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Rigidity of differential operatorsand
Chern numbersof singular varieties

ROBERT WAELDER

ABSTRACT. A differential operatorD commuting with anS!-action is said
to be rigid if the nonconstant Fourier coefficients of Keand cokerD are the
same. Somewhat surprisingly, the study of rigid differ@ntiperators turns
out to be closely related to the problem of defining Chern rensibn singular
varieties. This relationship comes into play when we maleafghe rigid-
ity properties of the complex elliptic genus—essentiafiyrdinite-dimensional
analogue of a Dirac operator. This paper is a survey of tigtleorems related
to the elliptic genus, and their applications to the cordtom of “singular”
Chern numbers.

1. Rigidity of elliptic differential operators

Let D: I'(E) — I'(F) be an elliptic operator mapping sections of a vector
bundle E to sections ofF. If D commutes with & = S! action, then keD
and cokerD are finite-dimensiona$ ' -modules. We define the character-valued
index

Indr (D) = kerD —cokerD € R(T)

For example, ifD = d +d* : 2¢¥e"— 2°4ds the de Rham operator on a smooth
manifold X" with a 7" action, then by Hodge theory and homotopy invariance of
de Rham cohomology, Ind D) is a trivial virtual 7-module of rank equal to
the Euler characteristic of. In general, if Ing-(D) is a trivial T-module, we
say thatD isrigid. In the case wher® is the de Rham operator, both kkrand
cokerD are independently trivial'-modules. However, more interesting cases
exist whereD is rigid, but both keiD and cokerD are nontrivial7-modules.
For example, ifX is a spin manifold and : I'(A") — I'(A™) is the Dirac
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operator, therD is rigid. It is instructive to sketch the proof of this facthigh
is due to Atiyah and Hirzebruch [3]:

For simplicity, assume thaf acts onX with isolated fixed point§p}, and
that the action lifts to the spin bundlest. At each fixed poinp, T,X decom-
poses into a sum of one-dimensional complex represensabidh with weights

mi(p),...,muy(p), where2n = dim X. If we view Indr (D) as a function of
t € T, then by the Lefschetz fixed point formula,
1
Indr (D) =)

7 Ty @i =il

A priori, Indz (D) is a function only on the unit circle i@. However, the above
formula shows that we can analytically continue #i@) to a meromorphic
function onS?2, with possible poles restricted to lie on the unit circle t Bince
Ind7 (D) is a virtualT-module, and therefore has a finite Fourier decomposition
of the form Indr (D) = Zaktk, all such poles on the unit circle must cancel.
It follows that Indr (D) is constant. Furthermore, by taking the limitrzas- oo,

one sees that the character-valued index is identicallg. zér similar proof
shows that on a complex manifold+ El (whose corresponding index is the
arithmetic genus) is rigid with respect to holomorphic ®actions.

The situation becomes more difficult if we investigate thgidity of the
twisted Dirac operator® ® E, whereE is an equivariant vector bundle. For
example, ifdg = D ® (AT @ A7) is the signature operator on a spin manifold,
the Lefschetz fixed point formula for the index#§ ® T X gives:

1
Indr(ds ® TX) =Y ]‘[ S o) o))

1_4—mi(p)
D j—l

mj m; (p)

Here£m;(p) are the weights of th&'-action on the complexified tangent bun-
dle of X at p. The factorsy (1" (P) + =™ (P)) come from the twisting of the
rigid operatordg by TX. Thus, in this situation, the fixed point formula for
Indr(ds ® TX) has poles ab and oo, and we can no longer apply the same
argument.

It is therefore astonishing that, based on ideas from phy¥iitten predicted
the rigidity of an infinite sequence of twisted Dirac operatof this nature on a
spin manifold. Witten’s insight came from generalizing aagtum mechanics-
inspired proof of the Atiyah—Hirzebruch theorem to its agale in the setting
of superstring theory. We briefly sketch this point of view, given in [17]:

In supersymmetric quantum mechanics on a spin manifol@vith one real
fermion field), the Hilbert space of states corresponds ¢osghace of square-
integrable spinors. Quantization of the superchagye yields the Dirac op-
erator. In passing to superstring theory, the Hilbert spHcgtates should be
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interpreted as spinors on the loop spac&ofit therefore makes sense to think
of the quantization of the supercharge in this theory as addaperator on the
loop space. Now for any manifold’, the loop space ok” possesses a natural
ST action given by rotating the loops. The fixed points of thiarccorrespond

to the space of constant loops, which we may identify witlitself. Via formal
application of the Atiyah—Bott—Lefschetz fixed point forl@mwne can reduce
the S! character-valued index of operators constructed ou@ ¢fto integrals
over X. To give an example, left denote the spin bundle on the loop space. If
we quantize a theory with two fermionic fielgs,, the associated Hilbert space
becomesA ® A. Now in finite dimensionsA ® A corresponds to the de Rham
complex.A ® A therefore provides a good candidate for the de Rham complex
on the loop space. At the classical level of this theory, ceedn involutiore

on the space of superfields, sendihg — —y 4+ andy_ — ¥ _ which preserves
the action Lagrangian. Wheki is spin, this involution descends to the quantum
theory; the corresponding action@in A ® A may be interpreted as the Hodge
star operator acting on forms. Consequently, one can eanstut of Q4+ ando

a canonical choice of a signature operator on the loop sjgcthe fixed point
formula, its S '-charactered valued index reduces to the index of

o0 o0
ds ® Q) AgnTX ® Q) SynTX =ds ® Oy

over X. Here, for any vector bundl€', we define
Agn(E)=14+¢"E +¢*"EANE +---

and
Sqln(E):1-|—qu+q2mE2+’

whereg™ denote the weights of the inducet! action of anS'-bundle over

X. If X itself has anS! action, the character-valued index #§ ® @, as a
function of ¢! may be interpreted as the signatures associated to a fafmily o
field theories parameterized By The rigidity of ds ® ©, then follows from a
formal application of deformation invariance of the indéDarac operators on
loop spaces. For details, see [16] or [17].

