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The weight filtration for real algebraic varieties

CLINT MCCRORY AND ADAM PARUSINSKI

ABSTRACT. Using the work of Guikn and Navarro Aznar we associate to
each real algebraic variety a filtered chain complex, thghtaiomplex, which

is well-defined up to a filtered quasi-isomorphism, and irduon Borel—
Moore homology withZ, coefficients an analog of the weight filtration for
complex algebraic varieties.

The weight complex can be represented by a geometricallyeatéfiltration
on the complex of semialgebraic chains. To show this we défiaeveight
complex for Nash manifolds and, more generally, for arcisyatnic sets, and
we adapt to Nash manifolds the theorem of Mikhalkin that twmpact con-
nected smooth manifolds of the same dimension can be cathégta se-
guence of smooth blowups and blowdowns.

The weight complex is acyclic for smooth blowups and addifwr closed
inclusions. As a corollary we obtain a new construction @f tirtual Betti
numbers, which are additive invariants of real algebraiteti®s, and we show
their invariance by a large class of mappings that includgalar homeomor-
phisms and Nash diffeomorphisms.

The weight filtration of the homology of a real variety wasrdaauced by
Totaro [37]. He used the work of Gudlh and Navarro Aznar [15] to show
the existence of such a filtration, by analogy with Delignsisight filtration
for complex varieties [10] as generalized by Gillet and 8d#]. There is also
earlier unpublished work on the real weight filtration by Modl¥¢icki, and more
recent unpublished work on weight filtrations by Gaiilland Navarro Aznar
[16].

Totaro’s weight filtration for a compact variety is assoethto the spectral
sequence of a cubical hyperresolution. (For an intrododtiocubical hyper-
resolutions of complex varieties see [34], Chapter 5.) Fonglex varieties
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this spectral sequence collapses with rational coeffisjdnit for real varieties,
where it is defined witlZ, coefficients, the spectral sequence does not collapse
in general. We show, again using the work of Ganlland Navarro Aznar, that
the weight spectral sequence is itself a natural invaribatreal variety. There is

a functor that assigns to each real algebraic variety addtehain complex, the
weight complexthat is unique up to filtered quasi-isomorphism, and furgko

for proper regular morphisms. The weight spectral sequéndbe spectral
sequence associated to this filtered complex, and the wélightion is the
corresponding filtration of Borel-Moore homology with cligénts inZ,.

Using the theory of Nash constructible functions we give raependent
construction of a functorial filtration on the complex of dalpebraic chains
in Kurdyka’s category of arc-symmetric sets [19; 21], and shew that the
filtered complex obtained in this way represents the weightplex of a real
algebraic variety. We obtain in particular that the weigbtplex is invariant
under regular rational homeomorphisms of real algebrais isethe sense of
Bochnak, Coste and Roy [5].

The characteristic properties of the weight complex dbschiow it behaves
with respect to generalized blowups (acyclicity) and is@as of open subvari-
eties (additivity). The initial term of the weight spectsaliquence yields additive
invariants for real algebraic varieties, the virtual Battimbers [24]. Thus we
obtain that the virtual Betti numbers are invariants of taghomeomorphisms
of real algebraic sets. For real toric varieties, the wegpdctral sequence is
isomorphic to the toric spectral sequence introduced ba®ikranz, McCrory,
and van Hamel [4].

In Section 1 we prove the existence and uniqueness of thesfilteeight
complex of a real algebraic variety. The weight complex & tinique acyclic
additive extension to all varieties of the functor that gssito a nonsingular pro-
jective variety the complex of semialgebraic chains witad¢anonical filtration.
To apply the extension theorems of Geilland Navarro Aznar [15], we work in
the category of schemes oWy for which one has resolution of singularities, the
Chow—Hironaka Lemma (see [15, (2.1.3)]), and the compeatitin theorem of
Nagata [28]. We obtain the weight complex as a functor of seseand proper
regular morphisms.

In Section 2 we characterize the weight filtration of the sdgebraic chain
complex using resolution of singularities. In Section 3 wigdduce the Nash
constructible filtration of semialgebraic chains, follagiPennaneac’h [32], and
we show that it gives the weight filtration. A key tool is Mikki’s theorem
[26] that any two connected clos&i® manifolds of the same dimension can
be connected by a sequence of blowups and blowdowns. Sectanpresent
several applications to real geometry.
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In Section 5 we show that for a real toric variety the Nash troitible filtra-
tion is the same as the filtration on cellular chains define8ibgnet al. using
toric topology.

1. The homological weight filtration

We begin with a brief discussion of the extension theorem will€ and
Navarro Aznar. Suppose thét is a functor defined for smooth varieties over
a field of characteristic zero. The main theorem of [15] gimesriterion for
the extension o7 to a functorG’ defined for all (possibly singular) varieties.
This criterion is a relation between the value®fon a smooth varietyx” and
the value ofG on the blowup ofX along a smooth center. The extensiGh
satisfies a generalization of this blowup formula for any phism / : X — X
of varieties that is an isomorphism over the complement ob&arietyY of X.

If one requires an even stronger additivity formula & .X) in terms ofG'(Y)
andG’(X \ Y), then one can assume that the original fun¢tas defined only
for smooth projective varieties.

The structure of the target category of the func¥ds important in this theory.
The prototype is the derived category of chain complexes imkeelian category.
That is, the objects are chain complexes, and the set of risonghbetween
two complexes is expanded to include the inverses of gesasikbrphisms (mor-
phisms that induce isomorphisms on homology). @uithnd Navarro introduce
a generalization of the category of chain complexes callddszent category
which has a class of morphisn#s that are analogous to quasi-isomorphisms,
and a functos from diagrams to objects that is analogous to the total cempl
of a diagram of chain complexes.

In our application we consider varieties over the field of reanbers, and
the target category is the derived category of filtered champlexes of vector
spaces oveY.,. Since this category is closely related to the classicagmaty
of chain complexes, it is not hard to check that it is a descategory. Our
starting functorG is rather simple: It assigns to a smooth projective variety
the complex of semialgebraic chains with the canonicakfittn. The blowup
formula follows from a short exact sequence (1-3) for the blagy groups of
a blowup.

Now we turn to a precise statement and proof of Theorem 1.ichaik our
main result.

By areal algebraic varietywe mean a reduced separated scheme of finite
type overR. By acompactvariety we mean a scheme that is complete (proper
overRR). We adopt the following notation of Gulh and Navarro Aznar [15].
Let Sch.(R) be the category of real algebraic varieties and proper aeguor-
phisms,i. e. proper morphisms of schemes. By Reg we denote the subcgategor
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of compact nonsingular varieties, and ¥yR) the category of projective non-
singular varieties. A proper morphism or a compactificatdrvarieties will
always be understood in the scheme-theoretic sense.

In this paper we are interested in the topology of the set alf peints of a
real algebraic variety’. Let X denote the set of real points &f. The set
X, with its sheaf of regular functions, is a real algebraidetgrin the sense of
Bochnak, Coste and Roy [5]. For a varietywe denote byC,(X') the complex
of semialgebraic chains of with coefficients inZ, and closed supports. The
homology ofC,«(X) is the Borel-Moore homology ot with Z, coefficients,
and will be denoted by, (X).

1A. Filtered complexes. Let C be the category of bounded complexe<Zof
vector spaces with increasing bounded filtration,

Such a filtered complex defines a spectral sequéated” }, r =1,2,..., with
F,K F,K

0o _ pHBp+q 1 _ D x

EP,q T F K ’ EPJI - HP+‘1 (F K ) ’
p—18Bp+q p—14%

that converges to the homology &,

Fp(Hp+qK+)

Fp (Hp+qKx) ’

where F,(H, K+) = ImaggH, (F, K«) — H,(Ky)]; see [22, Thm. 3.1]. A

quasi-isomorphisnn C is a filtered quasi-isomorphism, that is, a morphism of

filtered complexes that induces an isomorphism/h Thus a quasi-isomo-

phism induces an isomorphism of the associated spectraésegs.

Following (1.5.1) in [15], we denote by Hbthe categoryC localized with

respect to filtered quasi-isomorphisms.
Every bounded compleX . has acanonical filtration[8] given by

0o _
Ep,q -

Ky if g >—p,
FA'Ky = {keraq if g =—p,
0 if g<—p.
We have
£l o—n FlgaﬂK* _ {Hp+q(K*) if p+qg=-—p, (1-1)
pa TP\ FAn K, 0 otherwise.

Thus a quasi-isomorphism of complexes induces a filteredigs@morphism
of complexes with canonical filtration.

To certain types of diagrams ¢hwe can associate an elementothesimple
filtered complexf the given diagram. We use notation from [15]. koe 0 let
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0;" be the partially ordered set of subsets{0f1,...,n}. A cubical diagram

of type ;" in a categoryX is a contravariant functor frof;" to X. If K is a
cubical diagram ir€ of typeJ;}, let K, s be the complex labeled by the subset
S c{0,1,...n}, and let|S| denote the number of elements ®f The simple
complex sk is defined by

S/Ck = @ IC,"S

i+|S|-1=k

with differentialsd : sK; — sKj;_; defined as follows. For eachi let 0’ :
K; s — K;_i,s be the differential ofK 5. If T C S and|T| = |S|—1, let
or,s : K«,s — K, 1 be the chain map corresponding to the inclusiorfah
S. faeK;g,let

3"(a) =) dr.5(a),

where the sum is over alll ¢ S such thai7T'| = |S|—1, and
da) =3 (a) + 3" (a).

The filtration of SK is given by F, SK = SF,K,

(FpsKie= P Fpo(Kis).
i+|S|—-1=k

The simple complex functos is defined for cubical diagrams in the category
C, but not for diagrams in the derived category Hasince a diagram in HG
does not necessarily correspond to a diagrarfi. itHowever, for eacth > 0,
the functor s is defined on the derived category of cubical diagrams of type
O;F. (A quasi-isomorphism in the category of cubical diagrarhsype O;
is a morphism of diagrams that is a quasi-isomorphism on eagtct in the
diagram.)

