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Hodge theory meets the minimal model
program: a survey of log canonical and

Du Bois singularities
SÁNDOR J. KOVÁCS AND KARL E. SCHWEDE

ABSTRACT. We survey some recent developments in the study of singulari-
ties related to the classification theory of algebraic varieties. In particular, the
definition and basic properties of Du Bois singularities andtheir connections
to the more commonly known singularities of the minimal model program are
reviewed and discussed.

1. Introduction

The primary goal of this note is to survey some recent developments in the
study of singularities related to the minimal model program. In particular, we
review the definition and basic properties ofDu Bois singularitiesand explain
how these singularities fit into the minimal model program and moduli theory.

Since we can resolve singularities [Hir64], one might ask why we care about
them at all. It turns out that in various situations we are forced to work with
singularities even if we are only interested in understanding smooth objects.

One reason we are led to study singular varieties is providedby the minimal
model program [KM98]. The main goal is the classification of algebraic vari-
eties and the plan is to find reasonably simple representatives of all birational
classes and then classify these representatives. It turns out that the simplest
objects in a birational class tend to be singular. What this really means is that
when choosing a birational representative, we aim to have simpleglobal prop-
erties and this is often achieved by a singular variety. Being singular means that
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there are points where thelocal structure is more complicated than on a smooth
variety, but that allows for the possibility of still havinga somewhat simpler
global structure and along with it, good local properties atmost points.

Another reason to study singularities is that to understandsmooth objects we
should also understand how smooth objects may deform and degenerate. This
leads to the need to construct and understand moduli spaces.And not just moduli
for the smooth objects: degenerations provide important information as well. In
other words, it is always useful to work with complete moduliproblems, i.e.,
extend our moduli functor so it admits a compact (and preferably projective)
coarse moduli space. This also leads to having to consider singular varieties.

On the other hand, we have to be careful to limit the kinds of singularities that
we allow in order to be able to handle them. One might view thissurvey as a
list of the singularities that we must deal with to achieve the goals stated above.
Fortunately, it is also a class of singularities with which we have a reasonable
chance to be able to work.

In particular, we will review Du Bois singularities and related notions, in-
cluding some very recent important results. We will also review a family of
singularities defined via characteristic-p methods, the Frobenius morphism, and
their connections to the other set of singularities we are discussing.

Definitions and notation. Let k be an algebraically closed field. Unless oth-
erwise stated, all objects will be assumed to be defined overk. A schemewill
refer to a scheme of finite type overk and unless stated otherwise, apoint refers
to a closed point.

For a morphismY ! S and another morphismT ! S , the symbolYT will
denoteY �S T . In particular, fort 2 S we writeXt D f �1.t/. In addition, if
T D SpecF , thenYT will also be denoted byYF .

Let X be a scheme andF anOX -module. Them-th reflexive powerof F is
the double dual (or reflexive hull) of them-th tensor power ofF :

F
Œm� WD .F˝m/��:

A line bundleon X is an invertibleOX -module. AQ-line bundleL on X is
a reflexiveOX -module of rank1 that possesses a reflexive power which is a
line bundle, i.e., there exists anm 2 NC such thatL Œm� is a line bundle. The
smallest suchm is called theindexof L .

� For the advanced reader: whenever we mention Weil divisors,assume thatX
is S2 [Har77, Theorem 8.22A(2)] and think of aWeil divisorial sheaf, that
is, a rank1 reflexiveOX -module which is locally free in codimension1. For
flatness issues consult [Kol08a, Theorem 2].

� For the novice: whenever we mention Weil divisors, assume thatX is normal
and adopt the definition [Har77, p. 130].
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For a Weil divisorD onX , its associatedWeil divisorial sheafis theOX -module
OX .D/ defined on the open setU �X by the formula

� .U; OX .D//D
�

a

b

ˇ

ˇ

ˇ

a; b 2 � .U; OX /; b is not a zero divisor anywhere
on U , andDjU C divU .a/�divU .b/� 0:

�

and made into a sheaf by the natural restriction maps.
A Weil divisor D on X is aCartier divisor, if its associated Weil divisorial

sheaf,OX .D/ is a line bundle. If the associated Weil divisorial sheaf,OX .D/

is a Q-line bundle, thenD is a Q-Cartier divisor. The latter is equivalent to
the property that there exists anm 2 NC such thatmD is a Cartier divisor.
Weil divisors form an abelian group. Tensoring this group with Q (overZ) one
obtains the group ofQ-divisorson X . (If X is not normal, some unexpected
things can happen in this process; see [Kol92, Chapter 16].)

The symbol� stands forlinear and� for numerical equivalenceof divisors.
Let L be a line bundle on a schemeX . It is said to begenerated by global

sectionsif for every pointx 2 X there exists a global section�x 2H 0.X; L /

such that the germ�x generates the stalkLx as anOX -module. IfL is gener-
ated by global sections, then the global sections define a morphism

�L WX ! PN D P
�

H 0.X; L /�
�

:

L is calledsemi-ampleif L m is generated by global sections form� 0. L

is calledample if it is semi-ample and�L m is an embedding form � 0. A
line bundleL on X is calledbig if the global sections ofL m define a rational
map�L m W X 99K PN such thatX is birational to�L m.X / for m� 0. Note
that in this caseL m need not be generated by global sections, so�L m is not
necessarily defined everywhere. We leave it for the reader the make the obvious
adaptation of these notions for the case ofQ-line bundles.

The canonical divisorof a schemeX is denoted byKX and thecanonical
sheafof X is denoted by!X .

A smooth projective varietyX is of general typeif !X is big. It is easy to
see that this condition is invariant under birational equivalence between smooth
projective varieties. An arbitrary projective variety is of general typeif so is a
desingularization of it.

A projective variety iscanonically polarizedif !X is ample. Notice that if a
smooth projective variety is canonically polarized, then it is of general type.

2. Pairs and resolutions

For the reader’s convenience, we recall a few definitions regarding pairs.
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DEFINITION 2.1. A pair .X; �/ consists of a normal1 quasiprojective variety
or complex spaceX and an effectiveQ-divisor � � X . A morphism of pairs

 W . zX ; z�/! .X; �/ is a morphism
 W zX ! X such that
 .Supp.wt �// �
Supp.�/. A morphism of pairs
 W . zX ; z�/ ! .X; �/ is calledbirational if
it induces a birational morphism
 W wt X z! X and 
 .wt �/ D �. It is an
isomorphismif it is birational and it induces an isomorphism
 W wt X z! X .

DEFINITION 2.2. Let.X; �/ be a pair, andx 2X a point. We say that.X; �/

is snc atx, if there exists a Zariski-open neighborhoodU of x such thatU is
smooth and�\U is reduced and has only simple normal crossings (see Section
3B for additional discussion). The pair.X; �/ is sncif it is snc at allx 2X .

Given a pair.X; �/, let .X; �/reg be the maximal open set ofX where
.X; �/ is snc, and let.X; �/Sing be its complement, with the induced reduced
subscheme structure.

REMARK 2.2.1. If a pair.X; �/ is snc at a pointx, this implies that all com-
ponents of� are smooth atx. If instead of the condition thatU is Zariski-open
one would only require this analytically locally, then Definition 2.2 would define
normal crossing pairs rather than pairs with simple normal crossing.

DEFINITION 2.3. A log resolutionof .X; �/ is a proper birational morphism
of pairs� W . zX ; wt �/! .X; �/ that satisfies the following four conditions:

� zX is smooth.
� wt �D ��1

� � is the strict transform of�.
� Exc.�/ is of pure codimension1.
� Supp. z�[Exc.�// is a simple normal crossings divisor.

If, in addition,

� the strict transformz� of � has smooth support,

then we call� anembedded resolutionof ��X .
In many cases, it is also useful to require that� is an isomorphism over

.X; �/reg.

3. Introduction to the singularities of the mmp

Even though we have introduced pairs and most of these singularities make
sense for pairs, to make the introduction easier to digest wewill mostly discuss
the case when� D ?. As mentioned in the introduction, one of our goals is
to show why we are forced to work with singular varieties evenif our primary
interest lies with smooth varieties.

1Occasionally, we will discuss pairs in the nonnormal setting. See Section 3F for more details.
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3A. Canonical singularities. For an excellent introduction to this topic the
reader is urged to take a thorough look at Miles Reid’s Young Person’s Guide
[Rei87]. Here we will only touch on the subject.

Let us suppose that we would like to get a handle on some varieties. Perhaps
we want to classify them or make some computations. In any case, a useful
thing to do is to embed the object in question into a projective space (if we can).
Doing so requires a (very) ample line bundle. It turns out that in practice these
can be difficult to find. In fact, it is not easy to find any nontrivial line bundle
on an abstract variety.

One possibility, whenX is smooth, is to try a line bundle that is “handed”
to us, namely some (positive or negative) power of thecanonical line bundle;
!X D detT �

X
. If X is not smooth but instead normal, we can construct!X on

the smooth locus and then push it forward to obtain a rank one reflexive sheaf
on all of X (which sometimes is still a line bundle). Next we will explore how
we might “force” this line bundle to be ample in some (actually many) cases.

Let X be a minimal surface of general type that contains a.�2/-curve (a
smooth rational curve with self-intersection�2). For an example of such a
surface consider the following.

EXAMPLE 3.1. zX D .x5C y5C z5Cw5 D 0/ � P3 with the Z2-action that
interchangesx$y andz$w. This action has five fixed points,Œ1 W1 W�"i W�"i �

for i D 1; : : : ; 5, where" is a primitive fifth root of unity. Hence the quotient
zX=Z2 has five singular points, each a simple double point of typeA1. Let

X ! zX=Z2 be the minimal resolution of singularities. ThenX contains five
.�2/-curves, the exceptional divisors over the singularities.

Let us return to the general case, that is,X is a minimal surface of general type
that contains a.�2/-curve,C �X . AsC 'P1, andX is smooth, the adjunction
formula gives us thatKX �C D 0. ThereforeKX is not ample.

On the other hand, sinceX is a minimal surface of general type, it follows
that KX is semi-ample, that is, some multiple of it is base-point free. In other
words, there exists a morphism,

jmKX j WX ! Xcan� P
�

H 0.X; OX .mKX //�
�

:

This may be shown in several ways. For example, it follows from Bombieri’s
classification of pluricanonical maps, but perhaps the simplest proof is provided
by Miles Reid [Rei97, E.3].

It is then relatively easy to see that this morphism onto its image is indepen-
dent ofm (as long asmKX is base point free). This constant image is called
thecanonical modelof X , and will be denoted byXcan.

The good news is that the canonical line bundle ofXcan is indeed ample, but
the trouble is thatXcan is singular. We might consider this as the first sign of
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the necessity of working with singular varieties. Fortunately the singularities
are not too bad, so we still have a good chance to work with thismodel. In fact,
the singularities that can occur on the canonical model of a surface of general
type belong to a much studied class. This class goes by several names; they are
calleddu Val singularities, or rational double points, or Gorenstein, canonical
singularities. For more on these singularities, refer to [Dur79; Rei87].

