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Elliptic genera, real algebraic varieties
and quasi-Jacobi forms

ANATOLY LIBGOBER

ABSTRACT. We survey the push-forward formula for elliptic class and various
applications obtained in the papers by L. Borisov and the author. We then dis-
cuss the ring of quasi-Jacobi forms which allows to characterize the functions
which are the elliptic genera of almost complex manifolds and extension of
Ochanine elliptic genus to certain singular real algebraicvarieties.

Introduction

Interest in the elliptic genus of complex manifolds stems from its appearance
in a wide variety of geometric and topological problems. Theelliptic genus is
an invariant of the complex cobordism class modulo torsion,and hence depends
only on the Chern numbers of the manifold. On the other hand, the elliptic genus
is a holomorphic function defined onC � H, whereH is the upper half plane.
In one heuristic approach, the elliptic genus is an index of an operator on the
loop space (see [53]) and as such it has counterparts defined for C 1, oriented
or Spin manifolds: these were in fact studied before the complex case [43].

The elliptic genus comes up in the study of the geometry and topology of loop
spaces and, more specifically, of the chiral de Rham complex [41]; in the study of
invariants of singular algebraic varieties [8] — in particular orbifolds; and, more
recently, in the study of Gopakumar–Vafa and Nekrasov conjectures [38; 25].
It is closely related to the fast developing subject of elliptic cohomology [46].
There are various versions of the elliptic genus, includingthe equivariant, higher
elliptic genus obtained by twisting by cohomology classes of the fundamental
group, the elliptic genus of pairs and the orbifold ellipticgenus. There is inter-
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esting connection with singularities of weighted homogeneous polynomials —
the so-called Landau–Ginzburg models.

We shall review several recent developments on the ellipticgenus; we refer
the reader [7] for details on earlier results. Then we shall focus on certain aspects
of the elliptic genus: its extension to real singular varieties and its modularity
property (or the lack of it). Extensions of the elliptic genus to real singular
varieties were suggested by B. Totaro [48]; our approach is based on the push-
forward formula for the elliptic class used in [8] to extend elliptic genus from
smooth to certain singular complex projective varieties.

In Section 1A we discuss this push-forward formula, which appears as the
main technical tool in many applications mentioned later. The rest of Section 1
discusses the relation with other invariants and series of applications based on
the material in [9; 8; 6]. It includes a discussion of a relation between ellip-
tic genus andE-function, applications to the McKay correspondence, elliptic
genera of non-simply connected manifolds (higher ellipticgenera) and general-
izations of a formula of R. Dijkgraaf, D. Moore, E. Verlinde,and H. Verlinde.
(Other applications in the equivariant context are discussed in R. Waelder’s paper
in this volume.) The proof of independence of resolutions ofthe elliptic genus
(according to our definition) for certain real algebraic varieties is given later, in
Section 3B.

Section 2 deals with modularity properties of the elliptic genus. In the Calabi–
Yau cases (of pairs, orbifolds, etc.) the elliptic genus is aweak Jacobi form; see
definition below. Also it is important to have a description of the elliptic genus
in non-Calabi–Yau situations not just as a function onC � H but as an element
of a finite-dimensional algebra of functions. It turns out that in the absence of a
Calabi–Yau condition the elliptic genus belong to a very interesting algebra of
functions onC�H, which we call the algebra of quasi-Jacobi forms, and which
is only slightly bigger than the algebra of weak Jacobi forms. This algebra of
quasi-Jacobi forms is a counterpart of quasimodular forms [31] and is related
to the elliptic genus in the same way as quasimodular forms are related to the
Witten genus [55]. The algebra of quasi-Jacobi forms is generated by certain
two-variable Eisenstein series, masterfully reviewed by A. Weil in [51], and
has many properties parallel to the properties in quasimodular case. A detailed
description of the properties of quasi-Jacobi forms appears to be absent in the
literature, so we discuss the algebra of such forms in Section 2 — see its in-
troduction. We conclude Section 2 with a discussion of differential operators
Rankin–Cohen brackets on the space of Jacobi forms.

Finally in Section 3 we construct an extension of the Ochanine genus to real
algebraic varieties with certain class of singularities. This extends results of
Totaro [48].
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For the readers’ convenience we give ample references to prior work on ellip-
tic genus, where more detailed information can be obtained.Section 2, dealing
with quasi-Jacobi forms, can be read independently of the rest of the paper.

1. Elliptic genus

1A. Elliptic genus of singular varieties and push-forward formulas. Let X

be a projective manifold. We shall use the Chow groupsA�.X / with complex
coefficients (see [23]). LetF the ring of functions onC � H whereH is the
upper half-plane. The elliptic class ofX is an element inA�.X /˝C F given by

ELL.X /D
Y

i

xi

�
�

xi

2� i � z; �
�

�
�

xi

2� i ; �
� ŒX �; (1-1)

where

�.z; �/D q
1
8 .2 sin�z/

lD1
Y

lD1

.1 � ql /

lD1
Y

lD1

.1 � qle2� iz/.1 � qle�2� iz/ (1-2)

is the Jacobi theta function considered as an element inF with q D e2� i� [12],
thexi are the Chern roots of the tangent bundle ofX , andŒX � is the fundamental
class ofX . The componentEll.X / in A0.X /D F is the elliptic genus ofX .

The components of (1-1) in each degree, evaluated on a class in A�.X /, are
linear combinations of symmetric functions inci : that is, the Chern classes ofX .
In particular,Ell.X / depends only on the class ofX in the ring˝U ˝ Q of
unitary cobordisms.

The homomorphism̋ U ˝ Q ! F taking X to Ell.X / can be described
without reference to theta functions. LetM3;A1

be the class of complex analytic
spaces “having onlyA1-singularities in codimension three”, that is, having only
singularities of the following type: the singular set SingX of X 2 M3;A1

is a
manifold such that dimC SingX D dimX � 3 and for an embeddingX ! Y

whereY is a manifold and a transversalH to SingX in Y , the pair

.H \ X;H \ SingX /

is analytically equivalent to the pair.C4;H0/, whereH0 is given byx2 Cy2 C
z2 C w2 D 0. EachX 2 M3;A1

admits two small resolutionsQX1 ! X and
QX2 ! X in which the exceptional set is a fibration over SingX with the fiber

P1. One says that the manifolds underlying the resolutions areobtained from
each other by a classical flop.

