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On Milnor classes
of complex hypersurfaces

LAURENTIU MAXIM

ABSTRACT. We revisit known results about the Milnor class of a singula
complex hypersurface, and rephrase some of them in a wayalloats for

a better comparison with the topological formula of Cappall Shaneson for
the L-class of such a hypersurface. Our approach is based oreversjpecial-
ization property for the Chern—MacPherson class, and simphstructible
function calculus.

1. Introduction

It is well-known that for a compact complex hypersurfaewith only iso-
lated singularities the sum of the Milnor numbers at thelizigpoints measures
(up to a sign) the difference between the topological Euharacteristic ofy’
and that of a nonsingular hypersurface linearly equivalent’, provided such
a hypersurface exists. This led Panski to a generalization of the notion of
Milnor number to nonisolated hypersurface singularitie®][ which in the case
of isolated singularities reduces to the sum of Milnor nurele the singular
points.

For a (possibly singular) compact complex hypersurf&cahe Euler char-
acteristic x(X) equals the degree of the zero-dimensional component of the
Chern—MacPherson homology clasgX); see [15]. On the other hand, the
Euler characteristic of a nonsingular hypersurface lilyeaquivalent toX is
just the degree of the Poinédual of the Chern class of the virtual tangent
bundle of X, that is, the degree of the Fulton-Johnson cigS5(X) [10; 11].
Thus, Parusiski's Milnor number equals (up to a sign) the degree of the ho
mology classef/ (X) — c«(X). It is therefore natural to try to understand the
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higher-degree components of this difference class, whithally is called the
Milnor classof X. The study of the Milnor class also comes up naturally while
searching for a Verdier-type Riemann—Roch theorem for ther&-MacPherson
classes (see [20; 22; 23]); indeed, the Milnor class meagheedefect of com-
mutativity in a Verdier—Riemann—Roch diagram for MacPbeis Chern class
transformation.

While the problem of understanding the Milnor class in teohigivariants of
singularities can be formulated in more general contexts,(fr local complete
intersections, or regular embeddings in arbitrary codsimmn see [19; 20]), in
this note we restrict ourselves, for simplicity, only to ttese of hypersurfaces
(i.e., regular embeddings in codimensibnin complex manifolds. We recall
known results about the Milnor class of a singular hypeestgf and rephrase
some of these results in a way that, we believe, reflectsritbegeometry of
the singular locus in terms of its stratification. For morenpoehensive surveys
on Milnor classes, the interested reader is advised to ¢ii2s13; 17; 22].

The approach presented in this note is based on a well-knpetiaization
argument [21], and simple calculus of constructible fumtsi as developed in
[9]. While this approach is not new (see [18; 19; 20] for sanitonsiderations),
the formulation of our main results (Theorem 4.3, Corolldr¢ and Theo-
rem 4.6) has the advantage of being conceptually very sirapkbit allows for a
better comparison with the topological formula of Cappalll &haneson [7; 8]
for the L-classes of singular hypersurfaces. Indeed, we also expl&@hern-
class analogue of Goresky—MacPherson’s homolbestass [12], defined via
the constructible function associated to the interseattmain complex of a va-
riety (see [9]). This class, which for a varieky is denoted by c«(X'), encodes
very detailed information about the geometry of a fixed Witistratification
of X. In the case of hypersurfaces, we compare this class wittrtfien—
Johnson class, and derive a formula for their differencerims of invariants of
the singular locus.

2. Canonical bases for the group of constructible functions

Let X be a topological space with a finite partitidhinto a disjoint union of
finitely many connected subseitssatisfying thefrontier condition

WNV#2 = WCV.

The main examples of such spaces are complex algebraic graabroomplex
analytic varieties with a fixed Whitney stratification. Cales on)’ the partial
order given by

W<V < WcV.
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We also writeW < Vif W <V andW # V.

