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The almost closed range condition
GILLES CARRON

ABSTRACT. The almost closed range condition is presented and we explain
how this notion can be used to give a topological interpretation of the space of
L2 harmonic forms on the Hilbert schemes of2 and3 points onC

2.

À Jacques

1. Introduction

When .M;g/ is a compact manifold the celebrated theorem of Hodge and
de Rham says that the spaces ofL2 harmonic forms onM are isomorphic to
the cohomology spaces ofM ; that is, if we denote by

H
k.M;g/D

˚

˛ 2 L2
g.�

kM /; d˛ D d�˛ D 0
	

the space ofL2 harmonick-forms,1 then we have a natural isomorphism

H
k.M;g/' H k.M;R/:

When.M;g/ is noncompact but complete, the spaces ofL2 harmonic forms
have an interpretation in terms of reducedL2 cohomology. A general and naive
question is to understand how we can give some topological interpretation for
these spaces ofL2 harmonic forms. There are many results, as well as pre-
dictions and conjectures, in this direction. For instance,Zucker’s conjecture
[32] about locally symmetric Hermitian spaces, eventuallysolved by E. Looi-
jenga, L. Saper and M. Stern [18; 27] and extended by A. Nair [22], and the
recent result of L. Saper [25; 26], as well as results for manifolds with flat ends
[6], manifolds with cylindrical end [2], and negatively curved manifolds with
finite volume [17; 30; 31]. Also,L2 harmonic forms have some significance

1Hered� is the formal adjoint of the exterior differentiation operator d for theL2 structure induced by
the metricg.
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in modern physics and there are several predictions based ona duality arising
in string theory: for instance there is Sen’s conjecture about the moduli space
of magnetic monopoles [28] and the Vafa–Witten conjecture about Nakajima’s
quiver manifolds [29; 13].

WhenM has a locally finite open coveringM D
S

˛ U˛ admitting a par-
tition of unity with bounded gradient such that on any ofM , U˛, U˛ \ Uˇ,
U˛ \Uˇ \U
 , . . . theL2-range ofd is closed, then we can sometimes use sheaf
cohomology to obtain a topological interpretation of the space ofL2 harmonic
forms. However, this is not always possible. Several tools have been developed
in order to circumvent this difficulty. For instance, pseudodifferential calculi
have been used successfully in several situations [19; 20; 21; 14]. Here we
present the notion of almost closed range ford which was introduced in [7].
We give some general results (including a Mayer–Vietoris sequence) that are
true if this almost closed range condition is satisfied. We also explain that this
condition has to be used with some care. In order to illustrate how this notion
is used in [7], we explain the arguments (and amongst them thealmost closed
range condition) leading to the topological interpretation of the space ofL2

harmonic forms on the Hilbert schemes of2 and3 points onC
2.

2. L2 cohomology

We start with basic definitions, to present the setting and fixnotation.

2.1. Definitions. Let .M n;g/ be an oriented Riemannian manifold. We endow
it with a smooth positive measure� dvolg (where� is a positive smooth func-
tion), so that we can define the spaceL2

�.�
kM / of differentialk-forms which

are inL2
�.�

kM /. This is a Hilbert space when endowed with the norm

k˛k2
� WD

Z

M

j˛.x/j2g � dvolg.x/:

The associated Hermitian scalar product will be denoted byh : ; : i�.
We introduce the spaceZk

�.M / of L2
� k-forms that are weakly closed:

Zk
�.M / WD

˚

˛ 2 L2
�.�

kM / W
R

M ˛^ d' D 0 for all ' 2 C 1
0
.�n�1�kM /

	

The spaceZk
�.M / is in fact a subspace of the (maximal) domain ofd ,

Zk
�.M /� D

k
�.d/;

whereDk
�.d/ is the maximal domain ofd on L2

�.�
kM /. This is the space of

˛ 2 L2
�.�

kM / such that there is a constantC with
ˇ

ˇ

ˇ

ˇ

Z

M

˛^ d'

ˇ

ˇ

ˇ

ˇ

� C k'k� for all ' 2 C 1
0 .�n�1�kM /:
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When˛ 2 Dk
�.d/ we can defined˛ 2 L2

�.�
kC1M / by duality:

Z

M

d˛^' D .�1/kC1

Z

M

˛^ d' for all ' 2 C 1
0 .�n�1�kM /:

By definition we havedDk�1
� .d/� Zk

�.M /, butdDk�1
� .d/ is not necessarily a

closed subspace ofL2
�.�

kM /. If we introduce the spaceBk
�.M /DdDk�1

� .d/,
thenBk

�.M /� Zk
�.M / sinceZk

�.M / is a closed subspace ofL2
�.�

kM /.

