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Rigidity of differential operators and
Chern numbers of singular varieties

ROBERT WAELDER

ABSTRACT. A differential operatorD commuting with anS1-action is said
to be rigid if the nonconstant Fourier coefficients of kerD and cokerD are the
same. Somewhat surprisingly, the study of rigid differential operators turns
out to be closely related to the problem of defining Chern numbers on singular
varieties. This relationship comes into play when we make use of the rigid-
ity properties of the complex elliptic genus–essentially an infinite-dimensional
analogue of a Dirac operator. This paper is a survey of rigidity theorems related
to the elliptic genus, and their applications to the construction of “singular”
Chern numbers.

1. Rigidity of elliptic differential operators

Let D W � .E/ ! � .F / be an elliptic operator mapping sections of a vector
bundleE to sections ofF . If D commutes with aT D S1 action, then kerD
and cokerD are finite-dimensionalS1-modules. We define the character-valued
index

IndT .D/D kerD � cokerD 2 R.T /

For example, ifD D d Cd� W˝even!˝odd is the de Rham operator on a smooth
manifoldX with aT action, then by Hodge theory and homotopy invariance of
de Rham cohomology, IndT .D/ is a trivial virtual T -module of rank equal to
the Euler characteristic ofX . In general, if IndT .D/ is a trivial T -module, we
say thatD is rigid. In the case whereD is the de Rham operator, both kerD and
cokerD are independently trivialT -modules. However, more interesting cases
exist whereD is rigid, but both kerD and cokerD are nontrivialT -modules.
For example, ifX is a spin manifold andD W � .�C/ ! � .��/ is the Dirac
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operator, thenD is rigid. It is instructive to sketch the proof of this fact, which
is due to Atiyah and Hirzebruch [3]:

For simplicity, assume thatT acts onX with isolated fixed pointsfpg, and
that the action lifts to the spin bundles�˙. At each fixed pointp, TpX decom-
poses into a sum of one-dimensional complex representations ofT with weights
m1.p/; : : : ;mn.p/, where2n D dimX . If we view IndT .D/ as a function of
t 2 T , then by the Lefschetz fixed point formula,

IndT .D/D
X

p

1
Qn

jD1.t
mj =2 � t�mj =2/

A priori, IndT .D/ is a function only on the unit circle inC. However, the above
formula shows that we can analytically continue IndT .D/ to a meromorphic
function onS2, with possible poles restricted to lie on the unit circle. But since
IndT .D/ is a virtualT -module, and therefore has a finite Fourier decomposition
of the form IndT .D/ D

P

ak tk , all such poles on the unit circle must cancel.
It follows that IndT .D/ is constant. Furthermore, by taking the limit ast ! 1,
one sees that the character-valued index is identically zero. A similar proof
shows that on a complex manifold,@C @

�
(whose corresponding index is the

arithmetic genus) is rigid with respect to holomorphic torus actions.
The situation becomes more difficult if we investigate the rigidity of the

twisted Dirac operatorsD ˝ E, whereE is an equivariant vector bundle. For
example, ifdS D D ˝ .�C ˚��/ is the signature operator on a spin manifold,
the Lefschetz fixed point formula for the index ofdS ˝ TX gives:

IndT .dS ˝ TX /D
X

p

n
Y

jD1

1 C t�mj .p/

1 � t�mj .p/
�
X

.tmj .p/ C t�mj .p//

Here˙mj .p/ are the weights of theT -action on the complexified tangent bun-
dle of X at p. The factors

P

.tmj .p/ C t�mj .p// come from the twisting of the
rigid operatordS by TX . Thus, in this situation, the fixed point formula for
IndT .dS ˝ TX / has poles at0 and1, and we can no longer apply the same
argument.

It is therefore astonishing that, based on ideas from physics, Witten predicted
the rigidity of an infinite sequence of twisted Dirac operators of this nature on a
spin manifold. Witten’s insight came from generalizing a quantum mechanics-
inspired proof of the Atiyah–Hirzebruch theorem to its analogue in the setting
of superstring theory. We briefly sketch this point of view, as given in [17]:
In supersymmetric quantum mechanics on a spin manifoldX (with one real
fermion field), the Hilbert space of states corresponds to the space of square-
integrable spinors. Quantization of the superchargeQC yields the Dirac op-
erator. In passing to superstring theory, the Hilbert spaceof states should be
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interpreted as spinors on the loop space ofX . It therefore makes sense to think
of the quantization of the supercharge in this theory as a Dirac operator on the
loop space. Now for any manifoldX , the loop space ofX possesses a natural
S1 action given by rotating the loops. The fixed points of this action correspond
to the space of constant loops, which we may identify withX itself. Via formal
application of the Atiyah–Bott–Lefschetz fixed point formula one can reduce
the S1 character-valued index of operators constructed out ofQC to integrals
overX . To give an example, let� denote the spin bundle on the loop space. If
we quantize a theory with two fermionic fields ˙, the associated Hilbert space
becomes�˝�. Now in finite dimensions,�˝� corresponds to the de Rham
complex.�˝� therefore provides a good candidate for the de Rham complex
on the loop space. At the classical level of this theory, one has an involution�
on the space of superfields, sending C ‘ � C and � ‘ � which preserves
the action Lagrangian. WhenX is spin, this involution descends to the quantum
theory; the corresponding action of� on�˝�may be interpreted as the Hodge
star operator acting on forms. Consequently, one can construct out ofQC and�
a canonical choice of a signature operator on the loop space.By the fixed point
formula, itsS1-charactered valued index reduces to the index of

dS ˝

1
O

mD1

�qmTX ˝

1
O

mD1

SqmTX D dS ˝�q

overX . Here, for any vector bundleE, we define

�qm.E/D 1 C qmE C q2mE ^ E C � � �

and

Sqm.E/D 1 C qmE C q2mE2 C � � � ;

whereqm denote the weights of the inducedS1 action of anS1-bundle over
X . If X itself has anS1 action, the character-valued index ofdS ˝�q as a
function of ei� may be interpreted as the signatures associated to a family of
field theories parameterized by� . The rigidity ofdS ˝�q then follows from a
formal application of deformation invariance of the index of Dirac operators on
loop spaces. For details, see [16] or [17].

