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The weight filtration for real algebraic varieties
CLINT MCCRORY AND ADAM PARUSIŃSKI

ABSTRACT. Using the work of Guilĺen and Navarro Aznar we associate to
each real algebraic variety a filtered chain complex, the weight complex, which
is well-defined up to a filtered quasi-isomorphism, and induces on Borel–
Moore homology withZ2 coefficients an analog of the weight filtration for
complex algebraic varieties.

The weight complex can be represented by a geometrically defined filtration
on the complex of semialgebraic chains. To show this we definethe weight
complex for Nash manifolds and, more generally, for arc-symmetric sets, and
we adapt to Nash manifolds the theorem of Mikhalkin that two compact con-
nected smooth manifolds of the same dimension can be connected by a se-
quence of smooth blowups and blowdowns.

The weight complex is acyclic for smooth blowups and additive for closed
inclusions. As a corollary we obtain a new construction of the virtual Betti
numbers, which are additive invariants of real algebraic varieties, and we show
their invariance by a large class of mappings that includes regular homeomor-
phisms and Nash diffeomorphisms.

The weight filtration of the homology of a real variety was introduced by
Totaro [37]. He used the work of Guillén and Navarro Aznar [15] to show
the existence of such a filtration, by analogy with Deligne’sweight filtration
for complex varieties [10] as generalized by Gillet and Soulé [14]. There is also
earlier unpublished work on the real weight filtration by M. Wodzicki, and more
recent unpublished work on weight filtrations by Guillén and Navarro Aznar
[16].

Totaro’s weight filtration for a compact variety is associated to the spectral
sequence of a cubical hyperresolution. (For an introduction to cubical hyper-
resolutions of complex varieties see [34], Chapter 5.) For complex varieties
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this spectral sequence collapses with rational coefficients, but for real varieties,
where it is defined withZ2 coefficients, the spectral sequence does not collapse
in general. We show, again using the work of Guillén and Navarro Aznar, that
the weight spectral sequence is itself a natural invariant of a real variety. There is
a functor that assigns to each real algebraic variety a filtered chain complex, the
weight complex, that is unique up to filtered quasi-isomorphism, and functorial
for proper regular morphisms. The weight spectral sequenceis the spectral
sequence associated to this filtered complex, and the weightfiltration is the
corresponding filtration of Borel–Moore homology with coefficients inZ2.

Using the theory of Nash constructible functions we give an independent
construction of a functorial filtration on the complex of semialgebraic chains
in Kurdyka’s category of arc-symmetric sets [19; 21], and weshow that the
filtered complex obtained in this way represents the weight complex of a real
algebraic variety. We obtain in particular that the weight complex is invariant
under regular rational homeomorphisms of real algebraic sets in the sense of
Bochnak, Coste and Roy [5].

The characteristic properties of the weight complex describe how it behaves
with respect to generalized blowups (acyclicity) and inclusions of open subvari-
eties (additivity). The initial term of the weight spectralsequence yields additive
invariants for real algebraic varieties, the virtual Bettinumbers [24]. Thus we
obtain that the virtual Betti numbers are invariants of regular homeomorphisms
of real algebraic sets. For real toric varieties, the weightspectral sequence is
isomorphic to the toric spectral sequence introduced by Bihan, Franz, McCrory,
and van Hamel [4].

In Section 1 we prove the existence and uniqueness of the filtered weight
complex of a real algebraic variety. The weight complex is the unique acyclic
additive extension to all varieties of the functor that assigns to a nonsingular pro-
jective variety the complex of semialgebraic chains with the canonical filtration.
To apply the extension theorems of Guillén and Navarro Aznar [15], we work in
the category of schemes overR, for which one has resolution of singularities, the
Chow–Hironaka Lemma (see [15, (2.1.3)]), and the compactification theorem of
Nagata [28]. We obtain the weight complex as a functor of schemes and proper
regular morphisms.

In Section 2 we characterize the weight filtration of the semialgebraic chain
complex using resolution of singularities. In Section 3 we introduce the Nash
constructible filtration of semialgebraic chains, following Pennaneac’h [32], and
we show that it gives the weight filtration. A key tool is Mikhalkin’s theorem
[26] that any two connected closedC 1 manifolds of the same dimension can
be connected by a sequence of blowups and blowdowns. Section4 we present
several applications to real geometry.
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In Section 5 we show that for a real toric variety the Nash constructible filtra-
tion is the same as the filtration on cellular chains defined byBihanet al.using
toric topology.

1. The homological weight filtration

We begin with a brief discussion of the extension theorem of Guill én and
Navarro Aznar. Suppose thatG is a functor defined for smooth varieties over
a field of characteristic zero. The main theorem of [15] givesa criterion for
the extension ofG to a functorG0 defined for all (possibly singular) varieties.
This criterion is a relation between the value ofG on a smooth varietyX and
the value ofG on the blowup ofX along a smooth center. The extensionG0

satisfies a generalization of this blowup formula for any morphismf W QX !X

of varieties that is an isomorphism over the complement of a subvarietyY of X .
If one requires an even stronger additivity formula forG0.X / in terms ofG0.Y /

andG0.X nY /, then one can assume that the original functorG is defined only
for smooth projective varieties.

The structure of the target category of the functorG is important in this theory.
The prototype is the derived category of chain complexes in an abelian category.
That is, the objects are chain complexes, and the set of morphisms between
two complexes is expanded to include the inverses of quasi-isomorphisms (mor-
phisms that induce isomorphisms on homology). Guillén and Navarro introduce
a generalization of the category of chain complexes called adescent category,
which has a class of morphismsE that are analogous to quasi-isomorphisms,
and a functors from diagrams to objects that is analogous to the total complex
of a diagram of chain complexes.

In our application we consider varieties over the field of real numbers, and
the target category is the derived category of filtered chaincomplexes of vector
spaces overZ2. Since this category is closely related to the classical category
of chain complexes, it is not hard to check that it is a descentcategory. Our
starting functorG is rather simple: It assigns to a smooth projective variety
the complex of semialgebraic chains with the canonical filtration. The blowup
formula follows from a short exact sequence (1-3) for the homology groups of
a blowup.

Now we turn to a precise statement and proof of Theorem 1.1, which is our
main result.

By a real algebraic varietywe mean a reduced separated scheme of finite
type overR. By acompactvariety we mean a scheme that is complete (proper
over R). We adopt the following notation of Guillén and Navarro Aznar [15].
Let Schc.R/ be the category of real algebraic varieties and proper regular mor-
phisms,i. e. proper morphisms of schemes. By Reg we denote the subcategory
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of compact nonsingular varieties, and byV.R/ the category of projective non-
singular varieties. A proper morphism or a compactificationof varieties will
always be understood in the scheme-theoretic sense.

In this paper we are interested in the topology of the set of real points of a
real algebraic varietyX . Let X denote the set of real points ofX . The set
X , with its sheaf of regular functions, is a real algebraic variety in the sense of
Bochnak, Coste and Roy [5]. For a varietyX we denote byC�.X / the complex
of semialgebraic chains ofX with coefficients inZ2 and closed supports. The
homology ofC�.X / is the Borel–Moore homology ofX with Z2 coefficients,
and will be denoted byH�.X /.

1A. Filtered complexes. Let C be the category of bounded complexes ofZ2

vector spaces with increasing bounded filtration,

K�D� � � K0 K1 K2 � � � ; � � ��Fp�1K��FpK��FpC1K��� � � :

Such a filtered complex defines a spectral sequencefEr ; dr g, r D 1; 2; : : : , with

E0
p;q D

FpKpCq

Fp�1KpCq
; E1

p;q DHpCq

�

FpK�

Fp�1K�

�

;

that converges to the homology ofK�,

E1
p;q D

Fp.HpCqK�/

Fp�1.HpCqK�/
;

whereFp.HnK�/ D ImageŒHn.FpK�/ ! Hn.K�/�; see [22, Thm. 3.1]. A
quasi-isomorphismin C is a filtered quasi-isomorphism, that is, a morphism of
filtered complexes that induces an isomorphism onE1. Thus a quasi-isomo-
phism induces an isomorphism of the associated spectral sequences.

Following (1.5.1) in [15], we denote by HoC the categoryC localized with
respect to filtered quasi-isomorphisms.

Every bounded complexK� has acanonical filtration[8] given by

F can
p K� D

(

Kq if q > �p,
ker@q if q D�p,
0 if q < �p.

We have

E1
p;q DHpCq

 

F can
p K�

F can
p�1

K�

!

D
n

HpCq.K�/ if pC q D�p,
0 otherwise.

(1-1)

Thus a quasi-isomorphism of complexes induces a filtered quasi-isomorphism
of complexes with canonical filtration.

To certain types of diagrams inC we can associate an element ofC, thesimple
filtered complexof the given diagram. We use notation from [15]. Forn� 0 let
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˜
C
n be the partially ordered set of subsets off0; 1; : : : ; ng. A cubical diagram

of type˜
C
n in a categoryX is a contravariant functor from̃ C

n to X . If K is a
cubical diagram inC of type˜

C
n , let K�;S be the complex labeled by the subset

S � f0; 1; : : : ng, and letjS j denote the number of elements ofS . The simple
complex sK is defined by

sKk D
M

iCjS j�1Dk

Ki;S

with differentials@ W sKk ! sKk�1 defined as follows. For eachS let @0 W

Ki;S ! Ki�1;S be the differential ofK�;S . If T � S and jT j D jS j � 1, let
@T;S W K�;S !K�;T be the chain map corresponding to the inclusion ofT in
S . If a 2Ki;S , let

@00.a/D
X

@T;S .a/;

where the sum is over allT � S such thatjT j D jS j � 1, and

@.a/D @0.a/C @00.a/:

The filtration of sK is given byFp sKD sFpK,

.Fp sK/k D
M

iCjS j�1Dk

Fp.Ki;S /:

The simple complex functors is defined for cubical diagrams in the category
C, but not for diagrams in the derived category HoC, since a diagram in HoC
does not necessarily correspond to a diagram inC. However, for eachn � 0,
the functor s is defined on the derived category of cubical diagrams of type
˜

C
n . (A quasi-isomorphism in the category of cubical diagrams of type ˜

C
n

is a morphism of diagrams that is a quasi-isomorphism on eachobject in the
diagram.)

To address this technical problem, Guillén and Navarro Aznar introduce the
˚-rectificationof a functor with values in a derived category [15, (1.6)], where
˚ is the category of finite orderable diagrams [15, (1.1.2)]. A(˚-)rectification
of a functorG with values in a derived category HoC is an extension ofG to a
functor of diagrams, with values in the derived category of diagrams, satisfying
certain naturality properties [15, (1.6.5)]. A factorization of G through the cat-
egoryC determines a canonical rectification ofG. One says thatG is rectified
if a rectification ofG is given.
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1B. The weight complex.To state the next theorem, we only need to consider
diagrams in of typẽ C

0
or type˜

C
1

. The inclusion of a closed subvarietyY �X

is a˜
C
0

-diagram inSchc.R/. An acyclic square([15], (2.1.1)) is ã C
1

-diagram
in Schc.R/,

QY ����! QX
?

