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ABSTRACT. These notes are based on an expository lecture that | gélve at
workshop “Topology of Stratified Spaces” at MSRI BerkeleySaptember
2008. We will first explain the definition of a bordism invartasignature for a
singular space, proceeding along a progression from legsilsir to more and
more singular spaces, starting out from spaces that havddoaglimensional
strata and, after having discussed Goresky—Siegel spadé¥itt spaces, end-
ing up with general (non-Witt) stratified spaces. We will maver discuss
various refinements of the signature to orientation classssitable bordism
theories based on singular cycles. For instance, we wiitatd how one may
define a symmetri@.*-homology orientation for Goresky—Siegel spaces or a
Sullivan orientation for those non-Witt spaces that stdkpess generalized
Poincaé duality. These classes can be thought of as refining thadsaf

a singular space. Along the way, we will also see how to compwisted
versions of the signature and L-class.
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1. Introduction

Let M be a closed smooth-dimensional manifold. The Hirzebruch L-
classesL!(M) € H* (M ;Q) of its tangent bundle are powerful tools in the
classification of suchM, particularly in the high dimensional situation where
n > 5. To make this plausible, we observe first that ftig/ ), with the excep-
tion of the top clasd.”/4(M) if n is divisible by4, are not generally homotopy
invariants ofM , and are therefore capable of distinguishing manifoldsgivan
homotopy type, contrary to the ability of homology and othemotopy invari-
ants. For example, there exist infinitely many manifaldg i =1, 2, ... in the
homotopy type ofS? x S*, distinguished by the first Pontrjagin class of their
tangent bundley, (TM;) € H*(S? x S*) = Z, namelyp,(TM;) = Ki, K a
fixed nonzero integer. The first L-clags is proportional to the first Pontrjagin
classp, in fact they are related by the formula = %pl.

Suppose thad”, n > 5, is simply connected, as in the example. The classi-
fication of manifolds breaks up into two very different tas$assify Poincag
complexes up to homotopy equivalence and, given a Pd@nuamplex, deter-
mine all manifolds homotopy equivalent to it.

In dimension3, one has a relatively complete answer to the former problem.
One can associate purely algebraic data to a P@ncamplex such that two
such complexes are homotopy equivalent if, and only if rtakgjebraic data are
isomorphic, see the classification result in [Hen77]. Femtiore, every given
algebraic data is realizable as the data of a Pomncamplex; see [Tur90]. In
higher dimensions, the problem becomes harder. While onestiaassociate
classifying data to a Poindacomplex, this data is not purely algebraic anymore,
though at least in dimensiah one can endow Poind@aduality chain complexes
with an additional structure that allows for classificatif®BB08].

The latter problem is the realm of surgery theory. Elemehth@structure
setS(M) of M are represented by homotopy equivalendes> M, whereN
is another closed smooth manifold, necessarily simply eoted, sincelf is.
Two such homotopy equivalences represent the same elem8ndo) if there
is a diffeomorphism between the domains that commutes Wwihhbmotopy
equivalences. The goal of surgery theory is to com@ut&/ ). The central tool
provided by the theory is the surgery exact sequence

Lyt1 — S(M) -5 N(M) —> Ly,

an exact sequence of pointed sets. Theare the4-periodic simply connected
surgery obstruction group4,,, = Z,0,7Z/,,0 forn = 0,1,2,3 mod4. The
term N(M) is thenormal invariant setinvestigated by Sullivan. It is a gen-
eralized cohomology theory and a Pontrjagin—Thom type tcocigon yields
N(M) =[M, G/O], where[M, G/ O] denotes homotopy classes of maps from
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M into a certain universal spag/ O, which does not depend aif. Since
[M, G/O]is a cohomology theory, it is particularly important to knas/coef-
ficients«(G/0O). While the torsion is complicated, one has modulo torsion
Q. i=4j,

0, otherwise.

mi(G/0)®Q = {
One obtains an isomorphism

[M.G/0]® Q=D HY (M:Q).
Jj=0
The groupL,+ acts onS(M) so that the point-inverses gfare the orbits of
the action, i.e. for allf, 7 € S(M) one has)( /) = n(h) if, and only if, there is
age L,y whichmovesf toh, g-f=h.

Suppose our manifold/ is even dimensional. Theh, ., vanishes and thus
n(f) = n(h) implies f = g- f = h, so thaty is injective. In particular, we
obtain an injection

SM)®Q— NM) Q.
Composing this withV (M) @ Q = @ H* (M ; Q), we obtain an injective map

S(M)®Q S @ HY (M: Q).

This map sends a homotopy equivalethceN — M to the cohomology class
L*(h) uniquely determined by*(L*(M) + L*(h)) = L*(N). ThusM is
determined, up to finite ambiguity, bis homotopy type and its L-classéhis
demonstrates impressively the power of the L-classes ad #otalassify man-
ifolds.

The L-classes are closely related to the signature inviaréard indeed the
classes can be defined, following Thom [Tho58], by the sigestof submani-
folds, as we shall now outline. The link between the L-clasa®l the signature
is the Hirzebruch signature theorem. It asserts that thei@¥an of the top
L-classL’/ (M) € H"(M;Q) of ann = 4j-dimensional oriented manifold/
on the fundamental class @if equals the signature(M) of M. Once we
know this, we can definé* (M) as follows. A theorem of Serre states that the
Hurewicz map is an isomorphism

7 (M)® Q= HF(M; Q)

inthe range: <2k —1, wherer* (M) denotes the cohomotopy setsMf, whose
elements are homotopy classes of maps fidnto spheres. Thus, in this range,
we may think of a rational cohomology class as a (smooth) fiaps — S*.

The preimagef ~! (p) of a regular valug € S* is a submanifold and has a sig-
natureo (~!(p)). Use the bordism invariance of the signature to conclude tha
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this signature depends only on the homotopy clasg.ohssignings ( £~ (p))

to the homotopy class of yields a mapH* (M ; Q) — Q, that is, ahomology
classLy (M) € Hy (M ; Q). By Poincaé duality, this class can be dualized back
into cohomology, where it agrees with the Hirzebruch clags&M). Note
that all you need for this procedure is transversality fopatm spheres in order
to get suitable subspaces and a bordism invariant signdefieed on these
subspaces. Thus, whenever these ingredients are presensiiogular space
X, we will obtain an L-clasd «(X) € H«(X;Q) in the rational homology of
X. (This class cannot necessarily be dualized back into colamy, due to
the lack of classical Poincarduality for singularX’.) Therefore, we only need
to discuss which classes of singular spaces have a bordismant signature.
The required transversality results are available for Wéitstratified spaces,
for example. The notion of a Whitney stratified space incoxfes smoothness
in a particularly amenable way into the world of singularcgm A Whitney
stratification of a spac& consists of a (locally finite) partition of into locally
closed smooth manifolds of various dimensions, calledptlne strata If one
stratum intersects the closure of another one, then it ningstdy be completely
contained in it. Connected component®f strata have tubular neighborhoods
Ts that possess locally trivial projectionss : Ts — S whose fiberngl(p),

p € S, is the cone on a compact spatép) (also Whitney stratified), called
thelink of S at p. It follows that every pointp has a neighborhood homeo-
morphic toRYMS x coneL (p). Real and complex algebraic varieties possess a
natural Whitney stratification, as do orbit spaces of smgotiup actions. The
pseudomanifold condition means that the singular strate kadimension at
least two and the complement of the singular set {gpestratun) is dense in