To address this technical problem, Gaiilland Navarro Aznar introduce the
@-rectificationof a functor with values in a derived category [15, (1.6)].endn
@ is the category of finite orderable diagrams [15, (1.1.2)[gA)rectification
of a functorG with values in a derived category l4ads an extension ofr to a
functor of diagrams, with values in the derived categoryiafjthms, satisfying
certain naturality properties [15, (1.6.5)]. A factoripat of G through the cat-
egoryC determines a canonical rectification @f One says that is rectified
if a rectification ofG is given.
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1B. The weight complex. To state the next theorem, we only need to consider
diagrams in of typE;r or typeD;f. The inclusion of a closed subvarietyc X

is aDaL-diagram inSch. (R). An acyclic squard[15], (2.1.1)) is a];“-diagram

in Sch.(R),

Y —— X

l Jn (1-2)

Y —— X
wherei is the inclusion of a closed subvariet§,= 7 ~!(Y), and the restriction
of 7 is an isomorphismX \ ¥ — X \ Y. An elementary acyclic squatie an
acyclic square such that is compact and nonsinguldr, is nonsingular, ane
is the blowup ofX alongY.
For a real algebraic variety, let F°@"C, (X)) denote the comple&, (X) of
semialgebraic chains with the canonical filtration.

THEOREM1.1. The functor
FC, :V(R) — HoC

that associates to a nonsingular projective varidty the semialgebraic chain
complex ofM with canonical filtration admits an extension to a functofided
for all real algebraic varieties and proper regular morphis

WC : Sch.(R) — HoC,

such thatWC . is rectified and has the following properties

(i) Acyclicity. For an acyclic squarg1-2) the simple filtered complex of the
diagram

WC(Y) ——> WC(X)

l l

WC(Y) —— WC(X)

is acyclic(quasi-isomorphic to the zero comp)ex
(i) Additivity. For a closed inclusiory’ C X, the simple filtered complex of the
diagram

WC(Y) > WC«(X)
is naturally quasi-isomorphic t?'WC (X \ Y).

Such a functoWWC  is unique up to a unique quasi-isomorphism
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PrRoOOF This theorem follows from [15], Theorelf2.2.2)°". By Proposition
(1.7.5)°P of [15], the category, with the class of quasi-isomorphisms and the
operation of simple complex defined above, is a category of homological
descent. Since it factors through the functor F°@"C, is @-rectified ([15],
(1.6.5), (1.1.2)). Clearly¥“@"C, is additive for disjoint unions (condition (F1)
of [15]). It remains to check condition (F2) fadr®@"C,, that the simple filtered
complex associated to an elementary acyclic square isiecycl

Consider the elementary acyclic square (1-2). Kdie the simple complex
associated to thf-diagram

FOC,(Y) —— FC,(X)

| |

Fca%*(y) - FcanC* (X)
By definition of the canonical filtration, for eaghwe have
(FpSK)i/(Fp_1 SK)x #0 onlyfor —p+2>k>—p—1,

and the complexE, . d°) has the form

%2

(FpSK)—pt+2 _  (FpSK)—p+
(Fp—18K)—p+2  (Fp—1SK)—p+1
(FpSK)-p _ (FpSK)—poi
(Fp—18K)—p (Fp—18K)-p—1

0—

— 0.

A computation gives
H_py2(Ep ) =0,
H_p11(ED,) = KellH_p(V) = H_p(Y) & H_p(X)],
H_p(ES ) =
KellH-p(Y) @ H-p(X) > H_p(X)]/IM[H_,(Y) > H-p(Y) & H_p(X)],
H_p((Ep,) = H-p(X)/IM[H_,(Y) & H_p(X) > H_p(X)].

These groups are zero because fokalle have the short exact sequence of an
elementary acyclic square,

0— Hy(Y) — Hp(Y) @ Hp(X) — Hi(X) — 0; (1-3)
see [25], proof of Proposition 2.1. O

REMARK 1.2. This above argument shows that the [undfﬁ?” is acyclic on
any acyclic square (1-2), provided the varietiésY, X, Y are nonsingular and
compact.



128 CLINT MCCRORY AND ADAM PARUSNSKI

REMARK 1.3. In Section 3 below, we show that the funclotC ., factors
through the category of filtered chain complexes. This erplavhy WC . is
rectified.

If X is a real algebraic variety, theeight complexof X is the filtered com-
plex WC«(X). A stronger version of the uniquenessdiC . is given by the
following naturality theorem.

THEOREML1.4.LetA, B« :V(R)— C be functors whose localizatioNgR ) —
Ho(C satisfy the disjoint additivity conditiofF1) and the elementary acyclicity
condition (F2) of [15]. If t : A« — B, is a morphism of functorghen the
localization ofr extends uniguely to a morphisrh: WA, — W B.

PROOF This follows from(2.1.5)°P and(2.2.2)°P of [15]. O

Thusift : A«(M) — B«(M) is a quasi-isomorphism for all nonsingular pro-
jective varietiesM , thent’ : WA, (X) — WB«(X) is a quasi-isomorphism for
all varietiesX .

ProPOSITION1.5. For all real algebraic varietiesX’, the homology of the
complexX¥WC,(X) is the Borel-Moore homology &f with Z, coefficients

Hy(WCx(X)) = Hu(X).

PROOFE Let D be the category of bounded complexesZof vector spaces.
The forgetful functolC — D induces a functop : HoC — HoD. To see this,
let 4),, B, be filtered complexes, and let, = ¢(4,) and Bx = ¢(B,). A
quasi-isomorphisny : A, — B, induces an isomorphism of the corresponding
spectral sequences, which implies thfatnduces an isomorphismfy, (A4«) —
H.(Bx); in other wordsf : A« — By is a quasi-isomorphism.

Let Cy : Sch.(R) — HoD be the functor that assigns to every real algebraic
variety X the complex of semialgebraic chai@s(X). ThenC, satisfies prop-
erties (1) and (2) of Theorem 1.1. Acyclicity Gf, for an acyclic square (1-2)
follows from the short exact sequence of chain complexes

0— Cx(Y) = Co(Y) ® Cx(X) = Cx(X) — 0.

The exactness of this sequence follows immediately frondéfimition of semi-
algebraic chains. Similarly, additivity af« for a closed embeddinyf — X
follows from the short exact sequence of chain complexes

0> Cs(Y) > Ck(X) > Cx(X\Y) > 0.

Now consider the functanCy : Sch. (R) —HoC given by Theorem 1.1. The
functorspoWC, andCy : Sch.(R) — HoD are extensions &« : V(R) —HoD,
so by [15] Theoren{2.2.2)°P we have thap VW C« (X)) is quasi-isomorphic to
Ci(X) forall X. ThusH,(WC«(X)) = H«(X), as desired. O
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1C. The weight spectral sequencelf X is a real algebraic variety, theeight
spectral sequencef X, {E",d"},r =1,2,..., is the spectral sequence of the
weight complexVCy (X). Itis well-defined by Theorem 1.1, and it converges to
the homology ofY by Proposition 1.5. The associated filtration of the homplog
of X is theweight filtration

0=W_g—1 Hp(X) CW_ Hp(X) C--- CWoHy(X) = Hi(X),

where Hy (X)) is the homology with closed supports (Borel-Moore homojogy
with coefficients inZ,. (We show thatV_;_ Hi(X) = 0 in Corollary 1.10.)
The dual weight filtration on cohomology with compact suppads discussed
in [25].

REMARK 1.6. We do not know the relation of the weight filtration of alre
algebraic varietyX” to Deligne’s weight filtration [10] o« (X¢; Q), the Borel—
Moore homology with rational coefficients of the complexmisiX¢. By anal-
ogy with Deligne’s weight filtration, there should also be aight filtration
on the homology ofY with classical compact supports and coefficient& in
(dual to cohomology with closed supports). We plan to stdudy filtration in
subsequent work.

The weight spectral sequeng®  is a second quadrant spectral sequence. (We
will show in Corollary 1.10 that ifEll,,q #0then(p, q) liesin the closed triangle
with vertices(0, 0), (0,d), (—d, 2d), whered = dim X.) The reindexing

/

p'=2p+q ¢ =-p r'=r+1

gives a standard first quadrant spectral sequence, with

Ep g = Elq@p/+2q"
(If E;,’q, # 0 then(p’, ¢’) lies in the closed triangle with verticgs, 0), (d, 0),
(0,d), whered = dim X.) Note that the total grading is preserved:+ ¢’ =
pP+q.

The virtual Betti numbers [25] are the Euler charactersst€ the rows of
E?, thatis,

Ba(X) = (=1)? dimg, E} . (1-4)
D

To prove this assertion we will show that the numbgy6X') defined by (1-4) are
additive and equal to the classical Betti numbersfarompact and nonsingular.
For eachy > 0 consider the chain complex defined by theh row of the E'!

term,

Cu(X.q)=(EL,.d},).
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whered} ,: E} , — E;}_l’ . This chain complex is well-defined up to quasi-
isomorphism, and its Euler characteristigfig( X ).

The additivity of WC, implies that if Y is a closed subvariety ok’ then
the chain complexXC, (X \ Y, g) is quasi-isomorphic to the mapping cone of the
chain mapCx«(Y,q) — C«(X,¢), and hence there is a long exact sequence of
homology groups

o> E2 (V) > ER (X) > E} (X\Y)—>E2_| (Y)---.

p—1ly4q
Therefore for eacly we have

Bg(X) = Bg(X\Y) + Bg(Y).
This is the additivity property of the virtual Betti numbers

REMARK 1.7. Navarro Aznar pointed out to us that (X, ¢) is actually well-
defined up to chain homotopy equivalence. One merely apfl§s Theorem
(2.2.2)°P, to the functor that assigns to a nonsingular projectivéetiail/ the
chain complex
H,(M) ifk=0,

Ck(M.q) = {oq b k #0,
in the category of bounded complexesZf vector spaces localized with re-
spect to chain homotopy equivalences. This striking appbta of the theorem
of Guillen and Navarro Aznar led to our proof of the existence of thighte
complex.

We say the weight complex isure if the reindexed weight spectral sequence
hasElz,,q = 0 for p # 0. In this case the numbefs; (X) equal the classical
Betti numbers ofX .

