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An introduction to intersection homology with
general perversity functions

GREG FRIEDMAN

ABSTRACT. We provide an expository survey of the different notions ofper-
versity in intersection homology and how different perversities require differ-
ent definitions of intersection homology theory itself. We trace the key ideas
from the introduction of intersection homology by Goresky and MacPherson
through to the recent and ongoing work of the author and others.

CONTENTS

1. Introduction 177
2. The original definition of intersection homology 180
3. Goresky–MacPherson perversities 185
4. Sheaf-theoretic intersection homology 189
5. Subperversities and superperversities 196
6. “Correcting” the definition of intersection chains 199
7. General perversities 201
8. Back to sheaf theory 207
9. Recent and future applications of general perversities 211

10. Saralegi’s relative intersection chains 215
11. Habegger and Saper’s codimension� c intersection homology theory 217
Acknowledgments 219
References 219

1. Introduction

When Goresky and MacPherson first introduced intersection homology [32],
they required its perversity parameters to satisfy a fairlyrigid set of constraints.
Their perversities were functions on the codimensions of strata, Np W Z�2! Z,
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satisfying

Np.2/D 0 and Np.k/� Np.kC 1/� Np.k/C 1:

These strict requirements were necessary for Goresky and MacPherson to
achieve their initial goals for intersection homology: that the intersection ho-
mology groupsI NpH�.X / should satisfy a generalized form of Poincaré duality
for stratified pseudomanifolds and that they should be topological invariants,
i.e., they should be independent of the choice of stratification of X .

In the ensuing years, perversity parameters have evolved asthe applications
of intersection homology have evolved, and in many cases thebasic definitions
of intersection homology itself have had to evolve as well. Today, there are
important results that utilize the most general possible notion of a perversity as
a function

Np W fcomponents of singular strata of a stratified pseudomanifoldg ! Z:

In this setting, one usually loses topological invariance of intersection homol-
ogy (though this should be seen not as a loss but as an opportunity to study
stratification data), but duality results remain, at least if one chooses the right
generalizations of intersection homology. Complicating this choice is the fact
that there are a variety of approaches to intersection homology to begin with,
even using Goresky and MacPherson’s perversities. These include (at the least)
the original simplicial chain definition [32]; Goresky and MacPherson’s Deligne
sheaves [33; 6]; King’s singular chain intersection homology [32]; Cheeger’sL2

cohomology andL2 Hodge theory [16]; perverse differential forms on Thom–
Mather stratified spaces (and, later, on unfoldable spaces [7]), first published
by Brylinski [8] but attributed to Goresky and MacPherson; and the theory of
perverse sheaves [4]. Work to find the “correct” versions of these theories when
general perversities are allowed has been performed by the author, using strati-
fied coefficients for simplicial and singular intersection chains [26]; by Saralegi,
using “relative” intersection homology and perverse differential forms in [54];
and by the author, generalizing the Deligne sheaf in [22]. Special cases of non-
Goresky–MacPherson perversities in theL2 Hodge theory setting have also been
considered by Hausel, Hunsicker, and Mazzeo [37]; Hunsicker and Mazzeo [39];
and Hunsicker [38]. And arbitrary perversities have been available from the start
in the theory of perverse sheaves!

This paper is intended to serve as something of a guidebook tothe different
notions of perversities and as an introduction to some new and exciting work in
this area. Each stage of development of the idea of perversities was accompanied
by a flurry of re-examinings of what it means to have an intersection homology
theory and what spaces such a theory can handle as input, and each such re-
examining had to happen within one or more of the contexts listed above. In
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many cases, the outcome of this re-examination led to a modification or ex-
pansion of the basic definitions. This has resulted in a, quite justified, parade
of papers consumed with working through all the technical details. However,
technicalities often have the unintended effect of obscuring the few key main
ideas. Our goal then is to present these key ideas and their consequences in
an expository fashion, referring the reader to the relevantpapers for further
technical developments and results. We hope that such a survey will provide
something of an introduction to and overview of the recent and ongoing work
of the author, but we also hope to provide a readable (and hopefully accurate!)
historical account of this particular chain of ideas and an overview of the work
of the many researchers who have contributed to it. We additionally hope that
such an overview might constitute a suitable introduction for those wishing to
learn about the basics of intersection homology and as preparation for those
wishing to pursue the many intriguing new applications thatgeneral perversities
bring to the theory.

This exposition is not meant to provide a comprehensive historical account
but merely to cover one particular line of development. We will focus primarily
on the approaches to intersection homology by simplicial and singular chains
and by sheaf theory. We will touch only tangentially upon perverse differential
forms when we consider Saralegi’s work in Section 10; we advise the reader to
consult [54] for the state of the art, as well as references toprior work, in this
area. Also, we will not discussL2-cohomology. This is a very active field of
research, as is well-demonstrated elsewhere in this volume[30], but the study of
L2-cohomology andL2 Hodge theories that yield intersection homology with
general perversities remains under development. The reader should consult the
papers cited above for the work that has been done so far. We will briefly discuss
perverse sheaves in Section 8.2, but the reader should consult [4] or any of the
variety of fine surveys on perverse sheaves that have appeared since for more
details.

We will not go into many of the myriad results and applications of inter-
section homology theory, especially those beyond topologyproper in analysis,
algebraic geometry, and representation theory. For broader references on inter-
section homology, the reader might start with [6; 42; 2]. These are also excellent
sources for the material we will be assuming regarding sheaftheory and derived
categories and functors.

We proceed roughly in historical order as follows: Section 2provides the
original Goresky–MacPherson definitions of PL pseudomanifolds and PL chain
intersection homology. We also begin to look closely at the cone formula for
intersection homology, which will have an important role toplay throughout. In
Section 3, we discuss the reasons for the original Goresky–MacPherson condi-
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tions on perversities and examine some consequences, and weintroduce King’s
singular intersection chains. In Section 4, we turn to the sheaf-theoretic defi-
nition of intersection homology and introduce the Deligne sheaf. We discuss
the intersection homology version of Poincaré duality, then we look at our
first example of an intersection homology result that utilizes a non-Goresky–
MacPherson perversity, the Cappell–Shaneson superduality theorem.

In Section 5, we discusssubperversitiesandsuperperversities. Here we first
observe the schism that occurs between chain-theoretic andsheaf-theoretic in-
tersection homology when perversities do not satisfy the Goresky–MacPherson
conditions. Section 6 introducesstratified coefficients, which were developed
by the author in order to correct the chain version of intersection homology for
it to conform with the Deligne sheaf version.

In Section 7, we discuss the further evolution of the chain theory to the most
general possible perversities and the ensuing results and applications. Section 8
contains the further generalization of the Deligne sheaf togeneral perversities,
as well as a brief discussion of perverse sheaves and how general perversity
intersection homology arises in that setting. Some indications of recent work
and work-in-progress with these general perversities is provided in Section 9.

Finally, Sections 10 and 11 discuss some alternative approaches to intersec-
tion homology with general perversities. In Section 10, we discuss Saralegi’s
“relative intersection chains”, which are equivalent to the author’s stratified co-
efficients when both are defined. In Section 11, we present thework of Habegger
and Saper from [35]. This work encompasses another option tocorrecting the
schism presented in Section 5 by providing a sheaf theory that agrees with King’s
singular chains, rather than the other way around; however,the Habegger–Saper
theory remains rather restrictive with respect to acceptable perversities.

2. The original definition of intersection homology

We begin by recalling the original definition of intersection homology as
given by Goresky and MacPherson in [32]. We must start with the spaces that
intersection homology is intended to study.

2.1. Piecewise linear stratified pseudomanifolds.The spaces considered by
Goresky and MacPherson in [32] werepiecewise linear (PL) stratified pseudo-
manifolds. An n-dimensional PL stratified pseudomanifoldX is a piecewise
linear space (meaning it is endowed with a compatible familyof triangulations)
that also possesses a filtration by closed PL subspaces (the stratification)

X DX n �X n�2 �X n�3 � � � � �X 1 �X 0 �X �1 D?

satisfying the following properties:
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(a) X �X n�2 is dense inX ,
(b) for eachk � 2, X n�k �X n�k�1 is either empty or is ann�k dimensional

PL manifold,
(c) if x 2X n�k �X n�k�1, thenx has adistinguished neighborhoodN that is

PL homeomorphic toRn�k � cL, wherecL is the open cone on a compact
k�1 dimensional stratified PL pseudomanifoldL. Also, the stratification of
L must be compatible with the stratification ofX .

A PL stratified pseudomanifoldX is oriented (or orientable) ifX �X n�2

has the same property.

A few aspects of this definition deserve comment. Firstly, the definition is induc-
tive: to define ann-dimensional PL stratified pseudomanifold, we must already
know what ak � 1 dimensional PL stratified pseudomanifold is fork � 1 < n.
The base case occurs fornD 0; a 0-pseudomanifold is a discrete set of points.
Secondly, there is a gap fromn to n� 2 in the filtration indices. This is more-
or-less intended to avoid issues of pseudomanifolds with boundary, although
there are now established ways of dealing with these issues that we will return
to below in Section 5.

The setsX i are calledskeleta, and we can verify from condition (b) that
each has dimension� i as a PL complex. The setsXi WD X i � X i�1 are
traditionally calledstrata, though it will be more useful for us to use this term for
the connected components ofXi , and we will favor this latter usage rather than
speaking of “stratum components.”1 The strata ofX n�X n�2 are calledregular
strata, and the other strata are calledsingular strata. The spaceL is called the
link of x or of the stratum containingx. For a PL stratified pseudomanifoldL
is uniquely determined up to PL homeomorphism by the stratumcontainingx.
The conecL obtains a natural stratification from that ofL: .cL/0 is the cone
point and fori > 0, .cL/i DLi�1 � .0; 1/� cL, where we think ofcL as

L� Œ0; 1/

.x; 0/� .y; 0/
:

The compatibility condition of item (c) of the definition means that the PL home-
omorphism should takeX i \N to Rn�k � .cL/i�.n�k/.

Roughly, the definition tells us the following. Ann-dimensional PL stratified
pseudomanifoldX is mostly then-manifold X �X n�2, which is dense inX .
(In much of the literature,X n�2 is also referred to aṡ , the singular locus of
X .) The rest ofX is made up of manifolds of various dimensions, and these
must fit together nicely, in the sense that each point in each stratum should have

1It is perhaps worth noting here that the notation we employ throughout mostly will
be consistent with the author’s own work, though not necessarily with all historical
sources.
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a neighborhood that is a trivial fiber bundle, whose fibers arecones on lower-
dimensional stratified spaces.

We should note that examples of such spaces are copious. Any complex an-
alytic or algebraic variety can be given such a structure (see [6, Section IV]), as
can certain quotient spaces of manifolds by group actions. PL pseudomanifolds
occur classically as spaces that can be obtained from a pile of n-simplices by
gluing in such a way that eachn� 1 face of ann-simplex is glued to exactly
onen� 1 face of one othern-simplex. (Another classical condition is that we
should be able to move from any simplex to any other, passing only through
interiors ofn�1 faces. This translates to say thatX �X n�2 is path connected,
but we will not concern ourselves with this condition.) Other simple examples
arise by taking open cones on manifolds (naturally, given the definition), by
suspending manifolds (or by repeated suspensions), by gluing manifolds and
pseudomanifolds together in allowable ways, etc. One can construct many use-
ful examples by such procedures as “start with this manifold, suspend it, cross
that with a circle, suspend again, . . . ” For more detailed examples, the reader
might consult [6; 2; 44].

More general notions of stratified spaces have co-evolved with the various
approaches to intersection homology, mostly by dropping orweakening require-
ments. We shall attempt to indicate this evolution as we progress.

2.2. Perversities. Besides the spaces on which one is to define intersection
homology, the other input is the perversity parameter. In the original Goresky–
MacPherson definition, a perversityNp is a function from the integers� 2 to the
non-negative integers satisfying the following properties:

(a) Np.2/D 0.
(b) Np.k/� Np.kC 1/� Np.k/C 1.

These conditions say that a perversity is something like a sub-step function.
It starts at0, and then each time the input increases by one, the output either
stays the same or increases by one. Some of the most commonly used perver-
sities include the zero perversityN0.k/ D 0, the top perversityNt.k/ D k � 2,
the lower-middle perversityNm.k/ D

�

k�2
2

˘

, and the upper middle perversity
Nn.k/D

�

k�1
2

˘

.
The idea of the perversity is that the input numberk represents the codimen-

sion of a stratumXn�k D X n�k �X n�k�1 of an n-dimensional PL stratified
pseudomanifold, while the output will control the extent towhich the PL chains
in our homology computations will be permitted to interact with these strata.

The reason for the arcane restrictions onNp will be made clear below in Sec-
tion 3. We will call any perversity satisfying conditions (a) and (b) aGoresky–
MacPherson perversity, or aGM perversity.
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2.3. Intersection homology. At last, we are ready to discuss intersection ho-
mology.

Let X be ann-dimensional PL stratified pseudomanifold, and letC T
� .X /

denote the simplicial chain complex ofX with respect to the triangulationT .
The PL chain complexC�.X / is defined to be lim

�T C T
� .X /, where the limit is

taken with respect to the directed set of compatible triangulations. This PL chain
complex is utilized by Goresky and MacPherson in [32] (see also [6]), and it is
useful in a variety of other contexts (see [46], for instance). However, it turns out
that this is somewhat technical overkill for the basic definition of intersection
homology, as what follows can also be performed inC T

� .X /, assumingT is
sufficiently refined with respect to the the stratification ofX (for example, pick
anyT , take two barycentric subdivisions, and you’re set to go — see [45]).

