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An exponential history of functions with
logarithmic growth
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ABSTRACT. We survey recent work on normal functions, including Isrand
singularities of admissible normal functions, the Grifitlisreen approach to
the Hodge conjecture, algebraicity of the zero locus of amabrfunction,
Néron models, and Mumford—Tate groups. Some of the materinaany
of the examples, especially in Sections 5 and 6, are original

Introduction

CONTENTS

Introduction 281

1. Prehistory and classical results 285

2. Limits and singularities of normal functions 300
3. Normal functions and the Hodge conjecture 314
4. Zeroes of normal functions 326

5. The Neron model and obstructions to singularities 344
6. Global considerations: monodromy of normal functions 935
References 368

In a talk on the theory of motives, A. A. Beilinson remarkedttaccording to
his time-line of results, advances in the (relatively youirgd were apparently a
logarithmic function of; hence, one could expect to wait 100 years for the next
significant milestone. Here we allow ourselves to be morarastic: following
on a drawn-out history which begins with Poineatefschetz, and Hodge, the
theory ofnormal functiongeached maturity in the programs of Bloch, Griffiths,
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Zucker, and others. But the recent blizzard of results aedsdinspired by
works of M. Saito on admissible normal functions, and Greaah @riffiths on
the Hodge Conjecture, has been impressive indeed. Besidbelf papers of
theirs, significant progress has been made in work of P. Bigshk. Charles,
H. Clemens, H. Fang, J. Lewis, R. Thomas, Z. Nie, C. Schnellyvdisin,
A. Young, and the authors — much of this in the last 4 yearss $hems like a
good time to try to summarize the state of the art and spexralaiut the future,
barring (say) 100 more results between the time of writing #e publication
of this volume.

In the classical algebraic geometry of curves, Abel's theorand Jacobi
inversion articulate the relationship (involving ratibivaegrals) between con-
figurations of points with integer multiplicities, or zeoyeles, and an abelian
variety known as the Jacobian of the curve: the latter algjeslly parametrizes
the cycles of degree 0 modulo the subgroup arising as dg/siomeromorphic
functions. Given a familyt’ of algebraic curves over a complete base curve
S, with smooth fibers ove§™* (S minus a finite point se&’ over which fibers
have double point singularities), PoinédP1; P2] defineshormal functionsas
holomorphic sections of the corresponding family of JaanbioverS which
behave normally (or logarithmically) in some sense neabthandary. His main
result, which says essentially that they paramettizimensional cycles oA,
was then used by Lefschetz (in the context wh&rés a pencil of hyperplane
sections of a projective algebraic surface) to prove hisofasl, 1) theorem
for algebraic surfaces [L]. This later became the basisHferirtodge conjecture,
which says that certaitopological-analyticinvariants of amalgebraic variety
must come fromalgebraicsubvarieties:

CONJECTUREL. For a smooth projective complex algebraic variety with
Hg" (X)q the classes iHgw (X", Q) of type(m, m), andCH™ (X)) the Chow
group of codimension: algebraic cycles modulo rational equivalentee fun-

damental class mapgH™ (X) ® Q — Hg" (X)q is surjective

Together with a desire to learn more about the structure awCiroups (the
Bloch—Beilinson conjectures reviewed §%), this can be seen as the primary
motivation behind all the work described (as well as the nesults) in this
paper. In particular, if§1 (after mathematically fleshing out the Poirar
Lefschetz story) we describe the attempts to directly gdizer Lefschetz’s
success to higher-codimension cycles which led to Griffiftisel-Jacobi map
(from the codimensiom: cycle group of a varietyX' to its m-th “intermedi-
ate” Jacobian), horizontality and variations of mixed Hedgructure, and S.
Zucker's Theorem on Normal Functions. As is well-known, tireakdown
(beyond codimension 1) of the relationship between cyahek(mtermediate)
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Jacobians, and the failure of the Jacobians to be algelnaant that the same
game played in 1 parameter would not work outside very spea&es.

It has taken nearly three decades to develop the technidarpimnings for
a study of normal functions over ldgherdimensional base: Kashiwara’s
work on admissible variations of mixed Hodge structure [K], Saito’s intro-
duction of mixed Hodge modules [S4], multivariable nilpgdtend Sl -orbit
theorems ([KNU1],[Pe2]), and so on. And then in 2006, Ghiffiand Green
had a fundamental idea tying the Hodge conjecture to theepoesofnontor-
sion singularities— nontrivial invariants in local intersection cohomology —
for multiparameter normal functions arising from Hodgesskss on algebraic
varieties [GG]. We describe their main result and the follgvwork [BFNP]
in §3. Prior to that the reader will need some familiarity witle thoundary
behavior of “admissible” normal functions arising from hay codimension al-
gebraic cycles. The two principal invariants of this bebawre calledimits
andsingularities and we have tried if2 to give the reader a geometric feel for
these through several examples and an explanation of tbise@ense in which
the limit of Abel-Jacobi invariants (for a family of cycleis)again some kind of
Abel-Jacobi invariant. In general through@gtl-2 (and§ 4.5-6) normal func-
tions are “of geometric origin” (arise from cycles), wheséathe remainder the
formal Hodge-theoretic point of view dominates (though jgoture 1 is always
in the background). We should emphasize that the first twiiosescare intended
for a broad audience, while the last four are of a more speeinature; one
might say that the difficulty level increases exponentially

The transcendental (nonalgebraic) nature of intermediat®bians means
that even for a normal function of geometric origin, algéditg of its vanishing
locus (as a subset of the baSg, let alone its sensitivity to the field of def-
inition of the cycle, is not a foreordained conclusion. Bwling a review of
Schmid’s nilpotent and Sj-orbit theorems (which lie at the heart of the limit
mixed Hodge structures introduced §i2), in §4 we explain how generaliza-
tions of those theorems to mixed Hodge structures (and piellparameters)
have allowed complex algebraicity to be proved for the zeod bf “abstract”
admissible normal functions [BP1; BP2; BP3; S5]. We thenresisl the field
of definition in the geometric case, in particular the recesult of Charles
[Ch] under a hypothesis on the VHS underlying the zero lothes,situation
when the family of cycles is algebraically equivalent togeand what all this
means for filtrations on Chow groups. Another reason one avaaint the zero
locus to be algebraic is that the Griffiths—Green normal tioncattached to a
nontrivial Hodge class can then be shown, by an observati@ &chnell, to
have a singularity in the intersection of the zero locus whdhboundanX C S
(though this intersection could very well be empty).
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Now, a priori, admissible normal functions (ANFs) are only horizontatl an
holomorphic sections of a Jacobian bundle o§8r> which are highly con-
strained along the boundary. Another route (besides drbitrems) that leads to
algebraicity of their zero loci is the construction of aéfén model” — a partial
compactification of the Jacobian bundle satisfying a Hatdsgmperty (though
not a complex analytic space in general) and graphing adrtéssormal func-
tions over all ofS. Néron models are taken up §b; as they are better un-
derstood they may become useful in defining global invasiaf{one or more)
normal functions. However, unless the underlying variatib Hodge structure
(VHS) is a nilpotent orbit the group of components of therdh model (i.e., the
possible singularities of ANFs at that point) over a codisien> 2 boundary
point remains mysterious. Recent examples of M. Saito [86]the second
author [Pe3] show that there are analytic obstructions vhievent ANFs from
surjecting onto (or even mapping nontrivially to) the pivatsingularity group
for ANFs (rational(0, 0) classes in the local intersection cohomology). At first
glance this appears to throw the existence of singularitiesriffiths—Green
normal functions (and hence the Hodge conjecture) intmssrdoubt, but in
§5.5 we show that this concern is probably ill-founded.

The last section is devoted to a discussion of Mumford—Tedas of mixed
Hodge structures (introduced by Y. AediAn]) and variations thereof, in partic-
ular those attached to admissible normal functions. Thevatain for writing
this section was again to attempt to “force singularitiesxist” via conditions
on the normal function (e.g., involving the zero locus) viieaximize the mon-
odromy of the underlying local system inside the M-T group; were able to
markedly improve Ande’s maximality result (but not to produce singularities).
Since the general notion of (non)singularity of a VMHS at aitbary point is
defined here (i3 6.3), which generalizes the notion of singularity of a ndrma
function, we should point out that there is another sensehithvthe word
“singularity” is used in this paper. The “singularities” afperiod mapping
associated to a VHS or VMH&e points where the connection has poles or
the local system has monodrom¥ (in the notation above), and at which one
must compute a limit mixed Hodge structure (LMHS). Theset@onthe “sin-
gularities of the VMHS”, nearly always asmoper subset; indeed, pure VHS
never have singularities (in the sens¢ 613), though their corresponding period
mappings do.

This paper has its roots in the first author’s talk at a comfezen honor of
Phillip Griffiths’ 70th birthday at the IAS, and the secondtaar’s talk at MSRI
during the conference on the topology of stratified spaceghioh this volume
is dedicated. The relationship between normal functiomssratifications oc-
curs in the context of mixed Hodge modules and the Deconipositheorem
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[BBD], and is most explicitly on display in the constructiofithe multivariable
Néron model in§5 as a topological group whose restrictions to the strata of a
Whitney stratification are complex Lie groups. We want toththe conference
organizers and Robert Bryant for doing an excellent job &imtogether and
hosting a successful interdisciplinary meeting blendimg@ngst other topics)
singularities and topology of complex varietids? and intersection cohomol-
ogy, and mixed Hodge theory, all of which play a role below. & indebted
to Patrick Brosnan, Phillip Griffiths, and James Lewis folpfid conversations
and sharing their ideas. We also want to thank heartily befierees as well as
Chris Peters, whose comments and suggestions have madebistier paper.

One observation on notation is in order, mainly for expedsclarify the dis-
tinction in some places between monodromy weight filtratiansing in LMHS
and weight filtrations postulated as part of the data of anisslbie variation
of mixed Hodge structure (AVMHS), the former are always dedaoV/, (and
the latterW,) in this paper. In particular, for a degeneration of (purejght»
HS with monodromy logarithn, the weight filtration on the LMHS is written
M (N), (and centered at). While perhaps nontraditional, this is consistent with
the notationM (N, W), for relative weight monodromy filtrations for (admissi-
ble) degenerations of MHS. That is, whBnis “trivial” ( W,, = H, W,,_1 = {0})
it is simply omitted.

Finally, we would like to draw attention to the interestirgent article [Gr4]
of Griffiths which covers ground related to oj§ 25, but in a complementary
fashion that may also be useful to the reader.

1. Prehistory and classical results

The present chapter is not meant to be heroic, but merely @inméroduce
a few concepts which shall be used throughout the paper. Wé f®ould
be convenient (whatever one’s background) to have an wat®- “algebraic”
summary of certain basic material on normal functions armd tinvariants in
one place. For background or further (and better, but muwatheer) discussion
of this material the reader may consult the excellent bobk&] by Lewis and
[Vo2] by Voisin, as well as the lectures of Green and Voisionirthe “Torino
volume” [GMV] and the papers [Grl; Gr2; Gr3] of Griffiths.

Even experts may want to glance this section over since we immuded
some bits of recent provenance: the relationship betwegimfmitesimal and
topological invariants, which uses work of M. Saito; theule®n inhomoge-
neous Picard—Fuchs equations, which incorporates a tmeofdviuller-Stach
and del Angel; the important example of Morrison and Walcleéated to open
mirror symmetry; and the material aki-motivation of normal functions (see
§1.3 and§ 1.7), which will be used in Sections 2 and 4.
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Before we begin, a word on theurrentsthat play a éle in the bullet-train
proof of Abel's Theorem iR 1.1. These are differential forms with distribution
coefficients, and may be integrated agai@$P forms, with exterior deriva-
tive d defined by “integration by parts”. They form a complex conmpyitC-
cohomology (of the complex manifold on which they lie) andimeC *°chains
and log-smooth forms. For example, foilC&° chainI”, the delta currend
has the defining property §; A w = [ w for any C* form w. (For more
details, see Chapter 3 of [GH].)

1.1. Abel’'s Theorem. Our (historically incorrect) story begins with a divisor
D of degree zero on a smooth projective algebraic clfy€; the associated
analytic varietyX " is a Riemann surface. (Except when explicitly mentioned,
we continue to work ove€.) Writing D = > e i 2i € Z(X)hom (i € Z
such that)_n; = 0, p; € X(C)), by Riemann’s existence theorem one has a
meromorphicl-form @ with Res,, (®) = n; (Vi). Denoting by{w, ..., wg} a
basis for2! (X), consider the map

AT
T e e
QUX)Y vy C8
2! Xovam —= 715 il =) (1-1)
D Jr (frov.... [rog)

wherel” € C; (X3 is any chain withI" = D andJ ! (X) is theJacobianof X
The l-currentx := & — 2mwié is closed; moreover, i?ff(D) = 0thenl” may
be chosen so that afl. w; = 0 implies [, k Aw; = 0. We can therefore smooth
k in its cohomology class te = k —dn (w € 2'(X); n e D°(X) =0-currents),
and

f=expl{/ (®—w)} (1-2)
—  2mi[8rgn (1-3)

D
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is single-valued —though possibly discontinuous — by (w8)ile being mero-
morphic — though possibly multivalued — by (1-2). Locallyat e/ /2 dz —
C:z" has the right degree; and so the divisor/fofs preciselyD. Conversely,
if D=(f)= f"1(0)— f~1(c0) for f € C(X)*, then

t— (+)
/f—laﬁ)

induces a holomorphic map! — J!(X). Such a map is necessarily constant
(say, to avoid pulling back a nontrivial holomorpHigorm), and by evaluating
at¢ = 0 one finds that this constant is zero. So we have proved paot (i)

THEOREM 2. (i) [Abel] Writing Z!(X),4 for the divisors of functions e
C(X)*, AJ descends to an injective homomorphism of abelian groups

z! (X)hom 4J
CH'(X)hom'= —po —> J'(X).
(Oomi= 7 52 (X)
(i) [Jacobi inversion]4J is surjective in particular, fixing g, ..., gg € X(C)

the morphisn8yn® X — J!(X) induced byp; +---+ pg Jom16s prean ()
is birational.

