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On Milnor classes
of complex hypersurfaces

LAURENTIU MAXIM

ABSTRACT. We revisit known results about the Milnor class of a singular
complex hypersurface, and rephrase some of them in a way thatallows for
a better comparison with the topological formula of Cappelland Shaneson for
theL-class of such a hypersurface. Our approach is based on Verdier’s special-
ization property for the Chern–MacPherson class, and simple constructible
function calculus.

1. Introduction

It is well-known that for a compact complex hypersurfaceX with only iso-
lated singularities the sum of the Milnor numbers at the singular points measures
(up to a sign) the difference between the topological Euler characteristic ofX
and that of a nonsingular hypersurface linearly equivalentto X , provided such
a hypersurface exists. This led Parusiński to a generalization of the notion of
Milnor number to nonisolated hypersurface singularities [16], which in the case
of isolated singularities reduces to the sum of Milnor numbers at the singular
points.

For a (possibly singular) compact complex hypersurfaceX , the Euler char-
acteristic�.X / equals the degree of the zero-dimensional component of the
Chern–MacPherson homology classc�.X /; see [15]. On the other hand, the
Euler characteristic of a nonsingular hypersurface linearly equivalent toX is
just the degree of the Poincaré dual of the Chern class of the virtual tangent
bundle ofX , that is, the degree of the Fulton–Johnson classcFJ

� .X / [10; 11].
Thus, Parusínski’s Milnor number equals (up to a sign) the degree of the ho-
mology classcFJ

� .X /� c�.X /. It is therefore natural to try to understand the
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higher-degree components of this difference class, which usually is called the
Milnor classof X . The study of the Milnor class also comes up naturally while
searching for a Verdier-type Riemann–Roch theorem for the Chern–MacPherson
classes (see [20; 22; 23]); indeed, the Milnor class measures the defect of com-
mutativity in a Verdier–Riemann–Roch diagram for MacPherson’s Chern class
transformation.

While the problem of understanding the Milnor class in termsof invariants of
singularities can be formulated in more general contexts (e.g., for local complete
intersections, or regular embeddings in arbitrary codimension, see [19; 20]), in
this note we restrict ourselves, for simplicity, only to thecase of hypersurfaces
(i.e., regular embeddings in codimension1) in complex manifolds. We recall
known results about the Milnor class of a singular hypersurface, and rephrase
some of these results in a way that, we believe, reflects better the geometry of
the singular locus in terms of its stratification. For more comprehensive surveys
on Milnor classes, the interested reader is advised to consult [2; 3; 17; 22].

The approach presented in this note is based on a well-known specialization
argument [21], and simple calculus of constructible functions as developed in
[9]. While this approach is not new (see [18; 19; 20] for similar considerations),
the formulation of our main results (Theorem 4.3, Corollary4.4 and Theo-
rem 4.6) has the advantage of being conceptually very simple, and it allows for a
better comparison with the topological formula of Cappell and Shaneson [7; 8]
for the L-classes of singular hypersurfaces. Indeed, we also explore a Chern-
class analogue of Goresky–MacPherson’s homologyL-class [12], defined via
the constructible function associated to the intersectionchain complex of a va-
riety (see [9]). This class, which for a varietyX is denoted byIc�.X /, encodes
very detailed information about the geometry of a fixed Whitney stratification
of X . In the case of hypersurfaces, we compare this class with theFulton–
Johnson class, and derive a formula for their difference in terms of invariants of
the singular locus.

2. Canonical bases for the group of constructible functions

Let X be a topological space with a finite partitionV into a disjoint union of
finitely many connected subsetsV satisfying thefrontier condition:

W \ V ¤ ? ÷ W � V :

The main examples of such spaces are complex algebraic or compact complex
analytic varieties with a fixed Whitney stratification. Consider onV the partial
order given by

W � V ” W � V :
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We also writeW < V if W � V andW ¤ V .
Let FV.X / be the abelian group ofV-constructible functions onX , that is,

functions˛ W X ! Z such that̨ jV is constant for allV 2 V . This is a free
abelian group with basis

B1 WD f 1V j V 2 V g;

so that any̨ 2 FV.X / can be written as

˛ D
X

V 2V

˛.V / � 1V : (2-1)

In what follows, we will discuss two more canonical bases onFV.X /, see
[9] for complete details. First, the collection