We now define the perversityNp intersection chain complexI NpC�.X / �

C�.X /. We say that a PLj -simplex� is Np-allowableprovided

dim.� \Xn�k/� j � kC Np.k/

for all k � 2. We say that a PLi-chain � 2 Ci.X / is Np-allowable if each i-
simplex occurring with nonzero coefficient in� is Np-allowable and if eachi �1

simplex occurring with nonzero coefficient in@� is Np-allowable. Notice that the
simplices in� must satisfy the simplex allowability condition withj D i while
the simplices of@� must satisfy the condition withj D i � 1.

ThenI NpC�.X / is defined to be the complex of allowable chains. It follows
immediately from the definition that this is indeed a chain complex. The inter-
section homology groups areI NpH�.X /DH�.I NpC�.X //.

Some remarks are in order.

REMARK 2.1. The allowability condition at first seems rather mysterious. How-
ever, the condition dim.� \Xn�k/� j �k would be precisely the requirement
that� andXn�k intersect in general position ifXn�k were a submanifold ofX .
Thus introducing a perversity can be seen as allowing deviation from general
position to a degree determined by the perversity. This seems to be the origin
of the nomenclature.

REMARK 2.2. It is a key observation that if� is ani-chain, then it is not every
i � 1 face of everyi-simplex of� that must be checked for its allowability, but
only those that survive in@�. Boundary pieces that cancel out do not need to be
checked for allowability. This seemingly minor point accounts for many subtle
phenomena, including the next remark.

REMARK 2.3. Intersection homology with coefficientsI NpH�.X IG/ can be
defined readily enough beginning withC�.X IG/ instead ofC�.X /. However,
I NpC�.X IG/ is generallyNOT the same asI NpC�.X /˝G. This is precisely due
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to the boundary cancellation behavior: extra boundary cancellation in chains
may occur whenG is a group with torsion, leading to allowable chains in
I NpC�.X IG/ that do not come from anyG-linear combinations of allowable
chains inI NpC�.X IZ/. For more details on this issue, including many examples,
the reader might consult [29].

REMARK 2.4. In [32], Goresky and MacPherson stated the allowability condi-
tion in terms of skeleta, not strata. In other words, they define aj -simplex to
be allowable if

dim.� \X n�k/� j � kC Np.k/

for all k � 2. However, it is not difficult to check that the two conditionsare
equivalent for the perversities we are presently considering. When we move on
to more general perversities, below, it becomes necessary to state the condition
in terms of strata rather than in terms of skeleta.

2.4. Cones. It turns out that understanding cones plays a crucial role inal-
most all else in intersection homology theory, which perhaps should not be too
surprising, as pseudomanifolds are all locally products ofcones with euclidean
space. Most of the deepest proofs concerning intersection homology can be
reduced in some way to what happens in these distinguished neighborhoods.
The euclidean part turns out not to cause too much trouble, but cones possess
interesting and important behavior.

So letL be a compactk � 1 dimensional PL stratified pseudomanifold, and
let cL be the open cone onL. Checking allowability of aj -simplex � with
respect to the cone vertexfvg D .cL/0 is a simple matter, since the dimension
of � \ fvg can be at most0. Thus� can allowably intersectv if and only if
0� j�kC Np.k/, i.e., if j �k� Np.k/. Now, suppose� is an allowablei-cycle in
L. We can form the chainNc� 2 I NpCiC1.cL/ by taking the cone on each simplex
in the chain (by extending each simplex linearly to the cone point). We can
check using the above computation (and a little more work that we’ll suppress)
that Nc� is allowable ifi C 1 � k � Np.k/, and thus� D @ Nc� is a boundary; see
[6, Chapters I and II]. Similar, though slightly more complicated, computations
show that any allowable cycle incL is a boundary. ThusI NpHi.cL/ D 0 if
i � k �1� Np.k/. On the other hand, ifi < k�1� Np.k/, then noi-chain� can
intersectv nor can any chain of which it might be a boundary. Thus� is left to
its own devices incL�v, i.e.,I NpHi.cL/D I NpHi.cL�v/Š I NpHi.L� .0; 1//.
It turns out that intersection homology satisfies the Künneth theorem when one
factor is euclidean space and we take the obvious product stratification (see [6,
Chapter I]), or alternatively we can use the invariance of intersection homology
under stratum-preserving homotopy equivalences (see [23]), and so in this range
I NpHi.cL/Š I NpHi.L/.
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Altogether then, we have

I NpHi.cLk�1/Š

�

0 if i � k � 1� Np.k/,
I NpHi.L/ if i < k � 1� Np.k/.

(2-1)

We will return to this formula many times.

3. Goresky–MacPherson perversities

The reasons for the original Goresky–MacPherson conditions on perversi-
ties, as enumerated in Section 2.2, are far from obvious. Ultimately, they come
down to the two initially most important properties of intersection homology:
its topological invariance and its Poincaré duality.

The topological invariance property of traditional intersection homology says
that when Np is a Goresky–MacPherson perversity andX is a stratified pseu-
domanifold (PL or topological, as we’ll get to soon) thenI NpH�.X / depends
only onX and not on the choice of stratification (among those allowed by the
definition). This is somewhat surprising considering how the intersection chain
complex depends on the strata.

The desire forI NpH�.X / to be a topological invariant leads fairly quickly to
the condition that we should not allowNp.k/ to be negative. This will be more
evident once we get to the sheaf-theoretic formulation of intersection homology,
but for now, consider the cone formula (2-1) forcLk�1, and supposeNp.k/ < 0.
Then we can check that no allowable PL chain may intersectv. Thus we see that
the intersection homology ofcL is the same as if we removed the cone point
altogether. A little more work (see [22, Corollary 2.5]) leads more generally to
the conclusion that ifNp.k/ < 0, thenI NpH�.X /Š I NpH�.X �Xk/. This would
violate the topological invariance since, for example, topological invariance tells
us that if M n is a manifold thenI NpH�.M / Š H�.M /, no matter how we
stratify it2. But if we now allow, say, a locally-flat PL submanifoldN n�k and
stratify byM � N , then if Np.k/ < 0 we would haveH�.M / Š I NpH�.M /Š

I NpH�.M �N / Š H�.M �N /. This presents a clear violation of topological
invariance.

The second Goresky–MacPherson condition, thatNp.k/� Np.kC1/� Np.k/C1,
also derives from topological invariance considerations.The following example
is provided by King [41, p. 155]. We first note that, lettingSX denote the
suspension ofX , we havecSX ŠR� cX (ignoring the stratifications). This is
not hard to see topologically (recall thatcX is theopencone onX ). But now if
we assumeX is k � 1 dimensional and that we take the obvious stratifications

2Note that one choice of stratification is the trivial one containing a single regular
stratum, in which case it is clear from the definition thatI NpH�.M /ŠH�.M /.
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of R � cX (assuming some initial stratification onX ), then

I NpHi.R � cX /Š

�

0 if i � k � 1� Np.k/,
I NpHi.X / if i < k � 1� Np.k/.

(3-1)

This follows from the cone formula (2-1) together with the intersection ho-
mology Künneth theorem, for which one term is unstratified [41] (or stratum-
preserving homotopy equivalence [23]).

But now it also follows by an easy argument, using (2-1) and the Mayer–
Vietoris sequence, that

I NpHi.SX /Š

8

<

:

I NpHi�1.X / if i > k � 1� Np.k/,
0 if i D k � 1� Np.k/,
I NpHi.X / if i < k � 1� Np.k/,

(3-2)

and, sinceSX has dimensionk,

I NpHi.cSX /Š

�

0 if i � k � Np.kC 1/,
I NpHi.SX / if i < k � Np.kC 1/.

(3-3)

So,I NpHi.R � cX / is 0 for i � k � 1� Np.k/, while I NpHi.cSX / must be0 for
i �k� Np.kC1/ and also foriDk�1� Np.k/ even ifk�1� Np.k/ <k� Np.kC1/.
Also, it is not hard to come up with examples in which the termsthat are not
forced to be zero are, in fact, nonzero. Ifk � 1� Np.k/ � k � Np.k C 1/ (i.e.,
1C Np.k/ � Np.k C 1/), so that the special casei D k � 1 � Np.k/ is already
in the zero range forI NpH�.cSX /, then topological invariance would require
k � 1 � Np.k/ D k � Np.k C 1/, i.e., Np.k C 1/ D Np.k/ C 1. So if we want
topological invariance,Np.kC 1/ cannot be greater thanNp.k/C 1.

On the other hand, ifk�1� Np.k/<k� Np.kC1/, the0 atI NpHk�1� Np.k/.cSX /

forced by the suspension formula drops below the truncationdimension cutoff at
k� Np.kC1/ that arises from the cone formula. Ifk�1� Np.k/Dk�1� Np.kC1/

(i.e., Np.k/D Np.kC 1/), no contradiction occurs. But if

k � 1� Np.k/ < k � 1� Np.kC 1/

(i.e., Np.kC 1/ < Np.k/), thenI NpHk�1� Np.kC1/.cSX / could be nonzero, which
means, via the formula forI NpH�.R�cX /, that we must havek�1� Np.kC1/ <

k � 1� Np.k/ (i.e., Np.kC 1/ > Np.k/), yielding a contradiction.
Hence the only viable possibilities for topological invariance areNp.kC1/D

Np.k/ or Np.kC 1/D Np.k/C 1.
It turns out that both possibilities work out. Goresky and MacPherson [33]

showed using sheaf theory that any perversity satisfying the two Goresky–Mac-
Pherson conditions yields a topologically invariant intersection homology the-
ory. King [41] later gave a non-sheaf proof that holds even when Np.2/ > 0.
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Why, then, did Goresky and MacPherson limit consideration to perversities
for which Np.2/ D 0? For one thing, they were primarily concerned with the
Poincaŕe duality theorem for intersection homology, which states that if X is
a compact orientedn-dimensional PL stratified pseudomanifold, then there is a
nondegenerate pairing

I NpHi.X IQ/˝ I NqHn�i.X IQ/!Q

if Np and Nq satisfy the Goresky–MacPherson conditionsand Np C Nq D Nt , or, in
other words,Np.k/C Nq.k/D k�2. If we were to try to allow Np.2/ > 0, then we
would have to haveNq.2/ < 0, and we have already seen that this causes trouble
with topological invariance. So if we want both duality and invariance, we must
have Np.2/ D Nq.2/ D 0. Without this condition we might possibly have one or
the other, but not both. In fact, King’s invariance results for Np.2/ > 0 implies
that duality cannot hold in general when we pair a perversitywith Np.2/ > 0 with
one with Nq.2/ < 0, at least not without modifying the definition of intersection
homology, which we do below.

But there is another interesting reason that Goresky and MacPherson did not
obtain King’s invariance result forNp.2/ > 0. When intersection homology was
first introduced in [32], Goresky and MacPherson were unableinitially to prove
topological invariance. They eventually succeeded by reformulating intersection
homology in terms of sheaf theory. But, as it turns out, whenNp.2/ ¤ 0 the
original sheaf theory version of intersection homology does not agree with the
chain version of intersection homology we have been discussing and for which
King proved topological invariance. Furthermore, the sheaf version is not a
topological invariant whenNp.2/ > 0 (some examples can be found in [24]).
Due to the powerful tools that sheaf theory brings to intersection homology,
the sheaf theoretic point of view has largely overshadowed the chain theory.
However, this discrepancy between sheaf theory and chain theory for non-GM
perversities turns out to be very interesting in its own right, as we shall see.

3.1. Some consequences of the Goresky–MacPherson conditions. The Go-
resky–MacPherson perversity conditions have a variety of interesting conse-
quences beyond turning out to be the right conditions to yield both topological
invariance and Poincaré duality.

Recall that the allowability condition for ani-simplex� is that dim.�\Xk/�

i � kC Np.k/. The GM perversity conditions ensure thatNp.k/ � k � 2, and so
for any perversity we must havei � k C Np.k/ � i � 2. Thus noi-simplex in
an allowable chain can intersect any singular stratum in theinteriors of itsi or
its i �1 faces. One simple consequence of this is that no0- or 1-simplices may
intersectX n�2, and soI NpH0.X /ŠH0.X �X n�2/.
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Another consequence is the following fantastic idea, also due to Goresky
and MacPherson. Suppose we have a local coefficient system ofgroups (i.e.,
a locally constant sheaf) defined onX �X n�2, even perhaps one that cannot
be extended to all ofX . If one looks back at early treatments of homology
with local coefficient systems, for example in Steenrod [56], it is sufficient to
assign a coefficient group to each simplex of a triangulation(we can think of
the group as being located at the barycenter of the simplex) and then to assign
to each boundary face map a homomorphism between the group onthe simplex
and the group on the boundary face. This turns out to be sufficient to define
homology with coefficients — what happens on lower dimensional faces does
not matter (roughly, everything on lower faces cancels out because we still have
@2 D 0). Since the intersectioni-chains with the GM perversities have the
barycenters of their simplices and of their topi � 1 faces outside ofX n�2, a
local coefficient systemG on X n�2 is sufficient to define the intersection chain
complexI NpC�.X IG/ and the resulting homology groups. For more details on
this construction, see, [26], for example.