Note that sincedS ˝�q D dS C 2qdS ˝ TX C � � �, the rigidity ofdS ˝ TX

now follows from the rigidity of thedS ˝ �q. It is interesting to point out
that, althoughdS ˝�q is defined on any oriented manifold, it is only rigid for
spin manifolds. Heuristically this makes sense when we viewdS ˝�q as the
signature operator on the loop space ofX . For if X is oriented, the signature
operatordS is easily seen to be rigid. But the the loop space is oriented precisely
whenX is spin.
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Dirac operators on the loop space provide concrete examplesof elliptic gen-
era. These are homomorphisms' W˝SO ! R from the oriented cobordism ring
to an auxiliary ringR, whose characteristic power series are defined in terms of
certain elliptic integral expressions.

The rigidity theorems of Witten were initially proved underrestricted hy-
potheses by Landweber, Stong, and Ochanine [8; 10], and later proved in com-
plete form by Bott, Taubes, and Liu [6; 9]. The simplest and most direct proof
was discovered by Liu, who observed that the modular properties of the elliptic
genera implied their rigidity. We will provide a sketch of Liu’s argument for the
case of the complex elliptic genus, which is defined as the index of@˝Eq;y on
an almost complex manifold of dimension2n, whereEq;y is given by

Eq;y D y�n=2
1

O

mD1

��yqm�1T 00X ˝��yqmT 0X ˝

1
O

mD1

SqmT 00X ˝ SqmT 0X

HereTX ˝C DT 0X ˚T 00X denotes the decomposition of the complexified tan-
gent bundle into holomorphic and antiholomorphic components. By Riemann–
Roch, the ordinary index of this operator is given by the integral

Z

X

Y

T 0X

xj#
�

xj

2� i
� z; �

�

#
�

xj

2� i
; �

� :

Here xj denote the formal Chern roots ofT 0X , y D e2� iz and q D e2� i� .
#.v; �/ denotes the Jacobi theta function

#.v; �/D

1
Y

mD1

.1 � qm/ � q1=82 sin�v
1
Y

mD1

.1 � qme2� iv/

1
Y

mD1

.1 � qme�2� iv/

We will frequently refer to Ind.@˝ Eq;y/ as Ell.X I z; �/. The almost-complex
version of Witten’s rigidity theorem for this operator states that the complex
elliptic genus ofX is rigid provided thatc1.X /D 0.

The idea of the proof is as follows: For simplicity, assume that theT -action
on X has isolated fixed pointsfpg, with equivariant weightsmj .p/ on T 0

pX .

Writing t 2 T ast D e2� iu, we have by the Lefschetz fixed point formula,

IndT .@˝ Eq;y/D
X

p

n
Y

jD1

#.mj .p/u � z; �/

#.mj .p/u; �/

Write IndT .@˝Eq;y/D F.u; z; �/. It is evident from the fixed point formula
thatF.u; z; �/ is a meromorphic function onC � C � H which is holomorphic
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in z and� . Let z D 1
N

whereN is a common multiple of the weightsmj .p/.
Then, using the translation formulas:

#.u C 1; �/D �#.u; �/;

#.u C �; �/D q�1=2e�2� iu#.u; �/;

it is easy to see thatF.u C 1; 1
N
; �/D F.u; 1

N
; �/ and thatF.u C N �; 1

N
; �/D

F.u; 1
N
; �/. Thus, for each fixed� , F.u; 1

N
; �/ is a meromorphic function on the

torus defined by the latticeZ ˚ N Z� . Suppose we could show thatF.u; 1
N
; �/

was in fact holomorphic inu. Then for each multipleN of the weightsmj .p/

and for each� 2 H, F.u; 1
N
; �/ would have to be constant inu. It would follow

that @
@u

F.u; 1
N
; �/ � 0. Since this equation held for an infinite set of.u; z; �/

containing a limit point, it would hold for all.u; z; �/. HenceF.u; z; �/ would
be independent ofu, which is precisely the statement of rigidity for the operator
IndT .@˝ Eq;y/.

Thus, we are reduced to provingF.u; z; �/ is holomorphic. Let
�

a
c

b
d

�

2
SL2.Z/ act onC � C � H by the rule

.u; z; �/‘
� u

c� C d
;

z

c� C d
;

a� C b

c� C d

�

:

Using the transformation formula

#.
u

c� C d
;

a� C b

c� C d
/D �.c� C d/

1

2 e
�icu2

c�Cd #.u; �/;

where� is an eighth root of unity, one sees thatF
�

u

c�Cd
;

z

c�Cd
;

a�Cb

c�Cd

�

is
equal to

K �
X

p

e�2� ic
P

n

j D1 mj .p/uz=.c�Cd/
n

Y

jD1

#.mj .p/u � z; �/

#.mj .p/u; �/

whereK is a nonzero holomorphic function of.u; z; �/. Now the Calabi–Yau
condition implies that the only possibleT -action onKX is given by multipli-
cation by a constant along the fibers. Since

Pn
jD1 mj .p/ is the weight of the

T -action induced onK�
X

, it follows that
Pn

jD1 mj .p/ is the same constant for

all p. We may therefore pull the expressione�2� ic
Pn

j D1 mj .p/uz=.c�Cd/ outside
of the above summation sign, and conclude that

F
�

u

c�Cd
;

z

c�Cd
;

a�Cb

c�Cd

�

D K0F.u; z; �/;

for K0 a nonzero holomorphic function.
Now the key observation: First, by the fixed point formula,F.u; z; �/ has

possible poles only foru D r C s� , wherer; s 2 Q. Moreover, sinceF.u; z; �/
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is the character-valued index of an elliptic differential operator, the poles of
F.u; z; �/ must cancel foru 2 R, since in that caseF.u; z; �/ admits a Fourier
decomposition

P

bk.z; �/e
2� iku (in a rigorous treatment of the subject, one

must of course deal with convergence issues regarding this summation). Note
that this is also the key observation in Bott and Taubes’ proof. Thus, foru a
possible pole, writeu D .m=`/ .c� C d/, wherec andd are relatively prime.
By relative primality, we can find integersa andb so thatad � bc D 1, i.e.,
�

a
c

b
d

�

2 SL2.Z/. Then

K0 � F
�

m

`
.c� C d/; z; �

�

D F
�

m

`
;

z

c�Cd
;

a�Cb

c�Cd

�

whereK0 ¤ 0. It follows thatF.u; z; �/ is holomorphic, which completes the
proof.