DEFINITION 2.1. Thek-th reducedL2
� cohomology space is the quotient

H
k
�.M /D

Zk
�.M /

Bk
�.M /

:

Thek-th L2
� cohomology space is the quotient

Zk
�.M /

dDk�1
� .d/

;

which is not a Hilbert space but satisfies other good properties of a cohomology
theory; for instance, a Mayer–Vietoris sequence holds forL2

� cohomology.
Our aim is to circumvent the fact that in general we have problems computing

reducedL2
� from local calculations because the Mayer–Vietoris exact sequence

does not hold in the reduced setting.

2.2. Some general properties of reducedL2
� cohomology

Quasi-isometry invariance.The first general fact is a consequence of the defini-
tion: L2

� (reduced or not) cohomology spaces depend only on theL2
� topology;

hence ifg0 andg1 are two Riemannian metrics such that"g0 � g1 � g0=" for a
certain" > 0, and if�0; �1 are positive smooth functions such that�0=�1 and
�1=�0 are bounded, then

H
k
�0
.M;g0/D H

k
�1
.M;g1/:

Smooth forms inL2 cohomology.Using de Rham’s smoothing operator of (see
[10] and also [9]), we can show that reduced and nonreducedL2

� cohomology
can be computed using only smooth forms; that is,

H
k
�.M /'

Zk
�.M /\ C 1.�kM /

dDk�1
� .d/\ C 1.�kM /\ C 1.�kM /

:

This smoothing argument also shows that ifM is a closed manifold, reduced
and nonreducedL2

� cohomology are both isomorphic to de Rham cohomology.
The smoothing operator gives additional results in the following setting: As-

sume thatM is an open subset in a manifoldN such that near every point of the
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boundaryp 2 @M D M nM there is a submersionx D .x1; : : : ;xk/ W U ! R
k

on a neighborhood ofp such thatx.p/D 0 andU \M D fx1> 0; : : : ;xk > 0g.
Such a manifold will be called a manifold with corners. Consider a Riemannian
metric onM which extends smoothly toN . Moreover, assume that.M ;g/ is
metrically complete, that is, for anyo2M andr>0 then the closureB.o; r/\M

is compact inM . This is automatically the case wheng extends to a smooth
geodesically complete metric onN .

Then we can define two spaces of smooth forms:C 1
0
.�kM / is the set of

smooth forms with compact support inM andC 1
0
.�kM / is the set of smooth

forms with compact support inM . This is illustrated in Figure 1. Then a
smoothing argument shows:

PROPOSITION 2.2. If .M;g/ is a Riemannian manifold with corner whose
closure is metrically complete, thenC 1

0
.�k�1M / is dense inDk�1

� .d/ when
the domain ofd is endowed with the graph norm:

˛ ‘
q

k˛k2
� C kd˛k2

�:

2.3. Harmonic forms andL2
� cohomology. When the Riemannian manifold

.M;g/ is geodesically complete(hence boundaryless), reducedL2
� cohomology

has an interpretation in terms of appropriate harmonicL2
� forms. We introduce

d�
�, the formalL2

� adjoint of the operatord ; it is defined through the integration
by parts formula

hd˛; ˇi�Dh˛; d�
�ˇi

�
for all ˛ 2 C 1

0 .�kM / andˇ 2 C 1
0 .�kC1M /;

���������	
�������


���������	
���������


�
�

�
�

Figure 1. The support of an element of C 1
0
.�kM / and the support of an

element of C 1
0 .�kM /. Here M is the positive quadrant fx1 � 0;x2 � 0g

in the plane.
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Then we have

H
k
�.M /'

˚

˛ 2 L2
�.�

kM / W d˛ D d�
�˛ D 0

	

D
˚

˛ 2 L2
�.�

kM / W .d�
�d C dd�

�/˛ D 0
	

:

3. The almost closed range condition

From now we assume that.M;g/ is a manifold with corner whose closure is
metrically complete.

3.1. Good primitives. A natural question, which leads to a better understanding
of reducedL2

� cohomology, is how anL2
� smooth closed form

˛ 2 L2.�kM /\ C 1.�kM /

can be zero in reducedL2
� cohomology.