Of course now the stratification does matter to some extent since it determines
where the coefficient system is defined. However, see [6, Section V.4] for a
discussion of stratifications adapted to a given coefficientsystem defined on an
open dense set ofX of codimension� 2.

One powerful application of this local coefficient version of intersection ho-
mology occurs in [12], in which Cappell and Shaneson study singular knots by
considering the knots in their ambient spaces as stratified spaces. They employ
a local coefficient system that wraps around the knot to mimicthe covering
space arguments of classical knot theory. This work also contains one of the
first useful applications of intersection homology with non-GM perversities. In
order to explain this work, though, we first need to discuss the sheaf formulation
of intersection homology, which we pick up in Section 4.

3.2. Singular chain intersection homology. Before moving on to discuss
the sheaf-theoretic formulation of intersection homology, we jump ahead in the
chronology a bit to King’s introduction of singular chain intersection homology
in [41]. As one would expect, singular chains are a bit more flexible than PL
chains (pun somewhat intended), and the singular intersection chain complex
can be defined on any filtered spaceX �X n�1 �X n�2 � � � � , with no further
restrictions. In fact, the “dimension” indices of the skeleta X k need no longer
have a geometric meaning. These spaces include both PL stratified pseudoman-
ifolds andtopological stratified pseudomanifolds, the definition of which is the
same as of PL pseudomanifolds but with all requirements of piecewise linearity
dropped. We also extend the previous definition now to allow an n�1 skeleton,
and we must extend perversities accordingly to be functionsNp WZ�1!Z. King
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definesloose perversities, which are arbitrary functions of this type. We will
return to these more general perversities in greater detailas we go on.

To define the singular intersection chain complex, which we will denote
I NpS�.X /, we can no longer use dimension of intersection as a criterion (es-
pecially if the index of a skeleton no longer has a dimensional meaning). In-
stead, the natural generalization of the allowability condition is that a singular
i-simplex� W�i !X is allowable if

��1.Xn�k/� fi � kC Np.k/ skeleton of�ig:

Once allowability has been defined for simplices, allowability of chains is de-
fined as in the PL case, and we obtain the chain complexI NpS�.X / and the
homology groupsI NpH�.X /.

If X is a PL stratified pseudomanifold, the notationI NpH�.X / for singular
chain intersection homology causes no confusion; as King observes, the PL and
singular intersection homology theories agree on such spaces. Also as for PL
chains, and by essentially the same arguments, ifX has no codimension one
stratum andNp is a GM perversity, singular intersection homology can takelocal
coefficients onX �X n�2.

From here on, when we refer to chain-theoretic intersectionhomology, we
will mean both the singular version (in any context) and the PL version (on PL
spaces).

4. Sheaf-theoretic intersection homology

Although intersection homology was developed originally utilizing PL chain
complexes, this approach was soon largely supplanted by thetechniques of sheaf
theory. Sheaf theory was brought to bear by Goresky and MacPherson in [33],
originally as a means to demonstrate the topological invariance (stratification
independence) of intersection homology with GM perversities; this was before
King’s proof of this fact using singular chains. However, itquickly became
evident that sheaf theory brought many powerful tools alongwith it, including a
Verdier duality approach to the Poincaré duality problem on pseudomanifolds.
Furthermore, the sheaf theory was able to accommodate topological pseudo-
manifolds. This sheaf-theoretic perspective has largely dominated intersection
homology theory ever since.

The Deligne sheaf. We recall that ifX n is a stratified topological pseudo-
manifold3, then a primary object of interest is the so-calledDeligne sheaf. For
notation, we letUk DX �X n�k for k � 2, and we letik WUkŒUkC1 denote

3For the moment, we again make the historical assumption thatthere are no codi-
mension one strata.
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the inclusion. Suppose thatNp is a GM perversity. We have seen that intersection
homology should allow a local system of coefficients defined only onX�X n�2;
let G be such a local system. The Deligne sheaf complexP� (or, more precisely
P�

Np;G) is defined by an inductive process. It is4

P� D �� Np.n/Rin� : : : �� Np.2/Ri2�.G˝O/;

whereO is the orientation sheaf onX �X n�2, Rik� is the right derived functor
of the pushforward functorik�, and��m is the sheaf complex truncation functor
that takes the sheaf complexS� to ��mS� defined by

.��mS�/i D

(

0 if i > m,
ker.di/ if i Dm,
Si if i < m.

Heredi is the differential of the sheaf complex. Recall that��mS� is quasi-
isomorphic toS� in degrees�m and is quasi-isomorphic to0 in higher degrees.

REMARK 4.1. Actually, the orientation sheafO is not usually included here as
part of the definition ofP�, or it would be only if we were discussingP�

Np;G˝O
.

However, it seems best to include this here so as to eliminatehaving to continu-
ally mess with orientation sheaves when discussing the equivalence of sheaf and
chain theoretic intersection homology, which, without this convention, would
read thatH�.X IP�

Np;G˝O
/ Š I NpHn��.X IG/; see below. PuttingO into the

definition ofP� as we have done here allows us to leave this nuisance tacit in
what follows.

The connection between the Deligne sheaf complex (also called simply the
“Deligne sheaf”) and intersection homology is that it can beshown that, on an
n-dimensional PL pseudomanifold,P� is quasi-isomorphic to the sheafU !

I NpC 1
n��.U IG/. Here the1 indicates that we are now working with Borel–

Moore PL chain complexes, in which chains may contain an infinite number of
simplices with nonzero coefficients, so long as the collection of such simplices
in any chain is locally-finite. This is by contrast to the PL chain complex dis-
cussed above for which each chain can contain only finitely many simplices with
nonzero coefficient. This sheaf of intersection chains is also soft, and it follows
via sheaf theory that the hypercohomology of the Deligne sheaf is isomorphic
to the Borel–Moore intersection homology

H�.X IP�/Š I NpH 1
n��.X IG/:

4There are several other indexing conventions. For example,it is common to shift
this complex so that the coefficientsG live in degree�n and the truncations become
�� Np.k/�n. There are other conventions that make the cohomologicallynontrivial degrees
of the complex symmetric about0 whenn is even. We will stick with the convention that
G lives in degree0 throughout. For details on other conventions, see [33], forexample.
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It is also possible to recover the intersection homology we introduced initially
by using compact supports:

H�
c .X IP�/Š I NpH c

n��.X IG/:

Now that we have introduced Borel–Moore chains, we will use “c” to indicate
the more familiar compact (finite number of simplices) supports. If the results
we discuss hold in both contexts (in particular ifX is compact) we will forgo
either decoration. More background and details on all of this can be found in
[33; 6].

It was shown later, in [26], that a similar connection existsbetween the
Deligne sheaf and singular chain intersection homology ontopologicalpseudo-
manifolds. Continuing to assume GM perversities, one can also define a sheaf
via the sheafification of the presheaf ofsingular chains5

U ! I NpSn��.X; X � NU IG/:

This sheaf turns out to be homotopically fine, and it is again quasi-isomorphic
to the Deligne sheaf. Thus, once again, we have

H�
c .X IP�/Š I NpH c

n��.X IG/ and H�.X IP�/Š I NpH 1
n��.X IG/;

which is the homology of the chain complexI NpS1
� .X IG/ consisting of chains

that can involve an infinite, though locally-finite, number of simplices with
nonzero coefficient.

The Goresky–MacPherson proof of topological invariance follows by show-
ing that the Deligne sheaf is uniquely defined up to quasi-isomorphism via a
set of axioms that do not depend on the stratification of the space. This proof
is given in [33]. However, we would here like to focus attention on what the
Deligne sheaf accomplishes locally, particularly in mind of the maxim that a
sheaf theory (and sheaf cohomology) is a machine for assembling local in-
formation into global. So let’s look at the local cohomology(i.e., the stalk
cohomology) of the sheafP� at x 2 Xn�k . This isH�.P�/x D H �.P�

x/ Š

lim
�x2U H�.U IP�/ Š lim

�x2U I NpH 1
n��.U IG/, and we may assume that the

limit is taken over the cofinal system of distinguished neighborhoodsN Š

Rn�k � cLk�1 containingx. It is not hard to see thatP� at x 2Xn�k depends
only on the stages of the iterative Deligne construction up through�� Np.k/Rik�

(at least so long as we assume thatNp is nondecreasing6, as it will be for a
GM perversity). Then it follows immediately from the definition of � that
H�.P�/x D 0 for � > Np.k/. On the other hand, the pushforward construction,

5SinceX is locally compact, we may use eitherc or1 to obtain the same sheaf.
6If Np ever decreases, say atk, then the truncation�� Np.k/ might kill local cohomology

in other strata of lower codimension.
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together with a K̈unneth computation and an appropriate induction step (see [6,
Theorem V.2.5]), shows that for� � Np.k/ we have

H�.P�/x ŠH�.N �N \X n�k IP�/

ŠH�.Rn�k � .cL� v/IP�/

ŠH�.Rn�kC1�LIP�/

ŠH�.LIP�jL/:

It can also be shown thatP�jL is quasi-isomorphic to the Deligne sheaf onL,
soH�.LIP�jL/Š I NpHk�1��.L/.

For future reference, we record the formula

Hi.P�/x Š

�

0 if i > Np.k/,
Hi.LIP�/ if i � Np.k/,

(4-1)

for x 2 Xn�k andL the link of x. Once one accounts for the shift in indexing
between intersection homology and Deligne sheaf hypercohomology and for
the fact that we are now working with Borel–Moore chains, these computations
work out to be equivalent to the cone formula (2-1). In fact,

H �.P�
x/Š I NpH 1

n��.Rn�k � cLIG/

Š I NpH 1
k��.cLIG/ (by the Künneth theorem)

Š I NpHk��.cL; L� .0; 1/IG/;

and the cone formula (2-1) translates directly, via the longexact sequence of
the pair.cL; L � .0; 1//, to this being0 for � > Np.k/ andI NpHk�1��.LIG/

otherwise.
So the Deligne sheaf recovers the local cone formula, and onewould be hard

pressed to find a more direct or natural way to “sheafify” the local cone condition
than the Deligne sheaf construction. This reinforces our notion that the cone
formula is really at the heart of intersection homology. In fact, the axiomatic
characterization of the Deligne sheaf alluded to above is strongly based upon
the sheaf version of the cone formula. There are several equivalent sets of char-
acterizing axioms. The first,AX 1 Np;G , is satisfied by a sheaf complexS� if

(a) S� is bounded andS� D 0 for i < 0,
(b) S�jX �X n�2 Š G˝O,7

(c) for x 2Xn�k , H i.S�
x/D 0 if i > Np.k/, and

(d) for each inclusionik W Uk ! UkC1, the “attaching map”̨ k given my the
composition of natural morphismsS�jUkC1

! ik�i�
k
S� ! Rik�i�

k
S� is a

quasi-isomorphism in degrees� Np.k/.

7See Remark 4.1 on page 190.
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These axioms should technically be thought of as applying inthe derived cate-
gory of sheaves onX , in which case all equalities and isomorphisms should be
thought of as quasi-isomorphisms of sheaf complexes. The first axiom acts as
something of a normalization and ensures thatS� lives in the bounded derived
category. The second axiom fixes the coefficients onX �X n�2. The third and
fourth axioms are equivalent to the cone formula (4-1); see [6, Sections V.1 and
V.2]. In fact, it is again not difficult to see that the Delignesheaf construction
is designed precisely to satisfy these axioms. It turns out that these axioms
completely characterize a sheaf up to quasi-isomorphism (see [6, Section V.2]),
and in fact it is by showing that the sheafification ofU ! I NpS�.X; X � NU IG/

satisfies these axioms that one makes the connection betweenthe sheaf of sin-
gular intersection chains and the Deligne sheaf.

Goresky and MacPherson [33] proved the stratification independence of in-
tersection homology by showing that the axiomsAX 1 are equivalent to other
sets of axioms, including one that does not depend on the stratification of X .
See [6; 33] for more details.

4.1. Duality. It would take us too far afield to engage in a thorough discussion
of how sheaf theory and, in particular, Verdier duality leadto proofs of the
intersection homology version of Poincaré duality. However, we sketch some
of the main ideas, highlighting the role that the perversityfunctions play in the
theory. For complete accounts, we refer the reader to the excellent expository
sources [6; 2].

