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Elliptic genera, real algebraic varieties
and guasi-Jacobi forms

ANATOLY LIBGOBER

ABSTRACT. We survey the push-forward formula for elliptic class andaus
applications obtained in the papers by L. Borisov and theauiVe then dis-
cuss the ring of quasi-Jacobi forms which allows to charatéhe functions
which are the elliptic genera of almost complex manifoldd artension of
Ochanine elliptic genus to certain singular real algebvarteties.

Introduction

Interest in the elliptic genus of complex manifolds stenosrfiits appearance
in a wide variety of geometric and topological problems. EHiptic genus is
an invariant of the complex cobordism class modulo torsimd, hence depends
only on the Chern numbers of the manifold. On the other hdradeliiptic genus
is a holomorphic function defined dii x H, whereH is the upper half plane.
In one heuristic approach, the elliptic genus is an indexmobperator on the
loop space (see [53]) and as such it has counterparts debnétP?, oriented
or Spin manifolds: these were in fact studied before the dexngase [43].

The elliptic genus comes up in the study of the geometry goalégy of loop
spaces and, more specifically, of the chiral de Rham comglExih the study of
invariants of singular algebraic varieties [8] — in partanuorbifolds; and, more
recently, in the study of Gopakumar—Vafa and Nekrasov abmjes [38; 25].
It is closely related to the fast developing subject of éltigohomology [46].
There are various versions of the elliptic genus, includirgequivariant, higher
elliptic genus obtained by twisting by cohomology classkthe fundamental
group, the elliptic genus of pairs and the orbifold ellipgienus. There is inter-
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esting connection with singularities of weighted homogersepolynomials —
the so-called Landau—Ginzburg models.

We shall review several recent developments on the ellggitus; we refer
the reader [7] for details on earlier results. Then we sball§ on certain aspects
of the elliptic genus: its extension to real singular vae®tand its modularity
property (or the lack of it). Extensions of the elliptic gento real singular
varieties were suggested by B. Totaro [48]; our approaclaseth on the push-
forward formula for the elliptic class used in [8] to exterltiptic genus from
smooth to certain singular complex projective varieties.

In Section 1A we discuss this push-forward formula, whicpegrs as the
main technical tool in many applications mentioned latdre Test of Section 1
discusses the relation with other invariants and serieppliGtions based on
the material in [9; 8; 6]. It includes a discussion of a reatbetween ellip-
tic genus andE-function, applications to the McKay correspondence ptdli
genera of non-simply connected manifolds (higher elliggnera) and general-
izations of a formula of R. Dijkgraaf, D. Moore, E. Verlindend H. Verlinde.
(Other applications in the equivariant context are dised$s R. Waelder’s paper
in this volume.) The proof of independence of resolutionghefelliptic genus
(according to our definition) for certain real algebraicieties is given later, in
Section 3B.

Section 2 deals with modularity properties of the ellipngs. In the Calabi—
Yau cases (of pairs, orbifolds, etc.) the elliptic genusvgeak Jacobi form; see
definition below. Also it is important to have a descriptidittee elliptic genus
in non-Calabi-Yau situations not just as a function(®or H but as an element
of a finite-dimensional algebra of functions. It turns ouwdttim the absence of a
Calabi—Yau condition the elliptic genus belong to a vergiiasting algebra of
functions onC x H, which we call the algebra of quasi-Jacobi forms, and which
is only slightly bigger than the algebra of weak Jacobi farmkis algebra of
quasi-Jacobi forms is a counterpart of quasimodular foi3i$ &nd is related
to the elliptic genus in the same way as quasimodular formsedated to the
Witten genus [55]. The algebra of quasi-Jacobi forms is ggad by certain
two-variable Eisenstein series, masterfully reviewed byweil in [51], and
has many properties parallel to the properties in quasitaodase. A detailed
description of the properties of quasi-Jacobi forms appeabe absent in the
literature, so we discuss the algebra of such forms in Se@ie-see its in-
troduction. We conclude Section 2 with a discussion of déffitial operators
Rankin—Cohen brackets on the space of Jacobi forms.

Finally in Section 3 we construct an extension of the Ochagenus to real
algebraic varieties with certain class of singularitieshisTextends results of
Totaro [48].
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For the readers’ convenience we give ample referencesdpwairk on ellip-
tic genus, where more detailed information can be obtaiSedtion 2, dealing
with quasi-Jacobi forms, can be read independently of thieafethe paper.

1. Elliptic genus

1A. Elliptic genus of singular varieties and push-forward ormulas. Let X
be a projective manifold. We shall use the Chow grodp$X) with complex
coefficients (see [23]). LeF the ring of functions orC x H whereH is the
upper half-plane. The elliptic class &f is an element i« (X) ®¢ F given by

7. 0GE-z=1) i
ELL(X) = ]_[xlm[)(], (1-1)

i 2mi’

where

=00 =00
6.1 =g @sinaz) [T-¢) [T(1-d'@"H0-g'e?™%)  (1-2)
=1 =1
is the Jacobi theta function considered as an elemehtwith ¢ = 277 [12],
thex; are the Chern roots of the tangent bundl&ofand[ X ] is the fundamental
class ofX. The componenE//(X) in Ayg(X) = F is the elliptic genus ofX.

The components of (1-1) in each degree, evaluated on a das§(iX), are
linear combinations of symmetric functionsdn that is, the Chern classes bt
In particular, E//(X) depends only on the class &f in the ring 2Y ® Q of
unitary cobordisms.

The homomorphisn2¥ ® Q — F taking X to EII/(X) can be described
without reference to theta functions. L&f; 4, be the class of complex analytic
spaces “having onlyl ; -singularities in codimension three”, that is, having only
singularities of the following type: the singular set Skigpf X € M3 4, is a
manifold such that dim SingX = dim X — 3 and for an embedding’ — Y
whereY is a manifold and a transversal to SingX in Y, the pair

(HN X, HNSingX)

is analytically equivalent to the pai€*, Hy), whereHj is given byx? + y2 +

z2 + w? = 0. EachX € M;_4, admits two small resolution&; — X and
X, — X in which the exceptional set is a fibration over Sitignith the fiber
P!. One says that the manifolds underlying the resolutionsohtained from
each other by a classical flop.