X . The figure eight space, for instance, can be Whitney stdtliut is not a
pseudomanifold. The pinche&dtorus is a Whitney stratifiable pseudomanifold.
If we attach a whisker to the pinche@dtorus, then it loses its pseudomanifold
property, while retaining its Whitney stratifiability. Bgor78], a Whitney strat-
ified pseudomanifoldY” can be triangulated so that the Whitney stratification
defines a PL stratification of .

Inspired by the success of L-classes in manifold theorycslest above, one
would like to have L-classes for stratified pseudomanifalsisvell. In [CW91],
see also [Wei94], Cappell and Weinberger indicate the \ioilg result, anal-
ogous to the manifold classification result sketched abdsapposeX is a
stratified pseudomanifold that has no strata of odd dimengdssume that all
strataS have dimension at least and that all fundamental groups in sight are
trivial, that is, all strata are simply connected and akéimre simply connected.
(A pseudomanifold whose links are all simply connected iedaupernormal
This is compatible with the notion of mormal pseudomanifold, meaning that
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all links are connected.) Then differences of L-classes giv injection

S eQ— P P H(S: .

ScX Jj

where S ranges over the strata df, S denotes the closure & in X, and
S(X) is an appropriately defined structure set foY'. This would suggest that
L-classes are as powerful in classifying stratified spasds alassifying man-
ifolds. Since, as we have seen, the definition of L-classétimately related
to, and can be given in terms of, the signature, we shall pifynimvestigate
the possibility of defining a bordism invariant signatureda oriented stratified
pseudomanifoldy’.

2. Pseudomanifolds without odd codimensional strata

In order to define a signature, one needs an intersection fBuhsingular
spaces do not possess Poicduality, in particular no intersection form, in
ordinary homology. The solution is to change to a differandkof homology.
Motivated by a question of D. Sullivan [Sul70], Goresky andd®herson define
(in [GM8Q] for PL pseudomanifolds and in [GM83] for topolagl pseudoman-
ifolds) a collection of groupdHY (X), calledintersection homology groups
of X', depending on a multi-indeg, called aperversity For these groups, a
Poincaé-Lefschetz-type intersection theory can be defined, areharglized
form of Poincaé duality holds, but only between groups with “complemegntar
perversities.” More precisely, with(k) = k — 2 denoting the top perversity,
there are intersection pairings

IH? (X) ® IH] (X) — L (2-1)

for an oriented closed pseudomanifdld p +¢g = ¢ andi + j = dim X, which
are nondegenerate when tensored with the rationals. Je#dén discovered,
working independently of Goresky and MacPherson and nagivare of their
intersection homology, that Poinéduality on triangulated pseudomanifolds
equipped with a suitable (locally conical) Riemannian mebdn the top stra-
tum, can be recovered by using the complex.éfdifferential forms on the top
stratum, see [Che80], [Che79] and [Che83]. The connecttwérn his and the
work of Goresky and MacPherson was pointed out by Sullivatiné. For an
introduction to intersection homology see'[B4], [KW06] or [Ban07]. A third
method, introduced in [Ban09] and implemented there forugemanifolds

Lin [cw91], the structure set§(X) are defined as the homotopy groups of the homotopy fiber of the
assembly mapX’ A Le(Z)g — Le(Zm; (X)), constructed in [Ran79]. This can be defined for any space,
but under the stated assumptionsX¥n[CW91] interpretsS (X) geometrically in terms of classical structure
sets of the strata ok .
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with isolated singularities and two-strata spaces withmsted link bundle,
associates to a singular pseudomanif@ldan intersection spacd? X', whose
ordinary rational homology has a nondegenerate intersection gairin

Hi(I’X;Q® H;(I1'X;Q) — Q.

This theory is not isomorphic, albeit related, to intergechomology. It solves
a problem posed in string theory, related to the presenceastiass D-branes
in the course of conifold transitions.

In sheaf-theoretic language, the groups? (X) are given as the hypercoho-
mology groups of a sheaf complé@}(X) over X . If we view this complex
as an object of the derived category (that is, we invert gisasnorphisms),
thenIC}(X ) is characterized by certain stalk/costalk vanishing ciiomak. The
rationalization of the above intersection pairing (2-1induced on hypercoho-
mology by a duality isomorphisiIC % (X'; Q)[n] = ICZ(X; Q) in the derived
category, wheré denotes the Verdier dualizing functor. This means roughly
that one does not just have a global chain equivalence touhlk(ihtersection)
chain complex, but a chain equivalence on every open set.

Let X" be an oriented closed topological stratified pseudomahifdiich
has only even dimensional strata. A wide class of examplgises by complex
algebraic varieties. In this case, the intersection pgif11) allows us to define
a signatures (X) by using the two complementary middle perversitieands:

k 23 456 789
mk) 0 0 1 1 2 2 3 3
iky 01 1 2 2 3 3 4

Sincem(k) = n(k) for even values ok, and only these values are relevant for
our present, we haveIH,;’}z(X) = IH:/Z(X). Therefore, the pairing (2-1)
becomes

TH? (X Q) ® IH),(X;Q) — Q

(symmetric ifn/2 is even), that is, defines a quadratic form on the vector space
IH,;;’/Z(X; Q). Leto(X) be the signature of this quadratic form. Goresky and
MacPherson show that this is a bordism invariant for bordishat have only
strata of even codimension. Sink&}, (X) = IC;(X), the intersection pairing

is induced by a self-duality isomorphis®IC 3, (X; Q)[n] = IC},(X; Q). This

is an example of aelf-dual sheaf
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3. Witt spaces

To form a bordism theory based on pseudomanifold cycles,con&l con-
sider bordism based on all (say topological, or PL) closedigemanifolds,

