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ABSTRACT. These notes are based on an expository lecture that I gave atthe
workshop “Topology of Stratified Spaces” at MSRI Berkeley inSeptember
2008. We will first explain the definition of a bordism invariant signature for a
singular space, proceeding along a progression from less singular to more and
more singular spaces, starting out from spaces that have no odd codimensional
strata and, after having discussed Goresky–Siegel spaces and Witt spaces, end-
ing up with general (non-Witt) stratified spaces. We will moreover discuss
various refinements of the signature to orientation classesin suitable bordism
theories based on singular cycles. For instance, we will indicate how one may
define a symmetricL�-homology orientation for Goresky–Siegel spaces or a
Sullivan orientation for those non-Witt spaces that still possess generalized
Poincaŕe duality. These classes can be thought of as refining the L-class of
a singular space. Along the way, we will also see how to compute twisted
versions of the signature and L-class.

CONTENTS

1. Introduction 224
2. Pseudomanifolds without odd codimensional strata 227
3. Witt spaces 229
4. IP spaces: integral duality 232
5. Non-Witt spaces 236
References 247

The author was in part supported by a research grant of the Deutsche Forschungsgemeinschaft. He thanks
Andrew Ranicki for suggestions and clarifying comments.

223



224 MARKUS BANAGL

1. Introduction

Let M be a closed smoothn-dimensional manifold. The Hirzebruch L-
classesLi.M / 2 H 4i.M I Q/ of its tangent bundle are powerful tools in the
classification of suchM , particularly in the high dimensional situation where
n � 5. To make this plausible, we observe first that theLi.M /, with the excep-
tion of the top classLn=4.M / if n is divisible by4, are not generally homotopy
invariants ofM , and are therefore capable of distinguishing manifolds in agiven
homotopy type, contrary to the ability of homology and otherhomotopy invari-
ants. For example, there exist infinitely many manifoldsMi ; i D 1; 2; : : : in the
homotopy type ofS2 � S4, distinguished by the first Pontrjagin class of their
tangent bundlep1.TMi/ 2 H 4.S2 � S4/ D Z, namelyp1.TMi/ D Ki , K a
fixed nonzero integer. The first L-classL1 is proportional to the first Pontrjagin
classp1, in fact they are related by the formulaL1 D 1

3
p1.

Suppose thatM n, n � 5, is simply connected, as in the example. The classi-
fication of manifolds breaks up into two very different tasks: Classify Poincaŕe
complexes up to homotopy equivalence and, given a Poincaré complex, deter-
mine all manifolds homotopy equivalent to it.

In dimension3, one has a relatively complete answer to the former problem.
One can associate purely algebraic data to a Poincaré complex such that two
such complexes are homotopy equivalent if, and only if, their algebraic data are
isomorphic, see the classification result in [Hen77]. Furthermore, every given
algebraic data is realizable as the data of a Poincaré complex; see [Tur90]. In
higher dimensions, the problem becomes harder. While one can still associate
classifying data to a Poincaré complex, this data is not purely algebraic anymore,
though at least in dimension4, one can endow Poincaré duality chain complexes
with an additional structure that allows for classification, [BB08].

The latter problem is the realm of surgery theory. Elements of the structure
setS.M / of M are represented by homotopy equivalencesN ! M , whereN

is another closed smooth manifold, necessarily simply connected, sinceM is.
Two such homotopy equivalences represent the same element of S.M / if there
is a diffeomorphism between the domains that commutes with the homotopy
equivalences. The goal of surgery theory is to computeS.M /. The central tool
provided by the theory is the surgery exact sequence

LnC1 � S.M /
�

� N.M / � Ln;

an exact sequence of pointed sets. TheLn are the4-periodic simply connected
surgery obstruction groups,Ln D Z; 0; Z=2; 0 for n � 0; 1; 2; 3 mod 4. The
term N.M / is thenormal invariant set, investigated by Sullivan. It is a gen-
eralized cohomology theory and a Pontrjagin–Thom type construction yields
N.M / Š ŒM; G=O �, whereŒM; G=O � denotes homotopy classes of maps from
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M into a certain universal spaceG=O, which does not depend onM . Since
ŒM; G=O � is a cohomology theory, it is particularly important to knowits coef-
ficients��.G=O/. While the torsion is complicated, one has modulo torsion

�i.G=O/ ˝ Q D

�
Q; i D 4j ,
0; otherwise.

One obtains an isomorphism

ŒM; G=O � ˝ Q Š
M

j�0

H 4j .M I Q/:

The groupLnC1 acts onS.M / so that the point-inverses of� are the orbits of
the action, i.e. for allf; h 2 S.M / one has�.f / D �.h/ if, and only if, there is
a g 2 LnC1 which movesf to h, g � f D h.

Suppose our manifoldM is even dimensional. ThenLnC1 vanishes and thus
�.f / D �.h/ implies f D g � f D h, so that� is injective. In particular, we
obtain an injection

S.M / ˝ Q Œ N.M / ˝ Q:

Composing this withN.M /˝Q Š
L

H 4j .M I Q/, we obtain an injective map

S.M / ˝ Q
L

Œ
L

H 4j .M I Q/:

This map sends a homotopy equivalenceh W N ! M to the cohomology class
L�.h/ uniquely determined byh�.L�.M / C L�.h// D L�.N /. ThusM is
determined, up to finite ambiguity, byits homotopy type and its L-classes. This
demonstrates impressively the power of the L-classes as a tool to classify man-
ifolds.

The L-classes are closely related to the signature invariant, and indeed the
classes can be defined, following Thom [Tho58], by the signatures of submani-
folds, as we shall now outline. The link between the L-classes and the signature
is the Hirzebruch signature theorem. It asserts that the evaluation of the top
L-classLj .M / 2 H n.M I Q/ of ann D 4j -dimensional oriented manifoldM
on the fundamental class ofM equals the signature�.M / of M . Once we
know this, we can defineL�.M / as follows. A theorem of Serre states that the
Hurewicz map is an isomorphism

�k.M / ˝ Q Š H k.M I Q/

in the rangen<2k�1, where��.M / denotes the cohomotopy sets ofM , whose
elements are homotopy classes of maps fromM to spheres. Thus, in this range,
we may think of a rational cohomology class as a (smooth) mapf W M ! Sk .
The preimagef �1.p/ of a regular valuep 2 Sk is a submanifold and has a sig-
nature�.f �1.p//. Use the bordism invariance of the signature to conclude that
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this signature depends only on the homotopy class off . Assigning�.f �1.p//

to the homotopy class off yields a mapH k.M I Q/ ! Q, that is, ahomology
classLk.M / 2 Hk.M I Q/. By Poincaŕe duality, this class can be dualized back
into cohomology, where it agrees with the Hirzebruch classes L�.M /. Note
that all you need for this procedure is transversality for maps to spheres in order
to get suitable subspaces and a bordism invariant signaturedefined on these
subspaces. Thus, whenever these ingredients are present for a singular space
X , we will obtain an L-classL�.X / 2 H�.X I Q/ in the rational homology of
X . (This class cannot necessarily be dualized back into cohomology, due to
the lack of classical Poincaré duality for singularX .) Therefore, we only need
to discuss which classes of singular spaces have a bordism invariant signature.
The required transversality results are available for Whitney stratified spaces,
for example. The notion of a Whitney stratified space incorporates smoothness
in a particularly amenable way into the world of singular spaces. A Whitney
stratification of a spaceX consists of a (locally finite) partition ofX into locally
closed smooth manifolds of various dimensions, called thepure strata. If one
stratum intersects the closure of another one, then it must already be completely
contained in it. Connected componentsS of strata have tubular neighborhoods
TS that possess locally trivial projections�S W TS ! S whose fiber��1

S
.p/,

p 2 S , is the cone on a compact spaceL.p/ (also Whitney stratified), called
the link of S at p. It follows that every pointp has a neighborhood homeo-
morphic toRdimS � coneL.p/. Real and complex algebraic varieties possess a
natural Whitney stratification, as do orbit spaces of smoothgroup actions. The
pseudomanifold condition means that the singular strata have codimension at
least two and the complement of the singular set (thetop stratum) is dense in
X . The figure eight space, for instance, can be Whitney stratified but is not a
pseudomanifold. The pinched2-torus is a Whitney stratifiable pseudomanifold.
If we attach a whisker to the pinched2-torus, then it loses its pseudomanifold
property, while retaining its Whitney stratifiability. By [Gor78], a Whitney strat-
ified pseudomanifoldX can be triangulated so that the Whitney stratification
defines a PL stratification ofX .