Let Fy(X) be the abelian group af-constructible functions oy, that is,
functionsa : X — Z such thatx|y- is constant for alllV € V. This is a free
abelian group with basis

Bi:={1ly| VeV
so that anyx € F),(X) can be written as
a=Y aV)1y. (2-1)
Vey
In what follows, we will discuss two more canonical basesiy(X), see
[9] for complete details. First, the collection
6222{117 | VEV}
is also a basis foFy,(X), since
1y = lw
w<v

and the transition matrid = (aw,y), whereaw,y is defined ad if W <V
and0 otherwise, is upper triangular with respecttowith all diagonal entries
equal tol (so 4 is invertible). In this basis, a constructible functierE Fy(X)
can be expressed by the identity

o=Ya() iy, (2-2)
1%
(see [9, Proposition 2.1]), where for eathe V, we definei; inductively by

the formula
Ip=lp- Y lp.
W<V
Note that if there is a stratursi € V which is dense in\, i.e.,S = X,soV < S
for all V €V, then (2-2) can be rewritten as

a=a(S) lx+ Y (@V)—a(S) 1. (2-3)
V<S
If moreovera|s = 0, this reduces further to
=Y aV)-lp. (2-4)
V<S

In order to describe the third basis for the group of consitslecfunctions,
assume moreover thaf is a topological pseudomanifold with a stratification
V by finitely many oriented strata @vendimension. Then, by definition, the
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strata ofV satisfy the frontier condition, an¥l is locally topologically trivial
along each straturir, with fibers the cone on a compact pseudomanifojdy,
thelink of V in X. Each stratun¥, and also its closurd’, get an induced
stratification of the same type. Important examples areigeavby a complex
algebraic (or analytic) Whitney stratification of a reducednplex algebraic (or
compact complex analytic) variety.

For eachlV’ € V, let ICy; be the intersection cohomology complex [13] asso-
ciated to the closure of in X. This is aV-constructible complex of sheaves
(i.e., the restrictions of its conomology sheaves to stifita< V' are locally
constant), satisfying the normalization property thél; |, = Qy (following
Borel's indexing conventions). After extending by zero, vegard all these
intersection chain sheaves as complexed'oh.et us fix for eachiV €V a point
w € W with inclusioniy, : {w} — X. We now define a constructible function
icy € Fy(X) by taking stalkwise the Euler characteristic for the compl€’;.
That is, forw e W < V we let

icy(w) = x(EICy) = xUH* (L) € Ix(c®Lwy),  (2-5)

wherec® Ly, denotes the open cone on the libly,;r of W in V, andx(—)
stands for the intersection homology Euler characterisfioreover,

ic[7|V = 1V- (2-6)
Since clearly supfcy) = V, itis now easy to see that the collection
By:={icyp|VeV}

is another distinguished basis Bf,(X). Indeed, by (2-6), the transition matrix
to the basig 1y} is upper triangular with respect to, with all diagonal entries
equal tol, so it is invertible. The advantage of working with the latbasis is
that it carries more information about the geometry of theseim stratification.

Now assume thak” has an open dense stratne V so thatV < S for
all vV eV, e.g., X is anirreducible reduced complex algebraic (resp., compac
complex analytic) variety. For eadh € V' \ {S} define inductively

ic(Vy:=icp— Y ic(W)-Ix(c°Lw,y) € Fy(X). (2-7)
W<V

Then anyV-constructible functiorx € Fy,(X) can be represented with respect
to the basidicy|V € V} by the following identity (see [9, Theorem 3.1]):

a=a(s)icx + Y (a@) —a(s) - Ix(cLyy))-ic(V). (2-8)
V<S
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In the particular case whemn|g = 0, i.e., supge) C X \ S, this reduces to the

identity o
a= Y aV)-icV) (2-9)
V<S
which will become very important in the context of computid@nor classes
of singular complex hypersurfaces. Also, if we plg= 1x in equation (2-8),
we obtain under the assumptions in this paragraph the foitpwomparison
formula (also valid if we replac&’ by the closure of any given stratum BJ:

Ix =icx + Y (1—=Ix(c°Lyy))-ic(V). (2-10)
V<S

3. Chern classes of singular varieties

For the rest of the paper we specialize to the complex algefrespectively,
compact complex analytic) context, wiff a reduced complex algebraic (resp.,
compact complex analytic) variety. There are several gdizations of the
(total) Chern class of complex manifolds to the context afhsgingular va-
rieties. Among these we mention here the Chern—MacPhelssrs [15] and
the Fulton—Johnson class [10; 11]. Both coincide with then€oé dual of the
Chern class if the variety is smooth.