?

y

?

?

y

�

Y
i

����! X

(1-2)

wherei is the inclusion of a closed subvariety,QY D ��1.Y /, and the restriction
of � is an isomorphismQX n QY ! X n Y . An elementary acyclic squareis an
acyclic square such thatX is compact and nonsingular,Y is nonsingular, and�
is the blowup ofX alongY .

For a real algebraic varietyX , let F canC�.X / denote the complexC�.X / of
semialgebraic chains with the canonical filtration.

THEOREM 1.1. The functor

F canC� W V.R/! HoC

that associates to a nonsingular projective varietyM the semialgebraic chain
complex ofM with canonical filtration admits an extension to a functor defined
for all real algebraic varieties and proper regular morphisms,

WC � W Schc.R/! HoC;

such thatWC � is rectified and has the following properties:

(i) Acyclicity. For an acyclic square(1-2) the simple filtered complex of the
diagram

WC �. QY / ����! WC �. QX /
?

?

y

?

?

y

WC �.Y / ����! WC �.X /

is acyclic(quasi-isomorphic to the zero complex).
(ii) Additivity. For a closed inclusionY �X , the simple filtered complex of the

diagram

WC �.Y /!WC �.X /

is naturally quasi-isomorphic toWC �.X nY /.

Such a functorWC � is unique up to a unique quasi-isomorphism.
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PROOF. This theorem follows from [15], Theorem.2:2:2/op. By Proposition
.1:7:5/op of [15], the categoryC, with the class of quasi-isomorphisms and the
operation of simple complexs defined above, is a category of homological
descent. Since it factors throughC, the functorF canC� is ˚-rectified ([15],
(1.6.5), (1.1.2)). ClearlyF canC� is additive for disjoint unions (condition (F1)
of [15]). It remains to check condition (F2) forF canC�, that the simple filtered
complex associated to an elementary acyclic square is acyclic.

Consider the elementary acyclic square (1-2). LetK be the simple complex
associated to thẽ C

1
-diagram

F canC�. QY / ����! F canC�. QX /
?

?

y

?

?

y

F canC�.Y / ����! F canC�.X /

By definition of the canonical filtration, for eachp we have

.Fp sK/k=.Fp�1 sK/k ¤ 0 only for �pC 2� k � �p� 1;

and the complex.E0
p;�; d

0/ has the form

0!
.Fp sK/�pC2

.Fp�1 sK/�pC2

!
.Fp sK/�pC1

.Fp�1 sK/�pC1

!
.Fp sK/�p

.Fp�1 sK/�p
!

.Fp sK/�p�1

.Fp�1 sK/�p�1

! 0:

A computation gives

H�pC2.E
0
p;�/D 0;

H�pC1.E
0
p;�/D KerŒH�p. QY /!H�p.Y /˚H�p. QX /�;

H�p.E
0
p;�/D

KerŒH�p.Y /˚H�p. QX /!H�p.X /�=ImŒH�p. QY /!H�p.Y /˚H�p. QX /�;

H�p�1.E
0
p;�/DH�p.X /=ImŒH�p.Y /˚H�p. QX /!H�p.X /�:

These groups are zero because for allk we have the short exact sequence of an
elementary acyclic square,

0!Hk. QY /!Hk.Y /˚Hk. QX /!Hk.X /! 0I (1-3)

see [25], proof of Proposition 2.1. ˜

REMARK 1.2. This above argument shows that the functorF can is acyclic on
any acyclic square (1-2), provided the varietiesX;Y; QX ; QY are nonsingular and
compact.
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REMARK 1.3. In Section 3 below, we show that the functorWC � factors
through the category of filtered chain complexes. This explains whyWC � is
rectified.

If X is a real algebraic variety, theweight complexof X is the filtered com-
plex WC�.X /. A stronger version of the uniqueness ofWC � is given by the
following naturality theorem.

THEOREM1.4. LetA�, B� WV.R/!C be functors whose localizationsV.R/!
HoC satisfy the disjoint additivity condition(F1) and the elementary acyclicity
condition (F2) of [15]. If � W A� ! B� is a morphism of functors, then the
localization of� extends uniquely to a morphism� 0 WWA�!WB�.

PROOF. This follows from.2:1:5/op and.2:2:2/op of [15]. ˜

Thus if � W A�.M /! B�.M / is a quasi-isomorphism for all nonsingular pro-
jective varietiesM , then� 0 WWA�.X /!WB�.X / is a quasi-isomorphism for
all varietiesX .

PROPOSITION 1.5. For all real algebraic varietiesX , the homology of the
complexWC�.X / is the Borel–Moore homology ofX with Z2 coefficients,

Hn.WC�.X //DHn.X /:

PROOF. Let D be the category of bounded complexes ofZ2 vector spaces.
The forgetful functorC ! D induces a functor' W HoC ! HoD. To see this,
let A0

�, B0
� be filtered complexes, and letA� D '.A0

�/ andB� D '.B0
�/. A

quasi-isomorphismf WA0
�!B0

� induces an isomorphism of the corresponding
spectral sequences, which implies thatf induces an isomorphismH�.A�/!

H�.B�/; in other wordsf WA�! B� is a quasi-isomorphism.
Let C� W Schc.R/! HoD be the functor that assigns to every real algebraic

varietyX the complex of semialgebraic chainsC�.X /. ThenC� satisfies prop-
erties (1) and (2) of Theorem 1.1. Acyclicity ofC� for an acyclic square (1-2)
follows from the short exact sequence of chain complexes

0! C�. QY /! C�.Y /˚C�. QX /! C�.X /! 0:

The exactness of this sequence follows immediately from thedefinition of semi-
algebraic chains. Similarly, additivity ofC� for a closed embeddingY ! X

follows from the short exact sequence of chain complexes

0! C�.Y /! C�.X /! C�.X nY /! 0:

Now consider the functorWC� WSchc.R/!HoC given by Theorem 1.1. The
functors'ıWC� andC� WSchc.R/!HoD are extensions ofC� WV.R/!HoD,
so by [15] Theorem.2:2:2/op we have that'.WC�.X // is quasi-isomorphic to
C�.X / for all X . ThusH�.WC�.X //DH�.X /, as desired. ˜
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1C. The weight spectral sequence.If X is a real algebraic variety, theweight
spectral sequenceof X , fEr ; dr g, r D 1; 2; : : : , is the spectral sequence of the
weight complexWC�.X /. It is well-defined by Theorem 1.1, and it converges to
the homology ofX by Proposition 1.5. The associated filtration of the homology
of X is theweight filtration:

0DW�k�1Hk.X /�W�kHk.X /� � � � �W0Hk.X /DHk.X /;

whereHk.X / is the homology with closed supports (Borel–Moore homology)
with coefficients inZ2. (We show thatW�k�1Hk.X /D 0 in Corollary 1.10.)
The dual weight filtration on cohomology with compact supports is discussed
in [25].

REMARK 1.6. We do not know the relation of the weight filtration of a real
algebraic varietyX to Deligne’s weight filtration [10] onH�.XCIQ/, the Borel–
Moore homology with rational coefficients of the complex pointsXC . By anal-
ogy with Deligne’s weight filtration, there should also be a weight filtration
on the homology ofX with classical compact supports and coefficients inZ2

(dual to cohomology with closed supports). We plan to study this filtration in
subsequent work.

The weight spectral sequenceEr
p;q is a second quadrant spectral sequence. (We

will show in Corollary 1.10 that ifE1
p;q¤0 then.p; q/ lies in the closed triangle

with vertices.0; 0/, .0; d/, .�d; 2d/, whered D dimX .) The reindexing

p0 D 2pC q; q0 D�p; r 0 D r C 1

gives a standard first quadrant spectral sequence, with

QE2
p0;q0 DE1

�q0;p0C2q0 :

(If QE2
p0;q0 ¤ 0 then.p0; q0/ lies in the closed triangle with vertices.0; 0/, .d; 0/,

.0; d/, whered D dimX .) Note that the total grading is preserved:p0C q0 D

pC q.
The virtual Betti numbers [25] are the Euler characteristics of the rows of
QE2, that is,

ˇq.X /D
X

p

.�1/p dimZ2
QE2
p;q : (1-4)

To prove this assertion we will show that the numbersˇq.X / defined by (1-4) are
additive and equal to the classical Betti numbers forX compact and nonsingular.

For eachq � 0 consider the chain complex defined by theq-th row of the QE1

term,

C�.X; q/D . QE
1
�;q;
Qd1
�;q/;
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where Qd1
p;q W

QE1
p;q !

QE1
p�1;q

. This chain complex is well-defined up to quasi-
isomorphism, and its Euler characteristic isˇq.X /.

The additivity ofWC� implies that if Y is a closed subvariety ofX then
the chain complexC�.X nY; q/ is quasi-isomorphic to the mapping cone of the
chain mapC�.Y; q/! C�.X; q/, and hence there is a long exact sequence of
homology groups

� � � ! QE2
p;q.Y /!

QE2
p;q.X /!

QE2
p;q.X nY /! QE2

p�1;q.Y / � � � :

Therefore for eachq we have

ˇq.X /D ˇq.X nY /Cˇq.Y /:

This is the additivity property of the virtual Betti numbers.

REMARK 1.7. Navarro Aznar pointed out to us thatC�.X; q/ is actually well-
defined up to chain homotopy equivalence. One merely applies[15], Theorem
.2:2:2/op, to the functor that assigns to a nonsingular projective variety M the
chain complex

Ck.M; q/D

�

Hq.M / if k D 0,
0 if k ¤ 0,

in the category of bounded complexes ofZ2 vector spaces localized with re-
spect to chain homotopy equivalences. This striking application of the theorem
of Guillén and Navarro Aznar led to our proof of the existence of the weight
complex.

We say the weight complex ispure if the reindexed weight spectral sequence
has QE2

p;q D 0 for p ¤ 0. In this case the numberšq.X / equal the classical
Betti numbers ofX .

PROPOSITION1.8. If X is a compact nonsingular variety, the weight complex
WC �.X / is pure. In other words, if k ¤�p then

Hk

�

WpC�.X /

Wp�1C�.X /

�

D 0:

PROOF. For X projective and nonsingular, the filtered complexWC �.X / is
quasi-isomorphic toC�.X /with the canonical filtration. The inclusionV.R/!
Reg has the extension property in (2.1.10) of [15]; the proofis similar to that in
(2.1.11) of the same reference. Therefore by Theorem.2:1:5/op [15], the functor
F canC� WV.R/!HoC extends to a functor Reg!HoC that is additive for dis-
joint unions and acyclic, and this extension is unique up to quasi-isomorphism.
But F canC� W Reg! HoC is such an extension, sinceF canC� is additive for
disjoint unions in Reg and acyclic for acyclic squares in Reg. (Compare the
proof of Theorem 1.1 and Remark 1.2.) ˜
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If X is compact, we will show that the reindexed weight spectral sequenceQEr
p;q

is isomorphic to the spectral sequence of acubical hyperresolutionof X [15].
(The definition of cubical hyperresolution given in Chapter5 of [34] is too weak
for our purposes; see Example 1.12 below.)