Q3lIpseudomidpyy — (1 R Y] | X a pseudomanifol}),

where the admissible bordisms consist of compact pseudéotimwith col-
lared boundary, without further restrictions. Now it is irediately clear that
the associated coefficient groups vanigj PSeU%°™%nt — 0, % > 0, since any
pseudomanifoldX is the boundary of the cone aki, which is an admissible
bordism. Thus this naive definition does not lead to an istérg and useful
new theory, and we conclude that a subclass of pseudom@sifials to be se-
lected to define such theories. Given the results on midalespsty intersection
homology presented so far, our next approach would be totdéle class of all
closed pseudomanifolds with only even codimensionalastrat

YY) ={IXx R Y] | X has only even codim straja
(and the same condition is imposed on all admissible bomgismVhile we
do know that the signature is well-defined &f"(pt), this is however still
not a good theory as this definition leads to a large numbereofrgtrically
insignificant generators. Many operations (such as coningfmement of the
stratification) do introduce strata of odd codimension, saeed to allow some
strata of this kind, but so as not to destroy Poigcduality. In [Sie83], Paul
Siegel introduced a class of oriented stratified PL pseuddoids calledWitt
spacesby imposing the condition thdtHr;;’iddle(Link(x); Q) = 0 for all points
x in odd codimensional strata of. The suspensio’ = YCP? has two
singular points which form a stratum of odd codimensioriThe link is CP?
with middle homologyH; (CP?) = 0. HenceX 7 is a Witt space. The suspension
X3 = ¥ T? has two singular points which form a stratum of odd codimamsi.
The spaceX? is not Witt, since the middle Betti number of the lidi is 2. In
sheaf-theoretic language, a pseudomaniftles Witt if and only if the canon-
ical morphismIC}, (X;Q) — IC;(X;Q) is an isomorphism (in the derived
category). ThuslC, (X Q) is self-dual on a Witt space, andf is compact,
we have a nonsingular intersection pairii™ (X; Q) ® IH™ ,(X; Q) — Q.
Let 2Mt(Y) denote Witt space bordism, that is, bordism of closed ce@nt
Witt spacesY mapping continuously int®. Admissible bordisms are compact
pseudomanifolds with collared boundary that satisfy th& @gindition, together
with a map intoY .

When is a Witt spac&™” a boundary? Suppose the dimensias odd. Then
X =0dY with Y = coneX. The coneY is a Witt space, since the cone-point is
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a stratum of even codimension I This shows thaﬂ‘z",’jtjrl (pt) = 0 for all k.
In particular, the de Rham invariant does not survive2ifi' (pt).

Let W(Q) denote the Witt group of the rationals. Its structure is knamd
given by

WQ =Wz e P WZ/p).
p prime

whereW(Z) = Z via the signatureW(Z/,) = Z/,, and forp # 2, W(Z/p) =
Z/4 or Z/, & Z/5. Sending a Witt spacé&*¥ to its intersection form on
IHj}((X; Q) defines a bordism-invariant eleman{.X’) € W(Q). Siegel shows
that the induced map : 2% (pt) — W(Q) is an isomorphism fok > 0. In
dimension zero we ge®¥'™ = Z. If X has dimension congruedtmodulo4,
then X bounds a Witt space by singular surgery on a symplectic basihe
antisymmetric intersection form. ThugM® = 0 for » not congruend mod4.
SinceW(Q) is just another name for the L-group** (Q) and L™ (Q) = 0 for n
not a multiple of4, we can summarize Siegel’s result succinctly as saying that
Wt (pt) ~ L*(Q) in positive degrees. By the Brown representability theqgrem
Witt space bordism theory is given by a spectrum MWITT, whiglm fact an
MSO module spectrum, see [Cur92]. (Regard a manifold as agjMce with
one stratum.) By [TW79], any MSO module spectrum becomesdyat of
Eilenberg—Mac Lane spectra after localizingaihus,

MWITT ) ~ K(Z). 0) x | | K(L/ (@ 2). /)

j>0

and we conclude that
2" (V) (2) 2= Ho(Y:Z)2) © @ Hu—j (Y: L (Q)2))-

j>0
(As Z(y) is flat overZ, we haveS« (X)) = (S(2))«(X) for any spectruns.)
Let us focus on the odd-primary situation. Regﬁté, t] as a graded ring with
degqr) = 4. Let 23°(Y) denote bordism of smooth oriented manifolds. Consid-
ering the signature as a map 25°(pt) — Z[1. 1], [M*¥] > o (M )ik, makes
Z[%, 1] into an239(pt)-module and we can form the homology theory

23°(Y) ® gsogy Zl3 1.
On a point, this is
23°(pY) ® gsogy ZL5 - 1] = Z[ 3. 1],

the isomorphism being given B/ */]® at* — ac (M *) %+, Letkos(Y) de-
note connective KO homology, regarded &-graded, noZ/4-graded, theory.
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It is given by a spectrurho whose homotopy groups vanish in negative degrees
and are given by

kos(pt) =4 (b0) =Z® X' 7/, ® 2?7/, @ X2 ® X370 2°7/, & ---,

repeating with8-fold periodicity in nonnegative degrees. Invertiadills the
torsion in degrees and2 mod8 so thatk o« (pt) ®z Z[1] = Z[3, 7]. In his MIT-
notes [Sul05], Sullivan constructs a natural Conner—Figyd isomorphism of
homology theories

23°(Y) ® ooy Zlg. 1] —> kox(Y) @z Z[%].

Siegel [Sie83] shows that Witt spaces provide a geometscri#ion of con-
nective KO homology at odd primes: He constructs a natucshphism of
homology theories

QUM (V) ®2 ZIY] —> kou (V) @2 Z[1] (3-1)

(which we shall return to later). It reduces to the signatwemomorphism on
coefficients, i.e. an elemefy *¥]® a € 2" (pt) ®7 Z[1] maps tous (X)t* e
ko« (pt) ®z Z[3] = Z[5,]. This is an isomorphism, since invertingills the
torsion components of the invariant X)), W(Q)®Z[3] = W(Z)® Z[ 1] = Z[3].
Now Qfo(lf) ® 250 Z[%.1] being a quotient of25°(Y) ®z Z[1.1], yields a
natural surjection

23°0) @z 2% 1] - 22°Y) @ gsogy Zl 3. 1].