B2 WD f 1V j V 2 V g

is also a basis forFV.X /, since

1
V

D
X

W �V

1W

and the transition matrixA D .aW ;V /, whereaW ;V is defined as1 if W � V

and0 otherwise, is upper triangular with respect to�, with all diagonal entries
equal to1 (soA is invertible). In this basis, a constructible function˛ 2 FV.X /

can be expressed by the identity

˛ D
X

V

˛.V / � O1
V
; (2-2)

(see [9, Proposition 2.1]), where for eachV 2 V , we defineO1
V

inductively by
the formula

O1V D 1V �
X

W <V

O1W :

Note that if there is a stratumS 2V which is dense inX , i.e.,S D X , soV � S

for all V 2 V , then (2-2) can be rewritten as

˛ D ˛.S/ � 1X C
X

V <S

.˛.V /�˛.S// � O1V : (2-3)

If moreover˛jS D 0, this reduces further to

˛ D
X

V <S

˛.V / � O1
V
: (2-4)

In order to describe the third basis for the group of constructible functions,
assume moreover thatX is a topological pseudomanifold with a stratification
V by finitely many oriented strata ofevendimension. Then, by definition, the
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strata ofV satisfy the frontier condition, andV is locally topologically trivial
along each stratumV , with fibers the cone on a compact pseudomanifoldLV;X ,
the link of V in X . Each stratumV , and also its closureV , get an induced
stratification of the same type. Important examples are provided by a complex
algebraic (or analytic) Whitney stratification of a reducedcomplex algebraic (or
compact complex analytic) variety.

For eachV 2 V , let ICV be the intersection cohomology complex [13] asso-
ciated to the closure ofV in X . This is aV-constructible complex of sheaves
(i.e., the restrictions of its cohomology sheaves to strataW < V are locally
constant), satisfying the normalization property thatICV jV D QV (following
Borel’s indexing conventions). After extending by zero, weregard all these
intersection chain sheaves as complexes onX . Let us fix for eachW 2V a point
w 2 W with inclusioniw W fwg Œ X . We now define a constructible function
icV 2 FV.X / by taking stalkwise the Euler characteristic for the complex ICV .
That is, forw 2 W < V we let

ic
V
.w/ WD �.i�

wIC
V
/D �.IH �.cıLW ;V //

def
D I�.cıLW ;V /; (2-5)

wherecıLW ;V denotes the open cone on the linkLW ;V of W in V , andI�.�/

stands for the intersection homology Euler characteristic. Moreover,

ic
V

jV D 1V : (2-6)

Since clearly supp.icV /D V , it is now easy to see that the collection

B3 WD f icV j V 2 V g

is another distinguished basis ofFV.X /. Indeed, by (2-6), the transition matrix
to the basisf1V g is upper triangular with respect to�, with all diagonal entries
equal to1, so it is invertible. The advantage of working with the latter basis is
that it carries more information about the geometry of the chosen stratification.

Now assume thatX has an open dense stratumS 2 V so thatV � S for
all V 2 V , e.g.,X is an irreducible reduced complex algebraic (resp., compact
complex analytic) variety. For eachV 2 V n fSg define inductively

bic.V / WD ic
V

�
X

W <V

bic.W / � I�.cıLW ;V / 2 FV.X /: (2-7)

Then anyV-constructible function̨ 2 FV.X / can be represented with respect
to the basisfic

V
jV 2 Vg by the following identity (see [9, Theorem 3.1]):

˛ D ˛.s/ � icX C
X

V <S

�
˛.v/�˛.s/ � I�.cıLV;Y /

�
� bic.V /: (2-8)
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In the particular case when̨jS D 0, i.e., supp.˛/ � X n S , this reduces to the
identity

˛ D
X

V <S

˛.V / � bic.V /; (2-9)

which will become very important in the context of computingMilnor classes
of singular complex hypersurfaces. Also, if we plug˛ D 1X in equation (2-8),
we obtain under the assumptions in this paragraph the following comparison
formula (also valid if we replaceX by the closure of any given stratum ofV):

1X D icX C
X

V <S

�
1 � I�.cıLV;Y /

�
� bic.V /: (2-10)

3. Chern classes of singular varieties

For the rest of the paper we specialize to the complex algebraic (respectively,
compact complex analytic) context, withX a reduced complex algebraic (resp.,
compact complex analytic) variety. There are several generalizations of the
(total) Chern class of complex manifolds to the context of such singular va-
rieties. Among these we mention here the Chern–MacPherson class [15] and
the Fulton–Johnson class [10; 11]. Both coincide with the Poincaŕe dual of the
Chern class if the variety is smooth.

