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An introduction to intersection homology with
general perversity functions

GREG FRIEDMAN

ABSTRACT. We provide an expository survey of the different notionper-
versity in intersection homology and how different peritezs require differ-
ent definitions of intersection homology theory itself. \Wece the key ideas
from the introduction of intersection homology by GoreskylalacPherson
through to the recent and ongoing work of the author and sther
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1. Introduction

When Goresky and MacPherson first introduced intersectiomotogy [32],
they required its perversity parameters to satisfy a faidid set of constraints.
Their perversities were functions on the codimensionsratatp : Z=> — Z,
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satisfying
p(2)=0andp(k) < p(k+1) =< p(k)+1.

These strict requirements were necessary for Goresky araPMsgison to
achieve their initial goals for intersection homology: ttlize intersection ho-
mology groups/” Hy(X) should satisfy a generalized form of Poireauality
for stratified pseudomanifolds and that they should be tugichl invariants,
i.e., they should be independent of the choice of stratiinanf X'.

In the ensuing years, perversity parameters have evolvéteaspplications
of intersection homology have evolved, and in many casebdbi definitions
of intersection homology itself have had to evolve as welhday, there are
important results that utilize the most general possibtionof a perversity as
a function

p : {components of singular strata of a stratified pseudomahife! Z.

In this setting, one usually loses topological invarianEéentersection homol-
ogy (though this should be seen not as a loss but as an opjtprtarstudy
stratification data), but duality results remain, at lefsine chooses the right
generalizations of intersection homology. Complicatihiz thoice is the fact
that there are a variety of approaches to intersection hugydio begin with,
even using Goresky and MacPherson'’s perversities. Thekali (at the least)
the original simplicial chain definition [32]; Goresky andaPherson’s Deligne
sheaves [33; 6]; King's singular chain intersection horgglf82]; Cheeger'd.?
cohomology and.? Hodge theory [16]; perverse differential forms on Thom—
Mather stratified spaces (and, later, on unfoldable spaggsfirst published
by Brylinski [8] but attributed to Goresky and MacPhersond @he theory of
perverse sheaves [4]. Work to find the “correct” versionete theories when
general perversities are allowed has been performed bytherausing strati-
fied coefficients for simplicial and singular intersectidgrams [26]; by Saraleqgi,
using “relative” intersection homology and perverse défeial forms in [54];
and by the author, generalizing the Deligne sheaf in [22gc&p cases of non-
Goresky—MacPherson perversities in fireHodge theory setting have also been
considered by Hausel, Hunsicker, and Mazzeo [37]; Hunsihkd Mazzeo [39];
and Hunsicker [38]. And arbitrary perversities have beeilable from the start
in the theory of perverse sheaves!

This paper is intended to serve as something of a guidebotiletdifferent
notions of perversities and as an introduction to some neleaoiting work in
this area. Each stage of development of the idea of peresrsias accompanied
by a flurry of re-examinings of what it means to have an intree homology
theory and what spaces such a theory can handle as input,aahdsech re-
examining had to happen within one or more of the contextsdigabove. In
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many cases, the outcome of this re-examination led to a roatidn or ex-
pansion of the basic definitions. This has resulted in agquitified, parade
of papers consumed with working through all the technicahitte However,
technicalities often have the unintended effect of obscuthe few key main
ideas. Our goal then is to present these key ideas and thesegaences in
an expository fashion, referring the reader to the releyapters for further
technical developments and results. We hope that such ayswil provide
something of an introduction to and overview of the recemt angoing work
of the author, but we also hope to provide a readable (andftibpaccurate!)
historical account of this particular chain of ideas and @rgew of the work
of the many researchers who have contributed to it. We ahdily hope that
such an overview might constitute a suitable introductiontfiose wishing to
learn about the basics of intersection homology and as patpa for those
wishing to pursue the many intriguing new applications tieateral perversities
bring to the theory.

This exposition is not meant to provide a comprehensiveofigstl account
but merely to cover one particular line of development. Wik f@cus primarily
on the approaches to intersection homology by simplicia singular chains
and by sheaf theory. We will touch only tangentially uponveese differential
forms when we consider Saralegi’s work in Section 10; we salthe reader to
consult [54] for the state of the art, as well as referencgwitor work, in this
area. Also, we will not discus&?-cohomology. This is a very active field of
research, as is well-demonstrated elsewhere in this vol8@jebut the study of
L?-cohomology and.? Hodge theories that yield intersection homology with
general perversities remains under development. The rsadeld consult the
papers cited above for the work that has been done so far. Iarigfly discuss
perverse sheaves in Section 8.2, but the reader shouldltptisor any of the
variety of fine surveys on perverse sheaves that have appsiaee for more
details.

We will not go into many of the myriad results and applicasiaf inter-
section homology theory, especially those beyond topofurgyper in analysis,
algebraic geometry, and representation theory. For braatkerences on inter-
section homology, the reader might start with [6; 42; 2]. Séhare also excellent
sources for the material we will be assuming regarding stivesiry and derived
categories and functors.

We proceed roughly in historical order as follows: Sectiopr@vides the
original Goresky—MacPherson definitions of PL pseudonadeiéfand PL chain
intersection homology. We also begin to look closely at theecformula for
intersection homology, which will have an important rolgtay throughout. In
Section 3, we discuss the reasons for the original GoreskgF¥erson condi-
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tions on perversities and examine some consequences, antredrice King's

singular intersection chains. In Section 4, we turn to theasttheoretic defi-
nition of intersection homology and introduce the Delighea. We discuss
the intersection homology version of Poingaduality, then we look at our
first example of an intersection homology result that w#iz non-Goresky—
MacPherson perversity, the Cappell-Shaneson superdtradibrem.

In Section 5, we discussubperversitiesindsuperperversitiesHere we first
observe the schism that occurs between chain-theoretistzaf-theoretic in-
tersection homology when perversities do not satisfy thee€g—MacPherson
conditions. Section 6 introducesratified coefficientswhich were developed
by the author in order to correct the chain version of intetiea homology for
it to conform with the Deligne sheaf version.

In Section 7, we discuss the further evolution of the cha@oti to the most
general possible perversities and the ensuing resultsgpidations. Section 8
contains the further generalization of the Deligne sheafetoeral perversities,
as well as a brief discussion of perverse sheaves and howajgrezversity
intersection homology arises in that setting. Some inainatof recent work
and work-in-progress with these general perversitiesasiged in Section 9.

Finally, Sections 10 and 11 discuss some alternative appesato intersec-
tion homology with general perversities. In Section 10, wsewalss Saralegi’'s
“relative intersection chains”, which are equivalent te #uthor’s stratified co-
efficients when both are defined. In Section 11, we presentdhieof Habegger
and Saper from [35]. This work encompasses another opticonecting the
schism presented in Section 5 by providing a sheaf theotwatiraes with King’s
singular chains, rather than the other way around; howdweiiabegger—Saper
theory remains rather restrictive with respect to accdptperversities.

2. The original definition of intersection homology

We begin by recalling the original definition of intersectihomology as
given by Goresky and MacPherson in [32]. We must start wighgbaces that
intersection homology is intended to study.

2.1. Piecewise linear stratified pseudomanifoldsThe spaces considered by
Goresky and MacPherson in [32] wepecewise linear (PL) stratified pseudo-
manifolds An n-dimensional PL stratified pseudomanifald is a piecewise
linear space (meaning it is endowed with a compatible fawfilyiangulations)
that also possesses a filtration by closed PL subspacedrtification)

X=X"2X"25x"35..0X'2x>x =9

satisfying the following properties:
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(@) X — X" 2 is dense inX,

(b) for eachk > 2, X"~k — xn—k=1 s either empty or is an — k dimensional
PL manifold,

(c) if x € X"~k — x"=k=1 thenx has adistinguished neighborhood¥’ that is
PL homeomorphic t@®” % x ¢ L, wherecL is the open cone on a compact
k — 1 dimensional stratified PL pseudomanifdld Also, the stratification of
L must be compatible with the stratification &f.

A PL stratified pseudomanifold is oriented (or orientable) ik — X"~

has the same property.

A few aspects of this definition deserve comment. Firstly,définition is induc-
tive: to define am-dimensional PL stratified pseudomanifold, we must already
know what ak — 1 dimensional PL stratified pseudomanifold is for 1 < n.

The base case occurs for= 0; a 0-pseudomanifold is a discrete set of points.
Secondly, there is a gap fromto n — 2 in the filtration indices. This is more-
or-less intended to avoid issues of pseudomanifolds witmbary, although
there are now established ways of dealing with these istia¢svie will return

to below in Section 5.

The setsX’ are calledskeleta and we can verify from condition (b) that
each has dimensios i as a PL complex. The sef§; := X/ — X! are
traditionally calledstrata though it will be more useful for us to use this term for
the connected components Bf, and we will favor this latter usage rather than
speaking of “stratum components The strata oft” — X”~2 are calledegular
strata, and the other strata are callsishgular strata The spacd. is called the
link of x or of the stratum containing. For a PL stratified pseudomanifold
is uniquely determined up to PL homeomorphism by the stratontainingx.
The conecL obtains a natural stratification from that bt (cL)° is the cone
point and fori > 0, (cL)! = L'~! x (0, 1) C ¢L, where we think ot:L as

Lx[0,1)
(x.0)~ (,0)’
The compatibility condition of item (c) of the definition mesathat the PL home-
omorphism should tak& N N to R* ¥ x (¢L)I==k)

Roughly, the definition tells us the following. Anrdimensional PL stratified
pseudomanifoldY is mostly then-manifold X — X”~2, which is dense inX.

(In much of the literatureX”~2 is also referred to a&, the singular locus of
X.) The rest ofX is made up of manifolds of various dimensions, and these
must fit together nicely, in the sense that each point in ematusn should have

!t is perhaps worth noting here that the notation we employuhout mostly will
be consistent with the author’'s own work, though not necégsaith all historical
sources.
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a neighborhood that is a trivial fiber bundle, whose fiberscarges on lower-
dimensional stratified spaces.

We should note that examples of such spaces are copious. ohmglex an-
alytic or algebraic variety can be given such a structure [8gSection IV]), as
can certain quotient spaces of manifolds by group actiobhgpseudomanifolds
occur classically as spaces that can be obtained from a foitesomplices by
gluing in such a way that each— 1 face of ann-simplex is glued to exactly
onen — 1 face of one othen-simplex. (Another classical condition is that we
should be able to move from any simplex to any other, passityg through
interiors ofn — 1 faces. This translates to say thé&t X”~2 is path connected,
but we will not concern ourselves with this condition.) Qtsanple examples
arise by taking open cones on manifolds (naturally, givendbfinition), by
suspending manifolds (or by repeated suspensions), bpggimanifolds and
pseudomanifolds together in allowable ways, etc. One castoact many use-
ful examples by such procedures as “start with this manifelgpend it, cross
that with a circle, suspend again, ...” For more detailedrglas, the reader
might consult [6; 2; 44].

More general notions of stratified spaces have co-evolvéld thie various
approaches to intersection homology, mostly by droppingamakening require-
ments. We shall attempt to indicate this evolution as we i@sg)

2.2. Perversities. Besides the spaces on which one is to define intersection
homology, the other input is the perversity parameter. éndhginal Goresky—
MacPherson definition, a perversigyis a function from the integers 2 to the
non-negative integers satisfying the following propesxtie

(@ p(2) =0.
(b) pk) < p(k+1) < p(k)+ 1.

These conditions say that a perversity is something likebassep function.
It starts at0, and then each time the input increases by one, the outfdreit
stays the same or increases by one. Some of the most comneedyperver-
sities include the zero perversiffk) = 0, the top perversity (k) = k — 2,
the lower-middle perversityin(k) = L%J and the upper middle perversity
k) =511

The idea of the perversity is that the input numbeepresents the codimen-
sion of a stratumX,,_; = X% — X"~*=1 of ann-dimensional PL stratified
pseudomanifold, while the output will control the extentsoich the PL chains
in our homology computations will be permitted to interadthwhese strata.

The reason for the arcane restrictionsjowill be made clear below in Sec-
tion 3. We will call any perversity satisfying conditions) @nd (b) aGoresky—
MacPherson perversityor aGM perversity
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2.3. Intersection homology. At last, we are ready to discuss intersection ho-
mology.

Let X be ann-dimensional PL stratified pseudomanifold, and d&t (X)
denote the simplicial chain complex &f with respect to the triangulatioff.
The PL chain complexX’s(X) is defined to bei)rrr CI(X), where the limit is
taken with respect to the directed set of compatible tritgatguns. This PL chain
complex is utilized by Goresky and MacPherson in [32] (see §]), and it is
useful in a variety of other contexts (see [46], for instgnétowever, it turns out
that this is somewhat technical overkill for the basic défni of intersection
homology, as what follows can also be performed’ifi(X), assumingl is
sufficiently refined with respect to the the stratification¥of{for example, pick
any 7', take two barycentric subdivisions, and you're set to go-e{48]).