A cubical hyperresolution ofX is a special type of̃ C
n -diagram with final

objectX and all other objects compact and nonsingular. RemovingX gives a
˜n-diagram, which is the same thing as a4n-diagram,i.e.a diagram labeled by
the simplices contained in the standardn-simplex4n. (Subsets off0; 1; : : : ; ng
of cardinalityi C 1 correspond toi-simplices.)

The spectral sequence of a cubical hyperresolution is the spectral sequence
of the filtered complex.C�; OF /, with Ck D

L

iCjDk Cj X .i/, whereX .i/ is the
disjoint union of the objects labeled byi-simplices of4n, and the filtration OF
is by skeletons,

OFpCk D
M

i�p

Ck�iX
.i/

The resulting first quadrant spectral sequenceOEr
p;q converges to the homology

of X , and the associated filtration is the weight filtration defined by Totaro [37].
Let @ D @0 C @00 be the boundary operator of the complexC�, where@0

i W

Cj X .i/ ! Cj X .i�1/ is the simplicial boundary operator, and@00
j W Cj X .i/ !

Cj�1X .i/ is .�1/i times the boundary operator on semialgebraic chains.

PROPOSITION1.9. If X is a compact variety, the weight spectral sequenceE of
X is isomorphic to the spectral sequenceOE of a cubical hyperresolution ofX :

Er
p;q Š

OErC1
2pCq;�p

:

Thus OEr
p;q Š

QEr
p;q, the reindexed weight spectral sequence introduced above.

PROOF. The acyclicity property of the weight complex — condition (1) of The-
orem 1.1 — implies thatWC � is acyclic for cubical hyperresolutions (see [15],
proof of Theorem (2.1.5)). In other words, if the functorW C� is applied to a
cubical hyperresolution ofX , the resulting̃ C

n -diagram inC is acyclic. This
says thatWC �.X / is filtered quasi-isomorphic to the total filtered complex of
the double complexWC i;j DWCj X .i/. Since the varietiesX .i/ are compact
and nonsingular, this filtered complex is quasi-isomorphicto the total complex
Ck D

L

iCjDk Cj X .i/ with the canonical filtration,

F can
p Ck D Ker@00

�p˚
M

j>�p

Cj X .k�j/:

Thus the spectral sequence of this filtered complex is the weight spectral se-
quenceEr

p;q.
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We now compare the two increasing filtrationsF can and OF on the complex
C�. The weight spectral sequenceE is associated to the filtrationF can, and the
cubical hyperresolution spectral sequenceOE is associated to the filtrationOF . We
show thatF canDDec. OF /, theDeligne shiftof OF ; for this notion see [8, (1.3.3)]
or [34, A.49].

Let OF 0 be the filtration

OF 0
pCk D OZ

1
p;k�p D KerŒ@ W OFpCk ! Ck�1= OFp�1Ck�1�

and OE0 the associated spectral sequence. By definition of the Deligne shift,

OF 0
pCk D Dec OFp�kCk :

Now since@D @0C @00 it follows that

OF 0
pCk D F can

p�kCk ;

andF can
p�k

Ck D F can
�q Ck , wherepC q D k. Thus we can identify the spectral

sequences
. OE0/rC1

p;q DEr
�q;pC2q for r � 1:

On the other hand, the inclusionOF 0
pCk ! OFpCk induces an isomorphism of

spectral sequences
. OE0/rp;q Š

OEr
p;q for r � 2: ˜

COROLLARY 1.10. Let X be a real algebraic variety of dimensiond , with
weight spectral sequenceE and weight filtrationW. For all p; q; r , if Er

p;q ¤ 0

thenp � 0 and�2p � q � d �p. Thus for allk we haveW�k�1Hk.X /D 0.

PROOF. For X compact this follows from Proposition 1.9 and the fact that
OEr
p;q ¤ 0 impliesp � 0 and0� q � d �p. If U is a noncompact variety, letX

be a real algebraic compactification ofU , and letY D X nU . We can assume
that dimY < d . The corollary now follows from the additivity property of the
weight complex (condition (2) of Theorem 1.1). ˜

EXAMPLE 1.11. If X is a compact divisor with normal crossings in a nonsin-
gular variety, a cubical hyperresolution ofX is given by the decomposition of
X into irreducible components. (The corresponding simplicial diagram asso-
ciates to ani-simplex the disjoint union of the intersections ofi C 1 distinct
irreducible components ofX .) The spectral sequence of such a cubical hyper-
resolution is the Mayer–Vietoris (or̆Cech) spectral sequence associated to the
decomposition. Example 3.3 of [25] is an algebraic surfaceX in affine 3-space
such thatX is the union of three compact nonsingular surfaces with normal
crossings and the weight spectral sequence ofX does not collapse:QE2 ¤ QE1.
The varietyU D R3 n X is an example of a nonsingular noncompact variety
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with noncollapsing weight spectral sequence. (The additivity property (2) of
Theorem 1.1 can be used to compute the spectral sequence ofU .)

EXAMPLE 1.12. For a compact complex variety the Deligne weight filtration
can be computed from the skeletal filtration of a simplicial smooth resolution of
cohomological descent(see [9, (5.3)] or [34, (5.1.3)]). In particular, a rational
homology class̨ has maximal weight if and only if̨ is in the image of the
homology of the zero-skeleton of the resolution.

The following example shows that for real varieties the cohomological de-
scent condition on a resolution is too weak to recover the weight filtration.

We construct a simplicial smooth varietyX�!X of cohomological descent
such thatX is compact and the weight filtration ofX does not correspond to
the skeletal filtration ofX�. Let X D X0 D S1, the unit circle in the complex
plane, and letf W X0 ! X be the double coverf .z/ D z2. Let X� be the
Gabrielov–Vorobjov–Zell resolution associated to the mapf [13] . Thus

Xn DX0 �X X0 �X � � � .nC 1/ � � � �X X0;

a compact smooth variety of dimension 1. This resolution is of cohomological
descent since the fibers of the geometric realizationjX�j ! X are contractible
(see [13] or [34, (5.1.3)]).

Let˛2H1.X / be the nonzero element (Z2 coefficients). Now̨ 2W�1H.X /

sinceX is compact and nonsingular. Therefore, for every cubical hyperresolu-
tion of X , ˛ lies in the image of the homology of the zero-skeleton (i.e., the
filtration of ˛ with respect to the spectral sequenceOE is 0). But the filtration of
˛ with respect to the skeletons of the resolutionX�!X is greater than 0 since
˛ … ImŒf� W H1.X0/! H1.X /�. In fact ˛ has filtration 1 with respect to the
skeletons of this resolution.

2. A geometric filtration

We define a functor
GC� W Schc.R/! C

that assigns to each real algebraic varietyX the complexC�.X / of semialge-
braic chains ofX (with coefficients inZ2 and closed supports), together with a
filtration

0D G�k�1Ck.X /� G�kCk.X /� G�kC1Ck.X /

� � � � � G0Ck.X /D Ck.X /: (2-1)

We prove in Theorem 2.8 that the functorGC� realizes the weight complex
functorWC� W Schc.R/! HoC given by Theorem 1.1. Thus the filtrationG�

of chains gives the weight filtration of homology.
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2A. Definition of the filtration G�. The filtration will first be defined for com-
pact varieties. Recall thatX denotes the set of real points of the real algebraic
varietyX .

THEOREM 2.1. There exists a unique filtration(2-1) on semialgebraicZ2-
chains of compact real algebraic varieties with the following properties. Let
X be a compact real algebraic variety and letc 2 Ck.X /. Then

(1) If Y �X is an algebraic subvariety such thatSuppc � Y , then

c 2 GpCk.X / ” c 2 GpCk.Y /:

(2) Let dimX D k and let� W QX !X be a resolution ofX such that there is a
normal crossing divisorD � QX with Supp@.��1c/�D. Then forp � �k,

c 2 GpCk.X / ” @.��1c/ 2 GpCk�1.D/:

We call a resolution� W QX ! X adaptedto c 2 Ck.X / if it satisfies condition
(2) above. For the definition of the support Suppc and the pullback��1c see
the Appendix.

PROOF. We proceed by induction onk. If k D 0 then 0 D G�1C0.X / �

G0C0.X / D C0.X /. In the rest of this subsection we assume the existence
and uniqueness of the filtration for chains of dimension< k, and we prove the
statement for chains of dimensionk.

LEMMA 2.2. Let X D
Ss

iD1 Xi whereXi are subvarieties ofX . Then for
m< k,

c 2 GpCm.X / ” cjXi
2 GpCm.Xi/ for all i:

PROOF. By (1) we may assume that dimX Dm and then that allXi are distinct
of dimensionm. Thus an adapted resolution ofX is a collection of adapted
resolutions of each component ofX . ˜

See the Appendix for the definition of the restrictioncjXi
.

PROPOSITION2.3. The filtrationGp given by Theorem2.1 is functorial; that
is, for a regular morphismf W X ! Y of compact real algebraic varieties,
f�.GpCm.X //� GpCm.Y /, for m< k.

PROOF. We prove that if the filtration satisfies the statement of Theorem 2.1 for
chains of dimension< k and is functorial on chains of dimension< k � 1 then
it is functorial on chains of dimensionk � 1.

Let c 2Ck�1.X /, and letf WX ! Y be a regular morphism of compact real
algebraic varieties. By (1) of Theorem 2.1 we may assume dimX D dimY D
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k � 1 and by Lemma 2.2 thatX andY are irreducible. We may assume thatf

is dominant; otherwisef�c D 0. Then there exists a commutative diagram

QX
Qf

����! QY

�X

?

?

y

?

?

y

�Y

X
f

����! Y

where�X is a resolution ofX adapted toc and�Y a resolution ofY adapted
to f�c. Then

c 2 Gp.X / () @.��1
X c/ 2 Gp. QX / ) Qf� @.�

�1
X c/ 2 Gp. QY /;

Qf� @.�
�1
X c/D @ Qf�.�

�1
X c/D @.��1

Y f�c/;

@.��1
Y f�c/ 2 Gp. QY / () f�c 2 Gp.Y /;

where the implication in the first line follows from the inductive assumption.̃

COROLLARY 2.4. The boundary operator@ preserves the filtrationGp:

@GpCm.X //� GpCm�1.X / for m< k:

PROOF. Let� W QX !X be a resolution ofX adapted toc. Let QcD ��1c. Then
c D �� Qc and

c 2 Gp () @ Qc 2 Gp ) @c D @�� Qc D ��@ Qc 2 Gp: ˜

Let c 2 Ck.X /, dimX D k. In order to show that condition (2) of Theorem 2.1
is independent of the choice ofQ� we need the following lemma.