THEOREM 1.1. (cf . [47]) The kernel of the homomorphismEll W˝U ˝Q ! F

taking an almost complex manifoldX to its elliptic genusEll.X / is the ideal
generated by the classes of differencesQX1 � QX2 of two small resolutions of a
variety inM3;A1

.
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More generally one can fix a class of singular spaces and a typeof resolutions
and consider the quotient of̋ U ˝ Q by the ideal generated by differences
of manifolds underlying resolutions of the same analytic space. The quotient
map by this ideal̋ U ˝ Q ! R provides a genus and hence a collection of
Chern numbers (linear combination of Chern monomialsci1

: : : � cik
ŒX �, with

P

is D dimX ), which can be made explicit via Hirzebruch’s procedure with a
generating series [28]. These are the Chern numbers which can be defined for the
chosen class of singular varieties and chosen class of resolutions. The ideal in
Theorem 1.1, it turns out, corresponds to a much larger classes of singular spaces
and resolutions. This method of defining Chern classes of singular varieties is an
extension of the philosophy underlying a question of Goresky and McPherson
[26]: Which Chern numbers can be defined via resolutions independently of the
resolution?

DEFINITION 1.2. An analytic spaceX is calledQ-Gorenstein if the divisor
D of a meromorphic formdf1 ^ � � � ^ dfdimX is such that for somen 2 Z the
divisor nD in locally principal (i.e.,KX is Q-Cartier). In particular, for any
codimension-one componentE of the exceptional divisor of a map� W QX ! X ,
the multiplicity aE D multE��.KX / is well defined and a singularity is called
log-terminal if there is a resolution� such thatK QX D ��.KX /C

P

aEE and
aE > �1. A resolution is called crepant ifaE D 0.

THEOREM1.3. ([8])The kernel of the elliptic genus̋U ˝Q ! F is generated
by the differences ofQX1 � QX2 of manifolds underlying crepant resolutions of the
singular spaces withQ-Gorenstein singularities admitting crepant resolutions.

The proof of Theorem 1.3 is based on an extension of the elliptic genusEll.X /

of manifolds to the elliptic genus of pairsEll.X;D/, whereD is a divisor onX
having normal crossings as the only singularities. This is similar to the situation
in the study of motivicE-functions of quasiprojective varieties [2; 40]. In fact,
other problems such as the the study of McKay correspondence[9] suggest a
motivation for looking at triples.X;D;G/, whereX is a normal variety,G is
a finite group acting onX and to introduce the elliptic classELL.X;D;G/

(see again [9]). More precisely, letD D
P

aiDi be aQ-divisor, with theDi

irreducible andai 2 Q. The pair.X;D/ is called Kawamata log-terminal (klt)
[35] if KX C D is Q-Cartier and there is a birational morphismf W Y ! X ,
whereY is smooth and is the union of the proper preimages of components
of D, and the components of the exceptional setE D

S

J Ej form a normal
crossing divisor such thatKY Df �.KX C

P

aiDi/C
P

j̨ Ej , wherę j >�1.
(HereKX ;KY are the canonical classes ofX andY .) The triple.X;D;G/,
whereX is a nonsingular variety,D is a divisor andG is a finite group of
biholomorphic automorphisms is calledG-normal [2; 9] if the components of



ELLIPTIC GENERA, REAL ALGEBRAIC VARIETIES AND QUASI-JACOBI FORMS 99

D form a normal crossings divisor and the isotropy group of anypoint acts
trivially on the components ofD containing this point.

DEFINITION 1.4 [9, Definition 3.2]. Let.X;E/ be a Kawamata log terminal
G-normal pair (in particular,X is smooth andD is a normal crossing divisor)
and letE D �

P

k2K ıkEk . Theorbifold elliptic classof .X;E;G/ is the class
in A�.X;Q/ given by

ELLorb.X;E;GI z; �/ WD
1

jGj
X

g;h
ghDhg

X

X g;h
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Y
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�

�
�

ek

2� i C "k.g/� "k.h/� � z
�

�.�z/

�.�.ık C 1/z/
e2� iık"k.h/z : (1-3)

whereX g;h denotes an irreducible component of the fixed set of the commuting
elementsg and h and ŒX g;h� denotes the image of the fundamental class in
A�.X /. The restriction ofTX to X g;h splits into linearized bundles according
to the (Œ0; 1/-valued) characters� of hg; hi, which are sometimes denoted by
�W , whereW is a component of the fixed-point set. Moreover,ek D c1.Ek/

and"k is the character ofO.Ek/ restricted toX g;h if Ek containsX g;h, and is
zero otherwise.

One would like to define the elliptic genus of a Kawamata log-terminal pair
.X0;D0/ as (1-3) calculated for aG-equivariant resolution.X;E/! .X0;D0/.
Independence of (1-3) of resolution and the proof of (1.3) both depend on the
following push-forward formula:

THEOREM 1.5. Let .X;E/ be a Kawamata log-terminalG-normal pair and let
Z be a smoothG-equivariant locus inX which is normal crossing toSuppE.
Letf W OX ! X denote the blowup ofX alongZ. Define

OE D �
X

k

ık OEk � ı Excf;

where OEk is the proper transform ofEk andı is determined fromK OX
C OE D

f �.KX C E/. Then. OX ; OE/ is a Kawamata log-terminalG-normal pair and

f�ELLorb. OX ; OE;GI z; �/D ELLorb.X;E;GI z; �/: (1-4)

Independence from the resolution is a consequence of the weak factorization
theorem [1] and of Theorem 1.5; Theorem 1.3 follows since both ELL.X1/

and ELL.X2/ coincide with the elliptic genus of the pair. QX ; QD/, where QX
is a resolution ofX dominating bothX1 and X2 (hereD D K QX =X

; see [8,
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Proposition 3.5] and also [52]. For a discussion of the orbifold elliptic genus on
orbifolds more general than just global quotients see [20].