Let us consider the diagram of natural transformations

Q300Y) ® gsopy L. 1] —> kox (V) @z Z|3]

i -

2°0Y) ®z 2 3. 1] 2{"™(Y) @z 23],

where the lower horizontal arrow maps an eIen{MtL Y] ® at® to [M x

cp2k /7 Y] ® a. On a point, this arrow thus maps an elemgnt*] ® ar*

to [M* x CP*]® a. Mapping an elemenitM *'] ® ar* clockwise yields
ac (M)t € koy(pt) ®7 Z[3] = Z[%.1]. Mapping the same element coun-
terclockwise gives

ao(M‘” % CPZk)t(4l+4k)/4 — ao(M)tk+l

also. The diagram commutes and shows that away pthe canonical map
from manifold bordism to Witt bordism is a surjection. Ttssa key observation
of [BCS03] and frequently allows bordism invariant caldidas for Witt spaces
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to be pulled back to calculations on smooth manifolds. Thisgple may be
viewed as a topological counterpart of resolution of siagties in complex
algebraic and analytic geometry (though one should poittha there are com-
plex 2-dimensional singular projective toric varieti&éA) such that no nonzero
multiple of X(A) is bordant to any toric resolution of (A)). It is applied in
[BCSO03] to prove that the twisted signaturéX ; S) of a closed oriented Whit-
ney stratified Witt spac&” of even dimension with coefficients in a (Poinegr
local systen$ on X can be computed as the product of the (untwisted) L-class
of X and a modified Chern character of the K-theory signaiigire of S,

o(X;8) = (chiS|k, L« (X)) € Z

where L. (X) € H«(X;Q) is the total L-class off. The higher components
of the producﬁ][S] x N L«(X) in fact compute the rest of the twisted L-class
L.«(X;8). Such twisted classes come up naturally if one wants to steiet
the pushforward under a stratified map of characteristissels of the domain,
see [CS91] and [Ban06c].

4. IP spaces: integral duality

Witt spaces satisfy generalized Poireatuality rationally. |Is there a class
of pseudomanifolds whose members satisfy Poicharality integrally? This
requires restrictions more severe than those imposed onsyaces. Ann-
tersection homology Poincarspace(“IP space”), introduced in [GS83], is an
oriented stratified PL pseudomanifold such that the midéiegrsity, middle
dimensional intersection homology of even dimensiondddisanishes and the
torsion subgroup of the middle perversity, lower middle éivsional intersec-
tion homology of odd dimensional links vanishes. This ctindicharacterizes
spaces for which the integral intersection chain sh€gf(X;Z) is self-dual.
Goresky and Siegel show that for such spaXé&ghere are nonsingular pairings

[H™(X)/ Tors ® IH™ ,(X)/ Tors—> Z
and
TorsIH™(X) @ TorsIH™ . (X) —> Q/Z.

Let £2!P(pt) denote the bordism groups of IP spaces. The signat(x® of the
above intersection pairing is a bordism invariant and iredue homomorphism
2. (pt) > Z. If dim X =n =4k +1, then the number matiof Z/,-summands
in TorsIHz’;;((X) is a bordism invariant, thde Rham invariantR(X) € Z/,
of X. It induces a homomorphism dR2,, ., (pt) — Z/,. Pardon shows in
[Par90] that these maps are both isomorphism# ferl and that all other groups
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2P (pt) = 0, n > 0. In summary, one obtains

Z., n=0(4),
2 (pt) = {Z/z, n=5n=1(4),
0 otherwise.

Let L*(ZG) denote the symmetric L-groups, as defined by Ranicki, of them
ring ZG of a groupG. For the trivial groupG = e, these are the homotopy
groupsr«(L*) = L} (pt) of the symmetric L-spectrumh® and are given by

Z, n=0(4),
Ln(Z€)= {Z/z, n=1(4),
0 otherwise.

We notice that this is extremely close to the IP bordism gsotipe only differ-
ence being &/, in dimensionl. A comparison of their respective coefficient
groups thus leads us to expect that the difference betweagetieralized homol-
ogy theory2!P(Y) given by mapping IP pseudomanifoldscontinuously into
a space’ and symmetrid.*-homologyL; (Y) is very small. Indeed, according
to [Epp07], there exists a mafp: MIP — IL°, where MIP is the spectrum giving
rise to IP bordism theory, whose homotopy cofiber is an EdegbMac Lane
spectrumK(Z/,,1). The map is obtained by using a descriptionldfas a
simplicial £2-spectrum, whosk-th space has its-simplices given by homotopy
classes ofn—k)-dimensionahk-ads of symmetric algebraic Poinéaromplexes
(pairs). Similarly, MIP can be described as a simpligiakspectrum, whos-

th space has itg-simplices given by(n — k)-dimensionak-ads of compact IP
pseudomanifolds. Given these simplicial models, one hasapn-ads of IP
spaces tm-ads of symmetric Poincarcomplexes. On a suitable incarnation of
the middle perversity integral intersection chain sheahaompact IP space,
a Poincagé symmetric structure can be constructed by copying Goleskyn-
metric construction of [Gor84]. Taking global sections aesblving by finitely
generated projectives (observing that the cohomologyeéttion complex is
finitely generated by compactness), one obtains a symnadgebraic Poincar
complex. This assignment can also be done for pairs and bslvesil under
gluing. The symmetric structure is uniquely determinedtbyestriction to the
top stratum. On the top stratum, which is a manifold, the traoton agrees
sheaf-theoretically with the construction used claskidalr manifolds, see e.g.
[Bre97]. In particular, if we start with a smooth orienteds#d manifold and
view it as an IP space with one stratum, then the top stratuheientire space
and the constructed symmetric structure agrees with Résggkmmetric struc-
ture. Modelling MSO and MSTOP as simplici&-spectra consisting of-
ads of smooth oriented manifolds andds of topological oriented manifolds,
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respectively, we thus see that the diagram

MSO —— MIP

| le

MSTOP——L°*

homotopy commutes, where the “symmetric signature map” @IBF L° of
ring spectra has been constructed by Ranicki. (Technjcdlyspaces are PL
pseudomanifolds, so to obtain the canonical map MSMIP, it is necessary
to find a canonical PL structure on a given smooth manifoldis Thpossible
by J. H. C. Whitehead’s triangulation results of [Whi40],evé it is shown that
every smooth manifold admits a compatible triangulatioa 8 manifold and
this PL manifold is unique to within a PL homeomorphism; skse WVJ66].)
It follows that

2300Y) —= 20(Y) (4-1)

| Jo.cr

Q5TOPY) —Li(Y)

commutes. Let us verify the commutativity fér= pt by hand. If« = 4k + 2
or4k + 3, thenlL;, (pt) = L*(Ze) = 0, so the two transformations agree in these
dimensions. Commutativity in dimensidnfollows from 25°(pt) = 0. For

x =4k + 1, k > 0, the homotopy cofiber sequence of spectra

MIP 25 L — K(Z/5, 1)
induces on homotopy groups an exact sequence and hencerarjidism

Take+1(MIP) —> map 4 (L°).

But both of these groups a%/,, whence the isomorphism is the identity map.