The key to sheaf-theoretic duality is the Verdier dualizingfunctionD. Very
roughly,D functions as a fancy sheaf-theoretic version of the functorHom.�; R/.
In fact,D takes a sheaf complexS� to a sheaf complexHom�.S�; D�

X
/, where

D�
X

is the Verdier dualizing sheaf on the spaceX . In reasonable situations,
the dualizing sheafD�

X
is quasi-isomorphic (after reindexing) to the sheaf of

singular chains onX ; see [6, Section V.7.2.]. For us, the most important property
of the functorD is that it satisfies a version of the universal coefficient theorem.
In particular, ifS� is a sheaf complex over the Dedekind domainR, then for
any openU �X ,

Hi.U IDS�/Š Hom.H�i
c .U IS�/IR/˚Ext.H�iC1

c .U IS�/IR/:

The key, now, to proving a duality statement in intersectionhomology is
to show that ifX is orientable over a ground fieldF and Np and Nq are dual
perversities, meaningNp.k/C Nq.k/D k�2 for all k � 2, thenDP�

Np Œ�n� is quasi-

isomorphic toP�
Nq . HereŒ�n� is the degree shift by�n degrees, i.e.,.S�Œ�n�/iD

Si�n, and this shift is applied toDP� (it is not a shiftedP� being dualized).
It then follows from the universal coefficient theorem with field coefficientsF
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that

I NqH 1
n�i.X IF /Š Hom.I NpH c

i .X IF /; F /;

which is intersection homology Poincaré duality for pseudomanifolds.
To show thatDP�

Np Œ�n� is quasi-isomorphic toP�
Nq , it suffices to show that

DP�
Np Œ�n� satisfies the axiomsAX 1 Nq. Again, we will not go into full detail, but

we remark the following main ideas, referring the reader to the axiomsAX 1

outlined above:

(a) OnX �X n�2, DP�
Np Œ�n� restricts to the dual of the coefficient system

P�
NpjX �X n�2 ;

which is again a local coefficient system. IfX is orientable and the coefficient
system is trivial, then so is its dual.

(b) Recall that the third and fourth axioms for the Deligne sheaf concern what
happens at a pointx in the stratumXn�k . To computeH �.S�

x/, we may
compute lim

�x2U H�.U IS�/. In particular, if we let eachU be a distin-
guished neighborhoodU ŠRn�k�cL of x and apply the universal coefficient
theorem, we obtain

H i.U IDP�
Np Œ�n�x/Š lim

�x2U Hi.DP�
Np Œ�n�/

Š lim
�x2U Hi�n.U IDP�

Np/

Š lim
�x2U Hom.Hn�i

c .U IP�
Np/; F /

Š lim
�x2U Hom.I NpH c

i .Rn�k � cLIF /; F /

Š lim
�x2U Hom.I NpH c

i .cLIF /; F /:

(4-2)

The last equality is from the K̈unneth theorem with compact supports. From
the cone formula, we know that this will vanish ifi � k � 1� Np.k/, i.e., if
i > k � 2� Np.k/D Nq.k/. This is the third item ofAX 1 Nq.

(c) The fourth item ofAX 1 Nq is only slightly more difficult, but the basic idea is
the same. By the computations (4-2),H i.DP�

Np Œ�n�x/ comes down to com-

puting I NpH c
i .cLIF /, which we know is isomorphic toI NpH c

i .LIF / when
i < k � 1� Np.k/, i.e., i � Nq.k/. It is then an easy argument to show that in
fact the attaching map condition ofAX 1 Nq holds in this range.

(d) The first axiom also follows from these computations; onechecks that the
vanishing ofH i. NP �

Np;x/ for i < 0 and fori > Np.k/ for x 2Xn�k is sufficient

to imply thatH i.DP�
Np Œ�n�x/ also vanishes fori < 0 or i sufficiently large.

We see quite clearly from these arguments precisely why the dual perversity
condition Np.k/C Nq.k/D k � 2 is necessary in order for duality to hold.
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A more general duality statement, valid over principal ideal domains, was
provided by Goresky and Siegel in [34]. However, there is an added requirement
that the spaceX be locally . Np; R/-torsion free. This means that for eachx 2
Xn�k , I NpH c

k�2� Np.k/
.Lx/ is R-torsion free, whereLx is the link ofx in X . The

necessity of this condition is that when working over a principal ideal domainR,
the Ext terms of the universal coefficient theorem for Verdier duals must be taken
into account. If these link intersection homology groups had torsion, there would
be a possibly nonzero Ext term in the computation (4-2) wheni D Nq.k/C 1,
due to the degree shift in the Ext term of the universal coefficient theorem. This
would prevent the proof thatDP�

Np Œ�n� satisfiesAX 1 Nq, so this possibility is
eliminated by hypothesis. With these assumption, there result duality pairings
analogous to those that occur for manifolds using ordinary homology withZ

coefficients. In particular, one obtains a nondegenerate intersection pairing on
homology mod torsion and a nondegenerate torsion linking pairing on torsion
subgroups. See [34] and [22] for more details.

This circle of ideas is critical in leading to the need for superperversities in
the Cappell–Shaneson superduality theorem, which we shallnow discuss.

4.2. Cappell–Shaneson superduality.The first serious application (of which
the author is aware) of a non-GM perversity in sheaf theoretic intersection ho-
mology occurs in Cappell and Shaneson’s [12], where they develop a gener-
alization of the Blanchfield duality pairing of knot theory to studyL-classes
of certain codimension 2 subpseudomanifolds of manifolds.Their pairing is
a perfect Hermitian pairing between the perversityNp intersection homology
H�.X IP�

Np;G/ (with Np a GM perversity) andHn�1��.X IP�
Nq;G�/, whereG� is

a Hermitian dual system toG and Nq satisfiesNp.k/C Nq.k/D k�1. This assures
that Nq satisfies the GM perversity conditionNq.k/� Nq.kC1/� Nq.k/C1, but it also
forces Nq.2/ D 1. In [26], we referred to such perversities assuperperversities,
though this term was later expanded by the author to include larger classes of
perversitiesNq for which Nq.k/ may be greater thanNt.k/D k � 2 for somek.

Cappell and Shaneson worked with the sheaf version of intersection homol-
ogy throughout. Notice that the Deligne sheaf remains perfectly well-defined
despiteNq being a non-GM perversity; the truncation process just starts at a higher
degree. Let us sketch how these more general perversities come into play in the
Cappell–Shaneson theory.

The Cappell–Shaneson superduality theorem holds in topological settings that
generalize those in which one studies the Blanchfield pairing of Alexander mod-
ules in knot theory; see [12] for more details. The Alexandermodules are the
homology groups of infinite cyclic covers of knot complements, and one of the
key features of these modules is that they are torsion modules over the principal
ideal domainQŒt; t�1�. In fact, the Alexander polynomials are just the products
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of the torsion coefficients of these modules. Similarly, theCappell–Shaneson in-
tersection homology groupsH�.X IP�

Np;G/ are torsion modules overQŒt; t�1� (in

fact,G is a coefficient system with stalks equal toQŒt; t�1� and with monodromy
action determined by the linking number of a closed path withthe singular locus
in X ). Now, what happens if we try to recreate the Poincaré duality argument
from Section 4.1 in this context? For one thing, the dual of the coefficient system
overX �X n�2 becomes the dual systemG�. More importantly, all of the Hom
terms in the universal coefficient theorem for Verdier duality vanish, because all
modules are torsion, but the Ext terms remain. From here, it is possible to finish
the argument, replacing all Homs with Exts, but there is one critical difference.
Thanks to the degree shift in Ext terms in the universal coefficient theorem, at
a pointx 2 Xn�k , H i.DP�

Np;G Œ�n�x/ vanishes not fori > k � 2� Np.k/ but for
i > k�1� Np.k/, while the attaching isomorphism holds fori � k�1� Np.k/. It
follows thatDP�

Np;G Œ�n�x is quasi-isomorphic toP�
Nq;G� , but now Nq must satisfy

Np.k/C Nq.k/D k � 1.
The final duality statement that arises has the form

I NpHi.X IG/� Š Ext.I NqHn�i�1.X IG/; QŒt; t�1�/

Š Hom.I NqHn�i�1.X IG/IQ.t; t�1/=QŒt; t�1�/;

where Np.k/C Nq.k/D k � 1, X is compact and orientable, and the last isomor-
phism is from routine homological algebra. We refer the reader to [12] for the
remaining technical details.

Note that this is somewhat related to our brief discussion ofthe Goresky–
Siegel duality theorem. In that theorem, a special condition was added to ensure
the vanishing of the extra Ext term. In the Cappell–Shanesonduality theorem,
the extra Ext term is accounted for by the change in perversity requirements, but
it is important that all Hom terms vanish, otherwise there would still be a mis-
match between the degrees in which the Hom terms survive truncation and the
degrees in which the Ext terms survive truncation. It might be an enlightening
exercise for the reader to work through the details.

While the Cappell–Shaneson superduality theorem generalizes the Blanch-
field pairing in knot theory, the author has identified an intersection homology
generalization of the Farber–LevineZ-torsion pairing in knot theory [21]. In
this case, the duality statement involves Ext2 terms and requires perversities
satisfying the duality conditionNp.k/C Nq.k/D k.

5. Subperversities and superperversities

We have already noted that King considered singular chain intersection ho-
mology for perversities satisfyingNp.2/ > 0, and, more generally, he defined in
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[41] a looseperversity to be an arbitrary function fromf2; 3; : : :g to Z. It is not
hard to see that the PL and singular chain definitions of intersection homology
(with constant coefficients) go through perfectly well withloose perversities,
though we have seen that we would expect to forfeit topological invariance (and
perhaps Poincaré duality) with such choices. On the sheaf side, Cappell and
Shaneson [12] used a perversity withNp.2/ > 0 in their superduality theorem.
Somewhat surprisingly, however, once we have broken into the realm of non-
GM perversities, the sheaf and chain theoretic versions of intersection homology
no longer necessarily agree.

A very basic example comes by takingNp.k/ < 0 for somek; we will call such
a perversity asubperversity. In the Deligne sheaf construction, a subperversity
will truncate everything away and wind up with the trivial sheaf complex, whose
hypercohomology groups are all0. In the chain construction, however, we have
only made it more difficult for a chain to be allowable with respect to thekth
stratum. In fact, it is shown in [22, Corollary 2.5] that the condition Np.k/ < 0

is homologically equivalent to declaring that allowable chains cannot intersect
thekth stratum at all. So, for example, ifNp.k/ < 0 for all k, thenI NpH c

� .X /Š

H c
� .X �X n�2/.
The discrepancy between sheaf theoretic and chain theoretic intersection ho-

mology also occurs when perversities exceed the top perversity Nt.k/ D k � 2

for somek; we call such perversitiessuperperversities. To see what the issue
is, let us return once again to the cone formula, which we haveseen plays the
defining local (and hence global) role in intersection homology. So long asNp
is non-decreasing (and non-negative), the arguments of thepreceding section
again yield the sheaf-theoretic cone formula (4-1) from theDeligne construc-
tion. However, the cone formula can fail in the chain versionof superperverse
intersection homology.

To understand why, supposeL is a compactk � 1 pseudomanifold, so that
.cL/k D v, the cone point. Recall from Section 2.4 that the cone formula comes
by considering cones on allowable cycles and checking whether or not they are
allowable with respect tov. In the dimensions where such cones are allowable,
this kills the homology. In the dimensions where the cones are not allowable,
we also cannot have any cycles intersecting the cone vertex,and the intersection
homology reduces toI NpH c

i .cL � v/ Š I NpH c
i .L � R/ Š I NpH c

i .L/, the first
isomorphism becausecL� v is homeomorphic toL�R and the second using
the Künneth theorem with the unstratifiedR (see [41]) or stratum-preserving
homotopy equivalence (see [23]). These arguments hold in both the PL and sin-
gular chain settings. However, there is a subtle point thesearguments overlook
when perversities exceedNt .
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If Np is a GM perversity, thenNp.k/� k � 2 and sok � 1� Np.k/ > 0 and the
cone formula guarantees thatI NpH c

0
.cL/ is always isomorphic toI NpH c

0
.L/. In

fact, we have already observed, in Section 3.1, that0- and1-simplices cannot
intersect the singular strata. Now suppose thatNp.k/ D k � 1. Then extending
the cone formula should predict thatI NpH c

0
.cL/D 0. But, in these dimensions,

the argument breaks down. For ifx is a point incL� .cL/k�2 representing a
cycle inI NpSc

0
.cL/, then Ncx is a1-simplex, and a quick perversity computation

shows that it is now an allowable1-simplex. However, it is not allowable as a
chain since@. Ncx/ has two0-simplices, one supported at the cone vertex. This
cone vertex is not allowable. The difference between this case and the prior
ones is that wheni > 0 the boundary of a cone on ani-cycle is (up to sign) that
i-cycle. But wheni D 0, there is a new boundary component. In the previous
computations, this was not an issue because the1-simplex would not have been
allowable either. But now this ruins the cone formula.

In general, a careful computation shows that ifL is a compactk � 1 filtered
space andNp is any loose perversity, then the singular intersection homology
cone formula becomes [41]

I NpH c
i .cL/Š

8

<

:

0 if i � k � 1� Np.k/ andi ¤ 0,
Z if i D 0 and Np.k/� k � 1,
I NpHi.L/ if i < k � 1� Np.k/.

(5-1)

Which is the right cone formula? So when we allow superperversities with
Np.k/ > Nt.k/D k �2, the cone formula (2-1) no longer holds for singular inter-
section homology, and there is a disagreement with the sheaftheory, for which
the sheaf version (4-1) of (2-1) always holds by the construction of the Deligne
sheaf (at least so long asNp is non-decreasing). What, then, is the “correct”
version of intersection homology for superperversities (and even more general
perversities)? Sheaf theoretic intersection homology allows the use of tools such
as Verdier duality, and the superperverse sheaf intersection homology plays a key
role in the Cappell–Shaneson superduality theorem. On the other hand, singular
intersection homology is well-defined on more general spaces and allows much
more easily for homotopy arguments, such as those used in [41; 23; 25; 27].