A result of de Rham [10, Theorem 24] implies that for such an˛, there is
always ǎ 2 C 1.�kM / such that

˛ D dˇ;

but thisˇ will not generally be inL2. By Proposition 2.2, the vanishing of the
reducedL2

� cohomology class of̨ is equivalent to the existence of a sequence
of smooth formš j 2 C 1

0
.�k�1M / such that

dˇ D L2
�- lim

j!1
d ǰ :

Hence the problem is to understand what growth conditions onthe primitive
ˇ imply the existence of such a sequence of smooth compactly supported forms,
. ǰ /.

It is clear that ifˇ 2 L2
� then the class of̨ D dˇ is zero inHk

�.M /. A
natural way to obtain a more general condition is to find a sequence of cut-off2

Lipschitz functions�j satisfying the following conditions:

� �j tends to1 uniformly on the compact sets ofM .
� L2

� � limj!1 d�j ^ˇ D 0.

We always have�jˇ 2Dk�1
� .d/ andd.�j ^ˇ/D d�j ^ˇC�j dˇ; hence these

conditions would imply̨ D dˇ D L2
� � limj!1 d ǰ . The notion of para-

bolic weights, which we’re about to introduce is used to describe the regulation
required on the growth of a primitivě at infinity needed for this idea to work.

2i.e., with compact support onM .
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3.2. Parabolic weights

DEFINITION 3.1. A positive functionw W M ! .0;C1/ is called aparabolic
weightwhen there is a function W .0;C1/! .0;C1/ such that

� for a fixed pointo 2 M andr.x/D d.o;x/ we havew �
1

 2.r/
, and

�

Z 1

1
dr

 .r/
D C1.

LEMMA 3.2. Assume that̨ 2 Zk
�.M / satisfies̨ D dˇ, withˇ 2 L2

w� for some

parabolic weightw. Then the reducedL2
� class of̨ is zero.

We will not give a proof of this result, but we note that the parabolic condition
makes possible the choice of a good sequence of cutoff functions as described
in the last subsection. We will instead explain where this definition comes from.
Parabolicity for a weighted Riemannian manifold.M;g; �/ has several equiva-
lent definitions in terms of Brownian motion, capacity, and existence of positive
Green functions [1; 12]. We will only give the following definition:

DEFINITION 3.3. The weighted Riemannian manifold.M;g; �/ is called para-
bolic if there is a sequence of cut-off Lipschitz functions�j such that

� �j tends to1 uniformly on the compact set ofM , and
� limj!1

R

M jd�j j2�d volg D 0.

Here is a well known criterion that implies parabolicity.

PROPOSITION3.4. Let o be a fixed point in the weighted Riemannian manifold
.M;g; �/ and let

L.r/D

Z

@B.o;r/

� d�g and V .r/D

Z

B.o;r/

� dvolg :

If
Z 1

1

dr

L.r/
D C1 or

Z 1

1

rdr

V .r/
D C1;

then.M;g; �/ is parabolic.

By definition, the parabolicity of the weighted manifold.M;g; jˇj2�/ implies
that the reducedL2

� class ofdˇ D ˛ is zero. Whenw is a parabolic weight,
we define the spaceCk�1

w;� .M / to be the set of̌ 2 L2
w�.�

k�1M / such that the
weak differential of̌ is in L2

�:

C
k�1
w;� .M / WD fˇ 2 L2

w�.�
k�1M / W dˇ 2 L2

�g:

Then the parabolicity ofw implies thatd W Ck�1
w;� .M /! Bk

�.M / is a bounded
operator.
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3.3. The almost closed range properties

DEFINITION 3.5. We say that theL2
� range ofd is almost closed in degreek

with respect tow whenw is a parabolic weight and

dCk�1
w;� .M /D Bk

�.M /:

In other words, theL2
� range ofd is almost closed in degreek with respect tow

if and only if everyL2
� closed forms̨ which is zero in reducedL2

� cohomology
has aL2

w� primitive.

An example.Let˙ be an.n�1/-dimensional compact manifold with boundary,
endowed with a smooth Riemannian metrich that extends smoothly to@˙ . The
truncated coneC1.˙/D .1;C1/�˙ endowed with the conical metric

.dr/2 C r2h

is a manifold with corner whose closure is metrically complete. Then we have:

PROPOSITION3.6. Consider the weight�a.r; �/D r2a. TheL2
�a

cohomology
of C1.˙/ is given by

H
k
�a
.C1.˙//D

�

f0g if k � n
2

C a,

H k.˙/ if k > n
2

C a.