The above rigidity theorem for the complex elliptic genus ona Calabi–Yau
manifold has an interesting analogue for toric varieties, which has applications
to the study of singular varieties. Leṫ be a complete fan which corresponds
to a smooth toric varietyX . This means thaṫ is a finite union of conesfCig
inside the real vector spaceN ˝ R, whereN is an integral lattice of rankn.
For any two conesC1;C2 in ˙ , we require thatC1 \ C2 is a proper subcone,
and that the union of the cones iṅ covers all ofN ˝ R. The smoothness
requirement foṙ means that thek-dimensional cones havek generators, each
lying in N . Recall that the data oḟ gives rise to a natural scheme structure as
follows: For each coneC �˙ , we define the sheaf of regular functions

� .UC /D CŒef �f 2SC

whereSC is the collection of linear functionalsf 2 Hom.N;Z/ that are non-
negative alongC . The toric varietyX corresponding to these data is the variety
with affine charts given byUC D Specm� .UC /.

Note that inclusions of conesC1 � C2 give rise to inclusions of open sets
UC1

� UC2
. In particular, since every coneC contains the point0 2 N as a

subcone, every open setUC contains the open set

U0 D SpecmCŒeHom.N;Z/�Š .C�/n:

The action of this complex torus on itself is easily seen to extend to all ofUC .
In this way,X inherits a natural action by a complex torusTC , with isolated
fixed points.

There is a nice relationship between theTC-invariant divisors on a smooth
toric variety and combinatorial data of its associated simplicial fan: the TC-
invariant divisors onX are in one-one correspondence with piecewise linear
functionals on˙ . For example, iff is a piecewise linear functional oṅ ,
thenf is completely determined by its valuesf .vi/ on the generatorsvi 2 N
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of the 1-dimensional rays oḟ . These generators, in turn, defineTC-Cartier
divisors by the following prescription: IfC is a cone containingvi , we define
O.vi/.UC / D � .UC / � ev�

i , wherev�
i is the piecewise linear functional which

is 1 on vi and 0 on the remaining1-dimensional rays oḟ . Otherwise, we
setO.vi/.UC / D � .UC /. In this way, each piecewise linearf gives rise to
the divisorDf D

P

f .vi/O.vi/. In terms of this correspondence, it turns out
there is a simple criterion for determining whether aQ-divisor Df is linearly
equivalent to zero: namely,Df �Q 0 if and only if f 2 Hom.N;Q/.

Now, the canonical divisorKX D Df�1
, wheref�1 is the piecewise linear

functional given byf�1.vi/ D �1. Clearly if ˙ is complete,f�1 cannot be
given by a globally defined linear functional in Hom.N;Z/. So compact smooth
toric varieties are never Calabi–Yau, and consequently we can expect no rigidity
properties for their complex elliptic genera. Note, however, thatTX is stably
equivalent to

L`
iD1 O.vi/, where the sum is taken over all the1-dimensional

raysvi of˙ . Thus, up to a normalization factor, the elliptic genus ofX is given
by the index of@˝ �, where� equals

Ò

iD1

1
O

nD1

��yqn�1O.vi/
�1 ˝��y�1qnO.vi/˝

1
O

mD1

SqmO.vi/
�1 ˝ SqmO.vi/

We may view� as a function of theTC-line bundle˝`
iD1

O.vi/. In this light,
is natural to introduce, for anyTC-line bundle˝`

iD1
O.vi/

ai , with ai ¤ 0, the
following vector bundle, denoted as�.a1; : : : ; a`/:

Ò

iD1

1
O

nD1

��yai qn�1O.vi/
�1˝��y�ai qnO.vi/˝

1
O

mD1

SqmO.vi/
�1˝SqmO.vi/

We may think of@˝�.a1; : : : ; a`/ as a kind of generalized elliptic genus for the
toric varietyX . The analogue of the Calabi–Yau condition for this generalized
elliptic genus is the triviality of theQ-line bundle˝`

iD1
O.vi/

ai . In fact, if this
bundle is trivial, then

IndT @˝ �.a1; : : : ; a`/D 0 2 R.T /ŒŒq;y;y�1��

for any compact torusT � TC . To prove this, it suffices to assume thatT D S1

and that theT -action onX has isolated fixed points. We can always find such
a T by first picking a dense1-parameter subgroup� of a maximal compact
subtorus ofTC , and then lettingT be generated by a compact1-parameter sub-
group whose initial tangent direction is sufficient close tothat of � . Then the
rigidity of @˝�.a1; : : : ; a`/ follows from Liu’s modularity technique discussed
above. To see that IndT @˝ �.a1; : : : ; a`/ is identically0, we use the following
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trick observed by Hattori [7]. LetF.u; z; �/D IndT @˝�.a1; : : : ; a`/. The mod-
ular properties ofF imply thatF.u C �; z; �/D e2� iczF.u; z; �/. Herec is the
weight of theT -action on the trivial bundle̋ `

iD1
O.vi/

ai . For a generic choice
of T � TC , this weight will be nonzero. But sinceF.u; z; �/ is constant inu, we
must have thatF.u; z; �/D e2� iczF.u; z; �/. This implies thatF.u; z; �/D 0.

2. Chern numbers of singular varieties

We now turn to the problem of defining Chern numbers on singular varieties,
a subject which at first glance appears unrelated to the discussion above. In what
follows we will find that rigidity theorems provide a powerful tool in solving
these types of problems. We first discuss some background.