In [35], Habegger and Saper created a sheaf theoretic generalization of King’s
singular chain intersection homology providedNp.k/� Np.kC1/� Np.k/C1 and
Np.2/ � 0. This theory satisfies a version of Poincaré duality but is somewhat
complicated. We will return to this below in Section 11.

Alternatively, a modification of the chain theory whose homology agrees with
the hypercohomology of the Deligne sheaf even for superperversities (up to the
appropriate reindexing) was introduced independently by the author in [26] and
by Saralegi in [54]. This chain theory has the satisfying property of maintaining
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the cone formula (2-1) for completely general perversities, even those that are
not necessarily non-decreasing, while yielding the usual intersection homology
groups for GM perversities. Recently, the author has found also a generalization
of the Deligne sheaf construction that yields sheaf complexes whose hyperco-
homology groups agree with the homology groups of this chaintheory and are
the usual ones for GM perversities. Of course these groups generally will not
be independent of the stratification, but they do possess Poincaŕe duality for
pseudomanifolds. Thus this theory seems to be a reasonable candidate for the
most general possible intersection homology theory. We will describe this theory
and its characteristics in the following sections.

Superperversities and codimension one strata.It is a remarkable point of in-
terest that the perversity issues we have been discussing provide some additional
insight into why codimension one strata needed to be left outof the definition of
stratified pseudomanifolds used by Goresky and MacPherson (though I do not
know if it was clear that this was the issue at the time). On theone hand, if we
assume thatX has a codimension one stratum and letNp.1/ D 0, then Np.1/ is
greater thanNt.1/, which we would expect to be1� 2D�1, and so we run into
the trouble with the cone formula described earlier in this section. On the other
hand, if we let Nq.1/ D Nt.1/ D �1, then we run into the trouble with negative
perversities described prior to that. In this latter case, the Deligne sheaf is always
trivial, yielding only trivial sheaf intersection homology, so there can be no non-
trivial Poincaŕe duality via the sheaf route (note thatNp.1/ D 0 and Nq.1/ D �1

are dual perversities atk D 1, so any consideration of duality involving the one
perversity would necessarily involve the other). Similarly, there is no duality
in the chain version since, for example, ifX n � X n�1 is S1 � pt then easy
computations shows thatI NqH1.X /ŠH c

1
.S1 � pt/D 0, while I NpH0.X /Š Z.

Note that the first computation shows that we have also voidedthe stratification
independence of intersection homology.

One of the nice benefits of our (and Saralegi’s) “correction”to chain-theoretic
intersection homology is that it allows one to include codimension one strata and
still obtain Poincaŕe duality results. In general, though, the stratification inde-
pendence does need to be sacrificed. One might argue that thisis the preferred
trade-off, since one might wish to use duality as a tool to study spacestogether
with their stratifications.

6. “Correcting” the definition of intersection chains

As we observed in the previous section, ifNp is a superperversity (i.e.,Np.k/ >

k�2 for somek), then the Deligne sheaf version of intersection homology and
the chain version of intersection homology need no longer agree. Modifications
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of the chain theory to correct this anomaly were introduced by the author in
[26] and by Saralegi in [54], and these have turned out to provide a platform
for the extension of other useful properties of intersection homology, including
Poincaŕe duality. These modifications turn out to be equivalent, as proven in
[28]. We first present the author’s version, which is slightly more general in that
it allows for the use of local coefficient systems onX �X n�1.

As we saw in Section 5, the discrepancy between the sheaf coneformula and
the chain cone formulas arises because the boundary of a1-chain that is the cone
on a0-chain has a0-simplex at the cone point. So to fix the cone formula, it is
necessary to find a way to make the extra0 simplex go away. This is precisely
what both the author’s and Saralegi’s corrections do, though how they do it is
described in different ways.

The author’s idea, motivated by the fact that Goresky–MacPherson perversity
intersection chains need only have their coefficients well-defined onX �X n�2,
was to extend the coefficientsG on X �X n�1 (now allowing codimension one
strata) to astratified coefficient systemby including a “zero coefficient system”
onX n�1. Together these are denoteG0. Then a coefficient on a singular simplex
� W�i!X is defined by a lift of� j��1.X �X n�1/ to the bundleG onX �X n�1

and by a “lift” of � j��1.X n�1/ to the0 coefficient system overX n�1. Boundary
faces then inherit their coefficients from the simplices they are boundaries of
by restriction. A simplex has coefficient0 if its coefficient lift is to the zero
section over all of�i . In the PL setting, coefficients of PL simplices are defined
similarly. In principle, there is no reason the coefficient system overX n�1 must
be trivial, and one could extend this definition by allowing different coefficient
systems on all the strata ofX ; however, this idea has yet to be investigated.

With this coefficient systemG0, the intersection chain complexI NpS�.X IG0/

is defined exactly as it is with ordinary coefficients — allowability of simplices is
determined by the same formula, and chains are allowable if each simplex with
a nonzero coefficient in the chain is allowable. So what has changed? The subtle
difference is that if a simplex that is in the boundary of a chain has support in
X n�1, then that boundary simplex must now have coefficient0, since that is the
only possible coefficient for simplices inX n�1; thus such boundary simplices
vanish and need not be tested for allowability. This simple idea turns out to be
enough to fix the cone formula.

Indeed, let us reconsider the example of a pointx in cL � .cL/k�2, to-
gether with a coefficient lift toG, representing a cycle inI NpSc

0
.cLIG0/, where

Np.k/ D k � 1. As before, Ncx is a 1-simplex, and it is allowable. Previously,
Ncx was not, however, allowableas a chainsince the component of@. Ncx/ in the
cone vertex was not allowable. However, if we consider the boundary of Ncx in
I NpSc

0
.cLIG0/, then the simplex at the cone point vanishes because it must have
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a zero coefficient there. Thus allowability is not violated by Ncx; it is now an
allowablechain.

A slightly more detailed computation (see [26]) shows that,in fact,

I NpH c
i .cLk�1IG0/Š

�

0 if i � k � 1� Np.k/,
I NpH c

i .LIG0/ if i < k � 1� Np.k/,
(6-1)

i.e., we recover the cone formula, even ifNp.k/ > k � 2.
Another pleasant feature ofI NpH�.X IG0/ is that if Np does happen to be a

GM perversity andX has no codimension one strata, thenI NpH�.X IG0/ Š

I NpH�.X IG/, the usual intersection homology. In fact, this follows from our
discussion in Section 3.1, where we noted that ifNp is a GM perversity then
no allowablei-simplices intersectX n�2 in either the interiors of theiri faces
or the interiors of theiri � 1 faces. Thus no boundary simplices can lie en-
tirely in X n�2 and canceling of boundary simplices due to the stratified co-
efficient system does not occur. ThusI NpH�.X IG0/ legitimately extends the
original Goresky–MacPherson theory. Furthermore, working with this “cor-
rected” cone formula, one can show that the resulting intersection homology
groupsI NpH 1

� .X IG0/ agree on topological stratified pseudomanifolds (modulo
the usual reindexing issues) with the Deligne sheaf hypercohomology groups
(and similarly with compact supports), assuming thatNp.2/ � 0 and that Np is
non-decreasing. This was proven in [26] under the assumption that Np.2/D 0 or
1 and that Np.k/� Np.kC1/� Np.k/C1, but the more general case follows from
[22].

Thus, in summary,I NpH�.X IG0/ satisfies the cone formula, generalizes in-
tersection homology with GM perversities, admits codimension one strata, and
agrees with the Deligne sheaf for the superperversities we have considered up
to this point. It turns out that stratified coefficients also permit useful results for
even more general contexts.

REMARK 6.1. A similar idea for modifying the definition of intersection ho-
mology for non-GM perversities occurs in the unpublished notes of MacPherson
[44]. There, only locally-finite chains inX � X n�1 are considered, but their
closures inX are used to determine allowability.

7. General perversities

We have now seen that stratified coefficientsG0 allow us to recover the cone
formula (6-1) both whenNp is a GM perversity and when it is a non-decreasing
superperversity. How far can we push this? The answer turns out to be “quite
far!” In fact, the cone formula will hold if Np is completely arbitrary. Recall
that we have defined a stratum ofX to be a connected component of anyXk D
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X k �X k�1. For a stratified pseudomanifold, possibly with codimension one
strata, we define ageneral perversityNp on X to be a function

Np W fsingular strata of Xg ! Z:

Then a singular simplex� W�i! X is Np-allowable if

��1.Z/� fi � codim.Z/C Np.Z/ skeleton of�ig

for each singular stratumZ of X . Even in this generality, the cone formula
(6-1) holds forI NpH c

� .cLk�1IG0/, replacing Np.k/ with Np.v/, wherev is the
cone vertex.

Such general perversities were considered in [44], following their appearance
in the realm of perverse sheaves (see [4] and Section 8.2, below), and they appear
in the work of Saralegi on intersection differential forms [53; 54]. They also
play an important role in the intersection homology Künneth theorem of [28],
which utilizes “biperversities” in which the setXk � Yl � X � Y is given a
perversity value depending onNp.k/ and Nq.l/ for two perversitiesNp; Nq onX and
Y , respectively; see Section 9.

In this section, we discuss some of the basic results on intersection homology
with general perversities, most of which generalize the known theorems for GM
perversities. We continue, for the most part, with the chaintheory point of
view. In Section 8, we will return to sheaf theory and discusssheaf-theoretic
techniques for handling general perversities.

REMARK 7.1. One thing that we can continue to avoid in defining general
perversities is assigning perversity values to regular strata (those inX �X n�1)
and including this as part of the data to check for allowability. The reason is as
follows: If Z is a regular stratum, the allowability conditions for a singular i-
simplex� would include the condition that��1.Z/ lie in theiC Np.Z/ skeleton
of �i . If Np.Z/� 0, then this is true of any singulari-simplex, and if Np.Z/ < 0,
then this would imply that the singular simplex must not intersectZ at all, since
X n�1 is a closed subset ofX . Thus there are essentially only two possibilities.
The caseNp.Z/� 0 is the default that we work with already (without explicitly
checking the condition that would always be satisfied on regular strata). On the
other hand, the caseNp.Z/ < �1 is something of a degeneration. IfNp.Z/ < 0

for all regular strata, then all singular chains must be supported inX n�1 and
soI NpS�.X IG0/D 0. If there are only some regular strata such thatNp.Z/ < 0,
then, lettingX C denote the pseudomanifold that is the closure of the union
of the regular strataZ of X such that Np.Z/ � 0, we haveI NpH�.X IG0/ Š

I NpH�.X CIG0jX C/. We could have simply studied intersection homology on
X C in the first place, so we get nothing new. Thus it is reasonableto concern
ourselves only with singular strata in defining allowability of simplices.
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This being said, there are occasional situations where it isuseful in technical
formulae to assume thatNp.Z/ is defined for all strata. This comes up, for exam-
ple, in [28], where we define perversities on product strataZ1�Z2 �X1�X2

using formulas such asQf Np; Nqg.Z1 � Z2/ D Np.Z1/C Nq.Z2/ for perversities
Np; Nq. HereZ1 � Z2 may be a singular stratum, for example, even ifZ1 is
regular butZ2 is singular. The formula has the desired consequence in [28]by
setting Np.Z1/ D 0 for Z1 regular, and this avoids having to write out several
cases.

Efficient perversities. It turns out that such generality contains a bit of overkill.
In [22], we define a general perversityNp to beefficientif

�1� Np.Z/� codim.Z/� 1

for each singular stratumZ�X . Given a generalNp, we define itsefficientization
Lp as

Lp.Z/D

8

<

:

codim.Z/� 1 if Np.Z/� codim.Z/� 1,
Np.Z/ if 0� Np.Z/� codim.Z/� 2,
�1 if Np.Z/� �1.

It is shown in [22, Section 2] thatI NpH�.X IG0/ Š I LpH�.X IG0/. Thus it is
always sufficient to restrict attention to the efficient perversities.

Efficient perversities and interiors of simplices. Efficient perversities have a
nice feature that makes them technically better behaved than the more general
perversities. If Np is a perversity for whichNp.Z/� codim.Z/ for some singular
stratumZ, then anyi-simplex � will be Np-allowable with respect toZ. In
particular,Z will be allowed to intersect the image under� of the interior of
�i . As such,��1.X � X n�1/ could potentially have an infinite number of
connected components, and a coefficient of� might lift each component to a
different branch ofG, even ifG is a constant system. This could potentially
lead to some pathologies, especially when considering intersection chains from
the sheaf point of view. However, ifNp is efficient, then for aNp-allowable� we
must have��1.X �X n�1/ within the i � 1 skeleton of�i . Hence assigning a
coefficient lift value to one point of the interior of�i determines the coefficient
value at all points (on��1.X �X n�1/ by the unique extension of the lift and
on ��1.X n�1/, where it is0). This is technically much simpler and makes the
complex of chains in some sense smaller.

In [28], the complexI NpS�.X IG0/ was defined with the assumption that this
“unique coefficient” property holds, meaning that a coefficient should be deter-
mined by its lift at a single point. However, as noted in [28, Appendix], even for
inefficient perversities, this does not change the intersection homology. So we
are free to assume all perversities are efficient, without loss of any information
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(at least at the level of quasi-isomorphism), and this provides a reasonable way
to avoid the issue entirely.

7.1. Properties of intersection homology with general perversities and strat-
ified coefficients. One major property that we lose in working with general
perversities and stratified coefficients is independence ofstratification. However,
most of the other basic properties of intersection homologysurvive, including
Poincaŕe duality, some of them in even a stronger form than GM perversities
allow.