Hered~! D means anyt-chain bounding orD. Implicit in (ii) is that J 1 (X) is
an (abelian) algebraic variety; this is a consequence ofamps of the theta
line bundle (onJ ! (X)) induced by the polarization

0: H(X,Z)x H (X, Z) > 7Z

(with obvious extensions 1@, R, C) defined equivalently by cup product, inter-
section of cycles, or integratiofw, n) - [y @ A 7. The ampleness boils down
to the second Riemann bilinear relatiprnvhich says thai O(-,~) is positive
definite on2! (X).

1.2. Normal functions. We now wish to vary the Abel-Jacobi map in families.
Until §2, all our normal functions shall be over a cur¥e Let X be a smooth
projective surface, and : X — S a (projective) morphism which is

(a) smooth off a finite set’ = {s1,...,s.} C S, and

(b) locally of the form(xy, x,) — x1x; at singularities (ofr).

Write X := 77 1(s) (s € S) for the fibers. The singular fiber¥,, (i =
1,...,e) then have only nodal (ordinary double point) singulasitiend writing
X* for their complement we have : X* — §* := S\ Y. Fixing a general
so € S*, the local monodromie®;; € Aut (H'(Xy,,Z) =: Hy,y,) of the local
systemHy, := R!7,Zy+ are then computed by the Picard—Lefschetz formula

(T, =Dy =Y _(v-8))8;. (1-4)
J
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=1

Here{§;} are the Poincé@ duals of the (possibly nondistinct) vanishing cycle
classes= ker{ H; (Xy,.Z) — H;(Xy;,Z)} associated to each node af;; we
note (7§; — I)? = 0. For a family of elliptic curves, (1-4) is just the familiar
Dehn twist:

T(0)=a
T(B)=p+a

(For the reader new to such pictures, the two crossing segnirethe “local
real” picture at the top of the page become the two touchihgritbles”, i.e., a
small neighborhood of the singularity iy, in this diagram.)

Now, in our setting, the bundle of Jacobiafis= | J,. ¢+ J ! (Xs) is a complex
(algebraic) manifold. It admits a partial compactificatimna fiber space of
complex abelian Lie groups, by defining

H(wx,,)
im{H!(Xs;.Z)}

I (X)) =

(with wy, the dualizing sheaf) and, := (Jcg J1(X5). (How this is topolo-
gized will be discussed in a more general contexXtir) The same notation will
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denote their sheaves of sections,

0—>Hy—>F'—-J—0 (on ™) (1-5)
0— HZ,e - (JTB)V - Te—0 (On S), (1'6)

with F := mewy)s, Fe 1= Txwy/s, Hz = R'nyZ, Hy, = R' 7 Z.

DerFINITION 3. A normal function(NF) is a holomorphic section (ovet™) of
J. An extendedor Poincat€) normal function(ENF) is a holomorphic section
(overS) of J.. An NF isextendabléf it lies in im{ H°(S, J.) — H°(S*, J)}.

Next consider the long exact cohomology sequence (seabiarss *)
0— H°(Hz) - H*(FY) - H°(J) - H'(Hz) — H(FV); (1-7)

the topological invariantof a normal functionv € H°(7) is its image[v] €
H'(S* Hy). Itis easy to see that the restriction[of to H'(A* Hz) (4; a
punctured disk abou;) computes the local monodron{y, — /)v (wherev
is a multivalued local lift ofv to FV), modulo the monodromy of topological
cycles. We say that is locally liftable if all these restrictions vanish, i.4.,

(Ts; = I)v e im{(Ty; — I)Hz., }-

Together with the assumption that as a (multivalued, semytibection” of 7,
V. has at worst logarithmic divergence st(the “logarithmic growth” in the
title), this is equivalent to extendability.

1.3. Normal functions of geometric origin. Let 3 € ZI(X)prim be a divisor
properly intersecting fibers ot and avoiding its singularities, and which is
primitive in the sense that eachiy := 3 - X (s € §*) is of degree 0. (In fact,
the intersection conditions can be done away with, by motegdivisor in a
rational equivalence.) Then— AJ(Z,) defines a sectionz of 7, and it can
be shown that a multiplé/v3 = vx3 of v3 is always extendable. One says that
v3 itself is admissible

Now assumer has a sectiow : S — X (also avoiding singularities) and
consider the analog of (1-7) fqr,

0— 7). — H°(J.) — ker{H'(Hz,) — H'(F))} — 0.
HO(HZ,e) ’ ¢
With a bit of work, this becomes
[] Hgl(X)prim
0— JI(X/S)s ENF — 0, (1-8)
( / )fIX Z([Xso])

where the Jacobian of the fixed part(X/S)six — J!(X;) (Vs € S) gives a
constant subbundle @f, and the primitive Hodge classes I-(gf)prim are the
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Q-orthogonal complement of a general fid&y, of 77 in Hg'(X):= H*(X,Z)N
HV(x,0).

PrRoPOSITION4. Letv be an ENFE
(i) If [v] = 0 thenv is a constant section Qffix := | Jcg JUX/S)ix C Te.

(i) If (v =)v3 is of geometric originthen[vs] = [3] ([3] = fundamental clags
(iii) [Poincaré Existence Theorenivery ENF is of geometric origin

We note that (i) follows from considering sectiofas; , . . . , wg } (s) of 7" whose
restrictions to generaX are linearly independent (such do exist), evaluating a
lift © € H°(F)') against them, and applying Liouville’s Theorem. The résglt
constancy of the abelian integrals, by a result in Hodge mh@d. end of§ 1.6),
implies the membership of(s) € Jiix. To see (iii), apply “Jacobi inversion with
parameters” ang;(s) = o (s) (Vi) overS* (really, over the generic point ),

and then take Zariski closuteFinally, whenv is geometric, the monodromies
of alift ¥ (to F,”) around each loop i’ (which determingv]) are just the cor-
responding monodromies of a boundinghain s (0s = Z;), which identify
with the Leray(1, 1) component of3] in H?(X); this gives the gist of (ii).

A normal function is said to benotivated ovelk (K C C a subfield) if it is
of geometric origin as above, and if the coefficients of thignéleg equations of
3, X, m, andS belong tokK.

1.4. Lefschetz (1,1) Theorem.Now take X ¢ PV to be a smooth projective
surface of degred, and{X; := X - H},cp1 alefschetz pencibf hyperplane
sections: the singular fibers have exactly one (nodal) sanigy LetS: X — X
denote the blow-up at the base locBs:= (\,cp1 X5 Of the pencil, andz :
X — P! =: S the resulting fibration. We are now in the situation consider
above, witho (S) replaced byl sectionsE; 11 ---11 E; = B~ (B), and fibers

of genusg = (dgl); and with the added bonus that there is no torsion in any

IHere theg; (s) are as in Theorem 2(ii) (but varying with respect to a parametf at a generic point
v(n) is a special divisor then additional argument is needed.



AN EXPONENTIAL HISTORY OF FUNCTIONS WITH LOGARITHMIC GROWH 291

H'(A¥,Hyz), so that admissible= extendable. Hence, gived € Z!(X)prim
(deg Z - X;,) =0): B*Z is primitive, vz :=vg= z is an ENF, andv 7] = B*[Z]
underp* : Hgl(X)prim — Hgl (X)prim/ Z{[ X5, ])-

If, on the other hand, we start with a Hodge classHg' (X)prim, B*& is (by
(1-8) + Poincae existence) the class of a geometric ENFand[3]=[v3]=*¢
mod Z{[X;,]) implies & = B.p*E = [B«3 =: Z] in Hg'(X)/Z({[Xs,]), which
implies § = [Z’] for someZ’ € Z'(X)prim). This is the gist of Lefschetz’s
original proof [L] of

THEOREMDS. Let X be a(smooth projective algebraisurface The fundamen-
tal class mapCH' (X) [—; Hg! (X) is (integrally) surjective

This continues to hold in higher dimension, as can be seen &o inductive
treatment with ENF’s or (more easily) from the “modern” traant of Theo-
rem 5 using the exponential exact sheaf sequence

2mi(-)
O—>ZX—>(’)X6—> Oy — 0.

One simply puts the induced long exact sequence in the form

HY(X,0)

— X Z) — H'(X,0%) > ker{H*(X,Z) - H*(X,0)} — 0,

and interprets it as
hol hi
00— J1(X) — { oepotid —Hg' () —=0  (1-9)
I
I
A
CH'(X)

where the dotted arrow takes the divisor of a meromorphitiaeof a given
bundle. Existence of the section is a standard but nonitriggault.
We note that fott — P! a Lefschetz pencil ok, in (1-8) we have

H'(X,C)
FIHY(X,C)+ H\(X,Z)’

JHX Py = TN (X) =

which is zero if X is a complete intersection; in that casBF is finitely gen-
erated angg* embeds HY(X)prim in ENF.

EXAMPLE 6. For X a cubic surfacec P3, divisors with support on the7
lines already surject onto HgX) = H?*(X,Z) =~ Z’. Differences of these
lines generate all primitive classes, hence all offif) (= Z°) in ENF (= Z?%).
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Note that7, is essentially an elliptic surface aiNF comprises the (holomor-
phic) sections passing through thé&’s over points of¥. There are no torsion
sections.

1.5. Griffiths’ AJ map. A Z-Hodge structure (HS) of weight comprises a
finitely generated abelian grouf;, together with a descending filtratidi® on
Hc := Hy ®7 C satisfying F? Hc @ F™—P+! H- = Hc, theHodge filtration
we denote the lot byd. Examples include the:-th (singular/Betti + de Rham)
cohomology groups of smooth projective varieties dewith F? H/, (X, C)
being that part of the de Rham cohomology represented ¥yforms on X"
with at least p holomorphic differentials wedged together in each monbmia
term. (These are forms ¢fodge type(p.m—p)+(p+1.m—p—1)+---;
note that{”™ 7 := F? Hc N F=7 Hc.) To accommodaté/™ of nonsmooth
or incomplete varieties, the notion of A-jmixed Hodge structure (MHSY is
required: in addition taF* on V¢, introduce a decreasingeight filtration W,
on Vg such that theGrl¥ Vo, (Gr/¥ (Ve, F*))) areQ-HS of weighti. Mixed
Hodge structures have Hodge group

ng(V) = ker{VZ D FPWZPV(C — Vc}
(for for V7 torsion-free becomek; N F? W, , V) and Jacobian group

Wa, Ve
FPW,, Ve +Wo, Vo N Vg’

JP(V):=

with special cases HY X ) := Hg"™ (H?>" X)) andJ ™ (X ) := J" (H*™1(X)).
Jacobians of HS yield complex tori, and subtori correspagettively to sub-
HS.

A polarizationof a Hodge structuré/ is a morphismQ of HS (defined over
Z; complexification respects®) from H x H to the trivial HSZ(—m) of weight
2m (and type(m,m)), such that viewed as a pairing@ is nondegenerate and
satisfies a positivity constraint generalizing that§ib.1 (thesecond Hodge—
Riemann bilinear relation A consequence of this definition is that undgy
FP is the annihilator ofF~?*! (thefirst Hodge—Riemann bilinear relatidn
abstract form). IfX is a smooth projective variety of dimensidn[s2] the class
of a hyperplane section, write (fér < d, say)

H™ (X, Qprim = ket H™(X.Q) V25 12d=m+2(x ).

This Hodge structure is then polarized BY¢, ) := (—=1)(%) [,  Ann 297K,
[§2] the class of a hyperplane section (obviously since thisJsHsS, the polar-
ization is only defined ovep).
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Let X be a smooth projectiv€m — 1)-fold; we shall consider some equiva-
lence relations on algebraic cycles of codimengioon X. Writing Z™ (X)) for
the free abelian group on irreducible (complex) codimamgicubvarieties of
X, two cyclesZ,, Z, € Z™(X) are homologically equivalent if their difference
bounds aC*° chainI” € C;;f_l (X@" Z) (of real dimensior2m — 1). Algebraic
equivalence is generated by (the projectionXoof) differences of the form
W-(Xx{p1})—W-(X x{p,}) whereC is an algebraic curvéy € Z™ (X xC),
andp, p, € C(C) (or C(K) if we are working over a subfield c C). Rational
equivalence is obtained by takir@ to be rational C = P'), and form =1 is
generated by divisors of meromorphic functions. We wWat&(.X) 4 for cycles
=4t 0, etc. Note that

Zm(X) Zm(X)hom
CH™(X) = —=—2) S CH™(X)pom:= ———2hom
)= 20 Xem Xhom = = X e
and
Zm(X)aIg
H™(X H™(X =
CH™(X)hom D CH™ (X )alg 7" (X )rat

are proper inclusions in general.

Now let W C X x C be an irreducible subvariety of codimensianwith
and ¢ the projections from a desingularization Bf to X andC. If we put
Z; = nX*né{pi}, thenZ, =a4 Z, implies Z| =nhom Z>, which can be seen
explicitly by settingl” := my, 7. (7-p) (sothatz, — Z, = ar).

X

* C

p q

Letw be ad-closed form of Hodge typgj,2m— j —1) on X, for j at least
m. Consider( o = [ k, wherex := nc, n§w is ad-closedl-current of type
(j —m+1,m— j) as integration along thén — 1)-dimensional fibers ofr¢
eats up(m — 1,m — 1). Sox = 0 unless;j = m, and by a standard regularity
theorem in that case is holomorphic. In particular, i€ is rational, we have
[ @ =0. This is essentially the reasoning behind the followingittes
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PROPOSITION7. The Abel-Jacobi map

AT (FmHZm—l(X’ (C))V

CH™(X
( )hom szm_l(X’Z)( )

~ JM(X) (1-10)

induced byZ = oI" — [-(-), is well-defined and restricts to

AJyg F™ H,i;g—l (X,C)
iy x.2) ()

CH™(X)alg = J™(HZE (X)) = J(X), (1-11)

where H 7w~ (X) is the largest sub-HS d >~ (X) contained(after tensor-

ing with C) in ™1™ (X, C) @ H™™~1(X,C). While J”(X) is in general
only a complex torugwith respect to the complex structure of Griffithg;" (X')

is an abelian varietyFurther, assuming a special case of the generalized Hodge
conjectureif X is defined ovek thenJ;" (X) and A Jag(Z) are defined ovetk.