Inspired by the success of L-classes in manifold theory sketched above, one
would like to have L-classes for stratified pseudomanifoldsas well. In [CW91],
see also [Wei94], Cappell and Weinberger indicate the following result, anal-
ogous to the manifold classification result sketched above.SupposeX is a
stratified pseudomanifold that has no strata of odd dimension. Assume that all
strataS have dimension at least5, and that all fundamental groups in sight are
trivial, that is, all strata are simply connected and all links are simply connected.
(A pseudomanifold whose links are all simply connected is called supernormal.
This is compatible with the notion of anormal pseudomanifold, meaning that
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all links are connected.) Then differences of L-classes give an injection

S.X / ˝ Q Œ
M

S�X

M

j

Hj .S I Q/;

whereS ranges over the strata ofX , S denotes the closure ofS in X , and
S.X / is an appropriately1 defined structure set forX . This would suggest that
L-classes are as powerful in classifying stratified spaces as in classifying man-
ifolds. Since, as we have seen, the definition of L-classes isintimately related
to, and can be given in terms of, the signature, we shall primarily investigate
the possibility of defining a bordism invariant signature for an oriented stratified
pseudomanifoldX .

2. Pseudomanifolds without odd codimensional strata

In order to define a signature, one needs an intersection form. But singular
spaces do not possess Poincaré duality, in particular no intersection form, in
ordinary homology. The solution is to change to a different kind of homology.
Motivated by a question of D. Sullivan [Sul70], Goresky and MacPherson define
(in [GM80] for PL pseudomanifolds and in [GM83] for topological pseudoman-
ifolds) a collection of groupsIH

Np
� .X /, called intersection homology groups

of X , depending on a multi-indexNp, called aperversity. For these groups, a
Poincaŕe–Lefschetz-type intersection theory can be defined, and a generalized
form of Poincaŕe duality holds, but only between groups with “complementary
perversities.” More precisely, withNt.k/ D k � 2 denoting the top perversity,
there are intersection pairings

IH
Np

i .X / ˝ IH
Nq

j .X / � Z (2-1)

for an oriented closed pseudomanifoldX , Np C Nq D Nt andi Cj D dimX , which
are nondegenerate when tensored with the rationals. Jeff Cheeger discovered,
working independently of Goresky and MacPherson and not being aware of their
intersection homology, that Poincaré duality on triangulated pseudomanifolds
equipped with a suitable (locally conical) Riemannian metric on the top stra-
tum, can be recovered by using the complex ofL2 differential forms on the top
stratum, see [Che80], [Che79] and [Che83]. The connection between his and the
work of Goresky and MacPherson was pointed out by Sullivan in1976. For an
introduction to intersection homology see [BC84], [KW06] or [Ban07]. A third
method, introduced in [Ban09] and implemented there for pseudomanifolds

1In [CW91], the structure setsS.X / are defined as the homotopy groups of the homotopy fiber of the
assembly mapX ^ L�.Z/0 ! L�.Z�1.X //, constructed in [Ran79]. This can be defined for any space,
but under the stated assumptions onX , [CW91] interpretsS.X / geometrically in terms of classical structure
sets of the strata ofX .
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with isolated singularities and two-strata spaces with untwisted link bundle,
associates to a singular pseudomanifoldX an intersection spaceI NpX , whose
ordinary rational homology has a nondegenerate intersection pairing

eH i.I
NpX I Q/ ˝ eHj .I NqX I Q/ � Q:

This theory is not isomorphic, albeit related, to intersection homology. It solves
a problem posed in string theory, related to the presence of massless D-branes
in the course of conifold transitions.

In sheaf-theoretic language, the groupsIH
Np

� .X / are given as the hypercoho-
mology groups of a sheaf complexIC �

Np.X / over X . If we view this complex
as an object of the derived category (that is, we invert quasi-isomorphisms),
thenIC �

Np.X / is characterized by certain stalk/costalk vanishing conditions. The
rationalization of the above intersection pairing (2-1) isinduced on hypercoho-
mology by a duality isomorphismDIC �

Np.X I Q/Œn� Š IC �

Nq.X I Q/ in the derived
category, whereD denotes the Verdier dualizing functor. This means roughly
that one does not just have a global chain equivalence to the dual (intersection)
chain complex, but a chain equivalence on every open set.

Let X n be an oriented closed topological stratified pseudomanifold which
has only even dimensional strata. A wide class of examples isgiven by complex
algebraic varieties. In this case, the intersection pairing (2-1) allows us to define
a signature�.X / by using the two complementary middle perversitiesNm and Nn:

k 2 3 4 5 6 7 8 9 : : :

Nm.k/ 0 0 1 1 2 2 3 3 : : :

Nn.k/ 0 1 1 2 2 3 3 4 : : :

Since Nm.k/ D Nn.k/ for even values ofk, and only these values are relevant for
our presentX , we haveIH Nm

n=2
.X / D IH Nn

n=2
.X /. Therefore, the pairing (2-1)

becomes

IH Nm
n=2.X I Q/ ˝ IH Nm

n=2.X I Q/ � Q

(symmetric ifn=2 is even), that is, defines a quadratic form on the vector space
IH Nm

n=2
.X I Q/. Let �.X / be the signature of this quadratic form. Goresky and

MacPherson show that this is a bordism invariant for bordisms that have only
strata of even codimension. SinceIC �

Nm.X / D IC �

Nn.X /, the intersection pairing
is induced by a self-duality isomorphismDIC �

Nm.X I Q/Œn� Š IC �

Nm.X I Q/. This
is an example of aself-dual sheaf.
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3. Witt spaces

To form a bordism theory based on pseudomanifold cycles, onecould con-
sider bordism based on all (say topological, or PL) closed pseudomanifolds,

˝
all pseudomfds
� .Y / D

˚
ŒX

f
� Y � j X a pseudomanifold

	
;

where the admissible bordisms consist of compact pseudomanifolds with col-
lared boundary, without further restrictions. Now it is immediately clear that
the associated coefficient groups vanish,˝

all pseudomfds
� .pt/ D 0, � > 0, since any

pseudomanifoldX is the boundary of the cone onX , which is an admissible
bordism. Thus this naive definition does not lead to an interesting and useful
new theory, and we conclude that a subclass of pseudomanifolds has to be se-
lected to define such theories. Given the results on middle perversity intersection
homology presented so far, our next approach would be to select the class of all
closed pseudomanifolds with only even codimensional strata,

˝ev
� .Y / D

˚
ŒX

f
� Y � j X has only even codim strata

	