LEMMA 2.5. Let X be a nonsingular compact real algebraic variety of dimen-
sion k and letD � X be a normal crossing divisor. Let c 2 Ck.X / satisfy
Supp@c�D. Let� W QX!X be the blowup of a nonsingular subvarietyC �X

that has normal crossings withD. Then

@c 2 GpCk�1.X / ” @.��1.c// 2 GpCk�1. QX /:

PROOF. Let QD D ��1.D/. Then QD D E [
S

QDi , whereE D ��1.C / is the
exceptional divisor andQDi denotes the strict transform ofDi . By Lemma 2.2,

@c 2 GpCk�1.X / ” @cjDi
2 GpCk�1.Di/ for all i:

Let@icD@cjDi
. The restriction�iD�j QDi

W QDi!Di is the blowup with smooth
centerC \Di . Hence, by the inductive assumption,

@.@ic/ 2 GpCk�2.Di/ ” @��1
i .@ic/D @

�

@.��1.c//j QDi

�

2 GpCk�2. QDi/
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By the inductive assumption of Theorem 2.1,

@.@ic/ 2 GpCk�2.Di/ ” @ic 2 GpCk�1.Di/;

and we have similar properties for@.��1.c//j QDi
and@.��1.c//jE.

Thus, to complete the proof it suffices to show that if@
�

@.��1.c//j QDi

�

lies in
GpCk�2. QDi/ for all i , then@

�

@.��1.c//jE
�

2 GpCk�2.E/. This follows from

0D @.@��1.c//D @
�

P

i

@.��1.c//j QDi
C @.��1.c//jE

�

: ˜

Let �i W Xi ! X; i D 1; 2; be two resolutions ofX adapted toc. Then there
exists� W QX1 ! X1, the composition of finitely many blowups with smooth
centers that have normal crossings with the strict transforms of all exceptional
divisors, such that�1 ı � factors throughX2,

QX1
�

����! X1

�

?

?

y

?

?

y

�1

X2

�2

����! X

By Lemma 2.5,

@.��1
1 .c// 2 GpCk�1.X1/ () @.��1.��1

1 .c/// 2 GpCk�1. QX1/:

On the other hand,

��@.�
�1.��1

1 .c///D ��@.�
�1.��1

2 .c///D @.��1
2 .c//;

and consequently by Proposition 2.3 we have

@.��1
1 .c// 2 GpCk�1.X1/ ÷ @.��1

2 .c// 2 GpCk�1.X2/:

By symmetry,@.��1
2
.c//2Gp.X / implies@.��1

1
.c//2Gp.X /. This completes

the proof of Theorem 2.1. ˜

2B. Properties of the filtration G�. Let U be a (not necessarily compact) real
algebraic variety and letX be a real algebraic compactification ofU . We extend
the filtrationGp to U as follows. Ifc 2C�.U /, let Nc 2C�.X / be its closure. We
define

c 2 GpCk.U / () Nc 2 GpCk.X /:

See the Appendix for the definition of the closure of a chain.

PROPOSITION2.6.GpCk.U / is well-defined; that is, for two compactifications
X1 andX2 of U , we have

c1 2 GpCk.X1/ () c2 2 GpCk.X2/;

whereci denotes the closure ofc in Xi , i D 1; 2.



THE WEIGHT FILTRATION FOR REAL ALGEBRAIC VARIETIES 137

PROOF. We may assume thatk D dimU . By a standard argument, any two
compactifications can be dominated by a third one. Indeed, denote the inclusions
by ii WU ŒXi . Then the Zariski closureX of the image of.i1; i2/ in X1�X2

is a compactification ofU .
Thus we may assume that there is a morphismf WX2!X1 that is the identity

onU . Then, by functoriality,c2 2 GpCk.X2/ impliesc1D f�.c2/2 GpCk.X1/.
By the Chow–Hironaka lemma there is a resolution�1 W QX1! X1, adapted to
c1, that factors throughf : �1 D f ı g. Thenc1 2 GpCk.X1/ is equivalent to
��1

1
.c1/ 2 GpCk. QX1/; but this implies thatc2 D g�.�

�1
1
.c1// 2 GpCk.X2/, as

needed. ˜

THEOREM 2.7. The filtrationG� defines a functorGC� W Schc.R/! C with the
following properties:

(1) For an acyclic square(1-2) the following sequences are exact:

0! GpCk. QY /! GpCk.Y /˚GpCk. QX /! GpCk.X /! 0;

0!
GpCk. QY /

Gp�1Ck. QY /
!

GpCk.Y /

Gp�1Ck.Y /
˚

GpCk. QX /

Gp�1Ck. QX /
!

GpCk.X /

Gp�1Ck.X /
! 0:

(2) For a closed inclusionY � X , with U D X n Y , the following sequences
are exact:

0! GpCk.Y /! GpCk.X /! GpCk.U /! 0;

0!
GpCk.Y /

Gp�1Ck.Y /
!

GpCk.X /

Gp�1Ck.X /
!

GpCk.U /

Gp�1Ck.U /
! 0:

PROOF. The exactness of the first sequence of (2) follows directly from the
definitions (moreover, this sequence splits viac ‘ Nc). The exactness of the
second sequence of (2) now follows by a diagram chase. Similarly, the exactness
of the first sequence of (1) follows from the definitions, and the exactness of the
second sequence of (1) is proved by a diagram chase. ˜

For any varietyX , the filtrationG� is contained in the canonical filtration,

GpCk.X /� F can
p Ck.X /; (2-2)

since@k.G�kCk.X //D 0. Thus on the category of nonsingular projective vari-
eties we have a morphism of functors

� W GC�! F canC�:

THEOREM 2.8. For every nonsingular projective real algebraic varietyM ,

�.M / W GC�.M /! F canC�.M /
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is a filtered quasi-isomorphism. Hence, for every real algebraic varietyX the
localization of� induces a quasi-isomorphism� 0.X / W GC�.X /!WC�.X /.

Theorem 2.8 follows from Corollary 3.11 and Corollary 3.12,which will be
shown in the next section.

3. The Nash constructible filtration

In this section we introduce theNash constructible filtration

0DN�k�1Ck.X /�N�kCk.X /�N�kC1Ck.X /

� � � � �N0Ck.X /D Ck.X / (3-1)

on the semialgebraic chain complexC�.X / of a real algebraic varietyX . We
show that this filtration induces a functor

NC� W Schc.R/! C

that realizes the weight complex functorWC� W Schc.R/ ! HoC. In order
to prove this assertion in Theorem 3.11, we have to extendNC� to a wider
category of sets and morphisms. The objects of this categoryare certain semi-
algebraic subsets of the set of real points of a real algebraic variety, and they
include in particular all connected components of real algebraic subsets ofRPn.
The morphisms are certain proper continuous semialgebraicmaps between these
sets. This extension is crucial for the proof. As a corollarywe show that for
real algebraic varieties the Nash constructible filtrationN� coincides with the
geometric filtrationG� of Section 2A. In this way we complete the proof of
Theorem 2.8.

For real algebraic varieties, the Nash constructible filtration was first defined
in an unpublished paper of H. Pennaneac’h [32], by analogy with the alge-
braically constructible filtration [31; 33]. Theorem 3.11 implies, in particular,
that the Nash constructible filtration of a compact variety is the same as the fil-
tration given by a cubical hyperresolution; this answers affirmatively a question
of Pennaneac’h [32, (2.9)].

3A. Nash constructible functions onRPn and arc-symmetric sets. In real
algebraic geometry it is common to work with real algebraic subsets of the
affine spaceRn � RPn instead of schemes overR, and with (entire) regular
rational mappings as morphisms; see for instance [3] or [5].SinceRPn can be
embedded inRN by a biregular rational map ([3], [5] (3.4.4)), this category also
contains algebraic subsets ofRPn.

A Nash constructible functionon RPn is a function' W RPn! Z such that
there exist a finite family of regular rational mappingsfi WZi!RPn defined on



THE WEIGHT FILTRATION FOR REAL ALGEBRAIC VARIETIES 139

projective real algebraic setsZi , connected componentsZ0
i of Zi , and integers

mi , such that for allx 2 RPn,

'.x/D
X

i

mi�.f
�1

i .x/\Z0
i/; (3-2)

where� is the Euler characteristic. Nash constructible functionswere intro-
duced in [24]. Nash constructible functions onRPn form a ring.

EXAMPLE 3.1.

(1) If Y � RPn is Zariski constructible (a finite set-theoretic combination of
algebraic subsets), then its characteristic function1Y is Nash constructible.

(2) A subsetS � RPn is calledarc-symmetricif every real analytic arc
 W
.a; b/! RPn either meetsS at isolated points or is entirely included inS .
Arc-symmetric sets were first studied by K. Kurdyka in [19]. As shown in
[24], a semialgebraic setS �RPn is arc-symmetric if and only if it is closed
in RPn and 1S is Nash constructible. By the existence of arc-symmetric
closure [19; 21], for a setS �RPn the function1S is Nash constructible and
only if S is a finite set-theoretic combination of semialgebraic arc-symmetric
subsets ofRPn. If 1S is Nash constructible we say thatS is anAS set.

(3) Any connected component of a compact algebraic subset ofRPn is arc-
symmetric. So is any compact real analytic and semialgebraic subset ofRPn.

(4) Every Nash constructible function onRPn is in particularconstructible
(constant on strata of a finite semialgebraic stratificationof RPn). Not all
constructible functions are Nash constructible. By [24], every constructible
function' W RPn! 2nZ is Nash constructible.

Nash constructible functions form the smallest family of constructible functions
that contains characteristic functions of connected components of compact real
algebraic sets, and that is stable under the natural operations inherited from
sheaf theory: pullback by regular rational morphisms, pushforward by proper
regular rational morphisms, restriction to Zariski open sets, and duality; see
[24]. In terms of thepushforward(fiberwise integration with respect to the
Euler characteristic) the formula (3-2) can be expressed as' D

P

i mifi �1Z 0

i
.

Duality is closely related to thelink operator, an important tool for studying
the topological properties of real algebraic sets. For moreon Nash constructible
function see [7] and [21].

If S �RPn is anAS set (i.e. 1S is Nash constructible), we say that a function
onS is Nash constructibleif it is the restriction of a Nash constructible function
on RPn. In particular, this defines Nash constructible functions on affine real
algebraic sets. (In the non-compact case this definition is more restrictive than
that of [24].)
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3B. Nash constructible functions on real algebraic varieties. Let X be a
real algebraic variety and letX denote the set of real points onX . We call a
function' W X ! Z Nash constructibleif its restriction to every affine chart is
Nash constructible. The following lemma shows that this extends our definition
of Nash constructible functions on affine real algebraic sets.

LEMMA 3.2. If X1 and X2 are projective compactifications of the affine real
algebraic varietyU , then' W U ! Z is the restriction of a Nash constructible
function onX 1 if and only if' is the restriction of a Nash constructible function
onX 2.

PROOF. We may suppose that there is a regular projective morphismf WX1!