Introduce the two(parabolic) weightsw D 1=r2 andw D 1=.r2 log2.r C 1//.

� If k 6D n=2 C a then theL2
�a

range ofd is almost closed in degreek with
respect tow.

� If k D n=2 C a then in general theL2
�a

range ofd is almost closed in degree
k with respect tow.

� If k D n=2 C a andH
n

2
Ca�1.˙/D f0g, theL2

�a
range ofd is almost closed

in degreek with respect tow.

The good news: a Mayer–Vietoris exact sequence.The almost closed range is
convenient because it implies a short Mayer–Vietoris exactsequence for reduced
L2 cohomology:

PROPOSITION3.7. Assume thatM D U [ V and thatU; V andU \ V are
manifolds with corners whose closures are metrically complete. Assume that for
a parabolic weightw W M ! .0;C1/, theL2

� range ofd is almost closed in
degreek with respect tow onM , U , V andU \ V , and that the sequence

f0g ! C
k�1
w;� .M /

r�

� C
k�1
w;� .U /˚ C

k�1
w;� .V /

ı
� C

k�1
w;� .U \ V /! f0g

is exact. Then we have the short Mayer–Vietoris exact sequence

H
k�1
w� .U /˚ H

k�1
w� .V /

ı
� H

k�1
w� .U \ V /

b
� H

k
�.M /

r�

� H
k
�.U /˚ H

k
�.V /

ı
� H

k
�.U \ V /:
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We will not give the proof of this result. In fact, the argument is relatively
straightforward. We have only to follow the proof of the exactness of the Mayer–
Vietoris sequence in de Rham cohomology in the compact case;the hypotheses
made here are the ones that are necessary to adapted these classical arguments.

The bad news.There is a difficulty with the assumption

C
k�1
w;� .U /˚ C

k�1
w;� .V /

ı
� C

k�1
w;� .U \ V /! f0g:

For instance, letC1.˙/ be a truncated cone over a compact manifold with
boundary.˙; h/. Now when˙ D zU [ zV , where zU ; zV ; zU \ zV are open with
smooth boundaries, then if we letU D C1. zU / andV D C1. zV /, we have that
for the parabolic weightw D 1=r2, the sequence

C
k�1
w;1 .U /˚ C

k�1
w;1 .V /

ı
� C

k�1
w;1 .U \ V /! f0g

is exact. However, for the parabolic weightwD1=.r2 log2.rC1//, the sequence

C
k�1
w;1 .U /˚ C

k�1
w;1 .V /

ı
� C

k�1
w;1 .U \ V /! f0g

is not (necessarily) exact.
From Proposition 3.6, we see that on a truncated cone we cannot always use

only the weightw. Thus we’ll have some difficulties using this exact sequence.

3.4. Comparison with other notions

With the nonparabolicity condition. In [4] and [5], we introduced the notion
of nonparabolicity at infinity for the Dirac operator on a complete Riemannian
manifold and used it in [6] to compute theL2 cohomology of manifolds with
flat ends. This condition is an extended Fredholmness condition. Specialized to
the case of the Gauss–Bonnet operator,d Cd�

�, this condition is satisfied in the
following case:

PROPOSITION 3.8. Assume.M;g/ is a complete Riemannian manifold and
there is a weightw W M ! .0;C1/ and a compact setK � M such that

k˛kw� � k.d C d�
�/˛k� for all ˛ 2 C 1

0 .�k.M n K//;

Then the reducedL2
� cohomology ofM is finite-dimensional. Moreover, for

any˛ 2 L2
�.�

kM /, there existh 2 L2.�kM / such thatdh and d�
�h vanish,

ˇ 2 L2
w�.�

k�1M /, and
 2 L2
w�.�

kC1M /, such that

˛ D h C dˇC d�
�
:

Finally, for any˛ 2 Bk
�.M /, there is ǎ 2 L2

w�.�
k�1M / such that̨ D dˇ.
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Hence, under the assumptions of the Proposition 3.8, ifw is a parabolic weight
the L2

� range ofd is almost closed in degreek with respect tow. There is a
closely related result about the almost closed range condition [7]:

PROPOSITION 3.9. Assume that.M;g/ is a complete Riemannian manifold
and thatw W M ! .0;C1/ is a parabolic weight. Suppose there are a positive
constantC and a compact setK � M such that

C k˛k2
w� � kd˛k2

� C kd�
w�˛k2

w� for all ˛ 2 C 1
0 .�k.M n K//: (3-1)

Then

� theL2
� range ofd is almost closed in degreek with respect tow;

� theL2
w� range ofd is almost closed in degreek � 1 with respect tow;

� the spaceH k�1
w� .M / is finite-dimensional.

