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Hodge theory meets the minimal model
program: a survey of log canonical and
Du Bois singularities

SANDOR J. KOVACS AND KARL E. SCHWEDE

ABSTRACT. We survey some recent developments in the study of sirigular
ties related to the classification theory of algebraic \e$e In particular, the
definition and basic properties of Du Bois singularities &melr connections
to the more commonly known singularities of the minimal mqategram are
reviewed and discussed.

1. Introduction

The primary goal of this note is to survey some recent deveéoyis in the
study of singularities related to the minimal model progrdmparticular, we
review the definition and basic propertiesf Bois singularitiesand explain
how these singularities fit into the minimal model progrard aroduli theory.

Since we can resolve singularities [Hir64], one might asly wie care about
them at all. It turns out that in various situations we areéarto work with
singularities even if we are only interested in understagdimooth objects.

One reason we are led to study singular varieties is provigettie minimal
model program [KM98]. The main goal is the classification lgfehraic vari-
eties and the plan is to find reasonably simple represeesati all birational
classes and then classify these representatives. It twinthat the simplest
objects in a birational class tend to be singular. What tbaly means is that
when choosing a birational representative, we aim to hawelsiglobal prop-
erties and this is often achieved by a singular variety. singular means that
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there are points where ttecal structure is more complicated than on a smooth
variety, but that allows for the possibility of still havireg somewhat simpler
global structure and along with it, good local propertiemast points.

Another reason to study singularities is that to understmndoth objects we
should also understand how smooth objects may deform arehdegfe. This
leads to the need to construct and understand moduli spasdsot just moduli
for the smooth objects: degenerations provide importdotnmation as well. In
other words, it is always useful to work with complete mocutoblems, i.e.,
extend our moduli functor so it admits a compact (and préfgrarojective)
coarse moduli space. This also leads to having to considgulsir varieties.

On the other hand, we have to be careful to limit the kindsrajgiarities that
we allow in order to be able to handle them. One might view shis/ey as a
list of the singularities that we must deal with to achieve gloals stated above.
Fortunately, it is also a class of singularities with whick tave a reasonable
chance to be able to work.

In particular, we will review Du Bois singularities and redd notions, in-
cluding some very recent important results. We will alsoeeva family of
singularities defined via characterisgicmethods, the Frobenius morphism, and
their connections to the other set of singularities we aseudising.

Definitions and notation. Let k be an algebraically closed field. Unless oth-
erwise stated, all objects will be assumed to be defined lovér schemewill
refer to a scheme of finite type ovierand unless stated otherwisep@intrefers
to a closed point.

For a morphismt” — S and another morphisfi — S, the symbolY7 will
denoteY xg T'. In particular, forr € S we write X, = f~1(¢). In addition, if
T = SpecF, thenY7 will also be denoted by .

Let X be a scheme an& an 0x-module. Then-th reflexive poweof . is
the double dual (or reflexive hull) of the-th tensor power of7:

Flml .= (F®my**,

A line bundleon X is an invertibledy-module. AQ-line bundle.Z on X is

a reflexive Oxy-module of rankl that possesses a reflexive power which is a
line bundle, i.e., there exists am € N such thatZ!"! is a line bundle. The
smallest suchw is called theindexof Z.

e For the advanced reader: whenever we mention Weil divisssyjme thak
is S, [Har77, Theorem 8.22A(2)] and think of \&eil divisorial sheafthat
is, a rankl reflexive &'y -module which is locally free in codimensidn For
flatness issues consult [Kol08a, Theorem 2].

e For the novice: whenever we mention Weil divisors, assuraeXhis normal
and adopt the definition [Har77, p. 130].
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For a Weil divisorD on X, its associatetleil divisorial sheaiis the/'y-module
Ox (D) defined on the open sét C X by the formula

F(U. Oy (D)) = { a,b e I'(U, Ox), b is not a zero divisor anywhe}e

a
b ‘ onU, andD|y + divy (a) — divy (b) > 0.

and made into a sheaf by the natural restriction maps.

A Weil divisor D on X is aCartier divisor, if its associated Weil divisorial
sheaf,0x (D) is a line bundle. If the associated Weil divisorial sheaf; (D)
is aQ-line bundle, thenD is a Q-Cartier divisor. The latter is equivalent to
the property that there exists am € N4 such thatn D is a Cartier divisor.
Weil divisors form an abelian group. Tensoring this grouphv@® (overZ) one
obtains the group of)-divisorson X. (If X is not normal, some unexpected
things can happen in this process; see [Kol92, Chapter 16].)

The symbok stands foltinear and= for numerical equivalencef divisors.

Let .Z be a line bundle on a schenié. It is said to begenerated by global
sectionsf for every pointx € X there exists a global sectian, € H°(X, .%¥)
such that the germ, generates the stall, as andy-module. If.Z is gener-
ated by global sections, then the global sections define ahigm

bz X - PN =P(H(X, 2)*%).

£ is calledsemi-amplaf ™ is generated by global sections far> 0. .¥
is calledampleif it is semi-ample andp = is an embedding fom > 0. A
line bundle.Z on X is calledbig if the global sections a&™ define a rational
mapggm 1 X --» PN such thatX is birational tog.m (X) for m > 0. Note
that in this caseZ™ need not be generated by global sectionspse: is not
necessarily defined everywhere. We leave it for the readamntike the obvious
adaptation of these notions for the casé)sfine bundles.

The canonical divisorof a schemeX is denoted byKx and thecanonical
sheafof X is denoted byvy .

A smooth projective varietyx” is of general typef wy is big. It is easy to
see that this condition is invariant under birational eglénce between smooth
projective varieties. An arbitrary projective variety isgeneral typdf so is a
desingularization of it.

A projective variety iscanonically polarizedf wy is ample. Notice that if a
smooth projective variety is canonically polarized, theis of general type.

2. Pairs and resolutions

For the reader’s convenience, we recall a few definitionandigg pairs.
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DEFINITION 2.1. A pair (X, A) consists of a normAlquasiprojective variety
or complex spacel’ and an effectiveQ-divisor A € X. A morphism of pairs
v (X, A) —> (X, A) is a morphismy : X — X such thaty (Suppwt A)) €
SuppA). A morphism of pairsy : (X, A) — (X, A) is calledbirational if
it induces a birational morphism : wt X = X andy(wtA) = A. Itis an
isomorphisnif it is birational and it induces an isomorphism wt X = X

DEFINITION 2.2. Let(X, A) be a pair, and: € X a point. We say thatX, A)
is snc atx, if there exists a Zariski-open neighborhobdof x such thatU is
smooth andANU is reduced and has only simple normal crossings (see Section
3B for additional discussion). The pdiX, A) is sncif itis snc at allx € X.

Given a pair(X, A), let (X, A)reg be the maximal open set of where
(X, A) is snc, and let X, A)sing be its complement, with the induced reduced
subscheme structure.

REMARK 2.2.1. If a pair(X, A) is snc at a point, this implies that all com-
ponents ofA are smooth at. If instead of the condition thdt is Zariski-open
one would only require this analytically locally, then Défiion 2.2 would define
normal crossing pairs rather than pairs with simple normadsing.

DEFINITION 2.3. Alog resolutionof (X, A) is a proper birational morphism
of pairsz : (X,wt A) — (X, A) that satisfies the following four conditions:

e X is smooth.

e Wt A = 7! Ais the strict transform oft.

e Exc(r) is of pure codimension.

. SuanU Exc(rr)) is a simple normal crossings divisor.

If, in addition,
« the strict transformA of A has smooth support,

then we callr anembedded resolutioof A C X.
In many cases, it is also useful to require thais an isomorphism over
(X, A)reg-

3. Introduction to the singularities of the mmp

Even though we have introduced pairs and most of these sintes make
sense for pairs, to make the introduction easier to digestilenostly discuss
the case whem\ = @. As mentioned in the introduction, one of our goals is
to show why we are forced to work with singular varieties eifeyur primary
interest lies with smooth varieties.

LOccasionally, we will discuss pairs in the nonnormal sgttfBee Section 3F for more details.
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3A. Canonical singularities. For an excellent introduction to this topic the
reader is urged to take a thorough look at Miles Reid’s Youagséh's Guide
[Rei87]. Here we will only touch on the subject.

Let us suppose that we would like to get a handle on some midRerhaps
we want to classify them or make some computations. In ang, Gasiseful
thing to do is to embed the object in question into a projectpace (if we can).
Doing so requires a (very) ample line bundle. It turns out th3ractice these
can be difficult to find. In fact, it is not easy to find any nowita line bundle
on an abstract variety.

One possibility, whenX is smooth, is to try a line bundle that is “handed”
to us, namely some (positive or negative) power of¢haonical line bundlg
wy = detTy. If X is not smooth but instead normal, we can consteygton
the smooth locus and then push it forward to obtain a rank efiexive sheaf
on all of X' (which sometimes is still a line bundle). Next we will expdnow
we might “force” this line bundle to be ample in some (actyatlany) cases.

Let X be a minimal surface of general type that contains-2)-curve (a
smooth rational curve with self-intersectier2). For an example of such a
surface consider the following.

EXAMPLE 3.1. X = (x% 4+ y% + 2% + w3 = 0) € P? with the Z,-action that
interchanges <> y andz <> w. This action has five fixed pointd,: 1: —&’ : —¢]
fori =1,...,5, wheree is a primitive fifth root of unity. Hence the quotient
X /7, has five singular points, each a simple double point of tyge Let
X — X/7, be the minimal resolution of singularities. Théh contains five
(—2)-curves, the exceptional divisors over the singularities.

Let us return to the general case, that¥isis a minimal surface of general type
that contains &—2)-curve,C € X. AsC ~P!, and.X is smooth, the adjunction
formula gives us thaKy - C = 0. ThereforeKx is not ample.

On the other hand, sinc¥ is a minimal surface of general type, it follows
that Kx is semi-ample, that is, some multiple of it is base-poingfri other
words, there exists a morphism,

ImKx|: X — Xcan S P(H° (X, Ox (mKx))*).

This may be shown in several ways. For example, it followsnfl®ombieri’'s
classification of pluricanonical maps, but perhaps the stroof is provided
by Miles Reid [Rei97, E.3].