3B. Normal crossings. These singularities already appear in the construction
of the moduli space of stable curves (or if the reader prefers, the construction
of a compactificaton of the moduli space of smooth projectivecurves). If we
want to understand degenerations of smooth families, we have to allow normal
crossings.

A normal crossingsingularity is one that is locally analytically (or formally)
isomorphic to the intersection of coordinate hyperplanes in a linear space. In
other words, it is a singularity locally analytically defined as.x1x2 � � �xr D0/�
An for somer � n. In particular, as opposed to the curve case, for surfaces it
allows for triple intersections. However, triple intersections may be “resolved”:
Let X D .xyzD0/�A3. Blow up the originO 2A3 to obtain� WBlOA3!A3,
and consider the proper transform ofX , � W zX ! X . Observe thatzX has only
double normal crossings.

Another important point to remember about normal crossingsis that they are
not normal. In particular they do not belong to the previous category. For some
interesting and perhaps surprising examples of surfaces with normal crossings
see [Kol07].

3C. Pinch points. Another nonnormal singularity that can occur as the limit of
smooth varieties is the pinch point. It is locally analytically defined as the locus
.x2

1
D x2x2

3
/�An. This singularity is a double normal crossing away from the

pinch point. Its normalization is smooth, but blowing up thepinch point (i.e.,
the origin) does not make it any better. (Try it for yourself!)

3D. Cones. Let C � P2 be a curve of degreed andX � P3 the projectivized
cone overC . As X is a degreed hypersurface, it admits a smoothing.

EXAMPLE 3.2. Let� D .xd C yd C zd C twd D 0/ � P3
xWyWzWw �A1

t . The
special fiber�0 is a cone over a smooth plane curve of degreed and the general
fiber �t , for t ¤ 0, is a smooth surface of degreed in P3.

This, again, suggests that we must allow some singularities. The question is
whether we can limit the type of singularities we must deal with. More partic-
ularly to this case, can we limit the type of cones we need to allow?

First we need an auxiliary computation. By the nature of the computation it
is easier to usedivisorsinstead ofline bundles.
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COMMENTARY 3.3. One of our ultimate goals is to construct a moduli space
for canonical models of varieties. We are already aware thatthe minimal model
program has to deal with singularities and so we must allow some singularities
on canonical models. We would also like to understand what constraints are
imposed if our goal is to construct a moduli space. The point is that in order
to construct our moduli space, the objects must have an amplecanonical class.
It is possible that a family of canonical models degeneratesto a singular fiber
that has singularities worse than the original canonical models. An important
question then is whether we may resolve the singularities ofthis special fiber
and retain ampleness of the canonical class. The next example shows that this
is not always possible.

EXAMPLE 3.4. LetW be a smooth variety andX D X1 [X2 �W such that
X1 andX2 are Cartier divisors inW . Then by the adjunction formula we have

KX D .KW CX /jX ;

KX1
D .KW CX1/jX1

;

KX2
D .KW CX2/jX2

:

Therefore
KX jXi

DKXi
CX3�i jXi

(3.4.1)

for i D 1; 2, so we have

KX is ample () KX jXi
DKXi

CX3�i jXi
is ample fori D 1; 2: (3.4.2)

Next, letX be a normal projective surface withKX ample and an isolated sin-
gular pointP 2 SingX . Assume thatX is isomorphic to a cone�0 � P3 as in
Example 3.2, locally analytically nearP . Further assume thatX is the special
fiber of a family� that itself is smooth. In particular, we may assume that all
fibers other thanX are smooth. As explained in (3.3), we would like to see
whether we may resolve the singular pointP 2X and still be able to construct
our desired moduli space, i.e., thatK of the resolved fiber would remain ample.
For this purpose we may assume thatP is the only singular point ofX .

Let �!� be the blowing up ofP 2� and let zX denote the proper transform
of X . Then�0D zX[E, whereE'P2 is the exceptional divisor of the blowup.
Clearly,� W zX!X is the blowup ofP onX , so it is a smooth surface andzX\E

is isomorphic to the degreed curve over whichX is locally analytically a cone.
We would like to determine the condition ond that ensures that the canonical

divisor of �0 is still ample. According to (3.4.2) this means that we need that
KEC zX jE andK zX

CEj zX
be ample.

As E ' P2, !E ' OP2.�3/, so OE.KE C zX jE/ ' OP2.d � 3/. This is
ample if and only ifd > 3.
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As this computation is local nearP the only relevant issue about the ample-
ness ofK zX

CEj zX
is whether it is ample in a neighborhood ofEX WDEj zX

. By
the next claim this is equivalent to asking when.K zX

CEX / �EX is positive.

CLAIM . LetZ be a smooth projective surface with nonnegative Kodaira dimen-
sion and� �Z an effective divisor. If .KZC� / �C > 0 for every proper curve
C �Z, thenKZ C� is ample.

PROOF. By the assumption on the Kodaira dimension there exists anm > 0

such thatmKZ is effective, hence so ism.KZ C� /. Then by the assumption
on the intersection number,.KZ C � /2 > 0, so the statement follows by the
Nakai–Moishezon criterium. ˜

Observe that, by the adjunction formula,

.K zX
CEX / �EX D degKEX

D d.d � 3/;

asEX is isomorphic to a plane curve of degreed . Again, we obtain the same
condition as above and thus conclude thatK�0

may be ample only ifd > 3.
Now, if we are interested in constructing moduli spaces, oneof the require-

ments of being stable is that the canonical bundle be ample. This means that
in order to obtain a compact moduli space we have to allow conesingularities
over curves of degreed � 3. The singularity we obtain ford D 2 is a rational
double point, but the singularity ford D 3 is not even rational. This does not
fit any of the earlier classes we discussed. It belongs to the one discussed in the
next section.

3E. Log canonical singularities.Let us investigate the previous situation under
more general assumptions.

COMPUTATION 3.5. Let D D
Pr

iD0 �iDi (�i 2 N), be a divisor with only
normal crossing singularities in a smooth ambient variety such that�0 D 1.
Using a generalized version of the adjunction formula showsthat in this situation
(3.4.1) remains true.

KD jD0
DKD0

C
r

X

iD1

�iDi jD0
(3.5.1)

Let f W � ! B a projective family with dimB D 1, � smooth andK�b

ample for allb 2 B. Further letX D�b0
for someb0 2 B a singular fiber and

let � W � ! � be an embedded resolution ofX � � . Finally let Y D ��X D
zX C

Pr
iD1 �iFi where zX is the proper transform ofX andFi are exceptional

divisors for� . We are interested in finding conditions that are necessary for KY

to remain ample.
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Let Ei WD Fi j zX
be the exceptional divisors for� W zX ! X and for the

simplicity of computation, assume that theEi are irreducible. ForKY to be
ample we needKY jwt X as well asKY jFi

for all i to be ample. Clearly, the
important one of these for our purposes isKY jwt X , for which 3.5.1) gives

KY j zX
DK zX

C
r

X

iD1

�iEi :

As usual, we may writeK zX
D ��KX C

Pr
iD1 aiEi , so we are looking for

conditions to guarantee that��KX C
P

.aiC�i/Ei be ample. In particular, its
restriction to any of theEi has to be ample. To further simplify our computation
let us assume that dimX D 2. Then the condition that we want satisfied is that,
for all j ,

� r
X

iD1

.ai C�i/Ei

�

�Ej > 0: (3.5.2)

Write the sum in parentheses asEC�E�, where

EC D
X

ai C�i �0

jai C�i jEi and E� D
X

ai C�i <0

jai C�i jEi :

Choose aj such thatEj � SuppEC. ThenE� �Ej � 0 sinceEj 6�E� and
(3.5.2) implies that.EC�E�/ �Ej > 0. These together imply thatEC �Ej > 0

and then thatE2
C > 0. However, theEi are exceptional divisors of a birational

morphism, so their intersection matrix,.Ei �Ej / is negative definite.
The only way this can happen is ifEC D 0. In other words,ai C �i < 0 for

all i . However, the�i are positive integers, so this implies thatKY may remain
ample only ifai < �1 for all i D 1; : : : ; r .

The definition of alog canonical singularityis the exact opposite of this
condition. It requires thatX be normal and admit a resolution of singularities,
sayY !X , such that all theai��1. This means that the above argument shows
that we may stand a fighting chance if we resolve singularities that areworse
than log canonical, but have no hope to do so with log canonical singularities.
In other words, this is another class of singularities that we have to allow. As
we remarked above, the class of singularities we obtained for the cones in the
previous subsection belong to this class. In fact, all the normal singularities that
we have considered so far belong to this class.

The good news is that by now we have covered most of the ways that some-
thing can go wrong and found the class of singularities we must allow. Since
we already know that we have to deal with some nonnormal singularities and in
fact in this example we have not really needed thatX be normal, we conclude
that we will have to allow the nonnormal cousins of log canonical singularities.
These are calledsemi-log canonical singularities, and we turn to them now.
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3F. Semi-log canonical singularities.Semi-log canonical singularities are very
important in moduli theory. These are exactly the singularities that appear on
stable varieties, the higher dimensional analogs of stablecurves. However, their
definition is rather technical, so the reader might want to skip this section at the
first reading.

As a warm-up, let us first define the normal and more traditional singularities
that are relevant in the minimal model program.

DEFINITION 3.6. A pair.X; �/ is calledlog Q-Gorensteinif KX C� is Q-
Cartier, i.e., some integer multiple ofKX C� is a Cartier divisor. Let.X; �/

be a logQ-Gorenstein pair andf W zX!X a log resolution of singularities with
exceptional divisorE D

S

Ei . Express the log canonical divisor ofzX in terms
of KX C� and the exceptional divisors:

K zX
Cwt �� f �.KX C�/C

X

aiEi

where wt�D f �1
� �, the strict transform of� on wtX andai 2 Q. Then the

pair .X; �/ has

terminal
canonical

plt
klt

log canonical

9

>

>

>

>

=

>

>

>

>

;

singularities if

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

ai > 0

ai � 0

ai > �1

ai > �1 andb�c � 0

ai � �1

for all log resolutionsf and alli . The corresponding definitions for nonnormal
varieties are somewhat more cumbersome. We include them here for complete-
ness, but the reader should feel free to skip them and assume that for instance
“semi-log canonical” means something that can be reasonably considered a non-
normal version of log canonical.

Suppose thatX is a reduced equidimensional scheme that

(i) satisfies Serre’s condition S2 (see [Har77, Theorem 8.22A(2)]), and
(ii) has only simple normal double crossings in codimension1 (in particularX

is Gorenstein in codimension 1).2

The conditions imply that we can treat the canonical module of X as a divisorial
sheaf even thoughX is not normal. Further suppose thatD is aQ-Weil divisor
on X (again, following [Kol92, Chapter 16], we assume thatX is regular at the
generic point of each component in SuppD).

REMARK 3.7. Conditions (i) and (ii) in Definition 3.6 imply thatX is semi-
normal since it is seminormal in codimension 1; see [GT80, Corollary 2.7].

2Sometimes a ring that is S2 and Gorenstein in codimension 1 iscalled quasinormal.
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Set� WX N !X to be the normalization ofX and suppose thatB is the divisor
of the conductor ideal onX N . We denote by��1.D/ the pullback ofD to X N .