1B. Relation to other invariants. V. Batyrev defined in [2], for aG-normal
triple .X;D;G/, anE-function Eorb.X;D;G/ depending on the Hodge theo-
retical invariants. (There is also a motivic version; see [2; 40].) Firstly for a
quasiprojective algebraic varietyW one sets, as in [2, Definition 2.10],

E.W;u; v/D .�1/i
X

p;q

dimGr
p
F

Gr
pCq
W

.H i
c .W;C//upvq; (1-5)

whereF andW are the Hodge and weight filtrations of Deligne’s mixed Hodge
structure [16; 17]. In particular,E.W; 1; 1/ is the topological Euler characteris-
tic of W (with compact support). IfW is compact one then obtains Hirzebruch’s
�y-genus [28]:

�y.W /D
X

i;j

.�1/q dimH q.˝
p
W
/yp; (1-6)

for v D �1, u D y, and hence the arithmetic genus, signature and so on are
special values of (1-5). Secondly, for aG-normal pair as in Definition 1.4 one
stratifiesD D

S

k2K Dk by strataDı
J

D
T

j2J Dj �
S

k2K�J Dk , for J � K

(the intersection being set toX if J D ?), and defines

E.X;D;G;u; v/

D
X

fgg
W �X g

.uv/
P

"Di
.g/.ıi C1/

X

J �Kg

Y

j2J

uv�1

.uv/ıj C1�1
E.W \Dı

J =C.g;J //; (1-7)

whereC.g;J / is the subgroup of the centralizer ofg leaving
T

j2J Dj invariant.
One shows that for a Kawamata log-terminal pair.X0;D0/ the E-function

E.X;D;G/ of a resolution does not depend on the latter but only onX0, D0

andG. Hence (1-7) yields an invariant of Kawamata log-terminalG-pairs. The
relation withEll.X;D;G/ is the following (Proposition 3.14 of [9]):

lim
�!i1

Ell.X;D;G; z; �/D y
� 1

2
dimX

E.X;D;G;y; 1/; (1-8)

wherey D exp.2� iz/. In particular, in the nonequivariant smooth case the
elliptic genus forq ! 0 specializes into the Hirzebruch�y genus (1-6).

On the other hand, in the nonsingular case, Hirzebruch [29; 30] and Witten
[53] defined elliptic genera of complex manifolds which are given by modular
forms for the subgroup�0.n/ on leveln in SL2.Z/, provided the canonical class
of the manifold in question is divisible byn.

These genera are of course combinations of Chern numbers, but for n D 2 one
obtains a combination of Pontryagin classes; i.e., an invariant that depends only
on the underlying smooth structure, rather than the (almost) complex structure.
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This genus was first introduced by S. Ochanine; see [43] and Section 3. These
level-n elliptic genera coincide, up to a dimensional factor, with the specializa-
tion z D .˛� C b/=n, for appropriatę ; ˇ 2 Z specifying particular Hirzebruch
level n elliptic genus; see Proposition 3.4 of [6].

1C. Application: The McKay correspondence for the elliptic genus. The
classical McKay correspondence is a relation between the representations of
the binary dihedral groupsG � SU.2/ (which are classified according to the
root systems of typeAn;Dn;E6;E7;E8) and the irreducible components of the
exceptional set of the minimal resolution ofC2=G. In particular, the number of
conjugacy classes inG is the same as the number of irreducible components of
the minimal resolution. The latter is a special case of the relation between the
Euler characteristice. eX=G/ of a crepant resolution of the quotientX=G of a
complex manifoldX by an action of a finite groupG and the data of the action
on X :

e. eX=G/D
X

g;h
ghDhg

e.X g;h/: (1-9)

A refinement of this relation for Hodge numbers and motives isgiven in [2;
19; 40]. WhenX is projective one has a refinement in which the Euler charac-
teristic of the manifold in (1-9) is replaced by the ellipticgenus of Kawamata
log-terminal pairs. More generally, one has the following push-forward formula:

THEOREM 1.6. Let .X I DX / be a Kawamata log-terminal pair which is invari-
ant under an effective action of a finite groupG on X . Let W X ! X=G be
the quotient morphism. Let .X=GI DX =G/ be the quotient pair in the sense that
DX =G is the unique divisor onX=G such that �.KX =G CDX =G/D KX CDX

(see Definition 2.7 in [9]).Then

 �ELLorb.X;DX ;GI z; �/D ELL.X=G;DX =G I z; �/:

In particular, for the components of degree zero one obtains

El lorb.X;DX ;G; z; �/D Ell.X=G;DX =G; z; �/: (1-10)

WhenX is nonsingular andX=G admits a crepant resolutioneX=G ! X=G, for
q D 0 one obtains�y. eX=G/D �y

orb.X;G/ and hence fory D 1 one recovers
(1-9).

1D. Application: Higher elliptic genera and K-equivalences. Another appli-
cation of the push-forward formula in Theorem 1.5 is the invariance of higher
elliptic genera under K-equivalences. A question posed in [44], and answered
in [3], concerns the higher arithmetic genus�˛.X / of a complex manifoldX
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corresponding to a cohomology class˛ 2 H �.�1.X /;Q/ and defined as
Z

X

T dX [f �.˛/; (1-11)

wheref W X ! B.�1.X // is the classifying map fromX to the classifying
space of the fundamental group ofX . It asks whether the higher arithmetic
genus�˛.X / is a birational invariant. This question is motivated by Novikov’s
conjecture: the higher signatures (i.e., the invariant defined for topological man-
ifold X by (1-11) with the Todd class replaced by theL-class) are homotopy
invariant [15]. The higher�y-genus defined by (1-11) with the Todd class re-
placed by Hirzebruch’s�y class [28] comes into the correction terms describing
the nonmultiplicativity of�y in topologically locally trivial fibrations� WE ! B

of projective manifolds with nontrivial action of�1.B/ on the cohomology of
the fibers of�. See [11] for details.

Recall that two manifoldsX1;X2 are calledK-equivalent if there is a smooth
manifold QX and a diagram

zX

X1

�1

�

X2

�2
-

(1-12)

in which �1 and�2 are birational morphisms and��
1
.KX1

/ and��
2
.KX2

/ are
linearly equivalent.

The push-forward formula (1.5) leads to:

THEOREM 1.7. For any˛ 2 H �.B�;Q/ the higher elliptic genus

.ELL.X /[f �.˛/; ŒX �/

is an invariant ofK-equivalence. Moreover, if .X;D;G/ and. OX ; OD;G/ areG-
normal and Kawamata log-terminal and if� W. OX ; OD/!.X;D/ isG-equivariant
such that

��.KX C D/D K OX
C OD; (1-13)

then
Ell˛. OX ; OD;G/D Ell˛.X;D;G/:

In particular the higher elliptic genera(and hence the higher signatures and
OA-genus) are invariant for crepant morphisms. The specialization into the Todd

class is birationally invariant(i.e., the invariance condition(1-12)is not needed
in the Todd case).