Moreover, these three properties imply the existence of a positive constantC
and a compact setK � M such that the inequality(3-1)holds.

The first proposition is in fact a statement about the operator d C d�
�, whereas

the second is a statement aboutd .

With more classical cohomology theory.Let .X;g/ be a complete Riemannian
manifold, fix a degreek and assume that we have a sequence of weightswl

(which will depend onk in general) such thatwk D 1 and, for all degreesl , the
L2

wl � range ofd is almost closed in degreel with respect towl�1=wl . Then
we consider the complex

� � � ! C
l�1
wl�1=wl ;wl �.X /

d
! C

l
wl =wlC1;wlC1�.X /

d
! � � �

When the cohomology of this complex can be computed from a local computa-
tion (that is, when there is a Poincaré lemma characterizing the cohomology of
this complex), then theL2

� cohomology ofX can be obtained from the degree
k cohomology space of this complex. This method has been used successfully
by T. Hausel, E. Hunsicker and R. Mazzeo in [14] to obtain a topological inter-
pretation of theL2

�D1
cohomology of manifolds with fibered cusp ends or with

fibered boundary ends. However, in this case the proof is not simple and the
authors have to face the same kind of difficulty as the one we encountered on
page 20, essentially because the choice of primitive sometimes doesn’t lead to
a complex whose cohomology follows from local computations. In this paper,
the authors had to compare theL2

�D1
cohomology with two other weighted

cohomologies,L2
�, L2

1=�
, with � D r " or � D e"r wherer is the function

given by distance to a fixed point; this comparison is made with an adapted
pseudodifferential calculus.
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4. The QALE geometry of the Hilbert scheme of 2 or 3 points

We will now describe the QALE geometry of the Hilbert scheme of 2 and3

points onC
2. The Hilbert scheme ofn points onC

2, denoted by Hilbn0.C
2/, is

a crepant resolution of the quotient of.C2/n
0

D
˚

q 2 .C2/n;
P

j qj D 0
	

by the
action of the symmetric groupSn, which acts by permutation of the indices:

� 2 Sn; q 2 .C2/n0; �:q D .q��1.1/; q��1.2/; : : : ; q��1.n//:

Hence we have a resolution of singularities map

� W Hilbn
0.C

2/! .C2/n0=Sn:

4.1. The case of 2 points.For n D 2, we have

.C2/n0 D f.x;�x/ W x 2 C
2gI

hence
.C2/20=S2 ' C

2=f˙ Idg:

Now the crepant resolution ofC
2=f˙ Idg is T �P1.C/; indeed, we have that the

cotangent bundle ofP1.C/ is the set of pairs.L; �/ whereL is a line inC
2 and

� W C
2 ! C

2 a linear map such that the range of� is contained inL and such
that the kernel of� containsL. That is,� induces a linear map� W C

2=L ! L.
In particular,T �P1.C/ n P1.C/ is identified with the set

˚

� 2 M2.C
2/ W � 6D 0; � ı � D 0

	

D
˚�

a
c

b
�a

�

W a2 D bc; .a; b; c/ 6D .0; 0; 0/
	

;

through the identification� ‘ .Im �; �/. This space is diffeomorphic to the
quotient.C2 n f0g/=f˙ Idg through the map

˙.x;y/‘

�

xy y2

x2 �xy

�

:

T �P1.C/ carries a remarkable metric, the Eguchi–Hanson metric, which is
Kähler and Ricci flat [11; 3]. Moreover, this metric onT �P1.C/ n P1.C/ '

C
2=f˙ Idg is asymptotic to the Euclidean metric. Such a metric is called asymp-

totically locally euclidean (ALE in short).

4.2. The case of 3 points.We can also understand the geometry of Hilb3
0.C

2/.
Outside a compact set,.C2/3

0
=S3 is a truncated cone overS7=S3 and the singular

set of the quotientS7=S3 pulls back toS7 as a disjoint union of 3 sub-spheres
S3 given by the intersection ofS7 with the collision planes given by

Pi;j D f.q1; q2; q3/ 2 .C2/30 W qi D qj g; wherei < j:

This is illustrated in Figure 2, left. These three spheres are interchanged by the
action ofS3; hence the singular set ofS7=S3 is a sphereS3 and the geometry of
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Figure 2. Left: The three collision planes in .C2/3
0
. Right: S7=S3.