3.1. The Chern—MacPherson class. The group F.(X) of complex alge-
braically (resp., analytically) constructible functioiss defined as the direct
limit of groups Fy(X), with respect to the directed systefir} of Whitney
stratifications ofX'. Moreover, there is a functorial pushdown transformation
of constructible functions, namely, a proper complex atgib(resp., analytic)
map f : X — Y induces a group homomorphism

St Fe(X) > Fe(Y),

defined by
Sx@)(y) = x(alp-1(,),

for x: F.(X) — Z the constructible function which for a closed algebraisifre
analytic) subspac& of X is given by

x(1z) = x(H*(2)) = x(2).
In particular, for such a closed subsétc X we have that
S(2)) = xZ 0 7 ).

The fact that the pushdowi, is well-defined requires a stratification of the
morphismf (see [15]).
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The Chern class transformation of MacPherson [15] is thegi®momor-
phism
ex: Fo(X) — HEM (X 2),
which commutes with proper pushdowns, and is uniquely ataraed by this
property together with the normalization axiom asserthag t

ex(lx) = *(TX) N[X]

if X is a complex algebraic (resp., analytic) manifold. Hefé7 X) is the

Chern cohomology class of the tangent burifill. Also #2M () stands for
the even-dimensional Borel-Moore homology. The Chern-Rtacson class
of X is then defined as

cx(X) 1= cx(ly) € HEM (X 7).

If X is compact, the degree of (X) is just x(X), the topological Euler char-
acteristic ofX. Similarly, we set

Iek(X) :=cy(icy),

which is another possible extension of Chern classes offoidaito the singular
setting. Of course, ifY is smooth thert.(X) = Ic«(X), but in general they
differ for singular varieties, their difference being a e of the singular
locus, which, moreover, is computable in terms of the gepnudtthe stratifi-
cation. Indeed, by applying. to the identity (2-10), we obtain the following
comparison formula:

ex(X) = Iew(X) = Y (1=Ix(c°Ly,y)) - Iex(V). (3-1)
V<S
If X is compact, the degree &, (X) is just!x(X), the intersection homology
Euler characteristic ok'.

3.2. The Fulton—Johnson classAssume thafl” is a local complete intersection

embedded in a complex manifold with inclusion
i

X—>M.

If Nx M denotes the normal cone &f in M, then thevirtual tangent bundle
of X, that is,

T X :=[i*TM — Ny M] e K°(X), (3-2)
is a well-defined element in the Grothendieck group of vebtandles onX
(e.g., see [11][Ex.4.2.6]), sO one can associate to the(pdirX') anintrinsic
homology class¢f7 (X) € HEM (X;Z), called the Fulton—Johnson class and
defined as follows (see [10; 11]):

(X)) = (T X) N[X]. (3-3)
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Of course, ifX is also smooth, thefl;; X coincides with the (class of the)
usual tangent bundle of , andcf” (X) is in this case just the Poinéadual of
c*(TX).

4. Milnor classes of hypersurfaces

This section is devoted to comparing the two notions of Cloéaeses men-
tioned in the previous section. For simplicity, we resttictthe case when
X is a hypersurface in a complex manifod. As already mentioned, the
Chern—MacPherson class and the Fulton—Johnson classdeihg’ is smooth.
However, they differ in the singular case. For exampleY ihas only isolated
singularities, the difference is (up to a sign) the sum of Migor numbers
attached to the singular points. For this reason, the difiegc” (X) — c.(X)
is usually called thélilnor classof X, and is denoted by (X).! The Milnor
class is a homology class supported on the singular locus, a@ind it has been
recently studied by many authors using quite different méshe.g., see [1; 2;
3;4;5; 6;18; 17; 19; 20; 22]. For example, it was computedl [[see also
[17; 22]) as a weighted sum in the Chern—MacPherson clagsessures of
singular strata ofY’, the weights depending only on the normal information to
the strata. The approach we follow here is that of [19; 204 maties only on
the simple calculus of constructible functions, as outlimeSection 2, together
with a well-known specialization argument due to Verdiek][2