X2 that is an isomorphism onU ; cf. the proof of Proposition 2.6. Then the state-
ment follows from the following two properties of Nash constructible functions.
If '2 WX 2!Z is Nash constructible, so is its pullbackf �'2D'2ıf WX 1!Z.
If '1 WX 1! Z is Nash constructible, so is its pushforwardf�'1 WX 2! Z. ˜

PROPOSITION3.3. LetX be a real algebraic variety and letY �X be a closed
subvariety. Let U D X n Y . Then' W X ! Z is Nash constructible if and only
if the restrictions of' to Y andU are Nash constructible.

PROOF. It suffices to check the assertion forX affine; this case is easy. ˜

THEOREM 3.4. Let X be a complete real algebraic variety. The function
' W X ! Z is Nash constructible if and only if there exist a finite family of
regular morphismsfi W Zi ! X defined on complete real algebraic varieties
Zi , connected componentsZ0

i of Zi , and integersmi , such that for allx 2X ,

' D
X

i

mi fi �1Z 0

i
: (3-3)

PROOF. If X is complete but not projective, thenX can be dominated by a
birational regular morphism� W QX ! X , with QX projective (Chow’s Lemma).
Let Y � X , dimY < dimX , be a closed subvariety such that� induces an
isomorphism QX n��1.Y /!X nY . Then, by Proposition 3.3,' WX!Z is Nash
constructible if and only if��' and' restricted toY are Nash constructible.

Let Z be a complete real algebraic variety and letf W Z ! X be a regular
morphism. LetZ0 be a connected component ofZ. We show that' D f�1Z 0

is Nash constructible. This is obvious if bothX andZ are projective. If they
are not, we may dominate bothX andZ by projective varieties, using Chow’s
Lemma, and reduce to the projective case by induction on dimension.

Let' WX!Z be Nash constructible. Suppose first thatX is projective. Then
X � RPn is a real algebraic set. LetA � RPm be a real algebraic set and let
f WA! X be a regular rational morphismf D g=h, whereh does not vanish
on A, cf. [3]. Then the graph off is an algebraic subset� � RPn � RPm
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and the set of real points of a projective real varietyZ. Let A0 be a connected
component ofA, and� 0 the graph off restricted toA0. Thenf�1A0 D ��1� 0 ,
where� denotes the projection on the second factor.

If X is complete but not projective, we again dominate it by a birational
regular morphism� W QX ! X , with QX projective. Let' W X ! Z be Nash
constructible. ThenQ'D ' ı� W QX !Z is Nash constructible. Thus, by the case
considered above, there are regular morphismsQfi W QZi ! QX , and connected
componentsQZ0

i such that

Q'.x/D
X

i

mi
Qfi �1 QZ 0

i

:

Then�� Q' D
P

i mi Q��fi �1 QZ 0

i

and differs from' only on the set of real points

of a variety of dimension smaller than dimX . We complete the argument by
induction on dimension. ˜

If X is a real algebraic variety, we again say thatS � X is anAS set if 1S is
Nash constructible, and' W S ! Z is Nash constructibleif the extension of'
to X by zero is a Nash constructible function onX .

COROLLARY 3.5. Let X;Y be complete real algebraic varieties and letS be
anAS subset ofX , andT anAS subset ofY . Let' W S ! Z and W T ! Z

be Nash constructible. Let f W S ! T be a map withAS graph� � X � Y

and let�X WX �Y !X and�Y WX �Y ! Y denote the standard projections.
Then

f�.'/D .�Y /�.1� ��
�
X '/ (3-4)

and
f �. /D .�X /�.1� ��

�
Y  / (3-5)

are Nash constructible.

3C. Definition of the Nash constructible filtration. Denote byXAS the cat-
egory of locally compactAS subsets of real algebraic varieties as objects and
continuous proper maps withAS graphs as morphisms.

Let T 2 XAS . We say that' W T ! Z is generically Nash constructible on
T in dimensionk if ' coincides with a Nash constructible function everywhere
on T except on a semialgebraic subset ofT of dimension< k. We say that'
is generically Nash constructible onT if ' is Nash constructible in dimension
d D dimT .

Let c 2 Ck.T /, and let�k � p � 0. We say thatc is p-Nash constructible,
and writec 2 NpCk.T /, if there exists'c;p W T ! 2kCpZ, generically Nash
constructible in dimensionk, such that

c D fx 2 T I 'c;p.x/ … 2kCpC1Zg up to a set of dimension< k. (3-6)
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up to a set of dimension less thank. The choice of'c;p is not unique. Let
Z denote the Zariski closure of Suppc. By multiplying 'c;p by 1Z , we may
always assume that Supp'�Z and hence, in particular, that dim Supp'c;p�k.

We say thatc 2Ck.T / is pureif c 2N�kCk.T /. By Theorem 3.9 of [21] and
the existence of arc-symmetric closure [19; 21],c 2Ck.T / is pure if and only if
Suppc coincides with anAS set (up to a set of dimension smaller thank). For
T compact this means thatc is pure if and only ifc can be represented by an arc-
symmetric set. By [24], if dimT Dk then every semialgebraically constructible
function' W T ! 2kZ is Nash constructible. HenceN0Ck.T /D Ck.T /.

The boundary operator preserves the Nash constructible filtration:

@NpCk.T /�NpCk�1.T /:

Indeed, ifc 2 Ck.T / is given by (3-6) and dim Supp'c;p � k, then

@c D fx 2Z I '@c;p.x/ … 2kCpZg; (3-7)

where'@c;p equals1
2
�'c;p for k odd and1

2
˝'c;p for k even [24]. A geometric

interpretation of this formula is as follows; see [7]. LetZ be the Zariski closure
of Suppc, so dimZ D k if c ¤ 0. Let W be an algebraic subset ofZ such that
dimW < k and'c;p is locally constant onZ nW . At a generic pointx of W ,
we define@W 'c;p.x/ as the average of the values of'c;p on the local connected
components ofZnW atx. It can be shown that@W 'c;p.x/ is generically Nash
constructible in dimensionk � 1. (For k odd it equals.1

2
�'c;p/jW and fork

even it equals.1
2
˝'c;p/jW ; see [24].)

We say that a square inXAS

QS ����! QT
?

?

y

?

?

y

�

S
i

����! T

(3-8)

is acyclic if i is a closed inclusion,QS D ��1.Y / and the restriction of� is a
homeomorphismQT n QS ! T nS .

THEOREM 3.6. The functorNC� W XAS ! C, defined on the categoryXAS of
locally compactAS sets and continuous proper maps withAS graphs, satisfies:

(1) For an acyclic square(3-8) the sequences

0!NpCk. QS/!NpCk.S/˚NpCk. QT /!NpCk.T /! 0;

0!
NpCk. QS/

Np�1Ck. QS/
!

NpCk.S/

Np�1Ck.S/
˚

NpCk. QT /

Np�1Ck. QT /
!

NpCk.T /

Np�1Ck.T /
! 0;

are exact.
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(2) For a closed inclusionS � T , the restriction toU D T n S induces a
morphism of filtered complexesNC�.T /!NC�.U /, and the sequences

0!NpCk.S/!NpCk.T /!NpCk.U /! 0;

0!
NpCk.S/

Np�1Ck.S/
!

NpCk.T /

Np�1Ck.T /
!

NpCk.U /

Np�1Ck.U /
! 0;

are exact.

PROOF. We first show thatNC� is a functor; that is, for a proper morphism
f W T ! S , f�NpCk.T / �NpCk.S/. Let c 2NpCk.T / and let' D 'c;p be
a Nash constructible function onT satisfying (3-6) (up to a set of dimension
< k). Then

f�c D fy 2 S I f�. /.y/ … 2kCpC1ZgI

that is,'f�c;p D f�'c;p.
For a closed inclusionS � T , the restriction toU D T n S of a Nash con-

structible function onT is Nash constructible. Therefore the restriction defines
a morphismNC�.T /! NC�.U /. The exactness of the first sequence of (2)
can be verified easily by direct computation. We note, moreover, that for fixed
k the morphism

N�Ck.T /!N�Ck.U /

splits (the splitting does not commute with the boundary), by assigning toc 2
NpCk.U / its closureNc 2 Ck.T /. Let ' W T ! 2kCpZ be a Nash constructible
function such that'jT nSD'c;p. ThenNcDfx2T I .1T�1S /'.x/…2kCpC1Zg

up to a set of dimension< k.
The exactness of the second sequence of (2) and the sequencesof (1) now

follow by standard arguments. (See the proof of Theorem 2.7.) ˜

3D. The Nash constructible filtration for Nash manifolds. A Nash func-
tion on an open semialgebraic subsetU of RN is a real analytic semialgebraic
function. Nash morphisms and Nash manifolds play an important role in real
algebraic geometry. In particular a connected component ofcompact nonsingu-
lar real algebraic subset ofRn is a Nash submanifold ofRN in the sense of [5]
(2.9.9). SinceRPn can be embedded inRN by a rational diffeomorphism ([3],
[5] (3.4.2)) the connected components of nonsingular projective real algebraic
varieties can be considered as Nash submanifolds of affine space. By the Nash
Theorem [5, 14.1.8], every compactC 1 manifold isC 1-diffeomorphic to a
Nash submanifold of an affine space, and moreover such a modelis unique
up to Nash diffeomorphism [5, Corollary 8.9.7]. In what follows by aNash
manifoldwe mean a compact Nash submanifold of an affine space.
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Compact Nash manifolds and the graphs of Nash morphisms on them areAS

sets. IfN is a Nash manifold, the Nash constructible filtration is contained in
the canonical filtration,

NpCk.N /� F can
p Ck.N /; (3-9)

since@k.N�kCk.N //D 0. Thus on the category of Nash manifolds and Nash
maps have a morphism of functors

� WNC�! F canC�:

THEOREM 3.7. For every Nash manifoldN ,

�.N / WNC�.N /! F canC�.N /

is a filtered quasi-isomorphism.

PROOF. We show that for allp andk, �.N / induces an isomorphism

�� WHk.NpC�.N //ŠHk.F
can
p C�.N //: (3-10)

Then, by the long exact homology sequences of.NpC�.N /;Np�1C�.N // and
.F can

p C�.N /; F can
p�1

C�.N //,

�� WHk

�

NpC�.N /

Np�1C�.N /

�

!Hk

�

F can
p C�.N /

F can
p�1

C�.N /

�

is an isomorphism, which shows the claim of the theorem.
We proceed by induction on the dimension ofN . We call a Nash morphism

� W QN!N aNash multi-blowupif � is a composition of blowups along nowhere
dense Nash submanifolds.

PROPOSITION 3.8. Let N;N 0 be compact connected Nash manifolds of the
same dimension. Then there exist multi-blowups� W QN !N , � W QN 0!N 0 such
that QN and QN 0 are Nash diffeomorphic.

PROOF. By a theorem of Mikhalkin (see [26] and Proposition 2.6 in [27]), any
two connected closedC 1 manifolds of the same dimension can be connected
by a sequence ofC 1 blowups and and then blowdowns with smooth centers.
We show that thisC 1 statement implies an analogous statement in the Nash
category.