(and the same condition is imposed on all admissible bordisms). While we
do know that the signature is well-defined on̋ev

� .pt/, this is however still
not a good theory as this definition leads to a large number of geometrically
insignificant generators. Many operations (such as coning or refinement of the
stratification) do introduce strata of odd codimension, so we need to allow some
strata of this kind, but so as not to destroy Poincaré duality. In [Sie83], Paul
Siegel introduced a class of oriented stratified PL pseudomanifolds calledWitt
spaces, by imposing the condition thatIH Nm

middle.Link.x/I Q/ D 0 for all points
x in odd codimensional strata ofX . The suspensionX 7 D ˙CP3 has two
singular points which form a stratum of odd codimension7. The link is CP3

with middle homologyH3.CP3/D0. HenceX 7 is a Witt space. The suspension
X 3 D ˙T 2 has two singular points which form a stratum of odd codimension 3.
The spaceX 3 is not Witt, since the middle Betti number of the linkT 2 is 2. In
sheaf-theoretic language, a pseudomanifoldX is Witt if and only if the canon-
ical morphismIC �

Nm.X I Q/ ! IC �

Nn.X I Q/ is an isomorphism (in the derived
category). Thus,IC �

Nm.X I Q/ is self-dual on a Witt space, and ifX is compact,
we have a nonsingular intersection pairingIH Nm

i .X I Q/ ˝ IH Nm
n�i.X I Q/ ! Q.

Let ˝Witt
� .Y / denote Witt space bordism, that is, bordism of closed oriented

Witt spacesX mapping continuously intoY . Admissible bordisms are compact
pseudomanifolds with collared boundary that satisfy the Witt condition, together
with a map intoY .

When is a Witt spaceX n a boundary? Suppose the dimensionn is odd. Then
X D @Y with Y D coneX . The coneY is a Witt space, since the cone-point is
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a stratum of even codimension inY . This shows that̋ Witt
2kC1

.pt/ D 0 for all k.
In particular, the de Rham invariant does not survive in˝Witt

� .pt/.
Let W .Q/ denote the Witt group of the rationals. Its structure is known and

given by

W .Q/ Š W .Z/ ˚
M

p prime

W .Z=p/;

whereW .Z/ Š Z via the signature,W .Z=2/ Š Z=2, and forp 6D 2, W .Z=p/ Š

Z=4 or Z=2 ˚ Z=2. Sending a Witt spaceX 4k to its intersection form on
IH Nm

2k
.X I Q/ defines a bordism-invariant elementw.X / 2 W .Q/. Siegel shows

that the induced mapw W ˝Witt
4k

.pt/ ! W .Q/ is an isomorphism fork > 0. In
dimension zero we get̋ Witt

0
D Z. If X has dimension congruent2 modulo4,

thenX bounds a Witt space by singular surgery on a symplectic basisfor the
antisymmetric intersection form. Thus̋Witt

n D 0 for n not congruent0 mod4.
SinceW .Q/ is just another name for the L-groupL4k.Q/ andLn.Q/ D 0 for n

not a multiple of4, we can summarize Siegel’s result succinctly as saying that
˝Witt

� .pt/ Š L�.Q/ in positive degrees. By the Brown representability theorem,
Witt space bordism theory is given by a spectrum MWITT, whichis in fact an
MSO module spectrum, see [Cur92]. (Regard a manifold as a Witt space with
one stratum.) By [TW79], any MSO module spectrum becomes a product of
Eilenberg–Mac Lane spectra after localizing at2. Thus,

MWITT .2/ ' K.Z.2/; 0/ �
Y

j>0

K.Lj .Q/.2/; j /

and we conclude that

˝Witt
n .Y /.2/ Š Hn.Y I Z/.2/ ˚

M

j>0

Hn�j .Y I Lj .Q/.2//:

(As Z.2/ is flat overZ, we haveS�.X /.2/ D .S.2//�.X / for any spectrumS .)
Let us focus on the odd-primary situation. RegardZŒ1

2
; t � as a graded ring with

deg.t/ D 4. Let˝SO
� .Y / denote bordism of smooth oriented manifolds. Consid-

ering the signature as a map� W ˝SO
� .pt/ ! ZŒ1

2
; t �, ŒM 4k � ‘ �.M /tk , makes

ZŒ1
2
; t � into an˝SO

� .pt/-module and we can form the homology theory

˝SO
� .Y / ˝˝SO

� .pt/ ZŒ1
2
; t �:

On a point, this is

˝SO
� .pt/ ˝˝SO

� .pt/ ZŒ1
2
; t � Š ZŒ1

2
; t �;

the isomorphism being given byŒM 4l �˝atk ‘ a�.M 4l/tkCl . Let ko�.Y / de-
note connective KO homology, regarded as aZ-graded, notZ=4-graded, theory.
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It is given by a spectrumbo whose homotopy groups vanish in negative degrees
and are given by

ko�.pt/ D ��.bo/ D Z ˚ ˙1Z=2 ˚ ˙2Z=2 ˚ ˙4Z ˚ ˙8Z ˚ ˙9Z=2 ˚ � � � ;

repeating with8-fold periodicity in nonnegative degrees. Inverting2 kills the
torsion in degrees1 and2 mod8 so thatko�.pt/˝Z ZŒ1

2
� Š ZŒ1

2
; t �. In his MIT-

notes [Sul05], Sullivan constructs a natural Conner–Floyd-type isomorphism of
homology theories

˝SO
� .Y / ˝˝SO

� .pt/ ZŒ1
2
; t �

Š
� ko�.Y / ˝Z ZŒ1

2
�:

Siegel [Sie83] shows that Witt spaces provide a geometric description of con-
nective KO homology at odd primes: He constructs a natural isomorphism of
homology theories

˝Witt
� .Y / ˝Z ZŒ1

2
�

Š
� ko�.Y / ˝Z ZŒ1

2
� (3-1)

(which we shall return to later). It reduces to the signaturehomomorphism on
coefficients, i.e. an elementŒX 4k � ˝ a 2 ˝Witt

4k
.pt/ ˝Z ZŒ1

2
� maps toa�.X /tk 2

ko�.pt/ ˝Z ZŒ1
2
� D ZŒ1

2
; t �. This is an isomorphism, since inverting2 kills the

torsion components of the invariantw.X /, W .Q/˝ZŒ1
2
� Š W .Z/˝ZŒ1

2
� Š ZŒ1

2
�.

Now ˝SO
� .Y / ˝˝SO

� .pt/ ZŒ1
2
; t � being a quotient of̋ SO

� .Y / ˝Z ZŒ1
2
; t �, yields a

natural surjection

˝SO
� .Y / ˝Z ZŒ1

2
; t � “ ˝SO

� .Y / ˝˝SO
� .pt/ ZŒ1

2
; t �:

Let us consider the diagram of natural transformations

˝SO
� .Y / ˝˝SO

� .pt/ ZŒ1
2
; t �

Š
// ko�.Y / ˝Z ZŒ1

2
�

˝SO
� .Y / ˝Z ZŒ1

2
; t �

OO

OO

// ˝Witt
� .Y / ˝Z ZŒ1

2
�;

Š

OO

where the lower horizontal arrow maps an elementŒM
f

� Y � ˝ atk to ŒM �

CP2k
f �1

� Y � ˝ a. On a point, this arrow thus maps an elementŒM 4l � ˝ atk

to ŒM 4l � CP2k � ˝ a. Mapping an elementŒM 4l � ˝ atk clockwise yields
a�.M /tkCl 2 ko�.pt/ ˝Z ZŒ1

