of Brownian motion, capacity, artstnce of positive
Green functions [1; 12]. We will only give the following deiffiion:

DeFINITION 3.3. The weighted Riemannian manifdldi/, g, v) is called para-
bolic if there is a sequence of cut-off Lipschitz functionssuch that

« x; tends tol uniformly on the compact set d¥/, and
o limj_ o0 [3 |dxj|*vd voly = 0.
Here is a well known criterion that implies parabolicity.

PrROPOSITION3.4. Leto be a fixed point in the weighted Riemannian manifold
(M, g,v) and let

L(r)= / vdog, and V(r)= / vdvolg .
0B(o,r) B(o,r)

/Oo dr v or /o" rdr L
= o0 = oo,
1 L(r) 1 V()

then(M, g, v) is parabolic

By definition, the parabolicity of the weighted manifald/, g, | 8|*1) implies
that the reduce(L2 class ofdp = « is zero. Wherw is a parabolic weight,
we define the spa(ﬁ'a,’;_ (M) to be the set of € L2, (AK=1 M) such that the
weak differential ofg is in L7

Ch-Y(M):={Be L, (A*'M): dpe L2}

Then the parabolicity ofv implies thatd : C (M) — Bk(M) is a bounded
operator.
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3.3. The almost closed range properties

DEFINITION 3.5. We say that théﬁ range ofd is almost closed in degrele
with respect taw whenw is a parabolic weight and
dck-l (M) = BE(M).

In other words, theLzL range ofd is almost closed in degrdewith respect taw
ifand only if everyL7, closed formsx which is zero in reduceﬂi cohomology
has aL;,, primitive.

An example.Let X' be an(n—1)-dimensional compact manifold with boundary,
endowed with a smooth Riemannian metrithat extends smoothly @Y. The
truncated con€’; (X') = (1, +00) x X endowed with the conical metric

dr)? +r2h
is a manifold with corner whose closure is metrically conmplé’hen we have:

PROPOSITION3.6. Consider the weight,(r, 0) = r2*. TheL?, cohomology
of C1(X) is given by
{0} ifk <% +a,

HE (C1(2)) =
ka(C1(2)) {Hk(E) if k> 2 +a.
Introduce the twdparabolic) weightsw = 1/r? andw = 1/(r? log?(r + 1)).

e If k #n/2+ a then theLfLa range ofd is almost closed in degrefe with
respect taw.

e If k =n/2+ athenin general theLfLa range ofd is almost closed in degree
k with respect taw.

e Itk =n/24+aand H2T4~1(X) = {0}, the L2 range ofd is almost closed
in degreek with respect tav.

The good news: a Mayer—Vietoris exact sequenddie almost closed range is
convenient because it implies a short Mayer—Vietoris exagtience for reduced
L? cohomology:

PrROPOSITION3.7. Assume thall = U UV and thatU, V andU NV are
manifolds with corners whose closures are metrically catgpAssume that for
a parabolic weightw : M — (0, +00), the LfL range ofd is almost closed in
degreek with respecttav on M, U, V andU NV, and that the sequence

{0} — k-1 (m) —>c lyecklv)— ck LUNV)— {0}
is exact Then we have the short Mayer—Vetorls exact sequence
HE L (U) @ HE (V) —>Hk N V)
2wk oy S wE ) e HE (V) - mE U N ).
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We will not give the proof of this result. In fact, the argunhes relatively

straightforward. We have only to follow the proof of the exass of the Mayer—
Vietoris sequence in de Rham cohomology in the compact tasédrypotheses
made here are the ones that are necessary to adapted trsssgatiarguments.

The bad newsThere is a difficulty with the assumption

cklyeck vy — ck Jwnv)— o).

For instance, leC; (X) be a truncated cone over a compact manifold with
boundary(X, ). Now whenX = U U V, whereU, V,U NV are open with
smooth boundaries, then if we let = C;(U) and V = C;(V), we have that
for the parabolic weightv = 1/r2, the sequence

ckl e ck  (v) —>c lUNV)— {0}
is exact. However, for the parabolic weight= 1/(r2 log?(r +1)), the sequence

kil ecky (V)—>C lUunv) {0}

is not (necessarily) exact.
From Proposition 3.6, we see that on a truncated cone we tatways use
only the weightw. Thus we’ll have some difficulties using this exact sequence