It is then relatively easy to see that this morphism ontonitage is indepen-
dent ofm (as long asn Ky is base point free). This constant image is called
the canonical modeof X, and will be denoted by can

The good news is that the canonical line bundleXgf, is indeed ample, but
the trouble is that\.4, is singular. We might consider this as the first sign of



56 SANDOR J. KOVACS AND KARL E. SCHWEDE

the necessity of working with singular varieties. Fort@hathe singularities
are not too bad, so we still have a good chance to work withntiidel. In fact,

the singularities that can occur on the canonical model afrtase of general
type belong to a much studied class. This class goes by $eanes; they are
calleddu Val singularities or rational double pointsor Gorenstein, canonical
singularities For more on these singularities, refer to [Dur79; Rei87].

3B. Normal crossings. These singularities already appear in the construction
of the moduli space of stable curves (or if the reader prefbesconstruction

of a compactificaton of the moduli space of smooth projeatireres). If we
want to understand degenerations of smooth families, we twallow normal
crossings.

A normal crossingsingularity is one that is locally analytically (or formgll
isomorphic to the intersection of coordinate hyperplamea linear space. In
other words, itis a singularity locally analytically defthas(x;x, --- x, =0) C
A" for somer < n. In particular, as opposed to the curve case, for surfaces it
allows for triple intersections. However, triple intersens may be “resolved”:
Let X = (xyz=0) C A3. Blow up the originO € A3 to obtaino : Blg A3 — A3,
and consider the proper transformXf o : X — X. Observe thafl has only
double normal crossings.

Another important point to remember about normal crossisigjsat they are
notnormal. In particular they do not belong to the previousgatg For some
interesting and perhaps surprising examples of surfacéksnermal crossings
see [Kol07].

3C. Pinch points. Another nonnormal singularity that can occur as the limit of
smooth varieties is the pinch point. It is locally analytigalefined as the locus
(x7 = x,x3) € A", This singularity is a double normal crossing away from the
pinch point. Its normalization is smooth, but blowing up fhiech point (i.e.,
the origin) does not make it any better. (Try it for yourself!

3D. Cones. Let C € P? be a curve of degreé and X C P3 the projectivized
cone overC. As X is a degreel hypersurface, it admits a smoothing.

ExaMPLE 3.2. LetZ = (x? + p¥ +z9 +1wd = 0) P}, x Al. The

special fiberZ is a cone over a smooth plane curve of degieand the general
fiber Z,, for ¢ # 0, is a smooth surface of degréein P3.

This, again, suggests that we must allow some singularifiége question is
whether we can limit the type of singularities we must dedahwMore partic-
ularly to this case, can we limit the type of cones we needltoval

First we need an auxiliary computation. By the nature of th@pgutation it
is easier to usdivisorsinstead ofline bundles
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COoMMENTARY 3.3. One of our ultimate goals is to construct a moduli space
for canonical models of varieties. We are already awarettigaminimal model
program has to deal with singularities and so we must allawessingularities
on canonical models. We would also like to understand whastraints are
imposed if our goal is to construct a moduli space. The pairthat in order
to construct our moduli space, the objects must have an araplenical class.
It is possible that a family of canonical models degenerties singular fiber
that has singularities worse than the original canonicaliet®a An important
guestion then is whether we may resolve the singularitiehisfspecial fiber
and retain ampleness of the canonical class. The next egashplvs that this
is not always possible.

EXAMPLE 3.4. LetW be a smooth variety and = X; U X, € W such that
X7 and X, are Cartier divisors ir. Then by the adjunction formula we have

Kx = (Kw + X)lx,
Ky, = (Kw + X1)lx,
Kx, = (Kw + X2)|x,-
Therefore
Kx|x; = Kx; + X3-ilx; (3.4.1)
fori = 1,2, so we have

Ky isample <= Kx|x, = Kx, + X3_;|x; isample fori =1,2. (3.4.2)

Next, let X be a normal projective surface wikiy ample and an isolated sin-
gular pointP e SingX. Assume thafX’ is isomorphic to a con&, < P? as in
Example 3.2, locally analytically nedt. Further assume thét is the special
fiber of a family & that itself is smooth. In particular, we may assume that all
fibers other thanX” are smooth. As explained in (3.3), we would like to see
whether we may resolve the singular poihe X and still be able to construct
our desired moduli space, i.e., thitof the resolved fiber would remain ample.
For this purpose we may assume tlfais the only singular point of(.

LetY — & be the blowing up o € & and letX denote the proper transform
of X. ThenT, = X UE, whereE ~ P? is the exceptional divisor of the blowup.
Clearly,o : X — X is the blowup ofP on X, so it is a smooth surface adfin E
is isomorphic to the degregcurve over whichX is locally analytically a cone.

We would like to determine the condition aithat ensures that the canonical
divisor of Ty is still ample. According to (3.4.2) this means that we ndet t
Kg + X|g andK 5 + E| 5 be ample.

As E ~ P2, wg ~ Op2(-3), 0 Op(KE + X|g) =~ Op2(d —3). This is
ample if and only ifd > 3.
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As this computation is local ned the only relevant issue about the ample-
ness ofK 3 + E| y is whether it is ample in a neighborhood Bk := E| . By
the next claim this is equivalent to asking whekiy + Ex) - Ex is positive.

CLAIM . Let Z be a smooth projective surface with nonnegative Kodairaedim
sion andl” C Z an effective divisarlf (Kz + I")-C > 0 for every proper curve
C c Z,thenKz + I' isample

PrROOF By the assumption on the Kodaira dimension there exists:an 0
such thatn K 7 is effective, hence so im(Kz + I'). Then by the assumption
on the intersection numbefK > + I')? > 0, so the statement follows by the
Nakai—Moishezon criterium. OJ

Observe that, by the adjunction formula,
(K)'(* + Ex)-Ex = degKEX =d(d - 3),

as Ey is isomorphic to a plane curve of degrée Again, we obtain the same
condition as above and thus conclude thigt, may be ample only it/ > 3.

Now, if we are interested in constructing moduli spaces, afrtbe require-
ments of being stable is that the canonical bundle be ampies means that
in order to obtain a compact moduli space we have to allow somgularities
over curves of degreé < 3. The singularity we obtain fo# = 2 is a rational
double point, but the singularity faf = 3 is not even rational. This does not
fit any of the earlier classes we discussed. It belongs torikadscussed in the
next section.

3E. Log canonical singularities. Let us investigate the previous situation under
more general assumptions.

COMPUTATION 3.5. LetD = Y i_,A;D; (A; € N), be a divisor with only
normal crossing singularities in a smooth ambient varietyhsthati, = 1.
Using a generalized version of the adjunction formula shixatin this situation
(3.4.1) remains true.

,
Kplp, = Kp, + Z)»iDiIDO (3.5.1)

i=1

Let f : & — B a projective family with dimB = 1, & smooth andK g,
ample for allb € B. Further letX = &}, for someb, € B a singular fiber and
leto : T — E be an embedded resolution &fC Z. Finally letY = o*X =
X 4+ Y7_, i F; whereX is the proper transform ot and F; are exceptional
divisors foro. We are interested in finding conditions that are necessark §
to remain ample.
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Let E; := F;|§ be the exceptional divisors far : X — X and for the
simplicity of computation, assume that tiig are irreducible. FoKy to be
ample we neeKy |\ x as well asKy|f, for all i to be ample. Clearly, the
important one of these for our purposesKig |wt x, for which 3.5.1) gives

r
Ky|)'(~ = KX’“ -I-Z)uiE,‘.
i=1
As usual, we may writeK ¢ = o* Ky + > i_aiEi, so we are looking for
conditions to guarantee that Ky + > (a; + A;) E; be ample. In particular, its
restriction to any of thé<; has to be ample. To further simplify our computation
let us assume that ditki = 2. Then the condition that we want satisfied is that,
for all j,

(Z(a,- +A,~)E,-) "Ej >0, (3.5.2)

i=1

Write the sum in parentheses As — E_, where

Ey= Y lai+ME; and E_= Y |a;i+M|E:.
a;j+A;=0 a;+A;<0

Choose g such thatE; € SuppEy. ThenE_-E; >0 sinceE; ¢ E_ and
(3.5.2) implies that £, — E_)- E; > 0. These together imply thaf, - £; > 0
and then thaEi > 0. However, theE; are exceptional divisors of a birational
morphism, so their intersection matrie;; - £;) is negative definite.

The only way this can happen is# = 0. In other wordsg; + A; < 0 for
all i. However, the\; are positive integers, so this implies th&> may remain
ample only ifa; < —1foralli =1,...,r.

The definition of alog canonical singularityis the exact opposite of this
condition. It requires thak” be normal and admit a resolution of singularities,
sayY — X, such that all the; > —1. This means that the above argument shows
that we may stand a fighting chance if we resolve singulariti@t areworse
than log canonical, but have no hope to do so with log canbringularities.
In other words, this is another class of singularities thathave to allow. As
we remarked above, the class of singularities we obtainethéocones in the
previous subsection belong to this class. In fact, all theenabsingularities that
we have considered so far belong to this class.

The good news is that by nhow we have covered most of the waysdhae-
thing can go wrong and found the class of singularities wetrallew. Since
we already know that we have to deal with some nonnormal &anigias and in
fact in this example we have not really needed tkidbe normal, we conclude
that we will have to allow the nonnormal cousins of log cacsahgingularities.
These are calledemi-log canonical singularitie@nd we turn to them now.
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3F. Semi-log canonical singularities.Semi-log canonical singularities are very
important in moduli theory. These are exactly the singtikgithat appear on
stable varieties, the higher dimensional analogs of stabiees. However, their
definition is rather technical, so the reader might want tp #ks section at the
first reading.

As a warm-up, let us first define the normal and more traditisimgularities
that are relevant in the minimal model program.

DEFINITION 3.6. A pair (X, A) is calledlog Q-Gorensteinif Ky + A is Q-
Cartier, i.e., some integer multiple &y + A is a Cartier divisor. LetX, A)
be a logQ-Gorenstein pair and : X—>Xa log resolution of singularities with
exceptional divisolE = | J E;. Express the log canonical divisor &f in terms
of Kx + A and the exceptional divisors:

Kg+WtA= f*(Kx + A)+ Y a;E;

where witA = f*—lA, the strict transform oA on wtX anda; € Q. Then the
pair (X, A) has

terminal a; >0
canonical a; >0
plt singularities if{ a; > —1
kit a;i>—land|A| <0
log canonical a; > —1

for all log resolutionsf” and alli. The corresponding definitions for nonnormal
varieties are somewhat more cumbersome. We include thesfdrecomplete-
ness, but the reader should feel free to skip them and asswahéot instance
“semi-log canonical” means something that can be reaspicabkidered a non-
normal version of log canonical.