2
� Š ZŒ1

2
; t �. Mapping the same element coun-

terclockwise gives

a�.M 4l � CP2k/t .4lC4k/=4 D a�.M /tkCl

also. The diagram commutes and shows that away from2, the canonical map
from manifold bordism to Witt bordism is a surjection. This is a key observation
of [BCS03] and frequently allows bordism invariant calculations for Witt spaces
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to be pulled back to calculations on smooth manifolds. This principle may be
viewed as a topological counterpart of resolution of singularities in complex
algebraic and analytic geometry (though one should point out that there are com-
plex 2-dimensional singular projective toric varietiesX.�/ such that no nonzero
multiple of X.�/ is bordant to any toric resolution ofX.�/). It is applied in
[BCS03] to prove that the twisted signature�.X I S/ of a closed oriented Whit-
ney stratified Witt spaceX n of even dimension with coefficients in a (Poincaré-)
local systemS on X can be computed as the product of the (untwisted) L-class
of X and a modified Chern character of the K-theory signatureŒS�K of S,

�.X I S/ D hechŒS�K ; L�.X /i 2 Z

whereL�.X / 2 H�.X I Q/ is the total L-class ofX . The higher components
of the productechŒS�K \ L�.X / in fact compute the rest of the twisted L-class
L�.X I S/. Such twisted classes come up naturally if one wants to understand
the pushforward under a stratified map of characteristic classes of the domain,
see [CS91] and [Ban06c].

4. IP spaces: integral duality

Witt spaces satisfy generalized Poincaré duality rationally. Is there a class
of pseudomanifolds whose members satisfy Poincaré duality integrally? This
requires restrictions more severe than those imposed on Witt spaces. Anin-
tersection homology Poincaré space(“IP space”), introduced in [GS83], is an
oriented stratified PL pseudomanifold such that the middle perversity, middle
dimensional intersection homology of even dimensional links vanishes and the
torsion subgroup of the middle perversity, lower middle dimensional intersec-
tion homology of odd dimensional links vanishes. This condition characterizes
spaces for which the integral intersection chain sheafIC �

Nm.X I Z/ is self-dual.
Goresky and Siegel show that for such spacesX n there are nonsingular pairings

IH Nm
i .X /= Tors ˝ IH Nm

n�i.X /= Tors� Z

and

TorsIH Nm
i .X / ˝ TorsIH Nm

n�i�1.X / � Q=Z:

Let ˝ IP
� .pt/ denote the bordism groups of IP spaces. The signature�.X / of the

above intersection pairing is a bordism invariant and induces a homomorphism
˝ IP

4k
.pt/ ! Z. If dim X D nD 4kC1, then the number mod2 of Z=2-summands

in TorsIH Nm
2k

.X / is a bordism invariant, thede Rham invariantdR.X / 2 Z=2

of X . It induces a homomorphism dRW ˝ IP
4kC1

.pt/ ! Z=2. Pardon shows in
[Par90] that these maps are both isomorphisms fork �1 and that all other groups
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˝ IP
n .pt/ D 0, n > 0. In summary, one obtains

˝ IP
n .pt/ D

(
Z; n � 0.4/,
Z=2; n � 5; n � 1.4/,
0 otherwise.

LetL�.ZG/ denote the symmetric L-groups, as defined by Ranicki, of the group
ring ZG of a groupG. For the trivial groupG D e, these are the homotopy
groups��.L�/ D L

�

�.pt/ of the symmetric L-spectrumL� and are given by

Ln.Ze/ D

(
Z; n � 0.4/,
Z=2; n � 1.4/,
0 otherwise.

We notice that this is extremely close to the IP bordism groups, the only differ-
ence being aZ=2 in dimension1. A comparison of their respective coefficient
groups thus leads us to expect that the difference between the generalized homol-
ogy theory˝ IP

� .Y / given by mapping IP pseudomanifoldsX continuously into
a spaceY and symmetricL�-homologyL

�

�.Y / is very small. Indeed, according
to [Epp07], there exists a map� W MIP ! L

�, where MIP is the spectrum giving
rise to IP bordism theory, whose homotopy cofiber is an Eilenberg–Mac Lane
spectrumK.Z=2; 1/. The map is obtained by using a description ofL

� as a
simplicial˝-spectrum, whosek-th space has itsn-simplices given by homotopy
classes of.n�k/-dimensionaln-ads of symmetric algebraic Poincaré complexes
(pairs). Similarly, MIP can be described as a simplicial˝-spectrum, whosek-
th space has itsn-simplices given by.n � k/-dimensionaln-ads of compact IP
pseudomanifolds. Given these simplicial models, one has tomapn-ads of IP
spaces ton-ads of symmetric Poincaré complexes. On a suitable incarnation of
the middle perversity integral intersection chain sheaf ona compact IP space,
a Poincaŕe symmetric structure can be constructed by copying Goresky’s sym-
metric construction of [Gor84]. Taking global sections andresolving by finitely
generated projectives (observing that the cohomology of the section complex is
finitely generated by compactness), one obtains a symmetricalgebraic Poincaré
complex. This assignment can also be done for pairs and behaves well under
gluing. The symmetric structure is uniquely determined by its restriction to the
top stratum. On the top stratum, which is a manifold, the construction agrees
sheaf-theoretically with the construction used classically for manifolds, see e.g.
[Bre97]. In particular, if we start with a smooth oriented closed manifold and
view it as an IP space with one stratum, then the top stratum istheentirespace
and the constructed symmetric structure agrees with Ranicki’s symmetric struc-
ture. Modelling MSO and MSTOP as simplicial̋ -spectra consisting ofn-
ads of smooth oriented manifolds andn-ads of topological oriented manifolds,
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respectively, we thus see that the diagram

MSO //

››

MIP
�

››

MSTOP // L
�

homotopy commutes, where the “symmetric signature map” MSTOP! L
� of

ring spectra has been constructed by Ranicki. (Technically, IP spaces are PL
pseudomanifolds, so to obtain the canonical map MSO! MIP, it is necessary
to find a canonical PL structure on a given smooth manifold. This is possible
by J. H. C. Whitehead’s triangulation results of [Whi40], where it is shown that
every smooth manifold admits a compatible triangulation asa PL manifold and
this PL manifold is unique to within a PL homeomorphism; see also [WJ66].)
It follows that

˝SO
� .Y / //

››

˝ IP
� .Y /

��.Y /
››

˝STOP
� .Y / // L

�

�.Y /

(4-1)

commutes. Let us verify the commutativity forY D pt by hand. If� D 4k C 2

or 4k C3, thenL
�

�.pt/ D L�.Ze/ D 0, so the two transformations agree in these
dimensions. Commutativity in dimension1 follows from ˝SO

1
.pt/ D 0. For

� D 4k C 1, k > 0, the homotopy cofiber sequence of spectra

MIP
�

� L
�

� K.Z=2; 1/

induces on homotopy groups an exact sequence and hence an isomorphism

�4kC1.MIP/
Š

� �4kC1.L
�

/:

But both of these groups areZ=2, whence the isomorphism is the identity map.
Thus ifM 4kC1 is a smooth oriented manifold, thenŒM 4kC1�2˝ IP

4kC1
.pt/ maps

under� to the de Rham invariant dR.M / 2 L4kC1.Ze/ D Z=2. Hence the two
transformations agree on a point in dimensions4k C 1. Again using the exact
sequence of homotopy groups determined by the above cofibration sequence,

� induces isomorphisms�4k.MIP/
Š

� �4k.L�/. Both of these groups areZ,
so this isomorphism iṡ 1. Consequently, a smooth oriented manifoldM 4k ,
defining an elementŒM 4k �2˝ IP

4k
.pt/, maps under� to ˙�.M /2L4k.Ze/DZ,

and it isC�.M / when the signs in the two symmetric structures are correctly
matched.