3.1. The Chern–MacPherson class. The groupFc.X / of complex alge-
braically (resp., analytically) constructible functionsis defined as the direct
limit of groups FV.X /, with respect to the directed systemfVg of Whitney
stratifications ofX . Moreover, there is a functorial pushdown transformation
of constructible functions, namely, a proper complex algebraic (resp., analytic)
mapf W X ! Y induces a group homomorphism

f� W Fc.X /! Fc.Y /;

defined by

f�.˛/.y/ WD �.˛jf �1.y//;

for � W Fc.X /! Z the constructible function which for a closed algebraic (resp.,
analytic) subspaceZ of X is given by

�.1Z / WD �.H �.Z//D �.Z/:

In particular, for such a closed subsetZ � X we have that

f�.1Z /.y/D �.Z \f �1.y//:

The fact that the pushdownf� is well-defined requires a stratification of the
morphismf (see [15]).
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The Chern class transformation of MacPherson [15] is the group homomor-
phism

c� W Fc.X /! H BM
2� .X I Z/;

which commutes with proper pushdowns, and is uniquely characterized by this
property together with the normalization axiom asserting that

c�.1X /D c�.TX /\ ŒX �

if X is a complex algebraic (resp., analytic) manifold. Herec�.TX / is the
Chern cohomology class of the tangent bundleTX . Also H BM

2�
.�/ stands for

the even-dimensional Borel–Moore homology. The Chern–MacPherson class
of X is then defined as

c�.X / WD c�.1X / 2 H BM
2� .X I Z/:

If X is compact, the degree ofc�.X / is just�.X /, the topological Euler char-
acteristic ofX . Similarly, we set

Ic�.X / WD c�.icX /;

which is another possible extension of Chern classes of manifolds to the singular
setting. Of course, ifX is smooth thenc�.X / D Ic�.X /, but in general they
differ for singular varieties, their difference being a measure of the singular
locus, which, moreover, is computable in terms of the geometry of the stratifi-
cation. Indeed, by applyingc� to the identity (2-10), we obtain the following
comparison formula:

c�.X /� Ic�.X /D
X

V <S

�
1 � I�.cıLV;Y /

�
� bIc�.V /: (3-1)

If X is compact, the degree ofIc�.X / is justI�.X /, the intersection homology
Euler characteristic ofX .

3.2. The Fulton–Johnson class.Assume thatX is a local complete intersection
embedded in a complex manifoldM with inclusion

X
i

ŒM:

If NX M denotes the normal cone ofX in M , then thevirtual tangent bundle
of X , that is,

TvirX WD Œ i�TM � NX M � 2 K0.X /; (3-2)

is a well-defined element in the Grothendieck group of vectorbundles onX

(e.g., see [11][Ex.4.2.6]), so one can associate to the pair.M;X / an intrinsic
homology class,cFJ

� .X / 2 H BM
2� .X I Z/, called the Fulton–Johnson class and

defined as follows (see [10; 11]):

cFJ
� .X / WD c�.TvirX /\ ŒX �: (3-3)
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Of course, ifX is also smooth, thenTvirX coincides with the (class of the)
usual tangent bundle ofX , andcFJ

� .X / is in this case just the Poincaré dual of
c�.TX /.

4. Milnor classes of hypersurfaces

This section is devoted to comparing the two notions of Chernclasses men-
tioned in the previous section. For simplicity, we restrictto the case when
X is a hypersurface in a complex manifoldM . As already mentioned, the
Chern–MacPherson class and the Fulton–Johnson class coincide if X is smooth.
However, they differ in the singular case. For example, ifX has only isolated
singularities, the difference is (up to a sign) the sum of theMilnor numbers
attached to the singular points. For this reason, the differencecFJ

� .X /� c�.X /

is usually called theMilnor classof X , and is denoted byM.X /.1 The Milnor
class is a homology class supported on the singular locus ofX , and it has been
recently studied by many authors using quite different methods, e.g., see [1; 2;
3; 4; 5; 6; 18; 17; 19; 20; 22]. For example, it was computed in [18] (see also
[17; 22]) as a weighted sum in the Chern–MacPherson classes of closures of
singular strata ofX , the weights depending only on the normal information to
the strata. The approach we follow here is that of [19; 20], and relies only on
the simple calculus of constructible functions, as outlined in Section 2, together
with a well-known specialization argument due to Verdier [21].