3.4. Comparison with other notions

With the nonparabolicity condition. In [4] and [5], we introduced the notion
of nonparabolicity at infinity for the Dirac operator on a quete Riemannian
manifold and used it in [6] to compute the? cohomology of manifolds with
flat ends. This condition is an extended Fredholmness dondiEpecialized to
the case of the Gauss—Bonnet operator, d;j, this condition is satisfied in the
following case:

PROPOSITION3.8. Assumeg M, g) is a complete Riemannian manifold and
there is a weightv : M — (0, +00) and a compact sek € M such that

ot flwu =< I1(d + d;)oz||u forall o e C°°(Ak(M \ K)),

Then the reduceoL2 cohomology ofM is finite-dimensional Moreover, for
anya € L2 (AkM) there existh € L*(A* M) such that/h and dth vanish
Bel? M(Ak M), andy € L2 (A¥+1 M), such that

a=h+dB+d WY
Finally, for anya € BX (M), there is a € L2 (AK~1 M) such thatr = dB.
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Hence, under the assumptions of the Proposition 3:8,if a parabolic weight
the L,ZL range ofd is almost closed in degrée with respect tow. There is a
closely related result about the almost closed range dondit]:

ProOPOSITION3.9. Assume thatM, g) is a complete Riemannian manifold
and thatw : M — (0, +00) is a parabolic weightSuppose there are a positive
constantC and a compact sek C M such that

Cllell, < llda|? + ||dg, al%, forallaeCAX(M\K)). (3-1)

Then

. theLfL range ofd is almost closed in degreewith respect taw;
. theLi,M range ofd is almost closed in degrde— 1 with respect taw;

e the space‘lj;1 (M) is finite-dimensional

Moreover these three properties imply the existence of a positivesteohC
and a compact sek C M such that the inequalitg3-1) holds

The first proposition is in fact a statement about the operate 4, whereas
the second is a statement abadut

With more classical cohomology theory.et (X, g) be a complete Riemannian
manifold, fix a degreé& and assume that we have a sequence of weights
(which will depend ork in general) such that; = 1 and, for all degrees the
L2 range ofd is almost closed in degrdewith respect tow;_,/w;. Then

wp
we consider the complex

-1 d

[
wl—l/wl,wm(X) —C

d
wl/w1+1,w1+1M(X) o

NG

When the cohomology of this complex can be computed froma loamputa-
tion (that is, when there is a Poinéademma characterizing the cohomology of
this complex), then the‘ui cohomology ofX can be obtained from the degree
k cohomology space of this complex. This method has been usegssfully
by T. Hausel, E. Hunsicker and R. Mazzeo in [14] to obtain akogical inter-
pretation of theLfL:1 cohomology of manifolds with fibered cusp ends or with
fibered boundary ends. However, in this case the proof is ingile and the
authors have to face the same kind of difficulty as the one wewariered on
page 20, essentially because the choice of primitive somestidoesn’t lead to
a complex whose cohomology follows from local computatiolmsthis paper,
the authors had to compare tlig,_, cohomology with two other weighted
cohomologies,L?, Lf/u, with o = 7€ or u = ¢ wherer is the function
given by distance to a fixed point; this comparison is madé &t adapted
pseudodifferential calculus.
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4. The QALE geometry of the Hilbert scheme of 2 or 3 points

We will now describe the QALE geometry of the Hilbert scheri@ and3
points onC2. The Hilbert scheme of points onC?, denoted by Hilfj(C?), is
a crepant resolution of the quotient@?)s = {g € (C*)".}_; ¢; = 0} by the
action of the symmetric grouf,,;, which acts by permutation of the indices:

0€Sn,qe(CH, 0q= (Ao=1(1)>Do=1(2)> - - - »Do—1(m))-
Hence we have a resolution of singularities map
7 : Hilb?(C?) — (C*)1/S,.
4.1. The case of 2 pointsForn = 2, we have
(CHE ={(x,—x):x € C*};
hence
(C?)3/S, ~C*/{£1d}.

Now the crepant resolution @2 /{+ Id} is 7*P!(C); indeed, we have that the
cotangent bundle d#! (C) is the set of pair§L, £) whereL is a line inC? and

£ :C? — C? alinear map such that the rangegois contained inL and such
that the kernel of containsL. That is,£ induces a linear map: C2/L — L.