Another consequence is the possibility of defining higher elliptic genera for
singular varieties with Kawamata log-terminal singularities and forG-normal
pairs.X;D/; see [10].
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1E. The DMVV formula. The elliptic genus comes into a beautiful product
formula for the generating series for the orbifold ellipticgenus associated with
the action of the symmetric groupSn on productsX �� � ��X , for which the first
case appears in [18], together with a string-theoretical explanation. A general
product formula for orbifold elliptic genus of triples is given in [9].

THEOREM 1.8. Let .X;D/ be a Kawamata log-terminal pair. For everyn � 0

consider the quotient of.X;D/n by the symmetric groupSn, which we will
denote by.X n=Sn;D

.n/=Sn/. Here we denote byD.n/ the sum of pullbacks of
D undern canonical projections toX . Then we have

X

n�0

pnEll.X n=Sn;D
.n/=SnI z; �/D

1
Y

iD1

Y

l;m

1

.1 � piylqm/c.mi;l/
; (1-14)

where the elliptic genus of.X;D/ is
X

m�0

X

l

c.m; l/ylqm

andy D e2� iz , q D e2� i� .

It is amazing that such a simple-minded construction as the left-hand side of
(1-14) leads to the Borcherds lift [4] of Jacobi forms.

1F. Other applications of the elliptic genus.In this section we point out other
instances in which the elliptic genus plays a significant role.

The chiral de Rham complex. In [41], the authors construct for a complex
manifold X a (bi)-graded sheaf̋ ch

X
of vertex operator algebras (with degrees

called fermionic charge and conformal weight) with the differentialdch
DR

having
fermionic degree 1 and quasiisomorphic to the de Rham complex of X . An
alternative construction using the formal loop space was given in [32]. Each
component of fixed conformal weight has a filtration so that graded components
are

O

n�1

.��yqn�1T �
X ˝��y�1qnTX ˝ SqnT �

X ˝ SqnTX / (1-15)

In particular, it follows that

Ell.X; q;y/D y
� 1

2
dimX

�.˝ch
X /D y

� 1
2

dimX SupertraceH �.˝ch
X

/y
J Œ0�qLŒ0�;

(1-16)
whereJ Œm�;LŒn� are the operators which are part of the vertex algebra structure.
The chiral complex for orbifolds was constructed in [22] andthe extension of
(1-16) to orbifolds (with discrete torsion) is discussed in[39].
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Mirror symmetry. The physics definition of mirror symmetry in terms of con-
formal field theory suggests that for the elliptic genus, defined as an invariant of
a conformal field theory (by an expression similar to the lastterm in (1-16) —
see [54]) one should have forX and its mirror partnerOX the relation

Ell.X /D .�1/dimX Ell. OX /: (1-17)

This is indeed the case [6, Remark 6.9] for mirror symmetric hypersurfaces in
toric varieties in the sense of Batyrev.

Elliptic genus of Landau–Ginzburg models.The physics literature (see [34],
for example) also associates to a weighted homogeneous polynomial a con-
formal field theory (the Landau–Ginzburg model) and in particular the elliptic
genus. Moreover it is expected that the orbifoldized Landau–Ginzburg model
will coincide with the conformal field theory of the hypersurface corresponding
to this weighted homogeneous polynomial. In particular, one expects a certain
identity expressing equality of the orbifoldized ellipticgenus corresponding to
the weighted homogeneous polynomial (or a more general Landau Ginzburg
model) and the elliptic genus of the corresponding hypersurface. In [42] the
authors construct a vertex operator algebra related by a correspondence of this
type to the cohomology of the chiral de Rham complex of the hypersurface inPn,
and obtain in particular the expression for the elliptic genus of a hypersurface as
an orbifoldization. In [27] the authors obtain an expression for the one-variable
Hirzebruch’s genus as an orbifoldization.

Concluding remarks. There are several other interesting issues which should
be mentioned in a discussion of the elliptic genus. It plays an important role in
work of J. Li, K. F. Liu and J. Zhou [38] in connection with the Gopakumar–Vafa
conjecture (see also [25]). The elliptic genus was defined for proper schemes
with 1-perfect obstruction theory [21]. In fact one has welldefined cobordism
classes in̋ U associated to such objects [14]. In the case of surfaces with
normal singularities, one can extend the definition of elliptic genus beyond log-
terminal singularities [50]. The elliptic genus is centralin the study of elliptic
cohomology [46]. Much of the discussion above can be extended to the equi-
variant context [49]; a survey of this is given in Waelder’s paper in this volume.

2. Quasi-Jacobi forms

The Eisenstein series

ek.�/D
X

.m;n/2Z2

.m;n/¤.0;0/

1

.m� C n/k
; � 2 H;
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fails to be modular fork D 2, but the algebra generated by the functionsek.�/,
k �2, called the algebra of quasimodular forms on SL2.Z/, has many interesting
properties [57]. For example, there is a correspondence between quasimodular
forms and real analytic functions onH which have the same SL2.Z/ transfor-
mation properties as modular forms. Moreover, the algebra of quasimodular
forms has a structure ofD-module and supports an extension of Rankin–Cohen
operations on modular forms.

In this section we show that there is an algebra of functions on C�H closely
related to the algebra of Jacobi forms of index zero with similar properties.
This algebra is generated by the Eisenstein series

P

.z C!/�n, the sum being
over elements! of a latticeW � C. It has a description in terms of real ana-
lytic functions satisfying a functional equation of Jacobiforms and having other
properties of quasimodular forms mentioned in the last paragraph. It turns out
that the space of functions onC � H generated by elliptic genera of arbitrary
(possibly not Calabi–Yau) complex manifolds belong to thisalgebra of quasi-
Jacobi forms.

DEFINITION 2.1. Aweak(resp. meromorphic) Jacobi form of indext 2 1
2

Z and
weight k for a finite index subgroup of the Jacobi group� J

1
D SL2.Z/ / Z2

is a holomorphic (resp. meromorphic) function� on H � C having expansion
P

cn;r qn�r in q D exp.2�
p

�1�/ with Im � sufficiently large and satisfying
the functional equations

�

�

a� C b

c� C d
;

z

c� C d

�

D .c� C d/ke2� itcz2=.c�Cd/�.�; z/;

�.�; z C�� C�/D .�1/2t.�C�/e�2� it.�2�C2�z/�.�; z/

for all elements
��a

c
b
d

�

; 0
�

and
��1

0
0
1

�

; .a; b/
�

in � . The algebra of Jacobi forms
is the bigraded algebraJ D

L

Jt;k . and the algebra of Jacobi forms of index
zero is the subalgebraJ0 D

L

k J0;k � J .