Thus if M **+1 is a smooth oriented manifold, thglf 4k +1] e 23+ (PH maps

underg to the de Rham invariant dR/) € L**+1(Ze) = Z/,. Hence the two
transformations agree on a point in dimensidhs+ 1. Again using the exact
sequence of homotopy groups determined by the above cdadibrsgquence,

¢ induces isomorphisms,; (MIP) — 4% (L*). Both of these groups ar®,

so this isomorphism is=1. Consequently, a smooth oriented manifalt*#,
defining an elemerit/ *¢]€ 2IF (pt), maps undep to +o (M) € L**(Ze) =Z,

and it is+o0 (M) when the signs in the two symmetric structures are correctly
matched.

For ann-dimensional Poincér space which is either a topological mani-
fold or a combinatorial homology manifold (i.e. a polyhedmnwhose links of
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simplices are homology spheres), Ranicki defines a carlohicarientation
(M1, € L; (M), see [Ran92]. Its image under the assembly map

Ly (M) 5 L"(Zy (M)

is the symmetric signature* (M), which is a homotopy invariant. The class
[M]y, itself is a topological invariant. The geometric meaningha.°-orienta-
tion class is that its existence for a geometric PoiacasmplexX™”, n > 5,
assembling to the symmetric signature (which any Posncamplex possesses),
implies up to 2-torsion thak” is homotopy equivalent to a compact topological
manifold. (More preciselyX is homotopy equivalent to a compact manifold if it
has arlL*-orientation class, which assembles to Wisble symmetric signature
of X.) Cap product witfM];, induces arl.*-homology Poincd duality iso-
morphism(L*)’ (M) —L: _.(M). Rationally,[M]y. is given by the homology
L-class of M,

[MIL® 1= Ly(M) €Ly(M)®Q = (D Hy—sj(M: Q).
jz0

Thus, we may vieWM |, as an integral refinement of the L-classMf. An-
other integral refinement of the L-class is the signature dlogy orientation
class[M ]sig € Sig,(M ), to be defined below. The identi§[M | = o™ (M)
may then be interpreted as a non-simply connected geraiatizof the Hirze-
bruch signature formula. The localization [@#];, at odd primes is the Sul-
livan orientationA(M) € KO,(M) ® Z[%], which we shall return to later.
Under the map2; ™% (M) — L3 (M), [M]y, is the image of the identity map
(M s M) e 25T,

We shall now applyp in defining anL*-orientation[X];, € L, (X) for an
oriented closed-dimensional IP pseudomanifolti. (For Witt spaces, af.*-

orientation and a symmetric signature has been defined W13$) The iden-
tity map X — X defines an orientation clag¥]p € 2.°(X).

DEFINITION 4.1. ThelL*-orientation[X];, € L, (X) of an oriented closed-
dimensional IP pseudomanifold is defined to be the image pY]p € £2)P(X)
under the map
«(X)

2P S ).
If X = M" is a smooth oriented manifold, then the identity mép — M
defines an orientation clagdf ]so € 25°(M ), which maps tdM i, under the
map

230M) — 2°TF(M) — L) (M).
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Thus, the above definition ¢y, for an IP pseudomanifold” is compatible
with manifold theory in view of the commutativity of diagra(-1). Apply-

ing Ranicki's assembly map, it is then straightforward téirdethe symmetric
signature of an IP pseudomanifold.

DEFINITION 4.2. The symmetric signatuke*(X) € L"(Zm(X)) of an ori-
ented closea-dimensional IP pseudomanifol is defined to be the image of
[X]L under the assembly map

L (X) 5 172 (X)),

This then agrees with the definition of the Mishchenko—Rarsggmmetric sig-
natures* (M) of a manifoldX = M becaused[M ], = o™ (M).

5. Non-Witt spaces

All pseudomanifolds previously considered had to satisfyamishing con-
dition for the middle dimensional intersection homologytbé links of odd
codimensional strata. Can a bordism invariant signaturéefieed for an even
larger class of spaces? As pointed out above, taking the @morepseudoman-
ifold immediately proves the futility of such an attempt dre tfull class of all
pseudomanifolds. What, then, are the obstructions for emigd pseudoman-
ifold to possess Poincarduality compatible with intersection homology?

Let LXK be a collection of closed oriented pseudomanifolds. We tregii-
sion forming a bordism grou@~*, whose elements are represented by closed
orientedn-dimensional stratified pseudomanifolds whose links ard@me-
omorphic to (finite disjoint unions of) elements 6fK. Two spacesX and
X' represent the same bordism clagg] = [X'], if there exists an(n + 1)-
dimensional oriented compact pseudomanifold-with-baupd ! such that
all links of the interior ofY are inLX anddY =~ X LU—X’ under an orientation-
preserving homeomorphism. (The boundary is, as alwayse tcobared in a
stratum-preserving way.) If, for instance,

LK ={S! s%2 83 .. 1,
then 5% is bordism of manifolds. If
LK = 0ddu{L? | IH"(L;Q) = 0},

where Odd is the collection of all odd dimensional orientexed pseudoman-
ifolds, then25% = QW The question is: Which other spaces can one throw
into thisLX, yielding an enlarged collectiohX’ > LX, such that one can still
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. . . . . / .
define a bordism invariant signature 25X — Z so that the diagram

i o
Q*\{Vltt =7

!
QEx

commutes, wher@WVit — 2£X" is the canonical map induced by the inclusion
LXK C LK'? Note thatr (L) = 0 for every L € LK. Suppose we took apX’
that contains a manifold P with(P) #0, e.g. P = CP?**. Then[P]=0¢€ 2%,
since P is the boundary of the cone aR, and the cone o is an admissible
bordism in25X", as the link of the cone-point i8 and P € LXK’. Thus, in the
above diagram,

[P]—% 0 (P) #0.

This argument shows that the desired diagonal arrow canigitfer any col-
lection LXK’ that contains any manifolds with nonzero signature. Thuswee
naturally led to consider only links with zero signatureattlis, links whose
intersection form on middle dimensional homology posseadeagrangian sub-
space. As you move along a stratum of odd codimension, thageahgian
subspaces should fit together, forming a subsheaf of thelenitichensional
cohomology sheadfl associated to the link-bundle over the stratum. (Actually,
no bundle neighborhood structure is required to do this.q 8atural language
in which to phrase and solve the problem is sheaf theory.