PrRoOPOSITIONL.8. If X is a compact honsingular varietshe weight complex
WC «(X) is pure In other wordsif k # —p then

WpCa(X) \ _
H(m) =0

PrROOF For X projective and nonsingular, the filtered complxC . (X) is
quasi-isomorphic t@’x (X)) with the canonical filtration. The inclusion(R) —
Reg has the extension property in (2.1.10) of [15]; the pi®afmilar to that in
(2.1.11) of the same reference. Therefore by Thedeins)°P[15], the functor
FC, :V(R) — HoC extends to a functor Reg HoC that is additive for dis-
joint unions and acyclic, and this extension is unique upuasitisomorphism.
But F°@C, : Reg— HoC is such an extension, sinde“@"Cy is additive for
disjoint unions in Reg and acyclic for acyclic squares in Ré€gompare the
proof of Theorem 1.1 and Remark 1.2.) d
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If X is compact, we will show that the reindexed weight specEqunceEl’,’q
is isomorphic to the spectral sequence aubical hyperresolutiorof X [15].
(The definition of cubical hyperresolution given in Chagaf [34] is too weak
for our purposes; see Example 1.12 below.)

A cubical hyperresolution ok is a special type ofJ;"-diagram with final
object X and all other objects compact and nonsingular. Remoxingjves a
O,-diagram, which is the same thing aa\a-diagram,.e. a diagram labeled by
the simplices contained in the standardimplex A ,. (Subsets of0, 1, ..., n}
of cardinalityi + 1 correspond ta-simplices.)

The spectral sequence of a cubical hyperresolution is thetis sequence
of the filtered compleXCy. F), with C = @, , j—; C; XD, wherex @ is the
disjoint union of the objects labeled liysimplices ofA,,, and the filtrationF
is by skeletons,

FpCr =P Cri X @

i<p

The resulting first quadrant spectral sequeﬁggl converges to the homology
of X', and the associated filtration is the weight filtration defibg Totaro [37].
Let 9 = 0’ 4 9" be the boundary operator of the compl€x, whered’ :
CjX® — C;x 1 is the simplicial boundary operator, anl : C; X @ —
Cj_lX(") is (—1)! times the boundary operator on semialgebraic chains.

PROPOSITIONL.9. If X is a compact varietythe weight spectral sequenéeof
X is isomorphic to the spectral sequenEeof a cubical hyperresolution oY':

r o~ pr+l
Epsq = E2p+q,—p'

ThusElr,’q ~ Elr,,q, the reindexed weight spectral sequence introduced above

PrRoOOF The acyclicity property of the weight complex — conditidy) 6f The-
orem 1.1 —implies tha¥V'C . is acyclic for cubical hyperresolutions (see [15],
proof of Theorem (2.1.5)). In other words, if the funciétC. is applied to a
cubical hyperresolution of’, the resultingJ;f -diagram inC is acyclic. This
says thatVC (X)) is filtered quasi-isomorphic to the total filtered complex of
the double complexVC; ; = WC; X . Since the varietiex ) are compact
and nonsingular, this filtered complex is quasi-isomorpbithe total complex
Cr = @B j—x C; XD with the canonical filtration,

FEC =Kerd” yo @ ¢jx*7),
j>=p
Thus the spectral sequence of this filtered complex is thghweipectral se-

.
quencek, .
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We now compare the two increasing filtratiof§2" and # on the complex
Cx. The weight spectral sequenékis associated to the filtratioA“", and the
cubical hyperresolution spectral sequelﬁbis associated to the filtratioh. We
show thatF@ = Dec(F'), theDeligne shiftof £'; for this notion see [8, (1.3.3)]
or [34, A.49].

Let F” be the filtration

FyCo=2,,_,=Kelld: F,Cp - Cy_y/ Fp1 Cpi]
and £’ the associated spectral sequence. By definition of the Bekift,
ﬁ;/;ck = Decﬁp_ka.
Now sinced = 9’ + 9" it follows that
F,Cy = F[f""_’}c Ck,
and Flfa_’}(Ck = F%Cy, wherep + ¢ = k. Thus we can identify the spectral
sequences

e+
(ENpg = EL forr > 1.

On the other hand, the inclusiafi,Cy — F,Cy induces an isomorphism of
spectral sequences
CINEF - o~ F
(E)pg=E,, forr=2. d

COROLLARY 1.10. Let X be a real algebraic variety of dimensiah with
weight spectral sequendg and weight filtrationV. For all p,q,r,if E}, , # 0
thenp <0and—2p <¢q <d — p. Thus for allk we haveW_;_ H;(X) =0.

PrROOF For X compact this follows from Proposition 1.9 and the fact that
E;,q #£ 0 impliesp >0 and0 < g <d — p. If U is a noncompact variety, lét

be a real algebraic compactification@f and letY = X \ U. We can assume
that dimY < d. The corollary now follows from the additivity property dig
weight complex (condition (2) of Theorem 1.1). g

ExampPLE 1.11. If X is a compact divisor with normal crossings in a nonsin-
gular variety, a cubical hyperresolution &f is given by the decomposition of
X into irreducible components. (The corresponding simalidiagram asso-
ciates to an-simplex the disjoint union of the intersectionsiof- 1 distinct
irreducible components oY.) The spectral sequence of such a cubical hyper-
resolution is the Mayer-Vietoris (cﬂ?ech) spectral sequence associated to the
decomposition. Example 3.3 of [25] is an algebraic surf&ce affine 3-space
such thatX is the union of three compact nonsingular surfaces with abrm
crossings and the weight spectral sequenc¥ dbes not collapseE? # E°.

The varietyU = R®\ X is an example of a nonsingular noncompact variety
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with noncollapsing weight spectral sequence. (The adgitiroperty (2) of
Theorem 1.1 can be used to compute the spectral sequetg of

ExAMPLE 1.12. For a compact complex variety the Deligne weight filhra
can be computed from the skeletal filtration of a simplicrabsth resolution of
cohomological descergsee [9, (5.3)] or [34, (5.1.3)]). In particular, a rational
homology classx has maximal weight if and only i is in the image of the
homology of the zero-skeleton of the resolution.

The following example shows that for real varieties the coblmgical de-
scent condition on a resolution is too weak to recover thehidiltration.

We construct a simplicial smooth varielt — X of cohomological descent
such thatX is compact and the weight filtration df does not correspond to
the skeletal filtration ofY,. Let X = X, = S!, the unit circle in the complex
plane, and letf : X, — X be the double cover'(z) = z2. Let X, be the
Gabrielov—Vorobjov—Zell resolution associated to the nfajl3] . Thus

Xn = Xoxx Xoxx---(n+1)---xx Xo,

a compact smooth variety of dimension 1. This resolutiorf isoomological
descent since the fibers of the geometric realizatiy — X are contractible
(see [13] or [34, (5.1.3)]).

Leta € H{(X) be the nonzero elemer# { coefficients). Now e W_1 H(X)
since X is compact and nonsingular. Therefore, for every cubicpkimesolu-
tion of X, « lies in the image of the homology of the zero-skeletbe,, (the
filtration of o with respect to the spectral sequeri??és 0). But the filtration of
a with respect to the skeletons of the resolutién— X is greater than 0 since
a ¢ Im[f« : Hi(Xo) — H;(X)]. In facta has filtration 1 with respect to the
skeletons of this resolution.

2. A geometric filtration

We define a functor

GCy :Sch.(R) = C
that assigns to each real algebraic varigtythe complexCy (X)) of semialge-
braic chains ofX" (with coefficients inZ, and closed supports), together with a
filtration
0=0 4-1Ck(X) CG_,Ci(X) CGg+1Ck(X)

C-- CGCr(X) = Ce(X). (2-1)

We prove in Theorem 2.8 that the funct@C, realizes the weight complex

functor WCy : Sch.(R) — HoC given by Theorem 1.1. Thus the filtratigf.
of chains gives the weight filtration of homology.
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2A. Definition of the filtration G.. The filtration will first be defined for com-
pact varieties. Recall that denotes the set of real points of the real algebraic
variety X

THEOREM 2.1. There exists a unique filtratiof2-1) on semialgebraiZ,-
chains of compact real algebraic varieties with the follogiproperties Let
X be a compact real algebraic variety and te€ Ci.(X). Then

(1) If Y C X is an algebraic subvariety such th8uppc C Y, then
c€GpCr(X) <= ceG,Cr(Y).

(2) LetdimX =k and letr : )?~—> X be aresolution off” such that there is a
normal crossing divisol> C X with Suppd(z~!'c) c D. Then forp > —k,

c€GyCr(X) <= 3 'c)eG,Cr_1(D).

We call a resolutionr : X — X adaptedto ¢ € C(X) if it satisfies condition
(2) above. For the definition of the support Supgnd the pullbackr !¢ see
the Appendix.

PrROOF We proceed by induction oh. If £k = 0 then0 = G_1Cy(X) C
GoCo(X) = Co(X). In the rest of this subsection we assume the existence
and uniqueness of the filtration for chains of dimensioh, and we prove the
statement for chains of dimensién

LEMMA 2.2. Let X = |Ji_, X; where X; are subvarieties oft. Then for
m<k,

c€GpCu(X) <= clx; € GpCu(X;) forall i.

PROOF By (1) we may assume that dish = m and then that alk; are distinct
of dimensionm. Thus an adapted resolution &f is a collection of adapted
resolutions of each component &f. O

See the Appendix for the definition of the restrictig;, .

PROPOSITION2.3. The filtrationG, given by Theorer2.1is functoriat that
is, for a regular morphismf : X — Y of compact real algebraic varieties
J+(GpCn(X)) C G,Cp(Y), form < k.

PROOF We prove that if the filtration satisfies the statement ofdrben 2.1 for
chains of dimensior: k& and is functorial on chains of dimensienk — 1 then
it is functorial on chains of dimensioh— 1.

Letc e Cp_1(X),and letf : X — Y be a regular morphism of compact real
algebraic varieties. By (1) of Theorem 2.1 we may assumeXimdimY =
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k —1 and by Lemma 2.2 thaY andY are irreducible. We may assume that
is dominant; otherwisg’,c = 0. Then there exists a commutative diagram

X’L)Y

nxl lny

f

X — Y

wherery is a resolution ofY” adapted ta andy a resolution ofY’ adapted
to fxc. Then

ceGp(X) < Wry'e)eGp(X) = fudmg'c) €Gp(Y),
fed(my'e) =0 fulmy' ) = 3y fuo),
Ay fxe) €Gp(Y) = fuc €Gp(Y),
where the implication in the first line follows from the indive assumption]
COROLLARY 2.4. The boundary operata¥ preserves the filtratiod, :
0G,Cn (X)) CGpCrp—1(X) form <k.