We now define the perversity intersection chain compleX?Cy(X) C
C«(X). We say that a PLj-simplexo is p-allowableprovided

dim(oc N X,—x) < j —k + p(k)

for all £ > 2. We say that a PlLi-chain ¢ € C;(X) is p-allowableif eachi-
simplex occurring with nonzero coefficient§ns p-allowable and if each—1
simplex occurring with nonzero coefficientd§ is p-allowable. Notice that the
simplices iné must satisfy the simplex allowability condition with= i while
the simplices ob& must satisfy the condition with =i — 1.

ThenI?C,(X) is defined to be the complex of allowable chains. It follows
immediately from the definition that this is indeed a chaimptex. The inter-
section homology groups aié Hy (X) = Hy(I? Cx(X)).

Some remarks are in order.

REMARK 2.1. The allowability condition at first seems rather myisies. How-
ever, the condition difs N X,,_;) < j —k would be precisely the requirement
thato and X,,_ intersect in general position X,,_; were a submanifold ok'.
Thus introducing a perversity can be seen as allowing dewidtom general
position to a degree determined by the perversity. This sderbe the origin
of the nomenclature.

REMARK 2.2. It is a key observation that§fis ani-chain, then it is not every

i — 1 face of everyi-simplex ofé that must be checked for its allowability, but
only those that survive ia¢é. Boundary pieces that cancel out do not need to be
checked for allowability. This seemingly minor point acotifor many subtle
phenomena, including the next remark.

REMARK 2.3. Intersection homology with coefficienfé H,(X; G) can be
defined readily enough beginning wifh (X'; G) instead ofC,(X). However,
IPCy(X; G) is generallyNOT the same a$? C«(X) ® G. This is precisely due
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to the boundary cancellation behavior: extra boundary eéatmon in chains
may occur whenG is a group with torsion, leading to allowable chains in
I?C4(X; G) that do not come from ang-linear combinations of allowable
chains inf? C (X ; Z). For more details on this issue, including many examples,
the reader might consult [29].

REMARK 2.4. In [32], Goresky and MacPherson stated the allowghstindi-
tion in terms of skeleta, not strata. In other words, theyrae8 j-simplex to
be allowable if

dim(c N X" %) < j —k + p(k)

for all £ > 2. However, it is not difficult to check that the two conditioase
equivalent for the perversities we are presently consideNVhen we move on
to more general perversities, below, it becomes necessatate the condition
in terms of strata rather than in terms of skeleta.

2.4. Cones. It turns out that understanding cones plays a crucial rolalin

most all else in intersection homology theory, which peghsipould not be too
surprising, as pseudomanifolds are all locally productsasfes with euclidean
space. Most of the deepest proofs concerning intersectiomology can be

reduced in some way to what happens in these distinguishigibwrhoods.

The euclidean part turns out not to cause too much troubtegdnes possess
interesting and important behavior.

So letL be a compack — 1 dimensional PL stratified pseudomanifold, and
let ¢cL be the open cone oh. Checking allowability of aj-simplexo with
respect to the cone vertgx} = (cL)° is a simple matter, since the dimension
of o N {v} can be at mosd. Thuso can allowably intersect if and only if
0<j—k+pk),ie.,if j>k—p(k). Now, supposé is an allowable -cycle in
L. We can form the chaiti € I? C; 1 (cL) by taking the cone on each simplex
in the chain (by extending each simplex linearly to the coomt). We can
check using the above computation (and a little more workwledl suppress)
thatcé is allowable ifi + 1 > k — p(k), and thust = d¢& is a boundary; see
[6, Chapters | and I1]. Similar, though slightly more conualied, computations
show that any allowable cycle iaL is a boundary. Thug? H;(cL) = 0 if
i >k—1— p(k). On the other hand, if < k — 1 — p(k), then noi-chainé can
intersectv nor can any chain of which it might be a boundary. Thus left to
its own devices inL —v, i.e., I? H;(cL) = I? H;(cL —v) = I? H; (L x (0, 1)).

It turns out that intersection homology satisfies tHmKeth theorem when one
factor is euclidean space and we take the obvious prodtifisiation (see [6,
Chapter 1]), or alternatively we can use the invariance t#rsection homology
under stratum-preserving homotopy equivalences (seg @34 so in this range
IPHi(cL) =~ I? H;(L).
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Altogether then, we have

0 if i >k —1— p(k),

PH(L) ifi<k—1-p(k). (2-1)

IPHj(cLF 1) ~ {
We will return to this formula many times.

3. Goresky—MacPherson perversities

The reasons for the original Goresky—MacPherson conditam perversi-
ties, as enumerated in Section 2.2, are far from obviousmétely, they come
down to the two initially most important properties of irgection homology:
its topological invariance and its Poinéaduality.

The topological invariance property of traditional inecgon homology says
that whenp is a Goresky—MacPherson perversity akidis a stratified pseu-
domanifold (PL or topological, as we’ll get to soon) théhH, (X) depends
only on X" and not on the choice of stratification (among those allowethb
definition). This is somewhat surprising considering how ititersection chain
complex depends on the strata.

The desire forl? H,(X) to be a topological invariant leads fairly quickly to
the condition that we should not allop(k) to be negative. This will be more
evident once we get to the sheaf-theoretic formulationtefrgection homology,
but for now, consider the cone formula (2-1) fatk—!, and supposg (k) < 0.
Then we can check that no allowable PL chain may intense€thus we see that
the intersection homology afL is the same as if we removed the cone point
altogether. A little more work (see [22, Corollary 2.5]) dsamore generally to
the conclusion that i (k) < 0, thenI? H,(X) = I? H,(X — X}). This would
violate the topological invariance since, for exampleptopgical invariance tells
us that if M" is a manifold then/? H,(M) =~ H.«(M), no matter how we
stratify it2. But if we now allow, say, a locally-flat PL submanifold”—* and
stratify by M O N, then if p(k) < 0 we would haveH, (M) = I? Hy(M) =
I?H, (M — N) = H.(M — N). This presents a clear violation of topological
invariance.

The second Goresky—MacPherson condition, fitad < p(k+1) < p(k)+1,
also derives from topological invariance consideratidrse following example
is provided by King [41, p. 155]. We first note that, lettigX’ denote the
suspension of’, we havec S X =~ R x ¢ X (ignoring the stratifications). This is
not hard to see topologically (recall that” is theopencone onX’). But now if
we assumeX is k — 1 dimensional and that we take the obvious stratifications

2Note that one choice of stratification is the trivial one @oming a single regular
stratum, in which case it is clear from the definition thé&#.. (M) =~ H.(M).
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of R x ¢ X (assuming some initial stratification on), then

0 if i >k—1— p(k),

PPH(X) ifi<k—1-pk). (3-1)

IPH;(R x ¢X) = {
This follows from the cone formula (2-1) together with theeirsection ho-
mology Kiinneth theorem, for which one term is unstratified [41] (oatsim-
preserving homotopy equivalence [23]).
But now it also follows by an easy argument, using (2-1) aredNtayer—
Vietoris sequence, that

_ IPH; (X) ifi>k—1-pk),
IPH;(SX)={0 ifi =k—1—p(k), (3-2)
IPH(X) ifi<k—1-—pk),

and, sinceSX has dimensiott,

0 if i >k— p(k+1),

D . o~ =
I Hz(CSX)={1pHi(SX) ifi <k—pk+1).

(3-3)
So, I H;(R x cX) is 0 fori > k —1— p(k), while I? H;(cSX ) must be0 for
i>k—p(k+1)andalsofoi =k—1—p(k)evenifk—1—p(k)<k—p(k+1).
Also, it is not hard to come up with examples in which the tethet are not
forced to be zero are, in fact, nonzero.klt- 1 — p(k) >k — p(k + 1) (i.e.,
1+ p(k) < p(k + 1)), so that the special case= k — 1 — p(k) is already
in the zero range foi” H,(cSX), then topological invariance would require
k—1—pk)=k—pk+1),ie., plk +1) = p(k) + 1. So if we want
topological invariancep(k + 1) cannot be greater thai(k) + 1.

Onthe other hand, #—1—p(k) <k—p(k+1), theO atI? Hy_;_ 5x)(cSX)
forced by the suspension formula drops below the truncaliimension cutoff at
k— p(k+1) that arises from the cone formula.Adf-1—p(k)=k—1—p(k+1)
(i.e., p(k) = p(k + 1)), no contradiction occurs. But if

k—1—pk) <k—1—p(k+1)

(i.e., p(k + 1) < p(k)), thenIﬁHk_l_I;(kH)(cSX) could be nonzero, which
means, via the formula fa’ Hy (R x ¢ X ), that we must have—1—p(k+1) <
k—1—p(k) (i.e., p(k +1) > p(k)), yielding a contradiction.

Hence the only viable possibilities for topological inearce arep(k + 1) =
plkyor p(k+1)= p(k)+1.

It turns out that both possibilities work out. Goresky andddaerson [33]
showed using sheaf theory that any perversity satisfyingwlo Goresky—Mac-
Pherson conditions yields a topologically invariant iststion homology the-
ory. King [41] later gave a non-sheaf proof that holds eveervh(2) > 0.
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Why, then, did Goresky and MacPherson limit consideratmpdrversities
for which p(2) = 0? For one thing, they were primarily concerned with the
Poincaé duality theorem for intersection homology, which statest if X is
a compact oriented-dimensional PL stratified pseudomanifold, then there is a
nondegenerate pairing

IPH;(X:Q)® IH,_;(X;:Q) - Q

if p andg satisfy the Goresky—MacPherson conditi@msl p + ¢ = ¢, or, in
other wordsp(k) + g(k) = k —2. If we were to try to allowp(2) > 0, then we
would have to havg(2) < 0, and we have already seen that this causes trouble
with topological invariance. So if we want both duality angariance, we must
have p(2) = g(2) = 0. Without this condition we might possibly have one or
the other, but not both. In fact, King’s invariance resutis (2) > 0 implies

that duality cannot hold in general when we pair a pervesitly 5(2) > 0 with

one withg(2) < 0, at least not without modifying the definition of intersecti
homology, which we do below.

But there is another interesting reason that Goresky andPhiarson did not
obtain King's invariance result fop(2) > 0. When intersection homology was
first introduced in [32], Goresky and MacPherson were unaittially to prove
topological invariance. They eventually succeeded byrnefitating intersection
homology in terms of sheaf theory. But, as it turns out, wipgR) # 0 the
original sheaf theory version of intersection homology<sinet agree with the
chain version of intersection homology we have been disiegssd for which
King proved topological invariance. Furthermore, the $heaision is not a
topological invariant wherp(2) > 0 (some examples can be found in [24]).
Due to the powerful tools that sheaf theory brings to inteiea homology,
the sheaf theoretic point of view has largely overshadoviedchain theory.
However, this discrepancy between sheaf theory and chaorytHor non-GM
perversities turns out to be very interesting in its own tjigls we shall see.

3.1. Some consequences of the Goresky—MacPherson conditio The Go-
resky—MacPherson perversity conditions have a varietyntdrésting conse-
guences beyond turning out to be the right conditions taylielth topological
invariance and Poincarduality.

Recall that the allowability condition for arsimplexo is that dime N X}) <
i —k + p(k). The GM perversity conditions ensure thatk) < k —2, and so
for any perversity we must have- k + p(k) < i —2. Thus noi-simplex in
an allowable chain can intersect any singular stratum inrttegiors of itsi or
its i — 1 faces. One simple consequence of this is thad-ar 1-simplices may
intersectX”~2, and sol? Hy(X) = Hy(X — X" 2).
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Another consequence is the following fantastic idea, alse t Goresky
and MacPherson. Suppose we have a local coefficient systgmowops (i.e.,

a locally constant sheaf) defined dh— X”~2, even perhaps one that cannot
be extended to all ofX. If one looks back at early treatments of homology
with local coefficient systems, for example in Steenrod [#6s sufficient to
assign a coefficient group to each simplex of a triangulafa can think of
the group as being located at the barycenter of the simplek}teen to assign
to each boundary face map a homomorphism between the groiine simplex
and the group on the boundary face. This turns out to be wrifitd define
homology with coefficients —what happens on lower dimersidaces does
not matter (roughly, everything on lower faces cancels egtlnse we still have
9% = 0). Since the intersection-chains with the GM perversities have the
barycenters of their simplices and of their top- 1 faces outside o2, a
local coefficient systerg on X”~2 is sufficient to define the intersection chain
complexI?C,(X; G) and the resulting homology groups. For more details on
this construction, see, [26], for example.