Let M be a closedC 1 manifold. By the Nash–Tognoli Theorem there is
a nonsingular real algebraic setX , a fortiori a Nash manifold, that isC 1-
diffeomorphic toM . Moreover, by approximation by Nash mappings, any two
Nash models ofM are Nash diffeomorphic; see Corollary 8.9.7 in [5]. Thus in
order to show Proposition 3.8 we need only the following lemma.
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LEMMA 3.9. Let C �M be aC 1 submanifold of a closedC 1 manifoldM .
Suppose thatM is C 1-diffeomorphic to a Nash manifoldN . Then there exists
a Nash submanifoldD � N such that the blowupsBl.M;C / of M along C

andBl.N;D/ of N alongD are C 1-diffeomorphic.

Proof. By the relative version of Nash–Tognoli Theorem proved by Akbulut
and King, as well as Benedetti and Tognoli (see for instance Remark 14.1.15
in [5]), there is a nonsingular real algebraic setX and aC 1 diffeomorphism
' WM!X such thatY D'.C / is a nonsingular algebraic set. Then the blowups
Bl.M;C / of M alongC andBl.X;Y / of X alongY areC 1-diffeomorphic.
Moreover, sinceX andN areC 1-diffeomorphic, they are Nash diffeomorphic
by a Nash diffeomorphism W X !N . ThenBl.X;Y / andBl.N;  .Y // are
Nash diffeomorphic. This proves the lemma and the proposition. ˜

LEMMA 3.10.LetN be a compact connected Nash manifold and let� W QN!N

denote the blowup ofN along a nowhere dense Nash submanifoldY . Then
�.N / is a quasi-isomorphism if and only if�. QN / is a quasi-isomorphism.

PROOF. Let QY D ��1.Y / denote the exceptional divisor of�. For eachp

consider the diagram

�! HkC1.NpC�.N // �! Hk.NpC�. QY // �! Hk.NpC�.Y //˚Hk.NpC�. QN // �!
?

?

?

y

?

?

?

y

?

?

?

y

�! HkC1.F
can
p C�.N // �! Hk.F

can
p C�. QY // �! Hk.F

can
p C�.Y //˚Hk.F

canC�. QN // �!

The top row is exact by Theorem 3.6. For all manifoldsN and for allp andk,
we have

Hk.F
can
p C�.N //D

�

Hk.N / if k � �p,
0 if k < �p,

so the short exact sequences (1-3) give that the bottom row isexact. The lemma
now follows from the inductive assumption and the Five Lemma. ˜

Consequently it suffices to show that�.N / is a quasi-isomorphism for a single
connected Nash manifold of each dimensionn. We check this assertion for the
standard sphereSn by showing that

Hk.NpC�.S
n//D

n

Hk.S
n/ if k D 0 or n andp ��k,

0 otherwise.

Let c 2 NpCk.S
n/, k < n, be a cycle described as in (3-6) by the Nash

constructible function'c;p W Z ! 2kCpZ, whereZ is the Zariski closure of
Suppc. Thenc can be contracted to a point. More precisely, choosep 2SnnZ.
ThenSn n fpg andRn are isomorphic. Define a Nash constructible function
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˚ WZ �R! 2kCpC1Z by the formula

˚.x; t/D
n

2'c;p.x/ if t 2 Œ0; 1�,
0 otherwise.

Then

c � Œ0; 1�D f.x; t/ 2Z �R I ˚.x; t/ … 2kCpC2ZgI

soc� Œ0; 1� 2NpCkC1.Z�R/. The morphismf WZ�R!Rn, f .x; t/D tx,
is proper and fork > 0

@f�.c � Œ0; 1�/D f�.@c � Œ0; 1�/D c;

which shows thatc is a boundary inNpC�.S
n/. If k D 0 then@f�.c� Œ0; 1�/D

c � .degc/Œ0�.
If c 2NpCn.S

n/ is a cycle, thenc is a cycle inCn.S
n/; that is, eitherc D 0

or c D ŒSn�. This completes the proof of Theorem 3.7. ˜

3E. Consequences for the weight filtration.

COROLLARY 3.11. For every real algebraic varietyX the localization of�
induces a quasi-isomorphism� 0.X / WNC�.X /!WC�.X /.

PROOF. Theorem 3.6 yields that the functorNC� W Schc.R/! HoC satisfies
properties (1) and (2) of Theorem 1.1. Hence Theorem 3.7 and Theorem 1.4
give the desired result. ˜

COROLLARY 3.12. Let X be a real algebraic variety. Then for allp and k,
NpCk.X /D GpCk.X /.

PROOF. We show that the Nash constructible filtration satisfies properties (1)
and (2) of Theorem 2.1. This is obvious for property (1). We show property (2).
Let Qc D ��1.c/. First we note that

c 2NpCk.X / () Qc 2NpCk. QX /:

Indeed, (() follows from functoriality, sincec D ��. Qc/. If c is given by (3-1)
then��.'c;p/ is Nash constructible and describesQc. Thus it suffices to show

Qc 2NpCk. QX / () @ Qc 2NpCk�1. QX /

for p � �k, with the implication () ) being obvious. Ifp D �k then each
cycle is arc-symmetric. (Such a cycle is a union of connectedcomponents of
QX , since QX is nonsingular and compact.) Forp > �k suppose, contrary to our

claim, that

Qc 2NpCk. QX / nNp�1Ck. QX / and @ Qc 2Np�1Ck�1. QX /:
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By Corollary 3.11 and Proposition 1.8

Hk

�

NpC�. QX /

Np�1C�. QX /

�

D 0;

and Qc has to be a relative boundary. But dimQX D k andCkC1. QX / D 0. This
completes the proof. ˜

4. Applications to real algebraic and analytic geometry

Algebraic subsets of affine space, or more generallyZ-open orZ-closed
affine or projective sets in the sense of Akbulut and King [3],areAS sets. So
are the graphs of regular rational mappings. Therefore Theorems 3.6 and 3.7
give the following result.

THEOREM4.1. The Nash constructible filtration of closed semialgebraic chains
defines a functor from the category of affine real algebraic sets and proper regu-
lar rational mappings to the category of bounded chain complexes ofZ2 vector
spaces with increasing bounded filtration.

This functor is additive and acyclic; that is, it satisfies properties(1) and
(2) of Theorem3.6; and it induces the weight spectral sequence and the weight
filtration on Borel–Moore homology with coefficients inZ2.

For compact nonsingular algebraic sets, the reindexed weight spectral se-
quence is pure: QE2

p;q D 0 for p > 0.

For the last claim of the theorem we note that every compact affine real algebraic
set that is nonsingular in the sense of [3] and [5] admits a compact nonsingular
complexification. Thus the claim follows from Theorem 3.7.

The purity of QE2 implies the purity of QE1: QE1
p;qD0 for p>0. Consequently

every nontrivial homology class of a nonsingular compact affine or projective
real algebraic variety can be represented by a semialgebraic arc-symmetric set,
a result proved directly in [18] and [21].

REMARK 4.2. Theorem 3.6 and Theorem 3.7 can be used in more general
contexts. A compact real analytic semialgebraic subset of areal algebraic va-
riety is anAS set. A compact semialgebraic set that is the graph of a real
analytic map, or more generally the graph of an arc-analyticmapping (cf. [21]),
is arc-symmetric. In Section 3E we have already used that compact affine Nash
manifolds and graphs of Nash morphisms defined on compact Nash manifolds
are arc-symmetric.

The weight filtration of homology is an isomorphism invariant but not a home-
omorphism invariant; this is discussed in [25] for the dual weight filtration of
cohomology.
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PROPOSITION4.3. LetX andY be locally compactAS sets, and letf WX!Y

be a homeomorphism withAS graph. Thenf� W NC�.X /! NC�.Y / is an
isomorphism of filtered complexes.

Consequently, f� induces an isomorphism of the weight spectral sequences
of X andY and of the weight filtrations ofH�.X / andH�.Y /. Thus the virtual
Betti numbers(1-4)of X andY are equal.

PROOF. The first claim follows from the fact thatNC� WXAS! C is a functor;
see the proof of Theorem 3.6. The rest of the proposition thenfollows from
Theorem 3.6 and Theorem 3.7. ˜

REMARK 4.4. Proposition 4.3 applies, for instance, to regular homeomorphisms
such asf W R! R, f .x/D x3. The construction of the virtual Betti numbers
of [25] was extended toAS sets by G. Fichou in [11], where their invariance
by Nash diffeomorphism was shown. The arguments of [25] and [11] use the
weak factorization theorem of [1].

4A. The virtual Poincaré polynomial. Let X be a locally compactAS set.
The virtual Betti numbers give rise to thevirtual Poincaŕe polynomial

ˇ.X /D
X

i

ˇi.X / t i : (4-1)

For real algebraic varieties the virtual Poincaré polynomial was first introduced
in [25]. ForAS sets, not necessarily locally compact, it was defined in [11]. It
satisfies the following properties [25; 11]:

(i) Additivity: For finite disjoint unionX D
F

Xi , we havě .X /D
P

ˇ.Xi/.
(ii) Multiplicativity: ˇ.X �Y /D ˇ.X / �ˇ.Y /.
(iii) Degree:For X ¤?, degˇ.X /D dimX and the leading coefficienť.X /

is strictly positive.

(If X is not locally compact we can decompose it into a finite disjoint union of
locally compactAS setsX D

F

Xi and defině .X /D
P

ˇ.Xi/.)
We say that a functionX!e.X / defined on real algebraic sets is aninvariant

if it an isomorphism invariant, that ise.X /D e.Y / if X andY are isomorphic
(by a biregular rational mapping). We say thate is additive if e takes values
in an abelian group ande.X n Y / D e.X /� e.Y / for all Y � X . We saye is
multiplicative if e takes values in a ring ande.X �Y /D e.X /e.Y / for all X;Y .
The following theorem states that the virtual Betti polynomial is a universal
additive, or additive and multiplicative, invariant defined on real algebraic sets
(or real points of real algebraic varieties in general), among those invariants that
do not distinguish Nash diffeomorphic compact nonsingularreal algebraic sets.
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THEOREM 4.5. Let e be an additive invariant defined on real algebraic sets.
Suppose that for every pairX;Y of Nash diffeomorphic nonsingular compact
real algebraic sets we havee.X /D e.Y /. Then there exists a unique group ho-
momorphismhe WZŒt �!G such thateDheıˇ. If , moreover, e is multiplicative
thenhe is a ring homomorphism.

PROOF. Defineh.tn/ D e.Rn/. We claim that the additive invariant'.X / D
h.ˇ.X //� e.X / vanishes for every real algebraic setX . This is the case for
X DRn sinceˇ.Rn/D tn. By additivity, this is also the case forSnDRntpt .
By the existence of an algebraic compactification and resolution of singularities,
it suffices to show the claim for compact nonsingular real algebraic sets.