REMARK 8. (i) To see that/;"(X) is an abelian variety, one uses the Kodaira
embedding theorem: by the Hodge—Riemann bilinear relgithe polarization
of H2"~1(X) induces a Khler metrici(u,v) = —i Q(u, v) on Jy(X) with
rational Kahler class.

(i) The mapping (1-10) is neither surjective nor injectinegeneral, and (1-11)
is not injective in general; however, (1-11) is conjectutedye surjective, and
regardless of thislg’g(X ) :=im(A4Jag) € J;"'(X) is in fact a subabelian variety.

(iii) A pointin J™(X) is naturally the invariant of an extension of MHS
0— (H =)H*""Y(X,Z(m)) > E — Z(0) — 0

(where the “twist”Z(m) reduces weight bym, to (—1)). The invariant is
evaluated by taking two liftsz € FOW, Ec, vz, € Wy E7 of 1 € Z(0), so that
vF — vz, € WoHc is well-defined modulo the span &f®W, Hc and Wy Hy,
hence is inJ°(H) = J™(X). The resulting isomorphism

J™(X) 2= Extys(Z(0), H*" ™1 (X, Z(m)))

is part of an extension-class approach4td maps (and their generalizations)
due to Carlson [Ca].

(iv) The Abel-Jacobi map appears in [Gr3].

1.6. Horizontality. Generalizing the setting @f1.2, letX’ be a smooth projec-
tive 2m-fold fibered over a curvé' with singular fiberg Xy, } each of either

(i) NCD (normal crossing divisor) type: locallxy, ..., x2,) NS ]_[j.‘:1 Xj; or
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(if) ODP (ordinary double point) type: locallgyx) — Z] L X ]

An immediate consequence is thatdj] € Aut(HZ”’ 1(XSO,Z)) areunipo-
tent (Ty, —I)" =0 forn > 2m in case (i) om > 2 in case (ii). (If all fibers are
of NCD type, then we say the familyX} of (2m — 1)-folds issemistablg

The Jacobian bundle of interestjs:= | J;c g+« J™(X5) (D Jaig). Writing

(FO =R, Q) C{H =R 0, Q2% 6
S {Hz := R*™ ' nyZa+},

and notingFY = H/F via Q : H>™~1xH?>"~1 - 04+, the sequences (1-5) and
(1-7), as well as the definitions of NF and topological ingat| - |, all carry over.
A normal function of geometric origin, likewise, comes frggme Z" (X)prim
with Zy, := 3+ X5, =nhom 0 (0N Xj,), but now has an additional feature known
ashorizontality, which we now explain.

Working locally over an analytic ball € S* containingsy, let

@ e (Xy, FPH1Qimnst

be a “lift’ of w(s) € (U, F™*1), and I} € C;?E (Xs;Z) be a continuous

family of chains withdl's = Z;. Let P? be a path fromsg to s¢ + ¢; then
I'® :=Jsepe I's has boundary,+¢ — Iy, + Use pe Zs, and

0 o1 -
—/ w(s) = lim —/ @
ds Iy S=50 >0 & FY()+8 FV()
so+¢€
= lim - (/ / / a)(s))
e—>0 & 3ps A

= / (d/dt, dd))—/ (89), (2-12)
S0 S0
Wheren*Zz’_/\d? =d/dt (with Zl_/\d? tangent tol "¢, Z°¢).
The Gauss—Manin connectiéh: H — H® 221, differentiates the periods of
cohomology classes (against topological cycles) in famjlisatisfies Griffiths
transversalityV (F) c F™~! @ 1., and is computed by

Vo = [(d/dt,dd)] ® dt.

Moreover, the pullback of any form of typg™ to Z;, (which is of dimension
m — 1) is zero, so thagfzs0 w(sg) = 0 and sto Vo is well-defined. IfI" €
I'(U,H) is any lift of AJ(Iy) € I'(U, J), we therefore have

5 d _ - ~ d
Q(Vd/dt["a)):%Q(F,W)—Q(F,va)):%/SC()—/AVU)’
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which is zero by (1-12) and the remarks just made. We haversltiumvd/d,f
kills F+1, and soV, 4, I is a local section of 1.

DEFINITION 9. A normal functionv € H°(S*,.7) is horizontal if Vi e
ru,rFm'!e %(1]) for any local lift v € I'(U,’H). Equivalently, if we set
Hhgr := ker(H — g ® 24.) D F™ =1 F, (F)hor 1= 4=, and Jnor :=
(FTZ)W’ then NFor:= H°(S, Jhor).

Much as and J image was encoded in a MHS in Remark 8(ii), we may encode
horizontal normal functions in terms of variations of MHS\MHS V/S*
consists of &-local systenV with an increasing filtration oVg := V7 ®7 Q

by sub- local system#/;V, a decreasing filtration df() := Vg ®g Og+ by
holomorphic vector bundleg’ (= F/V), and a connectioV : V -V ® 2L,
such thatV (V) = 0, the fibers(Vy, Wi, Vs, F?) yield Z-MHS, andV(F/) C
F/=l @ @1, (transversality). (Of course, a VHS is just a VMHS with one
nontrivial Grl-W Vo, and((Hz, H, F*), V) in the geometric setting above gives
one.) A horizontal normal function corresponds to an extans

wt.—1
VHS

—_——
0—Hm)—>E—7Z(0)g= —0 (1-13)

“varying” the setup of Remark 8(iii), with the transvers$alof the lift of vy (s)
(together with flatness afy(s)) reflecting horizontality.

REMARK 10. Allowing the left-hand term of (1-13) to have weight I&san—1
yields “higher” normal functions related to families géneralized(“higher”)
algebraic cycles. These have been studied in [DM1; DM2; Gt will be
considered in later sections.

Animportant result on VHS over a smooth quasiprojectiveelisthat the global
sectionsH(S*,V) (resp.H°(S*, Vr), H°(S*, V¢)) span theQ-local system
(resp. its tensor product wifR, C) of a (necessarily constant) sub-VMHSY,
called thefixed partVik (with constant Jacobian bundigi).

1.7. Infinitesimal invariant. Given v € NFyor, the “V” for various local
liftings patch together after going moduta7™” c F"- 1@ QL. f Vi =V [
for f e I'(U,F™), then the alternate lifo — f is flat, i.e., equals)_; ¢;y;
where{y;} C I'(U,Vy) is a basis and the; are complex constants. Since the
composition { € S*) H?>"~1(X,,R) — H?""1(X;,C) — % is an
isomorphism, we may take the € R, and then they are unique i/Z. This
implies that[v] lies in the torsion group ke (Hz) — H'(Hg)), so that a
multiple Nv lifts to H°(S*, Hr) C Hsx. This motivates the definition of an



AN EXPONENTIAL HISTORY OF FUNCTIONS WITH LOGARITHMIC GROWH 297

infinitesimal invariant

\Y if S$* m—1 1
svemH! (s, Fm S Frl g ol ) o HO (S, Z1522Y)  (1-14)
as the image of € H° (S*, %) under the connecting homomorphism induced
by

0 — CongF" % =1 g 21)[~1] - CondH — H & 2')[~1]

— Hnor —0. (1-15)

PrRoPOSITION1L. If v = 0, then up to torsion[v] = 0 and v is a (constan}
section of Fix.

An interesting application to the differential equatioasigfied by normal func-
tions is essentially due to Manin [Ma]. For simplicity I§t= P!, and suppose
H is generated by € H°(S*, F2~1) as aD-module, with monicPicard—
Fuchs operatorF(V(ss::s%) € C(]P’l)*[V(;s] killing w. Then its periods satisfy
the homogeneous P-F eduatib'}(uSs) fyi o = 0, and one can look at the multi-
valued holomorphic functio® (v, w) (whereQ is the polarization, and is a
multivalued lift of v to Hnor/ F), which in the geometric case is juft. w(s).
The resulting equation

Qri)"F(55)Q (D, w) =: G(s) (1-16)
is called thenhomogeneous Picard—Fuchs equatifrv.

PROPOSITION12. (i) [DM1] G € C(P!)* is a rational function holomorphic on
S*; in the K-motivated settingtaking alsow € H®(P', 7w, p1), and hence
F,overkK), G € K(P')*.

(i) [Ma; Grl]] G =0 < v =0.
ExXAMPLE 13. [MW] The solutions to

(i) {8t - 1'[(58 FOY() =2 VE
are the membrane mtegraf% w(s) for a family of 1-cycles on the mirror
quintic family of Calabi-Yau3-folds. (The family of cycles is actually only
well-defined on the double-cover of this family, as refledbgdhe \/z.) What
makes this example particularly interesting is the “mirdol” interpretation
of the solutions as generating functions of open GromovtéWiinvariants of a
fixed Fermat quintid-fold.
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The horizontality relationivi € F7~1 ® 2! is itself a differential equation,
and the constraints it puts eanover higher-dimensional bases will be studied in
§5.4-5.

Returning to the setting described§it.6, there areanonical extension&,
and F; of H,F* across the; as holomorphic vector bundles or subbundles
(reviewed in§ 2 below); for example, if all fibers are of NCD type thgif =
RZm—lﬁ*Qf/g(log(X\X*)). Writing?

1= v H

we have short exact sequences

He(n
0— Hz, — % — To(hon — 0 (1-17)

e
and SeENF 0,y := H°(S, Je(hon)-

THEOREM14. (i) 3 € Z"(X)prim implies Nv3 € ENFnor for someN € N.
(ii) v € ENFor with [v] torsion impliessy = 0.

REMARK 15. (ii) is essentially a consequence of the proof of Corglin
[S2]. Forv € ENFyqy, 6v lies in the subspace

v
H'(S, F™ - F' ' ® 25 (log X)),
the restriction of
H!($*, 7 5 Fm-l @ QL) — H'(S* . He)
to which is injective.

1.8. The Hodge Conjecture? Putting together Theorem 14(ii) and Proposi-
tion 12, we see that a horizontal ENF with trivial topolodicavariant lies in
HO(S, Jix) =: J™(X /S)six (constant sections). In fact, the long exact sequence
associated to (17) yields

0= J™(X/S)ix — ENFror 23 — 9 (_l)p”m
im{ Hg" ! (Xs,)}

with [v3] = [3] (if v3 € ENF) as before. If¥ Z p! — S is a Lefschetz pencil
on a2m-fold X, this becomes

2Warning: whileH, has no jumps in rank, the stalk Bf, . ats; € X is of strictly smaller rank than at
seS*.
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[-]

m—1
S (X ) ENFnor ———=Hg" (X ) prim & ker{ E?Hgm (()1?3}
V(~)[
AJ CHm(X)prim ve) (id,0) (1_18)

5|

()

Hg™ (X)prim

where the surjectivity ofx) is due to Zucker (compare Theorems 31 and 32 in
§ 3 below; his result followed on work of Griffiths and Bloch &islishing the
surjectivity forsufficiently amplé.efschetz pencils). What we are after (modulo
tensoring withQ) is surjectivity of the fundamental class meégx). This would
clearly follow from surjectivity ofv(.), i.e., a Poincar existence theorem, as in
§1.4. By Remark 8(ii) this cannot work in most cases; howevehave this:

THEOREM 16. The Hodge Conjecture H@:, m) is true for X if J™(X,) =
J™(Xy,)alg for a general member of the pencil

EXAMPLE 17 [Zul]. AsJ? = Jj, is true for cubic threefolds by the work of

Griffiths and Clemens [GC], HQ, 2) holds for cubic fourfolds irP>.

The Lefschetz paradigm, of takinglaparameter family of slices of a primi-
tive Hodge class to get a normal function and constructingcéecby Jacobi
inversion, appears to have led us (for the most part) to a deddn higher
codimension. A beautiful new idea of Griffiths and Green, ¢éodescribed in

§ 3, replaces the Lefschetz pencil by a complete linear sy&péimgher degree
sections ofX) so that din{S) > 1, and proposes to recover algebraic cycles
dualto the given Hodge class from features of the (admissiblenabfunction

in codimensior> 2 on S.

1.9. Deligne cycle-class.This replaces the fundamental add/ classes by
one object. WritingZ(m) := (2ni)™Z, define the Deligne cohomology af
(smooth projective of any dimension) by

Hp (X3, Z(m)) =
H* (Cong{Cig,o( X3 Z(m)) & F"D*(X®") — D*(X3M}[-1]),

andep : CH™(X) — HA™(X, Z(m)) by Z + 27i)™ (Ziop, § 2, 0). One easily
derives the exact sequence

0— J™(X) — H3"(X,Z(m)) — Hg" (X) — 0,

which invites comparison to the top row of (1-18).
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2. Limits and singularities of normal functions

Focusing on the geometric case, we now wish to give the realdasic intu-
ition for many of the objects — singularities &bn models, limits of NF's and
VHS —which will be treated from a more formal Hodge-theargierspective
in later sections. The first part of this section§§2.2—8) considers a coho-
mologically trivial cycle on a 1-parameter semistably degrating family of
odd-dimensional smooth projective varieties. Such a famés two invariants
“at” the central singular fiber:

« the limit of the Abel-Jacobi images of the intersectionshef tycle with the
smooth fibers, and

e the Abel-Jacobi image of the intersection of the cycle withgingular fiber.

We define what these mean and explain the precise sense ih thieig agree,
which involves limit mixed Hodge structures and the Clem&thmid exact
sequence, and links limits o/ maps to the Bloch—Beilinson regulator on
higher K-theory.