THEOREM1.1. (cf. [47]) The kernel of the homomorphishi/ : 2V ® Q — F
taking an almost complex manifoll to its elliptic genusE!/(X) is the ideal
generated by the classes of differendgs— X, of two small resolutions of a
variety inMs 4, .
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More generally one can fix a class of singular spaces and aofypsolutions
and consider the quotient @Y ® Q by the ideal generated by differences
of manifolds underlying resolutions of the same analytiacgp The quotient
map by this idea2V ® Q — R provides a genus and hence a collection of
Chern numbers (linear combination of Chern monomégls. . - ¢;, [X], with

> iy = dim X), which can be made explicit via Hirzebruch’s procedurenhvait
generating series [28]. These are the Chern numbers whidbecdefined for the
chosen class of singular varieties and chosen class olutest. The ideal in
Theorem 1.1, it turns out, corresponds to a much largeresasfssingular spaces
and resolutions. This method of defining Chern classes gtifn varieties is an
extension of the philosophy underlying a question of Goresmkd McPherson
[26]: Which Chern numbers can be defined via resolutionspeddently of the
resolution?

DEFINITION 1.2. An analytic space is called Q-Gorenstein if the divisor
D of a meromorphic formif; A --- A dfgim x 1S such that for some € Z the
divisor nD in locally principal (i.e.,Kx is Q-Cartier). In particular, for any
codimension-one componehtof the exceptional divisor of a map: X — X,
the multiplicity « g = multg 7*(Kyx) is well defined and a singularity is called
log-terminal if there is a resolution such thatk ; = 7*(Kx) + }_ag E and
ag > —1. Aresolution is called crepant ifg = 0.

THEOREM1.3. ([8]) The kernel of the elliptic genudY  Q — F is generated
by the differences of; — X, of manifolds underlying crepant resolutions of the
singular spaces witlp-Gorenstein singularities admitting crepant resolutions

The proof of Theorem 1.3 is based on an extension of theiellygnusE//(X)

of manifolds to the elliptic genus of paiés//(X, D), whereD is a divisor onX
having normal crossings as the only singularities. Thignslar to the situation
in the study of motivicE-functions of quasiprojective varieties [2; 40]. In fact,
other problems such as the the study of McKay correspond@jsaggest a
motivation for looking at tripleg X, D, G), where X is a normal varietyG is

a finite group acting onY’ and to introduce the elliptic clasSLL(X, D, G)
(see again [9]). More precisely, @ = )" a; D; be aQ-divisor, with the D;
irreducible andz; € Q. The pair(X, D) is called Kawamata log-terminal (klt)
[35] if Kx 4+ D is Q-Cartier and there is a birational morphisfn: ¥ — X,
whereY is smooth and is the union of the proper preimages of compsnen
of D, and the components of the exceptional Bet=  J; £; form a normal
crossing divisor such tha&y = f*(Kx +)_ a;D;)+)_ «; Ej, wherea; > —1.
(Here Ky, Ky are the canonical classes &fandY.) The triple (X, D, G),
where X is a nonsingular varietyD is a divisor andG is a finite group of
biholomorphic automorphisms is call€g-normal [2; 9] if the components of
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D form a normal crossings divisor and the isotropy group of paint acts
trivially on the components oD containing this point.

DEFINITION 1.4 [9, Definition 3.2]. Let(X, E) be a Kawamata log terminal
G-normal pair (in particularX is smooth andD is a normal crossing divisor)
and letE = — ) o4 8k Ex. Theorbifold elliptic classof (X, E, G) is the class

in 4.(X, Q) given by

ELLorb(X E.G;z,7):=
X&) 2m+)‘(g) (M) =2) ominihz
|G| th: A;} A(Q 0 1—[ 2m +A(g)— T)\(h))
gh=hg A(h)=0
0(L + ex(g) —ex ()T — Gk +1)z)  O(—2) _
7 ey (h)z
Xl;[ 0(2m +8k(g)_8k(/’l)f—2) 9(—(5k+1)z)

. (1-3)

whereX¢-# denotes an irreducible component of the fixed set of the caingiu
elementsg and 4 and[X£"] denotes the image of the fundamental class in
A+(X). The restriction of'X to X & splits into linearized bundles according
to the (0, 1)-valued) characters of (g, /), which are sometimes denoted by
Aw, WhereW is a component of the fixed-point set. Moreowgr,= ¢1(Ey)
andey is the character ab (Ey) restricted toX 4" if E; containsX4, and is
zero otherwise.

One would like to define the elliptic genus of a Kawamata lexgrinal pair
(Xo, Do) as (1-3) calculated for @-equivariant resolutiofX’, E) — (X, Dg).
Independence of (1-3) of resolution and the proof of (1.3hkepend on the
following push-forward formula:

THEOREM1.5. Let (X, F) be a Kawamata log-termina¥-normal pair and let
Z be a smootlG-equivariant locus inX” which is normal crossing tSuppk.
Let f : X — X denote the blowup oY along Z. Define

E=-Y 8L —8Exc/.
k

where £y is the proper transform of; ands$ is determined fronk , + £ =
f*(Kxy + E). Then(X, E) is a Kawamata log-terminaly-normal pair and

f+ELLow(X, E,G;z,7) = ELLow(X, E, G: 2, 7). (1-4)

Independence from the resolution is a consequence of thie faerization
theorem [1] and of Theorem 1.5; Theorem 1.3 follows sinceh &t L (X ;)
and ELL(X,) coincide with the elliptic genus of the pai, D), where X
is a resolution ofX dominating bothX; and X, (here D = KX/X, see [8,
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Proposition 3.5] and also [52]. For a discussion of the otbiélliptic genus on
orbifolds more general than just global quotients see [20].