Basic properties. SupposeX n is a topological stratified pseudomanifold, pos-
sibly with codimension one strata, letG be a coefficient system onX �X n�1,
and let Np be a general perversity. What properties doesI NpH�.X IG0/ possess?

For one thing, the most basic properties of intersection homology remain
intact. It is invariant under stratum-preserving homotopyequivalences, and it
possesses an excision property, long exact sequences of thepair, and Mayer–
Vietoris sequences. The Künneth theorem when one term is an unstratified
manifold M holds true (i.e.,I NpSc

�.X �M I .G � G0/0/ is quasi-isomorphic to
I NpSc

�.X IG0/˝Sc
�.M IG0

0
/). There are versions of this intersection homology

with compact supports and with closed supports. AndU!I NpS�.X; X� NU IG0/

sheafifies to a homotopically fine sheaf whose hypercohomology groups recover
the intersection homology groups, up to reindexing. It is also possible to work
with PL chains on PL pseudomanifolds. For more details, see [26; 22].

Duality. Let us now discuss Poincaré duality in our present context.

THEOREM 7.2 (POINCARÉ DUALITY ). If F is a field8, X is an F -oriented
n-dimensional stratified pseudomanifold, and NpC Nq D Nt (meaning thatNp.Z/C

Nq.Z/D codim.Z/� 2 for all singular strataZ), then

I NpH 1
i .X IF0/Š Hom.I NqH c

n�i.X IF0/; F /:

For compact orientable PL pseudomanifolds without codimension one strata
and with GM perversities, this was initially proven in [32] via a combinatorial
argument; a proof extending to the topological setting using the axiomatics of
the Deligne sheaf and Verdier duality was obtained in [33]. This Verdier duality
proof was extended to the current setting in [22] using a generalization of the
Deligne sheaf that we will discuss in the following section.It also follows from
the theory of perverse sheaves [4]. Recent work of the authorand Jim McClure
in [31] shows that intersection homology Poincaré duality can be proven using
a cap product with an intersection homology orientation class by analogy to

8Recall that even in the Goresky–MacPherson setting, duality only holds, in general,
with field coefficients.
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the usual proof of Poincaré duality on manifolds (see, [36], for example). A
slightly more restrictive statement (without proof) of duality for general perver-
sities appears in the unpublished lecture notes of MacPherson [44] as far back
as 1990.

As is the case for classical intersection homology, more general duality state-
ments hold. These can involve local-coefficient systems, non-orientable pseudo-
manifolds, and, ifX is locally . Np; R/-torsion freefor the principal ideal domain
R, then there are torsion linking and mod torsion intersection dualities overR.
For complete details, see [22].

Pseudomanifolds with boundary and Lefschetz duality.General perversities
and stratified coefficients can also be used to give an easy proof of a Lefschetz
version of the duality pairing, one for whichX is a pseudomanifold with bound-
ary:

DEFINITION 7.3. An n-dimensionalstratified pseudomanifold with boundary
is a pair.X; @X / such thatX � @X is ann-dimensional stratified pseudoman-
ifold and theboundary@X is ann � 1 dimensional stratified pseudomanifold
possessing a neighborhood inX that is stratified homeomorphic to@X � Œ0; 1/,
whereŒ0; 1/ is unstratified and@X � Œ0; 1/ is given the product stratification.

REMARK 7.4. A pseudomanifold may have codimension one strata that are
not part of a boundary, even if they would be considered part of a boundary
otherwise. For example, letM be a manifold with boundary@M (in the usual
sense). If we considerM to be unstratified, then@M is the boundary ofM .
However, if we stratifyM by the stratificationM � @M , then@M is not a
boundary ofM as a stratified pseudomanifold, and in this caseM is a stratified
pseudomanifold without boundary.

We can now state a Lefschetz duality theorem for intersection homology of
pseudomanifolds with boundary.

THEOREM 7.5 (LEFSCHETZ DUALITY). If F is a field, X is a compactF -
orientedn-dimensional stratified pseudomanifold, and NpC Nq D Nt (meaning that
Np.Z/C Nq.Z/D codim.Z/� 2 for all singular strataZ), then

I NpHi.X IF0/Š Hom.I NqHn�i.X; @X IF0/; F /:

This duality also can be extended to include local-coefficient systems, non-
compact or non-orientable pseudomanifolds, and, ifX is locally . Np; R/-torsion
free for the principal ideal domainR, then there are torsion linking and mod
torsion intersection dualities overR.

In fact, in the setting of intersection homology with general perversities,
this Lefschetz duality follows easily from Poincaré duality. To see this, let



206 GREG FRIEDMAN

OX DX [@X Nc@X , the space obtained by adjoining toX a cone on the boundary
(or, equivalently, pinching the boundary to a point). Letv denote the ver-
tex of the cone point. LetNp�, NqC be the dual perversities onOX such that
Np�.Z/D Np.Z/ and NqC.Z/D Nq.Z/ for each stratumZ of X , Np�.v/D�2, and
NqC.v/D n. Poincaŕe duality gives a duality isomorphism betweenI Np�H�. OX /

andI NqCH�. OX /. But now we simply observe thatI Np�H�. OX / Š I Np�H�. OX �

v/ Š I NpH�.X /, because the perversity condition atv ensures that no singular
simplex may intersectv. On the other hand, sinceI NqCH�.c@X /D 0 by the cone
formula,I NqCH�. OX /Š I NqCH�. OX ; Nc@X / by the long exact sequence of the pair,
but I NqCH�. OX ; Nc@X /Š I NqCH�.X; @X /Š I NqH�.X; @X / by excision.

Notice that general perversities are used in this argument even if Np and Nq are
GM perversities.

PL intersection pairings. As in the classical PL manifold situation, the duality
isomorphism of intersection homology arises out of a more general pairing of
chains. In [32], Goresky and MacPherson defined the intersection pairing of PL
intersection chains in a PL pseudomanifold as a generalization of the classical
manifold intersection pairing. For manifolds, the intersection pairing is dual
to the cup product pairing in cohomology. Given a ringR and GM perversities
Np; Nq; Nr such thatNpC Nq� Nr , Goresky and MacPherson constructed an intersection
pairing

I NpH c
i .X IR/˝ I NqH c

j .X IR/! INr H c
iCj�n.X IR/:

This pairing arises by pushing cycles into a stratified version of general position
due to McCrory [47] and then taking chain-theoretic intersections.

The Goresky–MacPherson pairing is limited in that aNp-allowable chain and
a Nq-allowable chain can be intersected only if there is a GM perversity Nr such
that Np C Nq � Nr . In particular, we must haveNp C Nq � t . This is more than
simply a failure of the intersection of the chains to be allowable with respect
to a GM perversity — if Np C Nq 6� Nt , there are even technical difficulties with
defining the intersection product in the first place. See [22,Section 5] for an in
depth discussion of the details.

If we work with stratified coefficients, however, the problems mentioned in
the preceding paragraphs can be circumvented, and we obtainpairings

I NpHi.X IR0/˝ I NqHj .X IR0/! INr HiCj�n.X IR0/

for anygeneral perversities such thatNpC Nq � Nr .
Goresky and MacPherson extended their intersection pairing to topological

pseudomanifolds using sheaf theory [33]. This can also be done for general
perversities and stratified coefficients, but first we must revisit the Deligne sheaf
construction. We do so in the next section.



INTERSECTION HOMOLOGY WITH GENERAL PERVERSITY FUNCTIONS 207

A new approach to the intersection pairing via intersectioncohomology cup
products is presently being pursued by the author and McClure in [31].

Further applications. Some further applications of general perversity intersec-
tion homology will be discussed below in Section 9.

8. Back to sheaf theory

8.1. A generalization of the Deligne construction. Intersection chains with
stratified coefficients were introduced to provide a chain theory whose homology
agrees with the hypercohomology of the Deligne sheaf whenNp is a superper-
versity, in particular whenNp.2/ > 0 or whenX has codimension one strata.
However, whenNp is a general perversity, our new chain formulation no long
agrees with the Deligne construction. For one thing, we knowthat if Np is ever
negative, the Deligne sheaf is trivial. The classical Deligne construction also
has no mechanism for handling perversities that assign different values to strata
of the same codimension, and, even if we restrict to less general perversities,
any decrease in perversity value at a later stage of the Deligne process will
truncate away what might have been vital information comingfrom an earlier
stage. Thus, we need a generalization of the Deligne processthat incorporates
general perversities and stratified coefficients. One method was provided by the
author in [22], and we describe this now.

The first step is to modify the truncation functor to be a bit more picky. Rather
than truncating a sheaf complex in the same degree at all stalks, we truncate more
locally. This new truncation functor is a further generalization of the “truncation
over a closed subset” functor presented in [33, Section 1.14] and attributed to
Deligne; that functor is used in [33, Section 9] to study extensions of Verdier
duality pairings in the context of intersection homology with GM perversities.
Our construction is also related to the “intermediate extension” functor in the
theory of perverse sheaves; we will discuss this in the next subsection.

DEFINITION 8.1. LetA� be a sheaf complex onX , and letF be a locally-finite
collection of subsets ofX . Let jFj D [V 2FV . Let P be a functionF ! Z.
Define the presheafT F

�P
A� as follows. IfU is an open set ofX , let

T F

�P
A�.U /D

�

� .U IA�/ if U \ jFj D?,
� .U I ��inffP.V /jV 2F;U \V ¤?gA

�/ if U \ jFj ¤?.

Restriction is well-defined because ifm < n then there is a natural inclusion
��mA�Œ ��nA

�.
Let thegeneralized truncation sheaf�F

�P
A� be the sheafification ofT F

�P
A�.

For mapsf W A� ! B� of sheaf complexes overX , we can define�F

�P
f

in the obvious way. In fact,T F

�P
f is well-defined by applying the ordinary
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truncation functors on the appropriate subsets, and we obtain �F

�P
f again by

passing to limits in the sheafification process.

Using this truncation, we can modify the Deligne sheaf.

DEFINITION 8.2. LetX be ann-dimensional stratified pseudomanifold, possi-
bly with codimension one strata, letNp be a general perversity, letG be a coef-
ficient system onX �X n�1, and letO be the orientation sheaf onX �X n�1.
Let Xk stand also for the set of strata of dimensionk. Then we define the
generalized Deligne sheafas9

Q�
Np;G D �

X0

� NpRin� : : : �
Xn�1

� Np Ri1�.G˝O/:

If Np is a GM perversity, then it is not hard to show directly thatQ�
Np;G is quasi-

isomorphic to the usual Deligne sheafP�
Np;G . Furthermore, it is shown in [22]

thatQ�
Np;G is quasi-isomorphic to the sheaf generated by the presheaf

U ! I NpSn��.X; X � NU IG0/;

and soH�.Q�
Np;G/ Š I NpH 1

n��.X IG0/ and similarly for compact supports. It is
also true, generalizing the Goresky–MacPherson case, thatif Np C Nq D Nt , then
Q�

Np andQ�
Nq are appropriately Verdier dual, leading to the expected Poincaŕe

and Lefschetz duality theorems. Furthermore, for any general perversities such
that NpC Nq � Nr , there are sheaf pairingsQ�

Np˝Q�
Nq !Q�

Nr that generalize the PL
intersection pairing. IfNpC Nq � Nt , there is also a pairingQ�

Np ˝Q�
Nq ! D�

X
Œ�n�,

whereD�
X

Œ�n� is the shifted Verdier dualizing complex onX . See [22] for the
precise statements of these results.

8.2. Perverse sheaves.The theory of perverse sheaves provided, as far back
as the early 1980s, a context for the treatment of general perversities. To quote
Banagl’s introduction to [2, Chapter 7]:

In discussing the proof of the Kazhdan–Lusztig conjecture,Beilinson,
Bernstein and Deligne discovered that the essential image of the category
of regular holonomicD-modules under the Riemann–Hilbert correspon-
dence gives a natural abelian subcategory of the nonabelianbounded con-
structible derived category [of sheaves] on a smooth complex algebraic
variety. An intrinsic characterization of this abelian subcategory was ob-
tained by Deligne (based on discussions with Beilinson, Bernstein, and
MacPherson), and independently by Kashiwara. It was then realized that
one still gets an abelian subcategory if the axioms of the characterization

9This definition differs from that in [22] by the orientation sheafO— see Remark
4.1 on page 190. For consistency, we also change notation slightly to includeG as a
subscript rather than as an argument.
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are modified to accommodate an arbitrary perversity function, with the
original axioms corresponding to the middle perversity. The objects of
these abelian categories were termedperverse sheaves. . .

Thus, the phrase “perverse sheaves” refers to certain subcategories, indexed by
various kinds of perversity functions, of the derived category of bounded con-
structible sheaf complexes on a spaceX . The general theory of perverse sheaves
can handle general perversities, though the middle perversities are far-and-away
those most commonly encountered in the literature (and, unfortunately, many
expositions restrict themselves solely to this case). The remarkable thing about
these categories of perverse sheaves is that they are abelian, which the derived
category is not (it is only “triangulated”).10 The Deligne sheaf complexes on
the various strata ofX (and with appropriate coefficients systems) turn out to
be the simple objects of these subcategories.