If X is a smooth compact almost-complex manifold of dimension2n, the
Chern numbers ofX are the numbers of the form

ci1;:::;in
D

Z

X

c
i1

1
� ci2

2
� � � cin

n

whereci denotes thei th Chern class ofT 0X andi1 C2i2 C� � �Cnin D dimX=2

(so that the total degree of the integrand is2n). Chern numbers are easily seen
to be functions on the complex cobordism ring̋�

U
. Moreover, they completely

characterize̋ �
U

in the sense that two almost complex manifolds with the same
Chern numbers must be complex cobordant.

Much of algebraic geometry consists of efforts to extend techniques from
the theory of smooth manifolds to singular varieties. Minimal model theory
suggests that one can approach this problem by working on a smooth (or “nearly
smooth”) birational model of a given singular varietyX . For a special combi-
nation of Chern numbers, this approach works without any difficulties: namely,
the Chern numbers defining the Todd genus. For ifX is a smooth complex
manifold, the Todd genus ofX is given by the alternating sum

�0.X /D

n
X

iD0

.�1/i dimH
i;0

@
.X /:

By Hartog’s theorem, the space of holomorphici-forms is birationally invariant,
and is therefore well-defined even whenX is singular, by passing to a resolution
of singularities. On the other hand, ifX is smooth, then by Riemann–Roch,

�0.X /D

Z

X

n
Y

iD1

xi

1 � e�xi

wherexi denote the formal Chern roots of the holomorphic tangent bundle. The
combination of Chern numbers obtained by performing the above integration
therefore makes sense for any compact singular variety defined overC.
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More generally, we consider the following naive attempt at defining combina-
tions of Chern numbers onX : Suppose we are lucky enough to have a smooth
minimal modelY for X . Then defineci1;:::;in

.X / D ci1;:::;in
.Y /. The main

problem with this approach is that, even when smooth minimalmodels exist,
we should not expect them to be unique. In fact, we expect different minimal
models forX to be related to each other by codimension-2 surgeries called flips
and flops. A priori, it is not at all clear what combinations ofChern numbers
will be preserved under such operations.

In [11] Totaro set out to classify the combinations of Chern numbers invariant
under classical flops. Here we say that two varietiesX1 and X2 differ by a
classical flop if they are the two small resolutions of ann-fold Y whose singular
locus is locally the product of a smoothn � 3-fold Z and the3-fold nodexy �
zw D 0. More precisely,X1 andX2 are constructed as follows: blowing up
alongZ defines a resolution ofY whose exceptional set is aP1 � P1 bundle
overZ with normal bundleO.�1;�1/. HereO.�1;�1/ denotes the line bundle
over aP1 � P1-bundle which coincides with the tautological bundle alongeach
P1 direction. Blowing down along either of theseP1 fibers therefore produces
two distinct small resolutionsX1 andX2 of Y .

Totaro demonstrated that the combinations of Chern numbersinvariant under
classical flops were precisely the combinations of Chern numbers encoded by
the complex elliptic genus in the Riemann–Roch formula. We sketch the first
half of his argument–namely, that the complex elliptic genus is invariant under
classical flops. AsX1 andX2 are identical away from their exceptional sets,
their differenceX1 � X2 is complex cobordant to a fibrationE over Z. In
fact, if the exceptional sets ofX1 andX2 are theP1-bundlesP.A/ andP.B/

corresponding to the rank2 complex bundlesA andB over Z, then as a dif-
ferentiable manifold,E is simply theP3 bundle P.A ˚ B�/ over Z. Now
the way thatE is actually constructed is by taking a tubular neighborhoodof
P.A/ � X1 and gluing it to a tubular neighborhood ofP.B/ � X2 along their
common boundaries (which are both diffeomorphic toZ � S3). The crucial
point is that the stably almost complex structure onE induced by this construc-
tion makesE into an SU-fibration. That is,E is aP3-bundle whose the stable
tangent bundle in the vertical direction has a complex structure satisfyingc1 D0.
He calls these fibers “twisted projective space”zP2;2. The fiber-integration for-
mula implies that Ell.EI z; �/ D

R

Z EllT .zP2;2I z; �;x1; : : : ;x4/ � E l l.ZI z; �/.
HereE l l.ZI z; �/ is the cohomology class which appears as the integrand in
the Riemann–Roch formula for the elliptic genus ofZ. More importantly,
EllT .zP2;2I z; �;x1; : : : ;x4/ denotes the character-valued elliptic genus ofzP2;2

with the standardT 4 action, with the generatorsu1; : : : ;u4 of the Lie algebra
of T 4 evaluated at the Chern rootsx1; : : : ;x4 of A ˚ B. SincezP2;2 is an SU-
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manifold, by the Witten rigidity theorem, EllT .zP2;2I z; �;x1; : : : ;x4/ D const.
Thus, the elliptic genus ofE is simply the product Ell.zP2;2I z; �/ � Ell.ZI z; �/.
Moreover, sincezP2;2 is cobordant toY1 � Y2, whereYi are the small resolu-
tions of a3-fold node, and since classical flopping is symmetric for3-folds,
zP2;2 � Y2 � Y1. HencezP2;2 � 0 in the complex cobordism ring. We therefore
have that Ell.X1I z; �/� Ell.X2I z; �/D Ell.zP2;2I z; �/ � Ell.ZI z; �/D 0.

An obvious consequence of the above discussion is that for varietiesY whose
singular locus is locally the product of a smooth variety with a 3-fold node, it
makes sense to define the elliptic genus ofY to be the elliptic genus of one of
its small resolutions. However, most singular varieties fail to possess even one
small resolution. It is therefore natural to ask whether onecan continue to define
the elliptic genus for a more general class of singularities. The right approach
to answering this question is to expand one’s category to include pairs.X;D/,
whereX is a variety andD is a divisor onX with the property thatKX � D

is Q-Cartier. A mapf W .X;D/ ! .Y; �/ in this category corresponds to a
birational morphismf W X ! Y satisfyingKX � D D f �.KY ��/. The idea
is to first define the elliptic genus for smooth pairs.X;D/ in such a way that
Ell.X;DI z; �/ becomes functorial with respect to morphisms of pairs. Given
two resolutionsfi W Xi ! Y of a singular varietyY , with KXi

� Di D f �KY ,
we could then find resolutionsgi W .M;D/ ! .X;Di/ making the following
diagram commute:

.M;D/
g1

����! .X1;D1/

g2

?