1B. Relation to other invariants. V. Batyrev defined in [2], for aG-normal
triple (X, D, G), an E-function Eqp(X, D, G) depending on the Hodge theo-
retical invariants. (There is also a motivic version; seed@].) Firstly for a
quasiprojective algebraic varie®y” one sets, as in [2, Definition 2.10],

E(W.u,v)= (D)"Y _dimGrEGr 4 (HL(W.C)ulv?, (1-5)
)X
whereF andW are the Hodge and weight filtrations of Deligne’s mixed Hodge
structure [16; 17]. In particulai (W, 1, 1) is the topological Euler characteris-
tic of W (with compact support). I is compact one then obtains Hirzebruch’s
Xy-genus [28]:
Xy (W) =" (=1)? dim HY(2f,)y?. (1-6)
ij

for v = —1, u = y, and hence the arithmetic genus, signature and so on are
special values of (1-5). Secondly, for&anormal pair as in Definition 1.4 one
stratifiesD = (Upegx Dk by strataD§ = ey Dj —Ugex—s Dr, for J C K
(the intersection being set 16 if J = @), and defines

E(X,D,G,u,v)
— Z (uv)2ep; @ Gi+1) Z 1_[ v)81+1 E(WﬂDJ/C(g, J)), (1-7)
{g} JCng]eJ
wcxs

whereC(g, J) is the subgroup of the centralizergfeaving( ), ; D; invariant.

One shows that for a Kawamata log-terminal p&i, Do) the E-function
E(X, D, G) of a resolution does not depend on the latter but onlyXgn Dy
andG. Hence (1-7) yields an invariant of Kawamata log-termi@apairs. The
relation with E//(X, D, G) is the following (Proposition 3.14 of [9]):

1.,
im EI(X,D,G,z,t)=y 29X EX, D,G,y,1), (1-8)

T—>i00

where y = exp(2ziz). In particular, in the nonequivariant smooth case the
elliptic genus forg — 0 specializes into the Hirzebrugh, genus (1-6).

On the other hand, in the nonsingular case, Hirzebruch [@PaBd Witten
[53] defined elliptic genera of complex manifolds which aieeg by modular
forms for the subgroupy(n) on leveln in SL,(Z), provided the canonical class
of the manifold in question is divisible by.

These genera are of course combinations of Chern numbefsy lau= 2 one
obtains a combination of Pontryagin classes; i.e., aniawathat depends only
on the underlying smooth structure, rather than the (alhumshplex structure.
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This genus was first introduced by S. Ochanine; see [43] antidBe3. These
level« elliptic genera coincide, up to a dimensional factor, with specializa-
tion z = (at + b)/n, for appropriatex, § € Z specifying particular Hirzebruch
level n elliptic genus; see Proposition 3.4 of [6].

1C. Application: The McKay correspondence for the elliptic genus. The
classical McKay correspondence is a relation between theesentations of
the binary dihedral group& < SU(2) (which are classified according to the
root systems of typd,,, D,,, E¢, E7, Eg) and the irreducible components of the
exceptional set of the minimal resolution@f/G. In particular, the number of
conjugacy classes i@ is the same as the number of irreducible components of
the minimal resolution. The latter is a special case of tiegtion between the
Euler characteristie(X/G) of a crepant resolution of the quotiefit/ G of a
complex manifoldX by an action of a finite groupr and the data of the action
on X:

e(X/G)= > e(x®h, (1-9)
gf;g;hhg

A refinement of this relation for Hodge numbers and motivegivsn in [2;
19; 40]. WhenX is projective one has a refinement in which the Euler charac-
teristic of the manifold in (1-9) is replaced by the ellipjenus of Kawamata
log-terminal pairs. More generally, one has the followinglp-forward formula:

THEOREM1.6.Let(X; Dy) be a Kawamata log-terminal pair which is invari-
ant under an effective action of a finite grogpon X. Lety: X — X/G be
the quotient morphisniet (X /G: Dy, ) be the quotient pair in the sense that
Dy /¢ is the unique divisor oiX'/ G such that)* (Ky,6 + Dx/6) = Kx + Dx
(see Definition 2.7 in [9])Then

V«ELLow(X, Dy, G;z,7) = ELL(X/G, Dy/g:z. 7).
In particular, for the components of degree zero one obtains
Ellon(X, Dx,G,z,7) = EIl(X/G, Dy/g.z. 7). (1-10)

WhenX is nonsingular and’/ G admits a crepant resolutioﬁTG —X/G,for
¢ = 0 one obtaing(, (X/G) = x,°®(X, G) and hence foy = 1 one recovers
(1-9).

1D. Application: Higher elliptic genera and K-equivalences. Another appli-
cation of the push-forward formula in Theorem 1.5 is the iirargce of higher
elliptic genera under K-equivalences. A question posedH}, [and answered
in [3], concerns the higher arithmetic genus(X) of a complex manifoldY
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corresponding to a cohomology class H*(m1(X), Q) and defined as

/ Tdy U f*(a), (1-11)
X

where f : X — B(m1(X)) is the classifying map fronX” to the classifying
space of the fundamental group &f. It asks whether the higher arithmetic
genusy, (X)) is a birational invariant. This question is motivated by Mov’s
conjecture: the higher signatures (i.e., the invarianhéefifor topological man-
ifold X by (1-11) with the Todd class replaced by theclass) are homotopy
invariant [15]. The highery,-genus defined by (1-11) with the Todd class re-
placed by Hirzebruch’g, class [28] comes into the correction terms describing
the nonmultiplicativity ofy, in topologically locally trivial fibrationsr : E — B
of projective manifolds with nontrivial action of; (B) on the cohomology of
the fibers ofr. See [11] for details.