In the second part, we consider what happens if the cyclelysamsumed to
be homologically trivialfiberwise In this case, just as the fundamental class of
a cycle on a variety must be zero to definedts$ class, the family of cycles has
a singularity class which must be zero in order to define timé l4J invari-
ant. Singularities are first introduced for normal functi@mising from families
of cycles, and then in the abstract setting of admissiblenabfunctions (and
higher normal functions). At the end we say a few words abbetrelation
of singularities to the Hodge conjecture, thditerin multivariable Neron mod-
els, and the analytic obstructions to singularities discest by M. Saito, topics
which§3,§5.1-2, andy5.3-5, respectively, will elaborate extensively upon.

We shall begin by recasting> from§ 1.9 in a more formal vein, which works
®Q. The reader should note that henceforth in this paper, we twawntroduce
appropriate Hodge twists (largely suppressed ihinto VHS, Jacobians, and
related objects.

2.1. AJ map. As we saw earlier (Section 1), the&J map is the basic Hodge-
theoretic invariant attached to a cohomologically trivéddebraic cycle on a
smooth projective algebraic varielfy/C; say dim(X) =2m—1. In the diagram
that follows, ifc/y,o(Z) =0thenZ = oI for I' (say) a rational’>® (2m —1)-
chain onX®", and [ € (F™H*"~1(X,C))" inducesAJx o(Z).

30wing to our desire to limit preliminaries and/or notatiboamplications here, there are a few unavoid-
able inconsistencies of notation between this and |atéiosec
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HomMys (Q(0). H2"(X, Q(m))) ——— (H>" (X))
CIX
CH™(X) ExtLhMHs (Q(0), K*[2m](m)) 2-1)
. Fm H2m—1 v
ker(cly) —2 Ext!, _ (Q(0). H=1(X,Q(m))) —— J™(X)q = (H2+1)
Q(m)

The middle term in the vertical short-exact sequence is @phic to Deligne
cohomology and Beilinson’s absolute Hodge cohomoldg,i[”(Xa”,Q(m)),
and can be regarded as the ultimate strange fruit of Cadsaork on extensions
of mixed Hodge structures. He#é* is a canonical complex of MHS quasi-

isomorphic (noncanonically) tép; H'(X)[—i], constructed from two general
configurations of hyperplane sectioﬁHi}l.z;”O‘l, {Hj}f.fo‘l of X. More pre-

cisely, looking (for|Z|, |J| > 0) at the corresponding “cellular” cohomology
groups
CI’J~ (X) = H2m—1(X\ U Hiv U Iij\’@)?
H,H . ,
iel jeJ
one sets
L. 1,J .
1.J
[I|—|J |=€—2m+1
refer to [RS]. (Ignoring the description df”*(X') andAJ, and the comparisons
to ¢p, Hp, all of this works for smooth quasiprojectiv€ as well; the vertical
short-exact sequence is true even without smoothness.)

The reason for writingd J in this way is to make plain the analogy to (2-9)
below. We now pass back #-coefficients.

2.2. AJ in degenerating families. To let AJx (Z) vary with respect to a pa-
rameter, consider a semistable degeneration (SSD) overadytia disk

X*k_>X<T)X0 —Ui Y;

L

A*\—> A <_){()}

where Xy is a reduced NCD with smooth irreducible componekis X is
smooth of dimensiom, 7 is proper and holomorphic, and is smooth. An
algebraic cycled € Z™(X) properly intersecting fibers gives rise to a family

ZS::S'XSeZm(Xs), SEA.
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Assumel = [3] € H?™(X) [which implies0 = [Z,] € H>™(Xj)]; then is there
a sense in which

lim Ay, (Zs) = AJx,(Z0)? (2-3)
s—>

(Of course, we have yet to say what either side means.)

2.3. Classical example.Consider a degeneration of elliptic curv€s which
pinches 3 loops in the same homology class to points, yigitinE, threeP!’s
joined at0 andoo (called a “Neron3-gon” or “Kodaira typels” singular fiber).

E, .
coordinates;
pinch loops zZ,
—_

to points

Denote the total space lfyi A. One has a family of holomorphicforms
ws € 21(Ey) limiting to {dlog(zj)}j?.’=1 on Ey; this can be thought of as a
holomorphic section oROﬁ*Qé/A(Iog Ey).

There are two distinct possibilities for limiting behaviehenZ; = ps — g5
is a difference of points. (These do not include the case evbee or both of
Do, qo lies in the intersection of two of thB!’s, since in that cas@ is not
considered to properly intersesb.)

Case (I):
—_T '

Here py andg, lie in the saméP! (the j = 1 component, say): in which case

o [e]®)

Ds
AJEg,(Zy) =/ ws € (C/Z(fasa)s,fﬂsa)s)

s

limits to

q0
/ diog(z,) = log "% ¢ ¢/2ri7.
Po z1(q0)
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Case (II):

??
In this case,py andgy lie in different P! components, in which cage#
[Zo] € H?(X,) [which implies[3] # 0] and we say tha#l J(Z,) is “obstructed”.

2.4. Meaning of the LHS of -3). If we assume only that=[3*]e H>™(X*),
then
AJXS (Zs) € Jm(Xs) (2'4)

is defined for eachh € A*. We can make this into a horizontal, holomorphic
section of a bundle of intermediate Jacobians, which is weashall mean
henceforth by anormal function(on A* in this case).

Recall the ingredients of a variation of Hodge structure 8yldverA*:

H=(H Ho,F*),V), VFPCFr'®j, 0—>H—>%—>‘7—>0,

whereH = R?"~ 17,7 (m) is a local systenHo = H®z O 4+ is [the sheaf of
sections of] a holomorphic vector bundle with holomorphiblsundlesF*, and
these yield HS'sH; fiberwise (notation:Hy = (Hy, Hy(c). Fy)). Henceforth
we shall abbreviaté{» to H.

Then (2-4) yields a section of the intermediate Jacobiamlleun

V3 € F(A*,j).

Any holomorphic vector bundle ovet* is trivial, each trivialization inducing
an extension ta. The extensions we want are the “canonical” or “privileged”
ones (denoted-).); as in§ 1.7, we define an extended Jacobian burgldy

Hr‘; — Jo — 0. (2-5)

0— j«H —

THEOREM 18 [EZ]. There exists a holomorphig € I'(A, J,) extendingys.

Define limy_.o AJx(Zs) := v3(0) in (Je)o, the fiber ovel0 of the Jacobian
bundle. To be precise: sindé! (A, ;.H) = {0}, we can lift thev; to a section
of the middle term of (2-5), i.e., of a vector bundle, evatuat0, then quotient
by (7xH)o-



304 MATT KERR AND GREGORY PEARLSTEIN
2.5. Meaning of the RHS of 2-3). Higher Chow groups

“admissible, closed” codimension| p
algebraic cycles otk x A"

CH?(X,n) .= { . . .
(X, m) “higher” rational equivalence

were introduced by Bloch to compute algebr&ig-groups ofX’, and come with
“regulator maps” re§” to generalized intermediate Jacobians

H?*P~"~1(X,C)

JP(X) = .
(X) FPH?2P—1=1(X C)+ H2P—"=1(X,Z(p))

(Explicit formulas for red"" have been worked out by the first author with J.
Lewis and S. Miller-Stach in [KLM].) The singular fibeX, has motivic coho-
mology groupst s, (X, Z(-)) built out of higher Chow groups on the substrata

Y =1 o ¥y = H|1|=e+1(m Yi),

iel
(which yield a semi-simplicial resolution dfy). Inclusion induces
l(>)k : CH™(X)hom— H/%/lm (Xo, Z(m))hom
and we defin€Z, :=153. The AJ map

H>" (X, C)

FmH>™=1(X,,C)+
{ H>" =1 (Xo, Z(m)) }

AJxy + HE{'(Xo, Z(m))hom — J™ (Xo) :=

is built out of regulator maps on substrata, in the sensethigasemi-simplicial
structure ofX,, induces “weight” filtrationsM, on both side$ and

M 4J
G, HYM (X0, Z(m)hom —> G, J™(Xo)
boils down to

m. L
(subquotient oCH™ (Y14, ¢)} 9% (subquotient o7 (v14)).

4For the advanced reader, we note thaWff is Deligne’s weight filtration onH 2"~ (X, Z(m)), then
M_yJ"(Xo) := Extlyus(Z(0), M_,—y H*"~1(Xy, Z(m))). The definition of theM, filtration on
motivic cohomology is much more involved, and we must refierreader to [GGK, sec. Ill.A].
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2.6. Meaning of equality in 2-3). Specializing (2-5) t®, we have
(He)o
(Fe)o + (JxH)o
where(j«H)q are the monodromy invariant cycles (and we are thinking ef th

fiber (H.)o over0 as the limit MHS ofH, see next subsection). H. Clemens
[CI1] constructed a retraction map X — X inducing

(13(0) €) Jim (Xy) := (Te)o =

HP=1 (X, Z) —— H™= (X, Z) (2-6)
F(A*,H)
“ rA, j«H)

(J*I@DO

fllizrgn_l (XS7 Z)
(wherepu is a morphism of MHS), which in turn induces
T(12) : I™(Xo) = Jim (X).
THEOREM19 [GGK].  lims_¢ AJx, (Zs) = J (1) (4Jx,(Z0)) .

2.7. Graphing normal functions. On A*, let T : H — H be the counterclock-
wise monodromy transformation, which is unipotent sina diegeneration is
semistable. Hence the monodromy logarithm

2m—1

N:=log(T)= )

k=1

(_l)k—l A
(-1

is defined, and we can use it to “untwist” the local syste:

logs

——N ) Hp — He.

2mi ) ° ¢

In fact, this yields a pasis for, and defines, the privilege@msion,. More-
over, sinceV acts ontlg, it acts orH,, and therefore ofiH,)o = HZ" 1 (Xj),

lim
inducing a “weight monodromy filtrationM, . Writing H = H2"~!(X,,Q(m)),
this is the unique filtration{0} C M_,,, C --- C M,,,—» = H satisfying

HQ = H@ = exp(—
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N(My) C My, andN*: G™ _ H 3 GrM _, H for all k. In general it
is centered about the weight of the original variation (o& tonvention in the
Introduction).

ExAMPLE 20. In the “Dehn twist” example ¢&f1.2, N = T'—1 (with N («) =0,
N(B)=«a)sothatt =«a, f = — ';’%a are monodromy free and yield &y -

basis ofH.. We haveM_; = {0}, M_, = M_{ = {a), My = H.
REMARK 21. Rationally, kefN) = ker(T' — 1) even whenN # T —1I.
By [CI1], © mapsH>™~1(X,) onto kekN) c H?" 1 (X,) and is compatible

lim

with the two M,’s; together with Theorem 19 this implies

THEOREM 22. limy_,0 AJx,(Zs) € J™ (ker(N)) (C Ji (Xy)). (Here we re-
ally mean ke¢T — I') so thatJ™ is defined integrally.)

Two remarks:

« This was not visible classically for curveg {((ker(NV)) = J”1m (X5)).

« Replacing(J;)o by J™(ker(N)) yields 7/, which is a “slit-analyti¢ Haus-
dorff topological space”{. is nhon-Hausdorff because in the quotient topol-
ogy there are nonzero points (. )o that look like limits of points in the
zero-section of7,, hence cannot be separated frora (7.),.%) This is the
correct extended Jacobian bundle for graphing “unobgdidin the sense
of the classical example) or “singularity-free” normal &tions. Call this the
“pre-Néron-model”.

2.8. Nonclassical exampleTake a degeneration of Fermat quintic 3-folds

4 4
X = semistable reductioof {s > zf =] zk} C P*x A,
=1 k=0
so thatXj is the union of5 P3’s blown up along curves isomorphic 6 =
{x* + »° + 2> = 0}. Its motivic cohomology group3,(Xo, Q(2))nom has
Grf)” isomorphic to 10 copies of Pl¢C), Grﬁl1 isomorphic to 40 copies dt*,
G, = {0}, and G, =~ K"Y(C). One has a commuting diagram

AJx,
H b (X0, Q(2)hom —— J*(Xo)g === J2(ker(N))q
(2-7)

Ki3nd ©) reg?

Im

e C/Oni) 0 R

5That is, each point has a neighborhood of the form: open thailig0 in C4*2 intersected with
((C\{0}) x C?) U ({0} x C°), wherec < b.

6See the example before Theorem 11.B.9 in [GGK].
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and explicit computations with higher Chow precycles in KG&4] lead to the
result:

THEOREM 23. There exists a family of-cycles3 € CH?(X)nomg Such that
Zy € M_3Hy, and Im(AJx,(Zo)) = D>(~/=3), where D, is the Bloch-
Wigner function

Hence, lim_¢ AJx,(Zs) # 0 and so the generdk; in this family is not
rationally equivalent to zero. The main idea is that the fawmwii cycles limits to
a (nontrivial) higher cycle in a substratum of the singulbefi

2.9. Singularities in 1 parameter. If only [Z] =0 (s € A*), and[3*] = 0 falls,
then

lim AJ is obstructed

s—>0

and we say3(s) has a singularity (at = 0), measured by the finite group

G

lle

Im(To—I)NHy  ( Z/3Zin the classical example,
Im(Tz—1)  \(Z/5Z)* in the nonclassical one.

(The (Z/57Z)3 is generated by differences of lines limiting to distinctrgmo-
nents ofXy.) The Neron model is then obtained by replacisigker(V)) (in the
pre-Neron-model) by its product witlyy (this will graphall admissible normal
functions, as defined below).

The next example demonstrates the “finite-group” (or tavsi@ture of singu-
larities in the 1-parameter case.§Ia.10 we will see how this feature disappears
when there are many parameters.