Assume in what follows thak is a reduced complex analytic hypersurface,
which is globally defined as the zero-set of a holomorphictiom / : M — D
with a critical value ab € D, for M a compact complex manifold ari@ the
open unit disc aboud € C. For each poinkx € X, we have a corresponding
Milnor fibration with fiber

My, := Bs(x)N [~ (1)

for appropriate choices @f < || < § < 1.

Denote byL the trivial line bundle onM, obtained by pulling back by’
the tangent bundle &E. Then the virtual tangent bundle &f can be identified
with

Tyir X = [TM|X - L|X]- (4'1)

For eachr # 0 small enough, each fibe¥, := f~1(¢) is a compact complex
manifold. Moreover, by compactness, given a regular neididodl/ of X in
M , there is a sufficiently smadlso thatX; C I/. Denote byi, the corresponding

1The definition of the Milnor class usually includes a sigrt, fon simplicity we choose to ignore it here.
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inclusion map. Also, let :U{ — X be the obvious deformation retraderdier’s
specialization majn homology is then defined as the composition

WH:V*Olt*H*(Xt)—)H*(X) (4'2)

There is also a specialization map defined on the level oftoaritle func-
tions [21],
VeF : Fe(M) — Fe(X), (4-3)
which is just the constructible function version of Deliggneearby cycle functor
for constructible complexes of sheaves. This is defined bydmula

Ver(@)(x) = x(a-la; ). (4-4)
In particular,
Yer(Im) = px € Fe(X), (4-5)
whereuy : X — 7 is the constructible function defined by the rule:
px (x) := x (M), (4-6)

for all x € X'. This definition justifies the analogy with the nearby cyealadtor
defined on the level of constructible complexes of sheaves.

Verdier's specialization property for the Chern—MacPbarslasses [21] as-
serts that for any € F.(M) we have:

vacs(alx,) = cx(Yer(@). (4-7)
In particular, by lettingx = 13, and using (4-5), we have that
Vacx(Xt) = cx(ux). (4-8)

We can now state the following easy (known) consequence:

PROPOSITION4.1.
M(X) = cx(jix), (4-9)
wherefiy € F.(X) is the constructible function supported on the singulaukc

of X', whose value at € X is defined by the Euler characteristic of the reduced
cohomology of the corresponding Milnor fibee.,

fix (x) := x(H*(Mj)). (4-10)
PrRoOOF First note that, sinc&’; is smooth,
Ve (Xe) = ymef” (Xp) = [ (X), (4-11)

where the last equality follows from the fact that the hongglapecialization
mapy g carries (the dual of) the Chern classeslao¥f |y, and L|y, into (the
dual of) the Chern classes &M |y and L |y, respectively [21].
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On the other hand,

cx(X) = ex(ux) —ex(fix ), (4-12)
so the desired identity follows by combining (4-8) and (4-11 O

REMARK 4.2. Note thajiy is the constructible function analogue of Deligne’s
vanishing cycle functor defined on constructible sheavededd,

ity = ¢cr(1p). (4-13)

wheregcp .= Yop—i*, fori*: F.(M) — F.(X) the pullback (restriction) of
constructible functions defined by («) := o oi.
We are now ready to prove the main result of this note:

THEOREM4.3. Let M be a compact complex manifgldnd X a reduced hy-
persurface defined by the zero-set of a holomorphic function — D with

a critical value at the origin Fix a Whitney stratificatio’’ on X', and for each
stratumV € V fix a pointv € V with corresponding Milnor fiben,,. Then
the Milnor class ofX, i.e,, the class