Recall that two manifoldx’;, X, are calledK-equivalent if there is a smooth
manifold X and a diagram

X
y %\ (1-12)
e X,

in which ¢; and¢, are birational morphisms ang}(Ky,) and¢; (Ky,) are
linearly equivalent.
The push-forward formula (1.5) leads to:

THEOREM1.7.For anya € H*(Bm, Q) the higher elliptic genus
(ELL(X)U f* (o). [X])

is an invariant ofK -equivalenceMoreover, if (X, D, G) and()?, D, G)areG-
normal and Kawamata log-terminal andjf (X, D) — (X, D) is G-equivariant
such that
¢*(Kx + D)= K 3 + D, (1-13)
then
Elly(X,D,G) = Elly(X. D, G).

In particular the higher elliptic genergand hence the higher signatures and
A-genu3 are invariant for crepant morphismd he specialization into the Todd
class is birationally invarianfi.e., the invariance conditioli1-12)is not needed
in the Todd case

Another consequence is the possibility of defining highéipted genera for
singular varieties with Kawamata log-terminal singulagtand forG-normal
pairs(X, D); see [10].
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1E. The DMVV formula. The elliptic genus comes into a beautiful product
formula for the generating series for the orbifold ellipgienus associated with
the action of the symmetric grouy, on productsY x---x X, for which the first
case appears in [18], together with a string-theoreticplagation. A general
product formula for orbifold elliptic genus of triples isvgin in [9].

THEOREM1.8. Let (X, D) be a Kawamata log-terminal paifFor everyn > 0
consider the quotient ofX, D)" by the symmetric groug,, which we will
denote by(X"/S,, D™/S,). Here we denote byp™ the sum of pullbacks of
D undern canonical projections td. Then we have

o0
> P"EN(X"/Sp. DP/Syiz.ty =[] ]]

n=0 i=11Im

1
(1 _ piqum)c(mi,l) ’

(2-14)

where the elliptic genus @Y, D) is

DD emhy'q”

m=0 |
andy = e"'?, ¢ = 7',

It is amazing that such a simple-minded construction asdftehbind side of
(1-14) leads to the Borcherds lift [4] of Jacobi forms.

1F. Other applications of the elliptic genus.In this section we point out other
instances in which the elliptic genus plays a significant.rol

The chiral de Rham complex. In [41], the authors construct for a complex
manifold X a (bi)-graded sheastz;h of vertex operator algebras (with degrees
called fermionic charge and conformal weight) with theeﬁé‘ntialdg}e having
fermionic degree 1 and quasiisomorphic to the de Rham commgdleX. An
alternative construction using the formal loop space wasrgin [32]. Each
component of fixed conformal weight has a filtration so thatigd components
are

QA1 T ® A_ 1,0 Tx ® Sgn T ® Sqn Ty ) (1-15)

n>1

In particular, it follows that

Ell(X,q,y) = y_% dimX)((.Qf(h) = y_%dimXSupertracg*(Q)C(h)y"[o]qL[o],
(1-16)
whereJ[m], L[n] are the operators which are part of the vertex algebra streict
The chiral complex for orbifolds was constructed in [22] dhd extension of
(1-16) to orbifolds (with discrete torsion) is discussed3fl].
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Mirror symmetry. The physics definition of mirror symmetry in terms of con-
formal field theory suggests that for the elliptic genus,rdfias an invariant of
a conformal field theory (by an expression similar to the fagh in (1-16) —
see [54]) one should have faf and its mirror partnep? the relation

Ell(X) = (- X E11(X). (1-17)

This is indeed the case [6, Remark 6.9] for mirror symmetyigehsurfaces in
toric varieties in the sense of Batyrev.

Elliptic genus of Landau—Ginzburg models. The physics literature (see [34],
for example) also associates to a weighted homogeneousqlgl a con-
formal field theory (the Landau—Ginzburg model) and in pattir the elliptic
genus. Moreover it is expected that the orbifoldized Lar@&Enzburg model
will coincide with the conformal field theory of the hyperfage corresponding
to this weighted homogeneous polynomial. In particulae erpects a certain
identity expressing equality of the orbifoldized ellipggenus corresponding to
the weighted homogeneous polynomial (or a more general dla@inzburg
model) and the elliptic genus of the corresponding hypé&aser In [42] the
authors construct a vertex operator algebra related byrasgmndence of this
type to the cohomology of the chiral de Rham complex of theshsyrface irP”,
and obtain in particular the expression for the ellipticggeof a hypersurface as
an orbifoldization. In [27] the authors obtain an expresdir the one-variable
Hirzebruch'’s genus as an orbifoldization.

Concluding remarks. There are several other interesting issues which should
be mentioned in a discussion of the elliptic genus. It playgm@portant role in
work of J. Li, K. F. Liu and J. Zhou [38] in connection with the@akumar—Vafa
conjecture (see also [25]). The elliptic genus was definegfoper schemes
with 1-perfect obstruction theory [21]. In fact one has wdfined cobordism
classes in2Y associated to such objects [14]. In the case of surfaces with
normal singularities, one can extend the definition of gtligpenus beyond log-
terminal singularities [50]. The elliptic genus is centirathe study of elliptic
cohomology [46]. Much of the discussion above can be eximnod¢he equi-
variant context [49]; a survey of this is given in Waelder&popr in this volume.

2. Quasi-Jacobi forms

The Eisenstein series

1
er (1) = Z p— T eH,
(m,n)ez?

(m,n)#(0,0)
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fails to be modular fok = 2, but the algebra generated by the functiepér),

k > 2, called the algebra of quasimodular forms on 81), has many interesting
properties [57]. For example, there is a correspondenaedeet quasimodular
forms and real analytic functions df which have the same $IZ) transfor-
mation properties as modular forms. Moreover, the algebrguasimodular
forms has a structure @-module and supports an extension of Rankin—Cohen
operations on modular forms.

In this section we show that there is an algebra of function€ & H closely
related to the algebra of Jacobi forms of index zero with Isimproperties.
This algebra is generated by the Eisenstein séri¢s + ») ™", the sum being
over elements of a latticeWW C C. It has a description in terms of real ana-
Iytic functions satisfying a functional equation of Jacfidrims and having other
properties of quasimodular forms mentioned in the lastgragzh. It turns out
that the space of functions db x H generated by elliptic genera of arbitrary
(possibly not Calabi—Yau) complex manifolds belong to tiigebra of quasi-
Jacobi forms.