The construction of perverse sheaves is largely axiomatic,grounded in a num-
ber of quite general categorical structures. It would take us well too far afield
to provide all the details. Rather, we provide an extremely rough sketch of the
ideas and refer the reader to the following excellent sources: [4], [40, Chapter
X], [2, Chapter 7], [5], and [20, Chapter 5]. For a more historical account, the
reader should see [43].

The starting point for any discussion of perverse sheaves isthe notion ofT -
structures. Very roughly, aT -structure on a triangulated categoryD is a pair of
subcategories.D�0; D�0/ that are complementary, in the sense that for anyS

in D, there is a distinguished triangle

S1! S ! S2;

with S1 2 D�0 andS2 in D�0. Of course there are a number of axioms that
must be satisfied and that we will not discuss here. The notation reflects the
canonicalT -structure that occurs on the derived category of sheaves ona space
X : D�0.X / is defined to be those sheaf complexesS� such thatHj .S�/D 0

for j > 0, andD�0.X / is defined to be those sheaf complexesS� such that
Hj .S�/D 0 for j < 0. HereH�.S�/ denotes the derived cohomology sheaf of
the sheaf complexS�, such thatH�.S�/x DH �.S�

x/.
The heart (or core) of a T -structure is the intersectionD�0 \D�0. It is

always an abelian category. In our canonical example, the heart consists of the
sheaf complexes with nonvanishing cohomology only in degree 0. In this case,
the heart is equivalent to the abelian category of sheaves onX . Already from

10There is an old joke in the literature that perverse sheaves are neither perverse nor
sheaves. The first claim reflects the fact that perverse sheaves form abelian categories,
which are much less “perverse” than triangulated categories. The second reflects simply
the fact that perverse sheaves are actually complexes of sheaves.
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this example, we see how truncation might play a role in providing perverse
sheaves — in fact, for the sheaf complexS�, the distinguished triangle in this
example is provided by

��0S
�! S�! ��0S

�:

Furthermore, this example can be modified easily by shiftingthe truncation de-
gree from0 to any other integerk. ThisT -structure is denoted by

.D�k.X /; D�k.X //:

The next important fact aboutT -structures is that ifX is a space,U is an
open subspace,F DX�U , andT -structures satisfying sufficient axioms on the
derived categories of sheaves onU andF are given, they can be “glued” to pro-
vide aT -structure on the derived category of sheaves onX . The idea the reader
should have in mind now is that of gluing together sheaves truncated at a certain
dimension onU and at another dimension onF . This then starts to look a bit
like the Deligne process. In fact, letP be a perversity11 on the two stratum space
X �F , and let.D�P.U /.U /; D�P.U /.U // and.D�P.F /.F /; D�P.F /.F // be
T -structures onU andF . Then theseT -structures can be glued to form aT -
structure onX , denoted by.PD�0; PD�0/.

It turns out that the subcategoriesPD�0 and PD�0 can be described quite
explicitly. If i W U ŒX andj W F ŒX are the inclusions, then

PD�0 D

�

S� 2DC.X /

ˇ

ˇ

ˇ

ˇ

Hk.i�S�/D 0 for k > P .U /

Hk.j�S�/D 0 for k > P .F /

�

;

PD�0 D

�

S� 2DC.X /

ˇ

ˇ

ˇ

ˇ

Hk.i�S�/D 0 for k < P .U /

Hk.j !S�/D 0 for k < P .F /

�

:

If S� is in the heart of thisT -structure, we say it isP -perverse.
More generally, ifX is a space with a variety of singular strataZ andP is

a perversity on the stratification ofX , then it is possible to glueT -structures
inductively to obtain the category ofP -perverse sheaves. IfjZ WZŒX are the
inclusions, then theP -perverse sheaves are those which satisfyHk.j �

Z
S�/D 0

for k > P .Z/ andHk.j !
Z
S�/D 0 for k < P .Z/.

These two conditions turn out to be remarkably close to the conditions forS�

to satisfy the Deligne sheaf axiomsAX 1. In fact, the conditionHk.j �
Z
S�/D 0

for k > P .Z/ is precisely the third axiom. The conditionHk.j !
Z
S�/ D 0 for

11The reason we useP here for a perversity, departing from both our own notation,
above, and from the notation in most sources on perverse sheaves (in particular [4]) is
that when we use perverse sheaf theory, below, to recover intersection homology, there
will be a discrepancy between the perversityP for perverse sheaves and the perversity
Np for the Deligne sheaf.
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k < P .Z/ implies that the local attaching map is an isomorphism up to degree
P .Z/ � 2; see [6, page 87]. Notice that this is a less strict requirement than
that for the Deligne sheaf. Thus, Deligne sheaves are perverse sheaves, but not
necessarily vice versa.

The machinery developed in [4] also contains a method for creating sheaf
complexes that satisfy the intersection homology axiomsAX 1, though again it
is more of an axiomatic construction than the concrete construction provided in
Section 8.1. LetU � X be an open subset ofX that is a union of strata, let
i WU ŒX be the inclusion, and letS� be aP -perverse sheaf onU . Then there
is defined in [4] the “intermediate extension functor”i!� such thati!�S� is the
unique extension in the category ofP -perverse sheaves ofS� to X (meaning
that the restriction ofi!�S� to U is quasi-isomorphic toS�) such that for each
stratumZ � X �U and inclusionj W ZŒ X ,we haveHk.j �i!�S

�/D 0 for
k � P .Z/ andHk.j !i!�S

�/ D 0 for k � P .Z/. We refer the reader to [4,
Section 1.4] or [20, Section 5.2] for the precise definition of the functori!�.

In particular, suppose we letU DX�X n�1, thatS� is just the local systemG,
and thatNp is a general perversity onX . The sheafG is certainlyP -perverse onU
with respect to the perversityP .U /D 0. Now letP .Z/D Np.Z/C1. It follows
that for each singular stratum inclusionj WZŒ X , we haveHk.j �i!�G/D 0

for k > Np.Z/ andHk.j !i!�G/ D 0 for k � Np.Z/C 1. In the presence of the
first condition, the second condition is equivalent to the attaching map being
an isomorphism up through degreeNp.Z/; see [6, page 87]. But, according
to the axiomsAX 1, these conditions are satisfied by the perversityNp Deligne
sheaf, which is also easily seen to beP -perverse. Thus, sincei!�G is the unique
extension ofG with these properties,i!�G is none other than the Deligne sheaf
(up to quasi-isomorphism)! Thus we can think of the Deligne process provided
in Section 8.1 as a means to provide a concrete realization ofi!�G.

9. Recent and future applications of general perversities

Beyond extending the results of intersection homology withGM perversities,
working with general perversities makes possible new results that do not exist
in “classical” intersection homology theory. For example,we saw in Sections
7 and 8 that general perversities permit the definition of PL or sheaf-theoretic
intersection pairings with no restrictions on the perversities of the intersection
homology classes being intersected. In this section, we review some other recent
and forthcoming results made possible by intersection homology with general
perversities.
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Künneth theorems and cup products.In [28], general perversities were used
to provide a very general K̈unneth theorem for intersection homology. Some
special cases had been known previously. King [41] showed that for any loose
perversityI NpH c

� .M �X /ŠH�.C c
� .M /˝I NpC c

� .X // whenX is a pseudoman-
ifold, M is an unstratified manifold, and.M �X /i DM �X i . Special cases of
this result were proven earlier by Cheeger [16], Goresky andMacPherson [32;
33], and Siegel [55]. In [18], Cohen, Goresky, and Ji provided counterexamples
to the existence of a general Künneth theorem for a single perversity and showed
thatI NpH c

� .X �Y IR/ŠH�.I NpC c
� .X IR/˝I NpC c

� .Y IR// for pseudomanifolds
X andY and a principal ideal domainR provided either that

(a) Np.a/C Np.b/� Np.aC b/� Np.a/C Np.b/C 1 for all a andb, or that
(b) Np.a/C Np.b/� Np.aCb/� Np.a/C Np.b/C2 for all a andb and eitherX or

Y is locally . Np; R/-torsion free.

The idea of [28] was to ask a broader question: for what perversities onX �Y is
the intersection chain complex quasi-isomorphic to the productI NpC c

� .X IR0/˝

I NqC c
� .X IR0/? This question encompasses the Cohen–Goresky–Ji Künneth the-

orem and the possibility of both GM and non-GM perversitiesNp; Nq. However,
in order to avoid the fairly complicated conditions on a single perversity found
by Cohen, Goresky, and Ji, it is reasonable to consider general perversities on
X � Y that assign to a singular stratumZ1 �Z2 a value depending onNp.Z1/

and Nq.Z2/. Somewhat surprisingly, there turn out to be many perversities on
X � Y that provide the desired quasi-isomorphism. The main result of [28]
is the following theorem. The statement is reworded here to account for the
most general case (see [28, Theorem 3.2, Remark 3.4, Theorem5.2]), while the
statement in [28] is worded to avoid overburdening the reader too much with
details of stratified coefficients, which play a minimal rolethat paper.

THEOREM 9.1. If R is a principal ideal domain andNp and Nq are general
perversities, thenIQH c

� .X � Y IR0/ Š H�.I NpC c
� .X IR0/˝ I NqC c

� .Y IR0// if
the following conditions hold:

(a) Q.Z1 �Z2/D Np.Z1/ if Z2 is a regular stratum ofY andQ.Z1 �Z2/D

Nq.Z2/ if Z1 is a regular stratum ofX .
(b) For each pairZ1�Z2 such thatZ1 andZ2 are each singular strata, either

(i) Q.Z1 �Z2/D Np.Z1/C Nq.Z2/, or

(ii) Q.Z1�Z2/D Np.Z1/C Nq.Z2/C 1, or

(iii) Q.Z1 �Z2/D Np.Z1/C Nq.Z2/C 2 and the torsion product

I NpHcodim.Z1/�2� Np.Z1/.L1IR0/� I NqHcodim.Z2/�2� Nq.Z2/.L2IR0/

is zero, whereL1; L2 are the links ofZ1; Z2 in X; Y , respectively, and
codimrefers to codimension inX or Y , as appropriate.
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Furthermore, if these conditions are not satisfied, thenIQH c
� .X � Y IR0/ will

not equalH�.I NpC c
� .X IR0/˝ I NqC c

� .Y IR0// in general.

Of course the torsion condition in (iii) will be satisfied automatically if R is
a field or if X or Y is locally ( Np; R)- or (Nq; R/-torsion free. Note also that
it is not required that a consistent choice among the above options be made
across all products of singular strata — for each suchZ1 �Z2 one can choose
independently which perversity to use from among options (i), (ii), or, assuming
the hypothesis, (iii). The theorem can also be generalized further to include
stratified local coefficient systems onX or Y ; we leave the details to the reader.

This Künneth theorem has opened the way toward other results in intersec-
tion homology, including the formulation by the author and Jim McClure of
an intersection cohomology cup product over field coefficients that they ex-
pect to be dual to the Goresky–MacPherson intersection pairing. There does
not seem to have been much past research done on or with intersection co-
homology in the sense of the homology groups of cochainsI NpC �.X IR0/ D

Hom.I NpC c
� .X IR0/IR/. One important reason would seem to be the prior lack

of availability of a geometric cup product. A cup product using the Alexander–
Whitney map is unavailable in intersection homology since it does not preserve
the admissibility conditions for intersection chains — in other words, breaking
chains into “front p-faces and back q-faces” (see [49, Section 48]) might destroy
allowability of simplices. However, there is another classical approach to the cup
product that can be adapted to intersection cohomology, provided one has an
appropriate K̈unneth theorem. Forordinary homology, this alternative approach
is to define a diagonal map (with field coefficients) as the composite

H c
� .X /!H c

� .X �X /
Š
 H c

� .X /˝H c
� .X /;

where the first map is induced by the geometric diagonal inclusion map and
the second is the Eilenberg–Zilber shuffle product, which isan isomorphism
by the ordinary K̈unneth theorem with field coefficients (note that the shuffle
product should have better geometric properties than the Alexander–Whitney
map because it is really just Cartesian product). The appropriate Hom dual of
this composition yields the cup product. This process suggests doing something
similar in intersection homology with field coefficients, and indeed the K̈unneth
theorem of [28] provides the necessary right-hand quasi-isomorphism in a dia-
gram of the form

INsH c
� .X IF0/! IQH c

� .X �X IF0/
Š
 I NpH c

� .X IF0/˝ I NqH c
� .X IF0/:

When NpC Nq � Nt C Ns, there results a cup product

I NpH �.X IF0/˝ I NqH �.X IF0/! INsH �.X IF0/:
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The intersection K̈unneth theorem also allows for a cap product of the form

I NpH i.X IF0/˝ INsH c
j .X IF0/! I NqH c

j�i.X IF0/

for any fieldF and any perversities satisfyingNpC Nq� NtCNs. This makes possible
a Poincaŕe duality theorem for intersection (co)homology given by cap products
with a fundamental class inIN0Hn.X IF0/. For further details and applications,
the reader is urged to consult [31].