DEFINITION 3.8. We say that.X; D/ is semi-log canonicalif

(i) KX CD is Q-Cartier, and
(ii) the pair.X N ; BC ��1D/ is log canonical.

Actually, the original definition of semi-log canonical singularities (which is
equivalent to this one) uses the theory of semi-resolutions. For details, see
[KSB88], [Kol92, Chapter 12], and [Kol08b].

4. Hyperresolutions and Du Bois’s original definition

A very important construction is Du Bois’s generalized De Rham complex.
The original construction of Du Bois’s complex,̋ ˝

X
, is based on simplicial

resolutions. The reader interested in the details is referred to the original article
[DB81]. Note also that a simplified construction was later obtained in [Car85]
and [GNPP88] via the general theory of polyhedral and cubic resolutions. At the
end of the paper, we include an appendix in which we explain how to construct,
and give examples of cubical hyperresolutions. An easily accessible introduc-
tion can be found in [Ste85]. Another useful reference is therecent book [PS08].

In [Sch07] one of us found a simpler alternative construction of (part of) the
Du Bois complex, not involving a simplicial resolution; seealso Section 6 below.
However we will discuss the original construction because it is important to keep
in mind the way these singularities appeared, as that explains their usefulness.
For more on applications of Du Bois’s complex and Du Bois singularities see
[Ste83], [Kol95, Chapter 12], [Kov99], and [Kov00b].

The word “hyperresolution” will refer to either simplicial, polyhedral, or cu-
bic resolution. Formally, the construction of̋˝

X
is the same regardless the type

of resolution used and no specific aspects of either types will be used.
The following definition is included to make sense of the statements of some

of the forthcoming theorems. It can be safely ignored if the reader is not inter-
ested in the detailed properties of Du Bois’s complex and is willing to accept
that it is a very close analog of the De Rham complex of smooth varieties.

DEFINITION 4.1. LetX be a complex scheme (i.e., a scheme of finite type over
C) of dimension n. LetDfilt .X / denote the derived category of filtered com-
plexes ofOX -modules with differentials of order�1 andDfilt ;coh.X / the subcat-
egory ofDfilt .X / of complexesK˝ such that for alli , the cohomology sheaves of
Grifilt K˝ are coherent; see [DB81], [GNPP88]. LetD.X / andDcoh.X / denote
the derived categories with the same definition except that the complexes are
assumed to have the trivial filtration. The superscriptsC;�; b carry the usual
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meaning (bounded below, bounded above, bounded). Isomorphism in these
categories is denoted by'qis . A sheafF is also considered a complexF ˝

with F 0 DF andF i D 0 for i ¤ 0. If K˝ is a complex in any of the above
categories, thenhi.K˝/ denotes thei-th cohomology sheaf ofK˝.

The right derived functor of an additive functorF , if it exists, is denoted by
RF andRiF is short forhi ıRF . Furthermore,Hi , Hi

Z
, andH i

Z
will denote

Ri� , Ri�Z , andRiHZ respectively, where� is the functor of global sections,
�Z is the functor of global sections with support in the closed subsetZ, and
HZ is the functor of the sheaf of local sections with support in the closed subset
Z. Note that according to this terminology, if� W Y ! X is a morphism and
F is a coherent sheaf onY , thenR��F is the complex whose cohomology
sheaves give rise to the usual higher direct images ofF .

THEOREM 4.2 [DB81, 6.3, 6.5].Let X be a proper complex scheme of finite
type andD a closed subscheme whose complement is dense inX . Then there
exists a unique object̋ ˝

X
2ObDfilt .X / such that, using the notation

˝
p
X
WDGrpfilt ˝ ˝

X Œp�;

the following properties are satisfied:

(a) ˝ ˝

X
'qis CX ; i.e., ˝ ˝

X
is a resolution of the constant sheafC on X .

(b) ˝ ˝

. / is functorial; i.e., if � W Y ! X is a morphism of proper complex
schemes of finite type, there exists a natural map�� of filtered complexes

�� W˝ ˝

X !R��˝ ˝

Y :

Furthermore, ˝ ˝

X
2 Ob

�

Db
filt ;coh.X /

�

, and if � is proper, �� is a morphism
in Db

filt ;coh.X /.

(c) Let U �X be an open subscheme ofX . Then

˝ ˝

X jU 'qis ˝ ˝

U :

(d) If X is proper, there exists a spectral sequence degenerating atE1 and
abutting to the singular cohomology ofX :

E
pq
1
DHq

�

X; ˝
p
X

�

) H pCq.X an; C/:

(e) If "
˝
WX

˝
!X is a hyperresolution, then

˝ ˝

X 'qis R"
˝�˝ ˝

X
˝

:

In particular, hi
�

˝
p
X

�

D 0 for i < 0.

(f) There exists a natural map, OX !˝0
X

, compatible with.4:2:.b//.
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(g) If X is smooth, then
˝ ˝

X 'qis ˝ ˝

X :

In particular,
˝

p
X
'qis ˝

p
X

:

(h) If � W Y ! X is a resolution of singularities, then

˝dimX
X 'qis R��!Y :

(i) Suppose that� W zY ! Y is a projective morphism andX � Y a reduced
closed subscheme such that� is an isomorphism outside ofX . Let E denote
the reduced subscheme ofzY with support equal to��1.X / and� 0 WE! X

the induced map. Then for eachp one has an exact triangle of objects in the
derived category,

˝
p
Y

// ˝
p
X
˚R��˝

p

zY

�
// R� 0

�˝
p
E

C1
// :

It turns out that Du Bois’s complex behaves very much like thede Rham complex
for smooth varieties. Observe that condition (d) says that the Hodge-to-de Rham
spectral sequence works for singular varieties if one uses the Du Bois complex
in place of the de Rham complex. This has far reaching consequences and if
the associated graded pieces,˝

p
X

turn out to be computable, then this single
property leads to many applications.

Notice that condition (f) gives a natural mapOX ! ˝0
X

, and we will be
interested in situations when this map is a quasi-isomorphism. WhenX is proper
overC, such a quasi-isomorphism will imply that the natural map

H i.X an; C/!H i.X; OX /DHi.X; ˝0
X /

is surjective because of the degeneration atE1 of the spectral sequence in con-
dition (d).

Following Du Bois, Steenbrink was the first to study this condition and he
christened this property after Du Bois.

DEFINITION 4.3. A schemeX is said to haveDu Bois singularities(or DB sin-
gularitiesfor short) if the natural mapOX !˝0

X
from condition (f) in Theorem

4.2 is a quasi-isomorphism.

REMARK 4.4. If " WX
˝
!X is a hyperresolution ofX (see the Appendix for a

how to construct cubical hyperresolutions) thenX has Du Bois singularities if
and only if the natural mapOX !R"

˝�OX
˝

is a quasi-isomorphism.

EXAMPLE 4.5. It is easy to see that smooth points are Du Bois. Deligne proved
that normal crossing singularities are Du Bois as well [DJ74, Lemme 2(b)].

We will see more examples of Du Bois singularities in later sections.
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5. An injectivity theorem and splitting the Du Bois complex

In this section, we state an injectivity theorem involving the dualizing sheaf
that plays a role for Du Bois singularities similar to the role that Grauert–
Riemenschneider plays for rational singularities. As an application, we state a
criterion for Du Bois singularities related to a “splitting” of the Du Bois complex.

THEOREM 5.1 [Kov99, Lemma 2.2; Sch09, Proposition 5.11].Let X be a
reduced scheme of finite type overC, x 2 X a (possibly nonclosed) point, and
Z D fxg its closure. Assume thatX nZ has Du Bois singularities in a neigh-
borhood ofx (for example, x may correspond to an irreducible component of
the non-Du Bois locus ofX ). Then the natural map

H i
�

RHom
˝

X .˝0
X ; !˝

X /
�

x
!H i.!˝

X /x

is injective for everyi .

The proof uses the fact that for a projectiveX , H i.X an; C/! Hi.X; ˝0
X

/ is
surjective for everyi > 0, which follows from Theorem 4.2.

It would also be interesting and useful if the following generalization of this
injectivity were true.

QUESTION 5.2. Suppose thatX is a reduced scheme essentially of finite type
overC. Is it true that the natural map of sheaves

H i
�

RHom
˝

X .˝0
X ; !˝

X /
�

!H i.!˝

X /

is injective for everyi?

Even though Theorem 5.1 does not answer Question 5.2, it has the following
extremely useful corollary.

THEOREM 5.3 [Kov99, Theorem 2.3; Kol95, Theorem 12.8].Suppose that the
natural mapOX ! ˝0

X
has a left inverse in the derived category(that is, a

map� W ˝0
X
! OX such that the compositionOX

// ˝0
X

�
// OX is an

isomorphism). ThenX has Du Bois singularities.

PROOF. Apply the functorRHomX . ; !˝

X
/ to the mapsOX

// ˝0
X

�
//OX .

Then by the assumption, the composition

!˝

X
ı

// RHomX .˝0
X

; !˝

X
/ // !˝

X

is an isomorphism. Letx 2 X be a possibly nonclosed point corresponding
to an irreducible component of the non-Du Bois locus ofX and consider the
stalks atx of the cohomology sheaves of the complexes above. We obtain that
the natural map

H i
�

RHomX .˝0
X ; !˝

X /
�

x
!H i.!˝

X /x



A SURVEY OF LOG CANONICAL AND DU BOIS SINGULARITIES 65

is surjective for everyi . But it is also injective by Theorem 5.1. This proves
thatı W .!˝

X
/x!RHomX .˝0

X
; !˝

X
/x is a quasi-isomorphism. Finally, applying

the functorRHomOX;x
. ; .!˝

X
/x/ one more time proves thatX is Du Bois at

x, contradicting our choice ofx 2X ˜

This also gives the following Boutot-like theorem for Du Bois singularities (cf.
[Bou87]).

COROLLARY 5.4 [Kov99, Theorem 2.3; Kol95, Theorem 12.8].Suppose that
f W Y ! X is a morphism, Y has Du Bois singularities and the natural map
OX ! Rf�OY has a left inverse in the derived category. ThenX also has
Du Bois singularities.

PROOF. Observe that the composition is an isomorphism

OX !˝0
X !Rf�˝0

Y 'Rf�OY !OX :

Then apply Theorem 5.3. ˜

As an easy corollary, we see that rational singularities areDu Bois (which was
first observed in the isolated case by Steenbrink in [Ste83, Proposition 3.7]).

COROLLARY 5.5 [Kov99; Sai00].If X has rational singularities, thenX has
Du Bois singularities.

PROOF. Let � W zX ! X be a log resolution. One has the compositionOX !
˝0

X
!R��O zX

. SinceX has rational singularities, this composition is a quasi-
isomorphism. Apply Corollary 5.4. ˜

6. Hyperresolution-free characterizations of Du Bois singularities

The definition of Du Bois singularities given via hyperresolution is relatively
complicated (hyperresolutions themselves can be rather complicated to com-
pute; see 2). In this section we state several hyperresolution free characteri-
zations of Du Bois singularities. The first such characterization was given by
Steenbrink in the isolated case. Another, more analytic characterization was
given by Ishii and improved by Watanabe in the isolated quasi-Gorenstein3

case. Finally the second named author gave a characterization that works for
any reduced scheme.