?

y

?

?

y
f1

.X2;D2/
f2

����! .Y; 0/

Functoriality of the elliptic genus would then imply that

Ell.X1;D1I z; �/D Ell.M;DI z; �/D Ell.X2;D2I z; �/:

It would then make sense to define Ell.Y I z; �/� Ell.X1;D1I z; �/:

One can simplify this approach by making two observations. First, by intro-
ducing further blow-ups, one can always assume that the exceptional divisors
Di � Xi have smooth components with simple normal crossings. (Suchresolu-
tions are called “log resolutions”.) Second, by a deep result of Wlodarczyk [1],
the birational map.X1;D1/ 99K .X2;D2/ may be decomposed into a sequence
of maps

.X1;D1/D .X .0/;D.0// 99K � � � 99K .X .N /;D.N //D .X2;D2/

where each of the arrows are blow-ups or blow-downs along smooth centers
which have normal crossings with respect to the components of D.j/. It there-
fore suffices to define Ell.X;DI z; �/ for smooth pairs.X;D/, whereD is a
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simple normal crossing divisor, and prove that Ell.X;DI z; �/ is functorial with
respect to blow-ups along smooth centers which have normal crossings with re-
spect to the components ofD. This procedure has been carried out successfully
by Borisov and Libgober in [4], and by Chin-Lung Wang in [15].They define
Ell.X;DI z; �/ by the formula

Z

X

Y

j

xj#
�

xj

2� i
� z; �

�

#
�

xj

2� i
; �

�

Y

i

#
�

Di

2� i
� .ai C 1/z; �

�

#.z; �/

#
�

Di

2� i
� z; �

�

#..ai C 1/z; �/
(2-1)

Here thexj denote the formal Chern roots ofTX and theDi denote the first
Chern classes of the componentsDi of D with coefficientsai.X;D/. Note that
since#.0; �/D0, the above expression only makes sense forai ¤�1. Naturally,
this places some restrictions on the types of singularitiesallowed in the definition
of Ell.Y I z; �/. For example, at the very leastY must possess a log resolution
.X;D/ ! .Y; 0/ such that none of the discrepancy coefficientsai.X;D/ are
equal to�1. In order to ensure that Ell.Y I z; �/ does not depend on our choice
of a log resolution.X;D/, we actually must require that the discrepancy co-
efficientsai.X;D/ > �1. To see why, suppose that.X1;D1/ and .X2;D2/

are two log resolutions ofY with discrepancy coefficientsai.Xj ;Dj / ¤ �1.
To prove that Ell.X1;D1I z; �/D Ell.X2;D2I z; �/, we must connect these two
resolutions by a sequence of blow-ups and blow-downs, applying functoriality
of the elliptic genus of pairs at each stage. But if some of thediscrepancy
coefficientsai.X1;D1/ are greater than�1, and others less than�1, then after
blowing upX1, we may acquire discrepancy coefficients equal to�1. In this
case, the elliptic genus of one of the intermediate pairs in the chain of blow-ups
and blow-downs will be undefined, and consequently we will have no means
of comparing the elliptic genera of.X1;D1/ and.X2;D2/. The only obvious
way of avoiding this problem is to requireai.Xj ;Dj / > �1. This constraint is
quite familiar to minimal model theorists; singular varieties Y possessing this
property are said to havelog-terminalsingularities.

Functoriality of the elliptic genus provides a nice explanation for the invari-
ance of the elliptic genus under classical flops. For ifX1 andX2 are related
by a classical flop, then there exists a common resolutionfi W X ! Xi with
f �

1
KX1

Df �
2

KX2
. Two varieties related in this way are said to beK-equivalent.

One therefore discovers from this approach that the fundamental relation leaving
the elliptic genus invariant is not flopping butK-equivalence.

The original proofs of functoriality of the elliptic genus,by Borisov, Lib-
gober, and Wang, are based on an explicit calculation of the push-forwardf�

of the integrand in (2-1), wheref W .X;D/ ! .X0;D0/ is a blow-down. The
obstruction to this push-forward giving the correct integrand onX0 is given
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by an elliptic function with values inH �.X0/. One can then use basic elliptic
function theory to show that this function vanishes. In whatfollows, we will
sketch a different proof, similar to the one in [13], that makes use of the rigidity
properties of the elliptic genus. This approach has severaladvantages: the first
is that the proof can be easily generalized to more exotic versions of elliptic
genera, such as the character-valued elliptic genus for orbifolds. Though the
original proofs could be adapted to this situation, their implementation in the
most general setting is cumbersome. Another advantage is that some variation
of this approach appears to be useful for studying elliptic genera for varieties
with non-log-terminal singularities. We will have more to say on this in the
following section. Recall though that the rigidity of the elliptic genus for SU-
manifolds was the key step in Totaro’s proof of the invariance of elliptic genera
under classical flops. It is therefore reasonable to expect rigidity phenomena to
play a useful role in the study of elliptic genera of singularvarieties.

Proceeding with the proof, we letX be a smooth variety andD D
P

aiDi a
simple normal crossing divisor onX . Let f W zX ! X be the blow-up along a
smooth subvariety which has normal crossings with respect to the components
of D. We let zD D

P

ai
zDi C mE be the sum of the proper transforms ofDi

and the exceptional divisorE, whose coefficients are chosen so thatK zX
� zD D

f �.KX � D/.
To avoid getting bogged down in technical details, assumef W zX ! X is the

blow-up at a single pointp D D1 \ : : :\Dn, andD1; : : : ;Dn are the only com-
ponents ofD. ThenT zX is stably equivalent tof �TX ˚

Ln
iD1 O.

zDi/˚O.E/.
From (2-1), it follows immediately that the proof of the blow-up formula for the
elliptic genus amounts to proving that
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T 0X
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� z/# 0.0/

#.
xj

2� i
/#.�z/
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zDi
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#. E
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Y

T 0X

xj
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xj
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� z/# 0.0/