From the sheaf-theoretic vantage point, the statementtspaceX” does
not satisfy the Witt condition means precisely that the cécad morphism
IC},(X) — IC;(X) from lower to upper middle perversity is not an isomor-
phism in the derived category. (We are using sheaves of ezbvspaces now
and shall not indicate this further in our notation.) Thuarthis no way to intro-
duce a quadratic form whose signature one could take, ustagsection chain
sheaves. But one may ask how close to such sheaves one midit gsing
self-dual sheaves o. In [Ban02], we define a full subcatego§/D(X) of
the derived category off, whose object§” satisfy all the axioms thd€ ; (X)
satisfies, with the exception of the last axiom, the costalkishing axiom. This
axiom is replaced with the requirement tt&itbe self-dual, that is, there is an
isomorphismDS’[n] = S, just as there is folC;, on a Witt space. Naturally,
this category may be empty, depending on the geometty.o60 we need to
develop a structure theorem 81D (X)), and this is done in [Ban02]. It turns
out that every such obje&f interpolates betweel® ;. andIC, i.e. possesses a
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factorizationlC ;;, — S* — IC, of the canonical morphism. The two morphisms
of the factorization are dual to each other. Note that in g&dtwo strata case,
the mapping cone of the canonical morphism is the middle watogy sheaf
H of the link-bundle. We prove that the mapping cond®}, — S°, restricted
to the stratum of odd codimension, is a Lagrangian subskedf so that the
circle to the above geometric ideas closes. The main re§Ban02] is an
equivalence of categories betwe8®(X) and a fibered product of categories
of Lagrangian structures, one such category for each strafuodd codimen-
sion. This then is a kind of Postnikov system f®D(X), encoding both the
obstruction theory and the constructive technology to rfeture objects in
SD(X).

SupposeX is such thatS D (X)) is not empty. An objec®’ in SD(X) defines
a signaturer (S°) € Z by taking the signature of the quadratic form that the self-
duality isomorphisniDS’[n] =~ S* induces on the middle dimensional hyperco-
homology group ofS’. Since restricting a self-dual sheaf to a transverse (to the
stratification) subvariety again yields a self-dual sheethe subvariety, we geta
signature for all transverse subvarieties and thus anséla(S’) € Hy (X; Q),
using maps to spheres and Serre’s theorem as indicated begiening. We
prove in [Ban06b] thal . (S"), in particularo (S*) = Ly(S"), is independent of
the choice ofS* in SD(X). Consequently, a non-Witt space has a well-defined
L-classL.(X) and signature (X), providedSD(X) is not empty.

Let Sig,(pt) be the bordism group of pairsY,S’), where X is a closed
oriented topological or Plz-dimensional pseudomanifold a8 is an object
of SD(X). Admissible bordisms are oriented compact pseudomasieith-
boundaryY”*1, whose interior int’ is covered with an object a§D(intY)
which pushes to the given sheaf complexes on the boundaegeldgroups have
been introduced in [Ban02] under the nafg?. Let us compute these groups.
The signaturg X, S’) — o (S") is a bordism invariant and hence induces a map
o : Sigy, (pt) — Z. This map is onto, since e.gCP2k, Rep2x [4k]) (and disjoint
copies of it) is in Sig, (pt). However, contrary for example to Witt bordism,
o is also injective: Suppose(X,S’) = 0. Let Y*k+! pe the closed cone on
X. Define a self-dual sheaf on the interior of the puncturededoy pulling
backS® from X under the projection from the interior of the punctured cone
X x(0,1),to X. According to the Postnikov system of Lagrangian structime
SD(intY), the self-dual sheaf on the interior of the punctured corlehave
a self-dual extension i D(intY) if, and only if, there exists a Lagrangian
structure at the cone-point (which has odd codimendibnit 1 in Y). That
Lagrangian structure exists becaugeX,S’) = 0. Let T* € SD(intY) be any
self-dual extension given by a choice of Lagrangian stmectlthend(Y, T*) =
(X, S%) and thud (X, S*)] = 0 in Sig,, (pt). Clearly, Sig,(pt) = 0 for n # 0(4)
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because an anti-symmetric form always has a Lagrangiapaoésnd the cone
on an odd dimensional space is even dimensional, so in treesss ¢here are
no extension problems at the cone point — just perform a te@-Goresky—
MacPherson—Deligne extension. In summary then, one has

s = [ 1200

(Note that in particular the de Rham invariant has been tigand the signature
is a complete invariant for these bordism groups.) Minatap4], [Min06]
takes this as his starting point and constructs a bordisoryteig, (—), called
signature homologywhose coefficients are the above groups. §0. Elements
of Sig,(Y') are represented by paif&’, S’) as above together with a continuous
map X — Y. For a detailed proof that Sjg—) is a generalized homology
theory when PL pseudomanifolds are used, consult the appehfBan06a].
Signature homology is represented by an MSO module sped#8is, which

is also a ring spectrum. Regarding a smooth manifold as adpseanifold
with one stratum covered by the constant sheaf of rackncentrated in one
dimension defines a natural transformation of homology riee@2:°(—) —
Sig,(—). Thus, MSIG is2-integrally a product of Eilenberg—Mac Lane spectra,

MS|G(2) =~ 1_[ K(Z(z),4j).
Jj=0

As for the odd-primary situation, the isomorphism Siof) ®z Z[%] — Z[%, t]
given by[(X*¥, S")] ® a — ao (S")t*, determines an identification

Q50(Y) ® gsogy Sith (P ®2 Z[L] —> 25°(Y) ® gsogpy ZIL. 1.

A natural isomorphism of homology theories
25°(Y) ® gso(py Sig (P ®2 Z[L] —> Sig, (V) ®z Z[1]

is induced by sending 5 ¥]1® [(X, )] to [(M x X,P", M x X — M 2>
Y)], whereP® is the pullback sheaf a8 under the second-factor projection.
Composing, we obtain a natural isomorphism

259(-) ® gsopy ZLL . 1] —> Sig, () @z Z[L],

describing signature homology at odd primes in terms of folthbordism.
Again, it follows in particular that the natural map

2:°0Y) ®2 Z[%. 1] — Sig,(Y) ®2 Z[1]
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is a surjection, which frequently allows one to reduce bordinvariant calcu-
lations on non-Witt spaces to the manifold case. We obsehisdn [Ban06a]
and apply it there to establish a multiplicative charast&riclass formula for the
twisted signature and L-class of non-Witt spaces. X&tbe a closed oriented
Whitney stratified pseudomanifold and &lbe a nondegenerate symmetric local
systemonX. If SD(X)is notempty, thatisX possesses Lagrangian structures
along its strata of odd codimension so tiiat(X) € H.(X; Q) is defined, then

L«(X;8) = CHS]x N Ly (X).

For the special case of the twisted sighatmé&’; S) = Ly(X; 8), one has there-
fore _
0(X:8) = (chi8]x. L(X)).