For an n-dimensional Poincaré space which is either a topological mani-
fold or a combinatorial homology manifold (i.e. a polyhedron whose links of
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simplices are homology spheres), Ranicki defines a canonical L
�-orientation

ŒM �L 2 L
�

n.M /, see [Ran92]. Its image under the assembly map

L
�

n.M /
A

� Ln.Z�1.M //

is thesymmetric signature��.M /, which is a homotopy invariant. The class
ŒM �L itself is a topological invariant. The geometric meaning oftheL

�-orienta-
tion class is that its existence for a geometric Poincaré complexX n, n � 5,
assembling to the symmetric signature (which any Poincaré complex possesses),
implies up to 2-torsion thatX is homotopy equivalent to a compact topological
manifold. (More precisely,X is homotopy equivalent to a compact manifold if it
has anL�-orientation class, which assembles to thevisiblesymmetric signature
of X .) Cap product withŒM �L induces anL�-homology Poincaŕe duality iso-

morphism.L�/i.M /
Š

� L
�

n�i.M /. Rationally,ŒM �L is given by the homology
L-class ofM ,

ŒM �L ˝ 1 D L�.M / 2 L
�

n.M / ˝ Q Š
M

j�0

Hn�4j .M I Q/:

Thus, we may viewŒM �L as an integral refinement of the L-class ofM . An-
other integral refinement of the L-class is the signature homology orientation
classŒM �Sig 2 Sign.M /, to be defined below. The identityAŒM �L D ��.M /

may then be interpreted as a non-simply connected generalization of the Hirze-
bruch signature formula. The localization ofŒM �L at odd primes is the Sul-
livan orientation�.M / 2 KOn.M / ˝ ZŒ1

2
�, which we shall return to later.

Under the map̋ STOP
n .M / ! L

�

n.M /, ŒM �L is the image of the identity map

ŒM
id

� M � 2 ˝STOP
n .M /.

We shall now apply� in defining anL
�-orientationŒX �L 2 L

�

n.X / for an
oriented closedn-dimensional IP pseudomanifoldX . (For Witt spaces, anL�-
orientation and a symmetric signature has been defined in [CSW91].) The iden-
tity mapX ! X defines an orientation classŒX �IP 2 ˝ IP

n .X /.

DEFINITION 4.1. TheL
�-orientationŒX �L 2 L

�

n.X / of an oriented closedn-
dimensional IP pseudomanifoldX is defined to be the image ofŒX �IP 2 ˝ IP

n .X /

under the map

˝ IP
n .X /

��.X /
� L

�

n.X /:

If X D M n is a smooth oriented manifold, then the identity mapM ! M

defines an orientation classŒM �SO 2 ˝SO
n .M /, which maps toŒM �L under the

map

˝SO
n .M / � ˝STOP

n .M / � L
�

n.M /:
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Thus, the above definition ofŒX �L for an IP pseudomanifoldX is compatible
with manifold theory in view of the commutativity of diagram(4-1). Apply-
ing Ranicki’s assembly map, it is then straightforward to define the symmetric
signature of an IP pseudomanifold.

DEFINITION 4.2. The symmetric signature��.X / 2 Ln.Z�1.X // of an ori-
ented closedn-dimensional IP pseudomanifoldX is defined to be the image of
ŒX �L under the assembly map

L
�

n.X /
A

� Ln.Z�1.X //:

This then agrees with the definition of the Mishchenko–Ranicki symmetric sig-
nature��.M / of a manifoldX D M becauseAŒM �L D ��.M /.

5. Non-Witt spaces

All pseudomanifolds previously considered had to satisfy avanishing con-
dition for the middle dimensional intersection homology ofthe links of odd
codimensional strata. Can a bordism invariant signature bedefined for an even
larger class of spaces? As pointed out above, taking the coneon a pseudoman-
ifold immediately proves the futility of such an attempt on the full class of all
pseudomanifolds. What, then, are the obstructions for an oriented pseudoman-
ifold to possess Poincaré duality compatible with intersection homology?

Let LK be a collection of closed oriented pseudomanifolds. We might envi-
sion forming a bordism group̋ LK

n , whose elements are represented by closed
orientedn-dimensional stratified pseudomanifolds whose links are all home-
omorphic to (finite disjoint unions of) elements ofLK. Two spacesX and
X 0 represent the same bordism class,ŒX � D ŒX 0�, if there exists an.n C 1/-
dimensional oriented compact pseudomanifold-with-boundary Y nC1 such that
all links of the interior ofY are inLK and@Y Š X t�X 0 under an orientation-
preserving homeomorphism. (The boundary is, as always, to be collared in a
stratum-preserving way.) If, for instance,

LK D fS1; S2; S3; : : :g;

then˝LK
� is bordism of manifolds. If

LK D Odd[fL2l j IH Nm
l .LI Q/ D 0g;

where Odd is the collection of all odd dimensional oriented closed pseudoman-
ifolds, then˝LK

� D ˝Witt
� . The question is: Which other spaces can one throw

into thisLK, yielding an enlarged collectionLK0 � LK, such that one can still
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define a bordism invariant signature� W ˝LK
0

� � Z so that the diagram

˝Witt
�

�
//

››

Z

˝LK
0

�

�

<<

commutes, where̋ Witt
� �˝LK

0

� is the canonical map induced by the inclusion
LK � LK0? Note that�.L/ D 0 for everyL 2 LK. Suppose we took anLK0

that contains a manifold P with�.P / 6D0, e.g.P DCP2k . ThenŒP �D02˝LK
0

� ,
sinceP is the boundary of the cone onP , and the cone onP is an admissible
bordism in˝LK

0

� , as the link of the cone-point isP andP 2 LK0. Thus, in the
above diagram,

ŒP �
ffl

�
//

_

››

�.P / 6D 0:

0
/

�

77

o

o

o

o

o

o

o

o

o

o

o

This argument shows that the desired diagonal arrow cannot exist for any col-
lection LK0 that contains any manifolds with nonzero signature. Thus weare
naturally led to consider only links with zero signature, that is, links whose
intersection form on middle dimensional homology possesses a Lagrangian sub-
space. As you move along a stratum of odd codimension, these Lagrangian
subspaces should fit together, forming a subsheaf of the middle dimensional
cohomology sheafH associated to the link-bundle over the stratum. (Actually,
no bundle neighborhood structure is required to do this.) Soa natural language
in which to phrase and solve the problem is sheaf theory.