Of course now the stratification does matter to some exteoési determines
where the coefficient system is defined. However, see [6,dedt4] for a
discussion of stratifications adapted to a given coefficsgatem defined on an
open dense set of of codimensior> 2.

One powerful application of this local coefficient versidnrdersection ho-
mology occurs in [12], in which Cappell and Shaneson studgidar knots by
considering the knots in their ambient spaces as stratifiades. They employ
a local coefficient system that wraps around the knot to mitiméc covering
space arguments of classical knot theory. This work alsdaims one of the
first useful applications of intersection homology with /@M perversities. In
order to explain this work, though, we first need to discussstieaf formulation
of intersection homology, which we pick up in Section 4.

3.2. Singular chain intersection homology. Before moving on to discuss
the sheaf-theoretic formulation of intersection homologg jump ahead in the
chronology a bit to King’s introduction of singular chairtensection homology
in [41]. As one would expect, singular chains are a bit monelle than PL
chains (pun somewhat intended), and the singular intéosechain complex
can be defined on any filtered spakeo X”~! > X"~2 5 ..., with no further
restrictions. In fact, the “dimension” indices of the skal&* need no longer
have a geometric meaning. These spaces include both Pifietraseudoman-
ifolds andtopological stratified pseudomanifolde definition of which is the
same as of PL pseudomanifolds but with all requirementsexfasiise linearity
dropped. We also extend the previous definition now to allow a1 skeleton,
and we must extend perversities accordingly to be functipris=! — Z. King
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definesloose perversitigswhich are arbitrary functions of this type. We will
return to these more general perversities in greater degaile go on.

To define the singular intersection chain complex, which wi¢ denote
I?S.(X), we can no longer use dimension of intersection as a critejgs-
pecially if the index of a skeleton no longer has a dimendiomzaning). In-
stead, the natural generalization of the allowability gbod is that a singular
i-simplexo : A’ — X is allowable if

o ' (X,_x) C {i —k + p(k) skeleton ofA’}.

Once allowability has been defined for simplices, allowgbibf chains is de-
fined as in the PL case, and we obtain the chain compfes (X) and the
homology groupd? H, (X).

If X is a PL stratified pseudomanifold, the notatibhH, (X) for singular
chain intersection homology causes no confusion; as Kisgoes, the PL and
singular intersection homology theories agree on suchespaslso as for PL
chains, and by essentially the same argument&; tias no codimension one
stratum andp is a GM perversity, singular intersection homology can takal
coefficients onY — X2,

From here on, when we refer to chain-theoretic intersedtimmology, we
will mean both the singular version (in any context) and the/€rsion (on PL
spaces).

4. Sheaf-theoretic intersection homology

Although intersection homology was developed originalflizing PL chain
complexes, this approach was soon largely supplanted lig¢haiques of sheaf
theory. Sheaf theory was brought to bear by Goresky and MasBh in [33],
originally as a means to demonstrate the topological iavaeg (stratification
independence) of intersection homology with GM pervegsitthis was before
King's proof of this fact using singular chains. Howevergitickly became
evident that sheaf theory brought many powerful tools aleitly it, including a
Verdier duality approach to the Poinéadluality problem on pseudomanifolds.
Furthermore, the sheaf theory was able to accommodateoigipal pseudo-
manifolds. This sheaf-theoretic perspective has largelyidated intersection
homology theory ever since.

The Deligne sheaf. We recall that if X" is a stratified topological pseudo-
manifold®, then a primary object of interest is the so-cal@eligne sheafFor
notation, we let/, = X — X"~* for k > 2, and we lety, : Uy < Ui+ denote

3For the moment, we again make the historical assumptionttiea¢ are no codi-
mension one strata.
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the inclusion. Suppose thatis a GM perversity. We have seen that intersection
homology should allow a local system of coefficients definalgt on X — X" ~2;

let G be such a local system. The Deligne sheaf compi&xor, more precisely
P;’-;’g) is defined by an inductive process. It is

P* = Tsﬁ(n)Rin* .. Tsﬁ(z)Riz*(g ® 0),

whereQ is the orientation sheaf oki — X" ~2, Riy, is the right derived functor
of the pushforward functay, ., andc<,, is the sheaf complex truncation functor
that takes the sheaf compléX to t<,,S* defined by

0 if i >m,
(t<mS*)' = {ker(d,-) if i =m,
St if i <m.

Here d; is the differential of the sheaf complex. Recall that,S* is quasi-
isomorphic taS* in degrees< m and is quasi-isomorphic ®in higher degrees.

REMARK 4.1. Actually, the orientation sheéf is not usually included here as
part of the definition ofP*, or it would be only if we were discussir‘vg;’g@(g.
However, it seems best to include this here so as to elimhmatimg to continu-

ally mess with orientation sheaves when discussing thevalgmice of sheaf and
chain theoretic intersection homology, which, withoutsthbnvention, would
read thatH*(X;P};,g@O) ~ IPH,_.(X;G); see below. Putting into the
definition of P* as we have done here allows us to leave this nuisance tacit in
what follows.

The connection between the Deligne sheaf complex (alsedcaimply the
“Deligne sheaf”) and intersection homology is that it carshewn that, on an
n-dimensional PL pseudomanifol®* is quasi-isomorphic to the she&f —
I°C,(U:G). Here theco indicates that we are now working with Borel—
Moore PL chain complexes, in which chains may contain anitefirumber of
simplices with nonzero coefficients, so long as the colbectf such simplices
in any chain is locally-finite. This is by contrast to the Plachcomplex dis-
cussed above for which each chain can contain only finitelypynsanplices with
nonzero coefficient. This sheaf of intersection chainsde abft, and it follows
via sheaf theory that the hypercohomology of the Deligneaklgisomorphic
to the Borel-Moore intersection homology

H*(X:P*) = IPH® (X :G).

4There are several other indexing conventions. For exantglecommon to shift
this complex so that the coefficienfslive in degree—n and the truncations become
T<j5(k)—n- There are other conventions that make the cohomologioahyrivial degrees
of the complex symmetric aboOtwhenn is even. We will stick with the convention that
G lives in degred throughout. For details on other conventions, see [33Jefample.
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It is also possible to recover the intersection homology mduced initially
by using compact supports:

HY (X;P*) = IPHS_(X:0).

Now that we have introduced Borel-Moore chains, we will usdd indicate
the more familiar compact (finite number of simplices) supgolf the results
we discuss hold in both contexts (in particulatXifis compact) we will forgo
either decoration. More background and details on all f tain be found in
[33; 6].

It was shown later, in [26], that a similar connection exisetween the
Deligne sheaf and singular chain intersection homologtopologicalpseudo-
manifolds. Continuing to assume GM perversities, one cao défine a sheaf
via the sheafification of the presheafsifigular chains

U—ISy—+(X, X —U;G).

This sheaf turns out to be homotopically fine, and it is agaiasitisomorphic
to the Deligne sheaf. Thus, once again, we have

HY(X:P*)~ IPHS_(X:G) and H*(X:P*)~IPH®, (X:0),

which is the homology of the chain complé® S2°(X ; G) consisting of chains
that can involve an infinite, though locally-finite, numbdrsimplices with
nonzero coefficient.

The Goresky—MacPherson proof of topological invariandeics by show-
ing that the Deligne sheaf is uniquely defined up to quasi@mphism via a
set of axioms that do not depend on the stratification of tleeapThis proof
is given in [33]. However, we would here like to focus attention what the
Deligne sheaf accomplishes locally, particularly in mirfdtee maxim that a
sheaf theory (and sheaf cohomology) is a machine for assggnlacal in-
formation into global. So let's look at the local cohomoloe., the stalk
cohomology) of the sheaP* atx € X,_x. This isH*(P*)x = H*(P}) =
Ii_m)er H*(U; P*) = Ii_m)er IﬁH,fi*(U;g), and we may assume that the
limit is taken over the cofinal system of distinguished nbeiimoodsN =~
R"* x ¢ Lk~ containingx. It is not hard to see th&* atx € X,_; depends
only on the stages of the iterative Deligne constructionhupughz< 5x) Riy«

(at least so long as we assume tipats nondecreasirfy as it will be for a
GM perversity). Then it follows immediately from the definit of ¢ that
H*(P*)x = 0 for * > p(k). On the other hand, the pushforward construction,

>SinceX is locally compact, we may use eitheor oo to obtain the same sheaf.

SIf p ever decreases, saykgtthen the truncations< ;) mightkill local cohomology
in other strata of lower codimension.



192 GREG FRIEDMAN

together with a Kinneth computation and an appropriate induction step Gee [
Theorem V.2.5]), shows that far < p(k) we have
H*(P*)x =@ H*(N — N n X" 7%, p*)

~ H*(R"F x (cL —v); P*)

~ H*(R" K+ x L; P*)

=~ H*(L; P*|L).
It can also be shown th&*|, is quasi-isomorphic to the Deligne sheaf bn
SOH*(L: P*|1) = I” Hi_1_«(L).

For future reference, we record the formula

0 if i > p(k),
H' (L, P*) ifi < p(k),
for x € X,,_; and L the link of x. Once one accounts for the shift in indexing
between intersection homology and Deligne sheaf hyperooleyy and for

the fact that we are now working with Borel-Moore chainsstheomputations
work out to be equivalent to the cone formula (2-1). In fact,

H (P*)x = { (4-1)

H*(PY) = IPH® (R" % x ¢L; Q)
~ [P H (cL;G) (by the Kiinneth theorem)
~ I? Hy_(cL,L % (0,1);G),

and the cone formula (2-1) translates directly, via the lergct sequence of
the pair(cL, L x (0, 1)), to this being0 for %« > p(k) and I? Hy_,_(L: G)
otherwise.

So the Deligne sheaf recovers the local cone formula, andvondd be hard
pressed to find a more direct or natural way to “sheafify” tralaone condition
than the Deligne sheaf construction. This reinforces otionahat the cone
formula is really at the heart of intersection homology. &atf the axiomatic
characterization of the Deligne sheaf alluded to aboverangty based upon
the sheaf version of the cone formula. There are severalagut sets of char-
acterizing axioms. The firsy X'1; ¢, is satisfied by a sheaf compleX if

(@) $* is bounded an&™* =0 fori <0,

(b) S*|y_xn2=2GR0,7

(c) forx € X,_x, H(S¥) =0if i > jp(k), and

(d) for each inclusiony : Uy — Ui 41, the “attaching mapy given my the
composition of natural morphisnS* |y, ., — ix«if S* — Rig4iS* is a
quasi-isomorphism in degrees p (k).

7See Remark 4.1 on page 190.
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These axioms should technically be thought of as applyirtbenderived cate-
gory of sheaves oy, in which case all equalities and isomorphisms should be
thought of as quasi-isomorphisms of sheaf complexes. Tsieakiom acts as
something of a normalization and ensures thatives in the bounded derived
category. The second axiom fixes the coefficientskon X”~2. The third and
fourth axioms are equivalent to the cone formula (4-1); $e&gctions V.1 and
V.2]. In fact, it is again not difficult to see that the Deligakeaf construction
is designed precisely to satisfy these axioms. It turns lbat these axioms
completely characterize a sheaf up to quasi-isomorphisen [ Section V.2]),
and in fact it is by showing that the sheafificationloéf— 12 S, (X, X —U;G)
satisfies these axioms that one makes the connection bethweesheaf of sin-
gular intersection chains and the Deligne sheaf.

Goresky and MacPherson [33] proved the stratification irddpnce of in-
tersection homology by showing that the axiorh& 1 are equivalent to other
sets of axioms, including one that does not depend on thefisation of X'.
See [6; 33] for more details.

4.1. Duality. It would take us too far afield to engage in a thorough disoussi
of how sheaf theory and, in particular, Verdier duality lgadproofs of the
intersection homology version of Poinéaduality. However, we sketch some
of the main ideas, highlighting the role that the perver&ityctions play in the
theory. For complete accounts, we refer the reader to thellert expository
sources [6; 2].

The key to sheaf-theoretic duality is the Verdier dualizingction D. Very
roughly,D functions as a fancy sheaf-theoretic version of the furidtam(:, R).
In fact, D takes a sheaf compleX* to a sheaf compleklom*(S*, D% ), where
D% is the Verdier dualizing sheaf on the spake In reasonable situations,
the dualizing sheaDy is quasi-isomorphic (after reindexing) to the sheaf of
singular chains oX'; see [6, Section V.7.2.]. For us, the mostimportant propert
of the functorD is that it satisfies a version of the universal coefficienotkeen.
In particular, if S* is a sheaf complex over the Dedekind dom&inthen for
any openU C X,

H! (U; DS*) = Hom(H, (U; §*); R) ® Ext(H,*T1(U; 5*); R).