PROOF Letr : X — X be aresolution off adapted ta. Leté = 7 ~!c. Then
¢ = 1« and

ceGy = 0C€f, = 0c=0m =m4dC €Gp. O

Letc € Ci.(X), dimX = k. In order to show that condition (2) of Theorem 2.1
is independent of the choice afwe need the following lemma.

LEMMA 2.5.Let X be a nonsingular compact real algebraic variety of dimen-
sionk and let D C X be a normal crossing divisorLet ¢ € Ci(X) satisfy
Suppdc C D. Letr : X — X be the blowup of a nonsingular subvarietyc X
that has normal crossings witR. Then

dc € GpCr_1(X) < 3@ 1 (c)) € GpCr_1(X).

PROOF. Let D = 7z~ '(D). ThenD = E U|J D;, whereE = 7~ 1(C) is the
exceptional divisor and; denotes the strict transform &f;. By Lemma 2.2,

dc € GpCr_1(X) <= dc|p,€GpCr_y(D;) forall i.

Letd;c = dc|p,. The restrictionr; = |f),~ : D; — D; is the blowup with smooth
centerC N D;. Hence, by the inductive assumption,

3(dic) € GpCr—a(Di) < 0m; ' (dic) = 3(3(7T_1(C))|[)I.) € GpCr—r(Dy)
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By the inductive assumption of Theorem 2.1,
0(0ic) € GpCr—2(D;) <= 0ic € G,Cr_1(D;),

and we have similar properties fatx~!(c))| 5. andd(z ' (¢))| .
Thus, to complete the proof it suffices to show thak(d (7w~ 1(c))|D ) lies in
GpCr— ,(D;) for all i, thena(a(n_l(c))|E) € GpCr—»(E). This follows from

0= 307" () = (X d " ()l p, + " (©)lE)- O

Letn; : X; — X, i = 1,2, be two resolutions off” adapted ta. Then there
existso : X; — X;, the composition of finitely many blowups with smooth
centers that have normal crossings with the strict transdaof all exceptional
divisors, such that o o factors throughX>,

A;IL)Xl

ol |m

T2
X, 25 X

By Lemma 2.5,
A () €GpCror(X1) = 3o (71 (€)) € GpCry (X1).
On the other hand,
pxd(0™ (7€) = pxd (o™ (7' (€))) = 3y ' (e)),
and consequently by Proposition 2.3 we have
Iy () € GpCr1(X1) = d(m; ' (¢) € GpCr_1(X2).

By symmetry,d(r; L(e)) € Gp(X) |mpllesa(7rl_1 (c)) € Gp(X). This completes
the proof of Theorem 2.1. a

2B. Properties of the filtration G.. Let U be a (not necessarily compact) real
algebraic variety and leY be a real algebraic compactificationi@f We extend
the filtrationG, to U as follows. Ifc € C«(U), letc € C«(X) be its closure. We
define

ceG,Cr(U) = ceGyCr(X).
See the Appendix for the definition of the closure of a chain.

PROPOSITION2.6. G, Cy (U) is well-definedthat is for two compactifications
X7 and X, of U, we have

c1 €GpCr(X1) = 2 €GpCr(Xr),

wherec; denotes the closure ofin X;,i =1, 2.
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PROOF We may assume that = dimU. By a standard argument, any two
compactifications can be dominated by a third one. Indeathtdehe inclusions
byi; : U — X;. Then the Zariski closur&” of the image of(i1, i) in X1 x X,

is a compactification ot/ .

Thus we may assume that there is a morphfsnk, — X; that is the identity
onU. Then, by functorialityc, € G, Cx (X3) impliesc; = fi(c2) € GpCr (X1).
By the Chow—Hironaka lemma there is a resolution: X; — X, adapted to
c1, that factors througly: m; = f o g. Thenc; € G,Ci (X)) is equivalent to
m7 1 (e1) € GpCr(X1); but this implies that, = g« (771 (c1)) € G,Ck(X2), as
needed. O

THEOREM2.7. The filtrationgG, defines a functogC : Sch.(R) — C with the
following properties

(1) For an acyclic squaré€l1-2)the following sequences are exact
0= GpCr(Y) = GpCr(Y) @ GpCr(X) = GpCr(X) — 0,
GG (V) GpCe(Y) . GpCr(X) _ GpCr(X)
Gpo1Ce(Y)  Gp—1Cr(Y) ~ G 1 (X)) Gp—1Ch(X)

(2) For a closed inclusiont” C X, with U = X'\ Y, the following sequences
are exact

— 0.

0—GpCr(Y) = GpCr(X) = GpCr (U) — 0,

ngk(Y) N ngk(X) N ngk(U)
Gp-1C(Y)  Gp1Cr(X)  Gp1Cr(U)

PROOF The exactness of the first sequence of (2) follows directhynfthe
definitions (moreover, this sequence splits ¥ia> ¢). The exactness of the
second sequence of (2) now follows by a diagram chase. Siynilae exactness
of the first sequence of (1) follows from the definitions, amel éxactness of the
second sequence of (1) is proved by a diagram chase. O

0— — 0.

For any varietyX, the filtrationG, is contained in the canonical filtration,
GpCr(X) C FFCr(X), (2-2)

sincedy (G_; Cr (X)) = 0. Thus on the category of nonsingular projective vari-
eties we have a morphism of functors

0 :GCyx — F®C,.
THEOREM 2.8. For every nonsingular projective real algebraic variety,

o (M) : GCy(M) — FR@C, (M)
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is a filtered quasi-isomorphisnHence for every real algebraic varietyx” the
localization ofo induces a quasi-isomorphisori(X) : GCx(X) — WCx(X).

Theorem 2.8 follows from Corollary 3.11 and Corollary 3.1#hich will be
shown in the next section.

3. The Nash constructible filtration

In this section we introduce thdash constructible filtration

0=N__1Cr(X) CN_;Cr(X) CN_j41C(X)
C-- CNoCr(X) = Cr(X)  (3-1)

on the semialgebraic chain compléX(X) of a real algebraic varietyy'. We
show that this filtration induces a functor

NCy : Sch(R) — C

that realizes the weight complex funct®¥Cy : Sch.(R) — HoC. In order
to prove this assertion in Theorem 3.11, we have to ext&id to a wider
category of sets and morphisms. The objects of this categyergertain semi-
algebraic subsets of the set of real points of a real algehaiety, and they
include in particular all connected components of reallaigie subsets aRP".
The morphisms are certain proper continuous semialgetnas between these
sets. This extension is crucial for the proof. As a corollasy show that for
real algebraic varieties the Nash constructible filtratidn coincides with the
geometric filtrationG, of Section 2A. In this way we complete the proof of
Theorem 2.8.

For real algebraic varieties, the Nash constructible fitirawas first defined
in an unpublished paper of H. Pennaneac’h [32], by analogh ttie alge-
braically constructible filtration [31; 33]. Theorem 3.Ihplies, in particular,
that the Nash constructible filtration of a compact varistihie same as the fil-
tration given by a cubical hyperresolution; this answefisrahtively a question
of Pennaneac’h [32, (2.9)].

3A. Nash constructible functions onRP” and arc-symmetric sets. In real
algebraic geometry it is common to work with real algebraibsets of the
affine spaceR” C RP" instead of schemes ové, and with (entire) regular
rational mappings as morphisms; see for instance [3] or§bjceRP” can be
embedded ifR ™ by a biregular rational map ([3], [5] (3.4.4)), this categalso
contains algebraic subsetsP”.

A Nash constructible functioan RP" is a functiong : RP* — Z such that
there exist a finite family of regular rational mappingjs Z; — RP" defined on
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projective real algebraic sef;, connected componeng; of Z;, and integers
m;, such that for alkk € RP”,

0(x) = S mix(f7' ()N Z)), (3-2)

where yx is the Euler characteristic. Nash constructible functiomse intro-
duced in [24]. Nash constructible functions Bi®” form a ring.

ExAmMPLE 3.1.

(2) If Y c RP" is Zariski constructible (a finite set-theoretic combioatiof
algebraic subsets), then its characteristic functipris Nash constructible.

(2) A subsetS c RP” is calledarc-symmetricf every real analytic arg :
(a,b) — RP" either meetsS at isolated points or is entirely included
Arc-symmetric sets were first studied by K. Kurdyka in [19]s shown in
[24], a semialgebraic s&& C RIP” is arc-symmetric if and only if it is closed
in RP" and 1g is Nash constructible. By the existence of arc-symmetric
closure [19; 21], for a sef C RIP” the functionlg is Nash constructible and
only if S is a finite set-theoretic combination of semialgebraicantimetric
subsets oRP”. If 15 is Nash constructible we say thétis an AS set

(3) Any connected component of a compact algebraic subsigiPdfis arc-
symmetric. So is any compact real analytic and semialgebrdiset oRP”.

(4) Every Nash constructible function dRP” is in particular constructible
(constant on strata of a finite semialgebraic stratificatbfRP”). Not all
constructible functions are Nash constructible. By [24krg constructible
functiong : RP" — 2"7Z is Nash constructible.

Nash constructible functions form the smallest family afistouctible functions
that contains characteristic functions of connected carapts of compact real
algebraic sets, and that is stable under the natural opesathherited from
sheaf theory: pullback by regular rational morphisms, fustard by proper
regular rational morphisms, restriction to Zariski opetssand duality; see
[24]. In terms of thepushforward(fiberwise integration with respect to the
Euler characteristic) the formula (3-2) can be expressed-asy ", m; fi«1.
Duality is closely related to thénk operator, an important tool for stud)/ing
the topological properties of real algebraic sets. For marlash constructible
function see [7] and [21].

If S CRP"isanAS set{.e. 1g is Nash constructible), we say that a function
on S is Nash constructiblé it is the restriction of a Nash constructible function
on RP". In particular, this defines Nash constructible functionsadfine real
algebraic sets. (In the non-compact case this definitionogemestrictive than
that of [24].)
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3B. Nash constructible functions on real algebraic variets. Let X be a
real algebraic variety and let denote the set of real points an. We call a
functiong : X — Z Nash constructibléf its restriction to every affine chart is
Nash constructible. The following lemma shows that thigeds our definition
of Nash constructible functions on affine real algebrais.set

LEMMA 3.2. If X; and X, are projective compactifications of the affine real
algebraic varietyU, theng : U — Z is the restriction of a Nash constructible
function onX ; if and only ifg is the restriction of a Nash constructible function
onX,.