DEFINITION 2.1. Aweak(resp. meromorphic) Jacobi form of index %Z and
weightk for a finite index subgroup of the Jacobi groﬂp( = SL,(Z) x Z?
is a holomorphic (resp. meromorphic) functignon H x C having expansion
> enrq"C" in g = exp(2w~/—17) with Im ¢ sufficiently large and satisfying
the functional equations

at+b z & amites?
, — d witcz=[(ct+d) 7).
X(cr—l—d cr-l—d) (ct+d)"e x(t,2)

X(T,Z + AT+ ,LL) — (—1)2t(A+M)€_2nitO‘2‘[+2AZ)X(‘L’, Z)

for all elementqd (* %), 0] and[(}9). (a,b)] in I'. The algebra of Jacobi forms
is the bigraded algebrd = @ J; x. and the algebra of Jacobi forms of index
zero is the subalgebrd) = @y Jor C J.

For appropriaté a Jacobi form can be expanded in (Fourier) serieg i, with
[ depending or”. We shall need below the real analytic functions
-z 1
Az D)= "= and u(r) = ——. (2-1)
T—7T T—7T
They have the transformation properties

z at+b )
A(cr%—d’cr—l—d) =(ct+d)A(z,1)—2icz, (2-2)
Az+mt+n,1) =Mz, 1)+ m,
w(Cby b ) —2icer + ). (2-3)

ct+d
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DEFINITION 2.2. AnAlmost meromorphic Jacobi forof weightk, index zero
and depth(s, ) is a (real) meromorphic function i6{g'/!, z}[z~", A, u], with
A, i given by (2-1), which

(a) satisfies the functional equations (2.1) of Jacobi favfwgeightk and index
zero, and
(b) which has degree at masitn A and at most in w.

DEFINITION 2.3. A quasi-Jacobi forms a constant term of an almost mero-
morphic Jacobi form of index zero considered as a polynoimitiie functions
A, u; in other words, a meromorphic functiofy on H x C such that there
exist meromorphic functiong; ; such that eachfy + " f;,;A'/ is an almost
meromorphic Jacobi form.

From the algebraic independenceXqafu over the field of meromorphic func-
tions ing, z one deduces:

PROPOSITION2.4. F is a quasi-Jacobi of deptfy, 7) if and only if

o+ ()= S s nea () (25)

ct+d’ ct+d ct+d/ \ct+d
=<t

S z4ar+b) =) Ti(f)(z.2)d".
i<s

We turn to some basic examples of quasi-Jacobi forms.

DEFINITION 2.5 [51]. Consider the sequence of functiongibir C given by

1

Een= Y L
@by (z4+at+b)

(These series were used in [24] under the name twisted EsSerreries.)

The seriesE, (z, t) converges absolutely far> 3 and forn = 1, 2 defined via
“Eisenstein summation” as

a=A b=B
ZJ%:M doodim > (),
A—00 a——4 B—oo o

though we shall omit the subscript The seriesZ;(z, 1) is related to the Weier-
strass function as follows:
1 1

1
p.1)=—5+ Z 2 2
z @Byer (z4+at+b) (at+b)
(a,b)#0

1
:&@ﬂ—ﬂ“&@ﬂ—;)
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Moreover,
1 1
z—0 z @Bz (at +b)
(a,b)#0

is the Eisenstein series, in the notation of [51]. The algairfunctions ofH
generated by the Eisenstein sekgér) for n > 2 is the algebra of quasimodular
forms for SL, (Z) [55; 57].

Now we describe the algebra of quasi-Jacobi forms for theb]agroupl“lJ.

PROPOSITION2.6. The functionsE, are weak meromorphic Jacobi forms of
index zero and weight for n > 3. E is a quasi-Jacobi form of indekweight

1 and depth(1,0). E, — e, is a weak Jacobi form of index zero and weight
and E, is a quasi-Jacobi form of weigl®, index zero and dept{0, 1).

PrROOF The first part follows from the absolute convergence of #rges (2.5)
for n > 3. We have the transformation formulas

: A N mic ]
El(ar+bct+d, cHd) (ct+d)Ey(r.2) + 0%z, (2-4)
Ei(t,z+mt+n) = E{(t,z) —27im, (2-5)

b .
E2<?:Id,crid)=(cr+d)2E2(t,z)—%mc(cr+d), (2-6)

Ey(t,z4+at+b) = Ey(1,2). (2-7)

Equalities (2-4) and (2-6) follow fronk (r,z) = 1/z — Y es (1)z2k~! and
Ex(t,2) =1/224+Y 1 (2k —1)ex 2242, respectively; see [51, Chapter 3, (10)].
Equality (2-7) is immediate form the definition of Eisenatsummation, while
(2-5) follows from [51]. a

REMARK 2.7. The Eisenstein serieg(t), for k > 4, belong to the algebra of
quasi-Jacobi forms. Indeed, from [51, Chapter IV, (7), [8B) has

Ey=(Ey—ey)® —5eq; Ej = (Ey—ey)* —15e4(E; —e3) —35eq.

PrROPOSITION2.8. The algebra of Jacobi formgor FIJ) of index zero and
weightr > 2 is generated by, —¢,, E3, E4.

A short way to show this is to notice that the ring of such Jaémtms is iso-
morphic to the ring of cobordisms of SU-manifolds modulo fi¢Section 1A)
via an isomorphism sending a complex manifaicof dimensiond to E/[(X) -
(0'(0)/6(z))?. This ring of cobordisms in turn is isomorphic &fx; ., x2, x3],
wherex; is the cobordism class of a K3 surface and x; are the cobordism
classes of certain four- and six-manifolds [48]. The gradiggbraC[E,—e,,
E5, E4] is isomorphic to the same ring of polynomials (Examples Rab the
claim follows.
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PROPOSITION2.9. The algebra of quasi-Jacobi forms is the algebra of func-
tions onH x C generated by the functions, (z, t) ande; (7).