We shall apply the preceding ideas in definingudlivan orientationA(X)
kox(X) ®Z[%] for a pseudomanifoldl that possesses generalized Poiaahr-
ality (that is, its self-dual perverse categdy) (X ) is not empty), but need not
satisfy the Witt condition. In [Sul05], Sullivan defined fan oriented rational
PL homology manifoldM an orientation clasg (M) € ko (M) ®Z[%], whose
Pontrjagin character is the L-clags (M ). For a Witt space&™, a Sullivan class
AX)e ko*(X)®Z[%] was constructed by Siegel [Sie83], using the intersection
homology signature of a Witt space and transversality talypce the requisite
Sullivan periodicity squares that represent element& 6f% (N, dN) ® Z[%],
where N is a regular neighborhood of a codimensitn PL-embedding ofY
in a high dimensional Euclidean space. An elemettdft (N, dN) ®Z[%] cor-
responds to a unique elementin, (X) ® Z[%] by Alexander duality. Siegel's
isomorphism (3-1) is then given by the Hurewicz-type map

V(YY) ® Z3l—kox(Y) ® Z[ 3]
X L y]®l e fAX),
where f; : ko (X) ® Z[1] - ko«(Y) ® Z[1]. In particular, the transformation
(3-1) maps the Witt orientation clag® lwix € 2V (X), given by the identity
map f =idy : X — X, to A(X).

REMARK 5.1. In[CSW91], there is indicated an extension to contisLactions
of a finite groupG on a Witt spaceX . If the action satisfies a weak condition
on the fixed point sets, then there is a homeomorphism imviaciassA (X)

in the equivariant KO-homology oY away from2, which is the Atiyah—Singer
G-signature invariant for smooth actions on smooth manéfold

Let P be a compact polyhedron. Using Balmet#periodic Witt groups of tri-
angulated categories with duality, Woolf [Wo008] definesugpsW.£ (P), called
constructible Witt groups o because the underlying triangulated categories
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are the derived categories of sheaf complexes that arerootilste with respect
to the simplicial stratifications of admissible triangigats of P. (The duality
is given by Verdier duality.) Elements o¥,°(P) are represented by symmet-
ric self-dual isomorphismg : S* — (DS")[n]. The periodicity isomorphism
Wi (P) =W, _,(P)is induced by shifting such d twice:

d[2]: S'2] — (DS")[H][2] = (DS")[—2][n + 4] = D(S[2])[n+4].

(Shifting only once does not yield a correct symmetric isgohtsm with respect
to the duality fixed forW(P).) Woolf shows that for commutative regular
Noetherian ringsR of finite Krull dimension in which2 is invertible, for ex-
ampleR = Q, the assignmenP — WE(P) is a generalized homology theory
on compact polyhedra and continuous maps. Kebe a simplicial complex
triangulating P. Relating both Ranicki'§ R, K)-modules on the one hand and
constructible sheaves on the other hand to combinator&vas onk, Woolf
obtains a natural transformation

L*(R)+(K) — W (IK])

(IK| = P), which he shows to be an isomorphism when every finitely geed
R-module can be resolved by a finite complex of finitely gereztdtee R-
modules. Again, this applies t8 = Q. Given a mapf : X" — P from a
compact oriented Witt spack” into P, the pushforwardR f(d) of the sym-
metric self-duality isomorphisni : IC 3, (X) = DIC}, (X)[n] defines an element
[Rf«(d)] € WE(P). This induces a natural map

2N (P) — WE(P),

which is an isomorphism when> dim P. Given anyn > 0, we can iterate the
4-periodicity untiln + 4% > dim P and obtain

Wi (P) = Wi, (P) - = WE, (P) = 20 (P),

wheren + 4k > dim P. Thus, as Woolf points out, the Witt class of any sym-
metric self-dual sheaf o is given, after a suitable even number of shifts,
by the pushforward of an intersection chain sheaf on somé &§ydace. This
viewpoint also allows for the interpretation of L-classediamology operations
WE (=) — Hy(—) or 2V (—) — H,(—). Other characteristic classes arising in
complex algebraic geometry can be interpreted throughra@aransformations
as well. MacPherson’s Chern class of a variety can be defindleaimage
cM(1x) of the functionl y under a natural transformatied)' : F(—) — Hy(—),
where F(X) is the abelian group of constructible functions &n The Baum—
Fulton—MacPherson Todd class can be defined as the im&Ye(tdly) of Ox
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under a natural transformation
tdBMF: Go(—) - Hi(-) ® Q.

whereGy(X) is the Grothendieck group of coherent sheavesiorin [BSY],
Brasselet, Sdirmann and Yokura realized two important facts: First, ¢hex-

ists a sourceK o (VAR/ X') which possesses natural transformations to all three
domains of the characteristic class transformations rmeeti. That is, there
exist natural transformations

Ko(VAR/-) (5-1)
e
F(-) Go(—) 2Y(-).

wheref2Y (X) is the abelian group of Youssin’s bordism classes of sedi-don-

structible sheaf complexes oni. That sourceKy(VAR/ X) is the free abelian

group generated by algebraic morphisffisV — X modulo the relation
v-Lxi=yv-zZL xj+1z L x

for every closed subvariety C V. Second, there exists a unique natural trans-

formation, themotivic characteristic class transformatipn

Tys : Ko(VAR/X) — Hi(X) @ Q[y]

such that
Tyulidy] = T)(TX) N[X]

for nonsingularX’, whereT, (T X) is Hirzebruch’s generalized Todd class of
the tangent bundl@X of X. Characteristic classes for singular varieties are
of course obtained by taking,«[idy]. Under the above three transformations
(5-1),[idx] is mapped td x, [Ox], and[Qx[2 dim X]] (whenX is nonsingular),
respectively. Following these three transformations with td®MF, and the
L-class transformation

2Y(-) = H(-) ®Q,
one obtainsly« for y = —1,0, 1, respectively. This, then, is an attractive uni-
fication of Chern-, Todd- and L-classes of singular complgerlaraic varieties,

see also Yokura'’s paper in this volume, as well as [SY07].
The natural transformation

2V (—) ® Z[1] — Sig, (-) ® Z[1],
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given by covering a Witt spac& with the middle perversity intersection chain
sheafS" = IC, (X), which is an object o§D(X), is an isomorphism because
on a point, it is given by the signature

Q5 (Y ® ZI[3] = L*(Q) @ ZI%] = Z[§] = Sigy () ® Z[3]
(the infinitely generated torsion df*k (Q) is killed by inverting2), and
2" (pt) = 0 = Sig; (pt)

for j not divisible by4. Inverting this isomorphism and composing with Siegel’s
isomorphism (3-1), we obtain a natural isomorphism of haggltheories

D : Sig, (-) ® Z[L] => kox(—) & Z[L].

Let X" be a closed pseudomanifold, not necessarily a Witt spa¢estibisup-
porting self-duality, i.e.SD(X) is not empty. Choose a she@f € SD(X).
Then the paif X, S°), together with the identity majy — X, defines an element
[X]sig € Sig, (X).