PrROOF We may suppose that there is a regular projective morpHisny; —

X, that is an isomorphism ofi; cf. the proof of Proposition 2.6. Then the state-
ment follows from the following two properties of Nash camstible functions.

If ¢, : X, — Z is Nash constructible, sois its pullbagk o, = @,0 f: X | > Z.

If ¢1 : X1 — Z is Nash constructible, so is its pushforwafgy; : X, — Z. O

PrRoPOSITION3.3. Let X be areal algebraic variety and léf C X be a closed
subvariety LetU = X'\ Y. Theng : X — Z is Nash constructible if and only
if the restrictions ofp to Y andU are Nash constructible

PROOF It suffices to check the assertion f&r affine; this case is easy. O

THEOREM 3.4. Let X be a complete real algebraic varietyThe function

¢ : X — Z is Nash constructible if and only if there exist a finite fanoff
regular morphismsf; : Z; — X defined on complete real algebraic varieties
Z;, connected componeng of Z;, and integersn;, such that for allx € X,

o= mi fixlzg. (3-3)
i

PrRooOFE If X is complete but not projective, theki can be dominated by a
birational regular morphism : X — X, with X projective (Chow’s Lemma).
LetY C X, dimY < dimX, be a closed subvariety such thatinduces an
isomorphismX \7~!(¥)— X\ Y. Then, by Proposition 3.3;: X — Z is Nash
constructible if and only ift*¢ andg restricted toY are Nash constructible.

Let Z be a complete real algebraic variety and fet Z — X be a regular
morphism. LetZ’ be a connected component f We show thaty = f,1,/
is Nash constructible. This is obvious if both and Z are projective. If they
are not, we may dominate bofti and Z by projective varieties, using Chow’s
Lemma, and reduce to the projective case by induction onmbios.

Lety : X — Z be Nash constructible. Suppose first thais projective. Then
X C RP” is a real algebraic set. Let C RP™ be a real algebraic set and let
f : A— X be aregular rational morphistfi = g/ h, where/ does not vanish
on 4, cf. [3]. Then the graph off is an algebraic subsdt C RP” x RP™
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and the set of real points of a projective real varigty Let A’ be a connected
component ofd, andI"’ the graph off restricted tod’. Then fx1y = m 1/,
wherer denotes the projection on the second factor.

If X is complete but not projective, we again dominate it by atiinal
regular morphismr : X — X, with X projective. Lety : X — Z be Nash
constructible. Thed = g o : X — Z is Nash constructible. Thus, by the case
considered above, there are regular morphisﬁnsZi — X, and connected
componentsZ; such that

G(x) =) mi fislz.

Thenrm.¢ = ) ; m; 7« fi 1, and differs fromp only on the set of real points

of a variety of dimension smaller than dikhi We complete the argument by
induction on dimension. O

If X is a real algebraic variety, we again say tfat X is an. AS setif 15 is
Nash constructible, and : S — Z is Nash constructibléf the extension ofp
to X by zero is a Nash constructible function &n

COROLLARY 3.5. Let X, Y be complete real algebraic varieties and Igthe
an AS subset ofY, and T an AS subsetofY. Letgp : S - Z andy : T — Z
be Nash constructibleLet f : S — T be a map withAS graphI” C X x Y
andletry : X xY — X andny : X xY — Y denote the standard projections
Then

fe(@) = (wy)«(Ar - 13 0) (3-4)
and
S W) = (mx)«(Ar -7y ¥r) (3-5)

are Nash constructible

3C. Definition of the Nash constructible filtration. Denote byX 4s the cat-
egory of locally compactdS subsets of real algebraic varieties as objects and
continuous proper maps withS graphs as morphisms.

Let T € X4s. We say thaty : T — Z is generically Nash constructible on
T in dimensiork if ¢ coincides with a Nash constructible function everywhere
on T except on a semialgebraic subset/obf dimension< k. We say thaty
is generically Nash constructible dfi if ¢ is Nash constructible in dimension
d=dimT.

Letc € Ci(T), and let—k < p < 0. We say that is p-Nash constructible
and writec € N,Ci(T), if there existsp, p : T — 2k+r7, generically Nash
constructible in dimensiok, such that

c={xeT: @ p(x)¢2¥TPT17Z} upto a set of dimensior k.  (3-6)
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up to a set of dimension less than The choice ofy. , is not unique. Let
Z denote the Zariski closure of Supp By multiplying ¢.,, by 1z, we may
always assume that Supp” Z and hence, in particular, that dim Supp, <k.
We say that € Cy (T) is pureif ¢ € N_; Cx(T). By Theorem 3.9 of [21] and
the existence of arc-symmetric closure [19; 214, Cx (T') is pure if and only if
Suppe coincides with anAS set (up to a set of dimension smaller thian For
T compact this means thais pure if and only ifc can be represented by an arc-
symmetric set. By [24], if dinT’ = k then every semialgebraically constructible
functiong : T — 2¥7Z is Nash constructible. Henc¥,Cy (T') = Cy(T).
The boundary operator preserves the Nash constructibititiln:

N Ci(T) € NpCre—y (T).
Indeed, ifc € Cx(T') is given by (3-6) and dim Supp.,, < k, then
de = {x € Z: gpe,p(x) £ 25472, (3-7)

whereg, , equals} Ag,, , for k odd and} 2¢., , for k even [24]. A geometric
interpretation of this formula is as follows; see [7]. Létbe the Zariski closure
of Suppe, so dimZ =k if ¢ # 0. Let W be an algebraic subset &f such that
dimW <k andgc,, is locally constant or¥ \ W. At a generic poink of W,
we definedp ¢, ,(x) as the average of the valuesgf, on the local connected
components o \ W atx. It can be shown thaiy ¢, ,(x) is generically Nash
constructible in dimensiok — 1. (For k odd it equals(%Acpc,p)|W and fork
even it equal§3 2¢c, ) w; see [24].)

We say that a square iti4s

L b

S—i>T

(3-8)

is acyclic if i is a closed inclusionS = 7~!(¥) and the restriction ofr is a
homeomorphisnT \ S — 7'\ S.

THEOREM 3.6. The functorN'Cy : X45 — C, defined on the categorty 4s of
locally compactAS sets and continuous proper maps WA graphs satisfies

(1) For an acyclic squaré€3-8) the sequences
0 = NpCi(S) = NpyCr(S) ® Ny Ci(T) — NpCie(T) — 0,
L MGS) | NpGi(S) o NpGu(T)  NpGi(T)
Np1Cr(S)  Np—1Cr(S) 7 N1 Co(T)  Np—1Ci(T)
are exact

— 0,
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(2) For a closed inclusionS C T, the restriction toU = T \ S induces a
morphism of filtered complexe$Cy (7)) — N C«(U), and the sequences
NpCr(S) N, Cy (T) N, C (U)
— —
Np—lck(S) Np—ICk(T) Np—ICk(U)

are exact

0— — 0,

PrRoOOF We first show thatV'Cy is a functor; that is, for a proper morphism
ST =S, fiNpCi(T) C NpCi(S). Lete € N Cr(T) and lety = ¢, , be

a Nash constructible function ofi satisfying (3-6) (up to a set of dimension
< k). Then

fre={yeS; fiy)(y) ¢ 2kTPHzy;

that is,¢r,c p = fe@c,p-

For a closed inclusioy C T, the restriction ta/ = T \ S of a Nash con-
structible function oril” is Nash constructible. Therefore the restriction defines
a morphismNV'Cy(T) — N C«(U). The exactness of the first sequence of (2)
can be verified easily by direct computation. We note, magedhat for fixed
k the morphism

splits (the splitting does not commute with the boundary)absigning ta: €
N,Cy (U) its closurec € Ci(T). Lety : T — 2k+r7 be a Nash constructible
function such thap|7\s = ¢, p. Thené={x e T ; (1r—1g)p(x) g2k P +17}
up to a set of dimensior k.

The exactness of the second sequence of (2) and the sequér({@égsow
follow by standard arguments. (See the proof of Theoren) 2.7. O

3D. The Nash constructible filtration for Nash manifolds. A Nash func-
tion on an open semialgebraic subsebf R” is a real analytic semialgebraic
function. Nash morphisms and Nash manifolds play an imporale in real
algebraic geometry. In particular a connected componecowipact nonsingu-
lar real algebraic subset & is a Nash submanifold &7 in the sense of [5]
(2.9.9). SinceRP” can be embedded iR? by a rational diffeomorphism ([3],
[5] (3.4.2)) the connected components of nonsingular ptvje real algebraic
varieties can be considered as Nash submanifolds of affeeesyBy the Nash
Theorem [5, 14.1.8], every compaCt™® manifold is C°°-diffeomorphic to a
Nash submanifold of an affine space, and moreover such a nedelique
up to Nash diffeomorphism [5, Corollary 8.9.7]. In what @mlls by aNash
manifoldwe mean a compact Nash submanifold of an affine space.
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Compact Nash manifolds and the graphs of Nash morphismsonaheAS
sets. If NV is a Nash manifold, the Nash constructible filtration is egmd in
the canonical filtration,

Nka(N) C Flfanck(N), (3-9)

sinced; (N_; Cr(N)) = 0. Thus on the category of Nash manifolds and Nash
maps have a morphism of functors

T: NCy — FAC,.
THEOREM 3.7. For every Nash manifoldv,
T(N) : NC«(N) — F®"C(N)
is a filtered quasi-isomorphism
PrROOF We show that for allp andk, ©(N) induces an isomorphism
Tt Hi(NpCu(N)) = Hy (F?"C«(N)). (3-10)

Then, by the long exact homology sequence6\jfCy(N ), N,—1C«(N)) and

(F;J:anc* (N)7 F;iﬂl C* (N))a

o NCY) FEC, ()
o e (Np_lc* W) ILI"(F;;""_“1 )

is an isomorphism, which shows the claim of the theorem.

We proceed by induction on the dimension/f We call a Nash morphism
7 : N — N aNash multi-blowupf = is a composition of blowups along nowhere
dense Nash submanifolds.

PROPOSITION3.8. Let N, N’ be compact conngcted Nash ~manifolds of the
same dimensioriThen there exist multi-blowups: N — N, o : N’ — N’ such
that N and N’ are Nash diffeomorphic

PROOF By a theorem of Mikhalkin (see [26] and Proposition 2.6 ii]j2any
two connected closed * manifolds of the same dimension can be connected
by a sequence af *° blowups and and then blowdowns with smooth centers.
We show that thisC° statement implies an analogous statement in the Nash
category.