For appropriatel a Jacobi form can be expanded in (Fourier) series inq1= l , with
l depending on� . We shall need below the real analytic functions

�.z; �/D z � Nz
� � N� and �.�/D 1

� � N� : (2-1)

They have the transformation properties

�

�

z

c� C d
;

a� C b

c� C d

�

D .c� C d/�.z; �/� 2icz; (2-2)

�.z C m� C n; �/D �.z; �/C m;

�.
a� C b

c� C d
/D .c� C d/2�.�/� 2ic.c� C d/: (2-3)
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DEFINITION 2.2. AnAlmost meromorphic Jacobi formof weightk, index zero
and depth.s; t/ is a (real) meromorphic function inCfq1= l ; zgŒz�1; �; ��, with
�;� given by (2-1), which

(a) satisfies the functional equations (2.1) of Jacobi formsof weightk and index
zero, and

(b) which has degree at mosts in � and at mostt in �.

DEFINITION 2.3. A quasi-Jacobi formis a constant term of an almost mero-
morphic Jacobi form of index zero considered as a polynomialin the functions
�;�; in other words, a meromorphic functionf0 on H � C such that there
exist meromorphic functionsfi;j such that eachf0 C

P

fi;j�
i�j is an almost

meromorphic Jacobi form.

From the algebraic independence of�;� over the field of meromorphic func-
tions inq; z one deduces:

PROPOSITION2.4. F is a quasi-Jacobi of depth.s; t/ if and only if

.c� C d/�kf
�

a�Cb

c�Cd
;

z

c�Cd

�

D
X

i�s
j�t

Si;j .f /.�; z/
�

cz

c�Cd

�i� c

c�Cd

�j
;

f .�; z C a� C b/D
X

i�s

Ti.f /.�; z/a
i :

We turn to some basic examples of quasi-Jacobi forms.

DEFINITION 2.5 [51]. Consider the sequence of functions onH � C given by

En.z; �/D
X

.a;b/2Z2

1

.z C a� C b/n

(These series were used in [24] under the name twisted Eisenstein series.)

The seriesEn.z; �/ converges absolutely forn � 3 and forn D 1; 2 defined via
“Eisenstein summation” as

X

e
. � /D lim

A!1

aDA
X

aD�A

lim
B!1

bDB
X

bD�B

. � /;

though we shall omit the subscripte. The seriesE2.z; �/ is related to the Weier-
strass function as follows:

}.z; �/D 1

z2
C

X

.a;b/2Z

.a;b/¤0

1

.z C a� C b/2
� 1

.a� C b/2

D E2.z; �/� lim
z!0

�

E2.z; �/� 1

z2

�

:



ELLIPTIC GENERA, REAL ALGEBRAIC VARIETIES AND QUASI-JACOBI FORMS 107

Moreover,

en D lim
z!0

�

En.z; �/� 1

zn

�

D
X

.a;b/2Z

.a;b/¤0

1

.a� C b/n

is the Eisenstein series, in the notation of [51]. The algebra of functions ofH
generated by the Eisenstein seriesen.�/ for n � 2 is the algebra of quasimodular
forms for SL2.Z/ [55; 57].

Now we describe the algebra of quasi-Jacobi forms for the Jacobi group� J
1

.

PROPOSITION2.6. The functionsEn are weak meromorphic Jacobi forms of
index zero and weightn for n � 3. E1 is a quasi-Jacobi form of index0 weight
1 and depth.1; 0/. E2 � e2 is a weak Jacobi form of index zero and weight2

andE2 is a quasi-Jacobi form of weight2, index zero and depth.0; 1/.

PROOF. The first part follows from the absolute convergence of the series (2.5)
for n � 3. We have the transformation formulas

E1

�

a� C bc� C d ;
z

c�Cd

�

D .c� C d/E1.�; z/C � ic

2
z; (2-4)

E1.�; z C m� C n/ D E1.�; z/� 2� im; (2-5)

E2

�

a�Cb

c�Cd
;

z

c�Cd

�

D .c� C d/2E2.�; z/� 1
2
� ic.c� C d/; (2-6)

E2.�; z C a� C b/ D E2.�; z/: (2-7)

Equalities (2-4) and (2-6) follow fromE1.�; z/D 1=z �
P

e2k.�/z
2k�1 and

E2.�; z/D 1=z2C
P

k.2k�1/e2kz2k�2, respectively; see [51, Chapter 3, (10)].
Equality (2-7) is immediate form the definition of Eisenstein summation, while
(2-5) follows from [51]. ˜

REMARK 2.7. The Eisenstein seriesek.�/, for k � 4, belong to the algebra of
quasi-Jacobi forms. Indeed, from [51, Chapter IV, (7), (35)] one has

E4 D .E2 � e2/
2 � 5e4I E2

3 D .E2 � e2/
2 � 15e4.E2 � e2/� 35e4:

PROPOSITION2.8. The algebra of Jacobi forms(for � J
1

) of index zero and
weightt � 2 is generated byE2 � e2;E3;E4.

A short way to show this is to notice that the ring of such Jacobi forms is iso-
morphic to the ring of cobordisms of SU-manifolds modulo flops (Section 1A)
via an isomorphism sending a complex manifoldX of dimensiond to Ell.X / �
.� 0.0/=�.z//d . This ring of cobordisms in turn is isomorphic toCŒx1;x2;x3�,
wherex1 is the cobordism class of a K3 surface andx2;x3 are the cobordism
classes of certain four- and six-manifolds [48]. The gradedalgebraCŒE2�e2;

E3;E4� is isomorphic to the same ring of polynomials (Examples 2.14) and the
claim follows.
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PROPOSITION2.9. The algebra of quasi-Jacobi forms is the algebra of func-
tions onH � C generated by the functionsEn.z; �/ ande2.�/.

PROOF. The coefficient of�s for an almost meromorphic Jacobi formF.�; z/D
P

i�s fi�
i of depth.s; 0/ is a holomorphic Jacobi form of index zero and weight

k � s; thus, by the previous proposition, it is a polynomial inE2 � e2, E3, . . . .
Moreoverf0 � Es

1
fs is a quasi-Jacobi form of index zero and weight at most

s�1. Hence, by induction, the ring of quasi-Jacobi forms of index zero and depth
.�; 0/ can be identified withCŒE1;E2�e2;E3; : : :�. Similarly, the coefficient
�t of an almost meromorphic Jacobi formF D

P

j�t

�
P

fi;j�
i
�

�j is an almost
meromorphic Jacobi form of depth.s; 0/, andF �

�
P

if
�

i; s�i/Et
2

has depth
.s0; t 0/ with t 0 < t . The claim follows. ˜

Here is an alternative description of the algebra of quasi-Jacobi forms:

PROPOSITION2.10. The algebra of functions generated by the coefficients of
the Taylor expansion inx of the function:

�.x C z/� 0.0/
�.x/�.z/

�
�

1

x
C 1

z

�

D
X

i�1

Fix
i

is the algebra of quasi-Jacobi forms forSL2.Z/.