Suppose thak' is a reduced equidimensional scheme that

(i) satisfies Serre’s condition S2 (see [Har77, Theorem&2Q), and
(i) has only simple normal double crossings in codimendidim particularX
is Gorenstein in codimension 1).

The conditions imply that we can treat the canonical modfil¥ as a divisorial
sheaf even thougl is not normal. Further suppose thatis aQ-Weil divisor
on X (again, following [Kol92, Chapter 16], we assume thkats regular at the
generic point of each component in Supp

REMARK 3.7. Conditions (i) and (ii) in Definition 3.6 imply that” is semi-
normal since it is seminormal in codimension 1; see [GT80pary 2.7].

2Sometimes a ring that is S2 and Gorenstein in codimensiordllad quasinormal.
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Setp: XV — X to be the normalization af and suppose tha is the divisor
of the conductor ideal o V. We denote by ! (D) the pullback ofD to X V.

DEeFINITION 3.8. We say thatX, D) is semi-log canonicaif

() Kx + D is Q-Catrtier, and
(i) the pair (X, B + p~! D) is log canonical.

Actually, the original definition of semi-log canonical giarities (which is
equivalent to this one) uses the theory of semi-resolutiofsr details, see
[KSB88], [Kol92, Chapter 12], and [Kol08b].

4. Hyperresolutions and Du Bois’s original definition

A very important construction is Du Bois’s generalized DeaRhcomplex.
The original construction of Du Bois's comple®’,, is based on simplicial
resolutions. The reader interested in the details is redeiw the original article
[DB81]. Note also that a simplified construction was latetairied in [Car85]
and [GNPP88] via the general theory of polyhedral and cudsolutions. At the
end of the paper, we include an appendix in which we explam tocconstruct,
and give examples of cubical hyperresolutions. An easibessible introduc-
tion can be found in [Ste85]. Another useful reference ig¢ioent book [PS08].

In [Sch07] one of us found a simpler alternative constructd(part of) the
Du Bois complex, not involving a simplicial resolution; sEeo Section 6 below.
However we will discuss the original construction becatiseimportant to keep
in mind the way these singularities appeared, as that epthiir usefulness.
For more on applications of Du Bois’s complex and Du Bois slagties see
[Ste83], [Kol95, Chapter 12], [Kov99], and [Kov0O0b].

The word “hyperresolution” will refer to either simplicigbolyhedral, or cu-
bic resolution. Formally, the construction @f, is the same regardless the type
of resolution used and no specific aspects of either typédwilised.

The following definition is included to make sense of theestatnts of some
of the forthcoming theorems. It can be safely ignored if #seder is not inter-
ested in the detailed properties of Du Bois’s complex andiléng to accept
that it is a very close analog of the De Rham complex of smoatteires.

DEFINITION 4.1. LetX be a complex scheme (i.e., a scheme of finite type over
C) of dimension n. LetDs;(X) denote the derived category of filtered com-
plexes of0’y -modules with differentials of ordet 1 and Dxi con(X) the subcat-
egory of Dy (X) of complexeskK® such that for alf, the cohomology sheaves of
Grh,, K- are coherent; see [DB81], [GNPP88]. LB(X) and Dcon(X) denote

the derived categories with the same definition except ti@aicomplexes are
assumed to have the trivial filtration. The superscripts-, b carry the usual
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meaning (bounded below, bounded above, bounded). Isomsampin these
categories is denoted byqs. A sheaf.” is also considered a complex*
with . Z% = .7 and.Z? = 0 fori # 0. If K~ is a complex in any of the above
categories, theh’ (K*) denotes thé-th cohomology sheaf ok™.

The right derived functor of an additive functér, if it exists, is denoted by
RF and R’ F is short fori’ o RF. FurthermoreH’, HY, , and.»#7, will denote
R'I", R'T"'z, andR! 7 respectively, wheré is the functor of global sections,
I'z is the functor of global sections with support in the closatdsetZ, and
7 is the functor of the sheaf of local sections with supporhmdlosed subset
Z . Note that according to this terminology,df: ¥ — X is a morphism and
Z is a coherent sheaf oH, then R¢«.# is the complex whose cohomology
sheaves give rise to the usual higher direct image# of

THEOREM 4.2 [DB81, 6.3, 6.5].Let X be a proper complex scheme of finite
type andD a closed subscheme whose complement is denke ifhen there
exists a unique objec®;, € Ob Dy (X') such thafusing the notation

Q§/ = Grfli)n QX[p]v
the following properties are satisfied

(@) 2y ~qisCx; i.e., 2% is aresolution of the constant she@fon X'

(b) 2, is functorial i.e, if ¢ : Y — X is a morphism of proper complex
schemes of finite typthere exists a natural map* of filtered complexes

Furthermore 2y € Ob(D}, ,+(X)), and if ¢ is proper, ¢* is a morphism
in beilt,coh(X)'

(c) LetU C X be an open subschemeXf Then
% |u ~qis 2y

(d) If X is proper, there exists a spectral sequence degenerating atand
abutting to the singular cohomology 4f:

EYT =H (X, 2%) = HPTI(X™",C).
(e) If &,: X, — X is a hyperresolutionthen
$2% ~qis Re.x 2% .

In particular, h' (2%) = 0fori <0.
(f) There exists a natural mag’y — 229, compatible with(4.2.(5)).
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(9) If X is smooththen
2y ~qis 2
In particular,
Q)’} Zqis 9)1;
(h) If ¢ : Y — X is a resolution of singularitieghen
Q?YimX ~qis Rpxwy .

(i) Suppose that : Y >Yisa projective morphism and” C Y a reduced
closed subscheme such thais an isomorphism outside &f. Let £ denote
the reduced subschemeXfwith support equal tor ~!(X) andz’ : E — X
the induced mapThen for eaclp one has an exact triangle of objects in the
derived category

2) —= 2% ® Rm 28—~ Ru, 2% >

It turns out that Du Bois’s complex behaves very much likedtla®ham complex
for smooth varieties. Observe that condition (d) says ti@ttodge-to-de Rham
spectral sequence works for singular varieties if one Use®u Bois complex
in place of the de Rham complex. This has far reaching comsems and if
the associated graded piecé®} turn out to be computable, then this single
property leads to many applications.

Notice that condition (f) gives a natural mapy — 29, and we will be
interested in situations when this map is a quasi-isomerphivVhenX  is proper
overC, such a quasi-isomorphism will imply that the natural map

H'(X?,C)— H' (X, Ox) =H (X, 2%)

is surjective because of the degeneratiot aof the spectral sequence in con-
dition (d).

Following Du Bois, Steenbrink was the first to study this dtind and he
christened this property after Du Bois.

DEFINITION 4.3. A schemeX is said to havéu Bois singularitiegor DB sin-
gularitiesfor short) if the natural mapy — 5_23’( from condition (f) in Theorem
4.2 is a quasi-isomorphism.

REMARK 4.4. If¢ : X, - X is a hyperresolution ok (see the Appendix for a
how to construct cubical hyperresolutions) thErhas Du Bois singularities if
and only if the natural map’y — Re. Oy, is a quasi-isomorphism.

EXAMPLE 4.5. Itis easy to see that smooth points are Du Bois. Deligoesl
that normal crossing singularities are Du Bois as well [DJ&mme 2(b)].

We will see more examples of Du Bois singularities in latetiems.
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5. An injectivity theorem and splitting the Du Bois complex

In this section, we state an injectivity theorem involviig tdualizing sheaf
that plays a role for Du Bois singularities similar to theerdhat Grauert—
Riemenschneider plays for rational singularities. As apliegtion, we state a
criterion for Du Bois singularities related to a “splittingf the Du Bois complex.

THEOREM 5.1 [Kov99, Lemma 2.2; Sch09, Proposition 5.11]et X be a
reduced scheme of finite type o¥&rx € X a (possibly nonclosédooint, and

Z = {x} its closure Assume thaf¥ \ Z has Du Bois singularities in a neigh-
borhood ofx (for example x may correspond to an irreducible component of
the non-Du Bois locus oY). Then the natural map

Hi (R}[am;\/(Qg(, a)/'Y))x S H! (wy)x
is injective for every.

The proof uses the fact that for a projecti¥e H'(X?",C) — H'(X, 2%) is
surjective for every > 0, which follows from Theorem 4.2.

It would also be interesting and useful if the following gealzation of this
injectivity were true.

QUESTIONDG.2. Suppose that is a reduced scheme essentially of finite type
overC. Is it true that the natural map of sheaves

H' (RHomy (2%, wy)) — H' (o)
is injective for everyi ?
Even though Theorem 5.1 does not answer Question 5.2, itheafolowing
extremely useful corollary.

THEOREM5.3 [Kov99, Theorem 2.3; Kol95, Theorem 12.&uppose that the
natural mapoy — 5_23’( has a left inverse in the derived categdihat is a
mapp : Qg( — Ox such that the compositioy —— Qg( L COx is an
isomorphism ThenX has Du Bois singularities

PROOF. Apply the functorR Homy ( _, wj ) to the mapsiy —— Q?(—p>ﬁX_
Then by the assumption, the composition

. ¢ .
wy —— RHomy (29 , Wy) —> Oy

is an isomorphism. Let € X be a possibly nonclosed point corresponding
to an irreducible component of the non-Du Bois locusXofand consider the
stalks atx of the cohomology sheaves of the complexes above. We oltain t
the natural map

H' (RHomy (2%, ), — H' (0y)x
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is surjective for every. But it is also injective by Theorem 5.1. This proves
thatd : (wy)x — RHomy (5_23(, wy )x IS a quasi-isomorphism. Finally, applying
the functorR Homg, . (_, (wj)x) One more time proves tha is Du Bois at
x, contradicting our choice of € X O

This also gives the following Boutot-like theorem for Du Baingularities (cf.
[Bou87)).

COROLLARY 5.4 [Kov99, Theorem 2.3; Kol95, Theorem 12.8uppose that
f:Y — X is a morphismY has Du Bois singularities and the natural map
Ox — Rf«Oy has a left inverse in the derived categoryhen X" also has
Du Bois singularities

PROOF Observe that the composition is an isomorphism
Ox — % — Rfx2% ~ RfiOy — Ox.
Then apply Theorem 5.3. O

As an easy corollary, we see that rational singularitiesbard3ois (which was
first observed in the isolated case by Steenbrink in [SteBfd3ition 3.7]).