#.
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/#.�z/

n
Y

iD1

Di

2� i
#. Di

2� i
� .ai C 1/z/# 0.0/

#. Di

2� i
/#.�.ai C 1/z/

Here, for ease of exposition, we have omitted the dependenceof # on � . Note
that zDi D f �Di � E in the above expression. Thus, if we expand both sides
in the variablesf �Di ;E, andDi , the blow-up formula is easily seen to hold
for integrals of Chern and divisor data not involvingE. Note however that in a
neighborhood ofE, . zX ; zD/ has the exact same structure as the blow-up ofCn at
the origin, with the divisorszD1; : : : ; zDn corresponding to the proper transforms
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of the coordinate hyperplanes ofCn. For the purpose of proving the blow-up
formula, we may therefore assume thatX Š .P1/n and that zX is the blow-up
of X at Œ0 W 1�� � � � � Œ0 W 1�. Viewed as a toric variety,X is defined by the fan
˙ � N ˝ R with 1-dim raysR.˙e1/; : : : ;R.˙en/, wheree1; : : : ; en form an
integral basis for the latticeN . The fan ż of zX is obtained froṁ by adding
the rayR.e1 C� � �Cen/. The divisorsDi � X correspond to the raysRei in ˙ ;
and the divisorszDi andE correspond to the raysRei andR.e1C� � �Cen/ in ż .
Using the fact that the tangent bundle of smooth toric variety with TC-invariant
divisors Dj , j D 1; : : : ; `, is stably equivalent to

L`
jD1 O.Dj /, the blow-up

formula forX reduces to proving that
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� .a�j C 1/z/# 0.0/

#.
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In this formula,D�j denote theTC-divisors onX corresponding to the1-dim
raysR.�ej /, with coefficientsa�j D 0. zD�j denote their proper transforms,
which are simply given byf �D�j , sinceD�j are defined away from the blow-
up locus. For ease of exposition, we also letzDnC1 D E, with anC1 D m.

Now the crucial observation is that in the above formula, RHS� LHS is
independent of the coefficientsa�j . For since zD�j are disjoint fromE, any
divisor intersection data involvingzD�j will be unchanged after formally setting
E D 0. Therefore, the parts of RHS� LHS dependinga�j will be unchanged
after settingE D 0. But formally lettingE D 0 clearly gives RHSD LHS.
Consequently, RHS� LHS depends only ona1; : : : ; an.

Let us therefore definea�j so that.1Ca�j /D �.1Caj /. As discussed in the
previous section, the set of coefficients.1 C a˙j / assigned to the raysR.˙ej /

give rise to a piecewise linear functionalg D g1Cai ;1Ca�i
on the fan˙ . In

fact,g is simply the global linear functional which maps the basis vectorsei to
.1 C ai/. As g 2 Hom.N;Z/, it also defines a global linear functional onż ,
taking the value

Pn
iD1.1Cai/ one1C� � �Cen. Now by the discrepancy formula

for blow-ups,
Pn

iD1.1Cai/D .1Cm/. We see from this that the piecewise linear
functional on ż defined by assigning the coefficients.1Ca˙j / to R.˙ej / and
.1Cm/ to R.e1 C� � �Cen/ corresponds to this same global linear functionalg.

It follows that the bundles

O.e1 C � � � C en/
1Cm ˝

n
O

iD1

O.ei/
1Cai ˝O.�ei/

1Ca�i
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and
Nn

iD1 O.ei/
1Cai ˝ O.�ei/

1Ca�i are trivial asQ-line bundles onzX and
X , respectively. Consequently,

Ind @˝ �.1 C ai ; 1 C m; 1 C a�i/D Ind @˝ �.1 C ai ; 1 C a�i/D 0:

But, up to a normalization factor, Ind@˝ �.1 C ai ; 1 C m; 1 C a�i/ D RHS
and Ind@˝ �.1 C ai ; 1 C a�i/ D LHS for the given new values ofa�i . Thus,
RHSD LHS for .1 C a�i/D �.1 C ai/, and therefore also fora�i D 0.

This completes the proof of the blow-up formula for the case where the blow-
up locus is a single point. For completeness, let us outline the case for the blow-
up along a subvarietyZ with normal crossings with respect to the components
of D. This case is handled in much the same way, the only difference being that
instead of reducing to the situation whereX is toric, we instead reduce to the
case whereX is a toric fibration, fibered over the blow-up locusZ. Namely, by
deformation to the normal cone, we may assume that

X D P.M ˚ 1/� P.L1 ˚ 1/� � � � � P.Lr ˚ 1/:

Here, for the componentsDi intersectingZ,

Li D O.Di/jZ

andM is the quotient ofNZ=X by ˚Li . The product� is the fiber product of
the corresponding projective bundles overZ. We now viewDi as the divisors
given by the zero sections of the bundlesLi . Moreover, the zero sections ofLi

andM together define a copy ofZ in P.M ˚1/�P.L1 ˚1/�� � ��P.Lr ˚1/

with the same normal bundleNZ=X as in the original space. We letzX be the
blow-up along this copy ofZ. The proof of the blow-up formula then follows
the same reasoning as in the toric case, where we now make use of the rigidity
of fiberwise analogues of the operators@˝ �.Ea/. For example, let us examine
how to generalize the bundle�.1 C ai ; 1 C a�i/ on .P1/n to the fibrationX .