EXAMPLE 24. Leté € C be general and fixed. Then
Cy={x>+p*+s(x?p?+§) =0}

defines a family of elliptic curves (iR! x P') over A* degenerating to a&on
2-gon ats = 0. The cycle

Zy = (i,/ L+és 1) - (—i L+és 1)
1+ 1+
is nontorsion, with points limiting to distinct componen{See figure on next
page.)
Hence,AJc,(Zs) =: v(s) limits to the nonidentity component{C*) of the

Néron model. The presence of the nonidentity component regite obstruc-
tion (observed in case (II) &2.3) to graphing ANFs with singularities.
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Neron

T(V)=v+a 2-gon

Two remarks:

« By tensoring withQ, we can “correct” this: writer, 8 for a basis for/ ! (Cy)
andN for the monodromy log abo@t which sends +— 0 andf — 2«. Since
N(v)=a=N($B), v— 1B will pass through the identity component (which
becomes isomorphic t6/Q(1) after tensoring withQ, however).

 Alternately, to avoid tensoring witf), one can add a-torsion cycle like

1 1 L1 1
Ty = (i£%,6%) - (<if*, —£79).
2.10. Singularities in 2 parameters.

ExAMPLE 25. Now we will effectively allowé (from the last example) to vary:
consider the smooth family

Csr = (X242 +5x2y2 +1=0}

over(A*)2. The degenerations— 0 ands — 0 pinch physically distinct cycles
in the same homology class to zero, so tbgl is an/,; we have obviously
that Ny = N, (both sendB — o > 0). Take

N A e
e (1) - (1T

for our family of cycles, which splits between the two coments of thel, at
(0,0). See figure at top of next page.
Things go much more wrong here. Here are 3 ways to see this:

* try to correct monodromy (as we did in Example 24 wi{léﬂ): Ni(v) =«,
N1(B) =«a, Na(v) =0, No(B) = « implies an impossibility;

e in Ty (from Example 1)£!/4 becomes (herely /s)'/*—so its obvious ex-
tension isn’t well-defined. In fact, therem® 2-torsion family of cycles with
fiber over(0, 0) a difference of two points in the two distinct components of
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Co,o (that is, one that limits to have the same cohomology clagg3Co o)
asZo,o).
« take the “motivic limit” of AJ atz = 0: under the uniformization ofs o by

Pl 5 2z 2iz
Z > , .
1 —sz2" 14522

(La+vTF9) - (Fa-vT+9) — Zo.

Moreover, the isomorphisfi* ~ K (C) = M_IHJ%A(CS,O,Z(I)) (> Zs0)

sends
1+«/1+s€(c*
1—V1+s

to Z,. 0, and ats = 0 (considering it as a precycle i ! (A, 1)) this obviously
has a residue.

The upshot is thatontorsionsingularities appear in codimension 2 and up.

2.11. Admissible normal functions. We now pass to the abstract setting of
a complex analytic manifold (for example a polydisk or smooth projective
variety) with Zariski open subsef, writing D = S \ S for the complement.
Throughout, we shall assume thgt(S) is finite andr (S) is finitely generated.
LetV = (V, V). F*, W,) be a variation of MHS oves.
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Admissibilityis a condition which guarantees (at eack D) a well-defined
limit MHS for V' up to the action* — exp(A log T) F* (A € C) of local unipo-
tent monodromied” € p(r1(Ux N S)). If D is a divisor with local normal
crossings ak, and) is admissible, then a choice of coordinatgs. . ., s, on
an analytic neighborhoo = A* of x (with {s; ---s, = 0} = D) produces
the LMHS (ysV)x. Here we shall only indicate what admissibility, and this
LMHS, is in two cases: variations of pure HS, and generalimathal functions
(cf. Definition 26).

As a consequence of Schmid’s nilpotent- ang ®lkbit theorems, pure varia-
tion is always admissible. W = is a pure variation in one parameter, we have
(at least in the unipotent case) already definéfj,” and now simply replace
that notation by (v H)". In the multiple parameter (or nonunipotent) setting,
simply pull the variation back to an analytic curde — (A*)” x Ak—m c §
whose closure passes throughand take the LMHS of that. The resulting
(¥sH)« is independent of the choice of curve (up to the action ofllotan-
odromy mentioned earlier). In particular, lettifd/;} denote the local mon-
odromy logarithms, the weight filtratiod/, on (ysH) is just the weight mon-
odromy filtration attached to their suni := ) a; N; (where the{q;} are arbi-
trary positive integers).

Now letr € N.

DEFINITION 26. A (highen normal functionover S is a VMHS of the formy
in (the short-exact sequence)

0—>H—V—7Zg(0)—0 (2-8)

whereH is a [pure] VHS of weight(—r) and the [trivial, constant] variation
Zs(0) has trivial monodromy. (The terminology “higher” only afgd when
r > 1.) This is equivalent to a holomorphic, horizontal sectidbthe generalized
Jacobian bundle

H

JH) = .
0= Fon

EXAMPLE 27. Given a smooth proper famify e S, with xo € S. A higher al-
gebraic cycle®d e CHP (X, r—1)prim:=ke{CH?(X,r—1) - CH? (Xx,,r—1)

— Hg?"~1(Xy,)} yields a section off (R??~" 7,C ® Og) =: JP"~1; this is
what we shall mean by énigher) normal function of geometric origih (The
notion ofmotivation overk likewise has an obvious extension from the classical
1-parameter case i§1.)

"Note that HE""~! (Xx,)o := H*P "+ 1(Xy,, Q(p)) N FP H2P~"+1(X,,,C) is actually zero
for r > 1, so that the “prim” comes for free for some multiple Rf
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We now give the definition of admissibility for VMHS of the forin Def-
inition 26 (but simplifying toD = {s;---s; = 0}), starting with the local
unipotent case. For this we need Deligne’s definition [Deflihe 17-9(H)
of a MHS H, for which the reader may refer to Theorem 68§#) below. To
simplify notation, we shall abbreviate??(H) to H(?-9), so that, for instance,
H(” P) — [P:P(H) N Hy, and drop the subscript for the LMHS notation.

DEFINITION 28. LetS = (A*)k, V e NF" (S, H)q (i.e., as in Definition 26,
®Q), andx = (0).

(D) [unipotent case] Assume the monodromigsof H are unipotent, so that the
logarithmsN; and associated monodromy weight filtratiohg) are defined.
(Note that the{V;} resp.{T;} automatically commute, since any local system
must be a representation of ((A*)¥), an abelian group.) We may “untwist”
the local systen®Q via

~ —1
V:=ex log(s;)N; |V,

and set, .=V ® O 5« for the Deligne extension. Thénis (S-)admissible if
and only if

(a) H is polarizable,

(b) there exists a liftg € (V) of 1 € Q(0) such thatV; Vg € Miiz)(ng)Q (Vi),
and

(c) there exists a lift z(s) € I' (S, V,) of 1 e Qs(0) such thab | s € I' (S, FO°).

(1) In general there exists a minimal finite cover (A*)k — (A*)¥ (sending
s > s&) such that thel}" are unipotent.V is admissible if and only it*V
satisfies (a), (b), and (c).

The main result [K; SZ] is then that € NF (S, H)ad has well-defined/,V,

given as follows. On the underlying rational structlm%é)o we put the Welght
filtration M; = M;ysH + Q(vg) for i > 0 andM; = M;y;H for i <0; while

on its complexification£ (Ve)o) we put the Hodge filtratiod™/ = F/ s Hc +
C(vp(0)) for j <0 and F/ = F/yH for j > 0. (Here we are using the
inclusion  C \7, and the content of the statement is that this actually does
define a MHS.)

We can draw some further conclusions from (a)—(c) in caséNibh some
work, it follows from (c) that
(c) vr(0) gives a lift of 1 € Q(0) satisfyingN; v (0) € (Y H) 1D,
and one can also show th&ifvg € M_, (¥sH)g (Vi). Furthermore, if =1 then
eachN;vq [resp.N;vr(0)] belongs to the image undéy; : vy H — Yy H(—1)
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of a rational [resp. typ(é(-),O)% element. To see this, use the properties\ef
to deduce that ifv;) 2 Mf’r_l; then forr = 1 we have, from (b) and (c),
Nil)F(O), N,'I)Q S MEIZ)

(1) The definition of admissibility over an arbitrary smitobaseS together
with good compactificatior$ is then local, i.e., reduces to thiet*)¥ setting.
Another piece of motivation for the definition of admissityilis this, for which
we refer the reader to [BZ, Theorem 7.3]:

THEOREM 29. Any (higher) normal function of geometric origin is admissible

2.12. Limits and singularities of ANFs. Now the idea of the “limit of a
normal function” should be to interpret;) as an extension d@(0) by v;H.
The obstruction to being able to do this is the singularitywe now explain.
All MHS in this section are&)-MHS.

According to [BFNP, Corollary 2.9], we have

NF' (S, 1) ® Q = EXC s S)?(Q(O), H),

as well as an equivalence of categories VI\,{lSIS:’;—,d ~ MHM (S)%S. We want to
push (in a sense canonically extend) our ARito S and restrict the result to.

Of course, writingy : S < S, J« iS not right exact; so to preserve our extension,
we take the derived functa® 7, and land in the derived categofy’ MHM ().
Pulling back toD?MHM ({x}) = D®MHS by ¥, we have defined an invariant
(Z;RJ*)Hdgz

HomMHs (Q(O)’ HIIC.) (2'9)

>

1 o .__ k :
NF7(S. 1) (1% Rys)H%0 EXtDbMHS (Q(O)TK h R]*H)
ker(sing,) s Extl _(Q(0), HOK*)

where the diagram makes a clear analogy to (2-1).
For S = (A*)k andHy, unipotent we have

Kt = (e H EE P v — P vHD) — -,
i i<j

and the map

sing, : NF" ((A%)F, 12, — (BT (= cokel(V)(~1) for k = 1)
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is induced byV — {N;vq} = {N;vr(0)}. The limits, which are computed by
limy : ker(sing,) — J(); ker(Ny)).

more directly generalize the 1-parameter picture. Theetafg( | ker(V;)) is
exactly what to put in oved to get the multivariable pre-&ton-model.

We have introduced the general case 1 because of interesting applica-
tions of higher normal functions to irrationality proofschl mirror symmetry
[DK]. In caser = 1 —we are dealing with classical normal functions —we can
replaceR j« in the above by perverse intermediate extensiqn(which by a
lemma in [BFNP] preserves the extension in this case: seeréhe46 below).
CorrespondinglyiC* is replaced by the local intersection cohomology complex

ON;
Krea = {¥sH — @ ImN:)(=1) — @ IMN; Nj)(—2) — -}
i i<j
while the target for liny is unchanged, the one for sipgs reduced t® if k£ =1

and to
(ker(Nl) n im(Nz))(_l’_l)

Nr(kerNy)  Jg (2-10)

if k=2.

2.13. Applications of singularities. We hint at some good things to come:

(i) Replacing the sing-target (e.g., (2-10)) by actushagesof ANFs, and using
their differences to glue preéion components together yields a generalized
Néron model (over\”, or S more generally) graphing ANFs. Again oveone
gets an extension of a discrete (but not necessarily finitguarity group by

the torusJ (N ker(N;)). A. Young [YO0] did this for abelian varieties, then [BPS]
for general VHS. This will be described more precisely 52.

(i) (Griffiths and Green [GG]) The Hodge conjecture (HC) ayadimensional
smooth projective varietyX” is equivalent to the following statement feach
primitive Hodge(p, p) class¢ and very ample line bundlé — X: there exists
k > 0 such that the natural normal functfon, over|CK|\ X (the complement
of the dual variety in the linear system) has a nontorsiogudarity at some
point of X. So, in asensethe analog of HC fokA*)* is surjectivity of sing.

onto (H'Kp, 8’0), and thisfails:

(iii) (M. Saito [S6], Pearlstein [Pe3]) Letly/ A* be a VHS of weighB rank4
with nontrivial Yukawa coupling. Twisting it into weight1, assume the LMHS
is of type77;: N2 = 0, with G, of rank 1. Take forH/(A*)? the pullback
of Ho by (s.7) > st. Then (2-10)# {0} = singy{NF'((4%)?, H)3%}. The

8cf. §3.2-3, especially (3-5).
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obstruction to the existence of normal functions with nivral singularity is
analytic; and comes from a differential equation producgdhle horizontality
condition (se€5.4-5).

(iv) One can explain the meaning of the residue of the likhjtclass in Example
25 above: writingy ' : (A*)2 <> A*x A, j2: A* x A< A2, factor (i} R jiy,)H99

by (13 Ry (1%, L )H99 (where the * R j? corresponds to the residue). That
is, limit a normal function (or family of cycles) to a higheommal function (or
family of higher Chow cycles) over a codimensibridoundary component; the
latter can then have (unlike normal functions) a singyjantcodimensionl —
i.e., in codimensior? with respect to the original normal function.

This technique gives a quick proof of the existence of siagtiés for the
Ceresa cycle by limiting it to an Eisenstein symbol (see [@] the Introduction
to [DK]). Additionally, one gets a geometric explanationvatiy one does not
expect the singularities in (ii) to be supported in highiocwehsion substrata of
X (supporting very degenerate hypersurfacex ¢f along these substrata one
may reach (in the sense of (iv)) higher Chow cycles with rigid invariants,
hence no residues. For this reason codimengid@nds to be a better place
to look for singularities than in much higher codimensionhe$e “shallow”
substrata correspond to hypersurfaces with ordinary @opbints, and it was
the original sense of [GG] that such points should trace ouwlgebraic cycle
“dual” to the original Hodge class, giving affectiveproof of the HC.

3. Normal functions and the Hodge conjecture

In this section, we discuss the connection between nornmatifins and the
Hodge conjecture, picking up whefd left off. We begin with a review of
some properties of the Abel-Jacobi map. Unless otherwissdnall varieties
are defined ovet.