PrRoOOF The coefficient of*® for an almost meromorphic Jacobi forA(z, z) =

> i<, fir! of depth(s, 0) is a holomorphic Jacobi form of index zero and weight
k —s; thus, by the previous proposition, it is a polynomialfn —¢,, E3, ....
Moreover fo — E7 fs is a quasi-Jacobi form of index zero and weight at most
s—1. Hence, by induction, the ring of quasi-Jacobi forms of inzero and depth
(%, 0) can be identified withC[E, E,—e;, E5,...]. Similarly, the coefficient

! of an almost meromorphic Jacobi forfi= ng ( Zﬁ’j)\.i)ﬂj is an almost
meromorphic Jacobi form of depth, 0), and F — (3, /)i. sA’) EX has depth
(s',¢") with ¢ < ¢t. The claim follows. O

Here is an alternative description of the algebra of quasebi forms:

PrROPOSITION2.10. The algebra of functions generated by the coefficients of
the Taylor expansion iw of the function

B +00) (1 1\ =
9(x)0() _(§+2)_ZF’X

i>1
is the algebra of quasi-Jacobi forms 8L, (7).

PROOF From [45] we have the transformation formulas

at+b 4 el 1/2 micz?/(ct+d)
e(cr+d,a+d) = (et +d)'%e 0(z, 2),

(at+b _ 3/2p7
9(Ct+d,0)—§(cr—l—d) 0'(z,0),

9(1,’ z4+mr+ I’l) — (_1)m+ne—2nimz—nim2r9(t’ Z).
They imply that the function

_ x0(x +2)0'(0)
@(X,Z,T)—W (2'8)

satisfies the functional equations

at+b X z 2rwiczx/(ct+d)
b b = ¢ 9 b 9
ct+d ct+d cr—i—a’) ¢ (.2, 7) (2-9)
D(x,z4+mr+n,7) =M P(x, 2, 7).

&(

In particular, in the expansion

2log @ .
% =3 Hixl, (2-10)
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the left-hand side is invariant under the transformation@i9) and the coeffi-
cient H; is a Jacobi form of weight and index zero for any. Moreover the
coefficientsF; in ®(x,z,7) =1+ F;(z, )x! are polynomials inF; and the
H;. What remains to show is that the; determineF; and theH;, fori > 1,
and vice versa.

Recall thatE; has index zero (is invariant with respect to shifts) and Wwiig
We shall use the expressions

B(x,z,7) = = jz exp( 3 E(Xk +2%—(x +z)k)Gk(r)), (2-11)

!
k>0 k!
where o
B _
Gr(®) =~ -+ D@ N (2-12)
I=1d|l
see [56]. On the other hand, from [51, IIl.7 (10)] we have
En(z.1) = 4 (—1)" i (Zm‘l))e Jam=n (2-13)
n ) Zn o I’l—] 2m )
m=n

where

L 1\ 202wy /—1)k o

see [51, lll.7] and [55, p. 220]. We have

d?log®(x,z, 1)
dx?
—1)iixi1 2 , .
=D (Z)z—:c t2 (i-2)! (X = (x+2"7?)Gi(D). (2-15)

i=1 i=2

Now, using (2-14) and identities with binomial coefficienige obtain for the
coefficient ofx/~2 for / > 2 in the Laurent expansion the value

/— .
1-la-1 5 2 (Z_z)zi_lGi(r)

z! i>2 i>l(i_—2)! /=2
_ (=pita-n 1 =2\ i
== - g m(z — 1)(1_2)2 e;

i>1

_EDTD L iy 2 YT
_ 5 ( 1)(27[\/—_1)12(1_1)61(27(\/—_1) (2-16)

i>2
i>l
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This yields
Hj_,Q2rv—-1z,7)= (—1)1_1(1_71)@1 —ep),
Qrv/-1)!
and the claim follows since formula (15) in [56] yields
1 zZr 1 1 z "
Fiz,t)=-=2Y Grpj—=-——" ¢, —— ). (217
1.0 z g Tz (2n«/—1)r§)r(2n\/—1) ( )
that is,
1
FiQuiv—-1z,7) = E(z, 7T O
@riV=lz.0) = = E1(.7)

REMARK 2.11. The algebra of quasi-Jacobi forfd,, £, E,, ...] is closed
under differentiation with respect toandd,. Indeed, one has

E, IE,
27‘[1—=E3—E1E2, —=—E2,

Jat az

OE OE
dmi—2 =3E4—2E Es— E}, —2=-2E;,

dt az

and henceC|..., E;,...] is a D-module, whereD is the ring of differential
operators generated hj/dr and d/dz over the ring of holomorphic Jacobi
group invariant functions o7 x C. As is clear from the discussion, the ring of
Eisenstein serie§]. .., E;, ...] has a natural identification with the ring of real
valued almost meromorphic Jacobi for@gET, E7, E3,...] onH x C having
index zero, where

Im x 1
* e * o _
El_E1+2m|mT, E; E2+Imr' (2-18)
THEOREM 2.12. The algebra of quasi-Jacobi forms of defgth 0), £ > 0, is
isomorphic to the algebra of complex unitary cobordisms ntmélops

In another direction, the depth of quasi-Jacobi forms alone to “measure”
the deviation of the elliptic genus of a non-Calabi—Yau rf@difrom being a
Jacobi form.

THEOREM 2.13. Elliptic genera of manifolds of dimension at masspan the
subspace of forms of deptl, 0) in the algebra of quasi-Jacobi formdf a
complex manifold satisfieé‘ =0 andc{‘_1 £ 0, ! its elliptic genus is a quasi-
Jacobi form of depthis, 0), wheres <k — 1.