Assume in what follows thatX is a reduced complex analytic hypersurface,
which is globally defined as the zero-set of a holomorphic functionf W M ! D

with a critical value at0 2 D, for M a compact complex manifold andD the
open unit disc about0 2 C. For each pointx 2 X , we have a corresponding
Milnor fibration with fiber

Mf;x WD Bı.x/\f �1.t/

for appropriate choices of0< jt j � ı � 1.
Denote byL the trivial line bundle onM , obtained by pulling back byf

the tangent bundle ofC. Then the virtual tangent bundle ofX can be identified
with

TvirX D ŒTM jX � LjX �: (4-1)

For eacht ¤ 0 small enough, each fiberXt WD f �1.t/ is a compact complex
manifold. Moreover, by compactness, given a regular neighborhoodU of X in
M , there is a sufficiently smallt so thatXt �U . Denote byit the corresponding

1The definition of the Milnor class usually includes a sign, but for simplicity we choose to ignore it here.
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inclusion map. Also, letr WU ! X be the obvious deformation retract.Verdier’s
specialization mapin homology is then defined as the composition

 H D r� ı it � W H�.Xt /! H�.X /: (4-2)

There is also a specialization map defined on the level of constructible func-
tions [21],

 CF W Fc.M /! Fc.X /; (4-3)

which is just the constructible function version of Deligne’s nearby cycle functor
for constructible complexes of sheaves. This is defined by the formula

 CF .˛/.x/D �.˛ � 1Mf;x
/: (4-4)

In particular,
 CF .1M /D �X 2 Fc.X /; (4-5)

where�X W X ! Z is the constructible function defined by the rule:

�X .x/ WD �.Mf;x/; (4-6)

for all x 2 X . This definition justifies the analogy with the nearby cycle functor
defined on the level of constructible complexes of sheaves.

Verdier’s specialization property for the Chern–MacPherson classes [21] as-
serts that for any̨ 2 Fc.M / we have:

 H c�.˛jXt
/D c�. CF .˛//: (4-7)

In particular, by letting̨ D 1M and using (4-5), we have that

 H c�.Xt /D c�.�X /: (4-8)

We can now state the following easy (known) consequence:

PROPOSITION4.1.
M.X /D c�. Q�X /; (4-9)

where Q�X 2 Fc.X / is the constructible function supported on the singular locus
of X , whose value atx 2 X is defined by the Euler characteristic of the reduced
cohomology of the corresponding Milnor fiber, i.e.,

Q�X .x/ WD �. QH �.Mf;x//: (4-10)

PROOF. First note that, sinceXt is smooth,

 H c�.Xt /D  H cFJ
� .Xt /D cFJ

� .X /; (4-11)

where the last equality follows from the fact that the homology specialization
map H carries (the dual of) the Chern classes ofTM jXt

andLjXt
into (the

dual of) the Chern classes ofTM jX andLjX , respectively [21].
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On the other hand,

c�.X /D c�.�X /� c�. Q�X /; (4-12)

so the desired identity follows by combining (4-8) and (4-11). ˜

REMARK 4.2. Note thatQ�X is the constructible function analogue of Deligne’s
vanishing cycle functor defined on constructible sheaves. Indeed,

Q�X D �CF .1M /; (4-13)

where�CF WD CF � i�, for i� W Fc.M /! Fc.X / the pullback (restriction) of
constructible functions defined byi�.˛/ WD ˛ ı i .

We are now ready to prove the main result of this note:

THEOREM 4.3. Let M be a compact complex manifold, andX a reduced hy-
persurface defined by the zero-set of a holomorphic functionf W M ! D with
a critical value at the origin. Fix a Whitney stratificationV on X , and for each
stratumV 2 V fix a pointv 2 V with corresponding Milnor fiberMf;v. Then
the Milnor class ofX , i.e., the class

M.X / WD cFJ
� .X /� c�.X / 2 H�.X /;

can be computed by the formula

M.X /D
X

V 2V
V �Sing.X /

�. QH �.Mf;v// �
�
c�.V /� c�.V n V /

�

D
X

V 2V
V �Sing.X /

�. QH �.Mf;v// � Oc�.V /;

where for a stratumV 2 V we let Oc�.V / be defined inductively as

Oc�.V / WD c�.V /�
X

W <V

Oc�.W /:

If , moreover, X is irreducible and we letS denote the dense open stratum in
X , then:

M.X /D
X

V <S

�. QH �.Mf;v// � bIc�.V /; (4-14)

where for eachV 2 V , bIc�.V / is defined inductively by

bIc�.V / WD Ic�.V /�
X

W <V

I�.cıLW ;V / � bIc�.W /;



170 LAURENTIU MAXIM

for LW ;V the link ofW in V .2

PROOF. Recall that by Proposition 4.1 we have:

M.X /D c�. Q�X /: (4-15)

Moreover, the functionQ�X W X ! Z is constructible with respect to the Whitney
stratificationV . Therefore, as in (2-1) and (2-2), we can write

Q�X D
X

V 2V

Q�X .v/ � 1V D
X

V 2V

Q�X .v/ � .1
V

� 1
V nV

/D
X

V 2V

Q�X .v/ � O1
V
:

Since smooth points have contractible Milnor fibers, only strata contained in the
singular locus ofX contribute to the above sums. The first part of the theorem
follows from (4-15) by applying the Chern–MacPherson transformation c� to
the last two of the above equalities.

If X is irreducible with dense open stratumS , then as in (2-9) we can write

Q�X D
X

V <S

Q�X .v/ � bic.V /:

By applyingc�, we obtain the desired identity (4-14) from (4-15). ˜

As a consequence, the Chern–MacPherson class and the Fulton–Johnson class
coincide in dimensions greater than the dimension of the singular locus. And it
can be seen from any of the above formulae that ifX has only isolated singu-
larities, the Milnor class is (up to a sign) just the sum of theMilnor numbers at
the singular points.

By combining (3-1) and (4-14) we also obtain a comparison formula for the
Fulton–Johnson classcFJ

� .X / and the Chern classIc�.X / defined via the in-
tersection cohomology chain sheaf.

COROLLARY 4.4. If X as above is a reduced irreducible hypersurface with
dense open stratumS , then

IM.X / WD cFJ
� .X /� Ic�.X /D

X

V <S

bIc�.V / �
�
�.Mf;v/� I�.cıLV;X /

�
:

(4-16)

Note that by constructible function calculus, we have that

IM.X /D c�.fI�X /; (4-17)

for fI�X W X ! Z theV-constructible function whose value atv 2 V is given by

fI�X .v/D �.Mf;v/� I�.cıLV;X /: (4-18)

2By the functoriality ofc�, we can regard all classesc�.V /, Oc�.V / and OIc�.V / associated to a stratum
V 2V as homology classes inH�.X /. This is the reason why we apply the Chern–MacPherson transforma-
tion c� only to closed subvarieties ofX .
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By its definition,fI�X is supported on the singular locus ofX , so (2-9) can be
used directly to prove (4-16).

REMARK 4.5. Our formula (4-16) should be compared to the topological for-
mula of Cappell and Shaneson [7; 8] for the Goresky–MacPherson L-class [12]
of an irreducible reduced complex hypersurfaceX � M as above, namely,

L�.TvirX /� L�.X /D
X

V <S

L�.V / � �.lk.V //; (4-19)

where�.lk.V //2 Z is a certain signature invariant associated to the link pairof
the stratumV in .M;X /. HereL�.TvirX / WD L�.TvirX /\ ŒX �, with L� theL-
polynomial of Hirzebruch [14] defined in terms of the power seriesx=tanh.x/.
The comparison is motivated by the fact that theL-class of a singular variety
X is a topological invariant associated to the intersection cohomology complex
of the variety. We should point out that the Cappell–Shaneson formula holds in
much greater generality, namely for real codimension two PLembeddings with
even codimension strata, and its proof relies on powerful algebraic cobordism
decompositions of self-dual sheaves. However, we believe that in the context of
complex algebraic/analytic geometry, a simpler proof could be given by using a
specialization argument similar to the one presented here.