A relatively simple characterization of an affine cone over aprojective variety
being Du Bois is given in [DB81]. Steenbrink generalized this criterion to all
normal isolated singularities. It is this criterion that Steenbrink, Ishii, Watanabe,
and others used extensively to study isolated Du Bois singularities.

3A varietyX is quasi-Gorenstein ifKX is a Cartier divisor. It is not required thatX is Cohen–Macaulay.
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THEOREM 6.1 [DB81, Proposition 4.13; Ste83, 3.6].Let .X; x/ be a normal
isolated Du Bois singularity, and � W zX ! X a log resolution of.X; x/ such
that� is an isomorphism outside ofX nfxg. LetE denote the reduced preimage
of x. Then.X; x/ is a Du Bois singularity if and only if the natural map

Ri��O zX
!Ri��OE

is an isomorphism for alli > 0.

PROOF. Using Theorem 4.2, we have an exact triangle

˝0
X

// ˝0
fxg
˚R��˝0

zX

�
// R��˝0

E

C1
// :

Sincefxg, zX andE are all Du Bois (the first two are smooth, andE is snc), we
have the following exact triangle

˝0
X

// Ofxg˚R��O zX
�

// R��OE
C1

// :

Suppose first thatX has Du Bois singularities (that is,̋0
X
'qisOX ). By taking

cohomology and examining the long exact sequence, we see that Ri��O zX
!

Ri��OE is an isomorphism for alli > 0.
So now suppose thatRi��O zX

!Ri��OE is an isomorphism for alli > 0.
By considering the long exact sequence of cohomology, we seethatH i.˝0

X
/ is

zero for alli > 0. On the other hand,H 0.˝0
X

/ is naturally identified with the
seminormalization ofOX ; see Proposition 7.8 below. Thus ifX is normal, then
OX !H 0.˝0

X
/ is an isomorphism. ˜

We now state a more analytic characterization, due to Ishii and slightly improved
by Watanabe. First we recall the definition of the plurigenera of a singularity.

DEFINITION 6.2. For a singularity.X; x/, we define the plurigenerafımgm2N;

ım.X; x/D dimC � .X nx; OX .mKX //=L2=m.X n fxg/;
whereL2=m.X n fxg/ denotes the set of allL2=m-integrablem-uple holomor-
phic n-forms onX n fxg.
THEOREM 6.3 [Ish85, Theorem 2.3; Wat87, Theorem 4.2].Let f W zX ! X be
a log resolution of a normal isolated Gorenstein singularity .X; x/ of dimension
n � 2. SetE to be the reduced exceptional divisor(the preimage ofx). Then
.X; x/ is a Du Bois singularity if and only ifım.X; x/� 1 for anym 2 N.

In [Sch07], a characterization of arbitrary Du Bois singularities is given that did
not rely on hyperresolutions, but instead used a single resolution of singularities.
An improvement of this was also obtained in [ST08, Proposition 2.20]. We
provide a proof for the convenience of the reader.
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THEOREM 6.4 [Sch07; ST08, Proposition 2.20].LetX be a reduced separated
scheme of finite type over a field of characteristic zero. Suppose thatX � Y

whereY is smooth and suppose that� W zY ! Y is a proper birational map with
zY smooth and whereX D ��1.X /red, the reduced preimage ofX , is a simple
normal crossings divisor(or in fact any scheme with Du Bois singularities).
ThenX has Du Bois singularities if and only if the natural mapOX !R��OX

is a quasi-isomorphism.
In fact, we can say more. There is an isomorphism

R��OX z // ˝0
X

such that the natural mapOX ! ˝0
X

can be identified with the natural map
OX !R��OX .

PROOF. We first assume that� is an isomorphism outside ofX . Then using
Theorem 4.2, we have an exact triangle

˝0
Y

// ˝0
X
˚R��˝0

zY

�
// R��˝0

X

C1
// :

Using the octahedral axiom, we obtain the diagram

C ˝

z
››

// ˝0
Y

˛
››

// ˝0
X

ˇ
››

C1
//

C ˝ // R��˝0
zY

// R��˝0

X

C1
// :

whereC ˝ is simply the object in the derived category that completes the trian-
gles. But notice that the vertical arrow̨is an isomorphism sinceY has rational
singularities (in which case each term in the middle column is isomorphic to
OY ). Thus the vertical arrow̌ is also an isomorphism.

One always has a commutative diagram

OX

››

// ˝0
X

ˇ
››

R��OX ı
// R��˝0

X

(where the arrows are the natural ones). Observe thatX has Du Bois singular-
ities since it has normal crossings, thusı is a quasi-isomorphism. But then the
theorem is proven at least in the case that� is an isomorphism outside ofX .

For the general case, it is sufficient to show thatR��OX is independent of
the choice of resolution. Since any two log resolutions can be dominated by a
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third, it is sufficient to consider two log resolutions�1 WY1!Y and�2 WY2!Y

and a map between them� W Y2! Y1 overY . Let F1D .��1
1

.X //red andF2D
.��1

2
.X //redD .��1.F1//red. Dualizing the map and applying Grothendieck

duality implies that it is sufficient to prove that!Y1
.F1/ R��.!Y2

.F2// is a
quasi-isomorphism.

We now apply the projection formula while twisting by!�1
Y1

.�F1/. Thus it
is sufficient to prove that

R��.!Y2=Y1
.F2� ��F1//! OY1

is a quasi-isomorphism. But note thatF2 � ��F1 D �b��.1� "/F1c for suffi-
ciently small" > 0. Thus it is sufficient to prove that the pair.Y1; .1�"/F1/ has
klt singularities by Kawamata–Viehweg vanishing in the form of local vanishing
for multiplier ideals; see [Laz04, 9.4]. But this is true since Y1 is smooth and
F1 is a reduced integral divisor with simple normal crossings. ˜

It seems that in this characterization the condition that the ambient varietyY is
smooth is asking for too much. We propose that the following may be a more
natural characterization. For some motivation and for a statement that may be
viewed as a sort of converse; see Conjecture 12.5 and the discussion preceding it.

CONJECTURE6.5. Theorem6.4 should remain true if the hypothesis thatY is
smooth is replaced by the condition thatY has rational singularities.

Having Du Bois singularities is a local condition, so even ifX is not embeddable
in a smooth scheme, one can still use Theorem 6.4 by passing toan affine open
covering.

To illustrate the utility and meaning of Theorem 6.4, we willexplore the
situation whenX is a hypersurface inside a smooth schemeY . In the notation
of Theorem 6.4, we have the diagram of exact triangles

R��O zY
.�X / // R��O zY

// R��OX
C1

//

0 // OY .�X /

˛

OO

// OY

ˇ

OO

// OX




OO

// 0

SinceY is smooth,̌ is a quasi-isomorphism (as thenY has at worst rational
singularities). Therefore,X has Du Bois singularities if and only if the map̨
is a quasi-isomorphism. However,˛ is a quasi-isomorphism if and only if the
dual map

R��!˝

zY
.X /! !˝

Y .X / (6.5.1)
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is a quasi-isomorphism. The projection formula tells us that Equation 6.5.1 is a
quasi-isomorphism if and only

R��O zY
.K zY =Y

���X CX /!OX (6.5.2)

is a quasi-isomorphism. Note however that���X CX D d�.1� "/��X e for
" > 0 and sufficiently close to zero. Thus the left side of Equation6.5.2 can be
viewed asR��O zY

.dK zY =Y
� .1� "/��X e/ for " > 0 sufficiently small. Note

that Kawamata–Viehweg vanishing in the form of local vanishing for multi-
plier ideals implies thatJ .Y; .1� "/X /'qis R��O zY

.dK zY =Y
� .1� "/��X e/.

ThereforeX has Du Bois singularities if and only ifJ .Y; .1� "/X /'OX .

COROLLARY 6.6. If X is a hypersurface in a smoothY , thenX has Du Bois
singularities if and only if the pair.Y; X / is log canonical.

Du Bois hypersurfaces have also been characterized via the Bernstein–Sato poly-
nomial; see [Sai09, Theorem 0.5].

7. Seminormality of Du Bois singularities

In this section we show that Du Bois singularities are partially characterized
by seminormality. First we remind the reader what it means for a scheme to be
seminormal.

DEFINITION 7.1 [Swa80; GT80]. Suppose thatR is a reduced excellent ring
and thatS �R is a reducedR-algebra which is finite as anR-module. We say
that the extensioni WRŒ S is subintegralif

(i) i induces a bijection on spectra, SpecS ! SpecR, and
(ii) i induces an isomorphism of residue fields over every (possibly nonclosed)

point of SpecR.

REMARK 7.2. In [GT80], subintegral extensions are called quasi-isomorphisms.

DEFINITION 7.3 [Swa80; GT80]. Suppose thatR is a reduced excellent ring.
We say thatR is seminormalif every subintegral extensionRŒ S is an iso-
morphism. We say that a schemeX is seminormalif all of its local rings are
seminormal.

REMARK 7.4. In [GT80], the authors callR seminormal if there is no proper
subintegral extensionRŒ S such thatS is contained in the integral closure of
R (in its total field of fractions). However, it follows from [Swa80, Corollary
3.4] that the definition above is equivalent.

REMARK 7.5. Seminormality is a local property. In particular, a ring is semi-
normal if and only if it is seminormal after localization at each of its prime
(equivalently, maximal) ideals.
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REMARK 7.6. The easiest example of seminormal schemes are schemes with
snc singularities. In fact, a one dimensional variety over an algebraically closed
field is seminormal if and only if its singularities are locally analytically iso-
morphic to a union of coordinate axes in affine space.

We will use the following well known fact about seminormality.

LEMMA 7.7. If X is a seminormal scheme andU � X is any open set, then
� .U; OX / is a seminormal ring.

PROOF. We leave it as an exercise to the reader. ˜

It is relatively easy to see, using the original definition via hyperresolutions, that
if X has Du Bois singularities, then it is seminormal. Du Bois certainly knew this
fact (see [DB81, Proposition 4.9]) although he didn’t use the word seminormal.
Later Saito proved that seminormality in fact partially characterizes Du Bois
singularities. We give a different proof of this fact, from [Sch09].

PROPOSITION7.8 [Sai00, Proposition 5.2; Sch09, Lemma 5.6].Suppose that
X is a reduced separated scheme of finite type overC. Thenh0.˝0

X
/ D OX sn

whereOX sn is the structure sheaf of the seminormalization ofX .