S7=S3 near the singular set is the one ofB2=f˙ Idg � S3, whereB2 is the unit
ball in C

2.
Hence, as illustrated in Figure 2, right, outside a compact set, .C2/3

0
=S3 is

the union of

� U , a truncated cone over.S7=S3/ n O, whereO is an"-neighborhood of the
singular set (hence homeomorphic toB2=f˙ Idg � S3),

�
˚

.x; v/ 2 C
2=f˙ Idg � C

2 W jxj2 C jvj2 > 1; jxj< "jvj
	

.

The geometry at infinity of Hilb30.C
2/ is the union of two open sets:

� U : a truncated cone over.S7=S3/ n O, and
� V D

˚

.y; v/ 2 T �P1.C/� .C2 n B2/ W jyj< "jvj
	

, wherejyj is the pullback
to T �P1.C/ of the Euclidean distance;

that is, there is a compact setK � Hilb3
0.C

2/ such that Hilb30.C
2/nK D U [V .

In [16], D. Joyce constructed a hyperkähler metricg on Hilb3
0.C

2/ (in partic-
ular this is a K̈ahler and Ricci flat metric) which is quasi-asymptotically locally
euclidean (QALE) asymptotic to.C2/3

0
=S3, which means that

� on U , the truncated cone over.S7=S3/ n O, we have for alll 2 N

rl.g � eucl/D O
� 1

r4Cl

�

;

wherer is the radial function on this cone.

� On V we have, for alll 2 N,

rl
�

g � .gHilb2

0
.C

2/ C eucl/
�

D O

�

1

jyj2Cl jvj2

�

:
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5. L2 cohomology of the Hilbert scheme of 2 or 3 points

We now explain how we can compute theL2 cohomology3 of the Hilbert
Scheme of2 or 3 points with the almost closed range condition.

5.1. The case of 2 points.We use Proposition 3.6, which computed theL2

cohomology of truncated cones. Since Hilb2
0.C

2/D T �P1.C/ has real dimen-
sion4, is oriented and has infinite volume, we easily get that theL2 cohomology
of Hilb2

0.C
2/ is zero in degrees0 and4. Moreover, the Ricci curvature of the

Eguchi–Hansen metric is zero, so the Bochner formula implies that for anyL2

harmonic1-form ˛, we get

0 D

Z

Hilb2

0
.C

2/

jd˛j2 C jd�˛j2 D

Z

Hilb2

0
.C

2/

jr˛j2:

Hence the space ofL2 harmonic1-forms is trivial and it remains only to compute
theL2 cohomology of Hilb20.C

2/ in degree2. The main point is this:

LEMMA 5.1. The natural map from cohomology with compact support toL2

cohomology is surjective in degree2:

H 2
c .Hilb2

0.C
2//! H

2.Hilb2
0.C

2//! f0g:

PROOF. As a matter of fact, if̨ 2 Z2
�D1

.Hilb2
0.C

2// is aL2 closed2-form, its
restriction to the neighborhoodU of infinity4 is exact, according to Proposition
3.6. Moreover, forw as in that proposition, we can finď2 C1

w;1
.U / a primitive

of ˛jU :
on U; ˛ D dˇ:

If Ň 2 C1
w;1
.Hilb2

0.C
2// is an extension of̌ then becausew is a parabolic

weight, ˛ � dˇ and˛ have the sameL2 cohomology class and̨ � dˇ has
compact support. ˜

The Hodge and Poincaré dualities imply that we also have an injective map from
L2 cohomology to absolute cohomology:

f0g ! H
2.Hilb2

0.C
2//! H 2.Hilb2

0.C
2//:

But the natural map from cohomology with compact support to absolute
cohomology is an isomorphism in degree2; hence we have the following iso-
morphism:

3L2 cohomology refers to reducedL2

�D1
cohomology. From now on we will avoid the subscript1 when

dealing with spaces related toL2

�D1
cohomology.