COROLLARY 5.5 [Kov99; Sai00].If X has rational singularitiesthen X has
Du Bois singularities

PROOF. Letr : X — X be a log resolution. One has the compositizp —
.(_23( — Rm. 0 5. SinceX has rational singularities, this composition is a quasi-
isomorphism. Apply Corollary 5.4. g

6. Hyperresolution-free characterizations of Du Bois singlarities

The definition of Du Bois singularities given via hyperragain is relatively
complicated (hyperresolutions themselves can be ratheplicated to com-
pute; see 2). In this section we state several hyperresnlditee characteri-
zations of Du Bois singularities. The first such charactdian was given by
Steenbrink in the isolated case. Another, more analyticactarization was
given by Ishii and improved by Watanabe in the isolated gGasiensteif
case. Finally the second named author gave a charactenizhtt works for
any reduced scheme.

A relatively simple characterization of an affine cone ovpr@ective variety
being Du Bois is given in [DB81]. Steenbrink generalizeds thiiterion to all
normal isolated singularities. Itis this criterion thag&tbrink, Ishii, Watanabe,
and others used extensively to study isolated Du Bois sanijigls.

3 A variety X is quasi-Gorenstein iK'y is a Cartier divisor. Itis not required thaf is Cohen—Macaulay.
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THEOREM 6.1 [DB81, Proposition 4.13; Ste83, 3.Glet (X, x) be a normal
isolated Du Bois singularityand = : X — X a log resolution of(X, x) such
that is an isomorphism outside &f \ {x}. Let £ denote the reduced preimage
of x. Then(X, x) is a Du Bois singularity if and only if the natural map

Rin*ﬁf — Rin*ﬁE
is an isomorphism for all > 0.

PROOF Using Theorem 4.2, we have an exact triangle
- +1
QY —= 20y ® R 2% — Rr.2} >

Since{x}, X andE are all Du Bois (the first two are smooth, afds snc), we
have the following exact triangle

2% —> Oy ® RO —> R, O —>.

Suppose first thak’ has Du Bois singularities (that igg’( ~qis Ox ). By taking
cohomology and examining the long exact sequence, we sekthad y —
R'7. O is an isomorphism for all > 0.

So now suppose tha’ 40 ¢ — R 7+ O is an isomorphism for ail > 0.
By considering the long exact sequence of cohomology, wehseél’ (Qg() is
zero for alli > 0. On the other handHO(Qg() is naturally identified with the
seminormalization oUy ; see Proposition 7.8 below. ThusXf is normal, then
Ox — H°(2%) is an isomorphism. O

We now state a more analytic characterization, due to Isdisdightly improved
by Watanabe. First we recall the definition of the pluriganefra singularity.

DEFINITION 6.2. For a singularity X, x), we define the plurigenerd,,; },;en;
dm(X,x) =dimg I'(X \ x, ﬁX(mKX))/LZ/’"(X \ {x}),

whereL2/™(Xx \ {x}) denotes the set of all2/"-integrablem-uple holomor-
phic n-forms onX \ {x}.

THEOREM 6.3 [Ish85, Theorem 2.3; Wat87, Theorem 4128t f : X > X be
a log resolution of a normal isolated Gorenstein singubafik’, x) of dimension
n > 2. SetE to be the reduced exceptional divisghe preimage ok). Then
(X, x) is a Du Bois singularity if and only @&,,(X, x) < 1 foranym € N.

In [Sch07], a characterization of arbitrary Du Bois singjililes is given that did
not rely on hyperresolutions, but instead used a singldutiso of singularities.
An improvement of this was also obtained in [ST08, Proposit2.20]. We
provide a proof for the convenience of the reader.



A SURVEY OF LOG CANONICAL AND DU BOIS SINGULARITIES 67

THEOREM 6.4 [Sch07; ST08, Proposition 2.2Q)et X be a reduced separated
scheme of finite type over a field of characteristic zeBoippose thal’ C Y
whereY is smooth and suppose that ¥ — Y is a proper birational map with
Y smooth and wher&l = 771 (X)req, the reduced preimage df, is a simple
normal crossings divisofor in fact any scheme with Du Bois singularifies
ThenX has Du Bois singularities if and only if the natural méfy — Rn. 05
iSs a quasi-isomorphism

In fact, we can say moreThere is an isomorphism

such that the natural mapy — Qg’( can be identified with the natural map
Ox — Ry ﬁy.

PROOF We first assume that is an isomorphism outside of . Then using
Theorem 4.2, we have an exact triangle

2 — 2% ® Ru.2% —~ R, 2% L
Using the octahedral axiom, we obtain the diagram

+1

0 0
C QY QX

A A

C— Rn*Q% —_— Rn*Q())? —

where(C- is simply the object in the derived category that complebesttian-
gles. But notice that the vertical arrawis an isomorphism sincE has rational
singularities (in which case each term in the middle columisomorphic to
Oy). Thus the vertical arrov8 is also an isomorphism.

One always has a commutative diagram

Ox 2%

|k

RnO% — RN*QOA_,

(where the arrows are the natural ones). ObserveXhiaas Du Bois singular-
ities since it has normal crossings, thus a quasi-isomorphism. But then the
theorem is proven at least in the case thas an isomorphism outside df .

For the general case, it is sufficient to show tiRat. &5 is independent of
the choice of resolution. Since any two log resolutions camdminated by a
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third, it is sufficient to consider two log resolutions: Y7 — Y andm, : Y, > Y
and a map between them Y, — Y7 overY. Let F; = (nl_l (X))reqand F, =
(5 ' (X))red = (0~ (F1))reg- Dualizing the map and applying Grothendieck
duality implies that it is sufficient to prove thaly, (F;) < Rpx«(wy,(F>)) is a
quasi-isomorphism.

We now apply the projection formula while twisting h;g:ll (—F1). Thus it
is sufficient to prove that

Rp«(wy,y,(F» — p* Fy)) > Oy,

is a quasi-isomorphism. But note thBt — p* F; = —| p*(1 —¢) Fy] for suffi-
ciently smalle > 0. Thus it is sufficient to prove that the p&ir,, (1—¢) F;) has
kIt singularities by Kawamata—Viehweg vanishing in thenfiasf local vanishing
for multiplier ideals; see [Laz04, 9.4]. But this is true ; is smooth and
F, is a reduced integral divisor with simple normal crossings. OJ

It seems that in this characterization the condition thataimbient variety” is

smooth is asking for too much. We propose that the followiray e a more
natural characterization. For some motivation and for testant that may be
viewed as a sort of converse; see Conjecture 12.5 and thesdisa preceding it.

CONJECTUREG.5. Theorenb.4 should remain true if the hypothesis théatis
smooth is replaced by the condition thathas rational singularities

Having Du Bois singularities is a local condition, so eveX ifs not embeddable
in a smooth scheme, one can still use Theorem 6.4 by passamgdfiine open
covering.

To illustrate the utility and meaning of Theorem 6.4, we wveikplore the
situation whenX is a hypersurface inside a smooth scheimdn the notation
of Theorem 6.4, we have the diagram of exact triangles

Rry05(~X) —> RmuOp —> ROy —1>

I [
0 Oy (—=X) Oy Ox 0

SinceY is smooth,B is a quasi-isomorphism (as théhhas at worst rational
singularities). ThereforeX has Du Bois singularities if and only if the map
is a quasi-isomorphism. However,is a quasi-isomorphism if and only if the
dual map

Rn*a)i?(/‘_’) — 0y (X) (6.5.1)
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is a quasi-isomorphism. The projection formula tells u$ Eguation 6.5.1 is a
guasi-isomorphism if and only

ROy (K *X+X)— Oy (6.5.2)

vy =7
is a quasi-isomorphism. Note however that* X + X = [—(1 —¢)x* X for
¢ > 0 and sulfficiently close to zero. Thus the left side of Equa@dn2 can be
viewed asR 4 ﬁf,([Kf,/Y — (1 —¢e)n* X)) for ¢ > 0 sufficiently small. Note
that Kawamata—Viehweg vanishing in the form of local vamighfor multi-
plier ideals implies thayy (Y, (1 — &) X) ~gis R« ﬁ;((K;/Y —(1—g)x*X)).
ThereforeX has Du Bois singularities if and only f (Y, (1 —¢)X) ~ O%.
COROLLARY 6.6. If X is a hypersurface in a smoofth, then X has Du Bois
singularities if and only if the pai(Y, X) is log canonical

Du Bois hypersurfaces have also been characterized viegims&in—Sato poly-
nomial; see [Sai09, Theorem 0.5].

7. Seminormality of Du Bois singularities

In this section we show that Du Bois singularities are plytieharacterized
by seminormality. First we remind the reader what it meanafscheme to be
seminormal.

DEFINITION 7.1 [SwaB80; GT80]. Suppose th&tis a reduced excellent ring
and thatS O R is a reducedR-algebra which is finite as aR-module. We say
that the extension: R — S is subintegralif

() 7 induces a bijection on spectra, Sffee> SpecR, and
(ii) i induces an isomorphism of residue fields over every (possithclosed)
point of SpecR.

REMARK 7.2. In [GT80], subintegral extensions are called quashisrphisms.

DEFINITION 7.3 [Swa80; GT80]. Suppose th&tis a reduced excellent ring.
We say thatR is seminormaif every subintegral extensioR < S is an iso-
morphism. We say that a schemteis seminormalif all of its local rings are
seminormal.

REMARK 7.4. In [GT80], the authors calk seminormal if there is no proper
subintegral extensio® < S such thatS is contained in the integral closure of
R (in its total field of fractions). However, it follows from {80, Corollary
3.4] that the definition above is equivalent.

REMARK 7.5. Seminormality is a local property. In particular, agris semi-
normal if and only if it is seminormal after localization ahah of its prime
(equivalently, maximal) ideals.
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REMARK 7.6. The easiest example of seminormal schemes are schathes w
snc singularities. In fact, a one dimensional variety ovealgebraically closed
field is seminormal if and only if its singularities are |dgahnalytically iso-
morphic to a union of coordinate axes in affine space.