MX) = (X) —cu(X) € Ho(X),
can be computed by the formula

MX)= Y x(H*(Mpy)- (cx(V) —cx(V\ V)
Vey
V CSing(X)
= D x(H*(Myy))- (V).
Vey
V CSing(X)
where for a stratun¥’ € V we leté, (V) be defined inductively as
(V) =cu(V)= Y (W)
W<V

If, moreover X is irreducible and we lefS denote the dense open stratum in
X, then

MX) =" x(H*(Myy)) - Te(V), (4-14)
V<S

where for each’ € V, 17’*(17) is defined inductively by

Iex(V)i=Iex(V) = ) Ix(Lwy)-Tex(W).
W<V
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for Ly the link of W in V.2
PrRoOOF Recall that by Proposition 4.1 we have:
M(X) = ex(fix). (4-15)

Moreover, the functioiy : X — 7Z is constructible with respect to the Whitney
stratification)). Therefore, as in (2-1) and (2-2), we can write

fx =) Aix@)-ly =) fix)-(p—1lpp) = ) fix©)-1p.
Vey Vey Vey
Since smooth points have contractible Milnor fibers, onfgitst contained in the
singular locus ofX" contribute to the above sums. The first part of the theorem
follows from (4-15) by applying the Chern—MacPherson tfameation ¢, to
the last two of the above equalities.
If X is irreducible with dense open stratusi then as in (2-9) we can write

ix =) fx (@) ic(V).
V<S
By applyingcx, we obtain the desired identity (4-14) from (4-15). O

As a consequence, the Chern—MacPherson class and the-Rdtorson class
coincide in dimensions greater than the dimension of thgusam locus. And it
can be seen from any of the above formulae that ihas only isolated singu-
larities, the Milnor class is (up to a sign) just the sum of kfihor numbers at
the singular points.

By combining (3-1) and (4-14) we also obtain a comparisomida for the
Fulton-Johnson clasg™ (X) and the Chern claske,(X) defined via the in-
tersection cohomology chain sheaf.

COROLLARY 4.4. If X as above is a reduced irreducible hypersurface with
dense open stratuii, then

IMX) =7 (X) = Tew(X) = ) Tew(V) - (x(Myp) — IX(c°Ly,x)) -

= (4-16)

Note that by constructible function calculus, we have that
IM(X) = cx(Tpy), (4-17)
for mx : X — Z theV-constructible function whose valueat V is given by
Ty (v) = x(Mp) = Ix(c° Ly x). (4-18)

2By the functoriality ofc., we can regard all classes (V), &« (V) andfc*(l7) associated to a stratum
V €V as homology classes i« (X). This is the reason why we apply the Chern—MacPherson tremaf
tion ¢4 only to closed subvarieties of .
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By its definition,fﬁX is supported on the singular locus &f, so (2-9) can be
used directly to prove (4-16).

REMARK 4.5. Our formula (4-16) should be compared to the topolddara
mula of Cappell and Shaneson [7; 8] for the Goresky—MacPheltsclass [12]
of an irreducible reduced complex hypersurfd€e- M as above, namely,

Lia(TirX) = La(X) = Y Lu(V) -0 (k(V)), (4-19)
V<S

whereo (Ik(V)) € Z is a certain signature invariant associated to the link gfair
the stratumV in (M, X). Here L. (Tyir X) := L*(T\ir X)) N[ X], with L* the L-
polynomial of Hirzebruch [14] defined in terms of the powefiesgx /tanh(x).
The comparison is motivated by the fact that theclass of a singular variety
X is a topological invariant associated to the intersectmmmology complex
of the variety. We should point out that the Cappell-Shandésomula holds in
much greater generality, namely for real codimension tweRibeddings with
even codimension strata, and its proof relies on powerfyglaaic cobordism
decompositions of self-dual sheaves. However, we beligaEih the context of
complex algebraic/analytic geometry, a simpler proof ddaé given by using a
specialization argument similar to the one presented here.