3.1. Zucker’'s Theorem on Normal Functions. Let X be a smooth projective
variety of dimension/y. Recall that],f’ (X) is the intermediate Jacobian asso-
ciated to the maximal rationally defined Hodge substructdref H>7~1(X)
such thatHe ¢ H?>P~1(X) @ HP~1:P(X), and that (by a result of Lieberman
[Li])

JP(X)ag=im{AJy : CH?(X)ag— J?(X)}

3-1
is a subabelian variety of 2 (X)y,. (3-1)

NoTATION 30. If /' : X — Y is a projective morphism therf>™ denotes
the restriction of /' to the largest Zariski open subset Bfover which /" is
smooth. Also, unless otherwise noted, in this section, tmgdedying lattice
Hz of every variation of Hodge structure is assumed to be torfiee, and
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hence for a geometric family’ : X — Y, we are really consideringl; =
(R* £5m7,) /{torsiory.

As reviewed ir§ 1, Lefschetz proved that every integfal 1) class on a smooth
projective surface is algebraic by studying Poigcaprmal functions associ-
ated to such cycles. We shall begin here by revisiting Grdfiprogram (also
recalled in§ 1) to prove the Hodge conjecture for higher codimensiorselasy
extending Lefschetz's methods: By induction on dimensibe,Hodge conjec-
ture can be reduced to the case of middle-dimensional Holdgses on even-
dimensional varieties [Lel, Lecture 14]. Suppose theeethatX C P* is a
smooth projective variety of dimensidm. Following [Zu2,§4], let us pick
a Lefschetz pencil of hyperplane sectionsXf i.e., a family of hyperplanes
H, C P¥ of the formzowg + 1wy = 0 parametrized by = [t9, 7;] € P! relative
to a suitable choice of homogeneous coordinates [wy, ..., wg] on Pk such
that:

« for all but finitely many points € P!, the corresponding hyperplane section
of X; = X N H; is smooth;

e the base locu = X N {w € PX | wy = w; = 0} is smooth; and

e each singular hyperplane sectionXfhas exactly one singular point, which
is an ordinary double point.

Given such a Lefschetz pencil, let
Y ={(x,t)e X xP! |x e H,}

and letr : Y — P! denote projection onto the second factor. Letlenote the
set of pointst € P! such thatX; is smooth and+ be the variation of Hodge
structure ovet/ with integral structurélz = R?"~ 1 7$"Z(m). Furthermore, by
Schmid’s nilpotent orbit theorem [Sc], the Hodge bundishave a canonical
extension to a system of holomorphic bundES over P'. Accordingly, we

have a short exact sequence of sheaves

0 — jxHyz — He/FJH — T — 0, (3-2)

where j : U — P! is the inclusion map. As before, let us call an element
v e H°(P!, J) a Poincaé normal function. Then, we have the following two
results [Zu2, Thms. 4.57, 4.17], the second of which is knawithe Theorem
on Normal Functions:

THEOREM 31. Every Poincaé normal function satisfies Griffiths horizontality

THEOREM 32. Every primitive integral Hodge class ok is the cohomology
class of a Poinca& normal function
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The next step in the proof of the Hodge conjecture via thig@ggh is to show
that forz € U, the Abel-Jacobi map

AJ :CH™(X¢)hom— J"(Xy)

is surjective. However, fom > 1 this is rarely true (even granting the con-
jectural equality ofJ™(X)ag and J;" (X)) since J™(X;) # J;'(X;) unless
H*"=1(X,,C) = H™™ 1 (X,;)® H™ "(X,). In plenty of cases of interest
J'(X) is in fact trivial; Theorem 33 and Example 35 below give twifedent
instances of this.

THEOREM 33 [Lel, Example 14.18]lif X € P is a smooth projective variety
of dimensior2m such that#?>”™~1(X) = 0 and {X;} is a Lefschetz pencil of
hyperplane sections of such thatF™+! H2"=1(X,) # 0 for every smooth
hyperplane sectigrthen for generia € U, J;"(X;) = 0.

THEOREM 34. If J,f’(X) = 0, then the image of H” (W )homin JZ(X) under
the Abel-Jacobi map is countable

SKETCH OF PROOE As a consequence of (3-1),J§f’(X) = 0 the Abel-Jacobi
map vanishes o' H” (X )aq. Therefore, the cardinality of the image of the
Abel-Jacobi map 0@’ H? (X )nom is bounded by the cardinality of the Griffiths
groupCH? (X )hom/ CH? (X )aig, Which is known to be countable. O

ExamMpPLE 35. Specific hypersurfaces witnf’ (X) = 0 were constructed by
Shioda [Sh]: LetZ”, denote the hypersurface ¥ ! defined by the equation

n+1

m—1
Z xixihp =0 (Xp42 = X0).
i=0

Supposethat =2p—1>1,m>2+3/(p—1) and
do = {(m—=1)""1 4 (=1)"" 1} /m

is prime. Then//(Z) = 0.

3.2. Singularities of admissible normal functions. In [GG], Griffiths and
Green proposed an alternative program for proving the Haabggecture by
studying the singularities of normal functions over highenensional parame-
ter spaces. Following [BFNP], It a complex manifold an@{ = (Hy, 7*Ho)
be a variation of polarizable Hodge structure of weighitover S. Then, we
have the short exact sequence

0—Hy —H/F*— J(H) =0
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of sheaves and hence an associated long exact sequenceoimatogy. In
particular, the cohomology class(t) of a normal functionv € H°(S, J(H))
is just the image of under the connecting homomorphism

d: H°(S, J(H)) — H'(S,Hy).

_ Suppose now tha§ is a Zariski open subset of a smooth projective variety
S. Then the singularity ob at p € S is the quantity

0z,p(v) = lim cl(vlyns) € lim H'(UNS.Hz) = (R'jxHz),
peU peU
where the limit is taken over all analytic open neighbortebddof p, and; :
S — S is the inclusion map. The image of, ,(v) in cohomology with rational
coefficients will be denoted by sipgve).

REMARK 36. If p € S thenoz,,(v) = 0.

THEOREM 37 [S1]. Letv be an admissible normal function on a Zariski open
subset of a curve'. Then oz, ,(v) is of finite order for each poinp € S.

PROOF By [S1], an admissible normal functian: S — J(H) is equivalent to
an extension

0—>H—>V—->27Z0)—0 (3-3)
in the category of admissible variations of mixed Hodgecitre. By the mon-
odromy theorem for variations of pure Hodge structure, ticallmonodromy of
V about any poinp € S — S is always quasi-unipotent. Without loss of gener-
ality, let us assume that it is unipotent and tffiat ¢*V is the local monodromy
of V at p acting on some fixed reference fiber with integral strucldgreThen,
due to the length of the weight filtratioy', the existence of the relative weight
filtration of W and N is equivalent to the existence of afrinvariant splitting of
W [SZ, Proposition 2.16]. In particular, le;, € V7 project tol Gr(V)V = 7.(0).
Then, by admissibility, there exists an eleménte Hgp = W_; N Vg such that

N(ez—i-h(@):()

and hencgT — I)(ez + hg) = 0.° Any two such choices oé, differ by an
elementiy, € W_; NVy. Therefore, an admissible normal functiodetermines

a class

(' —1)(Hyp)

(T'—1)(Hz)

Tracing through the definitions, one finds that the left-hsideé of this equation
can be identified witloz , (v), whereas the right-hand side is exactly the torsion
subgroup of R'jHz),. O

=T —1Dez] €

9 Alternatively, one can just derive this from Definition 28(l
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DEFINITION 38 [BFNP]. An admissible normal functiondefined on a Zariski
open subset of5 is singular onS if there exists a pointp € S such that
sing, (v) # 0.
Let S be a complex manifold and : X — S be a family of smooth projective
varieties overS. Let H be the variation of pure Hodge structure of weight
over S with integral structuréll; = R??~! f,Z(p). Then, an elemen ¢
JP(X) (= JO(H?*P~1(X,Z(p)))) defines a normal function,, : S — J(H)
by the rule

v (s) =i (w), (3-4)

wherei; denotes inclusion of the fibe¥; = £ ~1(s) into X. More generally, let

HéP(X, 7Z.(p)) denote the Deligne cohomology &f, and recall that we have a
short exact sequence

0= JP(X) = Hp' (X.Z(p)) — HP? (X.Z(p)) — .
Call a Hodge class
¢ e HP'P(X. Z(p)) := HP*P (X.C) N H?P (X, Z(p))
primitive with respect tof if i*(¢) = 0 for all s € S, and letH2:2 (X, Z(p))

denote the group of all such primitive Hodge classes. Thyemgl%nctoriality
of Deligne cohomology, a choice of lifting € Hé”(X,Z(p)) of a primitive
Hodge clasg determines a map; : S — J(H). A short calculation (cf. [CMP,
Ch. 10]) shows thatg is a (horizontal) normal function ove¥. Furthermore,
in the algebraic setting (meaning th&t S, f are algebraic)vf is an admissible
normal function [S1]. Let ANES, H) denote the group of admissible normal
functions with underlying variation of Hodge structute By abuse of notation,
let J?(X) C ANF(S, H) denote the image of the intermediate Jacobidinx)
in ANF(S,H) under the mapw — v,,. Then, since any two lift§ of ¢ to
Deligne cohomology differ by an element of the intermedieobian/? (X),
it follows that we have a well-defined map

AJ : H2:P (X, Z(p)) — ANF(S, H)/J P (X). (3-5)

prim

REMARK 39. We are able to drop the notation (\ﬂ?H)‘}d used in§ 2, because
in the global algebraic case it can be shown that admidyislindependent of
the choice of compactificatiof.

3.3. The Main Theorem. Returning to the program of Griffiths and Green, let
X be a smooth projective variety of dimensipm andL — X be a very ample
line bundle. LetP = |L| and

X ={(x.s) € X x P|s(x)=0} (3-6)
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be the incidence variety associated to the pairL). Letz : X — P denote
projection on the second factor, and [étc P denote the dual variety of
(the pointss € P such thatXy = 7! (s) is singular). LetH be the variation
of Hodge structure of weight1 over P = P — X attached to the local system
R2M=1SM7(m).

For a pair(X, L) as above, an integral Hodge classf type (m,m) on X
is primitive with respect torS™ if and only if it is primitive in the usual sense
of being annihilated by cup product with (L). Let Hyiit' (X, Z(m)) denote
the group of all such primitive Hodge classes, and note Hfgt" (X, Z(m)) is
unchanged upon replacing by L®4 for d > 0. Given¢ Hyi! (X, Z(m)),
let

ve = AJ(¢) e ANF(P, H)/J™(X)
be the associated normal function (3-5).

LEMMA 40. If vy : P — J(H) is the normal functior(3-4) associated to an
elementw € J™(X) thensing, (vy) = 0 at every pointp € X..

Accordingly, for any pointp € X we have a well defined map
sing, : ANF(P, H)/J™(X) — (R'jxHg),

which sends the elemeptf € ANF(P, H)/J™(X) to sing,(v). In keeping with

our prior definition, we say thaf; is singular onP if there exists a poinp € X
such that sing(v) # 0.

CONJECTURE41 [GG; BFNP].Let L be a very ample line bundle on a smooth
projective varietyX of dimensior2m. Then for every nontorsion clasé in
Hpyin (X, Z(m)) there exists an integef > 0 such that4.J(¢) is singular on

P =|L%.

THEOREM42 [GG; BFNP; dCM].Conjecture41 holds(for every even-dimen-
sional smooth projective variétyf and only if the Hodge conjecture is true

To outline the proof of Theorem 42, observe that for any ppi&t)?, we have
the diagram

H™™ (X, Z(m)) -2~ ANF(P, H)/J™(X)

prim
o | —gpl (3-7)

H2m(Xp’ Q(@m)) - f: ......... . (le*HQ)p

wherea,, : Hyi (X, Z(m)) — H*>™ (X, Q(m)) is the restriction map.
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Suppose that there exists a map
By : H*™(Xp, Q(m)) — (R' jxHg)p, (3-8)

which makes the diagram (3-7) commute, and that after regg/ac by L®4 for
somed > 0 the restriction of8,, to the image oty is injective. Then, existence
of a pointp € X such that sing(ve) # 0 implies that the Hodge clagsrestricts
nontrivially to X,. Now recall that by Poincérduality and the Hodge—Riemann
bilinear relations, the Hodge conjecture for a smooth ptoje variety Y is
equivalent to the statement that for every ratiofgaly) class onY there exists
an algebraic cyclé of dimension2g onY such thaty U[W] # 0.

Let [ : X’p — X, be a resolution of singularities of, andg =i o f,
wherei : X, — X is the inclusion map. By a weight argumegit(¢) # 0,
and so there exists a clags Hg” ' (X,) with £ U ¢ # 0. EmbeddingX), in
some projective space, and inducing erendimension, we can assume that
the Hodge conjecture holds for a general hyperplane segtion — X’p. This
yields an algebraic cycl®V on ) with [W] = Z*(§). Varying Y in a pencil,
and using weak Lefschety traces out’ a cycleW = > ajWjon X, with
[W] =&, so thatg*($) U[W] # 0; in particular,l U g«[W;] # 0 for some;.

Conversely, by the work of Thomas [Th], if the Hodge conjeetis true then
the Hodge clasé must restrict nontrivially to some singular hyperplanetisec
of X (again for somd.®“ for d sufficiently large). Now one uses the injectivity
of B, on im(e,) to conclude that, has a singularity.

EXAMPLE 43. LetX C P? be a smooth projective surface. For evérg
ler’irln(X, Z(1)), there is a reducible hypersurface sectighC X and compo-
nent curveW of X), such that de@|w) # 0. (Note that def|x,) is neces-
sarily 0.) As the reader should check, this follows easily from Leétz (1,1).
Moreover (writingd for the degree ofY,,), p is a point in a codimension 2
substratuns’ of X C PH®(O(d)) (since fibers over codimension-one substrata
are irreducible), and sinpgvy) # 0 Vg € S”.

REMARK 44. There is a central geometric issue lurking in Conjecidre

If the HC holds, and. = Ox (1) (for some projective embedding df), is
there some minimundy, — uniform in some sense —for whig¢h> d, implies
thatv, is singular?