4The ALE condition says that onU , the Eguchi–Hanson metric and the Euclidean metric (for which U
will be a truncated cone overS3=f˙ Idg) are quasi-isometric. Hence by 2.2, theL2 cohomology of the two
metrics are the same.
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THEOREM 5.2. For Hilb2
0.C

2/D T �P1.C/ endowed with the Eguchi–Hansen
metric, we have

H
k.Hilb2

0.C
2//D

�

f0g if k 6D 2,
R ' H 2

c .Hilb2
0.C

2//' H 2.Hilb2
0.C

2// if k D 2.

REMARK 5.3. In fact, there is a general result about theL2 cohomology of
manifolds with conical ends:Suppose.X n;g/ is a Riemannian manifold with
conical ends(meaning that there is a compact set with smooth boundaryK � X

such that.X n K;g/ is isometric to the truncated coneC1.@K/). Letw be a
smooth function onX such that

w.r; �/D r�2.1 C logr/�2: on X n K ' C1.@K/:

Then, on .X;g/, theL2 range ofd is almost closed in any degree with respect
tow and theL2 cohomology of.X;g/ is given by

H
k
�.X /D

8

<

:

H k
c .X / if k < n=2;

Im
�

H k
c .X /! H k.X /

�

if k D n=2;

H k.X / if k > n=2:

There are different proofs of this result. The first one uses the scattering calculus
developed by Melrose; see [21, Theorem 4] and [14, Theorem 1A]. The second
uses the almost closed range condition, the computation of theL2 and weighted
L2

w cohomologies of a truncated cone, and the Mayer–Vietoris sequence 3.7
[7, Theorem 4.11]. For the case of the Eguchi–Hanson metric,this topological
interpretation of the space ofL2 cohomology can also be obtained using explicit
computation of harmonic forms because this metric has an SU.2/ invariance;
hence the harmonic equation reduces to an ODE [15, section 5.5].

5.2. The case of 3 points

A vanishing result outside degree 4.According to [8], the QALE metric on
Hilb3

0.C
2/ constructed by D. Joyce coincides with the one of H. Nakajima,

who showed in [23] that Hilb30.C
2/ can be endowed with a hyperkähler metric

using the hyperk̈ahler reduction of a Euclidean quaternionic space.5 According
to N. Hitchin, theL2 cohomology of a hyperk̈ahler reduction of a Euclidean
quaternionic space is trivial except perhaps for the degreeequal to the middle
(real) dimension [15]. Hence in our case, we only need to compute theL2

cohomology of Hilb30.C
2/ in degree4.

5This is a general fact for all the Hilbert schemes of points inC
2, Hilbn

0
.C

2/, n � 2.
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The result in degree 4.It is again true that for Hilb30.C
2/, the natural map from

cohomology with compact support to absolute cohomology is an isomorphism
in degree4 and moreover these spaces have dimension1. We have:

LEMMA 5.4. There exists a compact setK � Hilb3
0.C

2/ such thatHilb3
0.C

2/

retracts onK and such that anyL2 closed4-form ˛ on Hilb3
0.C

2/ n K has a
primitiveˇ 2 L2

w withwD 1=.r log.r C1//2. In particular, onHilb3
0.C

2/nK,
theL2 range ofd is almost closed in degree4 with respect tow.

Using this and the same arguments as in the case of 2 points, weobtain:

THEOREM 5.5. For Hilb3
0.C

2/ endowed with the QALE metric described in
(4.2)we have:

H
k.Hilb3

0.C
2//D

�

f0g if k 6D 4,
R ' H 4

c .Hilb3
0.C

2//' H 4.Hilb3
0.C

2// if k D 4.

THE PROOF OFLEMMA 5.4. LetK � Hilb3
0.C

2/ be a compact set such that
Hilb3

0.C
2/ n K D U [ V , where

� U is a truncated cone over.S7=S3/ n O, and
� V D f.y; v/ 2 T �P1.C/� .C2 n B2/ W jyj < "jvjg, wherejyj is the pullback

to T �P1.C/ of the Euclidean distance.

The main point in the proof of Lemma 5.4 is the following result concerning the
L2 cohomology ofV :

LEMMA 5.6. H4.V / D f0g andZ4.V / D dC3
w;1
.V /. That is, anyL2 closed

4-form˛ on V has a primitive' 2 L2
w.�

3V /, that is, ˛ D d'.