We will use the following well known fact about seminormlit

LEMMA 7.7. If X is a seminormal scheme aiid C X is any open sethen
I'(U, Ox) is a seminormal ring

PrRoOOE We leave it as an exercise to the reader. O

It is relatively easy to see, using the original definitioa kiyperresolutions, that
if X has Du Bois singularities, then itis seminormal. Du Boigaiaty knew this
fact (see [DB81, Proposition 4.9]) although he didn’t useword seminormal.
Later Saito proved that seminormality in fact partially deerizes Du Bois
singularities. We give a different proof of this fact, fro®dh09].

PROPOSITION7.8 [Sai00, Proposition 5.2; Sch09, Lemma 5.8lippose that
X is a reduced separated scheme of finite type @eTheni®(2%) = Oxs
wherelys is the structure sheaf of the seminormalizationXof

PrROOF Without loss of generality we may assume thais affine. We need
only considerr.&r by Theorem 6.4. By Lemma 7.%.«CF is a sheaf of
seminormal rings. Now lek’ = Spedr.O'g) and consider the factorization

E—> X > X.

Note E — X’ must be surjective since it is dominant by construction and i
proper by [Har77, 11.4.8(e)]. Since the composition hasramted fibers, so
must haveo : X’ — X. On the other hang is a finite map sincer is proper.
Thereforep is a bijection on points. Because these maps and schemes$ are o
finite type over an algebraically closed field of charactirigero, we see that
I'(X,0x)— I'(X', Ox/) is a subintegral extension of rings. Sinkéis semi-
normal, so isl" (X', Ox-), which completes the proof. O

8. A multiplier-ideal-like characterization of Cohen—Macaulay
Du Bois singularities

In this section we state a characterization of Cohen—Magdbl Bois singu-
larities that explains why Du Bois singularities are so elgdinked to rational
and log canonical singularities.

We first do a suggestive computation. Suppose dhambeds into a smooth
schemeY and thatr : ¥ — Y is an embedded resolution af in Y that is an
isomorphism outside ok'. SetX to be the strict transform of and setX to
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be the reduced preimage a&f. We further assume thaf = X UE whereE
is a reduced simple normal crossings divisor that intessgctransversally in
another reduced simple normal crossing divisor. Note that the exceptional
divisor of & (with reduced scheme structure). St X be the image oft.
We have the short exact sequence

0—>0f(—E)—> O — O —0

We appIyR}[omﬁY(_,w'};) followed by Rz, and obtain the exact triangle

Rmvwy — Rn*w')? — Rmywg(E)[dim X] L

Using condition (i) in Theorem 4.2, the leftmost object canithentified with
R}[Oﬂlﬁz(f_?%,a)'z) and the middle objectRz.w~, can be identified with
RHom 4, (2%, w3,). Recall thatX has Du Bois singularities if and only if the
natural mapR Hom g, (QS’( wy ) — wy is anisomorphism. Therefore, the object
.o g (E) is closely related to whether or ndt has Du Bois singularities. This
inspired the following result, which we do not prove.

THEOREM8.1 [KSS10, Theorem 3.1]Suppose thak” is normal and Cohen—

Macaulay Letr : X’ — X be a log resolutionand denote the reduced ex-
ceptional divisor ofr by G. ThenX has Du Bois singularities if and only if

n*wX/(G) >~ wy.

We mention that the main idea in the proof is to show that
Ty (G) ~ H™ dimX(R}[omﬁX (2%, wy))-
Related results can also be obtained in the nonnormal CiMeraulay case;
see [KSS10] for details.

REMARK 8.2. The submodule.wy/(G) C wy is independent of the choice
of log resolution. Thus this submodule may be viewed as aariamt which
partially measures how far a scheme is from being Du Bois faym with
[Fuj08]).

As an easy corollary, we obtain another proof that ratiomagdarities are
Du Bois (this time via the Kempf-criterion for rational simgrities).

COROLLARY 8.3. If X has rational singularitiesthen X has Du Bois singu-
larities.

PROOF SinceX has rational singularities, it is Cohen—Macaulay and narma
Then n.wy = wy but we also haver.wy: C mwwx/(G) C wy, and thus
mxwx (G) = wy as well. Then use Theorem 8.1. d

We also see immediately that log canonical singularitiesade with Du Bois
singularities in the Gorenstein case.
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COROLLARY 8.4. Suppose thatX is Gorenstein and normal Then X is
Du Bois if and only ifX is log canonical

PROOF. X is easily seen to be log canonical if and onlyrifwy: x (G) >~ Ox.
The projection formula then completes the proof. a

In fact, a slightly improved version of this argument can Bedito show that
every Cohen—Macaulay log canonical pair is Du Bois; see [KESheorem
3.16].

9. The Kollar—Kovacs splitting criterion

The proof of the following, rather flexible, criterion for Bpis singularities
can be found in the original paper.

THEOREM 9.1 [KK10]. Let /' : Y — X be a proper morphism between re-
duced schemes of finite type ov@&r W < X an arbitrary subschemeand
F := f~1(W), equipped with the induced reduced subscheme structiee
Jwcx denote the ideal sheaf &F in X and.#gcy the ideal sheaf of in Y.
Assume that the natural map

Iwex —5= RfxIFcy

admits a left inverse’, that is p’ o p =id #,, . Then ifY, F, and W all have
DB singularities so doesX'.

REMARK 9.1.1. Notice that it is not required th#tbe birational. On the other
hand the assumptions of the theorem and [Kov00a, Theoremmgdl ithat if
Y \ F has rational singularities, e.g., ¥f is smooth, thenY \ W has rational
singularities as well.

This theorem is used to derive various consequences in [Kksbéne of which

are formally unrelated to Du Bois singularities. We will nien some of these
in the sequel, but the interested reader should look at thmal article to obtain

the full picture.

10. Log canonical singularities are Du Bois

Log canonical and Du Bois singularities are very closelgted as we have
seen in the previous sections. This was first observed iB3lsisee also [Wat87]
and [Ish87].

Recently, Kolar and the first named author gave a proof that log canonical
singularities are Du Bois using Theorem 9.1. We will sketoims ideas of the
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proof here. There are two main steps. First, one shows teatdh-kit locus

of a log canonical singularity is Du Bois (this generaliz&mp98] and [Sch08,
Corollary 7.3]). Then one uses Theorem 9.1 to show that tloiggrty is enough

to conclude thafX itself is Du Bois. For the first part we refer the reader to the
original paper. The key point of the second part is containettie following
Lemma. Here we give a different proof than in [KK10].

LEMMA 10.1.Supposé€X, A) is alog canonical pair and that the reduced non-
kit locus of(X, A) has Du Bois singularitiesThenX has Du Bois singularities

PrRoOOF First recall that the multiplier ideal (X, A) is precisely the defining
ideal of the non-kit locus of X, A) and since(X, A) is log canonical, it is a
radical ideal. We seE’ C X to be the reduced subschemeXidefined by this
ideal. Since the statement is local, we may assumeihataffine and thus that
X is embedded in a smooth scherfie We letr : ¥ — Y be an embedded
resolution of(X, A) in Y and we assume that is an isomorphism outside the
singular locus ofY. SetX to be the reduced-preimage &f (which we may
assume is a divisor iff) and letX denote the strict transform &f. We consider
the diagram of exact triangles

A B c—H
| L K
0 JX, Q) Ox Ox 0

s | o

Rﬂ*ﬁj;(—f) e Rﬂ*ﬁzu)’f  — R]T*ﬁi E—

Here the first row is made up of objectsmfoh(X) needed to make the columns
into exact triangles. SincE has Du Bois singularities, the maps an isomor-
phism and s@* ~ 0. On the other hand, there is a natural mapkﬁ)?(—f) —
R0 5(Kg—n*(Kx + 4)) ~ J(X, A) since(X, A) is log canonical. This
implies that the mapx is the zero map in the derived category. However,
we then see thap is also zero in the derived category which implies that

Ox — Rn.O5 5 has a left inverse. Thereforé] has Du Bois singularities

(sincefu)? has simple normal crossing singularities) by Theoremsiad¥a4.
O

11. Applications to moduli spaces and vanishing theorems

The connection between log canonical and Du Bois singidaritave many
useful applications in moduli theory. We will list a few witht proof.
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SETUP11.1. Letp : X — B be a flat projective morphism of complex varieties
with B connected. Assume that for alle B there exists &-divisor D on X},
such that( X, Dp) is log canonical.

REMARK 11.2. Notice that it is not required that the divisddg form a family.

THEOREM 11.3 [KK10]. Under the assumptiorisl. 1,4 (Xp, Oy, ) is indepen-
dent ofb € B for all i.

THEOREM 11.4 [KK10]. Under the assumption%l.1, if one fiber of¢ is
Cohen—Macaulayresp S for somek), so are all the fibers

THEOREM11.5 [KK10]. Under the assumptiorisl.1,the cohomology sheaves
h"(w;p) are flat overB, Wherew;p denotes the relative dualizing complexgof

Du Bois singularities also appear naturally in vanishingottems. As a cul-
mination of the work of Tankeev, Ramanujam, Miyaoka, Kawtan&iehweg,
Kollar, and Esnault—Viehweg, Kalt proved a rather general form of a Kodaira-
type vanishing theorem in [Kol95, 9.12]. Using the same $dé& was slightly
generalized to the following theorem in [KSS10].

THEOREM11.6 [Kol95, 9.12; KSSO08, 6.2.et X be a proper variety andZ a

line bundle onX. Let.¥™ ~ 0x (D), whereD =) d; D; is an effective divisqr
and lets be a global section whose zero divisorldls Assume thad < d; <m

for everyi. Let Z be the scheme obtained by taking theh root of s (that is

Z = X[./s] using the notation frorfKol95, 9.4]). Assume further that

H/(Z,Cz)— H/(Z,07)
is surjective Then for any collection ob; > 0, the natural map
H/(X, 2 Y (=Y biD;))—~ H/ (X, £
is surjective

This, combined with the fact that log canonical singulasgtare Du Bois, yields
that Kodaira vanishing holds for log canonical pairs:

THEOREM 11.7 [KSS10, 6.6].Kodaira vanishing holds for Cohen—Macaulay
semi-log canonical varietied et (X, A) be a projective Cohen—Macaulay semi-
log canonical pair andZ an ample line bundle o&". ThenH (X, ¢~ 1) =0
fori <dimX.

It turns out that Du Bois singularities appear naturallytimes kinds of vanishing
theorems. We cite one here.
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THEOREM 11.8 [GKKP10, 9.3].Let (X, D) be a log canonical reduced pair
o~f dimensiom > 2, 7 : X — X alog resolution withr -exceptional sef, and
D = SupdE + 77! D). Then

R"'7,05(—D) =0.