PROOF. Without loss of generality we may assume thatX is affine. We need
only consider��OE by Theorem 6.4. By Lemma 7.7,��OE is a sheaf of
seminormal rings. Now letX 0 D Spec.��OE/ and consider the factorization

E! X 0!X:

Note E ! X 0 must be surjective since it is dominant by construction and is
proper by [Har77, II.4.8(e)]. Since the composition has connected fibers, so
must have� W X 0! X . On the other hand,� is a finite map since� is proper.
Therefore� is a bijection on points. Because these maps and schemes are of
finite type over an algebraically closed field of characteristic zero, we see that
� .X; OX /! � .X 0; OX 0/ is a subintegral extension of rings. SinceX 0 is semi-
normal, so is� .X 0; OX 0/, which completes the proof. ˜

8. A multiplier-ideal-like characterization of Cohen–Macaulay
Du Bois singularities

In this section we state a characterization of Cohen–Macaulay Du Bois singu-
larities that explains why Du Bois singularities are so closely linked to rational
and log canonical singularities.

We first do a suggestive computation. Suppose thatX embeds into a smooth
schemeY and that� W zY ! Y is an embedded resolution ofX in Y that is an
isomorphism outside ofX . Set zX to be the strict transform ofX and setX to
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be the reduced preimage ofX . We further assume thatX D zX [E whereE

is a reduced simple normal crossings divisor that intersects zX transversally in
another reduced simple normal crossing divisor. Note thatE is the exceptional
divisor of � (with reduced scheme structure). Set˙ � X be the image ofE.
We have the short exact sequence

0!O zX
.�E/! OX !OE! 0

We applyRHomOY
. ; !˝

zY
/ followed byR�� and obtain the exact triangle

R��!˝

E
// R��!˝

X
// R��! zX

.E/ŒdimX �
C1

//

Using condition (i) in Theorem 4.2, the leftmost object can be identified with
RHomO˙

.˝0
˙

; !˝

˙
/ and the middle object,R��!˝

X
, can be identified with

RHomOX
.˝0

X
; !˝

X
/. Recall thatX has Du Bois singularities if and only if the

natural mapRHomOX
.˝0

X
; !˝

X
/!!˝

X
is an isomorphism. Therefore, the object

��! zX
.E/ is closely related to whether or notX has Du Bois singularities. This

inspired the following result, which we do not prove.

THEOREM 8.1 [KSS10, Theorem 3.1] .Suppose thatX is normal and Cohen–
Macaulay. Let � W X 0 ! X be a log resolution, and denote the reduced ex-
ceptional divisor of� by G. ThenX has Du Bois singularities if and only if
��!X 0.G/' !X .

We mention that the main idea in the proof is to show that

��!X 0.G/'H � dimX
�

RHomOX
.˝0

X ; !˝

X /
�

:

Related results can also be obtained in the nonnormal Cohen–Macaulay case;
see [KSS10] for details.

REMARK 8.2. The submodule��!X 0.G/ � !X is independent of the choice
of log resolution. Thus this submodule may be viewed as an invariant which
partially measures how far a scheme is from being Du Bois (compare with
[Fuj08]).

As an easy corollary, we obtain another proof that rational singularities are
Du Bois (this time via the Kempf-criterion for rational singularities).

COROLLARY 8.3. If X has rational singularities, thenX has Du Bois singu-
larities.

PROOF. SinceX has rational singularities, it is Cohen–Macaulay and normal.
Then ��!X 0 D !X but we also have��!X 0 � ��!X 0.G/ � !X , and thus
��!X 0.G/D !X as well. Then use Theorem 8.1. ˜

We also see immediately that log canonical singularities coincide with Du Bois
singularities in the Gorenstein case.
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COROLLARY 8.4. Suppose thatX is Gorenstein and normal. Then X is
Du Bois if and only ifX is log canonical.

PROOF. X is easily seen to be log canonical if and only if��!X 0=X .G/'OX .
The projection formula then completes the proof. ˜

In fact, a slightly improved version of this argument can be used to show that
every Cohen–Macaulay log canonical pair is Du Bois; see [KSS10, Theorem
3.16].

9. The Kollár–Kovács splitting criterion

The proof of the following, rather flexible, criterion for DuBois singularities
can be found in the original paper.

THEOREM 9.1 [KK10]. Let f W Y ! X be a proper morphism between re-
duced schemes of finite type overC, W � X an arbitrary subscheme, and
F WD f �1.W /, equipped with the induced reduced subscheme structure. Let
IW �X denote the ideal sheaf ofW in X andIF�Y the ideal sheaf ofF in Y .
Assume that the natural map%

IW �X %
// Rf�IF�Y

%0

{{

O

W
_

g

o

admits a left inverse%0, that is, �0 ı �D idIW �X
. Then ifY; F , andW all have

DB singularities, so doesX .

REMARK 9.1.1. Notice that it is not required thatf be birational. On the other
hand the assumptions of the theorem and [Kov00a, Theorem 1] imply that if
Y nF has rational singularities, e.g., ifY is smooth, thenX nW has rational
singularities as well.

This theorem is used to derive various consequences in [KK10], some of which
are formally unrelated to Du Bois singularities. We will mention some of these
in the sequel, but the interested reader should look at the original article to obtain
the full picture.

10. Log canonical singularities are Du Bois

Log canonical and Du Bois singularities are very closely related as we have
seen in the previous sections. This was first observed in [Ish85]; see also [Wat87]
and [Ish87].

Recently, Kolĺar and the first named author gave a proof that log canonical
singularities are Du Bois using Theorem 9.1. We will sketch some ideas of the
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proof here. There are two main steps. First, one shows that the non-klt locus
of a log canonical singularity is Du Bois (this generalizes [Amb98] and [Sch08,
Corollary 7.3]). Then one uses Theorem 9.1 to show that this property is enough
to conclude thatX itself is Du Bois. For the first part we refer the reader to the
original paper. The key point of the second part is containedin the following
Lemma. Here we give a different proof than in [KK10].

LEMMA 10.1.Suppose.X; �/ is a log canonical pair and that the reduced non-
klt locus of.X; �/ has Du Bois singularities. ThenX has Du Bois singularities.

PROOF. First recall that the multiplier idealJ .X; �/ is precisely the defining
ideal of the non-klt locus of.X; �/ and since.X; �/ is log canonical, it is a
radical ideal. We seṫ �X to be the reduced subscheme ofX defined by this
ideal. Since the statement is local, we may assume thatX is affine and thus that
X is embedded in a smooth schemeY . We let � W zY ! Y be an embedded
resolution of.X; �/ in Y and we assume that� is an isomorphism outside the
singular locus ofX . Set˙ to be the reduced-preimage oḟ (which we may
assume is a divisor inzY ) and let zX denote the strict transform ofX . We consider
the diagram of exact triangles

A˝

˛

››

// B˝

ˇ

››

// C ˝




››

C1
//

0 // J .X; �/

ı
››

// OX

››

// O˙

"

››

// 0

R��O zX
.�˙/ // R��O

˙[ zX
// R��O˙

C1
//

Here the first row is made up of objects inDb
coh.X / needed to make the columns

into exact triangles. Sincė has Du Bois singularities, the map" is an isomor-
phism and soC ˝'0. On the other hand, there is a natural mapR��O zX

.�˙/!
R��O zX

.K zX
���.KX C�//' J .X; �/ since.X; �/ is log canonical. This

implies that the map̨ is the zero map in the derived category. However,
we then see thať is also zero in the derived category which implies that
OX ! R��O

˙[ zX
has a left inverse. Therefore,X has Du Bois singularities

(since˙[ zX has simple normal crossing singularities) by Theorems 5.3 and 6.4.
˜

11. Applications to moduli spaces and vanishing theorems

The connection between log canonical and Du Bois singularities have many
useful applications in moduli theory. We will list a few without proof.
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SETUP 11.1. Let� WX !B be a flat projective morphism of complex varieties
with B connected. Assume that for allb 2B there exists aQ-divisor Db onXb

such that.Xb; Db/ is log canonical.

REMARK 11.2. Notice that it is not required that the divisorsDb form a family.

THEOREM 11.3 [KK10]. Under the assumptions11.1,hi.Xb; OXb
/ is indepen-

dent ofb 2B for all i .

THEOREM 11.4 [KK10]. Under the assumptions11.1, if one fiber of� is
Cohen–Macaulay(resp. Sk for somek), so are all the fibers.

THEOREM 11.5 [KK10]. Under the assumptions11.1,the cohomology sheaves
hi.!˝

�
/ are flat overB, where!˝

�
denotes the relative dualizing complex of�.

Du Bois singularities also appear naturally in vanishing theorems. As a cul-
mination of the work of Tankeev, Ramanujam, Miyaoka, Kawamata, Viehweg,
Koll ár, and Esnault–Viehweg, Kollár proved a rather general form of a Kodaira-
type vanishing theorem in [Kol95, 9.12]. Using the same ideas this was slightly
generalized to the following theorem in [KSS10].

THEOREM 11.6 [Kol95, 9.12; KSS08, 6.2].LetX be a proper variety andL a
line bundle onX . LetL m'OX .D/, whereDD

P

diDi is an effective divisor,
and lets be a global section whose zero divisor isD. Assume that0 < di < m

for everyi . Let Z be the scheme obtained by taking them-th root ofs (that is,
Z DX Œ

p
s� using the notation from[Kol95, 9.4]). Assume further that

H j .Z; CZ /!H j .Z; OZ /

is surjective. Then, for any collection ofbi � 0, the natural map

H j
�

X; L �1
�

�
P

biDi

��

!H j .X; L �1/

is surjective.

This, combined with the fact that log canonical singularities are Du Bois, yields
that Kodaira vanishing holds for log canonical pairs:

THEOREM 11.7 [KSS10, 6.6].Kodaira vanishing holds for Cohen–Macaulay
semi-log canonical varieties: Let.X; �/ be a projective Cohen–Macaulay semi-
log canonical pair andL an ample line bundle onX . ThenH i.X; L �1/D 0

for i < dimX .

It turns out that Du Bois singularities appear naturally in other kinds of vanishing
theorems. We cite one here.
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THEOREM 11.8 [GKKP10, 9.3].Let .X; D/ be a log canonical reduced pair
of dimensionn� 2, � W zX ! X a log resolution with�-exceptional setE, and
zD D Supp

�

EC��1D
�

. Then

Rn�1��O zX
.� zD/D 0:

12. Deformations of Du Bois singularities

Given the importance of Du Bois singularities in moduli theory it is an im-
portant obvious question whether they are invariant under small deformation.

It is relatively easy to see from the construction of the Du Bois complex
that a general hyperplane section (or more generally, the general member of a
base point free linear system) on a variety with Du Bois singularities again has
Du Bois singularities. Therefore the question of deformation follows from the
following.

CONJECTURE12.1. (cf . [Ste83]) Let D � X be a reduced Cartier divisor
and assume thatD has only Du Bois singularities in a neighborhood of a point
x 2 D. ThenX has only Du Bois singularities in a neighborhood of the point
x.

This conjecture was proved for isolated Gorenstein singularities by Ishii [Ish86].
Also note that rational singularities satisfy this property; see [Elk78].

We also have the following easy corollary of the results presented earlier:

THEOREM 12.2. Assume thatX is Gorenstein andD is normal.4 Then the
statement of Conjecture12.1is true.