Let M be a closedC* manifold. By the Nash—Tognoli Theorem there is
a nonsingular real algebraic s&t, a fortiori a Nash manifold, that i€ °°-
diffeomorphic toM . Moreover, by approximation by Nash mappings, any two
Nash models o are Nash diffeomorphic; see Corollary 8.9.7 in [5]. Thus in
order to show Proposition 3.8 we need only the following leamm
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LEMMA 3.9. LetC C M be aC® submanifold of a closed *® manifold M .
Suppose thad is C*°-diffeomorphic to a Nash manifold'. Then there exists
a Nash submanifold C N such that the blowup8/(M, C) of M along C
and B/(N, D) of N along D are C°°-diffeomorphic

Proof. By the relative version of Nash—Tognoli Theorem proved bybiilit
and King, as well as Benedetti and Tognoli (see for instanemdtk 14.1.15

in [5]), there is a nonsingular real algebraic $etand aC* diffeomorphism

¢: M — X such that = ¢(C) is a nonsingular algebraic set. Then the blowups
BI(M, C) of M alongC andBI(X,Y) of X alongY areC*-diffeomorphic.
Moreover, sinceX andN areC *°-diffeomorphic, they are Nash diffeomorphic
by a Nash diffeomorphisny : X — N. ThenB/(X,Y) andBI(N, ¥ (Y)) are
Nash diffeomorphic. This proves the lemma and the proositi g

LEMMA 3.10.Let N be a compact connected Nash manifold andleV — N
denote the blowup oW along a nowhere dense Nash submanifild Then
() is a quasi-isomorphism if and only4{ V) is a quasi-isomorphism

PROOF LetY = n~!(Y) denote the exceptional divisor af. For eachp
consider the diagram

— Hi {NpCx(N)) — Hp(NpCy(Y)) —  Hip(NpCi(Y)) ® Hy(NpCx(N)) —>

l | l

— Hy 1 (FRCx(N)) — Hi(F§Ci(Y)) — Hp(FRCi(Y)) @ Hi(FCo(N)) —

The top row is exact by Theorem 3.6. For all manifoldsand for all p andk,
we have

Hi (F3Cy(N)) = {Hk(N) if k>—p,

0 if k <—p,
so the short exact sequences (1-3) give that the bottom rexais. The lemma
now follows from the inductive assumption and the Five Lemma O

Consequently it suffices to show thatV) is a quasi-isomorphism for a single
connected Nash manifold of each dimensioWe check this assertion for the
standard spher§” by showing that

H;, (S™) ifk=0ornandp > —k,

Hi(NpCi(S™)) = {0 otherwise.

Let ¢ € NpCr(S™), k < n, be a cycle described as in (3-6) by the Nash
constructible functiory.,, : Z — 2k+p7, whereZ is the Zariski closure of

Suppe. Thence can be contracted to a point. More precisely, chgoseS” \ Z.
ThenS™ \ {p} andRR” are isomorphic. Define a Nash constructible function
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@ : Z xR — 2k+r+17 py the formula
B(x, 1) = {2(,00,1,()6) if t e [O., 1],
0 otherwise.
Then
ex[0,1]={(x,t) € ZxR ; ®(x,1) ¢ 2k+tP+27);

soc x[0,1] € N Cx4+1(Z xR). The morphismf : Z xR — R", f(x,1) =tx,
is proper and fok > 0

dfx(c x[0,1]) = fx(dc x[0,1]) =c,

which shows that is a boundary inV, C«(S"). If k =0 thendfi(c %[0, 1]) =
¢ — (dege)[0].

If ¢ € N, Cy(S™) is a cycle, ther is a cycle inC,(S"); that is, either = 0
or ¢ =[S"]. This completes the proof of Theorem 3.7. O

3E. Consequences for the weight filtration.

COROLLARY 3.11. For every real algebraic varietyy” the localization oft
induces a quasi-isomorphisti(X) : N'Cx(X) = WCx(X).

PROOF Theorem 3.6 yields that the functdfCy : Sch.(R) — Ho(C satisfies
properties (1) and (2) of Theorem 1.1. Hence Theorem 3.7 dnmbrEm 1.4
give the desired result. O

COROLLARY 3.12. Let X be a real algebraic variety Then for all p and &,
NpCr(X) = GpCre (X).

PrROOF We show that the Nash constructible filtration satisfiepertes (1)
and (2) of Theorem 2.1. This is obvious for property (1). Wevsiproperty (2).
Leté = w1 (c). First we note that

ceN,Cr(X) <= ¢eNyCr(X).

Indeed, ¢) follows from functoriality, sincer = 7 (¢). If ¢ is given by (3-1)
thenz* (¢, ) is Nash constructible and descriliesThus it suffices to show

FeN,C(X) <= 8EeN,Cr_1(X)

for p > —k, with the implication (=) being obvious. Ifp = —k then each

cycle is arc-symmetric. (Such a cycle is a union of connectadponents of

X, sinceX is nonsingular and compact.) Fpr> —k suppose, contrary to our
claim, that

¢ e NpCr(X)\Np—1Cr(X) and 3¢ € Ny Cr_1 (X).
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By Corollary 3.11 and Proposition 1.8
()
Np—1Cx(X)

and¢ has to be a relative boundary. But dith= k andCy(X) = 0. This
completes the proof. O

’

4. Applications to real algebraic and analytic geometry

Algebraic subsets of affine space, or more generZltppen or Z-closed
affine or projective sets in the sense of Akbulut and King 8§ .4S sets. So
are the graphs of regular rational mappings. Therefore iEme® 3.6 and 3.7
give the following result.

THEOREM4.1. The Nash constructible filtration of closed semialgebréiains
defines a functor from the category of affine real algebrais aaed proper regu-
lar rational mappings to the category of bounded chain caxes$ ofZ, vector
spaces with increasing bounded filtration

This functor is additive and acyclidhat is, it satisfies propertiegl) and
(2) of TheorenB.6; and it induces the weight spectral sequence and the weight
filtration on Borel-Moore homology with coefficientsZn.

For compact nonsingular algebraic sethe reindexed weight spectral se-
quence is pureE2 . = 0 for p > 0.

For the last claim of the theorem we note that every compéineakal algebraic
set that is nonsingular in the sense of [3] and [5] admits apamhnonsingular
complexification. Thus the claim follows from Theorem 3.7.

The purity of 2 implies the purity of£%°: ES% =0 for p > 0. Consequently
every nontrivial homology class of a nonsingular compafihafor projective
real algebraic variety can be represented by a semialgetreisymmetric set,
a result proved directly in [18] and [21].

REMARK 4.2. Theorem 3.6 and Theorem 3.7 can be used in more general
contexts. A compact real analytic semialgebraic subsetrebhalgebraic va-
riety is an AS set. A compact semialgebraic set that is the graph of a real
analytic map, or more generally the graph of an arc-anatgpping €f. [21]),

is arc-symmetric. In Section 3E we have already used thapeotraffine Nash
manifolds and graphs of Nash morphisms defined on compadt iMasifolds

are arc-symmetric.

The weight filtration of homology is an isomorphism invati@at not a home-
omorphism invariant; this is discussed in [25] for the duaight filtration of
cohomology.
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PrRoOPOSITION4.3. Let X andY be locally compactdS setsand letf: X — Y
be a homeomorphism withS graph Then fi : NCix(X) — N C«(Y) is an
isomorphism of filtered complexes

Consequently £ induces an isomorphism of the weight spectral sequences
of X andY and of the weight filtrations aff(X) and H«(Y). Thus the virtual
Betti numberg1-4) of X andY are equal

PROOF The first claim follows from the fact that'Cy : X 45 — C is a functor;
see the proof of Theorem 3.6. The rest of the proposition thows from
Theorem 3.6 and Theorem 3.7. O

REMARK 4.4. Proposition 4.3 applies, for instance, to regular hmmaphisms
such asf : R — R, f(x) = x3. The construction of the virtual Betti numbers
of [25] was extended toAS sets by G. Fichou in [11], where their invariance
by Nash diffeomorphism was shown. The arguments of [25] 44d (ise the
weak factorization theorem of [1].

4A. The virtual Poincaré polynomial. Let X be a locally compacidS set.
The virtual Betti numbers give rise to tiv@tual Poinca® polynomial

BX)=> Bi(X)i'. (4-1)

For real algebraic varieties the virtual Poineg@olynomial was first introduced
in [25]. For AS sets, not necessarily locally compact, it was defined in.[It1]
satisfies the following properties [25; 11]:

(i) Additivity: For finite disjoint unionX = | | X;, we haveg(X) = > B(X;).

(i) Multiplicativity: B(X xY) = B(X)-B(Y).

(i) Degree:For X # @, degB(X) = dim X and the leading coefficierft(X)
is strictly positive.

(If X is not locally compact we can decompose it into a finite ditjanion of
locally compactAS setsX = | | X; and define8(X) = >_ B(X;).)

We say that a functio — ¢(X') defined on real algebraic sets isiavariant
if it an isomorphism invariant, that is(X) = ¢(Y) if X andY are isomorphic
(by a biregular rational mapping). We say tkats additive if e takes values
in an abelian group ang(X \ Y) =e(X)—e(Y) forall Y C X. We saye is
multiplicative if e takes values inaringand X xY) =e(X)e(Y) forall X, Y.
The following theorem states that the virtual Betti polynaihis a universal
additive, or additive and multiplicative, invariant defihen real algebraic sets
(or real points of real algebraic varieties in general), agihose invariants that
do not distinguish Nash diffeomorphic compact nonsingteat algebraic sets.
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THEOREM 4.5. Lete be an additive invariant defined on real algebraic sets
Suppose that for every paly, Y of Nash diffeomorphic nonsingular compact
real algebraic sets we havg X') = ¢(Y). Then there exists a unique group ho-
momorphisni, : Z[t] — G such that = /.0 B. If , moreover e is multiplicative
then/, is a ring homomorphism

PROOF. Definei(t") = e(R"). We claim that the additive invariagt(X) =
h(B(X)) —e(X) vanishes for every real algebraic s€t This is the case for
X =R" sincef(R") = ¢". By additivity, this is also the case féI" = R" L pt.
By the existence of an algebraic compactification and réisolof singularities,
it suffices to show the claim for compact nonsingular reathitgic sets.