I'More generallyk is the smallest among indicésvith c’i € Ann(ca, ..., cdimar); an example of such
a manifold is am-manifold having an—k)-dimensional Calabi-Yau factor.
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PrROOE It follows from the proof of Proposition (2.10) that

d?log @ i—1
:E:_lt—l : —e xl 2’
dx2 >2( ) (27[\/?1)1 ( l l)
which yields
@ — oE1x l‘[ U/ DEDTHE=1)/@rv/ =D (Ei—ei)x’ (2-19)

1

The Hirzebruch characteristic series is

0(z)
d’(%) 6(0)°

compare (1-1). Hence, if(TX) = I1(1 + xi), then

Ell(X)= 0() dile_[ Eqxy (l/i)(—l)i_l(i—l)(Ei—ei)x;;[X]
— 9/(0) e e
ik

)\ ok N 1) = 1)(Es—ex]
=(9/(0)) (1 OVE T /DD =D (Eime ) (2-20)
i,k

where[X] is the fundamental class d&f. In other words, ifc; = 0, the elliptic
class is a polynomial irE; —e; with i > 2, and hence the elliptic genus is a
Jacobi form [36]. Moreover o(f{‘ = 0 the degree of this polynomial is at most
k in E{, and the claim follows. O

EXAMPLE 2.14. Expression (2-20) can be used to get formulas for tiiel
genus of specific examples in terms of Eisenstein séfjged-or example, for a
surface inP3 having degre@ one has

2
(E2(Ad? — 4d + 8)d + (E3 — e2)(Ld* —2)d) (99/((20)))

In particular ford = 1 one obtains

2

(35 -3E-e) (5o )
One can compare this with the double series that is a spexsal af the general
formula for the elliptic genus of toric varieties in [6]. Hleads to a two-variable
version of the identity discussed in [6, Remark 5.9]. In faatiowing [5] one
can define the subalgebra of “toric quasi-Jacobi forms” efdlyebra of quasi-
Jacobi forms, extending the toric quasimodular forms aered in [5]. This
issue will be addressed elsewhere.
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Next we consider one more similarity between meromorphioldeforms and
modular forms: there is a natural noncommutative defownadif the ordinary
product of Jacobi forms similar to the deformation of thedurct modular forms
constructed using Rankin—Cohen brackets [57]. In fact we llae following

Jacobi counterpart of Rankin—Cohen brackets:

PROPOSITION2.15. Let f and g be Jacobi forms of index zero and weights
and/, respectively Then

_ 1 1 :
/.= k(0 f = 5= Erd: f g —1(deg = 5= Er (2. 0)d:¢ ) |
is a Jacobi form of weight 4+ / + 2. More generallylet

1
D=3,—EE182.

Then the Cohen—Kuznetsov selisse [57])

o0

oGz X)=)"

n=0

D"f(z,7)X"
nl(k)n

where(k), =k(k+1)---(k+n—1) is the Pochhammer symbghtisfies

~ (at+b z z X
fD ) s ’ 2
ct+d ct+d ct+d (ct+d)

=(ct+ d)k exp(

o z4+ar+b,X)= fp(t,z, X).

c X
~ . ) 7X )
cr+d2m’)fD(T zX)

In particular, the coefficientf, g,/ (k)n({), of X" in fD (t,z,—X)gp(r,z, X)
is a Jacobi form of weight + / 4 2. It is given explicitly in terms oD’ f and
D7 g by the same formulas as the classical RC brackets

PROOF The main point is that the operatdy — ;- £1 9, has the same devia-
tion from transforming a Jacobi form into anotherogshas on modular forms.
Indeed:

1 at+b z
(9 — %ElaZ)f(ct—i-d’ cr—l—d)

— (kc(cr—l—d)kH F(, )+ ze(ct+d) 1, f(z, 2)+(ct+d)* 2, f(z, 2)
(ct+d)E(z,2) + 2nicz)(cr + d)k+182f>

1
~ 37
1

= (et + d)k“(f(r, 2) =5y fz) +ke(er +d)* f(z, 2).
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Moreover,
1 _ _ L B —oni
(a, - ﬁElaz)f(r, ZHaT+b) = fr+afi— 5 —(Ey=27ia) f;
. 1
= (af — EElaz)f(f, 2).
The rest of the proof runs as in [57]. a

REMARK 2.16. The brackets introduced in Proposition 2.15 are rdiffefrom
the Rankin—Cohen bracket introduced in [13].

3. Real singular varieties

The Ochanine genus of an oriented differentiable manifldan be defined
using the following series with coefficients @[¢] as the Hirzebruch charac-
teristic power series (see [37] and references there):

_ X2 5 (1—¢")? v
00 = Goryy 11 ((1 —re —q"e—X)) -1

n=1

As was mentioned in Section 1B, this genus is a specializaifahe two-
variable elliptic genus (at = %). Evaluation of the Ochanine genus of a mani-
fold using (3-1) and viewing the result as functionwobn the upper half-plane
(Whereq = €*7'7) yields a modular form oy (2) C SL»(Z); see [37].

In this section we discuss elliptic genera for real algebvairieties. It par-
ticular we address Totaro’s proposal [48] that “it shouldpossible to define
Ochanine genus for a large class of compact oriented reglteEnspaces.” In
this direction we have:

THEOREM 3.1 [48]. The quotient ofMSO by the ideal generated by oriented
real flops and complex flofghat is the ideal generated by’ — X, where X’
and X are related by a real or complex flpjs

Z[8,2y,2y%,2y%,

with CPP? corresponding t@ and CP* to 2y + §2. This quotient ring is the the
image ofMSO, under the Ochanine genus

In particular the Ochanine genus of a small resolution ipehdent of its
choice for singular spaces having singularities only alomgsingular strata and
having in normal directions only singularities which arees inR* or C*.

Our goal is to find a wider class of singular real algebraicetess for which
the Ochanine genus of a resolution is independent of theetadithe latter.
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3A. Real singularities. For the remainder of this paper “real algebraic variety”
means aroriented quasiprojective varietylr over R, X(R) is the set of its
R-points with the Euclidean topolog¥c = Xr Xspecr SpecC is the complexi-
fication andX (C) the analytic space of its complex points. We also assume that
dimg X (R) = dim¢ X(C).