Note that sincels ® Oy =ds +2qds  TX +---, the rigidity ofdg ® TX
now follows from the rigidity of theds ® ©,. It is interesting to point out
that, althoughis ® @, is defined on any oriented manifold, it is only rigid for
spin manifolds. Heuristically this makes sense when we vigw® ©, as the
signature operator on the loop spaceXof For if X is oriented, the signature
operatord is easily seen to be rigid. But the the loop space is orientecigely
whenX is spin.
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Dirac operators on the loop space provide concrete exarnpkdfiptic gen-
era. These are homomorphisms 259 — R from the oriented cobordism ring
to an auxiliary ringR, whose characteristic power series are defined in terms of
certain elliptic integral expressions.

The rigidity theorems of Witten were initially proved undesstricted hy-
potheses by Landweber, Stong, and Ochanine [8; 10], anddedeed in com-
plete form by Bott, Taubes, and Liu [6; 9]. The simplest andstratirect proof
was discovered by Liu, who observed that the modular prigseof the elliptic
genera implied their rigidity. We will provide a sketch ofuls argument for the
case of the complex elliptic genus, which is defined as theximdd ® E; ,on
an almost complex manifold of dimensian, whereE, ,, is given by

o0 o0
Eqy=y""Q A_yyn1 T"XRA_yynT'X & (X) SqnT"X & SgnT'X
m=1 m=1
HereTXC =T'X&T"” X denotes the decomposition of the complexified tan-

gent bundle into holomorphic and antiholomorphic compésieBy Riemann—
Roch, the ordinary index of this operator is given by thegrae

xjﬁ(%—z,r>
WSES

Here x; denote the formal Chern roots Gf'X, y = ¢**Z andg = 27'".
¢ (v, ) denotes the Jacobi theta function

[e.e] o0 [e.@]
Y(v, 1) = l_[ (1—¢™)-¢"®2sin7v l_[ (1—gme?™iv) 1_[ (1—gMe 271
m=1 m=1

m=1

We will frequently refer to In@d ® E, y) as El(X; z, r). The almost-complex
version of Witten’s rigidity theorem for this operator &stthat the complex
elliptic genus ofX is rigid provided that;(X) = 0.

The idea of the proof is as follows: For simplicity, assumet tihe 7"-action
on X has isolated fixed point§p}, with equivariant weights; (p) on TI;X.
Writing ¢ € T ast = e>™'*, we have by the Lefschetz fixed point formula,

~ L O (p)u—z,17)
Indr(0® Eg4 y) =
nd7(0® Eg,y) ;]1:[1 B(mj(p)u, 1)

Write Ind7 (3® Eg4y) = F(u,z, 7). Itis evident from the fixed point formula
that F(u, z, ) is a meromorphic function of x C x H which is holomorphic
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inzandr. Letz = % whereN is a common multiple of the weights; (p).
Then, using the translation formulas:

du+1,7v)=-0u,r1),
Yu+1.7)=q 27 HY (u, 1),

itis easy to see thal(u + 1, 37, 7) = F(u, 4, 7) and thatF(u + N1, 4, 7) =
F(u, % 7). Thus, for each fixed, F(u, % 7) is a meromorphic function on the
torus defined by the latticé & N Zt. Suppose we could show tha(u, % 7)
was in fact holomorphic im. Then for each multipléV of the weights»; (p)
and for each e H, F(u, 1{, 7) would have to be constant in It would follow
that 7, 0 F(u, «-7) = 0. Since this equation held for an infinite set(@f z, 7)
contamlng a limit point, it would hold for alju, z, r). HenceF(u, z, t) would
be independent af, which is precisely the statement of rigidity for the operat
Indr (0® Eg,y).

Thus, we are reduced to proving(u, z, ) is holomorphic. Let(‘c’z) €
SL,(Z) act onC x C x H by the rule

( ) ( u z art + b)
U,z,7) > , , .

ct+d ct+d ct+d
Using the transformation formula

u at+b
= cr+d
ﬁ(cr—i—d = +d) Z(cr—l—d)Ze H(u, 1),
. u z at+b\ .
where( is an eighth root of unity, one sees trﬁ(CTer, Trd cr—i—d) is

equal to

_ d(mi(p)u—z,7)
K . § :e 2mc§] 1mj(puz/(ct+d) | | J
v(mj(p)u, 1)

where K is a nonzero holomorphic function ¢#, z, t). Now the Calabi—Yau
condition implies that the only possiblE-action onKy is given by multipli-
cation by a constant along the fibers. Si@§=1 mj(p) is the weight of the
T-action induced oKy, it follows that}"7_, m;(p) is the same constant for

all p. We may therefore pull the expressien?™i¢ Xj=1m; (Puz/(ct+d) otside
of the above summation sign, and conclude that

( u z at+b
ct+d’ ct+d’ ct+d

for K’ a nonzero holomorphic function.
Now the key observation: First, by the fixed point formul&u, z, t) has
possible poles only for = r + st, wherer, s € Q. Moreover, sinceF(u, z, 1)

) =K'F(u,z,1),
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is the character-valued index of an elliptic differentiglecator, the poles of
F(u, z, ) must cancel for € R, since in that cas#'(u, z, ) admits a Fourier
decompositiony_ b (z, 7)e2™* (in a rigorous treatment of the subject, one
must of course deal with convergence issues regarding uinisngtion). Note
that this is also the key observation in Bott and Taubes’ fprddus, foru a
possible pole, write: = (m/{) (ct 4+ d), wherec andd are relatively prime.
By relative primality, we can find integets and b so thatad — bc =1, i.e.,
(“%) e SLy(z). Then

K/.F(%(6f+d),2,f> — F(Wl z ar—i—b)

L ct+d ct+d

where K’ # 0. It follows that F(u, z, T) is holomorphic, which completes the
proof.