PROOF. From [45] we have the transformation formulas

�
�

a�Cb

c�Cd
;

z

c�Cd

�

D �.c� C d/1=2e� icz2=.c�Cd/�.�; z/;

� 0
�

a�Cb

c�Cd
; 0

�

D �.c� C d/3=2� 0.�; 0/;

�.�; z C m� C n/D .�1/mCne�2� imz�� im2��.�; z/:

They imply that the function

˚.x; z; �/D x�.x C z/� 0.0/
�.x/�.z/

(2-8)

satisfies the functional equations

˚.
a� C b

c� C d
;

x

c� C d
;

z

c� C d
/D e2� iczx=.c�Cd/˚.x; z; �/;

˚.x; z C m� C n; �/D e2� imx˚.x; z; �/:

(2-9)

In particular, in the expansion

d2 log˚

dx2
D

X

Hix
i ; (2-10)
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the left-hand side is invariant under the transformations in (2-9) and the coeffi-
cient Hi is a Jacobi form of weighti and index zero for anyi . Moreover the
coefficientsFi in ˚.x; z; �/D 1C

P

Fi.z; �/x
i are polynomials inF1 and the

Hi . What remains to show is that theEi determineF1 and theHi , for i � 1,
and vice versa.

Recall thatEi has index zero (is invariant with respect to shifts) and weight i .
We shall use the expressions

˚.x; z; �/D x C z

z
exp

�

X

k>0

2

k!

�

xk C zk � .x C z/k
�

Gk.�/

�

; (2-11)

where

Gk.�/D �Bk

2k
C

1
X

lD1

X

d jl
.dk�1/ql I (2-12)

see [56]. On the other hand, from [51, III.7 (10)] we have

En.z; �/D 1

zn
C .�1/n

1
X

2m�n

�

2m�1

n�1

��

e2mz2m�n; (2-13)

where

e2m D
X0� 1

m�Cn

�2m
D 2.2�

p
�1/k

.k � 1/!
Gk for k D 2mI (2-14)

see [51, III.7] and [55, p. 220]. We have

d2 log˚.x; z; �/

dx2

D
X

i�1

.�1/i ixi�1

ziC1
C

X

i�2

2

.i�2/!

�

xi�2 � .x C z/i�2
�

Gi.�/: (2-15)

Now, using (2-14) and identities with binomial coefficients, we obtain for the
coefficient ofxl�2 for l � 2 in the Laurent expansion the value

.�1/l�1.l�1/

zl
�

X

i�2;i>l

2

.i � 2/!

�

i �2

l �2

�

zi�lGi.�/

D .�1/l�1.l�1/

zl�1
�

X

i�2
i>l

1

.2�
p

�1/i
.i � 1/

�

i �2

l �2

�

zi�lei

D .�1/l�1.l�1/

zl
� .l � 1/

1

.2�
p

�1/l

X

i�2
i>l

�

i �1

l �1

�

ei

�

z

2�
p

�1

�i�l

(2-16)
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This yields

Hl�2.2�
p

�1z; �/D .�1/l�1 .l � 1/

.2�
p

�1/l
.El � el /;

and the claim follows since formula (15) in [56] yields

F1.z; �/D 1

z
� 2

X

r�0

GrC1

zr

r !
D 1

z
� 1

.2�
p

�1/

X

r�0

er

�

z

2�
p

�1

�r

; (2-17)

that is,

F1.2� i
p

�1z; �/D 1

2�
p

�1
E1.z; �/ ˜

REMARK 2.11. The algebra of quasi-Jacobi formsCŒe2;E1;E2; : : : � is closed
under differentiation with respect to� and@z. Indeed, one has

2� i
@E1

@�
D E3 � E1E2;

@E1

@z
D �E2;

2� i
@E2

@�
D 3E4 � 2E1E3 � E2

2 ;
@E2

@z
D �2E3;

and henceCŒ: : : ;Ei ; : : :� is a D-module, whereD is the ring of differential
operators generated by@=@� and @=@z over the ring of holomorphic Jacobi
group invariant functions onH �C. As is clear from the discussion, the ring of
Eisenstein seriesCŒ: : : ;Ei ; : : :� has a natural identification with the ring of real
valued almost meromorphic Jacobi formsCŒE�

1
;E�

2
;E3; : : : � on H � C having

index zero, where

E�
1 D E1 C 2� i

Im x

Im �
; E�

2 D E2 C 1

Im �
: (2-18)

THEOREM 2.12. The algebra of quasi-Jacobi forms of depth.k; 0/, k � 0, is
isomorphic to the algebra of complex unitary cobordisms modulo flops.

In another direction, the depth of quasi-Jacobi forms allows one to “measure”
the deviation of the elliptic genus of a non-Calabi–Yau manifold from being a
Jacobi form.

THEOREM 2.13. Elliptic genera of manifolds of dimension at mostd span the
subspace of forms of depth.d; 0/ in the algebra of quasi-Jacobi forms. If a
complex manifold satisfiesck

1
D 0 andck�1

1
¤ 0, 1 its elliptic genus is a quasi-

Jacobi form of depth.s; 0/, wheres � k � 1.