In [GG] it is established that, at best, suchi@could only be uniform in
moduli of the pair(X, ¢). (For example, in the case ditki) = 2, d, is of the
form C x|¢-¢|, for C a constant. Since the self-intersection numbers of integra

10More precisely, one uses here a spread or Hilbert schemenargu See for example the beginning of
Chapter 14 of [Le1l].
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classes becoming Hodge in various Noether-Lefschetz fmrease without
bound, there is certainly not anjy uniform in moduli of X'.) Whether there
is some such “lower bound” of this form remains an open qaest higher
dimension.

3.4. Normal functions and intersection cohomologyThe construction of the
map B, depends on the decomposition theorem of Beilinson, Bamsaad
Deligne [BBD] and Morihiko Saito’s theory of mixed Hodge maes [S4]. As
first step in this direction, recall [CKS2] that’H is a variation of pure Hodge
structure of weighk defined on the complemesfit= S — D of a normal crossing
divisor on a smooth projective variefy then

H)(S. Hg) = IHY(S, Hg),

where the left-hand side i&2-cohomology and the right-hand side is inter-
section cohomology. Furthermore, via this isomorphisth(S, Hc) inherits a
canonical Hodge structure of weight+ £.

REMARK 45. If Y is a complex algebraic variety, MHNI) is the category of
mixed Hodge modules oli. The category MHMY') comes equipped with a
functor

rat: MHM (Y') — PerY)
to the category of perverse sheavesranf Y is smooth and’ is a variation of
mixed Hodge structure off then)V[dy] is a mixed Hodge module oH, and
rat(V[dy]) = V[dy] is just the underlying local systeM shifted into degree
—dy.

If Y° is a Zariski open subset af andP is a perverse sheaf dn° then
IHY (Y. P) = H (Y, juPldy))

where i, is the middle extension functor [BBD] associated to thetisin map
j:Y°—Y. Likewise, for any pointy € Y, the local intersection cohomology
of P at y is defined to be

IHE(Y, P)y = HF9Y ({3}, i* i Pldy))

wherei : {y} — Y is the inclusion map. I underlies a mixed Hodge module,
the theory of MHM puts natural MHS on these groups, which irtipalar is
how the pure HS oitH (S, H) comes about.

THEOREM46 [BFNP, Theorem 2.11).et S be a smooth projective variety and
H be a variation of pure Hodge structure of weight on a Zariski open subset
S C §S. Then the group homomorphism

cl: ANF(S, H) — H'(S,Hp)
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factors through IH (S, Hg).

SKETCH OF PROOE Letv € ANF(S, H) be represented by an extension
0->H—->V—->27Z0)—0

in the category of admissible variations of mixed Hodgecitme onS. Let

j S — S be the inclusion map. Then, becaugehas only two nontrivial
weight graded quotients which are adjacent, it follows bl{f?, Lemma 2.18]
that

0 — jiuH[ds] = jisV]ds] = Q(0)[ds] — 0
is exact in MHM(S). O

REMARK 47. Inthis particular contexfj. V[ds] can be described as the unique
prolongation ofV[ds] to S with no nontrivial sub or quotient object supported
on the essential image of the functoMHM (Z) — MHM (S) whereZ = S—S
andi : Z — S is the inclusion map.

In the local case of an admissible normal function on a prodéipunctured
polydisks(A*)" with unipotent monodromy, the fact that sj{g) (where0 is
the origin of A” 2 (A*)") factors through the local intersection cohomology
groups can be seen as follows: Such a normal funatigives a short exact
sequence of local systems

0—Hgp—Vg—Q0)—0

over (A*)". Fix a reference fibeVy of Vg and letN; e Hom(Vy. Vo) denote
the monodromy logarithm oV about thej-th punctured disk. Then [CKS2],
we get a complex of finite-dimensional vector spaces

B’(Vg)= €& NiNi,---Ni, (Vo)

i1 <ip<-<ip
with differential 4, which acts on the summands Bf (V) by the rule

A (_I)Z—lMe
Niy-++Nig-+Nip ., (Vo) —> " Niy -+ Niy -+ Ny, (Vo)

(and taking the sum over all insertions). L&t (Hg) and B*(Q(0)) denote the
analogous complexes attached to the local syst#mandQ(0). By [GGM],
the cohomology of the compleRB*(Hg) computes the local intersection coho-
mology of Hg. In particular, since the complexes*(Q(0)) and B*(Hg) sit
inside the standard Koszul complexes which compute th@argicohomology
of Q(0) andHgp, in order show that singfactors throughH ! (Ho) itis sufficient
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to show thabcl(v) € H' ((A*)", Hyg) is representable by an element®f( Hy).
Indeed, lety be an element oFy which maps tal € Q(0). Then,

dcl(v) =31 =[(N;1(v),..., N, (v))]

By admissibility and the short length of the weight filtratjdor each; there
exists an elememt; € Hgp such thatN;(h;) = Nj(v), which is exactly the
condition that

(N1 (v), ..., Ny (v)) € B (Vp).

THEOREM48 [BFNP, Theorem 2.11lUnder the hypothesis of Theoret8, for
any pointp € S the group homomorphisising, : ANF(S, H) — — (R} Hg),
factors through the local intersection cohomology groug (Hg),,.

To continue, we need to pass from Deligne cohomology to abesélodge coho-
mology. Recall that MHMSpe¢C)) is the category MHS of graded-polarizable
Q mixed Hodge structures. L&l(p) denote the Tate object of tyge p, —p) in
MHS andQy (p) =a} Q(p) whereay : Y — Spe¢C) is the structure morphism.

LetQy = Qy (0).
DEFINITION 49. Let M be an object of MHMY ). Then,
Hjy (Y, M) = Hompsyym (Qy, M[n))
is the absolute Hodge cohomology &f.
The functor rat MHM (Y') — Per(Y') induces a “cycle class map”
rat: H,, (Y, M) — H" (Y, rat(M))

from the absolute Hodge cohomologyM&f to the hypercohomology of rai/).

In the case wher& is smooth and prolectlveHAH(Y Qy (p)) is the Deligne
cohomology groupHD”(Y Q(p)) and rat is the cycle class map on Deligne
cohomology.

DEFINITION 50. LetS be a smooth projective variety andbe an admissible
variation of mixed Hodge structure on a Zariski open sulsset S. Then,
HZU{(_S» V)= HomeMHM(S') (Qj[dS —n], jiV[ds]).
H43(S. V)s = Hompoyps(Qlds —nl,i* i V[ds]).
wherej : S — S andi : {s} — S are inclusion maps.
The following lemma links absolute Hodge cohomology and iadiinle normal
functions:

LeEmmA 51. [BFENP, Proposition 3.3]et’H be a variation of pure Hodge struc-
ture of weight—1 defined on a Zariski open subsgtof a smooth projective
variety S. Then IH!, (S, H) = ANF(S. H) ® Q.
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3.5. Completion of the diagram @-7). Let ' : X — Y be a projective mor-
phism between smooth algebraic varieties. Then, by the widvkorihiko Saito
[S4], there is a direct sum decompaosition

[+Qxldy] =P H' (fuQxldx]) [-i] (3-9)

in MHM (Y). Furthermore, each summat ( £, Qx|[dx]) is pure of weight
dy + i and admits a decomposition according to codimension of@tpp

H' (fQxldx]) [-i] = B, Eijl—il; (3-10)

l.e., E;j[-i] is a sum of Hodge modules supported on codimengi®ubva-
rieties of Y. Accordingly, we have a system of projection operatorseitisg
arbitrary twists)

@ M) Hip (X.QOldx) = @;; Higl (V. Eij (D).

D iy - Hiy (X, QO[dx) > @y HIG (Y. Eij (1),

@ Mij B (X.ra(Q(O)dx]) > @y B (Y. rat(Ei; ().

@ Mij B (X, ral(Q(0)[dx]) = ;; B (Y. *rat(Ey; (1)),
wherep € Y and:: {p} — Y is the inclusion map.

LEMMA 52 [BFNP, Equation 4.12]Let H? = RY f3MQx and recall that we
have a decomposition

k=1 _ o 2k—1 g 7 2k—1
H - Hvan ©® Hfix
where H2¥~1 is constant and42X~! has no global sectionsFor any point

fix
p €Y, we have a commutative diagram

HZ5 (X, Q(k)) —5= ANF(YS™, HZE L (k)

li* li* (8-11)
H2 (X, Q(k)) —— IH (1 (k)

where YS™ is the largest Zariski open set over whighis smooth andT is
induced byiT,( for r =2k — 1 —dy + dy.

We now return to the setting of Conjecture 41.:is a smooth projective variety
of dimension2m, L is a very ample line bundle ok and X" is the associated
incidence variety (3-6), with projections: X — P and pr: X — X. Then, we
have the following “Perverse weak Lefschetz theorem”:
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THEOREM53 [BFNP, Theorem 5.1].et X be the incidence variety associated
to the pair(X, L) and7.Qx = EBU E;j in accord with(3-9) and(3-10). Then

() Eij =0unlessi-;j =0.
(i) Eio=H'(X,Qx[2m—1])® Qp[d ). fori <0.

Note that by hard LefschetZ;; =~ E_; j(—i) [S4].

To continue, recall that given a Lefschetz pentit- P of hyperplane sec-
tions of X', we have an associated system of vanishing cyfdgs,canx C
H*"=1(X;,Q) on the cohomology of the smooth hyperplane secti#pof
X with respect toA. As one would expect, the vanishing cycles tfare
nonvanishingf for some (hence allp € AN X, 6, # 0 (in H*"~'(X,,Q)).
Furthermore, this property depends only brand not the particular choice of
Lefschetz pencilA. This property can always be arranged by repladingy
L®4 for somed > 0.

THEOREM 54. If all vanishing cycles are nonvanishing théfy; = 0. Other-
wise Eg; is supported on a dense open subseX of

Using the Theorems 53 and 54, we now prove that the diagram
H2A™ (X, Z(m))prim —5= ANF(P. 1)/ J™ (X)
pr*l ®0 (3-12)
H3(X. Q(m)) ANF(P, Hyan) ® Q

I

commutes, wheréZ2™ (X, Z(m))prim is the subgroup oH2™ (X, Z(m)) whose
elements project to primitive Hodge classesHiR™ (X, Z(m)), and IT is in-
duced bylT,, together with projection ont®lyan. Indeed, by the decomposition
theorem,

HA(X,Q(m)) = H P (X, Qm)2m + d p — 1))
=D Hj\;fdﬁ(p» Eij(m)[—i]).

Let¢ € H2™ (X, Z(m)) be a primitive Deligne class argl=@),; w;; denote
the component ofo = pr* (f) with respect toE;; (m)[—i] in accord with the
previous equation. Then, in order to prove the commutgtioft (3-12) it is
sufficient to show thatw), = (wgo)4 for all g € P. By Theorem 53, we know
thatw;; =0 unlessj = 0. Furthermore, by [BFNP, Lemma 5.8} ;)4 = 0 for
J > 1. Likewise, by Theorem 54g;), = 0 for ¢ € P sinceEy, is supported
onX.

Thus, in order to prove the commutativity of (3-12), it isfauiént to show that
(wio)q =0 fori > 0. However, as a consequence of Theorem 53Kijj,(m) =



326 MATT KERR AND GREGORY PEARLSTEIN

Kld 3], whereK is a constant variation of Hodge structure Bnand hence

I"Il_d[J (X’ ElO(m)[_l]) = EthD_I)L:\'APHM(IB) (QP’ K[dp - l])

= Ext})—,jMHM(I-,)(QP, K).
Therefore,(w;o)y = 0 for i > 1 while (w;9)4 corresponds to an element of
Hom(Q(0), K;) where K is the constant variation of Hodge structure with
fiber H2™(X,,Q(m)) overq € P. It therefore follows from the fact thaft is
primitive that(w;0)y = 0. Splicing diagram (3-12) together with (3-11) (and
replacingf : X — Y by n : X — P, etc.) now gives the diagram (3-7).

REMARK 55. The effect of passing frofif to /'2"in the constructions above is
to annihilateJ™ (X)) € Hé’” (X, Z(m))prim. Therefore, in (3-12) we can replace
HE" (X, Z(m)) i OY Hppi (X, Z(m)).

prim
Finally, if all the vanishing cycles are nonvanishingy,; = 0. Using this fact,
we then get the injectivity of, on the image of,.

Returning to the beginning of this section, we now see ttiabagh extend-
ing normal functions along Lefschetz pencils is insuffitienprove the Hodge
conjecture for higher codimension cycles, the Hodge coujeds equivalent to
a statement about the behavior of normal functions on theptament of the
dual variety ofX inside|L| for L > 0. We remark that an interpretation of the
GHC along similar lines has been done recently by the auihdisP].

4. Zeroes of normal functions

4.1. Algebraicity of the zero locus. Some of the deepest evidence to date in
support of the Hodge conjecture is the following result oft@a, Deligne and
Kaplan on the algebraicity of the Hodge locus:

THEOREM56 [CDK]. Let’H be a variation of pure Hodge structure of weight
over a smooth complex algebraic variefy Letc;, be an integral Hodge class
of type(0, 0) on the fiber ofH ats,. LetU be a simply connected open subset
of S containings, anda be the section dflz overU defined by parallel trans-
lation of ag,. Let T be the locus of points iV such thatx(s) is of type(0, 0)

on the fiber ofH overs. Then the analytic germ of" at p is the restriction of

a complex algebraic subvariety Sf.