The key, now, to proving a duality statement in intersectimmology is
to show that if X' is orientable over a ground fieldf and p andg are dual
perversities, meaning(k)+g(k) =k —2forall k > 2, thenDP;[—n] is quasi-
isomorphic toP;. Here[—n] is the degree shift by-n degrees, i.e(S*[—n])’ =
S, and this shift is applied t®P* (it is not a shiftedP* being dualized).
It then follows from the universal coefficient theorem witbldi coefficientsF
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that
IUH,(X; F) = Hom(I” Hf (X; F), F),
which is intersection homology Poinéduality for pseudomanifolds.
To show thatDP;;[—n] is quasi-isomorphic t@g, it suffices to show that
DP};[—n] satisfies the axiomd X'1;. Again, we will not go into full detail, but

we remark the following main ideas, referring the reademh® @xiomsA4 X 1
outlined above:

(@) OnX — xX"2, DP;[—n] restricts to the dual of the coefficient system

P; |X_Xn—2,

which is again a local coefficient system Xfis orientable and the coefficient
system is trivial, then so is its dual.

(b) Recall that the third and fourth axioms for the Deligneafhconcern what
happens at a point in the stratumX,_;. To computeH*(S%), we may
compute limyey H*(U;S*). In particular, if we let eaclU be a distin-
guished neighborhood = R" K x¢L of x and apply the universal coefficient
theorem, we obtain

H'(U; DPj[—nlx) = lim xep H (DP}[-n)) (4-2)
= lim ey H'™"(U: DP})

= lim ey Hom(H, (U P}). F)

=~ lim ey Hom(I? HE (R" ™% x cL; F), F)

lim vev Hom(I? Hf (cL; F), F).

515

lle

The last equality is from the hneth theorem with compact supports. From
the cone formula, we know that this will vanishiit> k — 1 — p(k), i.e., if
i >k—2—p(k)=q(k). This is the third item of4 X'15.

(c) The fourth item of4 X 15 is only slightly more difficult, but the basic idea is
the same. By the computations (4-2j! (DP5[—n]x) comes down to com-
puting I? Hf (cL; F), which we know is isomorphic td” H¢(L; F) when
i <k—1-pk),ie.,i <q(k). Itisthen an easy argument to show that in
fact the attaching map condition afX'1; holds in this range.

(d) The first axiom also follows from these computations; ohecks that the
vanishing ofH"(P;,x) fori <0 and fori > p(k) for x € X,,_j is sufficient
to imply that H* (DP};[—n]x) also vanishes far < 0 or i sufficiently large.

We see quite clearly from these arguments precisely why tia¢ glerversity
condition p(k) 4+ g(k) = k —2 is necessary in order for duality to hold.
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A more general duality statement, valid over principal Idg@amains, was
provided by Goresky and Siegel in [34]. However, there isdded requirement
that the space&l belocally (p, R)-torsion free This means that for each
Xy—i, IP H,ﬁ_z_ﬁ(k)(Lx) is R-torsion free, wherd. . is the link ofx in X. The
necessity of this condition is that when working over a gpatideal domaing,
the Ext terms of the universal coefficient theorem for Vardigals must be taken
into account. If these link intersection homology groupd taasion, there would
be a possibly nonzero Ext term in the computation (4-2) wheng(k) + 1,
due to the degree shift in the Ext term of the universal cdeffictheorem. This
would prevent the proof thaDP;;[—n] satisfies4A X 1;, so this possibility is
eliminated by hypothesis. With these assumption, therdtrdsality pairings
analogous to those that occur for manifolds using ordinamdlogy with Z
coefficients. In particular, one obtains a nhondegeneraégsiection pairing on
homology mod torsion and a nondegenerate torsion linkingngaon torsion
subgroups. See [34] and [22] for more details.

This circle of ideas is critical in leading to the need for srgerversities in
the Cappell-Shaneson superduality theorem, which we sbaildiscuss.

4.2. Cappell-Shaneson superduality.The first serious application (of which
the author is aware) of a non-GM perversity in sheaf theoiatersection ho-
mology occurs in Cappell and Shaneson’s [12], where thegldpva gener-
alization of the Blanchfield duality pairing of knot theony study L-classes
of certain codimension 2 subpseudomanifolds of manifol@seir pairing is
a perfect Hermitian pairing between the perversityintersection homology
H*(X;P;’g) (with p a GM perversity) an(H”_l_*(X;Pg’g*), whereG* is
a Hermitian dual system @ andg satisfiesp(k) + g(k) = k — 1. This assures
thatg satisfies the GM perversity conditigitk) <g(k+1) <g(k)+1, butitalso
forcesg(2) = 1. In [26], we referred to such perversities agerperversities
though this term was later expanded by the author to incladget classes of
perversities; for which g(k) may be greater that(k) = k — 2 for somek.

Cappell and Shaneson worked with the sheaf version of eEtgos homol-
ogy throughout. Notice that the Deligne sheaf remains p#yfevell-defined
despite7 being a non-GM perversity; the truncation process juststdma higher
degree. Let us sketch how these more general perversities ico play in the
Cappell-Shaneson theory.

The Cappell-Shaneson superduality theorem holds in tgmalbsettings that
generalize those in which one studies the Blanchfield ppofrAlexander mod-
ules in knot theory; see [12] for more details. The Alexam@dules are the
homology groups of infinite cyclic covers of knot complensrand one of the
key features of these modules is that they are torsion meduwier the principal
ideal domainQ[z,#~!]. In fact, the Alexander polynomials are just the products
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of the torsion coefficients of these modules. Similarly, appell-Shaneson in-
tersection homology grouf§*(X; 771"-; g) are torsion modules ovéd[z, t~1](in

fact, G is a coefficient system with stalks equall@, r '] and with monodromy
action determined by the linking number of a closed path thighsingular locus
in X). Now, what happens if we try to recreate the Poigaduality argument
from Section 4.1 in this context? For one thing, the dual efabefficient system
over X — X"~2 becomes the dual systeft. More importantly, all of the Hom
terms in the universal coefficient theorem for Verdier dyalanish, because all
modules are torsion, but the Ext terms remain. From hergpibssible to finish
the argument, replacing all Homs with Exts, but there is aitical difference.
Thanks to the degree shift in Ext terms in the universal onefit theorem, at
a pointx € X,_x, H' (DP”;’Q[—n]x) vanishes not fof > k — 2 — p(k) but for
i >k—1— p(k), while the attaching isomorphism holds fox k — 1 — p(k). It
follows thatDP;’g[—n]x is quasi-isomorphic tGP;‘ but nowg must satisfy
pk)+q(k)=k—1.

The final duality statement that arises has the form

’g* 1

IPHi(X;G)* ~ Ext(I?Hy—i—1(X;G),Q[t,t ™))
~ Hom(J9 Hy—i—1 (X:G): Q(t.t ") /Qlz. 171,

wherep(k) + g(k) = k — 1, X is compact and orientable, and the last isomor-
phism is from routine homological algebra. We refer the esdd [12] for the
remaining technical details.

Note that this is somewhat related to our brief discussiothefGoresky—
Siegel duality theorem. In that theorem, a special contlittas added to ensure
the vanishing of the extra Ext term. In the Cappell-Shanek@iity theorem,
the extra Ext term is accounted for by the change in peryensijuirements, but
it is important that all Hom terms vanish, otherwise theraildcstill be a mis-
match between the degrees in which the Hom terms survivedtiom and the
degrees in which the Ext terms survive truncation. It might enlightening
exercise for the reader to work through the details.

While the Cappell-Shaneson superduality theorem gemesathe Blanch-
field pairing in knot theory, the author has identified anrisgéetion homology
generalization of the Farber—Levir#&torsion pairing in knot theory [21]. In
this case, the duality statement involves £t¢rms and requires perversities
satisfying the duality conditiop (k) + g(k) = k.

5. Subperversities and superperversities

We have already noted that King considered singular chaersaction ho-
mology for perversities satisfying(2) > 0, and, more generally, he defined in
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[41] alooseperversity to be an arbitrary function froff, 3, ...} to Z. Itis not
hard to see that the PL and singular chain definitions of setron homology
(with constant coefficients) go through perfectly well widose perversities,
though we have seen that we would expect to forfeit topoldgivariance (and
perhaps Poincarduality) with such choices. On the sheaf side, Cappell and
Shaneson [12] used a perversity wijili2) > 0 in their superduality theorem.
Somewhat surprisingly, however, once we have broken irgad¢llm of non-
GM perversities, the sheaf and chain theoretic versionstefsection homology

no longer necessarily agree.

A very basic example comes by takipgk) < 0 for somek; we will call such
a perversity asubperversityIn the Deligne sheaf construction, a subperversity
will truncate everything away and wind up with the triviaksti complex, whose
hypercohomology groups are all In the chain construction, however, we have
only made it more difficult for a chain to be allowable with pest to thekth
stratum. In fact, it is shown in [22, Corollary 2.5] that thendition p(k) < 0
is homologically equivalent to declaring that allowableaicis cannot intersect
the kth stratum at all. So, for example, jf(k) < 0 for all k, thenI? HS (X)) =
HS(X — X772,

The discrepancy between sheaf theoretic and chain theanetrsection ho-
mology also occurs when perversities exceed the top pétywers) = k — 2
for somek; we call such perversitiesuperperversitiesTo see what the issue
is, let us return once again to the cone formula, which we lsaem plays the
defining local (and hence global) role in intersection hargg! So long agp
is hon-decreasing (and non-negative), the arguments gbréneeding section
again yield the sheaf-theoretic cone formula (4-1) from Etedigne construc-
tion. However, the cone formula can fail in the chain versidisuperperverse
intersection homology.

To understand why, suppodeis a compack — 1 pseudomanifold, so that
(cL); = v, the cone point. Recall from Section 2.4 that the cone foannsomes
by considering cones on allowable cycles and checking venethnot they are
allowable with respect to. In the dimensions where such cones are allowable,
this kills the homology. In the dimensions where the conesnat allowable,
we also cannot have any cycles intersecting the cone venteikthe intersection
homology reduces td? Hf (cL —v) = I? Hf (L x R) = I? H(L), the first
isomorphism because. — v is homeomorphic td. x R and the second using
the Kunneth theorem with the unstratifi&® (see [41]) or stratum-preserving
homotopy equivalence (see [23]). These arguments holdtinthe PL and sin-
gular chain settings. However, there is a subtle point thegements overlook
when perversities exceed
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If pis a GM perversity, thep(k) <k —2 and sok — 1 — p(k) > 0 and the
cone formula guarantees thEﬁHg (cL) is always isomorphic tdﬁHg(L). In
fact, we have already observed, in Section 3.1, thand 1-simplices cannot
intersect the singular strata. Now suppose ht) = k£ — 1. Then extending
the cone formula should predict tha‘_tHg(cL) = 0. But, in these dimensions,
the argument breaks down. Fonifis a point incL — (cL)*~2 representing a
cycle in IﬁS(‘; (cL), thencx is al-simplex, and a quick perversity computation
shows that it is now an allowablesimplex. However, it is not allowable as a
chain sinced(cx) has two0-simplices, one supported at the cone vertex. This
cone vertex is not allowable. The difference between thg&e @nd the prior
ones is that whehn > 0 the boundary of a cone on arcycle is (up to sign) that
i-cycle. But when = 0, there is a new boundary component. In the previous
computations, this was not an issue because-ienplex would not have been
allowable either. But now this ruins the cone formula.

In general, a careful computation shows thak ifs a compack — 1 filtered
space and is any loose perversity, then the singular intersection dlogy
cone formula becomes [41]

) 0 if i >k—1— jp(k) andi 0,
IPHf(cL)= 7 if i =0andp(k)>k—1, (5-1)
PH/(L) ifi<k—1-pk).

Which is the right cone formula? So when we allow superperversities with
p(k) > t(k) = k —2, the cone formula (2-1) no longer holds for singular inter-
section homology, and there is a disagreement with the sheafy, for which
the sheaf version (4-1) of (2-1) always holds by the contitnof the Deligne
sheaf (at least so long gsis non-decreasing). What, then, is the “correct”
version of intersection homology for superperversitiagd(aven more general
perversities)? Sheaf theoretic intersection homologwadlthe use of tools such
as Verdier duality, and the superperverse sheaf inteaselstimology plays a key
role in the Cappell-Shaneson superduality theorem. Ontties band, singular
intersection homology is well-defined on more general spaoel allows much
more easily for homotopy arguments, such as those used ;iR 25; 27].

In [35], Habegger and Saper created a sheaf theoretic dizlatican of King'’s
singular chain intersection homology providgtk) < p(k+1) < p(k)+1 and
p(2) = 0. This theory satisfies a version of Poingatuality but is somewhat
complicated. We will return to this below in Section 11.