We will only sketch the proof of this lemma.
Consider̨ 2 Z4

�D1
.V /. The setU \ V is a truncated cone over the product

S3=f˙ Idg � S3 � ."; 2"/. The third Betti number of this product is not zero;
hence by Proposition 3.6, there is a 2 L2

w.�
3.U \ V // such that

˛ D d on U \ V:

We cannot extend to V as an element ofC3
w;1
.V / but only as an element

 2 C3
w;�.V / where�.y; v/D 1= log2.jvj C 1/. Then

˛� d 2 Z4
�.V /

and, because this form is zero onV \ U , it can be extended to the whole
T �P1.C/ � .C2 n B2/. This extension will be also denoted by̨� d . It
is still a closed form; that is,

˛� d 2 Z4
�

�

T �
P

1.C/� .C2 n B
2/

�

:
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Now using a K̈unneth-type argument and the computation of theL2
� cohomology

of C
2 n B2, it can be shown that theL2

� cohomology ofT �P1.C/� .C2 n B2/

vanishes in degree4 and that if we introduce the weightw1.y; v/D1=.1Cjyj/2,
there are

u 2 C
3
w;�.T

�
P

1.C/� .C2 n B
2// and v 2 C

3
w1;�.T

�
P

1.C/� .C2 n B
2//

such that

˛� d D du C dv:

If we let ' D  C u C v, then because onV we have"w � w1, we conclude
that' 2 L2

w.�
3V / and

˛ D d':

With this result, we can finish the proof of Lemma 5.4: we cannot use the
Mayer–Vietoris exact sequence because of the log factor in the weightw (see
middle of page 20). However, we will use some of the argumentsleading to the
proof of the exactness of the Mayer–Vietoris sequence.

Let ˛ be a closedL2 4-form outsideK. BecauseU is a truncated cone, we
know that there is'

U
2 C3

w;1
.U / such that̨ D d'

U
on U , and by Lemma 5.6,

there is a'
V

2 C3
w;1
.V / such that onV

˛ D d'V :

Now on the intersectionU \ V the difference'
U

�'
V

is a closedL2
w 3-form.

But U \ V is a truncated cone overS3=f˙ Idg � S3 � ."; 2"/ and there is an
analogue of Proposition 3.6 for theL2

w cohomology, the threshold now being
n=2�1 D 3 in our case. But the second Betti number ofS3=f˙ Idg�S3�."; 2"/

is zero; hence onU \ V , '
U

�'
V

has a primitive� 2 C2
w;w.U \ V / which can

be extend to a� 2 C2
w;w.U /. Now we can define 

 D

�

'
U

C d� on U ,
'

V
on V .

By construction, we havę D d and 2 L2
w

�

�3.Hilb3
0.C

2/ n K/
�

. ˜

5.3. Conclusion.In the physics literature, Hilbn0.C
2/ is associated to the moduli

space of instantons on noncommutativeR
4 [24]. One motivation for the study of

L2 cohomology of Hilbn0.C
2/ comes from a question of C. Vafa and E. Witten:

in [29], see also the nice survey of T. Hausel [13], the following conjecture is
formulated (note that2.n � 1/D 1

2
dimR Hilbn

0.C
2/):

H
k D

�

f0g if k 6D 2.n � 1/;

Im
�

H k
c .Hilbn

0.C
2//! H k.Hilbn

0.C
2//

�

if k D 2.n � 1/:
(5-1)
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However, Vafa and Witten have said that “unfortunately, we do not understand
the prediction ofS-duality on noncompact manifolds precisely enough to fully
exploit them.” According to N. Hitchin’s vanishing result [15], the first part of
this conjecture is true. The result above says that this is true forn D 2; 3.

6. Other results and perspectives

In [7], the L2 cohomology of certain QALE spaces is computed. The proof
uses the same general idea given in 5.2, but the argumentation is considerably
longer and we cannot in general use the same vanishing result. Quasi Asymptot-
ically Locally Euclidean (QALE) geometry is defined by induction. A QALE
manifold asymptotic toCn=� (where� is a finite subgroup of SU.n/) is a
manifold whose geometry at infinity is the union of a piece that looks (up to a
finite cover) like a subset of the productY � C

p, whereY is a QALE manifold
asymptotic toC

n�p=A for someA a finite subgroup of SU.n � p/. In [7],
we computed theL2 cohomology of QALE spaces where the singular space
C

n=� has only two singular strata (f0g and a finite union of linear subspaces).
In order to prove the Vafa–Witten conjecture (5-1), it is important to be able
to understand theL2 cohomology of more general QALE spaces. The almost
closed range condition has been a interesting tool for doingthis for the case of
Hilb3

0.C
2/. We hope that it will also be useful in other situations and for the

other Hilbert schemes of points.
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