The above rigidity theorem for the complex elliptic genuseo@alabi—Yau
manifold has an interesting analogue for toric varietielsiclv has applications
to the study of singular varieties. L&l be a complete fan which corresponds
to a smooth toric varietyX. This means thak' is a finite union of cone$C;}
inside the real vector spacé ® R, whereN is an integral lattice of rank.
For any two coneg€’;, C, in X', we require thatC; N C, is a proper subcone,
and that the union of the cones &i covers all of N ® R. The smoothness
requirement forX means that th&-dimensional cones havegenerators, each
lying in N. Recall that the data of gives rise to a natural scheme structure as
follows: For each con€ C X, we define the sheaf of regular functions

r'(Uc) =Cle’|fes,

where S¢ is the collection of linear functionalg € Hom(V, Z) that are non-
negative alondg”. The toric varietyX” corresponding to these data is the variety
with affine charts given b¥/c = SpecmI”(Uc).

Note that inclusions of coneS; C C, give rise to inclusions of open sets
Uc, C Uc,. In particular, since every con€ contains the poinb € N as a
subcone, every open sEt contains the open set

Uy = SpecmC[eMomV-2)] o~ (C*)".

The action of this complex torus on itself is easily seen temdt to all ofUc.
In this way, X inherits a natural action by a complex torlig, with isolated
fixed points.

There is a nice relationship between the-invariant divisors on a smooth
toric variety and combinatorial data of its associated $itigh fan: the T¢-
invariant divisors onX are in one-one correspondence with piecewise linear
functionals onX'. For example, iff is a piecewise linear functional oF,
then f is completely determined by its valuggv;) on the generators; € N
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of the 1-dimensional rays o’. These generators, in turn, defifie-Cartier
divisors by the following prescription: I€ is a cone containing;, we define
OW)(Uc) =TUc) - el wherev? is the piecewise linear functional which
is 1 on v; and0 on the remainingl-dimensional rays o. Otherwise, we
setO(v;)(Uc) = I'(Uc). In this way, each piecewise linegr gives rise to
the divisorDy = ) f(v;)O(v;). In terms of this correspondence, it turns out
there is a simple criterion for determining whetheQedivisor Dy is linearly
equivalent to zero: namely)r ~q 0 if and only if /€ Hom(N, Q).

Now, the canonical divisoKy = Dy, where f_ is the piecewise linear
functional given by/_;(v;) = —1. Clearly if ¥ is complete, f_; cannot be
given by a globally defined linear functional in HOM, Z). So compact smooth
toric varieties are never Calabi—Yau, and consequentlyameegpect no rigidity
properties for their complex elliptic genera. Note, howeteat 7X is stably
equivalent to@le O(v;), where the sum is taken over all thedimensional
raysv; of X. Thus, up to a normalization factor, the elliptic genustois given
by the index ofd ® &, where¢ equals

{ o0

oo
QR A_ygn-10W) ' ® A_y-17nOW) & Q) SgmOwi) ™! ® Sgm O(vy)

i=1n=1 m=1

We may viewé as a function of thd¢-line bundle®f=1(9(v,~). In this light,
is natural to introduce, for anyc-line bundle®f:1(9(v,-)“i, with a; # 0, the
following vector bundle, denoted §%aq, ..., ay):

L o0 oo
Q)R Ay gn-10W) T ® A_y=a; gn OWi) ® (R) Sgm Owi) ™' ®Sgm O(v;)
i=1n=1

m=1

We may think ofd ®&(a;., . . ., ay) as a kind of generalized elliptic genus for the
toric variety X. The analogue of the Calabi—Yau condition for this geneealli
elliptic genus is the triviality of thé)-line bundle®f=1(’)(v,~)“f. In fact, if this
bundle is trivial, then

IndT5®S(a1, ...,ap)=0¢€ R(T)[q,y,y_l]]

for any compact torug C T¢. To prove this, it suffices to assume tifat= S'!

and that thel"-action onX has isolated fixed points. We can always find such
a T by first picking a densé-parameter subgroup of a maximal compact
subtorus off-, and then letting” be generated by a compdeparameter sub-
group whose initial tangent direction is sufficient closehat of z. Then the
rigidity of 9Q®&(ay. . . ., ay) follows from Liu’s modularity technique discussed
above. To see that Ind ® £(a;., . .., ay) is identically0, we use the following
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trick observed by Hattori [7]. LeF(u, z, t) = Ind7dQ®&(ay, . . ., a;). The mod-
ular properties of imply that F(u + t, z, 7) = ¢2"“* F(u, z, T). Herec is the
weight of theT -action on the trivial bundl@f=1 O(v;)% . For a generic choice
of T C T¢, this weight will be nonzero. But sincE(u, z, t) is constant ins, we
must have thafF (u, z, ) = e27i? F(u, z, t). This implies thatF(u, z, ) = 0.

2. Chern numbersof singular varieties

We now turn to the problem of defining Chern numbers on singidgeties,
a subject which at first glance appears unrelated to thesbgmuabove. In what
follows we will find that rigidity theorems provide a poweffiool in solving
these types of problems. We first discuss some background.

If X is a smooth compact almost-complex manifold of dimengianthe
Chern numbers ok are the numbers of the form

. > = 'il . iz cee 'i
cll ~~~~~ ln — / (/1 c2 Cnn
X

wherec; denotes théth Chern class of ' X andi; +2iy +---+ni, =dim X/2
(so that the total degree of the integran@ig. Chern numbers are easily seen
to be functions on the complex cobordism rif2g;. Moreover, they completely
characterize2;; in the sense that two almost complex manifolds with the same
Chern numbers must be complex cobordant.