From the sheaf-theoretic vantage point, the statement thata spaceX n does
not satisfy the Witt condition means precisely that the canonical morphism
IC �

Nm.X / ! IC �

Nn.X / from lower to upper middle perversity is not an isomor-
phism in the derived category. (We are using sheaves of real vector spaces now
and shall not indicate this further in our notation.) Thus there is no way to intro-
duce a quadratic form whose signature one could take, using intersection chain
sheaves. But one may ask how close to such sheaves one might get by using
self-dual sheaves onX . In [Ban02], we define a full subcategorySD.X / of
the derived category onX , whose objectsS� satisfy all the axioms thatIC �

Nn.X /

satisfies, with the exception of the last axiom, the costalk vanishing axiom. This
axiom is replaced with the requirement thatS� be self-dual, that is, there is an
isomorphismDS�Œn� Š S�, just as there is forIC �

Nm on a Witt space. Naturally,
this category may be empty, depending on the geometry ofX . So we need to
develop a structure theorem forSD.X /, and this is done in [Ban02]. It turns
out that every such objectS� interpolates betweenIC �

Nm andIC �

Nn, i.e. possesses a
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factorizationIC �

Nm ! S� ! IC �

Nn of the canonical morphism. The two morphisms
of the factorization are dual to each other. Note that in the basic two strata case,
the mapping cone of the canonical morphism is the middle cohomology sheaf
H of the link-bundle. We prove that the mapping cone ofIC �

Nm ! S�, restricted
to the stratum of odd codimension, is a Lagrangian subsheaf of H, so that the
circle to the above geometric ideas closes. The main result of [Ban02] is an
equivalence of categories betweenSD.X / and a fibered product of categories
of Lagrangian structures, one such category for each stratum of odd codimen-
sion. This then is a kind of Postnikov system forSD.X /, encoding both the
obstruction theory and the constructive technology to manufacture objects in
SD.X /.

SupposeX is such thatSD.X / is not empty. An objectS� in SD.X / defines
a signature�.S�/ 2 Z by taking the signature of the quadratic form that the self-
duality isomorphismDS�Œn� Š S� induces on the middle dimensional hyperco-
homology group ofS�. Since restricting a self-dual sheaf to a transverse (to the
stratification) subvariety again yields a self-dual sheaf on the subvariety, we get a
signature for all transverse subvarieties and thus an L-classL�.S�/ 2 H�.X I Q/,
using maps to spheres and Serre’s theorem as indicated in thebeginning. We
prove in [Ban06b] thatL�.S�/, in particular�.S�/ D L0.S�/, is independent of
the choice ofS� in SD.X /. Consequently, a non-Witt space has a well-defined
L-classL�.X / and signature�.X /, providedSD.X / is not empty.

Let Sign.pt/ be the bordism group of pairs.X; S�/, whereX is a closed
oriented topological or PLn-dimensional pseudomanifold andS� is an object
of SD.X /. Admissible bordisms are oriented compact pseudomanifolds-with-
boundaryY nC1, whose interior intY is covered with an object ofSD.int Y /

which pushes to the given sheaf complexes on the boundary. These groups have
been introduced in [Ban02] under the name˝SD

� . Let us compute these groups.
The signature.X; S�/ ‘ �.S�/ is a bordism invariant and hence induces a map
� W Sig4k.pt/ ! Z. This map is onto, since e.g..CP2k ; RCP2k Œ4k�/ (and disjoint
copies of it) is in Sig4k.pt/. However, contrary for example to Witt bordism,
� is also injective: Suppose�.X; S�/ D 0. Let Y 4kC1 be the closed cone on
X . Define a self-dual sheaf on the interior of the punctured cone by pulling
backS� from X under the projection from the interior of the punctured cone,
X �.0; 1/, toX . According to the Postnikov system of Lagrangian structures for
SD.int Y /, the self-dual sheaf on the interior of the punctured cone will have
a self-dual extension inSD.int Y / if, and only if, there exists a Lagrangian
structure at the cone-point (which has odd codimension4k C 1 in Y ). That
Lagrangian structure exists because�.X; S�/ D 0. Let T� 2 SD.int Y / be any
self-dual extension given by a choice of Lagrangian structure. Then@.Y; T�/ D

.X; S�/ and thusŒ.X; S�/� D 0 in Sig4k.pt/. Clearly, Sign.pt/ D 0 for n 6� 0.4/
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because an anti-symmetric form always has a Lagrangian subspace and the cone
on an odd dimensional space is even dimensional, so in these cases there are
no extension problems at the cone point — just perform a one-step Goresky–
MacPherson–Deligne extension. In summary then, one has

Sign.pt/ Š

�
Z; n � 0.4/,
0; n 6� 0.4/.

(Note that in particular the de Rham invariant has been disabled and the signature
is a complete invariant for these bordism groups.) Minatta [Min04], [Min06]
takes this as his starting point and constructs a bordism theory Sig�.�/, called
signature homology, whose coefficients are the above groups Sig�.pt/. Elements
of Sign.Y / are represented by pairs.X; S�/ as above together with a continuous
map X ! Y . For a detailed proof that Sig�.�/ is a generalized homology
theory when PL pseudomanifolds are used, consult the appendix of [Ban06a].
Signature homology is represented by an MSO module spectrumMSIG, which
is also a ring spectrum. Regarding a smooth manifold as a pseudomanifold
with one stratum covered by the constant sheaf of rank1 concentrated in one
dimension defines a natural transformation of homology theories ˝SO

� .�/ !

Sig�.�/. Thus, MSIG is2-integrally a product of Eilenberg–Mac Lane spectra,

MSIG.2/ '
Y

j�0

K.Z.2/; 4j /:

As for the odd-primary situation, the isomorphism Sig�.pt/ ˝Z ZŒ1
2
� ! ZŒ1

2
; t �

given byŒ.X 4k ; S�/� ˝ a ‘ a�.S�/tk , determines an identification

˝SO
� .Y / ˝˝SO

� .pt/ Sig�.pt/ ˝Z ZŒ1
2
�

Š
� ˝SO

� .Y / ˝˝SO
� .pt/ ZŒ1

2
; t �:

A natural isomorphism of homology theories

˝SO
� .Y / ˝˝SO

� .pt/ Sig�.pt/ ˝Z ZŒ1
2
�

Š
� Sig�.Y / ˝Z ZŒ1

2
�

is induced by sendingŒM
f
! Y � ˝ Œ.X; S�/� to Œ.M � X; P�; M � X ! M

f
!

Y /�, whereP� is the pullback sheaf ofS� under the second-factor projection.
Composing, we obtain a natural isomorphism

˝SO
� .�/ ˝˝SO

� .pt/ ZŒ1
2
; t �

Š
� Sig�.�/ ˝Z ZŒ1

2
�;

describing signature homology at odd primes in terms of manifold bordism.

Again, it follows in particular that the natural map

˝SO
� .Y / ˝Z ZŒ1

2
; t � ! Sig�.Y / ˝Z ZŒ1

2
�
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is a surjection, which frequently allows one to reduce bordism invariant calcu-
lations on non-Witt spaces to the manifold case. We observedthis in [Ban06a]
and apply it there to establish a multiplicative characteristic class formula for the
twisted signature and L-class of non-Witt spaces. LetX n be a closed oriented
Whitney stratified pseudomanifold and letS be a nondegenerate symmetric local
system onX . If SD.X / is not empty, that is,X possesses Lagrangian structures
along its strata of odd codimension so thatL�.X / 2 H�.X I Q/ is defined, then

L�.X I S/ D echŒS�K \ L�.X /:

For the special case of the twisted signature�.X I S/ D L0.X I S/, one has there-
fore

�.X I S/ D hechŒS�K ; L.X /i:

We shall apply the preceding ideas in defining aSullivan orientation�.X / 2

ko�.X /˝ZŒ1
2
� for a pseudomanifoldX that possesses generalized Poincaré du-

ality (that is, its self-dual perverse categorySD.X / is not empty), but need not
satisfy the Witt condition. In [Sul05], Sullivan defined foran oriented rational
PL homology manifoldM an orientation class�.M / 2 ko�.M /˝ZŒ1

2
�, whose

Pontrjagin character is the L-classL�.M /. For a Witt spaceX n, a Sullivan class
�.X /2ko�.X /˝ZŒ1

2
� was constructed by Siegel [Sie83], using the intersection

homology signature of a Witt space and transversality to produce the requisite
Sullivan periodicity squares that represent elements ofKO4k.N; @N / ˝ ZŒ1

2
�,

whereN is a regular neighborhood of a codimension4k PL-embedding ofX
in a high dimensional Euclidean space. An element inko4k.N; @N /˝ZŒ1

2
� cor-

responds to a unique element inkon.X / ˝ ZŒ1
2
� by Alexander duality. Siegel’s

isomorphism (3-1) is then given by the Hurewicz-type map

˝Witt
� .Y / ˝ ZŒ1

2
��ko�.Y / ˝ ZŒ1

2
�

[X
f

� Y ] ˝ 1 ‘ f��.X /;

wheref� W ko�.X / ˝ ZŒ1
2
� ! ko�.Y / ˝ ZŒ1

2
�. In particular, the transformation

(3-1) maps the Witt orientation classŒX �Witt 2 ˝Witt
n .X /, given by the identity

mapf D idX W X ! X , to �.X /.