Let X be a compact nonsingular real algebraic set and letQX be the blowup of
X along a smooth nowhere dense center. Then, using induction on dimX , we
see that'.X /D 0 if and only if '. QX /D 0. By the relative version of the Nash–
Tognoli Theorem, the same result holds if we have thatQX is Nash diffeomorphic
to the blowup of a nowhere dense Nash submanifold ofX . Thus the claim and
hence the first statement follows from Mikhalkin’s Theorem. ˜

Following earlier results of Ax and Borel, K. Kurdyka showedin [20] that
any regular injective self-morphismf W X ! X of a real algebraic variety
is surjective. It was then showed in [29] that an injective continuous self-map
f WX !X of a locally compactAS set, such that the graph off is anAS set,
is a homeomorphism. The arguments of both [20] and [29] are topological and
use the continuity off in essential way. The use of additive invariants allows
us to handle the non-continuous case.

THEOREM 4.6. Let X be anAS set and letf W X ! X be a map withAS

graph. If f is injective then it is surjective.

PROOF. It suffices to show that there exists a finite decompositionX D
F

Xi

into locally compactAS sets such that for eachi , f restricted toXi is a home-
omorphism onto its image. Then, by Corollary 4.3,

ˇ
�

X n
F

i f .Xi/
�

D ˇ.X /�
P

i ˇ.Xi/D 0;

and hence, by the degree property,X n
F

i f .Xi/D?.
To get the required decomposition first we note that by classical theory there

exists a semialgebraic stratification ofX D
F

Sj such thatf restricted to each
stratum is real analytic. We show that we may choose strata belonging to the
classAS. (We do not require the strata to be connected.) By [20] and [29],
each semialgebraic subsetA of a real algebraic varietyV has a minimalAS

closure inV , denotedAAS . Moreover ifA is AS then dimAAS nA < dimA.
Therefore, we may take as the first subset of the decomposition the complement



150 CLINT MCCRORY AND ADAM PARUSIŃSKI

in X of theAS closure of the union of strataSj of dimension< dimX , and
then proceed by induction on dimension.

Let X D
F

Sj be a stratification withAS strata and such thatf is analytic
on each stratum. Then, for each stratumSj , we apply the above argument to
f �1 defined onf .Sj /. The induced subdivision off .Sj /, and hence ofSj ,
satisfies the required property. ˜

Of course, in general, surjectivity does not apply injectivity for a self-map. Nev-
ertheless we have the following result.

THEOREM 4.7. Let X be anAS set and letf W X ! X be a surjective map
with AS graph. Suppose that there exist a finiteAS decompositionX D

F

Yi

andAS setsFi such that for eachi , f �1.Yi/ is homeomorphic toYi �Fi by a
homeomorphism withAS graph. Thenf is injective.

PROOF. We have

0D ˇ.X /�ˇ.f .X //D
X

ˇ.Yi/.ˇ.Fi/� 1/:

Thereforě .Fi/�1D 0 for eachi ; otherwise the polynomial on the right-hand
side would be nonzero with strictly positive leading coefficient. ˜

4B. Application to spaces of orderings.Let V be an irreducible real algebraic
subset ofRN . A function' W V ! Z is calledalgebraically constructibleif it
satisfies one of the following equivalent properties [24; 30]:

(i) There exist a finite family of proper regular morphismsfi W Zi ! V , and
integersmi , such that for allx 2 V ,

'.x/D
X

i

mi�.f
�1

i .x/\Zi/: (4-2)

(ii) There are finitely many polynomialsPi 2 RŒx1; : : : ;xN � such that for all
x 2 V ,

'.x/D
X

i

sgnPi.x/:

Let KDK.V / denote the field of rational functions ofV . A function' WV !Z

is generically algebraically constructible if and only if can be identified, up to
a set of dimension smaller dimV , with the signature of a quadratic form over
K. Denote byX the real spectrum ofK. A (semialgebraically) constructible
function onV , up to a set of dimension smaller dimV , can be identified with
a continuous function' W X ! Z; see [5, Chapter 7], [23], and [6]. The repre-
sentation theorem of Becker and Bröcker gives a fan criterion for recognizing
generically algebraically constructible function onV . The following two theo-
rems are due to I. Bonnard.
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THEOREM 4.8 [6]. A constructible function' W V ! Z is generically alge-
braically constructible if and only for any finite fanF of X

X

�2F

'.�/� 0 mod jF j: (4-3)

For the notion of a fan see [5, Chapter 7], [23], and [6]. The number of elements
jF j of a finite fanF is always a power of2. It is known that for every finite fan
F of X there exists a valuation ringBF of K compatible withF , and on whose
residue field the fanF induces exactly one or two distinct orderings. Denote
by F the set of these fans ofK for which the residue field induces only one
ordering.

THEOREM 4.9 [6]. A constructible function' W V ! Z is generically Nash
constructible if and only if(4-3) holds for every fanF 2 F .

The following question is due to M. Coste and M. A. Marshall [23, Question 2]:

Suppose that a constructible function' WV !Z satisfies(4-3) for every fanF
of K with jF j � 2n. Does there exists a generically algebraically constructible
function W V ! Z such that for eachx 2 V , '.x/� .x/� 0 mod 2n?

We give a positive answer to the Nash constructible analog ofthis question.

THEOREM 4.10. Suppose that a constructible function' W V ! Z satisfies
(4-3) for every fanF 2 F with jF j � 2n. Then there exists a generically Nash
constructible function W V ! Z such that for eachx 2 V , '.x/� .x/ � 0

mod 2n.

PROOF. We proceed by induction onn and onk D dimV . The casen D 0 is
trivial.

Suppose' W V ! Z satisfies (4-3) for every fanF 2F with jF j � 2n, n� 1.
By the inductive assumption,' is congruent modulo2n�1 to a generically Nash
constructible function n�1. By replacing' by ' �  n�1, we may suppose
2n�1 divides'.

We may also supposeV compact and nonsingular, just choosing a model for
K DK.V /. Moreover, by resolution of singularities, we may assume that ' is
constant in the complement of a normal crossing divisorD D

S

Di � V .
Let c be given by (3-6) with'c;p D ' andp D n�k �1. At a generic point

x of Di define@Di
'.x/ as the average of the values of' on the local connected

components ofV n D at x. Then @c D
P

i @ic, where@ic is described by
@Di

' as in (3-7) (see [7]). Note that the constructible functions@Di
' satisfy the

inductive assumption forn� 1. Hence each@Di
' is congruent to a generically

Nash constructible function modulo2n�1. In other words@c 2 NpCk�1.V /.
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Then by Corollary 3.12 we havec 2NpCk.V /, which implies the statement of
the theorem. ˜

Using Corollary 3.12 we obtain the following result. The original proof was
based on the fan criterion (Theorem 4.9).

PROPOSITION4.11 [7]. LetV �RN be compact, irreducible, and nonsingular.
Suppose that the constructible function' W V ! Z is locally constant in the
complement of a normal crossing divisorDD

S

Di �V . Then' is generically
Nash constructible if and only if@D' is generically Nash constructible.

PROOF. We show only ((). Suppose2kCpj' generically, wherek D dimV ,
and let c be given by (3-6) with'c;p D '. Then by our assumption@c 2
NpCk�1.V /. By Corollary 3.12 we havec 2 NpCk.V /, which shows that,
modulo2kCpC1, ' coincides with a generically Nash constructible function .
Then we apply the same argument to' � . ˜

REMARK 4.12. We note that Proposition 4.11 implies neither Theorem4.10
nor Corollary 3.12. Similarly the analog of this proposition proved in [6] does
not give an answer to Coste and Marshall’s question.

5. The toric filtration

In their investigation of the relation between the homologyof the real and
complex points of a toric variety [4], Bihanet al.define a filtration on the cellu-
lar chain complex of a real toric variety. We prove that this filtered complex
is quasi-isomorphic to the semialgebraic chain complex with the Nash con-
structible filtration. Thus the toric filtered chain complexrealizes the weight
complex, and the real toric spectral sequence of [4] is isomorphic to the weight
spectral sequence.

For background on toric varieties see [12]. We use a simplified version of
the notation of [4]. Let� be a rational fan inRn, and letX� be the real toric
variety defined by�. The groupTD .R�/n acts onX�, and thek-dimensional
orbitsO� of this action correspond to the codimensionk cones� of �.

The positive partX C
�

of X� is a closed semialgebraic subset ofX�, and there
is a canonical retractionr WX�!X C

�
that can be identified with the orbit map

of the action of the finite groupT D .S0/n onX�, whereS0Df�1;C1g�R�.
TheT -quotient of thek-dimensionalT-orbitO� is a semialgebraick-cell c� of
X C

�
, andO� is a disjoint union ofk-cells, each of which maps homeomorphi-

cally ontoc� by the quotient map. This decomposition defines a cell structure on
X� such thatX C

�
is a subcomplex and the quotient map is cellular. LetC�.�/

be the cellular chain complex ofX� with coefficients inZ2. The closures of
the cells ofX� are not necessarily compact, but they are semialgebraic subsets
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of X�. Thus we have a chain map

˛ W C�.�/! C�.X�/ (5-1)

from cellular chains to semialgebraic chains.
Thetoric filtration of the cellular chain complexC�.�/ is defined as follows

[4]. For eachk � 0 we define vector subspaces

0D T�k�1Ck.�/� T�kCk.�/� T�kC1Ck.�/� � � � � T0Ck.�/D Ck.�/;

(5-2)
such that@k.TpCk.�//� TpCk�1.�/ for all k andp.

Let � be a cone of the fan�, with codim� D k. Let Ck.�/ be the subspace
of Ck.�/ spanned by thek-cells ofO� . Then

Ck.�/D
M

codim� D k

Ck.�/:

The orbitO� has a distinguished pointx� 2 c� �X C
�

. LetT� DT=T x� , where
T x� is theT -stabilizer ofx� . We identify the orbitT �x� with the multiplicative
groupT� . Eachk-cell ofO� contains a unique point of the orbitT �x� . Thus we
can make the identificationCk.�/D C0.T� /, the set of formal sums

P

i ai Œgi �,
whereai 2 Z2 andgi 2 T� . The multiplication ofT� defines a multiplication
on C0.T� /, so thatC0.T� / is just the group algebra ofT� overZ2 .

Let I� be the augmentation ideal of the algebraC0.T� /, that is,

I� D KerŒ" W C0.T� /! Z2� with "
P

i

ai Œgi �D
P

i

ai :

For p � 0 we defineTpCk.�/ to be the subspace corresponding to the ideal
.I� /

�p � C0.T� /, and we let

TpCk.�/D
X

codim� D k

TpCk.�/:

If � < � in � and codim� D codim� � 1, the geometry of� determines a
group homomorphism'�� W T� ! T� (see [4]). Let@�� W Ck.�/! Ck�1.�/ be
the induced algebra homomorphism. We have@�� .I� /�I� . The boundary map
@k W Ck.�/! Ck�1.�/ is given by@k.�/D

P

� @�� .�/, and@k.TpCk.�// �

TpCk�1.�/, soTpC�.�/ is a subcomplex ofC�.�/.