12. Deformations of Du Bois singularities

Given the importance of Du Bois singularities in moduli thei is an im-
portant obvious question whether they are invariant unaedisdeformation.

It is relatively easy to see from the construction of the DusBmmplex
that a general hyperplane section (or more generally, thergemember of a
base point free linear system) on a variety with Du Bois diagties again has
Du Bois singularities. Therefore the question of defororafiollows from the
following.

CONJECTURE12.1. (cf. [Ste83])Let D C X be a reduced Cartier divisor
and assume thab has only Du Bois singularities in a neighborhood of a point
x € D. ThenX has only Du Bois singularities in a neighborhood of the point
X.

This conjecture was proved for isolated Gorenstein singiga by Ishii [Ish86].
Also note that rational singularities satisfy this progesee [EIk78].
We also have the following easy corollary of the results @nésd earlier:

THEOREM 12.2. Assume thatX is Gorenstein andD is normal* Then the
statement of Conjectur2.1is true

PROOF The question is local so we may restrict to a neighborhoad. df X

is Gorenstein, then so B as it is a Cartier divisor. The is log canonical by
(8.4), and then the paitX, D) is also log canonical by inversion of adjunction
[Kaw07]. (Recall that ifD is normal, then so i along D). This implies that
X is also log canonical and thus Du Bois. a

It is also stated in [Kov0Ob, 3.2] that the conjecture holddill generality.
Unfortunately, the proof is not complete. The proof puldidithere works if
one assumes that the non-Du Bois locusYofs contained inD. For instance,
one may assume that this is the case if the non-Du Bois lodaslaed.

The problem with the proof is the following: it is stated thgttaking hyper-
plane sections one may assume that the non-Du Bois locudassd. However,
this is incorrect. One may only assume thatititersectionof the non-Du Bois
locus of X with D is isolated. If one takes a further general section thenlit wi

4This condition is actually not necessary, but the proof bezmrather involved without it.
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miss the intersection point and then it is not possible toereky conclusions
about that case.

Therefore currently the best known result with regard te tainjecture is the
following:

THEOREM 12.3 [Kov0O0b, 3.2].Let D C X be a reduced Cartier divisor and
assume thatD has only Du Bois singularities in a neighborhood of a point
x € D and thatX \ D has only Du Bois singularitiesThenX has only Du Bois
singularities in a neighborhood of.

Experience shows that divisors not in general position tertthve worse sin-
gularities than the ambient space in which they reside. &hez one would in
fact expect that itX \ D is reasonably nice, anf? has Du Bois singularities,
then perhaps has even better ones.

We have also seen that rational singularities are Du Boisaatehst Cohen—
Macaulay Du Bois singularities are not so far from beingorzdi cf. 8.1. The
following result of the second named author supports thigbphical point.

THEOREM 12.4 [Sch07, Theorem 5.1]Let X be a reduced scheme of finite
type over a field of characteristic zer® a Cartier divisor that has Du Bois
singularities and assume that\ D is smooth ThenX has rational singularities
(in particular, it is Cohen—Macaulay

Let us conclude with a conjectural generalization of thideshent:

CONJECTURE12.5. Let X be a reduced scheme of finite type over a field of
characteristic zerp.D a Cartier divisor that has Du Bois singularities and as-
sume thatX \ D has rational singularities ThenX has rational singularities

(in particular, it is Cohen—Macaulay

Essentially the same proof as in (12.2) shows that this is @ise under the
same additional hypotheses.

THEOREM 12.6. Assume thatX is Gorenstein andD is normal® Then the
statement of Conjectur2.5is true

PROOEF If X is Gorenstein, then so B as it is a Cartier divisor. Then by (8.4)
D is log canonical. Then by inversion of adjunction [Kaw078 air(X, D) is
also log canonical neab. (Recall that if D is normal, then so i along D).

As X is Gorenstein and’\ D has rational singularities, it follows that\ D
has canonical singularities. Théhhas only canonical singularities everywhere.
This can be seen by observing thatis a Cartier divisor and examining the
discrepancies that lie ové for (X, D) as well as fotX. Therefore, by [EIk81],

X has only rational singularities along. O

5 Again, this condition is not necessary, but makes the priogpler.
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13. Analogs of Du Bois singularities in characteristicp > 0

Starting in the early 1980s, the connections between sanigjeks defined by
the action of the Frobenius morphism in characterigtis 0 and singularities
defined by resolutions of singularities started to be ingegtd, cf. [Fed83].
After the introduction of tight closure in [HH90], a preciserrespondence be-
tween several classes of singularities was establishex] f@example, [FW89;
MS91; HWO02; Smi97; Har98; MS97; Smi00; Har05; HY03; TakOANT4;
Tak08]. The second named author partially extended thigspondence in his
doctoral dissertation by linking Du Bois singularities lif-injective singular-
ities, a class of singularities defined in [Fed83]. The autiyeknown implica-
tions are summarized below.

log terminal=—=- rational F-regular—— F-rational
log canonica——> Du Bois F-PureF-split—— F-injective
+ Gor. and normal + Gor.

We will give a short proof that normal Cohen—Macaulay siagties of dense
F-injective type are Du Bois, based on the characterizatfdbuwBois singu-
larities given in Section 8.

Note that Du Bois andF-injective singularities also share many common
properties. For examplé&-injective singularities are also seminormal [Sch09,
Theorem 4.7].

First however, we will defing”-injective singularities (as well as some nec-
essary prerequisites).

DEFINITION 13.1. Suppose thaY is a scheme of characteristic > 0 with
absolute Frobenius map : X — X. We say thatX is F-finite if FyOx is

a coherent’y-module. A ring R is called F-finite if the associated scheme
SpecR is F-finite.

REMARK 13.2. Any scheme of finite type over a perfect fieldFidinite; see
for example [Fed83].

DEFINITION 13.3. Suppose th&R, m) is an F-finite local ring. We say thaR
is F-injectiveif the induced Frobenius map : H. (R) — H: (R) is injective
for everyi > 0. We say that arf’-finite scheme ig--injectiveif all of its stalks
are F-injective local rings.
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REMARK 13.4. If (R, m) is F-finite, F-injective and has a dualizing complex,
thenR g is alsoF-injective for anyQ € SpecR. This follows from local duality;
see [Sch09, Proposition 4.3] for details.

LEMMA 13.5. SupposeX is a Cohen—Macaulay scheme of finite type over a
perfect fieldc. ThenX is F-injective if and only if the natural map.wy — wy
is surjective

PrRoOOF Without loss of generality (sinc¥ is Cohen—Macaulay) we can assume
that X is equidimensional. Sef : X — Speck to be the structural morphism.
SinceX is finite type over a perfect field, it has a dualizing complgx= 'k
and we setry = h~9MX (w3). SinceX is Cohen—Macaulayy is F-injective

if and only if the Frobenius mag/dmX (oy ) — HIMX (F, 0y ) isin-
jective for every closed point € X. By local duality (see [Har66, Theorem
6.2] or [BH93, Section 3.5]) such a map is injective if andyoifithe dual map
Fiwy x — wx x is surjective. But that map is surjective, if and only if than
of sheaved,wy — wy is surjective. O

We now briefly describe reduction to characterigtic- 0. Excellent and far
more complete references include [HHO09, Section 2.1] ama9& 11.5.10].
Also see [Smi01] for a more elementary introduction.

Let R be a finitely generated algebra over a fiéldf characteristic zero.
Write R = k[x1,...,x,]/I for some ideall and letS denotek[xq,..., x,].
Let X = SpecR andx : X—>Xa log resolution ofX" corresponding to the
blow-up of an ideal/. Let E denote the reduced exceptional divisorofThen
E is the subscheme defined by the radical of the ideal’ ;.

There exists a finitely generat@dalgebrad C k that includes all the coef-
ficients of the generators df and J, a finitely generatedd algebraR4 C R,
an idealJ4 C R4, and schemeiA and E 4 of finite type overA4 such that
R4®4k =R, J4R =J, X4 Xspeca Spe0k = X and E 4 xspecs Spedk = E
with E 4 an effective divisor with support defined by the idefgl - ﬁ)?A' We
may localizeA at a single element so thal is smooth overd and E4 is a
reduced simple normal crossings divisor ovkrBy further localizing4 (at a
single element), we may assume any finite set of finitely geadiR 4 modules
is A-free (see [Hun96, 3.4] or [HR76, 2.3]) and we may assumedhiggelf is
regular. We may also assume that a fixed affine covef pand a fixed affine
cover of X 4 are alsoA-free.

We will now form a family of positive characteristic models B by looking
at all the ringsR; = R4 ®4 k(¢t) wherek(z) is the residue field of a maximal
idealr € T = Specd. Note thatk(z) is a finite, and thus perfect, field of
characteristico. We may also tensor the various schemég E 4, etc. with
k(t) to produce a characteristje model of an entire situation.
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By making various cokernels of maps frdemodules, we may also assume
that maps between modules that are surjective (respeciivielctive) overk
correspond to surjective (respectively injective) maper ol and thus surjective
(respectively injective) in our characteristicmodel as well; see [HHO09] for
details.

DEFINITION 13.6. A ring R of characteristic zero is said to have derfse
injective type if for every family of characteristieg > 0 models with4 chosen
sufficiently large, a Zariski dense set of those models (@pc4) have F-
injective singularities.

THEOREM 13.7 [Sch09].Let X be a reduced scheme of finite type otZeand
assume that it has deng&injective type ThenX has Du Bois singularities

PrROOFE We only provide a proof in the case thit is normal and Cohen—
Macaulay. For a complete proof, see [Sch09]. ket — X bea log resolution
of X with exceptional divisorE. We reduce this entire setup to characteristic
p > 0 such that the corresponding is F-injective. LetF°¢ : X — X be the
e-iterated Frobenius map.

We have the commutative diagram

Fimvog(p°E) —— msw 5 (E)

"l ¢ lB

Fioy wx

where the horizontal arrows are induced by the dual of thééfrius map,
Ox — F¢0yx, and the vertical arrows are the natural maps induced .bBy
hypothesisg is surjective. On the other hand, fer> 0 sufficiently large, the
map labeled is an isomorphism. Therefore the map p is surjective which
implies that the mags is also surjective. But as this holds for a dense set of
primes, it must be surjective in characteristic zero as,vegitl in particular, as

a consequenc& has Du Bois singularities. O

It is not known whether the converse of this statement is true

OPEN PrROBLEM 13.8. If X has Du Bois singularities, does it have dense F-
injective type?