Alternatively, a modification of the chain theory whose hdogy agrees with
the hypercohomology of the Deligne sheaf even for supeepsities (up to the
appropriate reindexing) was introduced independentlyhieyauthor in [26] and
by Saralegi in [54]. This chain theory has the satisfyingogrty of maintaining
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the cone formula (2-1) for completely general perversite®n those that are
not necessarily non-decreasing, while yielding the usutak$ection homology
groups for GM perversities. Recently, the author has folsmlageneralization
of the Deligne sheaf construction that yields sheaf congsexhose hyperco-
homology groups agree with the homology groups of this ctiaory and are
the usual ones for GM perversities. Of course these groupsrgly will not
be independent of the stratification, but they do possesscBéi duality for
pseudomanifolds. Thus this theory seems to be a reasorafdidate for the
most general possible intersection homology theory. Wedegcribe this theory
and its characteristics in the following sections.

Superperversities and codimension one stratalt is a remarkable point of in-
terest that the perversity issues we have been discussinglprsome additional
insight into why codimension one strata needed to be lefobtlte definition of
stratified pseudomanifolds used by Goresky and MacPhetkongh | do not
know if it was clear that this was the issue at the time). Onaotire hand, if we
assume thaf has a codimension one stratum andj¢t) = 0, then p(1) is
greater than(1), which we would expect to be—2 = —1, and so we run into
the trouble with the cone formula described earlier in tleigtion. On the other
hand, if we letg(1) = (1) = —1, then we run into the trouble with negative
perversities described prior to that. In this latter cdse[deligne sheaf is always
trivial, yielding only trivial sheaf intersection homolggso there can be no non-
trivial Poincaé duality via the sheaf route (note thatl) = 0 andg(1) = —1
are dual perversities &= 1, so any consideration of duality involving the one
perversity would necessarily involve the other). Simylathere is no duality
in the chain version since, for example X > X"~ ! is S > pt then easy
computations shows thdf H; (X) =~ Hl"(S1 —pt) =0, while I? Hy(X) = Z.
Note that the first computation shows that we have also vditedtratification
independence of intersection homology.

One of the nice benefits of our (and Saralegi’s) “correctimthain-theoretic
intersection homology is that it allows one to include coelirsion one strata and
still obtain Poincak duality results. In general, though, the stratificatiothein
pendence does need to be sacrificed. One might argue thé thes preferred
trade-off, since one might wish to use duality as a tool togspacesogether
with their stratifications.

6. “Correcting” the definition of intersection chains

As we observed in the previous sectionpifs a superperversity (i.ep(k) >
k —2 for somek), then the Deligne sheaf version of intersection homolagy a
the chain version of intersection homology need no longezeagVodifications
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of the chain theory to correct this anomaly were introducgdhe author in
[26] and by Saralegi in [54], and these have turned out toigdeoa platform
for the extension of other useful properties of intersectiomology, including
Poincaé duality. These modifications turn out to be equivalent, rasgn in
[28]. We first present the author’s version, which is sligitlore general in that
it allows for the use of local coefficient systems &n- X"~ 1.

As we saw in Section 5, the discrepancy between the sheaffoomala and
the chain cone formulas arises because the boundari-ohain that is the cone
on a0-chain has &-simplex at the cone point. So to fix the cone formula, it is
necessary to find a way to make the extrsimplex go away. This is precisely
what both the author's and Saralegi’s corrections do, thdumwv they do it is
described in different ways.

The author’s idea, motivated by the fact that Goresky—Macstn perversity
intersection chains need only have their coefficients wefined onX — X2,
was to extend the coefficienson X — X”~! (now allowing codimension one
strata) to sstratified coefficient systeby including a “zero coefficient system”
onX"~1. Together these are dengig. Then a coefficient on a singular simplex
0 : A" — X is defined by a lift 0| ,—1 (y_ y»-1) to the bundleg on X — x"~!
and by a “lift” of o|,—1 (x»-1 to the0 coefficient system oveX”~!. Boundary
faces then inherit their coefficients from the simplicesythee boundaries of
by restriction. A simplex has coefficientif its coefficient lift is to the zero
section over all ofA’. In the PL setting, coefficients of PL simplices are defined
similarly. In principle, there is no reason the coefficieygtem overX”~! must
be trivial, and one could extend this definition by allowinffetent coefficient
systems on all the strata af; however, this idea has yet to be investigated.

With this coefficient systerg, the intersection chain comple® S« (X; Go)
is defined exactly as it is with ordinary coefficients — alldility of simplices is
determined by the same formula, and chains are allowabeh simplex with
a nonzero coefficient in the chain is allowable. So what hasgad? The subtle
difference is that if a simplex that is in the boundary of aich#as support in
X1, then that boundary simplex must now have coefficiersince that is the
only possible coefficient for simplices iki”~!; thus such boundary simplices
vanish and need not be tested for allowability. This simg&aiturns out to be
enough to fix the cone formula.

Indeed, let us reconsider the example of a painin ¢L — (¢cL)¥~2, to-
gether with a coefficient lift t@;, representing a cycle iﬂﬁSg (cL;Gy), where
p(k) = k — 1. As before,cx is al1-simplex, and it is allowable. Previously,
¢x was not, however, allowabkes a chainsince the component @f{cx) in the
cone vertex was not allowable. However, if we consider thenary ofcx in
IﬁSg (cL: Gp), then the simplex at the cone point vanishes because it raust h
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a zero coefficient there. Thus allowability is not violated dx; it is now an
allowablechain
A slightly more detailed computation (see [26]) shows tirafact,

0 if i >k—1— p(k),

IPHE(L;Go) ifi <k—1—p(k), (6-1)

IPHE (cL*71: Go) = {
i.e., we recover the cone formula, everpifk) > k — 2.

Another pleasant feature dP Hy(X;Go) is that if 5 does happen to be a
GM perversity andX has no codimension one strata, thEhH, (X;Go) =
I? Hy(X; G), the usual intersection homology. In fact, this followsnfraur
discussion in Section 3.1, where we noted thap ifs a GM perversity then
no allowablei -simplices interseck”~2 in either the interiors of theii faces
or the interiors of theii — 1 faces. Thus no boundary simplices can lie en-
tirely in X2 and canceling of boundary simplices due to the stratified co-
efficient system does not occur. ThilBH, (X G,) legitimately extends the
original Goresky—MacPherson theory. Furthermore, waykwith this “cor-
rected” cone formula, one can show that the resulting iatgien homology
groupsI? H>® (X ; G,) agree on topological stratified pseudomanifolds (modulo
the usual reindexing issues) with the Deligne sheaf hypencmlogy groups
(and similarly with compact supports), assuming th&2) > 0 and thatp is
non-decreasing. This was proven in [26] under the assumtix 5(2) = 0 or
1 and thatp (k) < p(k+1) < p(k)+ 1, but the more general case follows from
[22].

Thus, in summary]ﬁH*(X; Go) satisfies the cone formula, generalizes in-
tersection homology with GM perversities, admits codin@m®ne strata, and
agrees with the Deligne sheaf for the superperversitiesave honsidered up
to this point. It turns out that stratified coefficients alsorpit useful results for
even more general contexts.

REMARK 6.1. A similar idea for modifying the definition of intersemt ho-
mology for non-GM perversities occurs in the unpublishettaof MacPherson
[44]. There, only locally-finite chains ik — X”~! are considered, but their
closures inX are used to determine allowability.

7. General perversities

We have now seen that stratified coefficiefigsallow us to recover the cone
formula (6-1) both wherp is a GM perversity and when it is a non-decreasing
superperversity. How far can we push this? The answer turhtode “quite
far!” In fact, the cone formula will hold ifp is completely arbitrary. Recall
that we have defined a stratum Bfto be a connected component of akly =
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Xk — x*=1 For a stratified pseudomanifold, possibly with codimensine
strata, we define general perversityp on X to be a function

p :{singular strata of X— Z.
Then a singular simplex : A’ — X is p-allowable if
o~ 1(Z) c {i —codim(Z) + p(Z) skeleton ofA’}

for each singular stratur@ of X. Even in this generality, the cone formula
(6-1) holds forIﬁH,,f(ch_l;go), replacing p(k) with p(v), wherev is the
cone vertex.

Such general perversities were considered in [44], folwtheir appearance
in the realm of perverse sheaves (see [4] and Section 8@yheind they appear
in the work of Saralegi on intersection differential fornt3{ 54]. They also
play an important role in the intersection homologurifeth theorem of [28],
which utilizes “biperversities” in which the seX; x Y; C X x Y is given a
perversity value depending gi(k) andg (/) for two perversities, g on X and
Y, respectively; see Section 9.

In this section, we discuss some of the basic results orsitéon homology
with general perversities, most of which generalize thedkntheorems for GM
perversities. We continue, for the most part, with the chagory point of
view. In Section 8, we will return to sheaf theory and discsissaf-theoretic
techniques for handling general perversities.

REMARK 7.1. One thing that we can continue to avoid in defining gdnera
perversities is assigning perversity values to regulatastfthose inY — X"~ 1)

and including this as part of the data to check for allowgbillhe reason is as
follows: If Z is a regular stratum, the allowability conditions for a sitayi-
simplexo would include the condition that=! (Z) lie in thei + 5(Z) skeleton

of AL, If p(Z) >0, then this is true of any singularsimplex, and ifp(Z) < 0,
then this would imply that the singular simplex must notigéetZ at all, since
X"~1is a closed subset of . Thus there are essentially only two possibilities.
The casep(Z) > 0 is the default that we work with already (without explicitly
checking the condition that would always be satisfied onleggitrata). On the
other hand, the casg(Z) < —1 is something of a degeneration. i{Z) < 0

for all regular strata, then all singular chains must be sdggd in X”~! and

S0 1?7 S, (X:Go) = 0. If there are only some regular strata such théf) < 0,
then, lettingX ™ denote the pseudomanifold that is the closure of the union
of the regular strat&Z of X such thatp(Z) > 0, we havel? Hy(X;Gy) =

I? Hy (X Golx+). We could have simply studied intersection homology on
X in the first place, so we get nothing new. Thus it is reasont@bt®ncern
ourselves only with singular strata in defining allowaliliff simplices.
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This being said, there are occasional situations wherauge$ul in technical
formulae to assume that(Z) is defined for all strata. This comes up, for exam-
ple, in [28], where we define perversities on product stiatx Z, C X x X,
using formulas such a@y; 7:(Z1 x Z,) = p(Z;) + q(Z>) for perversities
p,q. HereZy x Z, may be a singular stratum, for example, everif is
regular butZ, is singular. The formula has the desired consequence inj28]
setting p(Z,) = 0 for Z; regular, and this avoids having to write out several
cases.

Efficient perversities. It turns out that such generality contains a bit of overkill.
In [22], we define a general perversipyto beefficientif

—1< p(Z) < codim(Z) — 1

for each singular stratud C X'. Given a genergp, we define itefficientization
p as
codm(Z)—1 if p(Z)>codimZ)—1,
p(Z)=1 p(2) if 0<p(Z)=<codim(Z) -2,
—1 if p(Z) <-1.

It is shown in [22, Section 2] that? Hy(X:Go) =~ I? H,(X;Go). Thus it is
always sufficient to restrict attention to the efficient msities.

Efficient perversities and interiors of simplices. Efficient perversities have a
nice feature that makes them technically better behavedttiteemore general
perversities. Ifp is a perversity for whichp(Z) > codim(Z) for some singular
stratumZ, then anyi-simplexo will be p-allowable with respect t&. In
particular, Z will be allowed to intersect the image underof the interior of
Al. As such,o~1(X — X"~1) could potentially have an infinite number of
connected components, and a coefficient-ahight lift each component to a
different branch ofg, even ifG is a constant system. This could potentially
lead to some pathologies, especially when consideringsiet¢ion chains from
the sheaf point of view. However, i is efficient, then for gr-allowables we
must haver ~1 (X — X”~1) within thei — 1 skeleton ofA?. Hence assigning a
coefficient lift value to one point of the interior af’ determines the coefficient
value at all points (o~ (X — X”~!) by the unique extension of the lift and
ono~1(X"~1), where it is0). This is technically much simpler and makes the
complex of chains in some sense smaller.

In [28], the complexI? S, (X ; Go) was defined with the assumption that this
“unique coefficient” property holds, meaning that a coefintishould be deter-
mined by its lift at a single point. However, as noted in [2§p&ndix], even for
inefficient perversities, this does not change the intéieetiomology. So we
are free to assume all perversities are efficient, withosg tf any information
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(at least at the level of quasi-isomorphism), and this glesia reasonable way
to avoid the issue entirely.

7.1. Properties of intersection homology with general pemrsities and strat-
ified coefficients. One major property that we lose in working with general
perversities and stratified coefficients is independenstafification. However,
most of the other basic properties of intersection homokagyive, including
Poincaé duality, some of them in even a stronger form than GM peitiess
allow.