In particular,7*P!(C) \ P!(C) is identified with the set

{£€e My(C?) #0608 =01 = {(?_°):a? = be,(a,b.c) #(0,0,0)},

through the identificatiorf — (Imé&,£). This space is diffeomorphic to the
quotient(C? \ {0})/{= Id} through the map

+(x,y) (xy y2) .

x? —xy

T*P(C) carries a remarkable metric, the Eguchi-Hanson metricchvis
Kahler and Ricci flat [11; 3]. Moreover, this metric @iP!(C) \ P!(C) ~

C?/{+ Id} is asymptotic to the Euclidean metric. Such a metric is dadgymp-
totically locally euclidean (ALE in short).

4.2. The case of 3 pointsWe can also understand the geometry of E—ﬁ(bz).
Outside a compact set?)3 /S is atruncated cone ovBr/S; and the singular
set of the quotien§’/S; pulls back toS’ as a disjoint union of 3 sub-spheres
S? given by the intersection & with the collision planes given by

Pij =1{(q1.92.93) € (C*)§ :gi =q;}, wherei < j.

This is illustrated in Figure 2, left. These three spheresraerchanged by the
action of S3; hence the singular set 6f/S5 is a spher&? and the geometry of
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(87/83)\ O

Figure 2. Left: The three collision planes in (C?)]. Right: S7/S3.

S7/8; near the singular set is the onelbt/{=+ Id} x S*, whereB? is the unit
ball in C2.

Hence, as illustrated in Figure 2, right, outside a compet;t(@z)g/Sg is
the union of

U, atruncated cone ovgB’/S3) \ O, whereO is ane-neighborhood of the
singular set (hence homeomorphicid/{=+ Id} x S3),
. {(x, v) € C2/{£1d} x C?: |x|2 4+ [v]2 > 1, |x] < 8|v|}.

The geometry at infinity of Hilj(C?) is the union of two open sets:

e U: atruncated cone ovéB’/S;) \ O, and
o V={(y.v) € T*P(C) x (C>\ B?) : |y| < &|v|}, where|y]| is the pullback
to 7*P!(C) of the Euclidean distance;

that is, there is a compact sktcC Hilb] (C?) such that HIl§ (C)\ K =U U V.

In [16], D. Joyce constructed a hypétder metricg on Hilbg((Cz) (in partic-
ular this is a Kahler and Ricci flat metric) which is quasi-asymptoticatigally
euclidean (QALE) asymptotic t(:Cz)g/S3, which means that

» on U, the truncated cone ov¢s’/S3) \ O, we have for all ¢ N

Vi(g —euc) = 0(#)

wherer is the radial function on this cone.
e OnV we have, for all € N,

1
, _
V(g — (guipz(c2) +euch) = 0 (W) '
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5. L? cohomology of the Hilbert scheme of 2 or 3 points

We now explain how we can compute tfié cohomology of the Hilbert
Scheme o or 3 points with the almost closed range condition.

5.1. The case of 2 points.We use Proposition 3.6, which computed thé
cohomology of truncated cones. Since Iﬁ(l@z) = T*P!(C) has real dimen-
sion4, is oriented and has infinite volume, we easily get thattheohomology
of HiIb%((Cz) is zero in degree8 and4. Moreover, the Ricci curvature of the
Eguchi-Hansen metric is zero, so the Bochner formula iragthat for anyL?
harmonicl-form o, we get

0:/ |da|2+|d*a|2:/ |Va|?.
HilbZ(C?) Hilb3(C?)

Hence the space @f?> harmonicl-forms is trivial and it remains only to compute
the L2 cohomology of Hilg(C?) in degree2. The main point is this:

LEMMA 5.1. The natural map from cohomology with compact suppori.fo
cohomology is surjective in degrée

HZ?(Hilb2(C?)) — H*(HilbZ(C?)) — {0}.

PROOF. As a matter of fact, ifr Zizl(HiIbg(Cz)) is aL? closed2-form, its
restriction to the neighborhodd of infinity* is exact, according to Proposition
3.6. Moreover, fow as in that proposition, we can firftle C}U’1 (U) a primitive
of a|y:

onU, a=dp.

If B e C&) 1(Hﬂbf,((Cz)) is an extension off then becausev is a parabolic
weight, « — dB and« have the samé.? cohomology class and — d8 has
compact support. O

The Hodge and Poincadualities imply that we also have an injective map from
L? cohomology to absolute cohomology:

{0} — H2(Hilb3(C?)) — H?(Hilb2(C?)).