Much of algebraic geometry consists of efforts to extendhriggues from
the theory of smooth manifolds to singular varieties. Miairmodel theory
suggests that one can approach this problem by working oratbrtor “nearly
smooth”) birational model of a given singular varieXy. For a special combi-
nation of Chern numbers, this approach works without arficdifies: namely,
the Chern numbers defining the Todd genus. FaX ifs a smooth complex
manifold, the Todd genus oY is given by the alternating sum

n
xo(X) =) (=1 dim H2°(X).
i=0
By Hartog’s theorem, the space of holomorphiforms is birationally invariant,
and is therefore well-defined even wh&ns singular, by passing to a resolution
of singularities. On the other hand, X is smooth, then by Riemann—Roch,

n
Xi
= [[—=
Xo(X) [Xl.zll—e_x"

wherex; denote the formal Chern roots of the holomorphic tangentileuThe
combination of Chern numbers obtained by performing thevabtegration
therefore makes sense for any compact singular varietyetbtiaerC.
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More generally, we consider the following naive attemptefirdng combina-
tions of Chern numbers oi: Suppose we are lucky enough to have a smooth
minimal modelY for X. Then define;, ... ;,(X) = ¢i,....;,(Y). The main
problem with this approach is that, even when smooth minimadlels exist,
we should not expect them to be unique. In fact, we expectrdifit minimal
models forX to be related to each other by codimensiosurgeries called flips
and flops. A priori, it is not at all clear what combinations@fiern numbers
will be preserved under such operations.

In [11] Totaro set out to classify the combinations of Chemmibers invariant
under classical flops. Here we say that two variefigsand X, differ by a
classical flop if they are the two small resolutions ofafold Y whose singular
locus is locally the product of a smooth- 3-fold Z and the3-fold nodexy —
zw = 0. More precisely,X; and X, are constructed as follows: blowing up
along Z defines a resolution of whose exceptional set is®! x P! bundle
over Z with normal bundled(—1, —1). HereO(—1, —1) denotes the line bundle
over aP! x P!-bundle which coincides with the tautological bundle al@agh
P! direction. Blowing down along either of the&2 fibers therefore produces
two distinct small resolution&’; and X, of Y.

Totaro demonstrated that the combinations of Chern nunitpeasant under
classical flops were precisely the combinations of Cherntrarmiencoded by
the complex elliptic genus in the Riemann—Roch formula. Wé&tch the first
half of his argument—namely, that the complex elliptic geraiinvariant under
classical flops. AsY; and X, are identical away from their exceptional sets,
their differenceX; — X, is complex cobordant to a fibratioA over Z. In
fact, if the exceptional sets of; and X, are theP!-bundlesP(4) andP(B)
corresponding to the rank complex bundles4d and B over Z, then as a dif-
ferentiable manifold,E is simply theP? bundleP(4 @ B*) over Z. Now
the way thatE is actually constructed is by taking a tubular neighborhobd
P(A4) C X, and gluing it to a tubular neighborhood B{B) C X, along their
common boundaries (which are both diffeomorphicZo< S3). The crucial
point is that the stably almost complex structureimduced by this construc-
tion makesE into an SU-fibration. That isE is alP3-bundle whose the stable
tangent bundle in the vertical direction has a complex sitrecsatisfying:; = 0.
He calls these fibers “twisted projective spa@g’,’z. The fiber-integration for-
mula implies that ENE; z,7) = [, Ellz(Py2:2, 7, x1,...,x4) - EIN(Z; 2, 7).
Here&/l(Z;z, 1) is the cohomology class which appears as the integrand in
the Riemann—Roch formula for the elliptic genus f More importantly,
Ell7(Py.2:2. 7. x1,..., x4) denotes the character-valued elliptic genu®gof
with the standard@™* action, with the generatous;, . .., u4 of the Lie algebra
of T# evaluated at the Chern roots, ..., x, of A ® B. Since]’f’a,z is an SU-
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manifold, by the Witten rigidity theorem, I:‘,rll(@z,z;z, 7,X1,...,X4) = CONSL.
Thus, the elliptic genus of is simply the product E([?P"z,z; z,7)-EI(Z; z, 7).
Moreover, sincéﬁz,z is cobordant taY; — Y5>, whereY; are the small resolu-
tions of a3-fold node, and since classical flopping is symmetric Fefolds,
I?’z,z ~ Y, Y. Hence]f”z,z ~ 0 in the complex cobordism ring. We therefore
have that ENX,; z, ) — Ell(X5: z, 1) = EN(P; 2: 2, 7) - EI(Z; 2, 7) = 0.

An obvious consequence of the above discussion is that f@ties Y whose
singular locus is locally the product of a smooth varietyhwat3-fold node, it
makes sense to define the elliptic genug’afo be the elliptic genus of one of
its small resolutions. However, most singular varietigstéapossess even one
small resolution. Itis therefore natural to ask whether@arecontinue to define
the elliptic genus for a more general class of singularitielse right approach
to answering this question is to expand one’s category todecpairs(X, D),
where X is a variety andD is a divisor onX with the property thalky — D
is Q-Cartier. Amapf : (X, D) — (Y, A) in this category corresponds to a
birational morphismf : X — Y satisfyingKxy — D = f*(Ky — A). The idea
is to first define the elliptic genus for smooth pa(rs, D) in such a way that
Ell(X, D; z, t) becomes functorial with respect to morphisms of pairs. Give
two resolutionsf; : X; — Y of a singular varietyt’, with Ky, — D; = f/* Ky,
we could then find resolutiong; : (M, D) — (X, D;) making the following

diagram commute:

(M, D) — (X;,Dy)

gzl lfl

(X2. D) —L2  (v.0)

Functoriality of the elliptic genus would then imply that
Ell(X1, Dy;z,7) = ENM, D; z,1) = EN(X>,, Dy; z, 7).