1More generally,k is the smallest among indicesi with ci
1

2 Ann.c2; : : : ; cdimM /; an example of such
a manifold is ann-manifold having a.n�k/-dimensional Calabi–Yau factor.
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PROOF. It follows from the proof of Proposition (2.10) that

d2 log˚

dx2
D

X

i�2

.�1/i�1 i � 1

.2�
p

�1/i
.Ei � ei/x

i�2;

which yields

˚ D eE1x
Y

i

e.1=i/.�1/i�1.i�1/=.2�
p

�1/i .Ei �ei /xi

: (2-19)

The Hirzebruch characteristic series is

˚
� x

2� i

� �.z/

� 0.0/
I

compare (1-1). Hence, ifc.TX /D˘.1 C xk/, then

El l.X /D
�

�.z/

� 0.0/

�dimX
Y

i;k

eE1xk e.1=i/.�1/i�1.i�1/.Ei �ei /xi
k ŒX �

D
�

�.z/

� 0.0/

�dimX

ec1.X /E1

Y

i;k

e.1=i/.�1/i�1.i�1/.Ei �ei /xi
k ŒX �; (2-20)

whereŒX � is the fundamental class ofX . In other words, ifc1 D 0, the elliptic
class is a polynomial inEi � ei with i � 2, and hence the elliptic genus is a
Jacobi form [36]. Moreover ofck

1
D 0 the degree of this polynomial is at most

k in E1, and the claim follows. ˜

EXAMPLE 2.14. Expression (2-20) can be used to get formulas for the elliptic
genus of specific examples in terms of Eisenstein seriesEn. For example, for a
surface inP3 having degreed one has

�

E2
1.

1
2
d2 � 4d C 8/d C .E2 � e2/.

1
2
d2 � 2/d

�

�

�.z/

� 0.0/

�2

In particular ford D 1 one obtains

�

9
2
E2

1
� 3

2
.E2 � e2/

�

�

�.z/

� 0.0/

�2

:

One can compare this with the double series that is a special case of the general
formula for the elliptic genus of toric varieties in [6]. This leads to a two-variable
version of the identity discussed in [6, Remark 5.9]. In factfollowing [5] one
can define the subalgebra of “toric quasi-Jacobi forms” of the algebra of quasi-
Jacobi forms, extending the toric quasimodular forms considered in [5]. This
issue will be addressed elsewhere.
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Next we consider one more similarity between meromorphic Jacobi forms and
modular forms: there is a natural noncommutative deformation of the ordinary
product of Jacobi forms similar to the deformation of the product modular forms
constructed using Rankin–Cohen brackets [57]. In fact we have the following
Jacobi counterpart of Rankin–Cohen brackets:

PROPOSITION2.15. Letf andg be Jacobi forms of index zero and weightsk

andl , respectively. Then

Œf;g�D k
�

@�f � 1

2� i
E1@zf

�

g � l
�

@�g � 1

2� i
E1.z; �/@zg

�

f

is a Jacobi form of weightk C l C 2. More generally, let

D D @� � 1

2� i
E1@z :

Then the Cohen–Kuznetsov series(see [57])

QfD.z; �;X /D
1

X

nD0

Dnf .z; �/X n

n!.k/n
;

where.k/n D k.k C 1/ � � � .k C n � 1/ is the Pochhammer symbol, satisfies

QfD

�

a� C b

c� C d
;

z

c� C d
;

z

c� C d
;

X

.c� C d/2

�

D .c� C d/k exp

�

c

c� C d

X

2� i

�

fD.�; z;X /;

QfD.�; z C a� C b;X /D QfD.�; z;X /:

In particular, the coefficientŒf;g�n=.k/n.l/n of X n in QfD.�; z;�X / QgD.�; z;X /

is a Jacobi form of weightk C l C 2n. It is given explicitly in terms ofDif and
Dj g by the same formulas as the classical RC brackets.

PROOF. The main point is that the operator@� � 1
2� i

E1@z has the same devia-
tion from transforming a Jacobi form into another as@� has on modular forms.
Indeed:

.@� � 1

2� i
E1@z/f

�

a�Cb

c�Cd
;

z

c�Cd

�

D
�

kc.c�Cd/kC1f .�; z/Czc.c�Cd/kC1@zf .�; z/C.c�Cd/kC2@�f .�; z/

� 1

2� i

�

.c� C d/E1.�; z/C 2� icz
�

.c� C d/kC1@zf
�

D .c� C d/kC2
�

f .�; z/� 1

2� i
E1fz

�

C kc.c� C d/kC1f .�; z/:
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Moreover,
�

@� � 1

2� i
E1@z

�

f .�; z C a� C b/D f� C afz � 1

2� i
.E1 � 2� ia/fz

D
�

@� � 1

2� i
E1@z

�

f .�; z/:

The rest of the proof runs as in [57]. ˜

REMARK 2.16. The brackets introduced in Proposition 2.15 are different from
the Rankin–Cohen bracket introduced in [13].

3. Real singular varieties

The Ochanine genus of an oriented differentiable manifoldX can be defined
using the following series with coefficients inQŒŒq�� as the Hirzebruch charac-
teristic power series (see [37] and references there):

Q.x/D x=2

sinh.x=2/

1
Y

nD1

�

.1 � qn/2

.1 � qnex/.1 � qne�x/

�.�1/n

(3-1)

As was mentioned in Section 1B, this genus is a specialization of the two-
variable elliptic genus (atz D 1

2
). Evaluation of the Ochanine genus of a mani-

fold using (3-1) and viewing the result as function of� on the upper half-plane
(whereq D e2� i� ) yields a modular form on�0.2/� SL2.Z/; see [37].

In this section we discuss elliptic genera for real algebraic varieties. It par-
ticular we address Totaro’s proposal [48] that “it should bepossible to define
Ochanine genus for a large class of compact oriented real analytic spaces.” In
this direction we have:

THEOREM 3.1 [48]. The quotient ofMSO by the ideal generated by oriented
real flops and complex flops(that is, the ideal generated byX 0 � X , whereX 0

andX are related by a real or complex flop) is

Z Œı; 2
; 2
 2; 2
 4�;

with CP2 corresponding toı andCP4 to 2
 C ı2. This quotient ring is the the
image ofMSO� under the Ochanine genus.

In particular the Ochanine genus of a small resolution is independent of its
choice for singular spaces having singularities only alongnonsingular strata and
having in normal directions only singularities which are cones inR4 or C4.

Our goal is to find a wider class of singular real algebraic varieties for which
the Ochanine genus of a resolution is independent of the choice of the latter.
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3A. Real singularities. For the remainder of this paper “real algebraic variety”
means anoriented quasiprojective varietyXR over R, X.R/ is the set of its
R-points with the Euclidean topology,XC D XR �SpecR SpecC is the complexi-
fication andX.C/ the analytic space of its complex points. We also assume that
dimR X.R/D dimC X.C/.

DEFINITION 3.2. A real algebraic varietyXR as above is calledQ-Gorenstein
log-terminal if the analytic spaceX.C/ is Q-Gorenstein log-terminal.