Since F-injective singularities are known to be closely relatedio Bois sin-
gularities, it is also natural to ask hafi-injective singularities deform cf. Con-
jecture 12.1. In general, this problem is also open.

OPENPROBLEM 13.9. If a Cartier divisoD in X hasF-injective singularities,
doesX have F-injective singularities neab?
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In the case thak™ (equivalently D) is Cohen—Macaulay, the answer is affirma-
tive, see [Fed83]. In fact, Fedder definBeinjective singularities partly because
they seemed to deform better th&Rpure singularities (the conjectured analog
of log canonical singularities).

Appendix A. Connections with Buchsbaum rings

In this section we discuss the links between Du Bois singidarand Buchs-
baum rings. Du Bois singularities are not necessarily CeNtataulay, but in
many cases, they are Buchsbaum (a weakening of Cohen—Mggaul

Recall that a local ring R, m, k) hasquasi-Buchsbauraingularities if

mH. (R) =0

foralli <dim R. Further recall that a ring is call@&lchsbaunif 9™ & R[5, (R)

is quasi-isomorphic to a complex &fvector spaces. Heré™ R is the brutal
truncation of the complex at the difilocation. Note that this is not the usual
definition of Buchsbaum singularities, rather it is the stledd Schenzel’s cri-
terion; see [Sch82]. Notice that Cohen—Macaulay singigarare Buchsbaum
(after truncation, one obtains the zero-object in the @erivategory).

It was proved by Tomari that isolated Du Bois singularities guasi-Buchs-
baum (a proof can be found in [Ish85, Proposition 1.9]), dxahtby Ishida that
isolated Du Bois singularities were in fact Buchsbaum. Heedoriefly review
the argument to show that isolated Du Bois singularitiesqaesi-Buchsbaum
since this statement is substantially easier.

PROPOSITIONA.1. Suppose thatX, x) is an isolated Du Bois singularity with
R = Oy x. ThenR is quasi-Buchsbaum

PROOF Note that we may assume thit is affine. Since SpeR is regular
outside its the maximal ideah, it is clear that some power afi annihilates
H (R) for all i <dimR. We need to show that the smallest power for which
this happens i$. We letr : X — X be a log resolution with exceptional divisor
E as in Theorem 6.1. Sinc is affine, we see thatf! (R) ~ H'~™1(X \
{m}, Ox) ~ HY(X \ E, O) foralli > 0. Therefore, it is enough to show
thatmH~1(X \ E, O%) =0foralli <dimX. In other words, we need to
show thatm H(X \ E, 05) =0 forall i <dimX — 1.

We examine the long exact sequence

- —=H"WX\E, 05 — HL(X,05) — H (X, 0%)

— H(X\E,0f) —
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Now, HL(X. Og) = R'(I'x o 1) (Ox) which vanishes for < dimX by the
Matlis dual of Grauert-Riemenschneider vanishing. Thereef

H(X\E.Of)~H (X.0%)

for i < dimX — 1. Finally, sinceX is Du Bois, H (X, 0g) = H'(E. OF)
by Theorem 6.1. But it is obvious thatH?(E, 0r) = 0 sinceE is areduced
divisor whose image inY is the point corresponding tm. The result then
follows. O

Itis easy to see that isolatddtinjective singularities are also quasi-Buchsbaum.

PROPOSITIONA.2. Suppose thatR,m) is a local ring that is F-injective
Further suppose thabpecR \ {m} is Cohen—MacaulayThen(R,m) is quasi-
Buchsbaum

PROOF. Since the punctured spectrum &fis Cohen—MacaulayH: (R) is
annihilated by some power &f for i < dim R. We will show that the smallest
such power id. Choose: € m. SinceR is F-injective, F¢ : H! (R) — H! (R)
is injective for alle > 0. Chooser large enough so tha?“H: (R) is zero for all
i <e. However, for any elemente H: (R), F¢(cz) =cP F¢(z) e P HL (R) =
0 for i <dim R. This implies thatz =0 and SOmH];(R) =0fori <dimR. O

Perhaps the most interesting open question in this area i®llowing:

OPEN PROBLEM 1.3 (TAKAGI). Are F-injective singularities with isolated
non-CM locus Buchsbaum?

Given the close connection betweghinjective and Du Bois singularities, this
guestion naturally leads to the next one:

OPEN PROBLEM 1.4. Are Du Bois singularities with isolated non-CM locus
Buchsbaum?

2. Cubical hyperresolutions

For the convenience of the reader we include a short appendtibaining
the construction of cubical hyperresolutions, as well agist examples. We
follow [GNPP88] and mostly use their notation.

First let us fix a small universe to work in. Let Sdenote the category of
reduced schemes. Note that the usual fibred product of sehEmgY need not
be reduced, even wheli andY are reduced. We wish to construct the fibred
product in the category of reduced schemes. Given any schi#nfeeduced
or not) with maps toX andY over S, there is always a unique morphism
W — X xg Y, which induces a natural unique morphistieq — (X X Y )reg.
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Itis easy to see thdtX x5 Y )eqis the fibred product in the category of reduced
schemes.

Let us denote byl the category{0} and by2 the category{0 — 1}. Let
n be an integer —1. We denote by the product ofz + 1 copies of the
category2 = {0 — 1} [GNPP88, |, 1.15]. The objects af;" are identified with
the sequences = (g, @1, ...,ay) such thatw; € {0,1} for 0 <i <n. For
n=—1,we set]* = {0} and forn = 0 we haved; = {0 — 1}. We denote by
O, the full subcategory consisting of all objectsiof except the initial object
(0,...,0). Clearly, the categoryl;t can be identified with the category of,
with an augmentation map {0}.

DEFINITION 2.1. Adiagram of schemes a functor® from a categoryC° to
the category of schemes. fiite diagram of schemads a diagram of schemes
such that the aforementioned categdnhas finitely many objects and mor-
phisms; in this case such a functor will be calle@-acheme A morphism of
diagrams of scheme® : C°? — Schto ¥ : D°? — Schis the combined data
of a functorI" : C°?P — D°P together with a natural transformation of functors
n:®—>vol.

REMARK 2.2. With these definitions, the class of (finite) diagramsafemes
can be made into a category. Likewise the se€aithemes can also be made
into a category (where the functdr : C°°? — C°P is always chosen to be the
identity functor).

REMARK 2.3. Let] be a category. If instead of a functor to the category of re-
duced schemes, one considers a functor to the categoryalbtppal spaces, or
the category of categories, one can defirtepological spaces, anfdcategories

in the obvious way.

If X,:I° — Schis an/-scheme, and e Ob/, thenX; will denote the scheme
corresponding to. Likewise if ¢ € Mor I is a morphismp : j — i, thenX will
denote the corresponding morphisfy : X; — X;. If f:Y, — X, is amorphism
of I-schemes, we denote by the induced morphisni; — X;. If X is an/-
scheme, a closed sulsscheme is a morphism dfschemeg : Z, — X, such
that for each € I, the mapg; : Z; — X; is a closed immersion. We will often
suppress thg of the notation if no confusion is likely to arise. More geaiby,
any property of a morphism of schemes (projective, proppasated, closed
immersion, etc...) can be generalized to the notion of a hisnp of /-schemes
by requiring that for each objectof 7, g; has the desired property (projective,
proper, separated, closed immersion, etc...)

DEFINITION 2.4 [GNPP88, I, 2.2]. Suppose that: Y, — X, is a morphism of
I-schemes. Define thdiscriminant of /' to be the smallest closed subscheme
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Z. of X, such thatf; : (Y; — (/7' (Zi))) — (X; — Z;) is an isomorphism for all
i.

DEFINITION 2.5 [GNPPS88, |, 2.5]. LefS, be an7-scheme,f : X, — S, a
proper morphism of -schemes, and, the discriminant off. We say thatf is

aresolutiorf of S, if X is a smooth/-scheme (meaning that eadh is smooth)
and dim/;"!(D;) <dimS;, foralli € Ob1.

REMARK 2.6. This is the definition found in [GNPP88]. Note that thepma
are not required to be surjective (of course, the ones ongtremts in practice
are usually surjective).

Consider the following example: the mapy, y]/(xy) — k[x] which sends
y to 0. We claim that the associated map of schemes is a “resoluiotine
x-scheme Spek|x, y]/(xy). The discriminant is Spedx, y]/(x). However,
the preimage is simply the origin drjx], which has lower dimension than “1”.
Resolutions like this one are sometimes convenient to densi

On the other hand, this definition seems to allow somethipgritaps should
not. Choose any variety of dimension greater than zero and a closed point
z € X. Consider the map— X and consider the-schemeX. The discriminant
is all of X. However, the preimage oY is still just a point, which has lower
dimension thanX itself, by hypothesis.

In view of these remarks, sometimes it is convenient to assalso that
dim D; < dim S; for eachi € Ob/I. In the resolutions of -schemes that we
construct (in particular, in the ones that are used to thatgpcubic hyperreso-
lutions exist), this always happens.

Let I be a category. The set of objects bfare given the preorder relation
defined byi < j if and only if Homy (i, j) is nonempty. We will say that a
categoryl is ordered if this preorder is a partial order and, for eaehOb 1,
the only endomorphism af is the identity [GNPP88, I, C, 1.9]. Note that a
category/ is ordered if and only if all isomorphisms and endomorphising
are the identity.

It turns out of that resolutions af-schemes always exist under reasonable
hypotheses.

THEOREM 2.7 [GNPP88, |, Theorem 2.6Let .S be an/-scheme of finite type
over a fieldk. Suppose that is a field of characteristic zero and thdtis a
finite ordered categoryThen there exists a resolution §f

In order to construct a resolutidn of an 7-schemeX,, it might be tempting to
simply resolve eaclk;, setY; equal to that resolution, and somehow combine

6 A resolution is a distinct notion from a cubic hyperresauti
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this data together. Unfortunately this cannot work, as show the example
below.

EXAMPLE 2.8. Consider the pinch point singularity,
X = Spedk[x, y,z]/(x?y — z%) = Spedk[s, 12, st],

and letZ be the closed subscheme defined by the i@eak) (this is the singular
set). Letl be the category0 — 1}. Consider thd -scheme defined by, = X
and X; = Z (with the closed immersion as the mapY; is already smooth,
and if one resolvesXy, (that is, normalizes it) there is no compatible way to
map X; (or even another birational model df;) to it, since its preimage by
normalization will be two-to-one ontd C X! The way this problem is resolved
is by creating additional components. So to construct alwden Y, we set
Y; = Z = X, (since it was already smooth) and 3gt= X, | [ Z whereX is
the normalization of(y,. The mapY; — Y just send¥’; (isomorphically) to the
new component and the map — X, is the disjoint union of the normalization
and inclusion maps.