It would then make sense to define@ilt z, r) = Ell(X;, D1z, 7).

One can simplify this approach by making two observatiorist,Foy intro-
ducing further blow-ups, one can always assume that thepéroal divisors
D; C X; have smooth components with simple normal crossings. (Basdiu-
tions are called “log resolutions”.) Second, by a deep tedulViodarczyk [1],
the birational mag Xy, D) --+ (X,, D,) may be decomposed into a sequence
of maps

(X1. D) =X@ DOy s ... oos (XN D)) = (X, Dy)

where each of the arrows are blow-ups or blow-downs alongomeenters
which have normal crossings with respect to the compondn8. It there-
fore suffices to define BIX, D; z, t) for smooth paird X, D), whereD is a
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simple normal crossing divisor, and prove that Ell D; z, 7) is functorial with
respect to blow-ups along smooth centers which have nomossings with re-
spect to the components &%. This procedure has been carried out successfully
by Borisov and Libgober in [4], and by Chin-Lung Wang in [19]ney define
Ell(X, D; z, ) by the formula

x; ¢ x—j,—z,t ﬂ(&—a-—klz,r)ﬁ Z, T
[ (2% )1_[ 1 @+bze)pen
X ﬁ(ﬁ, ) ﬁ(ﬁ’i —2,7) 9 (@ + Dz, 7)
Here thex; denote the formal Chern roots @tX and theD; denote the first
Chern classes of the componemisof D with coefficientsz; (X, D). Note that
since?d (0, ) =0, the above expression only makes sense fef —1. Naturally,
this places some restrictions on the types of singulastiesved in the definition
of Ell(Y; z, ). For example, at the very leakt must possess a log resolution
(X, D) — (Y,0) such that none of the discrepancy coefficiemt€X, D) are
equal to—1. In order to ensure that ElIV; z, ) does not depend on our choice
of a log resolution(X, D), we actually must require that the discrepancy co-
efficientsa; (X, D) > —1. To see why, suppose thék’;, D) and (X, D,)
are two log resolutions of with discrepancy coefficients; (X;, D;) # —1.
To prove that E.X;, D;z, 1) = Ell(X;, D;; z, t), we must connect these two
resolutions by a sequence of blow-ups and blow-downs, agpRanctoriality
of the elliptic genus of pairs at each stage. But if some ofdlserepancy
coefficientsa; (X1, D) are greater thar 1, and others less thanl, then after
blowing up X;, we may acquire discrepancy coefficients equat1o In this
case, the elliptic genus of one of the intermediate pairkérchain of blow-ups
and blow-downs will be undefined, and consequently we willehao means
of comparing the elliptic genera ¢, D) and (X,, D,). The only obvious
way of avoiding this problem is to requitg (X;, Dj) > —1. This constraint is
guite familiar to minimal model theorists; singular vaiéstY possessing this
property are said to haveg-terminalsingularities.

Functoriality of the elliptic genus provides a nice expl#orafor the invari-
ance of the elliptic genus under classical flops. Fak'jfand X, are related
by a classical flop, then there exists a common resolufionX — X; with
/1 Kx, = f," Kx,. Two varieties related in this way are said toAeequivalent
One therefore discovers from this approach that the fund&aheslation leaving
the elliptic genus invariant is not flopping bit-equivalence.

The original proofs of functoriality of the elliptic genuby Borisov, Lib-
gober, and Wang, are based on an explicit calculation of tsiborward f
of the integrand in (2-1), wherg : (X, D) — (Xj, Dy) is a blow-down. The
obstruction to this push-forward giving the correct integt on X, is given
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by an elliptic function with values if*(X,). One can then use basic elliptic
function theory to show that this function vanishes. In wiodiows, we will
sketch a different proof, similar to the one in [13], that reskise of the rigidity
properties of the elliptic genus. This approach has seeshedntages: the first
is that the proof can be easily generalized to more exotisimes of elliptic
genera, such as the character-valued elliptic genus fofolb. Though the
original proofs could be adapted to this situation, theipliementation in the
most general setting is cumbersome. Another advantagatistime variation
of this approach appears to be useful for studying elliptinega for varieties
with non-log-terminal singularities. We will have more tayson this in the
following section. Recall though that the rigidity of thdigic genus for SU-
manifolds was the key step in Totaro’s proof of the invar@n€elliptic genera
under classical flops. It is therefore reasonable to exjpgidity phenomena to
play a useful role in the study of elliptic genera of singwlarieties.

Proceeding with the proof, we lé&f be a smooth variety an® =) a; D; a
simple normal crossing divisor oki. Let f : X — X be the blow-up along a
smooth subvariety which has normal crossings with respettte components
of D. We letD = Za,-ﬁ,- + mE be the sum of the proper transforms bf
and the exceptional divisat, whose coefficients are chosen so thgg — D=
f*(Kx — D). B

To avoid getting bogged down in technical details, assyimé&l — X is the
blow-up at a single poinp = D;N...N D,,andDy,..., D, are the only com-
ponents ofD. ThenT X is stably equivalent t *TX @ @D’_, O(D;) ® O(E).
From (2-1), it follows immediately that the proof of the blayp formula for the
elliptic genus amounts to proving that

[s {H zww)}ﬁ% B — (@i + 1)2)9'(0)
19(2’54919( 2 )i 19(2—,,’,)19(—(61,- )2)
2205 = (m + D2)9'(©)
ﬂ(z,,,w—(m +1)2)
—2)9(0) "

2m 2m 2711 —(ai + 1)2)19 (0)
[ H B (52)9 (=) Ul ﬂ(%)ﬁ(—(aiﬂ)z)