More generally, assume that X — M is a regular embedding in codimen-
sion one of complex algebraic (resp., compact complex #oplypaces with
M smooth. ThenX is locally defined inM by one equatiod f = 0}, and
the specialization magcr : F.(M) — F.(X) is still well-defined, as it is
independent of the chosen local equationXarin particular, we still have that
Yver(1ar) = 1, whose value at a pointe X is given by the Euler characteristic
of a local Milnor fiber atx. In other words, if{ /' = 0} is a defining equation
for X nearx, then

fix (x) 1= x(H* (M), (4-20)
for My, the corresponding Milnor fiber. Then arguments similar wsthused

in this section apply to this more general situation, anttiytiee following result
(see [20, Corollary 0.2] for equation (4-21) below):

THEOREM4.6. Leti : X — M be a regular embedding in codimension one
of complex algebrairesp, compact complex analydicpaces withl/ smooth
Then

M(X) = c*(Nxy M)~ Nexliiy), (4-21)
with /i the constructible function supported on the singular lootig”, whose

value at a pointx € X is given by the Euler characteristic of the reduced coho-
mology of a local Milnor fiber ak. Sq if we assumeX irreducible with dense
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open stratunt, then in the notations of Theorefn3we get

M) = 3 N M) 0 (ex (M) —en(PA V) ) - fix (v)

V<S

=Y Ny M) Né(V)-fix (v)
V<S

= > HFWNx M) N Iew(V) - fix (v).
V<S

Similar considerations apply M (X). (Again, by functoriality, we regard all
classes defined on the closure of a given stratum as homolagges inX'.)

We conclude this note by recalling some functoriality resdior the Milnor
class of hypersurfaces (see [20; 24] for complete detaiB)re precisely, we
are concerned with the behavior of the Milnor class underpér pushdown.
Similar results were obtained in [9] for the Chern—MacPberslasses . (—)
and/c«(—), respectively.

Let us consider the cartesian diagram

)N v

A

X s m
with M and M compact analytic manifolds, and: M — M a proper mor-
phism. Also assume thatand j are regular closed embeddings of (local)

codimension one, with\/ irreducible. Then it's easy to see that; M ~
f*(Nx M). Therefore, by (4-21) and the projection formula, one has

SeM(X) = fu(*(Ng M) Nexliig))
= fe(/* e (Ny M) New(iig))
=" (Nx M)™' 0 facu(ig).
Next, by the functoriality o« and the definition ofi 3 in (4-13) we obtain

f*C*(lljf) = C*f*(/lj) = C*f*¢CF(1M) = C*¢CF(7T*(11\}[))’

where the last identity follows by proper base change. Assuow thatr
(hence alsof) is an Euler morphismi.e., the Euler characteristics of all its
fibers are the same (e.gr, is smooth), and denote this value y. Then
n*(lM) = xr - Ly, and it follows in this case that

FM(X) = x5 - M(X). (4-22)
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But in the case of a general morphism we have that
SsM(X) = x5 - M(X) +c*(Nx M) N exger (@), (4-23)

for a:= 7« (1) — xr - 1ar, With x the Euler characteristic of the generic fiber
of 7. Note thatx is supported on the critical locus of the morphism

To this end, we note that the above considerations can alssdzkto study
the push-forward of the claggM (X) in the case whel is pure-dimensional
and X is irreducible and reduced. Let us choose a stratificatiaon X with
dense open stratui, so thatfi(1 ), fx(icg) € Fy(X) (e.g., choosé and
V complex Whitney stratifications o and X, respectively, so thaf is a
stratified submersion, anidy,ic 3 € Fj(X)). Then, since

TM(X) = M(X) + (cx(X) — I (X)),

a formula for f,ZM(X) can be derived by using (4-23), together with the for-
mulae from [9, Propositions 3.4 and 3.6] for the push-foovaf the Chern
classes(X) andIc4(X), respectively. We leave the details as an exercise for
the interested reader. We only want to point out that for alerEmnorphism
(with smooth generic fiber), we obtain

SIM(X)
=X - IMX)+ Y (xp Ix(c® Ly x)—Ix(f 7' (c°Ly,x)))-ic(V), (4-24)
V<S

wherey ¢ is the Euler characteristic of the generic fiiéiof f* (andr).
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