DEFINITION 5.2. Thesignature homology orientation claegann-dimensional
closed pseudomanifold with SD(X) # @, but not necessarily a Witt space,
is the elemenkX]sig € Sig, (X).

PROPOSITION5.3. The orientation clags(]sig is well-defined, that is, inde-
pendent of the choice of she@f € SD(X).

PROOF. LetT*® € SD(X) be another choice. In [Ban06b], a bordigi U®),
U® € SD(intY), is constructed betweef,S") and (X, T®). Topologically,
Y is a cylinderY =~ X x I, but equipped with a nonstandard stratification, of
course. The identity mafy — X thus extends over this bordism by taking

Y—>X, (x,t)—x. U

DEFINITION 5.4. TheSullivan orientationof anz-dimensional closed pseudo-
manifold X with SD(X) # @, but not necessarily a Witt space, is defined as

A(X) = D([Xsig® 1) € kow(X) ® Z[1].

Let us compare signature homology ahtthomology away fron2, at2, and
rationally, following [EppQ07] and drawing on work of Tayland Williams,
[TW79]. For a spectrun®, let S(,qg denote its localization at odd primes. We
have observed above that

MSIG) = [ | K(Z).4/)
Jj=0



244 MARKUS BANAGL
and, according to [Epp07] and [Min04],
MS|G(Odd) d bO(odd)-

Rationally, we have the decomposition

MSIG®Q~ [ | K(@.4)).

j=0
Thus MSIG fits into a localization pullback square

|OC(0dd)

MSIG ————— bo(odg)

- |

[1K(Z@y, 4)) 2> 1 K(@Q. 4)).

The symmetric L-spectrurh® is an MSO module spectrum, so itdsantegrally
a product of Eilenberg—Mac Lane spectra,

Lty = [ | K(Z@). 4)) x K(Z/2.4) + D).
j=z0

Comparing this to MSI,, we thus see the de Rham invariants coming in.
Away from 2, IL* coincides withbo,

H"Eodd) >~ bo(odd)»

as does MSIG. Rationally,* is again

L*'®Q~[] K@ 4).

j=0
ThusLL® fits into a localization pullback square

|OC(0dd)

L* bo(odd)
|OC(2)\L l
[1K(Z ), 4)) x K(Z/2,4j + 1) 2 [1K(Q.4)).

The mapi factors as

ot . . A .
[ KZ@.4) = [ | KZ@).4)) x K(Z/2.4) +1) — [ | K(@Q.4)).
Jj=0 j=0 j=0
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where is the obvious inclusion, not touching tBdorsion nontrivially. Hence,
by the universal property of a pullback, we get a mapom signature homology
to L.*-homology,

MSIG —

|0C(2)

L* bo(odd)

IOC(odd)
|OC(2) \L l

[1K(Zey, 4))—5 1 K(Zay, 4)) x K(Z/2,4) + 1) —2= ] K(Q. 4)).

R

A
On the other hand\’ factors as

[1 K@y 4)) x K@/2.4) +1) 22 T] KZy. 4)) = [ K@ 4)).
j=0 j=0 j=0
where proj is the obvious projection. Again using the urseéiproperty of a
pullback, we obtain a map: L* — MSIG. The mapu is a homotopy splitting
for v, v >~ id, since prop: = id. It follows that viau, signature homology is
a direct summand in symmetric’-homology. We should like to point out that
the diagram
MSO —— MSIG
l I
MSTOP——L*
doesnotcommute. This is essentially due to the fact that the de Rinsariant

is lost in Sig,, but is still captured L. In more detail, consider the induced
diagram ons,

£239(pt) — Sigs(pt) = 0
| |
23 TOF(pt) ——— L3 (pY).
The clockwise composition in the diagram is zero, but thentenzlockwise
composition is not. Indeed, le¥> be the Dold manifoldP(1,2) = (S! x

CP?)/(x,z) ~ (—x, Z). Its cohomology ring withZ/,-coefficients is the same
as the one of the untwisted product, that is, the truncat§apmial ring

Z/2le,d]/(c* = 0,d* = 0),
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wherec has degree one anflhas degree two. The total Stiefel-Whitney class
of M3 is

wM)=(1+c)(1+c+d)3,

so that the de Rham invariant R ) is given by dRM) = wows (M) = cd?,
which is the generator. We also see that M) =0, so thatM is orientable. The
counterclockwise composition maps the bordism class of @o#im$-manifold

to its de Rham invariant if.§(pt) = L°(Ze) = Z/,. The Dold manifoldi >
represents the generatioel °] € sto(pt) = 7Z/,. Thus the counterclockwise
composition is the identity map/, — Z/, and the diagram does not commute.
Mapping M ° to a point and using the naturality of the assembly map inslace
commutative diagram

Sigs (M) L0 Ly (M) —A— 1570, M)

ls
. ( t) . =
0 = Sigs (== L3 (p) —5 > L (Ze) = Z/5.

which shows that the signature homology orientation clds3/q [M]sig €
Sigs (M) does not hit thel.*-orientation of M, [M ] € IL3(M) under p, for
otherwise

0=cAu[Mlsig=eA[M], = o™ (M) =dR(M) # 0.

Thus one may take the viewpoint that it is perhaps not prutiteoéll ;[ X]sig
an “L*-orientation” of a pseudomanifold with SD(X) not empty. Nor might
even its image under assembly deserve the title “symmagpi@tire” of X. On
the other hand, one may wish to attach higher priority to trelism invariance
(in the singular world) of a concept such as the symmetrinaigre than to its
compatibility with manifold invariants and nonsingulartdsm invariance, and
therefore deem such terminology justified.

We conclude with a brief remark on integral Novikov problenm®t = be
a discrete group and ldt(x, 1) be the associated Eilenberg—Mac Lane space.
The composition of the split inclusion SigK (r, 1)) < L; (K (r, 1)) with the
assembly map

ALK (1)) > L"(Z)

yields what one may call a “signature homology assembly” map

Asig: Sig, (K (. 1)) > L™(Z),
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which may be helpful in studying an integral refinement oftmwikov conjec-
ture, as suggested by Matthias Kreck: When is the integrahtation class

o [M]sig € Sig, (K (. 1))

homotopy invariant? Hera/” is a closed smooth oriented manifold with fun-
damental groupr = 71 (M); the mapx : M — K(m, 1) classifies the universal
cover of M . Note that when tensored with the rationals, one obtainsl#ssical
Novikov conjecture because rationally the signature hogpobrientation class
[M]sig is the L-classL« (M ). One usually refers to integral refinements such as
this one as “Novikoyproblems because there are groupsfor which they are
known to be false.
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