Here, for ease of exposition, we have omitted the dependaideon t. Note
that D; = f*D; — E in the above expression. Thus, if we expand both sides
in the variablesf™* D;, E, and D;, the blow-up formula is easily seen to hold
for integrals of Chern and divisor data not involvid Note however that in a
neighborhood of, (X D) has the exact same structure as the blow- upoat

the origin, with the divisorD;, . .., D, corresponding to the proper transforms
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of the coordinate hyperplanes @f*. For the purpose of proving the blow-up
formula, we may therefore assume tiat~ (P')” and thatX is the blow-up
of X at[0:1]x---x[0:1]. Viewed as a toric varietyX is defined by the fan
Y C N Q@R with 1-dim raysR(#ey),...,R(%e,), whereey, ..., e, form an
integral basis for the lattic&/. The fanX of X is obtained froms by adding
the rayR(e; +---+ey). The divisorsD; C X correspond to the ray®e; in X;
and the divisorsD; and E correspond to the rayRe; andR (eq +---+e,) in <.
Using the fact that the tangent bundle of smooth toric vanégth T¢-invariant
divisors D;, j = 1,...,¢, is stably equivalent t@le O(Dj), the blow-up
formula for X' reduces to proving that

/ 1—[ TV 2,,, — (ax +1)2)8'(0) 1—[ =k — (a_y + 1)z)9'(0)
Teoi 02w (—@+ D2 o ﬂ(é’;ﬁ)ﬂ(—(a_kﬂ)z)

[nzn,ﬁ(m (aj + 1)2)D'(0) 1—[ Dig (B — (a_; +1)2)9'(0)
ol M+ D)) oy () (—(a—j + 1)2)

In this formula, D_; denote thelc-divisors onX corresponding to thé-dim
raysR(—e;), with coefficientsa—_; = 0. D_; denote their proper transforms,
which are simply given by™* D_;, sinceD_; are defined away from the blow-
up locus. For ease of exposition, we alsolﬁ;,tH = FE, witha,+, =m.

Now the crucial observation is that in the above formula, RHEHS is
independent of the coefficients_;. For sinceﬁ_j are disjoint fromkE, any
divisor intersection data involvinﬁ_ ;j will be unchanged after formally setting
E = 0. Therefore, the parts of RHSLHS dependingz_; will be unchanged
after settingE = 0. But formally letting £ = 0 clearly gives RHS= LHS.
Consequently, RHS LHS depends only ony, ..., a,

Let us therefore define_; so that(1+a—;) =—(1+a;). As discussed inthe
previous section, the set of coefficiertls+ a4 ;) assigned to the rayR(+e;)
give rise to a piecewise linear functiongl= gi44,,14+4_; On the fanX. In
fact, g is simply the global linear functional which maps the basgstarse; to
(1+a;). As g € Hom(N, Z), it also defines a global linear functional an,
taking the valu®_7_, (1+a;) one; +---+e,. Now by the discrepancy formula
for blow-ups,>"7_, (14+a;) = (1+m). We see from this that the piecewise linear
functional onX defined by assigning the coefficierfis+ a+ ;) to R(+e;) and
(1+m)toR(e; +---+e,) corresponds to this same global linear functional

It follows that the bundles

n
Oler +---+en)' ™ ® Q) Ofen)' ™ © O(—er) '+~
i=1
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and @', O(e;)'t% ® O(—e;)! T2~ are trivial asQ-line bundles onX and
X, respectively. Consequently,

INdd®&e(14+ai,1+m,14+a_;)=Indd®&E(1+a;, 1 +a_;)=0.

But, up to a normalization factor, Inl® E(l4a;j,1 +m,1 +a—;) =RHS
and Indd ® £(1 +a;, 1 + a_;) = LHS for the given new values of_;. Thus,
RHS = LHS for (1 + a—;) = —(1 4+ a;), and therefore also far_; = 0.

This completes the proof of the blow-up formula for the cabeng the blow-
up locus is a single point. For completeness, let us outtireaise for the blow-
up along a subvariety with normal crossings with respect to the components
of D. This case is handled in much the same way, the only differéeg that
instead of reducing to the situation whekeis toric, we instead reduce to the
case whereX is a toric fibration, fibered over the blow-up locds Namely, by
deformation to the normal cone, we may assume that

X=PMa)xP(Li®1)x---xP(L, ®1).
Here, for the componentd; intersectingZ,
Li=0(Dj)|z

and M is the quotient ofVz,x by @ L;. The productx is the fiber product of
the corresponding projective bundles over We now view D; as the divisors
given by the zero sections of the bundles Moreover, the zero sections &f
and M together define acopy & inP(M @ 1) xP(L1® 1) x---xP(L, ® 1)
with the same normal bundl&¥ 7, x as in the original space. We &t be the
blow-up along this copy o¥. The proof of the blow-up formula then follows
the same reasoning as in the toric case, where we now makd treeragidity
of fiberwise analogues of the operatdr® &(a). For example, let us examine
how to generalize the bundfg&1 + a;, 1 +a—;) on (P!)” to the fibrationX .