PROPOSITION5.1. For all k � 0 andp � 0, the chain map̨ (5-1) takes the
toric filtration (5-2) to the Nash filtration(3-1),

˛.TpCk.�//�NpCk.X�/:
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PROOF. It suffices to show that for every cone� 2� with codim� D k,

˛.TpCk.�//�NpCk.O� /:

The varietyO� is isomorphic to.R�/k , the toric variety of the trivial fanf0g in
Rk , and the action ofT� onO� corresponds to the action ofTkDf�1;C1gk on
.R�/k . Thek-cells of .R�/k are its connected components. LetIk � C0.Tk/

be the augmentation ideal. LetqD�p, so0� q � k. The vector spaceC0.Tk/

has dimension2k , and for eachq the quotientIq=IqC1 has dimension
�

k
q

�

.
A basis forIq=IqC1 can be defined as follows. Lett1; : : : ; tk be the standard
generators of the multiplicative groupTk ,

ti D .ti1; : : : ; tik/; tij D

�

�1 if i D j ,
1 if i ¤ j .

If S � f1; : : : ; kg, let TS be the subgroup ofTk generated byfti I i 2 Sg,
and defineŒTS � 2 C0.Tk/ by

ŒTS �D
X

t2TS

Œt �:

ThenfŒTS � I jS j D qg is a basis forIq=IqC1 (see [4]).
To prove that̨ ..Ik/

q/�N�qCk..R
�/k/we just need to show that ifjS jDq

then˛.ŒTS �/ 2N�qCk..R
�/k/. Now the chain̨ .ŒTS �/ 2 Ck..R

�/k/ is repre-
sented by the semialgebraic setAS � .R

�/k ,

AS D f.x1; : : : ;xk/ I xi > 0; i … Sg;

and' D 2k�q1AS
is Nash constructible. To see this consider the compactifi-

cation .P1.R//k of .R�/k . We have' D Q'j.R�/k , where Q' D f�1.P1.R//k ,

with f W .P1.R//k ! .P1.R//k defined as follows. Ifz D .u W v/ 2 P1.R/, let
f1.z/D .u W v/, andf2.z/D .u

2 W v2/. Then

f .z1; : : : ; zk/D .w1; : : : ; wk/; wi D

�

f1.zi/ if i 2 S ,
f2.zi/ if i … S .

This completes the proof. ˜

LEMMA 5.2. Let� be a codimensionk cone of�, and let

Ci.�/D

�

Ck.�/ if i D k,
0 if i ¤ k.

For all p � 0,
˛� WH�.TpC�.�//!H�.NpC�.O� //

is an isomorphism.
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PROOF. Again we only need to consider the caseO� D .R
�/k , where� is the

trivial cone0 in Rn. Now

Hi.C�.0//D

�

Ck.0/ if i D k,
0 if i ¤ k,

and

Hi.C�..R
�/k//D

�

Ker@k if i D k,
0 if i ¤ k,

where@k W Ck..R
�/k/! Ck�1..R

�/k/. The vector space Ker@k has basis the
cycles represented by the components of.R�/k , and˛ W Ck.0/! Ck..R

�/k/

is a bijection from the cells ofCk.0/ to the components of.R�/k . Thus˛ W
Ck.0/ ! Ker@k is an isomorphism of vector spaces. Therefore˛ takes the
basisfAS I jS j D qgqD0;:::;k to a basis of Ker@k . The proof of Proposition
5.1 shows that ifjS j � q thenAS 2 N�qCk..R

�/k/. We claim further that if
jS j< q thenAS …N�qCk..R

�/k/. It follows thatfAS I jS j � qg is a basis for
Hk.N�qC�..R

�/k/, and so

˛� WH�.T�qC�.0//!H�.N�qC�..R
�/k//

is an isomorphism, as desired.
To prove the claim, it suffices to show that ifAS is the closure ofAS in Rn,

thenAS … N�qCk..R
�/k/. We show this by induction onk. The casek D 1

is clear: IfAD fx I x � 0g thenA … N�1C1.R/ because@A ¤ 0. In general
ASDf.x1; : : : ;xk/ I xi�0; i …Sg. SupposeAS is .�q/-Nash constructible for
someq> jS j. Then there exists' WRk! 2k�qZ generically Nash constructible
in dimensionk such thatAS D fx 2 Rk I '.x/ … 2k�qC1Zg; up to a set of
dimension< k. Let j …S , and letWj Df.x1; : : : ;xk/ I xj D 0gŠRk�1. Then
@Wj

' WWj ! 2k�q�1Z, andAS \Wj D fx 2Wj I @Wj
'.x/ … 2k�qZg, up to

a set of dimension< k � 1. HenceAS \Wj 2N�qCk�1.Wj /. But

AS \Wj D f.x; : : : ;xk/ I xj D 0;xi � 0; i … Sg;

and so by the inductive hypothesisAS \Wj …N�qCk�1.Wj /, which is a con-
tradiction. ˜

LEMMA 5.3. For every toric varietyX� and everyp � 0,

˛� WH�.TpC�.�//!H�.NpC�.X�//

is an isomorphism.

PROOF. We show by induction on orbits that the lemma is true for every variety
Z that is a union of orbits in the toric varietyX�. Let˙ be a subset of�, and
let˙ 0 D˙ n f�g, where� 2˙ is a minimal cone,i. e. there is no� 2˙ with
� < � . Let Z andZ0 be the unions of the orbits corresponding to cones in˙
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and˙ 0, respectively. ThenZ0 is closed inZ, andZ nZ0 D O� . We have a
commutative diagram with exact rows:

� � � �! Hi.TpC�.˙
0// �! Hi.TpC�.˙// �! Hi.TpC�.�// �! Hi�1.TpC�.˙

0// �! � � �
?

?

?

y

ˇi

?

?

?

y


i

?

?

?

y

˛i

?

?

?

y

ˇi�1

� � � �! Hi.NpC�.˙
0// �! Hi.NpC�.˙// �! Hi.NpC�.�// �! Hi�1.NpC�.˙

0// �! � � �

By Lemma 5.3̨ i is an isomorphism for alli . By inductive hypothesiš i is an
isomorphism for alli . Therefore
i is an isomorphism for alli . ˜

THEOREM 5.4. For every toric varietyX� and everyp � 0,

˛� WH�

�

TpC�.�/

Tp�1C�.�/

�

!H�

�

NpC�.X�/

Np�1C�.X�/

�

is an isomorphism.

PROOF. This follows from Lemma 5.3 and the long exact homology sequences
of the pairs.TpC�.�/; Tp�1C�.�// and.NpC�.X�/;Np�1C�.X�//. ˜

Thus for every toric varietyX� the toric filtered complexT C�.�/ is quasi-
isomorphic to the Nash constructible filtered complexNC�.X�/, and so the
toric spectral sequence [4] is isomorphic to the weight spectral sequence.

EXAMPLE 5.5. For toric varieties of dimension at most 4, the toric spectral
sequence collapses [4; 35]. V. Hower [17] discovered that the spectral sequence
does not collapse for the 6-dimensional projective toric variety associated to the
matroid of the Fano plane.

Appendix: Semialgebraic chains

In this appendix we denote byX a locally compact semialgebraic set (i.e.
a semialgebraic subset of the set of real points of a real algebraic variety) and
by C�.X / the complex of semialgebraic chains ofX with closed supports and
coefficients inZ2. The complexC�.X / has the following geometric description,
which is equivalent to the usual definition using a semialgebraic triangulation
[5, 11.7].

A semialgebraic chainc of X is an equivalence class of closed semialgebraic
subsets ofX . For k � 0, let Sk.X / be theZ2 vector space generated by the
closed semialgebraic subsets ofX of dimension� k. ThenCk.X / is theZ2

vector space obtained as the quotient ofSk.X / by the following relations:

(i) If A andB are closed semialgebraic subsets ofX of dimension at mostk,
then

ACB � cl.A�B/;
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whereA�B D .A[B/ n .A\B/ is the symmetric difference ofA andB,
and cl denotes closure.

(ii) If A is a closed semialgebraic subset ofX and dimA< k, thenA� 0.

If the chainc is represented by the semialgebraic setA, we write c D ŒA�. If
c2Ck.X /, thesupportof c, denoted Suppc, is the smallest closed semialgebraic
set representingc. If c D ŒA� then Suppc D fx 2A I dimx AD kg.

The boundaryoperator@k W Ck.X / ! Ck�1.X / can be defined using the
link operator� on constructible functions [24]. Ifc 2Ck.X / with cD ŒA�, then
@kc D Œ@A�, where@A D fx 2 A I �1A.x/� 1 .mod 2/g. The operator@k is
well-defined, and@k�1@k D 0, since� ı�D 2�.

If f W X ! Y is a proper continuous semialgebraic map, thepushforward
homomorphismf� W Ck.X /! Ck.Y / is defined as follows. LetA be a repre-
sentative ofc. Thenf .A/ � B1C � � � CBl , where each closed semialgebraic
setBi has the property that #.A\ f �1.y// is constant mod 2 onBi nB0

i for
some closed semialgebraic setBi �Bi with dimB0

i < k. For eachi let ni 2Z2

be this constant value. Thenf�.c/D n1ŒB1�C � � �C nl ŒBl �.
Alternately,f�.c/ D ŒB�, whereB D clfy 2 Y I f�1A.y/ � 1 .mod 2/g,

andf� is pushforward for constructible functions [24]. From thisdefinition it
is easy to prove the standard propertiesg�f� D .gf /� and@kf� D f�@k .

We use two basic operations on semialgebraic chains: restriction and closure.
These operations do not commute with the boundary operator in general.

Let c 2 Ck.X / and letZ � X be a locally closed semialgebraic subset. If
c D ŒA�, we define therestriction by cjZ D ŒA\Z� 2 Ck.Z/. This operation
is well-defined. IfU is an open semialgebraic subset ofX , then@k.cjU / D

.@kc/jU .
Now let c 2 Ck.Z/ with Z � X locally closed semialgebraic. Ifc D ŒA�

we define theclosureby Nc D Œcl.A/� 2 Ck.X /, where cl.A/ is the closure ofA
in X . Closure is a well-defined operation on semialgebraic chains.

By means of the restriction and closure operations, we definethe pullback of a
chain in the following situation, which can be applied to an acyclic square (1-2)
of real algebraic varieties. Consider a square of locally closed semialgebraic
sets,

QY ����! QX
?

?

y

?

?

y

�

Y
i

����! X

such that� W QX!X is a proper continuous semialgebraic map,i is the inclusion
of a closed semialgebraic subset,QY D ��1.Y /, and the restriction of� is a
homeomorphism� 0 W QX n QY ! X nY . Let c 2 Ck.X /. We define thepullback
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��1c 2 Ck. QX / by the formula

��1c D ..� 0/�1/�.cjX nY /:

Pullback does not commute with the boundary operator in general.
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