More generally, assume thati W X Œ M is a regular embedding in codimen-
sion one of complex algebraic (resp., compact complex analytic) spaces with
M smooth. ThenX is locally defined inM by one equationff D 0g, and
the specialization map CF W Fc.M / ! Fc.X / is still well-defined, as it is
independent of the chosen local equation forX . In particular, we still have that
 CF .1M /D�, whose value at a pointx 2 X is given by the Euler characteristic
of a local Milnor fiber atx. In other words, ifff D 0g is a defining equation
for X nearx, then

Q�X .x/ WD �. QH �.Mf;x//; (4-20)

for Mf;x the corresponding Milnor fiber. Then arguments similar to those used
in this section apply to this more general situation, and yield the following result
(see [20, Corollary 0.2] for equation (4-21) below):

THEOREM 4.6. Let i W X Œ M be a regular embedding in codimension one
of complex algebraic(resp., compact complex analytic) spaces withM smooth.
Then,

M.X /D c�.NX M /�1 \ c�. Q�X /; (4-21)

with Q� the constructible function supported on the singular locusof X , whose
value at a pointx 2 X is given by the Euler characteristic of the reduced coho-
mology of a local Milnor fiber atx. So, if we assumeX irreducible with dense
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open stratumS , then in the notations of Theorem4.3we get

M.X /D
X

V <S

c�.NX M /�1 \
�
c�.V /� c�.V n V /

�
� Q�X .v/

D
X

V <S

c�.NX M /�1 \ Oc�.V / � Q�X .v/

D
X

V <S

c�.NX M /�1 \ bIc�.V / � Q�X .v/:

Similar considerations apply toIM.X /. (Again, by functoriality, we regard all
classes defined on the closure of a given stratum as homology classes inX .)

We conclude this note by recalling some functoriality results for the Milnor
class of hypersurfaces (see [20; 24] for complete details).More precisely, we
are concerned with the behavior of the Milnor class under a proper pushdown.
Similar results were obtained in [9] for the Chern–MacPherson classesc�.�/

andIc�.�/, respectively.
Let us consider the cartesian diagram

QX
j

����! QM

f

??y
??y�

X
i

����! M

with M and QM compact analytic manifolds, and� W QM ! M a proper mor-
phism. Also assume thati and j are regular closed embeddings of (local)
codimension one, withM irreducible. Then it’s easy to see thatN QX

QM '

f �.NX M /. Therefore, by (4-21) and the projection formula, one has

f�M. QX /D f�.c
�.N QX

QM /�1 \ c�. Q� QX
//

D f�.f
�c�.NX M /�1 \ c�. Q� QX

//

D c�.NX M /�1 \f�c�. Q� QX
/:

Next, by the functoriality ofc� and the definition ofQ� QX
in (4-13) we obtain

f�c�. Q� QX
/D c�f�. Q� QX

/D c�f��CF .1 QM
/D c��CF .��.1 QM

//;

where the last identity follows by proper base change. Assume now that�
(hence alsof ) is an Euler morphism, i.e., the Euler characteristics of all its
fibers are the same (e.g.,� is smooth), and denote this value by�f . Then
��.1 QM

/D �f � 1M , and it follows in this case that

f�M. QX /D �f �M.X /: (4-22)
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But in the case of a general morphism we have that

f�M. QX /D �f �M.X /C c�.NX M /�1 \ c��CF .˛/; (4-23)

for ˛ WD ��.1 QM
/��f �1M , with �f the Euler characteristic of the generic fiber

of �. Note that̨ is supported on the critical locus of the morphism�.
To this end, we note that the above considerations can also beused to study

the push-forward of the classIM. QX / in the case whenQX is pure-dimensional
andX is irreducible and reduced. Let us choose a stratificationV on X with
dense open stratumS , so thatf�.1 QX

/; f�.ic QX
/ 2 FV.X / (e.g., chooseQV and

V complex Whitney stratifications onQX and X , respectively, so thatf is a
stratified submersion, and1X ; ic QX

2 F QV.X /). Then, since

IM. QX /D M. QX /C .c�. QX /� Ic�. QX //;

a formula forf�IM. QX / can be derived by using (4-23), together with the for-
mulae from [9, Propositions 3.4 and 3.6] for the push-forward of the Chern
classesc�. QX / andIc�. QX /, respectively. We leave the details as an exercise for
the interested reader. We only want to point out that for an Euler morphism
(with smooth generic fiber), we obtain

f�IM. QX /

D�f � IM.X /C
X

V <S

�
�f I�.cıLV;X /�I�.f �1.cıLV;X //

�
� bic.V /; (4-24)

where�f is the Euler characteristic of the generic fiberF of f (and�).
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