EXAMPLE 3.3. The affine variety

x2
1 � x2

2 C x2
3 � x2

4 D 0 (3-2)

in R4 is three-dimensional Gorenstein log-terminal and admits acrepant reso-
lution.

Indeed, it is well known that the complexification of the Gorenstein singularity
(3-2) admits a small (and hence crepant) resolution havingP1 as its exceptional
set.

EXAMPLE 3.4. The three-dimensional complex cone inC4 given byz2
1

C z2
2

C
z2

3
Cz2

4
D0 considered as a codimension-two subvariety ofR8 is aQ-Gorenstein

log-terminal variety overR and its complexification admits a crepant resolution.

Indeed, this codimension-two subvariety is a real analyticspace which is the
intersection of two quadrics inR8 given by

a2
1 Ca2

2 Ca2
3 Ca2

4 �b2
1 �b2

2 �b2
3 �b2

4 D 0 D a1b1 Ca2b2 Ca3b3 Ca4b4; (3-3)

whereai D Rezi ; bi D Im zi . The complexification is the cone over complete
intersection of two quadrics inP7. Moreover, the defining equations of this
complete intersection become, after the change of coordinatesxi D ai C

p
�1bi ,

yi D ai �
p

�1bi ,

x2
1 C x2

2 C x2
3 C x2

4 D 0 and y2
1 C y2

2 C y2
3 C y2

4 D 0: (3-4)

The singular locus is the union of two disjoint two-dimensional quadrics and the
singularity along each isA1 (i.e., the intersection of the transversal to it inP7

has anA1 singularity). To resolve (3-3), one can blow upC8 at the origin, which
results in aC-fibration over the complete intersection (3-4). It can be resolved
by small resolutions along two nonsingular components of the singular locus of
(3-4). A direct calculation (considering, for example, theorder of the pole of the
form dx2 ^ dx3 ^ dx4 ^ dy2 ^ dy3 ^ dy4=.x1y1/ along the intersection of the
exceptional locus of the blow-upQC8 of C8 with the proper preimage of (3-4) in
QC8) shows that we have a log-terminal resolution of the Gorenstein singularity

which is the complexification of (3-3).
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3B. The elliptic genus of resolutions of real varieties withQ-Gorenstein
log-terminal singularities. Let X be a real algebraic manifold and letD D
P

˛kDk , with each˛k in Q, be a divisor on the complexificationXC of X

(i.e., theDk are irreducible components ofD). Let xi denote the Chern roots
of the tangent bundle ofXC and denote bydk the classes corresponding toDk

(Section 1).

DEFINITION 3.5. LetX be a real algebraic manifold andD a divisor on the
complexificationXC of X . The Ochanine classELLO.X;D/ of the pair.X;D/
is the specialization

ELL
�

XC;D; q; z D 1
2

�

of the two-variable elliptic class of the pairELL.XC;D; q; z/ given by

�

Y

l

�

xl

2� i

�

�
�

xl

2� i � z
�

� 0.0/

�.�z/�
�

xl

2� i

�

�

�
�

Y

k

�
�

dk

2� i � .˛k C 1/z
�

�.�z/

�
�

dk

2� i � z
�

�.�.˛k C 1/z/

�

: (3-5)

The Ochanine elliptic genus of the pair.X;D/ as above is

Ell.XR;D/D
q

ELL
�

XC;D; q;
1
2

�

[ cl.X.R//ŒX.C/�: (3-6)

Here
p
ELL denotes the class corresponding to the unique series with constant

term 1 and havingELL as its square.
The class of pairs above is the class (1-3) considered in Definition 1.4 in the

case where groupG is trivial. One can define an orbifold version of this class
as well, specializing (1-3) toz D 1

2
. See [8] for further discussion of the class

ELL.X;D/.
The relation with Ochanine’s definition is as follows: ifD is the trivial divisor

on XC, the result coincides with the genus [43]. More precisely:

LEMMA 3.6. LetXR be a real algebraic manifold with nonsingular complexifi-
cationXC. Then

Ell.XR/D
q

ELL.TX .C//[ cl.X.R//ŒX.C/�:

PROOF. Indeed, we have

0 ! TX .R/ ! TX .C/jX .R/ ! TX .R/ ! 0; (3-7)

with the identification of the normal bundle toXR with its tangent bundle given
by multiplication by

p
�1. HenceELL.XR/

2 D i�.ELLXC/, wherei W XR !
XC is the canonical embedding. Now the lemma follows from the identifica-
tion of the characteristic series (3-1) and specializationz D 1

2
of the series in

(1-1) (see [6]) and the identification which is just a definition of the class clZ 2
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H dimR Y �dimRZ of a submanifoldZ of a manifoldY : clZ [˛ŒY �D i�.˛/\ ŒZ�
for any˛ 2 H dimR Z .Y /. Indeed, we have

Ell.XR/D ELL.TX .R//ŒX.R/�D
q

ELL.TX .C//
ˇ

ˇ

X .R/
ŒX.R/�

D
q

ELL.TX .C//[ cl.X.R//ŒX.C/�: ˜

Our main result in this section is the following:

THEOREM 3.7. Let � W . QX ; QD/ ! .X;D/ be a resolution of singularities of
a real algebraic pair withQ-Gorenstein log-terminal singularities; i.e., K QX C
QD D ��.KX C D/. Then the elliptic genus of the pair. QX ; QD/ is independent

of the resolution. In particular, if a real algebraic varietyX has a crepant
resolution, its elliptic genus is independent of a choice of crepant resolution.

PROOF. Indeed for a blowupf W . QX ; QD/! .X;D/ we have

f�
�

q

ELL
� QX ; QD; q; 1

2

�

�

D
q

ELL
�

X;D; q; 1
2

�

(3-8)

This is a special case of the push-forward formula (1-4) in theorem 1.5, withG
being the trivial group. Hence

ELLO.XR;D/D
q

ELL
�

XC;D; q;
1
2

�

[ cl.XR/ŒXC�

D
q

ELL. QXC; QD; q; 1
2

�

[f �.ŒXR�\ ŒXC�/D ELL. QXR; QD/;

as follows from projection formula sincef �.cl ŒXR�/D Œcl QXR� and sincef� is
the identity onH0.

For a crepant resolution one hasD D 0 and hence by Lemma 3.6 the elliptic
genus ofXR is the Ochanine genus of the real manifold, which is its crepant
resolution. ˜

REMARK 3.8. Examples 3.3 and 3.4 show that singularities admittinga crepant
resolution include real three-dimensional cones and real points of complex three-
dimensional cones.
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