For each fibration�i W P.Li ˚ 1/! Z, we have the exact sequence

0 ! Si ! ��
i .Li ˚ 1/! Qi ! 0

of tautological bundles. The vertical tangent bundle toP.Li ˚ 1/ is stably
equivalent to the direct sum of hyperplane bundlesHi ˚ H�i , whereHi D
Hom.��

i Li ;Si/ andH�i D Hom.1;Si/. Similarly, the vertical tangent bundle
to the fibration

� W P.M ˚ 1/! Z;

with tautological bundleS is stably equivalent to the direct sumV ˚ H where
V D Hom.��M;S/ andH D Hom.1;S/. All of these bundles extend natu-
rally to the whole fibrationX . Recall that if˛i D �˛�i , then@˝ �.˛i ; ˛�i/

defines a elliptic operator on.P1/n with vanishing equivariant index (note that
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for convenience of notation we have defined˛i D 1 C ai). For the fibrationX ,
we replace@˝ �.˛i ; ˛�i/ by the following fiberwise analogue:

@˝

˙r
O

iD˙1

1
O

nD1

��y˛i qn�1H �
i ˝�y�˛i qnHi ˝

1
O

mD1

SqmH �
i ˝ SqmHi

˝

1
O

nD1

��yqn�1V � ˝�y�1qnV ˝

1
O

mD1

SqmV � ˝ SqmV

˝

1
O

nD1

��y�d�1qn�1H � ˝�ydC1qnH ˝

1
O

mD1

SqmH � ˝ SqmH:

Hered D rank.M /. By performing a fiber integration overX , one can show
that the rigidity of this operator with respect to the obvious torus action on
the fibers follows directly from the rigidity results obtained for@˝ �.˛i ; ˛�i/.
Analogously, there exists a natural generalization of the operator@ ˝ �.1 C
ai ; 1 C m; 1 C a�i/ to a rigid operator on the fibrationzX . We therefore see
that the blow-up formula for the elliptic genus is in all cases a consequence of
rigidity phenomena on toric varieties.

Before moving on, we make a simple observation which will prove conve-
nient in the next section. LetX be a smooth toric variety with toric divisorsDi .
SinceTX is stably equivalent to

L`
iD1 O.Di/, the elliptic genus of the pair

.X;
P

aiDi/ is equal to the index of the operator

@˝ �.a1 C 1; : : : ; a` C 1/;

up to a normalization factor. Moreover, the condition that
N`

iD1 O.Di/
ai C1 is

trivial is equivalent to the condition thatKX �
P

aiDi D 0 as a Cartier divisor.
In this case, we say that.X;

P

aiDi/ is a Calabi–Yau pair. Hence, a trivial
consequence of the rigidity theorem for the elliptic genus of toric varieties is
that Ell.X;DI z; �/D 0 whenever.X;D/ is a toric Calabi–Yau pair.

3. Beyond log-terminal singularities

As observed above, Borisov, Libgober, and Wang’s approach to defining the
elliptic genus of a singular varietyY only appears to work whenY has log-
terminal singularities. This is due to the division by#..ai C1/z/ in the formula
for the elliptic genus of the pair.X;D/, where.X;D/ is a resolution ofY with
discrepancy coefficientsai.X;D/. In pursuit of the broader question, “for what
class of singularities can we make sense of Chern data?”, it is natural to ask
whether log-terminality represents an essential constraint. In what follows, we
will demonstrate that at the very least, the elliptic genus can be defined for all
but a finite class of normal surface singularities.
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Since the terms#..ai C1/z/ do not involve any Chern data, the first thing one
might try to do is simply throw these terms away in the definition of the elliptic
genus of a pair. However, this approach is of little use sinceone would lose
functoriality with respect to birational morphisms. As a second attempt, one
could introduce a perturbationai C "bi to each of the discrepancy coefficients
ai of D, and take the limit as"! 0. Two obvious difficulties with this approach
are.1/ the limit does not always exist, and.2/, even when the limit exists, it
depends on the choice of the perturbation. Moreover, deciding on some fixed
perturbation in advance (like letting allbi D 1) runs into problems if we hope
to preserve functoriality.

To carry out this perturbation approach, we therefore require a distinguished
class of perturbation divisors�.X;D/ D f

P

"biDig satisfying the following
two properties:

(1) For everyD" 2�.X;D/, the limit as"! 0 of Ell.X;D C D"I z; �/ exists
and is independent of the choice ofD".

(2) If f W . zX ; zD/! .X;D/ is a blow-up, thenf ��.X;D/��. zX ; zD/.

Assuming we have found a set of perturbation divisors satisfying these proper-
ties, we could then define the elliptic genus of a singular variety Y by the follow-
ing procedure: Pick a log-resolution.X;D/ of Y , and chooseD" 2 �.X;D/.
Then define Ell.Y I z; �/ D lim"!0 Ell.X;D C D"I z; �/. The important point
is that if f W . zX ; zD/ ! .X;D/ is a blow-up, andzD" 2 �. zX ; zD/, then the
answer we get for the elliptic genus ofY is the same, regardless of whether
we work with .X;D C D"/ or with . zX ; zD C zD"/. To see why, note that
f �.KX � D � D"/ D K zX

� zD � f �D". Thus, by functoriality of the elliptic

genus with respect to blow-ups, Ell.X;DCD"I z; �/D Ell. zX ; zDCf �D"I z; �/.
By property.2/, f �D" lies inside�. zX ; zD/. Hence, property.1/ of �. zX ; zD/
implies that lim"!0 Ell. zX ; zD C zD"I z; �/D lim"!0 Ell. zX ; zD C f �D"I z; �/.

For the case of complex surfaces, we have a natural candidatefor �.X;D/
satisfying the second property; namely the set

f�" W�"Di D 0 for all Di � D with discrepancy coefficientD �1g

For if�" is in this set, andzDi � zD has coefficient equal to�1, thenf ��"
zDi D

�"f�
zDi . Now, either zDi is the proper transform of a divisor with�1 discrep-

ancy, or it is a component of the exceptional locus off . In the former case,
�"f�

zDi D 0 by virtue�" belonging to the set�.X;D/; in the latter case,
f�

zDi D 0.
We still must verify that the"!0 limit of Ell .X;DCD"I z; �/ is well-defined

and independent of the choice ofD" 2 �.X;D/ when .X;D/ is a resolution
of a singular complex surfaceY . Unfortunately, it is too much to ask that this
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property hold for all normal surface singularities. Suppose, however, that.X;D/
is a log resolution of a normal surfaceY satisfying the following additional
property: For every componentDi �D with discrepancy coefficientai.X;D/D
�1, Di Š P1 andDi intersects at most two other componentsDi1

;Di2
of D

at a single point (andaik
.D/ ¤ �1 for k D 1; 2). In other words, we assume

that the local geometry in a tubular neighborhoodU of Di is indistinguishable
from a tubular neighborhood of a toric divisor, and moreoverthat we can find
disjoint such neighborhoods for every componentDi with a �1 discrepancy.
Note that sinceDi is an exceptional curve, the adjunction formula implies that
.X;D/jU is a toric Calabi–Yau pair. Under this additional assumption, it turns
out that lim"!0 Ell.X;D C D"I z; �/ exists and is independent of the choice of
D" 2�.X;D/.