For each fibrationr; : P(L; ® 1) — Z, we have the exact sequence

08> (Li®l)— 0; =0

of tautological bundles. The vertical tangent bundleP(d.; & 1) is stably
equivalent to the direct sum of hyperplane bundiés® H_;, where H; =
Hom(rx}L;, S;) and H—; = Hom(1, S;). Similarly, the vertical tangent bundle
to the fibration

m:P(Mel)— Z,

with tautological bundles is stably equivalent to the direct sume H where
V = Hom(z*M,S) and H = Hom(1, S). All of these bundles extend natu-
rally to the whole fibrationY. Recall that ife; = —a—;, thend ® & (o, oa—;)
defines a elliptic operator ofP!)” with vanishing equivariant index (note that
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for convenience of notation we have defingd= 1 + ;). For the fibration,
we replaced ® &£(«;, a—;) by the following fiberwise analogue:

+r o0 o0
0® Q) ) A_yeign—1 H ® Ay-aign H; ® Q) Sy H; @ Sqm H;

i=+1n=1 m=1

oo (o,¢]
R A_ -1V Q@ AyoignV @ (R) Sgm V* ® SgmV

n=1 m=1

o0 o0
Y ® A_y—a'—lqn—l H*® Ayd+1an ® ® Sqgm H*® Sqgm H.

n=1 m=1
Hered = rank(M). By performing a fiber integration oveY, one can show
that the rigidity of this operator with respect to the ob@awrus action on
the fibers follows directly from the rigidity results obtaihford ® & («;, —;).
Analogously, there exists a natural generalization of theratord ® &(1 +
ai,1+m,1 + a_;) to a rigid operator on the fibratio. We therefore see
that the blow-up formula for the elliptic genus is in all caseconsequence of
rigidity phenomena on toric varieties.

Before moving on, we make a simple observation which willvereonve-
nient in the next section. Let be a smooth toric variety with toric divisor3;.
SinceTX is stably equivalent t@le O(D;), the elliptic genus of the pair
(X,>_a; D;) is equal to the index of the operator

IQE(@y+1,...,a;+1),

up to a normalization factor. Moreover, the condition t®f=1 O(D;)%*1is
trivial is equivalent to the condition th&y — > a; D; = 0 as a Cartier divisor.
In this case, we say thdtY, Y a; D;) is a Calabi—Yau pair. Hence, a trivial
consequence of the rigidity theorem for the elliptic gentisodc varieties is
that EI(X, D; z, t) = 0 whenever( X, D) is a toric Calabi—Yau pair.

3. Beyond log-ter minal singularities

As observed above, Borisov, Libgober, and Wang'’s approacketining the
elliptic genus of a singular variety only appears to work whelli has log-
terminal singularities. This is due to the division®{(a; 4+ 1)z) in the formula
for the elliptic genus of the paitX, D), where(X, D) is a resolution oft” with
discrepancy coefficients (X, D). In pursuit of the broader question, “for what
class of singularities can we make sense of Chern data®,natural to ask
whether log-terminality represents an essential comgtrén what follows, we
will demonstrate that at the very least, the elliptic genais be defined for all
but a finite class of normal surface singularities.
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Since the termé ((a; + 1)z) do not involve any Chern data, the first thing one
might try to do is simply throw these terms away in the defimitof the elliptic
genus of a pair. However, this approach is of little use simwe would lose
functoriality with respect to birational morphisms. As aced attempt, one
could introduce a perturbatiany + ¢b; to each of the discrepancy coefficients
a; of D, and take the limit as — 0. Two obvious difficulties with this approach
are (1) the limit does not always exist, ar(d), even when the limit exists, it
depends on the choice of the perturbation. Moreover, degidh some fixed
perturbation in advance (like letting d} = 1) runs into problems if we hope
to preserve functoriality.

To carry out this perturbation approach, we therefore reqaidistinguished
class of perturbation divisord (X, D) = {)_ ¢b; D;} satisfying the following
two properties:

(1) For everyD, € A(X, D), the limit ase — 0 of EIl(X, D + D,; z, t) exists
and is independent of the choice bf.
(2 If f:(X,D)— (X, D)is ablow-up, thenf*A(X, D) C A(X, D).

Assuming we have found a set of perturbation divisors satigfthese proper-
ties, we could then define the elliptic genus of a singulaietai” by the follow-
ing procedure: Pick a log-resolutidiX’, D) of Y, and chooseD, € A(X, D).
Then define EUY z,7) = limg_o EIN(X, D + D,; z, 7). The |mportant point
is that if / : (X, D) — (X, D) is a blow-up, andD, € A(X, D), then the
answer we get for the elliptic genus &f is the same, regardless of whether
we work with (X, D + D;) or with (X, D + D,). To see why, note that
f*(Kx —D—D,) = Kg— D — f*D,. Thus, by functoriality of the elliptic
genus with respect to blow ups, B, D+ Dz, 1) = Ell(X, D+f*D8,z 7).
By property(2), f* D, lies |nS|deA(X D). Hence, property1) of A(X, D)
implies that lim_, EII(X D+ Dg,z 7) = limg_o EII(X D+ f*Dg:z, 7).

For the case of complex surfaces, we have a natural candatat X, D)
satisfying the second property; namely the set

{A:: A D; =0 for all D; C D with discrepancy coefficient —1}

For if A is in this set, and); C D has coefficient equal te 1, then f* A, D; =
A f+Di. Now, eitherD; is the proper transform of a divisor with1 discrep-
ancy, or it is a component of the exceptional locusfof In the former case,
Agl*ﬁi = 0 by virtue A, belonging to the setA\(X, D); in the latter case,
f*Di = 0.

We still must verify that the — 0 limit of Ell (X', D+ D,; z, t) is well-defined
and independent of the choice B, € A(X, D) when (X, D) is a resolution
of a singular complex surfacgé. Unfortunately, it is too much to ask that this
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property hold for all normal surface singularities. Supndswever, thatX, D)

is a log resolution of a normal surfadé satisfying the following additional
property: For every componeft; C D with discrepancy coefficient; (X, D) =

—1, D; = P! and D; intersects at most two other componelts, D;, of D

at a single point (and;, (D) # —1 for k = 1,2). In other words, we assume
that the local geometry in a tubular neighborhdof D; is indistinguishable
from a tubular neighborhood of a toric divisor, and morea¥et we can find
disjoint such neighborhoods for every componéntwith a —1 discrepancy.
Note that sinceD; is an exceptional curve, the adjunction formula implieg tha
(X, D)|y is a toric Calabi—Yau pair. Under this additional assumptibturns
out that lim._,o EIl(X, D + D,; z, ) exists and is independent of the choice of
D¢ € A(X, D).