Basic properties. SupposeX” is a topological stratified pseudomanifold, pos-
sibly with codimension one strata, l6tbe a coefficient system oki — X1,
and letp be a general perversity. What properties dbR#&, (X ; Gy) possess?

For one thing, the most basic properties of intersection dlogy remain
intact. It is invariant under stratum-preserving homotepplivalences, and it
possesses an excision property, long exact sequences péithand Mayer—
Vietoris sequences. Thellkneth theorem when one term is an unstratified
manifold M holds true (i.e..I? SS(X x M; (G x G')o) is quasi-isomorphic to
I?SE(X:Go) ® SE(M; Gy))- There are versions of this intersection homology
with compact supports and with closed supports. Ane> I S, (X, X —U: Go)
sheafifies to a homotopically fine sheaf whose hypercohoma@uomups recover
the intersection homology groups, up to reindexing. It gaossible to work
with PL chains on PL pseudomanifolds. For more details, 26g32].

Duality. Let us now discuss Poin@&uduality in our present context.

THEOREM 7.2 (POINCARE DUALITY). If F is a fiel, X is an F-oriented
n-dimensional stratified pseudomanifolthd p + ¢ = 7 (meaning thatp(Z) +
q(Z) = codim(Z) — 2 for all singular strataZ), then

IP H®(X; Fo) = Hom(I? HS_;(X; Fy), F).

For compact orientable PL pseudomanifolds without codsi@none strata
and with GM perversities, this was initially proven in [3Z2hva combinatorial
argument; a proof extending to the topological setting gisive axiomatics of
the Deligne sheaf and Verdier duality was obtained in [33jisMerdier duality
proof was extended to the current setting in [22] using a gdization of the
Deligne sheaf that we will discuss in the following sectitiralso follows from
the theory of perverse sheaves [4]. Recent work of the a@thedJim McClure
in [31] shows that intersection homology Poirealuality can be proven using
a cap product with an intersection homology orientatiorslay analogy to

8Recall that even in the Goresky—MacPherson setting, gualiy holds, in general,
with field coefficients.
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the usual proof of Poincarduality on manifolds (see, [36], for example). A
slightly more restrictive statement (without proof) of tityafor general perver-
sities appears in the unpublished lecture notes of MacBhg#dgl] as far back
as 1990.

As is the case for classical intersection homology, moreg#miuality state-
ments hold. These can involve local-coefficient systems-artentable pseudo-
manifolds, and, ifX is locally (p, R)-torsion freefor the principal ideal domain
R, then there are torsion linking and mod torsion intersectioalities overR.
For complete details, see [22].

Pseudomanifolds with boundary and Lefschetz duality.General perversities
and stratified coefficients can also be used to give an easf pfa Lefschetz
version of the duality pairing, one for whicki is a pseudomanifold with bound-
ary:

DEFINITION 7.3. Ann-dimensionalstratified pseudomanifold with boundary
is a pair(X, 0X) such thatY — 0X is ann-dimensional stratified pseudoman-
ifold and theboundarydX is ann — 1 dimensional stratified pseudomanifold
possessing a neighborhoodXhthat is stratified homeomorphic X x [0, 1),
where[0, 1) is unstratified andX x [0, 1) is given the product stratification.

REMARK 7.4. A pseudomanifold may have codimension one strata tleat a
not part of a boundary, even if they would be considered pag lboundary
otherwise. For example, |/ be a manifold with boundaryM (in the usual
sense). If we considel/ to be unstratified, thedM is the boundary of\/ .
However, if we stratifyM by the stratificationM > dM, thendM is not a
boundary ofM as a stratified pseudomanifold, and in this cases a stratified
pseudomanifold without boundary.

We can now state a Lefschetz duality theorem for intersedtiomology of
pseudomanifolds with boundary.

THEOREM 7.5 (LEFSCHETZ DUALITY). If F is a field X is a compactF-
orientedn-dimensional stratified pseudomanifplthd p + ¢ = ¢ (meaning that
p(Z)+ q(Z) = codim(Z) — 2 for all singular strataZ), then

1P Hi(X ; Fy) = Hom(I? H,—;(X, X ; Fy), F).

This duality also can be extended to include local-coefiiicigystems, non-
compact or non-orientable pseudomanifolds, and; i§ locally (p, R)-torsion
free for the principal ideal domairR, then there are torsion linking and mod
torsion intersection dualities oveR.

In fact, in the setting of intersection homology with gerngarversities,
this Lefschetz duality follows easily from Poinéaduality. To see this, let
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X = X Uyy ¢0X, the space obtained by adjoining Xoa cone on the boundary
(or, equivalently, pinching the boundary to a point). Letenote the ver-
tex of the cone point. Lep_, g+ be the dual perversities oi such that
p—(Z)= p(Z) andg+(Z) = q(Z) for each stratun¥ of X, p_(v) =—-2, and
g+ (v) = n. Poincaé duality gives a duality isomorphism betwegfr H*()?)
and 19+ H,(X). But now we simply observe thd?— H,(X) = I?~ H,(X —
v) = I? H.(X), because the perversity conditionwaénsures that no singular
simplex may interseat. On the other hand, sindé+ H,(cdX) = 0 by the cone
formula, 19+ H,(X) =~ I%+ H, (X, ¢3X) by the long exact sequence of the pair,
but 19+ H, (X, ¢0X) = %+ H,(X, 9X) =~ I1 H,(X, 3X) by excision.

Notice that general perversities are used in this argument i p andg are
GM perversities.

PL intersection pairings. As in the classical PL manifold situation, the duality
isomorphism of intersection homology arises out of a momega pairing of
chains. In [32], Goresky and MacPherson defined the intBosepairing of PL
intersection chains in a PL pseudomanifold as a generalizaf the classical
manifold intersection pairing. For manifolds, the intetsen pairing is dual

to the cup product pairing in cohomology. Given a riRgand GM perversities
p,q,7 suchthatp+g <7, Goresky and MacPherson constructed an intersection
pairing

IPHf(X:R)® I"H{ (X: R) —> I" Hf ;_,(X: R).

This pairing arises by pushing cycles into a stratified wersif general position
due to McCrory [47] and then taking chain-theoretic intetmms.

The Goresky—MacPherson pairing is limited in thai-allowable chain and
a g-allowable chain can be intersected only if there is a GM @ity 7 such
that p + ¢ < 7. In particular, we must havg + g < ¢. This is more than
simply a failure of the intersection of the chains to be aHble with respect
to a GM perversity—ifp + g £ t, there are even technical difficulties with
defining the intersection product in the first place. See §ttion 5] for an in
depth discussion of the details.

If we work with stratified coefficients, however, the probkementioned in
the preceding paragraphs can be circumvented, and we giat@ings

IPH;j(X: Ro) ® I"Hj(X; Ro) = I" Hi j—n(X; Ro)

for anygeneral perversities such thatt- g < 7.

Goresky and MacPherson extended their intersection gaiariopological
pseudomanifolds using sheaf theory [33]. This can also lme dor general
perversities and stratified coefficients, but first we mugsiethe Deligne sheaf
construction. We do so in the next section.
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A new approach to the intersection pairing via intersectionomology cup
products is presently being pursued by the author and MeGuf31].

Further applications. Some further applications of general perversity intersec-
tion homology will be discussed below in Section 9.

8. Back to sheaf theory

8.1. A generalization of the Deligne construction. Intersection chains with
stratified coefficients were introduced to provide a chaéotli whose homology
agrees with the hypercohomology of the Deligne sheaf whés a superper-
versity, in particular wherp(2) > 0 or when X has codimension one strata.
However, whenp is a general perversity, our new chain formulation no long
agrees with the Deligne construction. For one thing, we ktiwat if p is ever
negative, the Deligne sheaf is trivial. The classical Deigonstruction also
has no mechanism for handling perversities that assigerdiit values to strata
of the same codimension, and, even if we restrict to lessrgeperversities,
any decrease in perversity value at a later stage of the meelmocess will
truncate away what might have been vital information confiogh an earlier
stage. Thus, we need a generalization of the Deligne prabascorporates
general perversities and stratified coefficients. One naetvas provided by the
author in [22], and we describe this now.

The first step is to modify the truncation functor to be a birenpicky. Rather
than truncating a sheaf complex in the same degree at &ésteé truncate more
locally. This new truncation functor is a further generatian of the “truncation
over a closed subset” functor presented in [33, Section] add attributed to
Deligne; that functor is used in [33, Section 9] to study estens of Verdier
duality pairings in the context of intersection homologyiwGM perversities.
Our construction is also related to the “intermediate esitsi functor in the
theory of perverse sheaves; we will discuss this in the ngxsection.

DEFINITION 8.1. LetA* be a sheaf complex oki, and letF be a locally-finite
collection of subsets ok'. Let|§| = UpezV. Let P be a function§ — Z.
Define the preshedl’gPA* as follows. IfU is an open set ok, let

ruw;A*) if UN|3| =2,
I'(U: t<intipav)vezunv£eyA®)  if UNIS| # @.
Restriction is well-defined becauserif < n then there is a natural inclusion
‘L'Sm.A* — ‘[5”./4*.
Let thegeneralized truncation sheaf;,A* be the sheafification dFﬁPA*.
For mapsf : A* — B* of sheaf complexes oveY, we can definecEPf
in the obvious way. In factTgpf is well-defined by applying the ordinary

T3, A*(U) = {
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truncation functors on the appropriate subsets, and wémbﬁqg f again by
passing to limits in the sheafification process.

Using this truncation, we can modify the Deligne sheaf.

DEFINITION 8.2. LetX be ann-dimensional stratified pseudomanifold, possi-
bly with codimension one strata, I@¢tbe a general perversity, |étbe a coef-
ficient system onY — X”~!, and letO be the orientation sheaf oi — X"~ 1.
Let X, stand also for the set of strata of dimension Then we define the
generalized Deligne sheals

X . X, — .
E,Q = ngRl”* . 1573 'Ri1+(GR®0O).

If pis a GM perversity, then it is not hard to show directly tI@I;,Q is quasi-
isomorphic to the usual Deligne sheJaE G Furthermore, it is shown in [22]
that Q}’g is quasi-isomorphic to the sheaf generated by the presheaf

U— IﬁSn—*(X, X — U? 9o),

and so]HI*(Q;’g) =~ [P H®, (X ; Go) and similarly for compact supports. It is
also true, generalizing the Goresky—MacPherson caseiftipat ¢ = 7, then
Q} and Q; are appropriately Verdier dual, leading to the expectedhdéza@
and Lefschetz duality theorems. Furthermore, for any gemerversities such
that p + ¢ <, there are sheaf pairin@;‘;3 ® Q; — Q;f that generalize the PL
intersection pairing. Ifp + g <, there is also a pairin@”lg ® Qz — D} [—n],
whereD% [-n] is the shifted Verdier dualizing complex dn. See [22] for the
precise statements of these results.

8.2. Perverse sheavesThe theory of perverse sheaves provided, as far back
as the early 1980s, a context for the treatment of generakpsties. To quote
Banagl's introduction to [2, Chapter 7]:

In discussing the proof of the Kazhdan—Lusztig conjectiBeilinson,
Bernstein and Deligne discovered that the essential imbteaategory

of regular holonomic»-modules under the Riemann—Hilbert correspon-
dence gives a natural abelian subcategory of the nonalimiamded con-
structible derived category [of sheaves] on a smooth camalgebraic
variety. An intrinsic characterization of this abelian sategory was ob-
tained by Deligne (based on discussions with BeilinsonnBiein, and
MacPherson), and independently by Kashiwara. It was thalizesl that
one still gets an abelian subcategory if the axioms of theagiterization

9This definition differs from that in [22] by the orientatiohesaf O — see Remark
4.1 on page 190. For consistency, we also change notatightlglito includeg as a
subscript rather than as an argument.
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are modified to accommodate an arbitrary perversity functieith the
original axioms corresponding to the middle perversity.e Tbjects of
these abelian categories were termpedverse sheaves

Thus, the phrase “perverse sheaves” refers to certain mgurses, indexed by
various kinds of perversity functions, of the derived catggof bounded con-
structible sheaf complexes on a spateThe general theory of perverse sheaves
can handle general perversities, though the middle pétiesrare far-and-away
those most commonly encountered in the literature (andyrtunfately, many
expositions restrict themselves solely to this case). €hsarkable thing about
these categories of perverse sheaves is that they areralwelich the derived
category is not (it is only “triangulated®’ The Deligne sheaf complexes on
the various strata ok (and with appropriate coefficients systems) turn out to
be the simple objects of these subcategories.