To see why the limit exists, note that Ell.X;D C D"I z; �/ is a meromor-
phic function of " with at most a simple pole at" D 0. Up to a normal-
ization factor, the residue of Ell.X;D C D"I z; �/ at " D 0 corresponds to
P

ai .X ;D/D�1 Ell.Di ;DCD"jDi
I z; �/. By adjunction,.Di ;DCD"jDi

/ are all
toric Calabi–Yau pairs, and consequently, the residue of Ell.X;D C D"I z; �/

vanishes by the rigidity theorems discussed in the previoussection.
It remains to check that this limit is independent of the choice of D" 2

�.X;D/. Suppose then thatD";D
0
" are two possible perturbation divisors.

Since the" ! 0 limit of Ell .X;D C D"I z; �/� Ell.X;D C D0
"I z; �/ depends

only on the local geometry near the divisor componentsDi with ai.X;D/D �1,
we may reduce the calculation to the case where.X;D/ is a toric variety. More-
over, since.X;D/ is Calabi–Yau in the tubular neighborhoodsUi of the above
divisor components, we may further reduce to the situation where.X;D/ is
a Calabi–Yau pair. By definition,D" andD0

" are trivial overUi and we may
extend them to trivial divisors over all ofX without affecting the" ! 0 limit
of Ell.X;D C D"I z; �/ or Ell.X;D C D0

"I z; �/ . We have thus reduced the
calculation to the case where.X;D C D"/ and .X;D C D0

"/ are both toric
Calabi–Yau pairs. The rigidity theorem for the elliptic genus in this case then
implies that Ell.X;D C D"I z; �/ D Ell.X;D C D0

"I z; �/ D 0 for all ", which
clearly implies that their limits are the same as"! 0.

Of course, the above discussion is moot unless one can find a reasonably
large class of surface singularities whose resolutions satisfy the additional crite-
rion of being locally toric in a neighborhood of the exceptional curves with�1

discrepancies. Fortunately, as observed by Willem Veys [12], nearly all normal
surface singularities satisfy this property. The sole exceptions consist of the nor-
mal surfaces with strictly log-canonical singularities. These are surfaces whose
resolutions.X;D/ satisfyai.X;D/� �1, with someai.X;D/D �1. A well-
known example is the surface singularity obtained by collapsing an elliptic curve
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to a point. For a complete classification of these singularities, see [2]. Based on
this observation, Veys used a limiting procedure similar tothe one given here
to define Batyrev’s string-theoretic Hodge numbers for normal surfaces without
strictly log-canonical singularities.

Note that, for dimensionality reasons, the elliptic genus of a smooth surface
is a coarser invariant than the surface’s collective Hodge numbers. Nevertheless,
the approach discussed here affords several advantages. First, the technique of
applying the rigidity properties of toric Calabi–Yau pairsis easy to adapt to
more complicated invariants, such as the character-valuedelliptic genus and the
elliptic genus of singular orbifolds. These are finer invariants than the ordinary
elliptic genus which are not characterized entirely by Hodge numbers. Second,
this approach provides some clues about how to define elliptic genera for higher-
dimensional varieties whose singularities are not log-terminal. For example, a
possible generalization of the locally toric structure we required of the�1 dis-
crepancy curves is to demand that all�1 discrepancy divisors be toric varieties
fibered over some smooth base. The analogue of property.2/ for �.X;D/ in
this case is thatc1.D"/ D 0 when restricted to each fiber of a�1 discrepancy
divisor.

4. Further directions

Singular Chern numbers constructed out of elliptic genera have an interesting
interpretation when the singular variety is the quotient ofa smooth varietyX
by a finite groupG. In this situation, quantum field theory on orbifolds gives
rise to a definition for the elliptic genus ofX=G constructed entirely out of the
orbifold data of.X;G/. This orbifold version of the elliptic genus turns out
to be closely related to the singular elliptic genus ofX=G: for example, when
the G-action has no ramification divisor, the orbifold elliptic genus of.X;G/
equals the singular elliptic genus ofX=G. This is a specific example, proved by
Borisov and Libgober [5], of a much larger interaction between representation
theory and topology known as the McKay correspondence.

Note that the log-terminality constraint comes for free in this case, since
the germs of quotientsCn=G, whereG is a finite subgroup ofGL.n;C/ are
always log-terminal. Suppose however thatX itself is singular. By following
a procedure similar to the one discussed above for the elliptic genus, one can
continue to define a singular analogue of the orbifold elliptic genus of.X;G/.
At this point it is natural to ask whether the McKay correspondence continues
to hold when we allowX to have singularities. WhenX has log-terminal singu-
larities, this follows directly out of Borisov and Libgober’s proof of the McKay
correspondence. For more general singularities the answerto this question is
not known, although the McKay correspondence has been verified for the cases
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discussed in the previous section: namely, whenX is a normal surface without
strictly log-canonical singularities. See, for example, [14].

As we have seen, many of the techniques for studying ellipticgenera in bi-
rational geometry can be traced back to some rigidity property of the elliptic
genus. It is therefore not surprising that most of these techniques (such as
functoriality of the elliptic genus of a divisor pair) work equally well for the
character-valued elliptic genus. From Totaro’s work, we know that the elliptic
genus completely determines the collection of Chern numbers invariant under
classical flops. An obvious question then is whether the analogous statement
holds for equivariant Chern numbers. From the functoriality property of the
character-valued elliptic genus, one easily verifies that the equivariant Chern
numbers encoded by the character-valued elliptic genus areindeed invariant
under equivariant flops. The more difficult question is whether all flop-invariant
equivariant Chern numbers factor through the character-valued elliptic genus. It
appears that some knowledge of the image of the character-valued elliptic genus
over an equivariant cobordism ring must play a role in answering this question.
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