Let X be a compact nonsingular real algebraic set an& Ibe the blowup of
X along a smooth nowhere dense center. Then, using induatialinoX’, we
see thaty(X) = 0 if and only if o(X) = 0. By the relative version of the Nash—
Tognoli Theorem, the same result holds if we have i Nash diffeomorphic
to the blowup of a nowhere dense Nash submanifold off hus the claim and
hence the first statement follows from Mikhalkin’s Theorem. O

Following earlier results of Ax and Borel, K. Kurdyka showed[20] that
any regular injective self-morphisnf : X — X of a real algebraic variety
is surjective. It was then showed in [29] that an injectivatoauous self-map

f X — X of alocally compactAS set, such that the graph gfis an AS set,

is a homeomorphism. The arguments of both [20] and [29] greltgical and
use the continuity off in essential way. The use of additive invariants allows
us to handle the non-continuous case.

THEOREM4.6. Let X be an AS set and letf : X — X be a map withAS
graph If f is injective then it is surjective

PrROOEF It suffices to show that there exists a finite decomposifioe: |_| X;
into locally compactAS sets such that for each 1 restricted toX; is a home-
omorphism onto its image. Then, by Corollary 4.3,

B(X\LI; f(Xi) =B(X)—3; B(Xi) =0,

and hence, by the degree propey) | |; f(X;) = .

To get the required decomposition first we note that by atas¢heory there
exists a semialgebraic stratification ¥f=| | S; such that/ restricted to each
stratum is real analytic. We show that we may choose strdtagieg to the
class.AS. (We do not require the strata to be connected.) By [20] a®d, [2
each semialgebraic subsétof a real algebraic variety’ has a minimaldS
closure inV, denoted4*S. Moreover if A is AS then dimA4S \ 4 < dim A.
Therefore, we may take as the first subset of the decompogiteocomplement
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in X of the AS closure of the union of stratd; of dimension< dim X, and
then proceed by induction on dimension.

Let X =|_| S; be a stratification withAS strata and such that is analytic
on each stratum. Then, for each stratSin we apply the above argument to
/1 defined onf(S;). The induced subdivision of (S;), and hence of;,
satisfies the required property. O

Of course, in general, surjectivity does not apply injattifor a self-map. Nev-
ertheless we have the following result.

THEOREMA4.7. Let X be anAS set and letf : X — X be a surjective map
with AS graph Suppose that there exist a finiteS decompositionk = | | Y;
and AS setsF; such that for eachi, £~ (¥;) is homeomorphic td; x F; by a
homeomorphism witllS graph Then /' is injective

PrOOE We have
0=B(X)-B(f(X))= Zﬁ(Yi)(ﬁ(Fi) —1).

Therefore8(F;) —1 = 0 for eachi; otherwise the polynomial on the right-hand
side would be nonzero with strictly positive leading coédiid. O

4B. Application to spaces of orderings.Let V' be an irreducible real algebraic
subset ofRV. A function¢ : V — Z is calledalgebraically constructibleéf it
satisfies one of the following equivalent properties [24]; 30

(i) There exist a finite family of proper regular morphisms: Z; — V, and
integersm;, such that for allk € V,

o(x) =Y mix(fi'(x)NZ). (4-2)

(i) There are finitely many polynomial®; € R[x1,...,xy] such that for all
xeV,

p(x) =) sgnPi(x).

Let K = K(V) denote the field of rational functions &f. A functiong:V —7Z

is generically algebraically constructible if and only drcbe identified, up to
a set of dimension smaller diim, with the signature of a quadratic form over
K. Denote byX the real spectrum oK. A (semialgebraically) constructible
function onV, up to a set of dimension smaller difhy can be identified with
a continuous functio : X — Z; see [5, Chapter 7], [23], and [6]. The repre-
sentation theorem of Becker anddker gives a fan criterion for recognizing
generically algebraically constructible function &nh The following two theo-
rems are due to |. Bonnard.
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THEOREM 4.8 [6]. A constructible functiory : V — Z is generically alge-
braically constructible if and only for any finite faf of X

> @(6)=0 mod|F|. (4-3)

oeF

For the notion of a fan see [5, Chapter 7], [23], and [6]. Thebar of elements

| F| of a finite fanF is always a power 2. It is known that for every finite fan

F of X there exists a valuation rin§ of K compatible withF, and on whose
residue field the farF induces exactly one or two distinct orderings. Denote
by F the set of these fans df for which the residue field induces only one
ordering.

THEOREM 4.9 [6]. A constructible functiorp : V' — Z is generically Nash
constructible if and only it4-3) holds for every farF € F.

The following question is due to M. Coste and M. A. Marsha8,[®Question 2]:

Suppose that a constructible functipnV — Z satisfieg4-3)for every fanF
of K with | F| < 2". Does there exists a generically algebraically construetib
functiony : V — Z such that for eaclx € V, ¢(x) — ¢ (x) =0 mod2"?

We give a positive answer to the Nash constructible analdbisfquestion.

THEOREM 4.10. Suppose that a constructible functign: V' — Z satisfies
(4-3) for every fanF € F with | F| < 2". Then there exists a generically Nash
constructible functiony : V' — Z such that for eachx € V, ¢(x) — ¥ (x) =0
mod 2",

PROOF We proceed by induction om and onk = dim V. The case: = 0 is
trivial.

Supposey : V — Z satisfies (4-3) for every faf € F with |F| <2", n > 1.
By the inductive assumptiog, is congruent modul@”~! to a generically Nash
constructible function/,,_;. By replacinge by ¢ — ¥,—1, we may suppose
27~1 dividesg.

We may also supposé compact and nonsingular, just choosing a model for
K = K(V). Moreover, by resolution of singularities, we may assunae ¢his
constant in the complement of a normal crossing diviBoe | ) D; C V.

Let ¢ be given by (3-6) withp., , = ¢ andp =n —k — 1. At a generic point
x of D; definedp, ¢(x) as the average of the valuesgbn the local connected
components of \ D atx. Thendc = ), d;c, whered;c is described by
dp, ¢ asin (3-7) (see [7]). Note that the constructible functibpsy satisfy the
inductive assumption for — 1. Hence eaclip, ¢ is congruent to a generically
Nash constructible function modul¥#~!. In other wordsdc € N,Cx_(V).
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Then by Corollary 3.12 we havee N,Cy (V), which implies the statement of
the theorem. OJ

Using Corollary 3.12 we obtain the following result. Theginal proof was
based on the fan criterion (Theorem 4.9).

PROPOSITION4.11 [7].LetV c RN be compagtirreducible, and nonsingular

Suppose that the constructible functipn V' — Z is locally constant in the
complement of a normal crossing divisbr= | J D; C V. Theng is generically

Nash constructible if and only #p ¢ is generically Nash constructible

PROOF We show only ¢&). Suppose€k+?|y generically, wher& = dimV,
and letc be given by (3-6) withg. , = ¢. Then by our assumptiofic €
N,Cr—1(V). By Corollary 3.12 we have € N,Ci(V), which shows that,
modulo2¥+7+1 ¢ coincides with a generically Nash constructible functipn
Then we apply the same argumenigte- . O

REMARK 4.12. We note that Proposition 4.11 implies neither Theodehd
nor Corollary 3.12. Similarly the analog of this propositiproved in [6] does
not give an answer to Coste and Marshall's question.

5. The toric filtration

In their investigation of the relation between the homoladyhe real and
complex points of a toric variety [4], Bihagt al. define a filtration on the cellu-
lar chain complex of a real toric variety. We prove that thitefed complex
is quasi-isomorphic to the semialgebraic chain complex whte Nash con-
structible filtration. Thus the toric filtered chain complesalizes the weight
complex, and the real toric spectral sequence of [4] is igphiio to the weight
spectral sequence.

For background on toric varieties see [12]. We use a simglifiersion of
the notation of [4]. LetA be a rational fan ilR", and letX 4 be the real toric
variety defined byA. The groupl = (R*)" acts onX 4, and thek-dimensional
orbits O, of this action correspond to the codimensioroness of A.

The positive parIYZ of X, is a closed semialgebraic subsef\of, and there
is a canonical retraction: X4 — Xj that can be identified with the orbit map
of the action of the finite group’ = (S°)” on X4, whereS® = {—1, +1} CR*.
The T-quotient of thek-dimensionall-orbit O, is a semialgebrai&-cell ¢, of
XX, andQ, is a disjoint union ofk-cells, each of which maps homeomorphi-
cally ontoc, by the quotient map. This decomposition defines a cell siraain
X4 such thatXZ\L is a subcomplex and the quotient map is cellular. €CetA)
be the cellular chain complex of 4 with coefficients inZ,. The closures of
the cells of X4 are not necessarily compact, but they are semialgebragetsib
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of X 4. Thus we have a chain map
@ : Cy(A) = Cu(X ) (5-1)

from cellular chains to semialgebraic chains.
Thetoric filtration of the cellular chain comple&,(A) is defined as follows
[4]. For eachk > 0 we define vector subspaces

0=T_,—1Ck(A) CTCy(A) CT 41C(A) C--- CToCy(A) = Cp(4),
(5-2)
such thaiy (7,Cx (A)) C 7,Cx—1(A) for all k and p.
Let o be a cone of the far, with codimo = k. Let Cy (o) be the subspace
of Ci(A) spanned by thé&-cells of O,. Then

Gl = P o).

codimo =k

The orbitO, has a distinguished point; € ¢, C XZ. LetT, =T/T*o, where
T*< istheT -stabilizer ofx,. We identify the orbitl" - x, with the multiplicative
group7,. Eachk-cell of O, contains a unique point of the orldit x,. Thus we
can make the identificatio@y (o) = Cy(T5), the set of formal sum}_; a;[g;],
wherea; € Z, andg; € T,. The multiplication of7, defines a multiplication
on Cy(Ty), so thatCy(T,) is just the group algebra df, overZ, .

Let Z, be the augmentation ideal of the algebtg 7 ), that is,

Is = Kerle : Co(Ty) — Z3] with )" ai[gi] =D a;.
i i

For p < 0 we define7,Ci (o) to be the subspace corresponding to the ideal
(Zs)~P C Co(Ty), and we let

T,C (D)= Y T,C(o).

codimo =k

If o <t in A and codimc = codimo — 1, the geometry ofA determines a
group homomorphismp,, : T, — T; (see [4]). Letd;s : Ci(0) — Cr—; (1) be
the induced algebra homomorphism. We héyg(Z,) C Z,. The boundary map
0 1 Ck(A) = Cr—1(4) is given bydx (o) = Y, 9:6(7), anddy (7,Cx(A)) C
TpCr—1(A), s0T,Cx(A) is a subcomplex o'« (A).