The construction of perverse sheaves is largely axiongtieinded in a num-
ber of quite general categorical structures. It would takevell too far afield
to provide all the details. Rather, we provide an extremelygh sketch of the
ideas and refer the reader to the following excellent saarpd, [40, Chapter
X], [2, Chapter 7], [5], and [20, Chapter 5]. For a more higtak account, the
reader should see [43].

The starting point for any discussion of perverse sheav®isotion ofT -
structures Very roughly, ar"-structure on a triangulated categadbyis a pair of
subcategories D=, D=0) that are complementary, in the sense that for Siny
in D, there is a distinguished triangle

S —> 85— 5,,

with S; € D=% and S, in D=°. Of course there are a number of axioms that
must be satisfied and that we will not discuss here. The wotagflects the
canonicall -structure that occurs on the derived category of sheavesspace
X: D=0(X) is defined to be those sheaf complessuch thatH/ (S*) = 0

for j > 0, and D=°(X) is defined to be those sheaf complex®ssuch that
HI(S*) =0 for j <0. HereH*(S*) denotes the derived cohomology sheaf of
the sheaf comple$™, such that{*(S*)x = H*(S%).

The heart (or core) of a T-structure is the intersectioP=°% N D=, It is
always an abelian category. In our canonical example, tag kbensists of the
sheaf complexes with nonvanishing cohomology only in de@rdn this case,
the heart is equivalent to the abelian category of sheaves.oAlready from

10There is an old joke in the literature that perverse sheaweseither perverse nor
sheaves. The first claim reflects the fact that perverse ekdaum abelian categories,
which are much less “perverse” than triangulated categofibe second reflects simply
the fact that perverse sheaves are actually complexes afea$ie
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this example, we see how truncation might play a role in mlog perverse
sheaves —in fact, for the sheaf compl8¥, the distinguished triangle in this
example is provided by

1<0S* = §* — 1505™.

Furthermore, this example can be modified easily by shittmgtruncation de-
gree from0 to any other integek. This T-structure is denoted by

(D=k(x), DZ*(X)).

The next important fact about-structures is that ifY’ is a spacelU is an
open subspace; = X —U, andT -structures satisfying sufficient axioms on the
derived categories of sheaves@rand F are given, they can be “glued” to pro-
vide aT -structure on the derived category of sheavexoiThe idea the reader
should have in mind now is that of gluing together sheavestted at a certain
dimension onU and at another dimension dn. This then starts to look a bit
like the Deligne process. In fact, I&tbe a perversity! on the two stratum space
X D F, and let( D=PO(v), D=PU)(U)) and(D=FF)(F), D=PF)(F)) be
T-structures orU and F. Then thesd -structures can be glued to form7a
structure onY, denoted by *D=°, Pp=0),

It turns out that the subcategori€®=° and D= can be described quite
explicitly. If i : U — X andj : F — X are the inclusions, then

HK(i*S*) =0 for k > P(U)
HK(j*S*)=0fork > P(F) |’

HKE(i*S*) =0 for k < P(U)
HE(j'S*)=0fork < P(F) |

If S* is in the heart of thig -structure, we say it i-perverse.

More generally, ifX is a space with a variety of singular strafaand P is
a perversity on the stratification df, then it is possible to glu&-structures
inductively to obtain the category df-perverse sheaves. jf; : Z < X are the
inclusions, then the’-perverse sheaves are those which saﬂﬁ’fjj}S*) =0
for k > P(Z) andHk (j,S*) = 0 for k < P(Z).

These two conditions turn out to be remarkably close to timelitons forS*
to satisfy the Deligne sheaf axiomisY 1. In fact, the conditiort¥ (j78") =0
for k > P(Z) is precisely the third axiom. The conditidmk(j’ZS*) = 0 for

Pp=0 — {S* e DT(X) ‘

Fp=0 = {s* e D*(X) ‘

11The reason we usg here for a perversity, departing from both our own notation,
above, and from the notation in most sources on perverseeh@a particular [4]) is
that when we use perverse sheaf theory, below, to recowansatttion homology, there
will be a discrepancy between the perverdityjor perverse sheaves and the perversity
p for the Deligne sheaf.
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k < P(Z) implies that the local attaching map is an isomorphism upegree
P(Z)—2; see [6, page 87]. Notice that this is a less strict requirgrttean
that for the Deligne sheaf. Thus, Deligne sheaves are par\dreaves, but not
necessarily vice versa.

The machinery developed in [4] also contains a method foattrg sheaf
complexes that satisfy the intersection homology axiefisl, though again it
is more of an axiomatic construction than the concrete cocisbn provided in
Section 8.1. Let/ C X be an open subset df that is a union of strata, let
i : U — X be the inclusion, and I&8* be aP-perverse sheaf ofi. Then there
is defined in [4] the “intermediate extension functay’ such that,S* is the
unique extension in the category Bfperverse sheaves off to X (meaning
that the restriction of,,S* to U is quasi-isomorphic t&*) such that for each
stratumZ C X — U and inclusion; : Z < X ,we haveH*(j*i1,S*) = 0 for
k > P(Z) and H¥(j'i1xS*) = 0 for k < P(Z). We refer the reader to [4,
Section 1.4] or [20, Section 5.2] for the precise definitidhe functoriy,.

In particular, suppose we l&t = X — X"~ thatS* is just the local systerd,
and thatp is a general perversity aki. The sheaf; is certainly P-perverse o/
with respect to the perversit] (U) =0. Now let P(Z) = p(Z) + 1. It follows
that for each singular stratum inclusign Z < X, we haveH* (j*i1.G) = 0
for k > p(Z) andH*(j'i1,G) = 0 for k < p(Z) + 1. In the presence of the
first condition, the second condition is equivalent to thedkting map being
an isomorphism up through degrg€7); see [6, page 87]. But, according
to the axioms4 X' 1, these conditions are satisfied by the pervergitpeligne
sheaf, which is also easily seen to Beperverse. Thus, sinde.G is the unique
extension ofG with these properties;, G is none other than the Deligne sheaf
(up to quasi-isomorphism)! Thus we can think of the Delignecpss provided
in Section 8.1 as a means to provide a concrete realization@f

9. Recent and future applications of general perversities

Beyond extending the results of intersection homology With perversities,
working with general perversities makes possible new teshht do not exist
in “classical” intersection homology theory. For examples saw in Sections
7 and 8 that general perversities permit the definition of Psheaf-theoretic
intersection pairings with no restrictions on the pervegsiof the intersection
homology classes being intersected. In this section, wewesome other recent
and forthcoming results made possible by intersection hogyowith general
perversities.
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K inneth theorems and cup products.In [28], general perversities were used
to provide a very general ifhneth theorem for intersection homology. Some
special cases had been known previously. King [41] showadftin any loose
perversityI? HE (M x X) = H,(CS(M)® I? CE (X)) whenX is a pseudoman-
ifold, M is an unstratified manifold, and/ x X)) = M x X'. Special cases of
this result were proven earlier by Cheeger [16], GoreskyMadPherson [32;
33], and Siegel [55]. In [18], Cohen, Goresky, and Ji prodideunterexamples
to the existence of a generatineth theorem for a single perversity and showed
that/? HS (X xY; R) = Hy(I?CE(X; R)®@ IPCE(Y'; R)) for pseudomanifolds

X andY and a principal ideal domaiR provided either that

(@) pla)+ p(b) < p(a+b) < p(a)+ p(b) + 1 for all a andb, or that
(b) p(a)+ pb) < p(a+b) < p(a)+ p(b)+ 2 for all a andb and eitherX or
Y is locally (p, R)-torsion free.

The idea of [28] was to ask a broader question: for what psities onX x Y is
the intersection chain complex quasi-isomorphic to thelped/? CS(X; Ro) ®
I9CE(X; Ry)? This question encompasses the Cohen—Goreskyintidth the-
orem and the possibility of both GM and non-GM perversitieg. However,
in order to avoid the fairly complicated conditions on a $ngerversity found
by Cohen, Goresky, and Ji, it is reasonable to consider geperversities on
X x Y that assign to a singular stratuy x Z, a value depending op(Z)
andg(Z,). Somewhat surprisingly, there turn out to be many periessiin
X x Y that provide the desired quasi-isomorphism. The main reguyl28]
is the following theorem. The statement is reworded herectmant for the
most general case (see [28, Theorem 3.2, Remark 3.4, Thé&g@ywhile the
statement in [28] is worded to avoid overburdening the redate much with
details of stratified coefficients, which play a minimal rdtat paper.

THEOREM 9.1. If R is a principal ideal domain ang and g are general
perversitiesthenI C HS (X x Y Rg) = Hy(IPCE(X; Ro) ® I1CE(Y; Ry)) if
the following conditions hotd
(@) O(Zx Zy)= p(Z,)if Z, is aregular stratum ot and Q(Z x Z,) =
q(Z,) if Z is aregular stratum ofX .
(b) For each pairZ; x Z, such thatZ; and Z, are each singular strateeither
() O(Z1xZ2)=p(Z1)+q(Z2),0r
(i) O(Z1x2Zy)=p(Z1)+q(Zy)+1,0r
(i) Q(Z1xZy)= p(Z1)+ q(Z,) + 2 and the torsion product

1P Heodi( z,)—2— 5(z1) (L 1; Ro) * 17 Hoogin 2)—2—(25) (L 2; Ro)

is zerqg where L, L, are the links ofZ;, Z, in X, Y, respectivelyand
codimrefers to codimension iX or Y, as appropriate
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Furthermore if these conditions are not satisfigtien /2 HS (X x Y; Ro) will
not equalH«(I?CE(X; Ry) ® I1C£(Y; Ro)) in general

Of course the torsion condition in (iii) will be satisfied antatically if R is
a field or if X or Y is locally (p, R)- or (g, R)-torsion free. Note also that
it is not required that a consistent choice among the abotiergpbe made
across all products of singular strata— for each sdghx Z, one can choose
independently which perversity to use from among optionsi{j, or, assuming
the hypothesis, (iii). The theorem can also be generaligeithdr to include
stratified local coefficient systems ahor Y'; we leave the details to the reader.

This Kuinneth theorem has opened the way toward other resultsersed-
tion homology, including the formulation by the author arch McClure of
an intersection cohomology cup product over field coeffisighat they ex-
pect to be dual to the Goresky—MacPherson intersectioingaifThere does
not seem to have been much past research done on or withextiers co-
homology in the sense of the homology groups of coch@ys*(X; Ry) =
Hom(I?C£(X; Ry): R). One important reason would seem to be the prior lack
of availability of a geometric cup product. A cup productngsthe Alexander—
Whitney map is unavailable in intersection homology siri@oes not preserve
the admissibility conditions for intersection chains — im@r words, breaking
chains into “front p-faces and back g-faces” (see [49, $aetB]) might destroy
allowability of simplices. However, there is another claabapproach to the cup
product that can be adapted to intersection cohomologyiged one has an
appropriate Kinneth theorem. Farrdinary homologythis alternative approach
is to define a diagonal map (with field coefficients) as the cusiip

HE(X) — HE(X x X) < HE(X) ® HE(X),

where the first map is induced by the geometric diagonal #iglumap and
the second is the Eilenberg—Zilber shuffle product, whichrisisomorphism
by the ordinary Kinneth theorem with field coefficients (note that the shuffle
product should have better geometric properties than tealider—Whitney
map because it is really just Cartesian product). The apiatepHom dual of
this composition yields the cup product. This process ssiggiping something
similar in intersection homology with field coefficients,daindeed the Kinneth
theorem of [28] provides the necessary right-hand quasitdsphism in a dia-
gram of the form

PHE(X; Fo) — ISHS(X x X; Fo) < IP HE(X; Fo) ® I HE(X; F).
Whenp + g >t + 5, there results a cup product

I5H*(X: Fo) ® I; H*(X: Fo) — Is H*(X; Fy).
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The intersection Kinneth theorem also allows for a cap product of the form
I;H (X Fo) ® IFHE (X Fo) > I“ Hf_;(X; Fy)

for any field F and any perversities satisfyingtg > ¢ +5. This makes possible
a Poincag duality theorem for intersection (co)homology given by peoducts
with a fundamental class if H,(X; Fy). For further details and applications,
the reader is urged to consult [31].

Perverse signatures.Right from its beginnings, there has been much interest
and activity in using intersection homology to define signat(index) invari-
ants and bordism theories under which these signaturesraserped. Sig-
natures first appeared in intersection homology in [32] eased to the sym-
metric intersection pairings of* H,, (X*"; Q) for spacesY with only strata
of even codimension, such as complex algebraic varietidse ¢bndition on
strata of even codimension ensures ti&tH,, (X *"; Q) = I" H,,(X*"; Q)
so that this group is self-dual under the intersection pgiriThese ideas were
extended by Siegel [55] to the broader class of Witt spaceghnalso satisfy
I'"H,y,(X*";Q) = I"H,,(X*";Q). In addition, Siegel developed a bordism
theory of Witt spaces, which he used to construct a geometodel for ko-
homology at odd primes. Further far reaching generalinatiof these signa-
tures have been studied by, among others and in various natidns, Banagl,
Cappell, Libgober, Maxim, Shaneson, and Weinberger [10311; 9].