But the natural map from cohomology with compact support isoctute
cohomology is an isomorphism in degrgehence we have the following iso-
morphism:

3 L2 cohomology refers to reduceldi=l cohomology. From now on we will avoid the subscripvhen
dealing with spaces related IOi:l cohomology.

4The ALE condition says that off, the Eguchi-Hanson metric and the Euclidean metric (foctvii
will be a truncated cone ové? /{= Id}) are quasi-isometric. Hence by 2.2, th& cohomology of the two
metrics are the same.
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THEOREM5.2. For Hilb}(C?) = T*P!(C) endowed with the Eguchi-Hansen
metric, we have

. {0} if k #2,
H (Hilb§(C?)) = {R ~ H2(Hilb3(C?)) ~ H2(Hib3(C?)) ifk = 2.
REMARK 5.3. In fact, there is a general result about fte cohomology of
manifolds with conical endsSuppos& X”, g) is a Riemannian manifold with
conical endgmeaning that there is a compact set with smooth boundaty X
such that(X \ K, g) is isometric to the truncated cor@, (dK)). Letw be a
smooth function ok” such that

w(r,0) =r~2(1+logr)~2. onX\K ~ C;(3K).

Then on (X, g), the L? range ofd is almost closed in any degree with respect
to w and theLZ? cohomology of X, g) is given by

HE(X) if k<n/2,
HE(X) = Im(HF(X) - H¥(X)) if k=n/2,
H*(X) if k> n/2.

There are different proofs of this result. The first one usestattering calculus
developed by Melrose; see [21, Theorem 4] and [14, TheoremTh% second
uses the almost closed range condition, the computatidredit and weighted
L2 cohomologies of a truncated cone, and the Mayer—Vietogsiesece 3.7
[7, Theorem 4.11]. For the case of the Eguchi-Hanson mé¢hii topological
interpretation of the space @ cohomology can also be obtained using explicit
computation of harmonic forms because this metric has a¢2)Sidvariance;
hence the harmonic equation reduces to an ODE [15, sectjn 5.

5.2. The case of 3 points

A vanishing result outside degree 4According to [8], the QALE metric on
HiIbS((CZ) constructed by D. Joyce coincides with the one of H. Nakajima
who showed in [23] that Hilb((C2) can be endowed with a hypédkler metric
using the hyper&hler reduction of a Euclidean quaternionic spadecording

to N. Hitchin, the L? cohomology of a hypeéhler reduction of a Euclidean
guaternionic space is trivial except perhaps for the deggeml to the middle
(real) dimension [15]. Hence in our case, we only need to adephe .2
cohomology of Hil(C?) in degreet.

SThis is a general fact for all the Hilbert schemes of point@?n Hilbg((Cz), n=2.
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The result in degree 4lt is again true that for HiI@((Cz), the natural map from
cohomology with compact support to absolute cohomologyigsamorphism
in degree4 and moreover these spaces have dimensidife have:

LEMMA 5.4. There exists a compact s&t C Hilb] (C?) such thatHilb}(C?)
retracts onK and such that any.? closed4-form o on Hilbg((Cz) \ K has a
primitive 8 € L2 with w = 1/(r log(r + 1))2. In particular, onHilb3 (C?) \ K,
the L? range ofd is almost closed in degreewith respect taw.

Using this and the same arguments as in the case of 2 pointshtaim:

THEOREM 5.5. For Hilb}(C?) endowed with the QALE metric described in
(4.2)we have

{0} if k # 4,

H (Hilbg(C?)) = {R ~ HA(HIDY(C?) ~ H*(Hilb3(C?) if k = 4.

THE PROOF OFLEMMA 5.4. LetK C Hilb}(C?) be a compact set such that
Hilb3(C*)\ K = U UV, where

« U is a truncated cone ové$’/S3) \ O, and
o V={(y,v) e T*P1(C) x (C>\B?) : |y| < ¢|v|}, where|y| is the pullback
to 7*P!(C) of the Euclidean distance.

The main point in the proof of Lemma 5.4 is the following résugncerning the
L? cohomology ofV:

LEMMA 5.6. H*(V) = {0} and Z*(V) = dC_ (V). That is any L? closed
4-forma on V has a primitivep € L2 (A3V), thatis a = dg.

We will only sketch the proof of this lemma.