PROOF. The question is local so we may restrict to a neighborhood ofx. If X

is Gorenstein, then so isD as it is a Cartier divisor. ThenD is log canonical by
(8.4), and then the pair.X; D/ is also log canonical by inversion of adjunction
[Kaw07]. (Recall that ifD is normal, then so isX alongD). This implies that
X is also log canonical and thus Du Bois. ˜

It is also stated in [Kov00b, 3.2] that the conjecture holds in full generality.
Unfortunately, the proof is not complete. The proof published there works if
one assumes that the non-Du Bois locus ofX is contained inD. For instance,
one may assume that this is the case if the non-Du Bois locus isisolated.

The problem with the proof is the following: it is stated thatby taking hyper-
plane sections one may assume that the non-Du Bois locus is isolated. However,
this is incorrect. One may only assume that theintersectionof the non-Du Bois
locus ofX with D is isolated. If one takes a further general section then it will

4This condition is actually not necessary, but the proof becomes rather involved without it.
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miss the intersection point and then it is not possible to make any conclusions
about that case.

Therefore currently the best known result with regard to this conjecture is the
following:

THEOREM 12.3 [Kov00b, 3.2].Let D � X be a reduced Cartier divisor and
assume thatD has only Du Bois singularities in a neighborhood of a point
x 2D and thatX nD has only Du Bois singularities. ThenX has only Du Bois
singularities in a neighborhood ofx.

Experience shows that divisors not in general position tendto have worse sin-
gularities than the ambient space in which they reside. Therefore one would in
fact expect that ifX nD is reasonably nice, andD has Du Bois singularities,
then perhapsX has even better ones.

We have also seen that rational singularities are Du Bois andat least Cohen–
Macaulay Du Bois singularities are not so far from being rational cf. 8.1. The
following result of the second named author supports this philosophical point.

THEOREM 12.4 [Sch07, Theorem 5.1].Let X be a reduced scheme of finite
type over a field of characteristic zero, D a Cartier divisor that has Du Bois
singularities and assume thatXnD is smooth. ThenX has rational singularities
(in particular, it is Cohen–Macaulay).

Let us conclude with a conjectural generalization of this statement:

CONJECTURE12.5. Let X be a reduced scheme of finite type over a field of
characteristic zero, D a Cartier divisor that has Du Bois singularities and as-
sume thatX nD has rational singularities. ThenX has rational singularities
(in particular, it is Cohen–Macaulay).

Essentially the same proof as in (12.2) shows that this is also true under the
same additional hypotheses.

THEOREM 12.6. Assume thatX is Gorenstein andD is normal.5 Then the
statement of Conjecture12.5is true.

PROOF. If X is Gorenstein, then so isD as it is a Cartier divisor. Then by (8.4)
D is log canonical. Then by inversion of adjunction [Kaw07] the pair.X; D/ is
also log canonical nearD. (Recall that ifD is normal, then so isX alongD).

As X is Gorenstein andX nD has rational singularities, it follows thatX nD
has canonical singularities. ThenX has only canonical singularities everywhere.
This can be seen by observing thatD is a Cartier divisor and examining the
discrepancies that lie overD for .X; D/ as well as forX . Therefore, by [Elk81],
X has only rational singularities alongD. ˜

5Again, this condition is not necessary, but makes the proof simpler.



A SURVEY OF LOG CANONICAL AND DU BOIS SINGULARITIES 77

13. Analogs of Du Bois singularities in characteristicp > 0

Starting in the early 1980s, the connections between singularities defined by
the action of the Frobenius morphism in characteristicp > 0 and singularities
defined by resolutions of singularities started to be investigated, cf. [Fed83].
After the introduction of tight closure in [HH90], a precisecorrespondence be-
tween several classes of singularities was established. See, for example, [FW89;
MS91; HW02; Smi97; Har98; MS97; Smi00; Har05; HY03; Tak04; TW04;
Tak08]. The second named author partially extended this correspondence in his
doctoral dissertation by linking Du Bois singularities with F -injective singular-
ities, a class of singularities defined in [Fed83]. The currently known implica-
tions are summarized below.

log terminal
rz $,

+3

¸«

rational

¸«

rz $,

F -regular +3

¸«

F -rational

¸«

log canonical +3

dlV^

+ Gor. and normal

Du Bois
em

F -Pure/F -split +3

X‘

+ Gor.

F -injective

We will give a short proof that normal Cohen–Macaulay singularities of dense
F -injective type are Du Bois, based on the characterization of Du Bois singu-
larities given in Section 8.

Note that Du Bois andF -injective singularities also share many common
properties. For exampleF -injective singularities are also seminormal [Sch09,
Theorem 4.7].

First however, we will defineF -injective singularities (as well as some nec-
essary prerequisites).

DEFINITION 13.1. Suppose thatX is a scheme of characteristicp > 0 with
absolute Frobenius mapF W X ! X . We say thatX is F -finite if F�OX is
a coherentOX -module. A ringR is calledF -finite if the associated scheme
SpecR is F -finite.

REMARK 13.2. Any scheme of finite type over a perfect field isF -finite; see
for example [Fed83].

DEFINITION 13.3. Suppose that.R; m/ is anF -finite local ring. We say thatR
is F -injective if the induced Frobenius mapF W H i

m
.R/! H i

m
.R/ is injective

for everyi > 0. We say that anF -finite scheme isF -injectiveif all of its stalks
areF -injective local rings.
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REMARK 13.4. If .R; m/ is F -finite, F -injective and has a dualizing complex,
thenRQ is alsoF -injective for anyQ2SpecR. This follows from local duality;
see [Sch09, Proposition 4.3] for details.

LEMMA 13.5. SupposeX is a Cohen–Macaulay scheme of finite type over a
perfect fieldk. ThenX is F -injective if and only if the natural mapF�!X !!X

is surjective.

PROOF. Without loss of generality (sinceX is Cohen–Macaulay) we can assume
thatX is equidimensional. Setf W X ! Speck to be the structural morphism.
SinceX is finite type over a perfect field, it has a dualizing complex!˝

X
D f !k

and we set!X D h� dimX .!˝

X
/. SinceX is Cohen–Macaulay,X is F -injective

if and only if the Frobenius mapH dimX
x .OX ;x/ // H dimX

x .F�OX ;x/ is in-
jective for every closed pointx 2 X . By local duality (see [Har66, Theorem
6.2] or [BH93, Section 3.5]) such a map is injective if and only if the dual map
F�!X ;x! !X ;x is surjective. But that map is surjective, if and only if the map
of sheavesF�!X ! !X is surjective. ˜

We now briefly describe reduction to characteristicp > 0. Excellent and far
more complete references include [HH09, Section 2.1] and [Kol96, II.5.10].
Also see [Smi01] for a more elementary introduction.

Let R be a finitely generated algebra over a fieldk of characteristic zero.
Write R D kŒx1; : : : ; xn�=I for some idealI and letS denotekŒx1; : : : ; xn�.
Let X D SpecR and� W zX ! X a log resolution ofX corresponding to the
blow-up of an idealJ . Let E denote the reduced exceptional divisor of�. Then
E is the subscheme defined by the radical of the idealJ �O zX

.
There exists a finitely generatedZ-algebraA � k that includes all the coef-

ficients of the generators ofI andJ , a finitely generatedA algebraRA � R,
an idealJA � RA, and schemeszXA and EA of finite type overA such that
RA˝A k DR, JARD J , zXA �SpecA Speck DX andEA �SpecA Speck DE

with EA an effective divisor with support defined by the idealJA � O zXA
. We

may localizeA at a single element so thatYA is smooth overA andEA is a
reduced simple normal crossings divisor overA. By further localizingA (at a
single element), we may assume any finite set of finitely generatedRA modules
is A-free (see [Hun96, 3.4] or [HR76, 2.3]) and we may assume thatA itself is
regular. We may also assume that a fixed affine cover ofEA and a fixed affine
cover of zXA are alsoA-free.

We will now form a family of positive characteristic models of X by looking
at all the ringsRt D RA˝A k.t/ wherek.t/ is the residue field of a maximal
ideal t 2 T D SpecA. Note thatk.t/ is a finite, and thus perfect, field of
characteristicp. We may also tensor the various schemesXA, EA, etc. with
k.t/ to produce a characteristicp model of an entire situation.
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By making various cokernels of maps freeA-modules, we may also assume
that maps between modules that are surjective (respectively injective) overk
correspond to surjective (respectively injective) maps overA, and thus surjective
(respectively injective) in our characteristicp model as well; see [HH09] for
details.

DEFINITION 13.6. A ring R of characteristic zero is said to have denseF -
injective type if for every family of characteristicp� 0 models withA chosen
sufficiently large, a Zariski dense set of those models (overSpecA) haveF -
injective singularities.

THEOREM 13.7 [Sch09].Let X be a reduced scheme of finite type overC and
assume that it has denseF -injective type. ThenX has Du Bois singularities.

PROOF. We only provide a proof in the case thatX is normal and Cohen–
Macaulay. For a complete proof, see [Sch09]. Let� W zX!X be a log resolution
of X with exceptional divisorE. We reduce this entire setup to characteristic
p� 0 such that the correspondingX is F -injective. LetF e W X ! X be the
e-iterated Frobenius map.

We have the commutative diagram

F e
���! zX

.peE/

�

››

// ��! zX
.E/

ˇ

››

F e
�!X

�
// !X

where the horizontal arrows are induced by the dual of the Frobenius map,
OX ! F e

�OX , and the vertical arrows are the natural maps induced by�. By
hypothesis,� is surjective. On the other hand, fore > 0 sufficiently large, the
map labeled� is an isomorphism. Therefore the map� ı � is surjective which
implies that the map̌ is also surjective. But as this holds for a dense set of
primes, it must be surjective in characteristic zero as well, and in particular, as
a consequenceX has Du Bois singularities. ˜

It is not known whether the converse of this statement is true:

OPEN PROBLEM 13.8. If X has Du Bois singularities, does it have dense F-
injective type?

SinceF -injective singularities are known to be closely related toDu Bois sin-
gularities, it is also natural to ask howF -injective singularities deform cf. Con-
jecture 12.1. In general, this problem is also open.

OPENPROBLEM 13.9. If a Cartier divisorD in X hasF -injective singularities,
doesX haveF -injective singularities nearD?
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In the case thatX (equivalentlyD) is Cohen–Macaulay, the answer is affirma-
tive, see [Fed83]. In fact, Fedder definedF -injective singularities partly because
they seemed to deform better thanF -pure singularities (the conjectured analog
of log canonical singularities).

Appendix A. Connections with Buchsbaum rings

In this section we discuss the links between Du Bois singularities and Buchs-
baum rings. Du Bois singularities are not necessarily Cohen–Macaulay, but in
many cases, they are Buchsbaum (a weakening of Cohen–Macaulay).

Recall that a local ring.R; m; k/ hasquasi-Buchsbaumsingularities if

mH i
m

.R/D 0

for all i <dimR. Further recall that a ring is calledBuchsbaumif �dimRR�m.R/

is quasi-isomorphic to a complex ofk-vector spaces. Here�dimR is the brutal
truncation of the complex at the dimR location. Note that this is not the usual
definition of Buchsbaum singularities, rather it is the so-called Schenzel’s cri-
terion; see [Sch82]. Notice that Cohen–Macaulay singularities are Buchsbaum
(after truncation, one obtains the zero-object in the derived category).