Signatures on singular spaces have also been studied iealiyvia 1.2-
cohomology and.? Hodge theory, which are closely related to intersection ho-
mology. Such signatures may relate to duality in string thesuch as through
Sen’s conjecture on the dimension of spaces of self-duahdic forms on
monopole moduli spaces. Results in these areas and cladatgd topics in-
clude those of Miller [48]; Dai [19]; Cheeger and Dai [17]; Hausel, Hunsicke
and Mazzeo [37; 39; 38]; Saper [51; 50]; Saper and Stern f5gj;Carron [13;
15; 14]; and work on analytic symmetric signatures is cutydneing pursued
by Albin, Leichtmann, Mazzeo and Piazza. Much more on aitafyiproaches
to invariants of singular spaces can be found in the otheengap the present
volume [30].

A different kind of signature invariant that can be definethgsnon-GM
perversities appears in this analytic setting in the workidausel, Hunsicker,
and Mazzeo [37; 39; 38], in which they demonstrate that gsonfpl? har-
monic forms on a manifold with fibered boundary can be idesdifivith co-
homology spaces associated to the intersection cohomglamps of varying
perversities for a canonical compactificatidh of the manifold. Thesger-
verse signatureare the signatures of the nondegenerate intersectiomgsion
im(I? Hy,(X*") — I1 H,,(X*", 0X*")), when p < g. The signature for Witt
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spaces mentioned above is a special case in whiely = =n anddX = 2. If
X is the compactification of the interior of a compact manifadith boundary
(M,dM) and p(Z) < 0 andg(Z) > codim(Z) — 1 for all singularZ, then
I?Hy(X) = Ho(M), I1H,(X) = H.(M,dM), and in this case the perverse
signature is the classical signature associated to a nddnrvith boundary.
Using the Lefschetz duality results of general perversitgrnsection homol-
ogy described above, Hunsicker and the author are curnemtgrtaking a topo-
logical study of the perverse signatures, including redean how Novikov
additivity and Wall non-additivity extend to these setng

10. Saralegi’s relative intersection chains

Independently of the author’s introduction of stratifiecffizients, Saralegi
[54] discovered another way, in the case of a constant caefiicystem, to
obtain an intersection chain complex that satisfies the ¢omaula (2-1) for
general perversities. In [54], he used this chain complex¢doe a general per-
versity version of the de Rham theorem on unfoldable pseaddoids. These
spaces are a particular type of pseudomanifold on whichpibssible to define
a differential form version of intersection cohomology otee real numbers.
This de Rham intersection cohomology appeared in a papemyingki [8],
though he credits Goresky and MacPherson with the idea.irBitlshowed
that for GM perversities and on a Thom—Mather stratified spde Rham inter-
section cohomology is Hom dual to intersection homologywatal coefficients.
Working on more general “unfoldable spaces,” Brasselettéteand Saralegi
later proved a de Rham theorem in [7], showing that this tesul be obtained
by integration of forms on intersection chains, and this e@ended to more
general perversities by Saralegi in [53]. However, [53]tadrs an error in the
case of perversitieg satisfying p(Z) > codim(Z) —2 or p(Z) < 0 for some
singular stratunZ. This error can be traced directly to the failure of the cone
formula for non-GM perversities. Saralegi introduced figilgtive intersection
chaing? in [54] specifically to correct this error.

The rough idea of Saralegi’s relative chains is precisetydhme as the au-
thor’s motivation for introducing stratified coefficientehen a perversity on a
stratumZ is too high (greater than codii#) — 2), it is necessary to kill chains
living in that stratum in order to preserve the cone formillae idea of stratified
coefficients is to redefine the coefficient system so that shetins are killed
by virtue of their coefficients being trivial. The idea ofatie chains is instead

i 12These sho_uld not b_e confused with relative intersectioninshin the sense
IPC(X, A) = IPCo(X) /TP Ci(A).
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to form a quotient group so that the chains living in suchtateae killed in the
guotient.

More precisely, letd”?C;(X) be the group generated by tipeallowable; -
simplices of X (notice that there is no requirement that the boundary of an
element of4?C; (X) be allowable), and lek;_ 5 be the closure of the union of
the singular strat& of X such thatp(Z) > codim(Z) — 2. Let A?C;(X;_;)
be the group generated by tipeallowablei-simplices with support in7_ ;.
Then Saralegi’s relative intersection chain complex israfito be

SPCE(X, X;_5)
(APCo(X)+ APTICo(X7_5)) N7 (AP Comy (X) + AP T Co—1 (X7 5))
Aﬁ+1 C*(X;_ﬁ)ﬂf)_lAﬁ"‘lC*_l (Xl_—ﬁ)

Roughly speaking, this complex consists pfallowable chains inX and
slightly more allowable chaing f + 1)-allowable) inX7_ ; whose boundaries
are also eithep-allowable inX or p+1 allowable inX;_;, but then we quotient
out by those chains supportedX_ 5. This quotient step is akin to the stratified
coefficient idea of setting simplices supporteddii—! to 0. In fact, there is no
harm in extending Saralegi’s definition by replacikig_; by all of X1 since
the perversity conditions already guarantee that no sinple4?C;(X) nor
the boundary of any such simplex can have support in thoggilsinstrata not
in X;7_5. In addition, there is also nothing special about the chgice 1 for
allowability of chains inX;_5: the idea is to throw in enough singular chains
supported in the singular strata so that the boundariesyaftaains ind? C; (X)
will also be in “the numerator” (for example, the inallowablsimplex ind(¢x)
that lives at the cone vertex in our example in Section 5),then to kill any
such extra chains by taking the quotient. In other wordspiil be equivalent
to define Saralegi’s relative intersection chain complex as

(APCo(X) 4+ Sx(X" 1)) NI (AP Comy (X) + Se—y (X))
Sy (Xn—l)
where S, (X) is the ordinary singular chain complex.
We refer the reader to [28, Appendix A] for a prédthatS? Cy (X, X;_5: G)
and I? S« (X ; Gg) are chain isomorphic, and so, in particular, they yield the
same intersection homology groups. It is not clear thatether well-defined
version ofS? C. (X, X;_ 5) with coefficients in a local systetdefined only on

’

13The proof in [28] uses a slightly different definition of indection chains with
stratified coefficients than the one given here. Howeverafgrgeneral perversity, the
intersection chains with stratified coefficients there ar@sitisomorphic to the ones dis-
cussed here, and they are isomorphic for any efficient pgityeSee [28, Appendix A].
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X —Xx"~1 and so stratified coefficients may be a slightly broader epticThere
may also be some technical advantages in sheaf theory tdiagaguotient
groups.

11. Habegger and Saper’s codimensioh c intersection
homology theory

Finally, we discuss briefly the work of Habegger and Sape}, [Bbwhich
they introduce what they catbdimensiore ¢ intersection homologyThis is the
sheafification of King's loose perversity intersection hémgg. In a sense, this
is the opposite approach to that of stratified coefficientsatified coefficients
were introduced to provide a chain theory that agrees wighQibligne sheaf
construction for superperversities, while codimension intersection homol-
ogy provides a Deligne-type sheaf construction whose legbemmology yields
King’s intersection homology groups. Habegger and Sapek with perversi-
ties p:Z=* — Z such thatp(k) < p(k+1) < p(k)+1 and* 5(2) >0, and they
work on cs-sets, which generalize pseudomanifolds (seeB]L In fact, King
showed in [41] that intersection homology is independenhefstratification in
this setting.

The paper [35] involves many technicalities in order to obthe most gen-
eral possible results. We will attempt to simplify the dission greatly in order
to convey what seems to be the primary stream of ideas. Hoyweeeaurge the
reader to consult [35] for the correct details.

Given a perversity, the “codimensiore ¢” in the name of the theory comes
from considering

¢ =min(tk € Z1|p(k) <k —2} U {oo}).

In other words ¢ (or simply ¢ when the perversity is understood) is the first
codimension for whiclp takes the values of a GM perversity. Since the con-
dition p(k) < p(k + 1) < p(k) + 1 ensures thap will be in the Goresky—
MacPherson range of values for &l ¢, the number serves as somewhat of a
phase transition. At points in strata of codimenskon, the cone formula (2-1)
holds locally for King’s singular intersection chains (j.e/e can use the cone
formula to compute the local intersection homology groupa distinguished
neighborhood). For strata of codimensiam, the perversityp is in the “super”
range, and the cone formula fails, as observed in Sectiond;.the idea of
Habegger and Saper, building on the Goresky—MacPhersdigrBexxiomatic
approach to intersection homology (see Section 4, above)evBind a way to
axiomatize a sheaf construction that upholds the cone flarmsi the Deligne

14Technically, they allowp(2) < 0, but in this case their theory is trivial; see [35, Corolldt§].
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sheaf does for GM perversities, but only on strata of codsimen> ¢. This
idea is successful, though somewhat complicated becaasm#ificients now
must live onX — X¢ and must include the sheafification on this subspace of
U— I?5,(U;G).

In slightly more detail (though still leaving out many tedatalities), for a
fixed p, letU, = X — X°?. Then a codimension coefficient systent™* is
basically a sheaf olV, that satisfies the axiomatic properties of the sheafifica-
tion of U — I? S, (U ; G) there with respect to some stratificationlgf. These
axiomatic conditions are a modification of the axiomg2 (see [6, Section
V.4]), which, for a GM perversity, are equivalent to the ar®A4 X 1 discussed
above in Section 4. We will not pursue the axiom«'2 in detail here, but
we note that the Habegger—Saper modification occurs bynequiertain van-
ishing conditions to hold only in certain degrees depending. This takes
into account the failure of the cone formula to vanish in thpeeted degrees
(see Section 5). Then Habegger and Saper define a sheaf txoﬁ;p’ge by
extending€* from U, to the rest ofX" by the Deligne process from this point.

Among other results in their paper, Habegger and Saper shatttie hy-
percohomology of their sheaf complex agrees (up to reimdegind with an
appropriate choice of coefficients) with the intersectiamiology of King on
PL pseudomanifolds, that this version of intersection himgnpis a topological
invariant, and that there is a duality theorem. To stater ttheality theorem,
let g(k) = k —2 — p(k), and letg’(k) = maxg(k),0) + c5 — 2. Then,
with coefficients in a field, the Verdier duaZPXP;;,E* is quasi-isomorphic to
Pg,’DUC(E*)[cp —2+n)]. Roughly speaking, and ignoring the shifting of perver-
sities and indices, which is done for technical reasons,ghays that ifp +g =1
and we dualize the sheaf of intersection chains “by handUgrfrom £* to
Dy.£*, then further extensions by the Deligne process, usinggpsity p for £*
and perversity; for Dy, £*, will maintain that duality. Ifp is a GM perversity
and X is a pseudomanifold with no codimension one strata, thievers the
duality results of Goresky and MacPherson. Unfortunatelly,more general
perversities, there does not seem to be an obvious way teldtarthis duality
back into the language of chain complexes, due to the contplekthe dual
coefficient systenDy, £* that appears ob/.

One additional note should be made concerning the duastyltsin [35]. As
mentioned above, Habegger and Saper work on cs-sets. Tieasmee general
than pseudomanifolds, primarily in that— X”~! need not be dense and there
is no inductive assumption that the links be pseudomarsifolthese are the
spaces on which King demonstrated his stratification indépece results in
[41]. Thus these results are more general than those we temrediscussing
on pseudomanifolds, at least as far as the spgade concerned. However, as
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far as the author can tell, in one sense these duality resatsot quite as much
more general as they at first appear, as least when congjddrata ofX that
are not in the closure af — X”~!. In particular, if Z is such a stratum and it
lies in U, then the duality results on it are tautological —inducedtsy “by
hand” dualization of the codimensiaercoefficient system. But i is notinU,,
then the pushforwards of the Deligne process cannot reaandtP*|, = 0.
So at the sheaf level the truly interesting piece of the datill occurs in the
closure of X — X”~!. It would be interesting to understand how the choice of
coefficient system and “by hand” duality on these “extrarséatrata inU, (the
strata not in the closure of — X~ 1) influence the hypercohomology groups
and the duality there. We also note that the closure of theruof the regular
strata of a cs-set may still not be a pseudomanifold, duegttattk of condition
on the links. It would be interesting to explore just how muwbre general such
spaces are and the extent to which the other results we hemesdied extend to
them.

We refer the reader again to [35] for the further results ttaat be found
there, including results on the intersection pairing andrdan’s filtration.
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