DEFINITION 3.2. A real algebraic varietyr as above is calle@-Gorenstein
log-terminal if the analytic spac&(C) is Q-Gorenstein log-terminal.

EXAMPLE 3.3. The affine variety

x%—x%—i—x%—xizo (3-2)
in R* is three-dimensional Gorenstein log-terminal and admitsepant reso-
lution.

Indeed, it is well known that the complexification of the Gms®in singularity
(3-2) admits a small (and hence crepant) resolution ha®inas its exceptional
set.

EXAMPLE 3.4. The three-dimensional complex conelf given by + z3 +
z§+zf =0 considered as a codimension-two subvarieti bfs aQ-Gorenstein
log-terminal variety oveR and its complexification admits a crepant resolution

Indeed, this codimension-two subvariety is a real analsgiace which is the
intersection of two quadrics iR® given by

a%+a§+a§+aﬁ—bf—b§—b§—bi =0=a1by +azby+azbs+asbs, (3-3)

wherea; = Rez;, b; = Imz;. The complexification is the cone over complete
intersection of two quadrics if?’. Moreover, the defining equations of this
complete intersection become, after the change of codeting=a; + v —15;,

yi =ai—~—1b;,
xP4xiai4xl=0 and yi+yi+pI4pi=0.  (3-4)

The singular locus is the union of two disjoint two-dimemgibquadrics and the
singularity along each igl; (i.e., the intersection of the transversal to itFih
has and; singularity). To resolve (3-3), one can blow Gp at the origin, which
results in aC-fibration over the complete intersection (3-4). It can bsoheed
by small resolutions along two nonsingular components ®fthgular locus of
(3-4). A direct calculation (considering, for example, thider of the pole of the
form dx, Adxs Adxg Adyy A dyg Adyq/(x1y1) along the intersection of the
exceptional locus of the blow-up® of C® with the proper preimage of (3-4) in
C8) shows that we have a log-terminal resolution of the Gomngtingularity
which is the complexification of (3-3).
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3B. The elliptic genus of resolutions of real varieties withQ-Gorenstein
log-terminal singularities. Let X be a real algebraic manifold and 1& =

> ay Dy, with eachay in Q, be a divisor on the complexificatiofc of X
(i.e., the Dy are irreducible components @). Let x; denote the Chern roots
of the tangent bundle of ¢ and denote by/; the classes corresponding £,
(Section 1).

DEFINITION 3.5. LetX be a real algebraic manifold and a divisor on the
complexificationX¢ of X. The Ochanine clas8LL (X, D) of the pair(X, D)
is the specialization

ELL(Xc.D.q.z=1)
of the two-variable elliptic class of the paii.L(Xc, D, g, z) given by
d
(1—[ (20)0 (31 —XZ[)‘)'(O)) « (1—[ 9(3—;’% — (o + 1)2)9(_2))- (3-5)
;o 000(55) O — 2)0(—(ax + 1)2)

27i
The Ochanine elliptic genus of the p&iX, D) as above is

Ell(Xz. D) = \JELL(Xc. D.q. }) U X®)IX(©)l.  (36)

Here+/ELL denotes the class corresponding to the unique series wittanat
term 1 and havingLL as its square.

The class of pairs above is the class (1-3) considered in ibefirl.4 in the
case where grougy is trivial. One can define an orbifold version of this class
as well, specializing (1-3) to = % See [8] for further discussion of the class
ELL(X, D).

The relation with Ochanine’s definition is as follows:Z¥is the trivial divisor
on X¢, the result coincides with the genus [43]. More precisely:

LEMMA 3.6. Let X be a real algebraic manifold with nonsingular complexifi-
cation X¢. Then

Ell(Xg) = /ELL(Tx(c)) U (X (R)[X(C)].

PrROOFE Indeed, we have
0— Txyw) = Tx@©)lx® = Txw) — 0, (3-7)

with the identification of the normal bundle f&z with its tangent bundle given
by multiplication by~/—1. HenceSLL(Xg)? = i*(ELLXc), wherei : Xg —
Xc is the canonical embedding. Now the lemma follows from thenitica-
tion of the characteristic series (3-1) and specializatica % of the series in
(1-1) (see [6]) and the identification which is just a defuonitiof the class ¢} €
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HAm=Y—dM: 7 of a submanifoldZ of a manifoldY: ¢l Ua[Y]=i*(a)N[Z]
for anya € H9™= Z(Y). Indeed, we have

Ell(Xg) = ELL(Ty@)[X®)] = \JELL(Tx(c)) |y [ X R)]

= \JELL(Tx(c)) UC(X(R)[X(C)]. O

Our main result in this section is the following:

THEOREM 3.7. Letx : (X, D) — (X, D) be a resolution of singularities of
a real algebraic pair withQ-Gorenstein log-terminal singularities.e., K 3 +
D = n*(Kx + D). Then the elliptic genus of the pai’, D) is independent
of the resolution In particular, if a real algebraic varietyX has a crepant
resolution its elliptic genus is independent of a choice of crepanttggm.

PROOF Indeed for a blowupf : (X, D) — (X, D) we have

fe(VELL(X.D.gq.})) = JELL(X. D.q.}) (3-8)

This is a special case of the push-forward formula (1-4) @otem 1.5, withG
being the trivial group. Hence

ELLo(Xg. D) = \/ELL(Xc, D.q. 1) Ucl(X)[Xc]

= JELL(¥c. D.q. ) U f*(Xa] N[Xc)) = ELL(Xz. D).

as follows from projection formula sincg* (cl[Xz]) = [c| Xz] and sincef is
the identity onHj.

For a crepant resolution one h&is= 0 and hence by Lemma 3.6 the elliptic
genus ofXR is the Ochanine genus of the real manifold, which is its anepa
resolution. O

REMARK 3.8. Examples 3.3 and 3.4 show that singularities admitiingepant
resolution include real three-dimensional cones and @atpof complex three-
dimensional cones.
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