PrRoOPOSITIONS.1. For all £ > 0 and p < 0, the chain mapx (5-1) takes the
toric filtration (5-2) to the Nash filtration(3-1),

(T Ci(A)) CNpCr(Xa).



154 CLINT MCCRORY AND ADAM PARUSNSKI

PROOE It suffices to show that for every comec A with codime = £,
o(TpCr(0)) € NpCr (Os).

The variety®, is isomorphic toR*)¥, the toric variety of the trivial fa0} in
Rk, and the action of, on O, corresponds to the action &}, = {—1, +1}k on
(R*)*. Thek-cells of (R*)X are its connected components. Zgtc Co(Tk)
be the augmentation ideal. Let= —p, so0 < ¢ < k. The vector spac€y(Ty)
has dimensior2*, and for eachy the quotientz?/Z4+! has dimensior(’;).
A basis forZ9/Z9%1 can be defined as follows. Let, ..., be the standard
generators of the multiplicative groufy,,
-1 ifi=yj,
ti = (tin, ... tik), tij = { 1 ifi ]
If S c{l,...,k}, let Ty be the subgroup of;, generated by{z; ; i € S},
and defindTs] € Co(Ty) by
[Ts1= ) _[1]

teTs

Then{[Ts];|S| = ¢} is a basis foZ?/79*! (see [4]).

To prove thate((Zx)?) C N—4Cy, ((R*)¥) we just need to show that|if | = ¢
thena([Ts]) € N_yCr (R*)¥). Now the chainx([Ts]) € Cx (R*)¥) is repre-
sented by the semialgebraic se§ C (R*),

As ={(x1,....x5) ; xi >0, i €S},
andg = 2"“11AS is Nash constructible. To see this consider the compactifi-
cation (P! (R))* of (R*)k. We havep = ¢|(R*)¥, where@g = filpi gy,
with f : (P1(R))* — (P! (R))* defined as follows. It = (u : v) € P} (R), let
f1(2) = (u:v), and f>(z) = (u? : v?). Then
Si@zi) ifies,
fa(zi) ifiégsS.

This completes the proof. O

f(Zl,-..,Zk)=(w1,...,wk), wi={

LEMMA 5.2. Leto be a codimensiok cone ofA, and let

o= {10 1%
Forall p <0,
s Hy(TpCx(0)) > Hyx(NpCx(Og))
is an isomorphism
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PROOF. Again we only need to consider the ca8g = (R*)¥, whereo is the
trivial cone0 in R”. Now

s (G0 117

and s

HCanby = {0 S
whered : Cr (R*)%) — Cr_1 (R*)¥). The vector space K&, has basis the
cycles represented by the componentglf )%, anda : Cy (0) — Ci (R*)%)
is a bijection from the cells o€ (0) to the components ofR*)*. Thusa :
Cr(0) — Kerdy is an isomorphism of vector spaces. Thereferéakes the
basis{As ; |S| = q}4=o,... k t0 @ basis of Keb;. The proof of Proposition
5.1 shows that ifS| > ¢ thendg € N_,Cx ((R*)¥). We claim further that if
|S| < g thenAg ¢ N_,;Ci (R*)¥). It follows that{As ; |S| > ¢} is a basis for
Hy (N—_qC«(R*)¥), and so

o+ Hi(T_qCy (0)) — Hy(N_gCx((R*)F))

is an isomorphism, as desired.

To prove the claim, it suffices to show thatdfs is the closure ofd g in R”,
thenAg ¢ N_,Ci ((R*)¥). We show this by induction ok. The casek = 1
is clear: If 4 = {x; x >0} thend ¢ N_;C;(R) becausé4 # 0. In general
As={(x1,...,xx); xi>0,i ¢ S}. Supposed g is (—g)-Nash constructible for
someyg > |S|. Then there existg : Rk — 2k-az generically Nash constructible
in dimensionk such thatds = {x € R¥ ; ¢(x) ¢ 2k=9+17} up to a set of
dimension< k. Let j ¢ S, and letW; = {(x1,...,xz) ; x; =0} =Rk, Then
Iw, ¢ : W; — 2579717 andAg N W; = {x € W ; 0w, p(x) ¢ 2797}, up to
a set of dimensiorc k — 1. Hencedg N Wi € N_yCr—1(W;). But

/ISﬂsz{(x,...,xk); Xj =0,x; >0,i ¢S},

and so by the inductive hypothesiss N W; ¢ N_,Ci_; (W;), which is a con-
tradiction. 0

LEmMMA 5.3. For every toric varietyX 4 and everyp <0,
tx : Ha(TpCu(A)) > H(NpCu(X4))
is an isomorphism

PrRoOOF We show by induction on orbits that the lemma is true for gvariety
Z that is a union of orbits in the toric variety 4. Let X' be a subset oft, and
let ¥’ = X'\ {0}, whereo € X is a minimal conei. e. there is nor € X with
T <o. Let Z and Z’ be the unions of the orbits corresponding to cone&in
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and X', respectively. TherZ’ is closed inZ, andZ \ Z' = O,. We have a
commutative diagram with exact rows:

= Hi(TpCi (X)) — Hi(TpCx (X)) — Hi(TpCx(0) — Hi—1(TpCy(X')) —> -+

Jﬂ; ly,- lai Jﬂi_l

= Hi(NpCa (X)) — Hi(NpCi (X)) — Hi(NpCi(0)) — Hi—1(NpCx (X)) — -+

By Lemma 5.3x; is an isomorphism for all. By inductive hypothesig; is an
isomorphism for ali. Thereforey; is an isomorphism for all. O

THEOREM5.4. For every toric varietyX 4 and everyp <0,

TG4 NyCa(Xa)
o H*(?;_lc*(m) - H*(Np_lc*(XA))

is an isomorphism

PrRoOF This follows from Lemma 5.3 and the long exact homology sexges
of the pairs(7,C«(A), Tp—1C«(A)) and (N, Cs (X 4), Np—1Cx (X 4)). O

Thus for every toric varietyX 4 the toric filtered compleXt C«(A) is quasi-
isomorphic to the Nash constructible filtered compleéX«(X 4), and so the
toric spectral sequence [4] is isomorphic to the weight spesequence.

ExamMpPLE 5.5. For toric varieties of dimension at most 4, the toriccéyz
sequence collapses [4; 35]. V. Hower [17] discovered ttasgectral sequence
does not collapse for the 6-dimensional projective toritetg associated to the
matroid of the Fano plane.

Appendix: Semialgebraic chains

In this appendix we denote h¥ a locally compact semialgebraic ség(

a semialgebraic subset of the set of real points of a reabedgevariety) and
by C«(X) the complex of semialgebraic chains Xfwith closed supports and
coefficients irZ,. The complexC« (X)) has the following geometric description,
which is equivalent to the usual definition using a semialgiebtriangulation
[5, 11.7].

A semialgebraic chaim of X is an equivalence class of closed semialgebraic
subsets ofY'. Fork > 0, let S;(X) be theZ, vector space generated by the
closed semialgebraic subsets.Xfof dimension< k. ThenCy(X) is theZ,
vector space obtained as the quotienSgfX) by the following relations:

() If A and B are closed semialgebraic subsetsXobf dimension at most,
then
A+ B ~cl(A=+ B),
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whered —~ B = (AU B) \ (4N B) is the symmetric difference of and B,
and cl denotes closure.
(i) If A is a closed semialgebraic subsetiofand dimA4 < k, then4 ~ 0.

If the chainc is represented by the semialgebraic detwe write ¢ = [A4]. If
¢ € Cr(X), thesupportof ¢, denoted Supp, is the smallest closed semialgebraic
set representing. If ¢ =[A] then Suppg ={x € 4 ; dimy A = k}.

The boundaryoperatord;, : C,(X) — Cr_;(X) can be defined using the
link operatorA on constructible functions [24]. if € C, (X)) with ¢ =[A4], then
drc = [04], wheredd = {x € A ; Aly(x) =1 (mod?2)}. The operatody, is
well-defined, and);_; 0, = 0, sinceAdo A =2A.

If f:X — Y is a proper continuous semialgebraic map, pashforward
homomorphismfs : Cr.(X) — Ci(Y) is defined as follows. Le#l be a repre-
sentative ofc. Then f(A) ~ By +--- + By, where each closed semialgebraic
set B; has the property that(# N f~!(y)) is constant mod 2 om; \ B for
some closed semialgebraic ¢gtC B; with dim Blf < k. Foreach letn; € Z,
be this constant value. Thefa(c) = n{[B1]+ -+ n;[By].

Alternately, fx(¢) = [B], whereB =cl{y € Y ; fils(y) =1 (mod2)},
and f is pushforward for constructible functions [24]. From tdisfinition it
is easy to prove the standard properties« = (g/)« andoy fx = f+ 0.

We use two basic operations on semialgebraic chains: atstriand closure.
These operations do not commute with the boundary operaigpeneral.

Letc € Cr(X) and letZ C X be a locally closed semialgebraic subset. If
¢ = [A], we define thaestrictionby ¢|z = [A N Z] € C,.(Z). This operation
is well-defined. IfU is an open semialgebraic subset)f thend(c|y) =
(kv

Now let ¢ € C(Z) with Z C X locally closed semialgebraic. i = [A]
we define theclosureby ¢ = [cl(A)] € Cr (X)), where c{A) is the closure of4
in X. Closure is a well-defined operation on semialgebraic hain

By means of the restriction and closure operations, we d#fapullback of a
chain in the following situation, which can be applied to apdic square (1-2)
of real algebraic varieties. Consider a square of localbsetl semialgebraic
sets,

Y —— X

Lk

Y —— X
such thatr : X — X is a proper continuous semialgebraic miis,the inclusion

of a closed semialgebraic subs&t,= 7~!(Y), and the restriction ofr is a
homeomorphismx’ : X \ Y — X \ Y. Letc € Ci(X). We define thepullback
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7=l € Cp(X) by the formula

n e = ()" Dxlelny)-

Pullback does not commute with the boundary operator inrgene
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