It was proved by Tomari that isolated Du Bois singularities are quasi-Buchs-
baum (a proof can be found in [Ish85, Proposition 1.9]), and then by Ishida that
isolated Du Bois singularities were in fact Buchsbaum. Herewe briefly review
the argument to show that isolated Du Bois singularities arequasi-Buchsbaum
since this statement is substantially easier.

PROPOSITIONA.1. Suppose that.X; x/ is an isolated Du Bois singularity with
RD OX ;x . ThenR is quasi-Buchsbaum.

PROOF. Note that we may assume thatX is affine. Since SpecR is regular
outside its the maximal idealm, it is clear that some power ofm annihilates
H i

m
.R/ for all i < dimR. We need to show that the smallest power for which

this happens is1. We let� W zX!X be a log resolution with exceptional divisor
E as in Theorem 6.1. SinceX is affine, we see thatH i

m
.R/ ' H i�1.X n

fmg; OX / ' H i�1. zX nE; O zX
/ for all i > 0. Therefore, it is enough to show

that mH i�1. zX nE; O zX
/ D 0 for all i < dimX . In other words, we need to

show thatmH i. zX nE; O zX
/D 0 for all i < dimX � 1.

We examine the long exact sequence

: : : // H i�1. zX nE; O zX
/ // H i

E
. zX ; O zX

/ // H i. zX ; O zX
/

// H i. zX nE; O zX
/ // : : :
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Now, H i
E

. zX ; O zX
/ D Ri.�m ı ��/ .OX / which vanishes fori < dimX by the

Matlis dual of Grauert-Riemenschneider vanishing. Therefore

H i. zX nE; O zX
/'H i. zX ; O zX

/

for i < dimX � 1. Finally, sinceX is Du Bois,H i. zX ; O zX
/ D H i.E; OE/

by Theorem 6.1. But it is obvious thatmH i.E; OE/D 0 sinceE is a reduced
divisor whose image inX is the point corresponding tom. The result then
follows. ˜

It is easy to see that isolatedF -injective singularities are also quasi-Buchsbaum.

PROPOSITION A.2. Suppose that.R; m/ is a local ring that isF -injective.
Further suppose thatSpecR n fmg is Cohen–Macaulay. Then.R; m/ is quasi-
Buchsbaum.

PROOF. Since the punctured spectrum ofR is Cohen–Macaulay,H i
m

.R/ is
annihilated by some power ofm for i < dimR. We will show that the smallest
such power is1. Choosec 2m. SinceR is F -injective,F e WH i

m
.R/!H i

m
.R/

is injective for alle > 0. Choosee large enough so thatcpe

H i
m

.R/ is zero for all
i < e. However, for any elementz 2H i

m
.R/, F e.cz/D cpe

F e.z/2 cpe

H i
m

.R/D
0 for i < dimR. This implies thatczD 0 and somH i

m
.R/D 0 for i < dimR. ˜

Perhaps the most interesting open question in this area is the following:

OPEN PROBLEM 1.3 (TAKAGI ). Are F -injective singularities with isolated
non-CM locus Buchsbaum?

Given the close connection betweenF -injective and Du Bois singularities, this
question naturally leads to the next one:

OPEN PROBLEM 1.4. Are Du Bois singularities with isolated non-CM locus
Buchsbaum?

2. Cubical hyperresolutions

For the convenience of the reader we include a short appendixexplaining
the construction of cubical hyperresolutions, as well as several examples. We
follow [GNPP88] and mostly use their notation.

First let us fix a small universe to work in. Let Schdenote the category of
reduced schemes. Note that the usual fibred product of schemesX�S Y need not
be reduced, even whenX andY are reduced. We wish to construct the fibred
product in the category of reduced schemes. Given any schemeW (reduced
or not) with maps toX and Y over S , there is always a unique morphism
W !X �S Y , which induces a natural unique morphismWred! .X �S Y /red.
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It is easy to see that.X �S Y /red is the fibred product in the category of reduced
schemes.

Let us denote by1 the categoryf0g and by2 the categoryf0 ! 1g. Let
n be an integer� �1. We denote bỹ C

n the product ofnC 1 copies of the
category2D f0! 1g [GNPP88, I, 1.15]. The objects of̃Cn are identified with
the sequences̨ D .˛0; ˛1; : : : ; ˛n/ such that̨ i 2 f0; 1g for 0 � i � n. For
nD�1, we set̃ C

�1
Df0g and fornD 0 we havẽ C

0
Df0! 1g. We denote by

˜n the full subcategory consisting of all objects of˜
C
n except the initial object

.0; : : : ; 0/. Clearly, the categorỹ C
n can be identified with the category of̃n

with an augmentation map tof0g.

DEFINITION 2.1. A diagram of schemesis a functor˚ from a categoryCop to
the category of schemes. Afinite diagram of schemesis a diagram of schemes
such that the aforementioned categoryC has finitely many objects and mor-
phisms; in this case such a functor will be called aC-scheme. A morphism of
diagrams of schemes̊ W Cop! Schto 	 W Dop! Schis the combined data
of a functor� W Cop! Dop together with a natural transformation of functors
� W ˚ ! 	 ı� .

REMARK 2.2. With these definitions, the class of (finite) diagrams ofschemes
can be made into a category. Likewise the set ofC-schemes can also be made
into a category (where the functor� W Cop! Cop is always chosen to be the
identity functor).

REMARK 2.3. LetI be a category. If instead of a functor to the category of re-
duced schemes, one considers a functor to the category of topological spaces, or
the category of categories, one can defineI -topological spaces, andI -categories
in the obvious way.

If X
˝
W Iop!Schis anI -scheme, andi 2ObI , thenXi will denote the scheme

corresponding toi . Likewise if� 2Mor I is a morphism� W j! i , thenX� will
denote the corresponding morphismX� WXi!Xj . If f WY

˝
!X

˝
is a morphism

of I -schemes, we denote byfi the induced morphismYi ! Xi . If X
˝
is anI -

scheme, a closed sub-I -scheme is a morphism ofI -schemesg WZ
˝
! X

˝
such

that for eachi 2 I , the mapgi WZi!Xi is a closed immersion. We will often
suppress theg of the notation if no confusion is likely to arise. More generally,
any property of a morphism of schemes (projective, proper, separated, closed
immersion, etc...) can be generalized to the notion of a morphism ofI -schemes
by requiring that for each objecti of I , gi has the desired property (projective,
proper, separated, closed immersion, etc...)

DEFINITION 2.4 [GNPP88, I, 2.2]. Suppose thatf W Y
˝
!X

˝
is a morphism of

I -schemes. Define thediscriminant off to be the smallest closed sub-I -scheme
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Z
˝
of X

˝
such thatfi W .Yi� .f �1

i .Zi///! .Xi�Zi/ is an isomorphism for all
i .

DEFINITION 2.5 [GNPP88, I, 2.5]. LetS
˝

be anI -scheme,f W X
˝
! S

˝
a

proper morphism ofI -schemes, andD
˝
the discriminant off . We say thatf is

a resolution6 of S
˝
if X

˝
is a smoothI -scheme (meaning that eachXi is smooth)

and dimf �1
i .Di/ < dimSi , for all i 2ObI .

REMARK 2.6. This is the definition found in [GNPP88]. Note that the maps
are not required to be surjective (of course, the ones one constructs in practice
are usually surjective).

Consider the following example: the mapkŒx; y�=.xy/! kŒx� which sends
y to 0. We claim that the associated map of schemes is a “resolution” of the
�-scheme SpeckŒx; y�=.xy/. The discriminant is SpeckŒx; y�=.x/. However,
the preimage is simply the origin onkŒx�, which has lower dimension than “1”.
Resolutions like this one are sometimes convenient to consider.

On the other hand, this definition seems to allow something itperhaps should
not. Choose any varietyX of dimension greater than zero and a closed point
z2X . Consider the mapz!X and consider the�-schemeX . The discriminant
is all of X . However, the preimage ofX is still just a point, which has lower
dimension thanX itself, by hypothesis.

In view of these remarks, sometimes it is convenient to assume also that
dimDi < dimSi for eachi 2 ObI . In the resolutions ofI -schemes that we
construct (in particular, in the ones that are used to that prove cubic hyperreso-
lutions exist), this always happens.

Let I be a category. The set of objects ofI are given the preorder relation
defined byi � j if and only if HomI .i; j / is nonempty. We will say that a
categoryI is ordered if this preorder is a partial order and, for eachi 2 ObI ,
the only endomorphism ofi is the identity [GNPP88, I, C, 1.9]. Note that a
categoryI is ordered if and only if all isomorphisms and endomorphismsof I

are the identity.
It turns out of that resolutions ofI -schemes always exist under reasonable

hypotheses.

THEOREM 2.7 [GNPP88, I, Theorem 2.6].Let S be anI -scheme of finite type
over a fieldk. Suppose thatk is a field of characteristic zero and thatI is a
finite ordered category. Then there exists a resolution ofS .

In order to construct a resolutionY
˝
of anI -schemeX

˝
, it might be tempting to

simply resolve eachXi , setYi equal to that resolution, and somehow combine

6A resolution is a distinct notion from a cubic hyperresolution.
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this data together. Unfortunately this cannot work, as shown by the example
below.

EXAMPLE 2.8. Consider the pinch point singularity,

X D SpeckŒx; y; z�=.x2y � z2/D SpeckŒs; t2; st �;

and letZ be the closed subscheme defined by the ideal.s; st/ (this is the singular
set). LetI be the categoryf0! 1g. Consider theI -scheme defined byX0DX

andX1 D Z (with the closed immersion as the map).X1 is already smooth,
and if one resolvesX0, (that is, normalizes it) there is no compatible way to
mapX1 (or even another birational model ofX1) to it, since its preimage by
normalization will be two-to-one ontoZ�X ! The way this problem is resolved
is by creating additional components. So to construct a resolution Y

˝
we set

Y1DZDX1 (since it was already smooth) and setY0DX 0

`

Z whereX 0 is
the normalization ofX0. The mapY1!Y0 just sendsY1 (isomorphically) to the
new component and the mapY0!X0 is the disjoint union of the normalization
and inclusion maps.

One should note that although the theorem proving the existence of resolutions
of I -schemes is constructive, [GNPP88], it is often easier in practice to construct
an ad-hoc resolution.

Now that we have resolutions ofI -schemes, we can discuss cubic hyperres-
olutions of schemes, in fact, even diagrams of schemes have cubic hyperresolu-
tions! First we will discuss a single iterative step in the process of constructing
cubic hyperresolutions. This step is called a2-resolution.