REMARK 5.1. In [CSW91], there is indicated an extension to continuous actions
of a finite groupG on a Witt spaceX . If the action satisfies a weak condition
on the fixed point sets, then there is a homeomorphism invariant class�G.X /

in the equivariant KO-homology ofX away from2, which is the Atiyah–Singer
G-signature invariant for smooth actions on smooth manifolds.

Let P be a compact polyhedron. Using Balmer’s4-periodic Witt groups of tri-
angulated categories with duality, Woolf [Woo08] defines groupsW c

� .P /, called
constructible Witt groups ofP because the underlying triangulated categories
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are the derived categories of sheaf complexes that are constructible with respect
to the simplicial stratifications of admissible triangulations of P . (The duality
is given by Verdier duality.) Elements ofW c

n .P / are represented by symmet-
ric self-dual isomorphismsd W S� ! .DS�/Œn�. The periodicity isomorphism
W c

n .P / Š W c
nC4

.P / is induced by shifting such ad twice:

d Œ2� W S�

Œ2� � .DS�

/Œn�Œ2� D .DS�

/Œ�2�Œn C 4� D D.S�

Œ2�/ŒnC4�:

(Shifting only once does not yield a correct symmetric isomorphism with respect
to the duality fixed forW c

� .P /.) Woolf shows that for commutative regular
Noetherian ringsR of finite Krull dimension in which2 is invertible, for ex-
ampleR D Q, the assignmentP ‘ W c

� .P / is a generalized homology theory
on compact polyhedra and continuous maps. LetK be a simplicial complex
triangulatingP . Relating both Ranicki’s.R; K/-modules on the one hand and
constructible sheaves on the other hand to combinatorial sheaves onK, Woolf
obtains a natural transformation

L
�

.R/�.K/ � W c
� .jKj/

(jKj D P ), which he shows to be an isomorphism when every finitely generated
R-module can be resolved by a finite complex of finitely generated freeR-
modules. Again, this applies toR D Q. Given a mapf W X n ! P from a
compact oriented Witt spaceX n into P , the pushforwardRf�.d/ of the sym-
metric self-duality isomorphismd W IC �

Nm.X / Š DIC �

Nm.X /Œn� defines an element
ŒRf�.d/� 2 W c

n .P /. This induces a natural map

˝Witt
n .P / � W c

n .P /;

which is an isomorphism whenn > dimP . Given anyn � 0, we can iterate the
4-periodicity untiln C 4� > dimP and obtain

W c
n .P / Š W c

nC4.P / Š � � � Š W c
nC4k.P / Š ˝Witt

nC4k.P /;

wheren C 4k > dimP . Thus, as Woolf points out, the Witt class of any sym-
metric self-dual sheaf onP is given, after a suitable even number of shifts,
by the pushforward of an intersection chain sheaf on some Witt space. This
viewpoint also allows for the interpretation of L-classes as homology operations
W c

� .�/ ! H�.�/ or ˝Witt
� .�/ ! H�.�/. Other characteristic classes arising in

complex algebraic geometry can be interpreted through natural transformations
as well. MacPherson’s Chern class of a variety can be defined as the image
cM

� .1X / of the function1X under a natural transformationcM
� W F.�/ ! H�.�/,

whereF.X / is the abelian group of constructible functions onX . The Baum–
Fulton–MacPherson Todd class can be defined as the image tdBMF

� .OX / of OX
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under a natural transformation

tdBMF
� W G0.�/ ! H�.�/ ˝ Q;

whereG0.X / is the Grothendieck group of coherent sheaves onX . In [BSY],
Brasselet, Scḧurmann and Yokura realized two important facts: First, there ex-
ists a sourceK0.VAR=X / which possesses natural transformations to all three
domains of the characteristic class transformations mentioned. That is, there
exist natural transformations

K0.VAR=�/

xxq

q

q

q

q

q

q

q

q

q

››
’’

N

N

N

N

N

N

N

N

N

N

N

F.�/ G0.�/ ˝Y.�/;

(5-1)

where̋ Y.X / is the abelian group of Youssin’s bordism classes of self-dual con-
structible sheaf complexes onX . That sourceK0.VAR=X / is the free abelian
group generated by algebraic morphismsf W V ! X modulo the relation

ŒV
f

� X � D ŒV � Z
f j

� X � C ŒZ
f j

� X �

for every closed subvarietyZ � V . Second, there exists a unique natural trans-
formation, themotivic characteristic class transformation,

Ty� W K0.VAR=X / � H�.X / ˝ QŒy�

such that

Ty�ŒidX � D Ty.TX / \ ŒX �

for nonsingularX , whereTy.TX / is Hirzebruch’s generalized Todd class of
the tangent bundleTX of X . Characteristic classes for singular varieties are
of course obtained by takingTy�ŒidX �. Under the above three transformations
(5-1), ŒidX � is mapped to1X , ŒOX �, andŒQX Œ2 dimX �� (whenX is nonsingular),
respectively. Following these three transformations withcM

� , tdBMF
� , and the

L-class transformation

˝Y.�/ ! H�.�/ ˝ Q;

one obtainsTy� for y D �1; 0; 1, respectively. This, then, is an attractive uni-
fication of Chern-, Todd- and L-classes of singular complex algebraic varieties,
see also Yokura’s paper in this volume, as well as [SY07].

The natural transformation

˝Witt
� .�/ ˝ ZŒ1

2
� � Sig�.�/ ˝ ZŒ1

2
�;
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given by covering a Witt spaceX with the middle perversity intersection chain
sheafS� D IC �

Nm.X /, which is an object ofSD.X /, is an isomorphism because
on a point, it is given by the signature

˝Witt
4k .pt/ ˝ ZŒ1

2
� Š L4k.Q/ ˝ ZŒ1

2
� Š ZŒ1

2
� Š Sig4k.pt/ ˝ ZŒ1

2
�

(the infinitely generated torsion ofL4k.Q/ is killed by inverting2), and

˝Witt
j .pt/ D 0 D Sigj .pt/

for j not divisible by4. Inverting this isomorphism and composing with Siegel’s
isomorphism (3-1), we obtain a natural isomorphism of homology theories

D W Sig�.�/ ˝ ZŒ1
2
�

Š
� ko�.�/ ˝ ZŒ1

2
�:

Let X n be a closed pseudomanifold, not necessarily a Witt space, but still sup-
porting self-duality, i.e.SD.X / is not empty. Choose a sheafS� 2 SD.X /.
Then the pair.X; S�/, together with the identity mapX !X , defines an element
ŒX �Sig 2 Sign.X /.

DEFINITION 5.2. Thesignature homology orientation classof ann-dimensional
closed pseudomanifoldX with SD.X / 6D ?, but not necessarily a Witt space,
is the elementŒX �Sig 2 Sign.X /.