Considerx € Z4=1(V). The setU NV is a truncated cone over the product
S3/{£1d} x S3 x (e,2¢). The third Betti number of this product is not zero;
hence by Proposition 3.6, there israc L2 (A*(U NV)) such that

a=dy onUNV.

We cannot extends to V' as an element odfg) (V) but only as an element
¥ €Cy (V) wherep(y,v) = 1/log*(Jv| + 1). Then

a—dy e Zy(V)

and, because this form is zero dhnN U, it can be extended to thgwhole
T*PY(C) x (C? \ B?). This extension will be also denoted lby— dy. It
is still a closed form; that is,

a—dy € Zy(T*P'(C) x (C*\ B?)).
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Now using a Kinneth-type argument and the computation ofﬂlﬁ@ohomology
of C*\ B2, it can be shown that th&2 cohomology of7*P!(C) x (C*\ B?)
vanishes in degreeand that if we introduce the weight; (y, v) =1/(1+|y|)?,
there are

ueCy (T*P'(C)x (C*\B?) and vell (T*P'(C)x(C*\B?)

such that
o —dy = du + dv.

If we let ¢ = ¥ + u + v, then because ol we havesw < w;, we conclude
thaty € L2 (A3V) and
a=do.

With this result, we can finish the proof of Lemma 5.4: we cdruse the
Mayer—Vietoris exact sequence because of the log factdramieightw (see
middle of page 20). However, we will use some of the argumigaiding to the
proof of the exactness of the Mayer—Vietoris sequence.

Let « be a closed.? 4-form outsideK. Becausd’ is a truncated cone, we
know that there ig,; € 63,1((]) such thatx = d¢,; onU, and by Lemma 5.6,
there is ap,, € C; | (V) such that oV’

o =doy.

Now on the intersectio®’ N V' the differencep,, — ¢, is a closedL? 3-form.
But U NV is a truncated cone ové®/{=£ Id} x S* x (¢, 2¢) and there is an
analogue of Proposition 3.6 for theZ cohomology, the threshold now being
n/2—1=3inour case. But the second Betti numbeB&f {+ Id} xS x (¢, 2¢)

is zero; hence o/ NV, ¢, — ¢y, has a primitiven € C%’w(U N V) which can
be extend to & € CZ , (U). Now we can define/

¢y +dn onU,
V=10 onV
v )

By construction, we have = dy andy € L2 (A3 (Hilb3(C?) \ K)). O

5.3. Conclusion.In the physics literature, Hi[;iCz) is associated to the moduli
space of instantons on noncommutafite[24]. One motivation for the study of
L? cohomology of HiIlﬁ((Cz) comes from a question of C. Vafa and E. Witten:
in [29], see also the nice survey of T. Hausel [13], the follmyvconjecture is
formulated (note that(n — 1) = 1 dimg Hilb(C?)):

x_ Ji0} if k #2(n—1),
B = {Im(HCk(HiIb’g((Cz)) — H*(Hilb?(C?))) if k =2(n—1). 1)
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However, Vafa and Witten have said that “unfortunately, wedt understand
the prediction ofS-duality on noncompact manifolds precisely enough to fully
exploit them.” According to N. Hitchin’s vanishing resultq], the first part of
this conjecture is true. The result above says that thisiesforn = 2, 3.

6. Other results and perspectives

In [7], the L? cohomology of certain QALE spaces is computed. The proof
uses the same general idea given in 5.2, but the argumeniatamnsiderably
longer and we cannot in general use the same vanishing.résidsi Asymptot-
ically Locally Euclidean (QALE) geometry is defined by indoa. A QALE
manifold asymptotic taC”/I" (whereI" is a finite subgroup of S@)) is a
manifold whose geometry at infinity is the union of a piece thaks (up to a
finite cover) like a subset of the produttx C?, whereY is a QALE manifold
asymptotic toC"~# /A4 for some A a finite subgroup of SW — p). In [7],
we computed thd.? cohomology of QALE spaces where the singular space
C"/T has only two singular stratd(} and a finite union of linear subspaces).
In order to prove the Vafa—Witten conjecture (5-1), it is onjant to be able
to understand thé.? cohomology of more general QALE spaces. The almost
closed range condition has been a interesting tool for dttiiggfor the case of
Hilbg((Cz). We hope that it will also be useful in other situations andtfe
other Hilbert schemes of points.
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