Perverse signatures.Right from its beginnings, there has been much interest
and activity in using intersection homology to define signature (index) invari-
ants and bordism theories under which these signatures are preserved. Sig-
natures first appeared in intersection homology in [32] associated to the sym-
metric intersection pairings onI NmH2n.X 4nIQ/ for spacesX with only strata
of even codimension, such as complex algebraic varieties. The condition on
strata of even codimension ensures thatI NmH2n.X 4nIQ/ Š I NnH2n.X 4nIQ/

so that this group is self-dual under the intersection pairing. These ideas were
extended by Siegel [55] to the broader class of Witt spaces, which also satisfy
I NmH2n.X 4nIQ/ Š I NnH2n.X 4nIQ/. In addition, Siegel developed a bordism
theory of Witt spaces, which he used to construct a geometricmodel forko-
homology at odd primes. Further far reaching generalizations of these signa-
tures have been studied by, among others and in various combinations, Banagl,
Cappell, Libgober, Maxim, Shaneson, and Weinberger [1; 3; 10; 11; 9].

Signatures on singular spaces have also been studied analytically via L2-
cohomology andL2 Hodge theory, which are closely related to intersection ho-
mology. Such signatures may relate to duality in string theory, such as through
Sen’s conjecture on the dimension of spaces of self-dual harmonic forms on
monopole moduli spaces. Results in these areas and closely related topics in-
clude those of M̈uller [48]; Dai [19]; Cheeger and Dai [17]; Hausel, Hunsicker,
and Mazzeo [37; 39; 38]; Saper [51; 50]; Saper and Stern [52];and Carron [13;
15; 14]; and work on analytic symmetric signatures is currently being pursued
by Albin, Leichtmann, Mazzeo and Piazza. Much more on analytic approaches
to invariants of singular spaces can be found in the other papers in the present
volume [30].

A different kind of signature invariant that can be defined using non-GM
perversities appears in this analytic setting in the works of Hausel, Hunsicker,
and Mazzeo [37; 39; 38], in which they demonstrate that groups of L2 har-
monic forms on a manifold with fibered boundary can be identified with co-
homology spaces associated to the intersection cohomologygroups of varying
perversities for a canonical compactificationX of the manifold. Theseper-
verse signaturesare the signatures of the nondegenerate intersection pairings on
im.I NpH2n.X 4n/! I NqH2n.X 4n; @X 4n//, when Np � Nq. The signature for Witt
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spaces mentioned above is a special case in whichNpD NqD NmD Nn and@X D?. If
X is the compactification of the interior of a compact manifoldwith boundary
.M; @M / and Np.Z/ < 0 and Nq.Z/ � codim.Z/ � 1 for all singularZ, then
I NpH�.X / Š H�.M /, I NqH�.X / Š H�.M; @M /, and in this case the perverse
signature is the classical signature associated to a manifold with boundary.

Using the Lefschetz duality results of general perversity intersection homol-
ogy described above, Hunsicker and the author are currentlyundertaking a topo-
logical study of the perverse signatures, including research on how Novikov
additivity and Wall non-additivity extend to these settings.

10. Saralegi’s relative intersection chains

Independently of the author’s introduction of stratified coefficients, Saralegi
[54] discovered another way, in the case of a constant coefficient system, to
obtain an intersection chain complex that satisfies the coneformula (2-1) for
general perversities. In [54], he used this chain complex toprove a general per-
versity version of the de Rham theorem on unfoldable pseudomanifolds. These
spaces are a particular type of pseudomanifold on which it ispossible to define
a differential form version of intersection cohomology over the real numbers.
This de Rham intersection cohomology appeared in a paper by Brylinski [8],
though he credits Goresky and MacPherson with the idea. Brylinski showed
that for GM perversities and on a Thom–Mather stratified space, de Rham inter-
section cohomology is Hom dual to intersection homology with real coefficients.
Working on more general “unfoldable spaces,” Brasselet, Hector, and Saralegi
later proved a de Rham theorem in [7], showing that this result can be obtained
by integration of forms on intersection chains, and this wasextended to more
general perversities by Saralegi in [53]. However, [53] contains an error in the
case of perversitiesNp satisfying Np.Z/ > codim.Z/� 2 or Np.Z/ < 0 for some
singular stratumZ. This error can be traced directly to the failure of the cone
formula for non-GM perversities. Saralegi introduced hisrelative intersection
chains12 in [54] specifically to correct this error.

The rough idea of Saralegi’s relative chains is precisely the same as the au-
thor’s motivation for introducing stratified coefficients:when a perversity on a
stratumZ is too high (greater than codim.Z/�2), it is necessary to kill chains
living in that stratum in order to preserve the cone formula.The idea of stratified
coefficients is to redefine the coefficient system so that suchchains are killed
by virtue of their coefficients being trivial. The idea of relative chains is instead

12These should not be confused with relative intersection chains in the sense
I NpC�.X; A/Š I NpC�.X /=I NpC�.A/.
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to form a quotient group so that the chains living in such strata are killed in the
quotient.

More precisely, letA NpCi.X / be the group generated by theNp-allowablei-
simplices ofX (notice that there is no requirement that the boundary of an
element ofA NpCi.X / be allowable), and letXNt� Np be the closure of the union of
the singular strataZ of X such that Np.Z/ > codim.Z/� 2. Let A NpCi.XNt� Np/

be the group generated by theNp allowablei-simplices with support inXNt� Np.
Then Saralegi’s relative intersection chain complex is defined to be

S NpC c
� .X; XNt� Np/

D

�

A NpC�.X /CA NpC1C�.XNt� Np/
�

\@�1
�

A NpC��1.X /CA NpC1C��1.XNt� Np/
�

A NpC1C�.XNt� Np/\@�1A NpC1C��1.XNt� Np/
:

Roughly speaking, this complex consists ofNp-allowable chains inX and
slightly more allowable chains (. NpC 1/-allowable) inXNt� Np whose boundaries
are also eitherNp-allowable inX or NpC1 allowable inXNt� Np, but then we quotient
out by those chains supported inXNt� Np. This quotient step is akin to the stratified
coefficient idea of setting simplices supported inX n�1 to 0. In fact, there is no
harm in extending Saralegi’s definition by replacingXNt� Np by all of X n�1, since
the perversity conditions already guarantee that no simplex of A NpCi.X / nor
the boundary of any such simplex can have support in those singular strata not
in XNt� Np. In addition, there is also nothing special about the choiceNpC 1 for
allowability of chains inXNt� Np: the idea is to throw in enough singular chains
supported in the singular strata so that the boundaries of any chains inA NpCi.X /

will also be in “the numerator” (for example, the inallowable0-simplex in@. Ncx/

that lives at the cone vertex in our example in Section 5), butthen to kill any
such extra chains by taking the quotient. In other words, it would be equivalent
to define Saralegi’s relative intersection chain complex as

�

A NpC�.X /CS�.X n�1/
�

\ @�1
�

A NpC��1.X /CS��1.X n�1/
�

S�.X n�1/
;

whereS�.X / is the ordinary singular chain complex.
We refer the reader to [28, Appendix A] for a proof13 thatS NpC�.X; XNt� NpIG/

and I NpS�.X IG0/ are chain isomorphic, and so, in particular, they yield the
same intersection homology groups. It is not clear that there is a well-defined
version ofS NpC�.X; XNt� Np/ with coefficients in a local systemG defined only on

13The proof in [28] uses a slightly different definition of intersection chains with
stratified coefficients than the one given here. However, forany general perversity, the
intersection chains with stratified coefficients there are quasi-isomorphic to the ones dis-
cussed here, and they are isomorphic for any efficient perversity. See [28, Appendix A].
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X�X n�1, and so stratified coefficients may be a slightly broader concept. There
may also be some technical advantages in sheaf theory to avoiding quotient
groups.

11. Habegger and Saper’s codimension� c intersection
homology theory

Finally, we discuss briefly the work of Habegger and Saper [35], in which
they introduce what they callcodimension�c intersection homology. This is the
sheafification of King’s loose perversity intersection homology. In a sense, this
is the opposite approach to that of stratified coefficients: stratified coefficients
were introduced to provide a chain theory that agrees with the Deligne sheaf
construction for superperversities, while codimension� c intersection homol-
ogy provides a Deligne-type sheaf construction whose hypercohomology yields
King’s intersection homology groups. Habegger and Saper work with perversi-
ties Np WZ�2!Z such thatNp.k/� Np.kC1/� Np.k/C1 and14 Np.2/�0, and they
work on cs-sets, which generalize pseudomanifolds (see [41; 35]). In fact, King
showed in [41] that intersection homology is independent ofthe stratification in
this setting.

The paper [35] involves many technicalities in order to obtain the most gen-
eral possible results. We will attempt to simplify the discussion greatly in order
to convey what seems to be the primary stream of ideas. However, we urge the
reader to consult [35] for the correct details.

Given a perversityNp, the “codimension� c” in the name of the theory comes
from considering

c Np Dmin.fk 2 ZCj Np.k/� k � 2g[ f1g/:

In other words,c Np (or simply c when the perversity is understood) is the first
codimension for whichNp takes the values of a GM perversity. Since the con-
dition Np.k/ � Np.k C 1/ � Np.k/C 1 ensures thatNp will be in the Goresky–
MacPherson range of values for allk � c, the numberc serves as somewhat of a
phase transition. At points in strata of codimension� c, the cone formula (2-1)
holds locally for King’s singular intersection chains (i.e., we can use the cone
formula to compute the local intersection homology groups in a distinguished
neighborhood). For strata of codimension< c, the perversityNp is in the “super”
range, and the cone formula fails, as observed in Section 5. So, the idea of
Habegger and Saper, building on the Goresky–MacPherson–Deligne axiomatic
approach to intersection homology (see Section 4, above) was to find a way to
axiomatize a sheaf construction that upholds the cone formula as the Deligne

14Technically, they allowNp.2/ < 0, but in this case their theory is trivial; see [35, Corollary4.8].
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sheaf does for GM perversities, but only on strata of codimension� c. This
idea is successful, though somewhat complicated because the coefficients now
must live onX � X c and must include the sheafification on this subspace of
U ! I NpS�.U IG/.

In slightly more detail (though still leaving out many technicalities), for a
fixed Np, let Uc D X � X c Np . Then a codimensionc coefficient systemE� is
basically a sheaf onUc that satisfies the axiomatic properties of the sheafifica-
tion of U ! I NpS�.U IG/ there with respect to some stratification ofUc . These
axiomatic conditions are a modification of the axiomsAX 2 (see [6, Section
V.4]), which, for a GM perversity, are equivalent to the axiomsAX 1 discussed
above in Section 4. We will not pursue the axiomsAX 2 in detail here, but
we note that the Habegger–Saper modification occurs by requiring certain van-
ishing conditions to hold only in certain degrees dependingon c. This takes
into account the failure of the cone formula to vanish in the expected degrees
(see Section 5). Then Habegger and Saper define a sheaf complex P�

Np;E� by
extendingE� from Uc to the rest ofX by the Deligne process from this point.

Among other results in their paper, Habegger and Saper show that the hy-
percohomology of their sheaf complex agrees (up to reindexing and with an
appropriate choice of coefficients) with the intersection homology of King on
PL pseudomanifolds, that this version of intersection homology is a topological
invariant, and that there is a duality theorem. To state their duality theorem,
let Nq.k/ D k � 2 � Np.k/, and let Nq0.k/ D max. Nq.k/; 0/ C c Np � 2. Then,
with coefficients in a field, the Verdier dualDX P�

Np;E� is quasi-isomorphic to
P�

Nq0;DUc .E�/
Œcp�2Cn�. Roughly speaking, and ignoring the shifting of perver-

sities and indices, which is done for technical reasons, this says that ifNpC NqD Nt
and we dualize the sheaf of intersection chains “by hand” onUc from E� to
DUc

E�, then further extensions by the Deligne process, using perversity Np for E�

and perversityNq for DUc
E�, will maintain that duality. If Np is a GM perversity

andX is a pseudomanifold with no codimension one strata, this recovers the
duality results of Goresky and MacPherson. Unfortunately,for more general
perversities, there does not seem to be an obvious way to translate this duality
back into the language of chain complexes, due to the complexity of the dual
coefficient systemDUc

E� that appears onUc .
One additional note should be made concerning the duality results in [35]. As

mentioned above, Habegger and Saper work on cs-sets. These are more general
than pseudomanifolds, primarily in thatX �X n�1 need not be dense and there
is no inductive assumption that the links be pseudomanifolds. These are the
spaces on which King demonstrated his stratification independence results in
[41]. Thus these results are more general than those we have been discussing
on pseudomanifolds, at least as far as the spaceX is concerned. However, as
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far as the author can tell, in one sense these duality resultsare not quite as much
more general as they at first appear, as least when considering strata ofX that
are not in the closure ofX �X n�1. In particular, ifZ is such a stratum and it
lies in Uc , then the duality results on it are tautological — induced bythe “by
hand” dualization of the codimensionc coefficient system. But ifZ is not inUc,
then the pushforwards of the Deligne process cannot reach it, andP�jZ D 0.
So at the sheaf level the truly interesting piece of the duality still occurs in the
closure ofX �X n�1. It would be interesting to understand how the choice of
coefficient system and “by hand” duality on these “extraneous” strata inUc (the
strata not in the closure ofX �X n�1) influence the hypercohomology groups
and the duality there. We also note that the closure of the union of the regular
strata of a cs-set may still not be a pseudomanifold, due to the lack of condition
on the links. It would be interesting to explore just how muchmore general such
spaces are and the extent to which the other results we have discussed extend to
them.

We refer the reader again to [35] for the further results thatcan be found
there, including results on the intersection pairing and Zeeman’s filtration.
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