DEFINITION 2.9 [GNPP88, I, 2.7]. LetS be anI -scheme andZ
˝

a ˜
C
1
� I -

scheme. We say thatZ
˝
is a2-resolutionof S if Z

˝
is defined by the following

Cartesian square (pullback, or fibred product in the category of (reduced)I -
schemes) of morphisms ofI -schemes:

Z11
ffl

�

//

››

Z01

f

››

Z10
ffl

�

// Z00

Here

(i) Z00 D S ,
(ii) Z01 is a smoothI -scheme,
(iii) The horizontal arrows are closed immersions ofI -schemes,
(iv) f is a properI -morphism, and
(v) Z10 contains the discriminant off ; in other words,f induces an isomor-

phism of.Z01/i � .Z11/i over.Z00/i � .Z10/i , for all i 2ObI .
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Clearly 2-resolutions always exist under the same hypotheses that resolutions
of I -schemes exist: setZ01 to be a resolution,Z10 to be discriminant (or any
appropriate proper closed sub-I -scheme that contains it), andZ11 its (reduced)
preimage inZ01.

EXAMPLE 2.10. LetI D f0g and letS be theI -scheme SpeckŒt2; t3�. Let
Z01 DA1 D SpeckŒt � andZ01! S DZ00 be the map defined bykŒt2; t3�!
kŒt �. The discriminant of that map is the closed subscheme ofS DZ00 defined
by the map� W kŒt2; t3�! k that sendst2 and t3 to zero. Finally we need to
defineZ11. The usual fibered product in the category of schemes iskŒt �=.t2/,
but we work in the category of reduced schemes, so instead thefibered product
is simply the associated reduced scheme (in this case SpeckŒt �=.t/). Thus our
2-resolution is defined by this diagram of rings:

kŒt �=.t/

kŒt �=.t/

99

s

s

s

s

s

s

s

s

s

s

kŒt �

ccH

H

H

H

H

H

H

H

H

kŒt2; t3�

;;

w

w

w

w

w

w

w

w

w

eeK

K

K

K

K

K

K

K

K

We need one more definition before defining a cubic hyperresolution,

DEFINITION 2.11 [GNPP88, I, 2.11]. Letr be an integer greater than or equal
to 1, and letX n

˝

be a˜
C
n � I -scheme, for1 � n � r . Suppose that for alln,

1� n� r , the˜
C
n�1
� I -schemesX nC1

00˝

andX n
1˝

are equal. Then we define, by
induction onr , a ˜

C
r � I -scheme

Z
˝
D red.X 1

˝

; X 2
˝

; : : : ; X r
˝

/

that we call thereductionof .X 1
˝

; : : : ; X r
˝

/, in the following way: Ifr D 1, one
definesZ

˝
DX 1

˝

, if r D 2 one definesZ
˝˝
D red.X 1

˝

; X 2
˝

/ by

Z˛ˇ D
(

X 1
0ˇ

if ˛ D .0; 0/;

X 2
˛ˇ

if ˛ 2˜1;

for all ˇ 2˜
C
0

, with the obvious morphisms. Ifr > 2, one definesZ
˝
recursively

as red.red.X 1
˝

; : : : ; X r�1
˝

/; X r
˝

/.

Finally we are ready to define cubic hyperresolutions.

DEFINITION 2.12 [GNPP88, I, 2.12]. LetS be anI -scheme. Acubic hyper-
resolution augmented overS is a˜

C
r � I -schemeZ

˝
such that

Z
˝
D red.X 1

˝

; : : : ; X r
˝

/;
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whereX 1
˝

is a2-resolution ofS , X nC1
˝

is a 2-resolution ofX n
1

for 1 � n < r ,
andZ˛ is smooth for all̨ 2˜r .

Now that we have defined cubic hyperresolutions, we should note that they exist
under reasonable hypotheses:

THEOREM 2.13 [GNPP88, I, 2.15].Let S be anI -scheme. Suppose thatk is
a field of characteristic zero and thatI is a finite(bounded) ordered category.
Then there existsZ

˝
, a cubic hyperresolution augmented overS such that

dimZ˛ � dimS � j˛jC 1 for all ˛ 2˜r :

Below are some examples of cubic hyperresolutions.

EXAMPLE 2.14. Let us begin by computing cubic hyperresolutions of curves
so letC be a curve. We begin by taking a resolution� W C ! C (whereC

is just the normalization). LetP be the set of singular points ofC ; thusP is
the discriminant of�. Finally we letE be the reduced exceptional set of�,
therefore we have the Cartesian square

E //

››

C

�

››

P // C

It is clearly already a2-resolution ofC and thus a cubic-hyperresolution ofC .

EXAMPLE 2.15. Let us now compute a cubic hyperresolution of a schemeX

whose singular locus is itself a smooth scheme, and whose reduced exceptional
set of a strong resolution� W zX ! X is smooth (for example, any cone over a
smooth variety). As in the previous example, let˙ be the singular locus ofX
andE the reduced exceptional set of�, Then the Cartesian square of reduced
schemes

E //

››

zX
�

››

˙ // X

is in fact a2-resolution ofX , just as in the case of curves above.

The obvious algorithm used to construct cubic hyperresolutions does not con-
struct hyperresolutions in the most efficient or convenientway possible. For
example, applying the obvious algorithm to the intersection of three coordinate
planes gives us the following.

EXAMPLE 2.16. LetX [ Y [ Z be the three coordinate planes inA3. In
this example we construct a cubic hyperresolution using theobvious algorithm.
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What makes this construction different, is that the dimension is forced to drop
when forming the discriminant of a resolution of a diagram ofschemes.

Again we begin the algorithm by taking a resolution and the obvious one is
� W .X tY tZ/! .X [Y [Z/. The discriminant isBD .X \Y /[.X \Z/[
.Y \Z/, the three coordinate axes. The fiber product making the square below
Cartesian is simply the exceptional setE shown:

E D ..X\Y /[.X\Z// t ..Y \X /[.Y \Z// t ..Z\X /[.Z\Y // //

�

››

XtY tZ

�

››

B D .X\Y / [ .X\Z/[ .Y \Z/ // X[Y [Z

We now need to take a2-resolution of the2-scheme� W E ! B. We take the
obvious resolution that simply separates irreducible components. This gives us
zE! zB mapping to� W E! B. The discriminant ofzE! E is a set of three
pointsX0, Y0 andZ0 corresponding to the origins inX , Y andZ respectively.
The discriminant of the mapzB!B is simply identified as the originA0 of our
initial schemeX [ Y [Z (recallB is the union of the three axes). The union
of that with the images ofX0, Y0 andZ0 is again justA0. The fiber product of
the diagram

. zE! zB/

››

.fX0; Y0; Z0g ! fA0g/ // .� WE!B/

can be viewed asfQ1; : : : ; Q6g! fP1; P2; P3g whereQ1 andQ2 are mapped
to P1 and so on (rememberE was the disjoint union of the coordinate axes of
X , of Y , and of respectivelyZ, so zE has six components and thus six origins).
Thus we have the diagram

fQ1; : : : ; Q6g //

››

zE

››

fP1; P2; P3g
((

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

//

››

zB
&&

L

L

L

L

L

L

L

L

L

L

L

L

L

››

fX0; Y0; Z0g // E

fA0g //

((

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

B
&&

�

L

L

L

L

L

L

L

L

L

L

L

L

L

which we can combine with previous diagrams to construct a cubic hyperreso-
lution.
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REMARK 2.17. It is possible to find a cubic hyperresolution for the three coor-
dinate planes inA3 in a different way. Suppose thatS is the union of the three
coordinate planes (X , Y , andZ) of A3. Consider thẽ 2 or ˜

C
2

scheme defined
by the diagram below, where the dotted arrows are those in˜

C
2

but not in˜2.

X \Y \Z //

››

Y \Z

››

X \Y
&&

N

N

N

N

N

N

N

N

N

N

N

//

››

Y
&&

N

N

N

N

N

N

N

N

N

N

N

N

››

X \Z // Z

X //

&&

N

N

N

N

N

N

N

N

N

N

N

N

X [Y [Z
&&

One can verify that this is also a cubic hyperresolution ofX [Y [Z.

Now we discuss sheaves on diagrams of schemes, as well as the related notions
of push-forward and its right derived functors.

DEFINITION 2.18 [GNPP88, I, 5.3–5.4]. LetX
˝

be anI -scheme (or even an
I -topological space). We define asheaf (or pre-sheaf) of abelian groupsF ˝ on
X

˝
to be the following data:

(i) A sheaf (pre-sheaf)F i of abelian groups overXi , for all i 2ObI , and
(ii) An X�-morphism of sheavesF� W F i ! .X�/�F j for all morphisms� W

i ! j of I , required to be compatible in the obvious way.

Given a morphism of diagrams of schemesf
˝
W X

˝
! Y

˝
one can construct a

push-forward functor for sheaves onX
˝
.

DEFINITION 2.19 [GNPP88, I, 5.5]. LetX
˝
be anI -scheme,Y

˝
aJ -scheme,F ˝

a sheaf onX
˝
, andf

˝
WX

˝
! Y

˝
a morphism of diagrams of schemes. We define

.f
˝
/�F ˝ in the following way. For eachj 2ObJ we define

..f
˝
/�F ˝/j D lim

�
.Y�/�.fi�F i/

where the inverse limit traverses all pairs.i; �/ where� Wf .i/!j is a morphism
in J op.

REMARK 2.20. In many applications,J will simply be the categoryf0g with
one object and one morphism (for example, cubic hyperresolutions of schemes).
In that case one can merely think of the limit as traversingI .

REMARK 2.21. One can also define a functorf �, show that it has a right adjoint
and that that adjoint isf� as defined above [GNPP88, I, 5.5].
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DEFINITION 2.22 [GNPP88, I, Section 5]. LetX
˝
andY

˝
be diagrams of topo-

logical spaces overI andJ respectively,̊ W I ! J a functor,f
˝
W X

˝
! Y

˝

a ˚-morphism of topological spaces. IfG˝ is a sheaf overY
˝

with values in a
complete categoryC, one denotes byf �

˝

G � the sheaf overX
˝
defined by

.f �
˝

G˝/i D f �
i .G˚.i//;

for all i 2ObI . One obtains in this way a functor

f �
˝

W Sheaves.Y
˝
; C/! Sheaves.X

˝
; C/

Given anI -schemeX
˝
, one can define the category of sheaves of abelian groups

Ab.X
˝
/ on X

˝
and show that it has enough injectives. Next, one can even define

the derived categoryDC.X
˝
; Ab.X

˝
// by localizing bounded below complexes

of sheaves of abelian groups onX
˝

by the quasi-isomorphisms (those that are
quasi-isomorphisms on eachi 2 I ). One can also show that.f

˝
/� as defined

above is left exact so that it has a right derived functorR.f
˝
/� [GNPP88, I,

5.8-5.9]. In the case of a cubic hyperresolution of a schemef WX
˝
! X ,

R..f
˝
/�F ˝/DR lim

�
.Rfi�F i/

where the limit traverses the categoryI of X
˝
.

Final remark. We end our excursion into the world of hyperresolutions here.
There are many other things to work out, but we will leave themto the interested
reader. Many “obvious” statements need to be proved, but most are relatively
straightforward once one gets comfortable using the appropriate language. For
those and many more statements, including the full details of the construction
of the Du Bois complex and many applications, the reader is encouraged to read
[GNPP88].
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