PROPOSITION5.3. The orientation classŒX �Sig is well-defined, that is, inde-
pendent of the choice of sheafS� 2 SD.X /.

PROOF. Let T� 2 SD.X / be another choice. In [Ban06b], a bordism.Y; U�/,
U� 2 SD.int Y /, is constructed between.X; S�/ and .X; T�/. Topologically,
Y is a cylinderY Š X � I , but equipped with a nonstandard stratification, of
course. The identity mapX ! X thus extends over this bordism by taking

Y ! X; .x; t/ ‘ x: ˜

DEFINITION 5.4. TheSullivan orientationof ann-dimensional closed pseudo-
manifoldX with SD.X / 6D ?, but not necessarily a Witt space, is defined as

�.X / D D.ŒX �Sig ˝ 1/ 2 ko�.X / ˝ ZŒ1
2
�:

Let us compare signature homology andL
�-homology away from2, at 2, and

rationally, following [Epp07] and drawing on work of Taylorand Williams,
[TW79]. For a spectrumS , let S.odd/ denote its localization at odd primes. We
have observed above that

MSIG.2/ '
Y

j�0

K.Z.2/; 4j /
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and, according to [Epp07] and [Min04],

MSIG.odd/ ' bo.odd/:

Rationally, we have the decomposition

MSIG˝Q '
Y

j�0

K.Q; 4j /:

Thus MSIG fits into a localization pullback square

MSIG
loc.odd/

//

loc.2/
››

bo.odd/

››Q
K.Z.2/; 4j /

�
//

Q
K.Q; 4j /:

The symmetric L-spectrumL� is an MSO module spectrum, so it is2-integrally
a product of Eilenberg–Mac Lane spectra,

L
�

.2/ '
Y

j�0

K.Z.2/; 4j / � K.Z=2; 4j C 1/:

Comparing this to MSIG.2/, we thus see the de Rham invariants coming in.
Away from 2, L

� coincides withbo,

L
�

.odd/ ' bo.odd/;

as does MSIG. Rationally,L� is again

L
�

˝ Q '
Y

j�0

K.Q; 4j /:

ThusL
� fits into a localization pullback square

L
�

loc.odd/
//

loc.2/
››

bo.odd/

››Q
K.Z.2/; 4j / � K.Z=2; 4j C 1/

�0

//

Q
K.Q; 4j /:

The map� factors as

Y

j�0

K.Z.2/; 4j /
�

Œ
Y

j�0

K.Z.2/; 4j / � K.Z=2; 4j C 1/
�0

�
Y

j�0

K.Q; 4j /;
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where� is the obvious inclusion, not touching the2-torsion nontrivially. Hence,
by the universal property of a pullback, we get a map� from signature homology
to L

�-homology,

MSIG

loc.2/

››

�

**

loc.odd/

++

L
�

loc.odd/

//

loc.2/

››

bo.odd/

››Q
K.Z.2/; 4j / ffl

� �
//

�

44

Q
K.Z.2/; 4j / � K.Z=2; 4j C 1/

�0

//

Q
K.Q; 4j /:

On the other hand,�0 factors as

Y

j�0

K.Z.2/; 4j / � K.Z=2; 4j C 1/
proj
�

Y

j�0

K.Z.2/; 4j /
�

�
Y

j�0

K.Q; 4j /;

where proj is the obvious projection. Again using the universal property of a
pullback, we obtain a map� W L

� ! MSIG. The map� is a homotopy splitting
for �, �� ' id, since projı� D id. It follows that via�, signature homology is
a direct summand in symmetricL�-homology. We should like to point out that
the diagram

MSO //

››

MSIG
�

››

MSTOP // L
�

doesnot commute. This is essentially due to the fact that the de Rham invariant
is lost in Sig�, but is still captured inL�

�. In more detail, consider the induced
diagram on�5,

˝SO
5

.pt/ //

››

Sig5.pt/ D 0

�
››

˝STOP
5

.pt/ // L
�

5
.pt/:

The clockwise composition in the diagram is zero, but the counterclockwise
composition is not. Indeed, letM 5 be the Dold manifoldP .1; 2/ D .S1 �

CP2/=.x; z/ � .�x; Nz/. Its cohomology ring withZ=2-coefficients is the same
as the one of the untwisted product, that is, the truncated polynomial ring

Z=2Œc; d �=.c2 D 0; d3 D 0/;
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wherec has degree one andd has degree two. The total Stiefel–Whitney class
of M 5 is

w.M / D .1 C c/.1 C c C d/3;

so that the de Rham invariant dR.M / is given by dR.M / D w2w3.M / D cd2,
which is the generator. We also see thatw1.M /D0, so thatM is orientable. The
counterclockwise composition maps the bordism class of a smooth5-manifold
to its de Rham invariant inL�

5
.pt/ D L5.Ze/ D Z=2. The Dold manifoldM 5

represents the generatorŒM 5� 2 ˝SO
5

.pt/ D Z=2. Thus the counterclockwise
composition is the identity mapZ=2 ! Z=2 and the diagram does not commute.
MappingM 5 to a point and using the naturality of the assembly map induces a
commutative diagram

Sig5.M /
�.M /

//

››

L
�

5
.M /

A
//

››

L5.Z�1M /

"

››

0 D Sig5.pt/
�.pt/

// L
�

5
.pt/ Š

A
// L5.Ze/ D Z=2;

which shows that the signature homology orientation class of M , ŒM �Sig 2

Sig5.M / does not hit theL�-orientation ofM , ŒM �L 2 L
�

5
.M / under�, for

otherwise

0 D "A�ŒM �Sig D "AŒM �L D "��.M / D dR.M / 6D 0:

Thus one may take the viewpoint that it is perhaps not prudentto call �ŒX �Sig

an “L�-orientation” of a pseudomanifoldX with SD.X / not empty. Nor might
even its image under assembly deserve the title “symmetric signature” ofX . On
the other hand, one may wish to attach higher priority to the bordism invariance
(in the singular world) of a concept such as the symmetric signature than to its
compatibility with manifold invariants and nonsingular bordism invariance, and
therefore deem such terminology justified.

We conclude with a brief remark on integral Novikov problems. Let � be
a discrete group and letK.�; 1/ be the associated Eilenberg–Mac Lane space.
The composition of the split inclusion Sign.K.�; 1// Œ L

�

n.K.�; 1// with the
assembly map

A W L
�

n.K.�; 1// ! Ln.Z�/

yields what one may call a “signature homology assembly” map

ASig W Sign.K.�; 1// ! Ln.Z�/;
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which may be helpful in studying an integral refinement of theNovikov conjec-
ture, as suggested by Matthias Kreck: When is the integral orientation class

˛�ŒM �Sig 2 Sign.K.�; 1//

homotopy invariant? HereM n is a closed smooth oriented manifold with fun-
damental group� D �1.M /; the map̨ W M ! K.�; 1/ classifies the universal
cover ofM . Note that when tensored with the rationals, one obtains theclassical
Novikov conjecture because rationally the signature homology orientation class
ŒM �Sig is the L-classL�.M /. One usually refers to integral refinements such as
this one as “Novikovproblems” because there are groups� for which they are
known to be false.
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Sci. Paris Śer. I Math.313(1991), 293–295.

[Cur92] S. Curran,Intersection homology and free group actions on Witt spaces,
Michigan Math. J.39 (1992), 111–127.

[CW91] S. E. Cappell and S. Weinberger,Classification de certaines espaces stratifiés,
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