One should note that although the theorem proving the exdistef resolutions
of I-schemes is constructive, [GNPP88], it is often easieraetire to construct
an ad-hoc resolution.

Now that we have resolutions dtschemes, we can discuss cubic hyperres-
olutions of schemes, in fact, even diagrams of schemes habie layperresolu-
tions! First we will discuss a single iterative step in thegess of constructing
cubic hyperresolutions. This step is called-eesolution.

DEFINITION 2.9 [GNPP88, |, 2.7]. LefS be an/-scheme andZ, aD;r x I-
scheme. We say that, is a2-resolutionof S if Z, is defined by the following
Cartesian square (pullback, or fibred product in the cajegbr(reduced)/-
schemes) of morphisms dfschemes:

Zi\—=Zy

L

Zio—=Zyo
Here

() Zoo =S,

(i) Zoyq is a smooth/ -scheme,

(i) The horizontal arrows are closed immersionsie$chemes,

(iv) f is a proper/-morphism, and

(v) Zio contains the discriminant of ; in other words,f induces an isomor-
phism of(Zy1)i — (Z11)i over(Zyo)i — (Z10)i, foralli e Ob[.



A SURVEY OF LOG CANONICAL AND DU BOIS SINGULARITIES 85

Clearly 2-resolutions always exist under the same hypotheses tbalut®ns

of I-schemes exist: séf(; to be a resolutionZo to be discriminant (or any
appropriate proper closed subscheme that contains it), aif; ; its (reduced)

preimage inZy;.

EXAMPLE 2.10. Let/ = {0} and letS be thel-scheme Spek[t2,?]. Let
Zo1 = Al =Sped[t]andZy; — S = Zyo be the map defined by{r2, 3] —
k[t]. The discriminant of that map is the closed subschemt ef 7, defined
by the mapg : k[t2,13] — k that sends? and? to zero. Finally we need to
defineZ;;. The usual fibered product in the category of schemés|g(s2),
but we work in the category of reduced schemes, so instedibtéred product
is simply the associated reduced scheme (in this casei$gé@)). Thus our
2-resolution is defined by this diagram of rings:

K[/ (1)
/ \

kIrl/ (1)
/

N

k[t?,13]

We need one more definition before defining a cubic hypemésal,

klt]

DEFINITION 2.11 [GNPP88, I, 2.11]. Let be an integer greater than or equal
to 1, and letX” be adJ;" x I-scheme, forl <n < r. Suppose that for ak,

1 <n<r, thed! | xI-schemesy)" andX" are equal. Then we define, by
induction onr, alJ} x I-scheme

Z =redX!, X2,....X")

that we call theeductionof (X!, ..., X7), in the following way: Ifr = 1, one
definesZ, = X!, if r =2 one definesZ,, = red X!, X?) by
X!, ifa=(0,0),
Zag=1 2 -0
p if o €y,

for all B € O, with the obvious morphisms. > 2, one definesZ, recursively
asredred X!,..., X 1), X7).

Finally we are ready to define cubic hyperresolutions.

DEFINITION 2.12 [GNPPS8S, |, 2.12]. Lef be anl/-scheme. Acubic hyper-
resolution augmented oves is alJ;}F x I-schemeZ, such that

Z. =red X', ... X",
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where X! is a2-resolution ofS, X/"*! is a 2-resolution of(” for 1 <n <,
and Z, is smooth for allke € OJ,..

Now that we have defined cubic hyperresolutions, we shoulel that they exist
under reasonable hypotheses:

THEOREM 2.13 [GNPP8S, I, 2.15]Let S be an/-scheme Suppose that is
a field of characteristic zero and thdtis a finite (boundedl ordered category
Then there exist&,, a cubic hyperresolution augmented ovesuch that

dmZy, <dimS —|a|+1 forall « €,.
Below are some examples of cubic hyperresolutions.

EXAMPLE 2.14. Let us begin by computing cubic hyperresolutions of/esi
so letC be a curve. We begin by taking a resolutisnr C — C (whereC
is just the normalization). LeP be the set of singular points @f; thus P is
the discriminant ofr. Finally we let £ be the reduced exceptional setsof
therefore we have the Cartesian square

E—C

Lk

P——C
Itis clearly already &-resolution ofC and thus a cubic-hyperresolution ©f

EXAMPLE 2.15. Let us now compute a cubic hyperresolution of a sch&me
whose singular locus is itself a smooth scheme, and whoseeddexceptional
set of a strong resolution : X — X is smooth (for example, any cone over a
smooth variety). As in the previous example, letbe the singular locus ot
and E the reduced exceptional set of Then the Cartesian square of reduced

schemes _
E——%

R
Y —X
is in fact a2-resolution ofX’, just as in the case of curves above.

The obvious algorithm used to construct cubic hyperregwiatdoes not con-
struct hyperresolutions in the most efficient or convenigay possible. For
example, applying the obvious algorithm to the intersectibthree coordinate
planes gives us the following.

EXAMPLE 2.16. LetX U Y U Z be the three coordinate planesAr. In
this example we construct a cubic hyperresolution usingbwéous algorithm.
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What makes this construction different, is that the dimeamss forced to drop
when forming the discriminant of a resolution of a diagransciiemes.

Again we begin the algorithm by taking a resolution and theials one is
r:(XuYuzZ)—(XuYUZ). ThediscriminantiB=(XNY)u(XNZ)u
(Y N Z), the three coordinate axes. The fiber product making theradpedow
Cartesian is simply the exceptional getshown:

E=(XNY)UXNZ)LU((YNX)U(YNZ)LU((ZNX)U(ZNY)) —= XUYLZ

: v

=(XNY)U(XNZ)U(YNZ) Xuyuz

We now need to take Zresolution of the2-schemep : E — B. We take the
obvious resolution that simply separates irreducible comepts. This gives us
E > B mapping top : £ — B. The discriminant off — E is a set of three
points Xy, Yo and Z, corresponding to the origins ik, Y and Z respectively.
The discriminant of the maﬁ — B is simply identified as the origid of our
initial schemeX U Y U Z (recall B is the union of the three axes). The union
of that with the images ok, Y, andZ, is again justd,. The fiber product of
the diagram

(E — B)

l

({Xo, Yo, Zo} — {40}) —= (¢ : E — B)

can be viewed aSQ1,..., Q¢} — {P1. P», P3} whereQ; andQ, are mapped
to P; and so on (remembdt was the disjoint union of the coordinate axes of
X, of Y, and of respectivelyZ, so £ has six components and thus six origins).
Thus we have the diagram

{le""Qd\ E\
{Py, Py, P3} l B

{Xo0. Y0, Zo} E
\

{4o} B

which we can combine with previous diagrams to constructaccyperreso-
lution.
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REMARK 2.17. Itis possible to find a cubic hyperresolution for theéhcoor-
dinate planes if\3 in a different way. Suppose thatis the union of the three
coordinate planesy, Y, andZ) of A3. Consider thé&l, orD§r scheme defined
by the diagram below, where the dotted arrows are tho@r’out not inl,.

Xnynz Yynz
xXny i Y
Xnz z.
X e ~>XUYUZ

One can verify that this is also a cubic hyperresolutiotkaf Y U Z.

Now we discuss sheaves on diagrams of schemes, as well adatezimotions
of push-forward and its right derived functors.

DEFINITION 2.18 [GNPPS8S, |, 5.3-5.4]. LeX, be an/-scheme (or even an
I-topological space). We definesaeaf (or pre-sheaf) of abelian grougs on
X, to be the following data:

() A sheaf (pre-sheaff’ of abelian groups ovek;, for all i € Ob/, and
(i) An Xs-morphism of sheaves? : F' — (X;). F/ for all morphismss :
i — j of I, required to be compatible in the obvious way.

Given a morphism of diagrams of schemgs X, — Y. one can construct a
push-forward functor for sheaves df.

DEFINITION 2.19 [GNPP88, |, 5.5]. LekX, be an/-schemeY}, a J-scheme F*
a sheaf onX,, and 1. : X, — Y, a morphism of diagrams of schemes. We define
(f))« F" in the following way. For eachi € ObJ we define

()« F) = lim(Yg)u(fin F")
where the inverse limit traverses all paiirsg) whereg : f(i) — j isamorphism
in JOP.

REMARK 2.20. In many applications] will simply be the category0} with
one object and one morphism (for example, cubic hyperrésokiof schemes).
In that case one can merely think of the limit as traverding

REMARK 2.21. One can also define a funct6f, show that it has a right adjoint
and that that adjoint igi as defined above [GNPP88, I, 5.5].
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DEFINITION 2.22 [GNPP88, |, Section 5]. Let, andY, be diagrams of topo-
logical spaces ovef andJ respectively,® : I — J a functor, f. : X, — Y.
a ®-morphism of topological spaces. @ is a sheaf ovel’, with values in a
complete categor¢, one denotes by *G" the sheaf ovelk, defined by

(S*G) = f1(GPD),
forall i € Ob7. One obtains in this way a functor
S/ : Sheaves(Y,, C) — Sheaves(X,, C)

Given anl-schemeX, one can define the category of sheaves of abelian groups
Ab(X)) on X, and show that it has enough injectives. Next, one can evenedefi
the derived categorp* (X., Ab(X.)) by localizing bounded below complexes

of sheaves of abelian groups df) by the quasi-isomorphisms (those that are
quasi-isomorphisms on eache 7). One can also show that.). as defined
above is left exact so that it has a right derived funciirf.). [GNPP88, I,
5.8-5.9]. In the case of a cubic hyperresolution of a sch¢me’, — X,

R((f)«F") = RIM(R f;, F')
where the limit traverses the categadnpf X..

Final remark. We end our excursion into the world of hyperresolutions here
There are many other things to work out, but we will leave thethe interested
reader. Many “obvious” statements need to be proved, but aresrelatively
straightforward once one gets comfortable using the ap@teplanguage. For
those and many more statements, including the full detéiteeoconstruction

of the Du Bois complex and many applications, the readerds@maged to read
[GNPP88].
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