To see why the limit exists, note that EM, D + D,;z, t) is a meromor-
phic function ofe with at most a simple pole at = 0. Up to a normal-
ization factor, the residue of EIX, D + D,;z,7) at ¢ = 0 corresponds to
> a;x.p)=—1 EN(Di, D+ D¢|p,; z, 7). By adjunction(D;, D+ D¢|p,) are all
toric Calabi—Yau pairs, and consequently, the residue GXEID + D,; z, 1)
vanishes by the rigidity theorems discussed in the presegtion.

It remains to check that this limit is independent of the cboof D, €
A(X, D). Suppose then thab,, D, are two possible perturbation divisors.
Since thes — 0 limit of Ell (X, D + Dg;z,t) — EI(X, D 4+ D]; z, t) depends
only on the local geometry near the divisor compondntsvith a; (X, D) = —1,
we may reduce the calculation to the case wiigfeD) is a toric variety. More-
over, since X, D) is Calabi—Yau in the tubular neighborhoots of the above
divisor components, we may further reduce to the situatitvere/(X, D) is
a Calabi-Yau pair. By definitionD, and D are trivial overU; and we may
extend them to trivial divisors over all of without affecting thes — 0 limit
of ENN(X, D + Dg;z,7) or EIN(X, D + D;;z,7v) . We have thus reduced the
calculation to the case whek&X, D + D,) and (X, D + D)) are both toric
Calabi—Yau pairs. The rigidity theorem for the elliptic gisnin this case then
implies that ENX, D + D,;z,v) = EI(X, D + D};z,7) = 0 for all ¢, which
clearly implies that their limits are the samesas> 0.

Of course, the above discussion is moot unless one can findsamably
large class of surface singularities whose resolutiorisfgdahe additional crite-
rion of being locally toric in a neighborhood of the excepibcurves with-1
discrepancies. Fortunately, as observed by Willem Vey§ [igarly all normal
surface singularities satisfy this property. The sole pioeas consist of the nor-
mal surfaces with strictly log-canonical singularitieheBe are surfaces whose
resolutions(X, D) satisfya; (X, D) > —1, with somea; (X, D) = —1. A well-
known example is the surface singularity obtained by cesilagan elliptic curve
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to a point. For a complete classification of these singidarisee [2]. Based on
this observation, Veys used a limiting procedure similathi® one given here
to define Batyrev's string-theoretic Hodge numbers for radrearfaces without
strictly log-canonical singularities.

Note that, for dimensionality reasons, the elliptic genfia emooth surface
is a coarser invariant than the surface’s collective Hodgebers. Nevertheless,
the approach discussed here affords several advantagss.tiré technique of
applying the rigidity properties of toric Calabi-Yau paisseasy to adapt to
more complicated invariants, such as the character-vallliptic genus and the
elliptic genus of singular orbifolds. These are finer ingats than the ordinary
elliptic genus which are not characterized entirely by Hodgmbers. Second,
this approach provides some clues about how to define eltietiera for higher-
dimensional varieties whose singularities are not logiteal. For example, a
possible generalization of the locally toric structure wguired of the—1 dis-
crepancy curves is to demand that-all discrepancy divisors be toric varieties
fibered over some smooth base. The analogue of prof@&rtipr A(X, D) in
this case is that; (D;) = 0 when restricted to each fiber of-al discrepancy
divisor.

4. Further directions

Singular Chern numbers constructed out of elliptic genaxee lan interesting
interpretation when the singular variety is the quotienaamooth varietyX
by a finite groupG. In this situation, quantum field theory on orbifolds gives
rise to a definition for the elliptic genus &f/ G constructed entirely out of the
orbifold data of (X, G). This orbifold version of the elliptic genus turns out
to be closely related to the singular elliptic genusXofG: for example, when
the G-action has no ramification divisor, the orbifold elliptierus of(X, G)
equals the singular elliptic genus &f/ G. This is a specific example, proved by
Borisov and Libgober [5], of a much larger interaction betweepresentation
theory and topology known as the McKay correspondence.

Note that the log-terminality constraint comes for free histcase, since
the germs of quotient€” /G, whereG is a finite subgroup of7L(n, C) are
always log-terminal. Suppose however thattself is singular. By following
a procedure similar to the one discussed above for theielljginus, one can
continue to define a singular analogue of the orbifold edigenus of(X, G).

At this point it is natural to ask whether the McKay corresg@mce continues
to hold when we allowX” to have singularities. Whek has log-terminal singu-
larities, this follows directly out of Borisov and Libgobeproof of the McKay

correspondence. For more general singularities the an®abis question is
not known, although the McKay correspondence has beenecfidr the cases
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discussed in the previous section: namely, whers a normal surface without
strictly log-canonical singularities. See, for exampled][

As we have seen, many of the techniques for studying ellgeitera in bi-
rational geometry can be traced back to some rigidity ptypefthe elliptic
genus. It is therefore not surprising that most of thesenigcies (such as
functoriality of the elliptic genus of a divisor pair) worlgeally well for the
character-valued elliptic genus. From Totaro’s work, wewrthat the elliptic
genus completely determines the collection of Chern nuslmariant under
classical flops. An obvious question then is whether thecgyuals statement
holds for equivariant Chern numbers. From the functoyigtitoperty of the
character-valued elliptic genus, one easily verifies thatequivariant Chern
numbers encoded by the character-valued elliptic genusndeed invariant
under equivariant flops. The more difficult question is wieetl! flop-invariant
equivariant Chern numbers factor through the characteredeelliptic genus. It
appears that some knowledge of the image of the charadtezedralliptic genus
over an equivariant cobordism ring must play a role in answehis question.
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