More precisely, as explained in the introduction of [CDKj,the case where
‘H arises from the cohomology of a family of smooth projectiegieties f :
X — S, the algebraicity of the germ df follows from the Hodge conjecture.
A natural analog of this result for normal functions is this:
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THEOREM 57. Let S be a smooth complex algebraic variegndv : S —
J(H) be an admissible normal functipwhere is a variation of pure Hodge
structure of weight-1. Then the zero locus

Zw)={seS|v(s)=0}
is a complex algebraic subvariety 8t

This theorem was still a conjecture when the present amiele submitted, and
has just been proved by the second author in work with P. BrofBiP3]. It is of
particular relevance to the Hodge conjecture, due to tHevioilg relationship
between the algebraicity ¢Z(v) and the existence of singularities of normal
functions. Say di\X') = 2m, and let(X, L, ) be a triple consisting of a
smooth complex projective variety, a very ample line bundlé. on X and
a primitive integral Hodge class of type (m,m). Let v; (assumed nonzero)
be the associated normal function on the complement of tlad \dsuiety)?
constructed ir§ 3, andZ be its zero locus. Then, assuming tiats algebraic
and positive-dimensional, the second author conjecturaid tshould have sin-
gularities along the intersection of the closurezofvith X.

THEOREM 58 [SI1]. Let (X, L, ¢) be a triple as aboveand assume thak is
sufficiently ample thagiven any poinip € X, the restriction off,, to the image
of «, in diagram(3-7)is injective Suppose thag contains an algebraic curve
Then v¢ has a nontorsion singularity at some point of the intersectof the
closure of this curve wittX .

SKETCH OF PROOE Let C be the normalization of the closure of the curvezZin
Let ¥ — P be the universal family of hyperplane sectionsiobver P = |L |
and W be the pullback ofY to C. Let 7 : W — C be the projection map, and
U the set of points € C such thatz~!(c¢) is smooth andVy = #~1(U). Via
the Leray spectral sequence foy it follows that restriction of to Wy is zero
becausd/ C Z and( is primitive. On the other hand, sind& — X is finite, ¢
must restrict (pull back) nontrivially té’, and hencé must restrict nontrivially
to the fiberr—1 (c) for some point: € C in the complement of/. O

Unfortunately, crude estimates for the expected dimensfdhe zero locusZ
arising in this context appear to be negative. For instatales X to be an
abelian surface in the following:

THEOREMbS9. Let X be a surface and. = Ox (D) be an ample line bundle on
X . Then for n sufficiently largethe expected dimension of the zero locus of the
normal functionv; attached to the triplé X, L®", ) as above is

W20 —p'0 —n(D.K)—1,

whereK is the canonical divisor of".
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SKETCH OF PROOE Since Griffiths’ horizontality is trivial in this setting;om-
puting the expected dimension boils down to computing tineedision of| L |
and genus of a smooth hyperplane sectio’ofvith respect tol.. O

REMARK 60. In Theorem 59, we construgt from a choice of lift to Deligne
cohomology (or an algebraic cycle) to get an element of ARIFH). But this is
disingenuous, since we are starting with a Hodge class.nibi® consistent to
work with ve € ANF(P, H)/J'(X) as in equation (3-5), and then the dimension
estimate improves by ditd ! (X)) = 20 to #%:° —n(D.K) — 1. Notice that
this salvages at least the abelian surface case (thougttilt &scrude estimate).
For surfaces of general type, one is still in trouble withoure information,
like the constanC in Remark 44.

We will not attempt to describe the proof of Theorem 57 in gahdut we will
explain the following special case:

THEOREM®61 [BP2].LetS be a smooth complex algebraic variety which admits
a projective completio such thatD = S — S is a smooth divisarLetH be a
variation of pure Hodge structure of weightl on S andv : S — J(H) be an
admissible normal functionThen the zero locusZ of v is an complex algebraic
subvariety ofS.

REMARK 62. This result was obtained contemporaneously by Moridkdo
in [S5].

In analogy with the proof of Theorem 56 on the algebraicityhaf Hodge lo-
cus, which depends heavily on the several variablg-&iit theorem for nilpo-
tent orbits of pure Hodge structure [CKS1], the proof of Tiezo 57 depends
upon the corresponding result for nilpotent orbits of mikimtige structure. For
simplicity of exposition, we will now review thé-variable Sl;-orbit theorem
in the pure case (which is due to Schmid [Sc]) and a versiome3L,-orbit
theorem in the mixed case [Pe2] sufficient to prove Theorenfr6fthe proof of
Theorem 57, we need the full strength of the several vari@bjeorbit theorem
of Kato, Nakayama and Usui [KNU1].

4.2. The classical nilpotent and Sk-orbit theorems. To outline the proof of
Theorem 61, we now recall the theory of degenerations of id@tigicture: Let

‘H be a variation of pure Hodge structure of weighover a simply connected
complex manifoldS. Then, via parallel translation back to a fixed reference
fiber H = H;, we obtain a period map

¢:S—>D, (4-1)

whereD is Griffiths’ classifying space of pure Hodge structuresfbmith fixed
Hodge numbergh?-¥—P} which are polarized by the bilinear for@ of H. The
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setD is a complex manifold upon which the Lie group

Gr = Autr(Q)

acts transitively by biholomorphisms, and herfeex GR/Gﬂg", WhereGﬂg" is
the isotropy group ofF, € D. The compact dual db is the complex manifold

D= Gc/GLe

whereF, is any point inD. (In general F = F* denotes a Hodge filtration.) If
S is not simply connected, then the period map (4-1) is repldge

¢:S—TI\D (4-2)

wherel" is the monodromy group dfl — S acting on the reference fibéf.

For variations of Hodge structure of geometric origthwill typically be a
Zariski open subset of a smooth projective vari§tyBy Hironaka’s resolution
of singularities theorem, we can assuie= S — S to be a divisor with normal
crossings. The period map (4-2) will then have singulagitiethe points oD
about whichH has nontrivial local monodromy. A precise local descriptal
the singularities of the period map of a variation of Hodgedtire was obtained
by Schmid [Sc]: Letp : (A*)" — I'\D be the period map of variation of pure
polarized Hodge structure over the product of puncturekisdiBirst, one knows
that ¢ is locally liftable with quasi-unipotent monodromy. Aftpassage to a
finite cover, we therefore obtain a commutative diagram

U D

]
(A*)" ——T'\D

whereU” is the r-fold product of upper half-planes ardd” — (A*)" is the

covering map
szez”izf, j=1,....r

with respect to the standard Euclidean coordinétes. .., z,) onU” Cc C" and

(s1,...,5,)on(A*)" cC".

Let 7; = ¢™i denote the monodromy 6{ abouts; = 0. Then,
YUz, .., zp) = e L Zfo.F(zl, ey Zr)

is a holomorphic map fron/” into D which is invariant under the transforma-
tion z; — z; + 1 for eachj, and hence drops to a mga*)” — D which we
continue to denote by .
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DEFINITION 63. LetD be a classifying space of pure Hodge structure with
associated Lie grou@r. Letggr be the Lie algebra afig. Then, a holomorphic,
horizontal ma : C" — D is a nilpotent orbit if

(a) there exist& > 0 such thatd(zy,...,z,) € D ifIm(z;) >« Vj; and
(b) there exist commuting nilpotent endomorphisms ..., N, € gr and a
point F € D such thal(zy, ..., z,) = exi 5N F,

THEOREM64 (NILPOTENT ORBIT THEOREM([SC]). Lety : (A*)" — I'\D be
the period map of a variation of pure Hodge structure of weigivith unipotent
monodromyLetdp be aGg-invariant distance orD. Then

(@) Foo = limy_,o ¥ (s) existsi.e., ¥ (s) extends to a map” — D;

b)O(z1,....2r) = eXi ZiNi Foisa nilpotent orbif and

(c) there exist constantS, « and By, . .., B, such thatifim(z;) > « Vj then
0(z1,...,zy) € Dand

dp(0(z1.....2). F(z1.....2,)) < C Y Im(zj)Pie727Im),
j

REMARK 65. Another way of stating part (a) of this theorem is thatiloelge
bundlesF? of Hp extend to a system of holomorphic subbundles of the canon-
ical extension ofH». Indeed, recall fron§ 2.7 that one way of constructing a
model of the canonical extension in the unipotent monodroasg is to take a
flat, multivalued fram€oy, ..., 0, } of Hz and twist it to form a single valued
holomorphic frame&.. ... 6} over (A*)" wheres; = e~z 2 109N o
and then declaring this twisted frame to define the canoeid&nsion.

Let N be a nilpotent endomorphism of a finite-dimensional vegbaice over a
field k. Then,N can be put into Jordan canonical form, and hence (by consider
ing a Jordan block) it follows that there is a unique, inciegdiltration W (N)

of V, such that, for each indek,

(@) N(W(N);) S W(N);—» and
(b) N/ :Gr}’V(N) — Gr\iV}N) is an isomorphism.
If £is an integer theW (N)[€]); = W(N);4¢.

THEOREM 66. Lety : A* — I'\D be the period map of a variation of pure
Hodge structure of weigtit with unipotent monodromy = eV. Then the limit
Hodge filtration F», Of ¢ pairs with theweight monodromy filtration/ (N) :=
W(N)[—k] to define a mixed Hodge structure relative to whi¢hs a(—1, —1)-
morphism

REMARK 67. The limit Hodge filtrationF», depends upon the choice of local
coordinates, or more precisely on the value @fs),. Therefore, unless one has
a preferred coordinate system (say, if the field of definitieatters), in order
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to extract geometric information from the limit mixed Hodsgeucture H,
(Fso, M(N)) one usually has to pass to the mixed Hodge structure induged b
Hy, on the kernel or cokernel aV. In particular, if X — A is a semistable
degeneration, the local invariant cycle theorem assedisviie have an exact
sequence
k N
H"(Xy) > Hoo > Hxo,

where the mag7* (X,) — Hao is obtained by first including the reference fiber
X;, into X" and then retractind” onto Xj.

The proof of Theorem 66 depends upon Schmid’s-8tbit theorem. Infor-
mally, this result asserts that any 1-parameter nilpotenit ¢ asymptotic to
a nilpotent orbit arising from a representation of,&R). In order to properly
state Schmid’s results we need to discuss splittings of dnitkedge structures.

THEOREM68 (DELIGNE[Del]). Let(F, W) be a mixed Hodge structure dn.
There exists a uniquéunctorial bigrading

Ve = @ P4
such that P4
(@) F? = @aZp Ia’b;
(b) Wi = @aspzic 1,
(€) 174 =197 mod D, 4 <, 1"

In particular, if (F, W) is a mixed Hodge structure ori then(F, W) induces
a mixed Hodge structure oY (V) =~ V ® V* with bigrading

gl(Vo) =@p gl(v)"*

whereg! (V)" is the subspace @f/ (V') which maps/ #*4 to 17+"4+5 for all
(p.q). In the case wheréF, W) is graded-polarized, we have an analogous
decompositiongc = (P, ; g™ of the Lie algebra olic(= Aut(Vc, Q)). For
future use, we define

Ay = D gy (4-2)
r,s<0
and note that by properties (a)—(c) of Theorem 68
1 pq _ P
AeA(FW) = I(eAFW) e I(FW) (4-5)

A mixed Hodge structuréF, W) is split overR if 174 = [9-? for (p,q). In
general, a mixed Hodge structu¢&, W) is not split overR. However, by a
theorem of Deligne [CKS1], there is a functorial splittingepation

(F,W) > (Fs, W)= (e . F, W)
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which assigns to any mixed Hodge structufé W) a split mixed Hodge struc-
ture (F5, W), such that

(@)§ =3,

(b) 8 € Az, and

(c) § commutes with allr, r)-morphisms of( ', W).

—1,—-1 _ ,—1,—1

REMARK 69. A(F’W) = A(ﬁg,W)'

A nilpotent orbité(z) = ¢?N F is an Sk-orbit if there exists a group homo-
morphismp : SL,(R) — Gr such that

f(g.V—1) = p(g).0(vV=1)

forall g € SL,(R). The representatiopis equivalent to the data of ath,-triple
(N, H, N 1) of elements inGg such that

[H,N]=-2N, [N".N]=H, [H N']=2N"

We also note that, for nilpotent orbits of pure Hodge striestthe statement that
e?N F is an Sl,-orbit is equivalent to the statement that the limit mixeddge
structure(F, M(N)) is split overR [CKS1].

THEOREM 70 (SL,-ORBIT THEOREM, [Sc]). Letd(z) = e?N . F be a nilpotent
orbit of pure Hodge structure Then there exists a unique Storbit 6(z) =
¢?N_F and a distinguished real-analytic function

g(y):(a,00) - Ggr

(for somex € R) such that

@) 0@y) =g(y).0(iy) for y >a,and

(b) bothg(y) andg~!(y) have convergent series expansions aheubf the
form

g =1+ gy gl'm=1+) fir*

k>0 k>0

with gz, /i € ker@@dN)k+1,

Furthermore the coefficientg; and f; can be expressed in terms of univer-
sal Lie polynomials in the Hodge component$ ofith respect to( F, M(N))
andadN t.

REMARK 71. The precise meaning of the statement gat) is a distinguished
real-analytic function, is thag(y) arises in a specific way from the solution of
a system of differential equations attachedto
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REMARK 72. If # is a nilpotent orbit of pure Hodge structures of weight
andd = ¢?N_F is the associated Storbit then(F, M(N)) is split overR.
The map(F, M(N)) — (F, M(N)) is called thes/,-splitting of (F, M (N)).
Furthermore ' = ¢ €. F whereé is given by universal Lie polynomials in the
Hodge components df. In this way, one obtains asY,-splitting (F, W) +—
(F, W) for any mixed Hodge structurer, W).

4.3. Nilpotent and SL,-orbit theorems in the mixed case. In analogy to
the theory of period domains for pure HS, one can form a dldmgi space

of graded-polarized mixed Hodge structuté with fixed Hodge numbers. Its
points are the decreasing filtratiofsof the reference fibel” which pair with

the weight filtrationW’ to define a graded-polarized mixed Hodge structure (with
the given Hodge numbers). Given a variation of mixed Hodgecsire) of
this type over a complex manifoll, one obtains a period map

¢:S —>T\M.

M is a complex manifold upon which the Lie groap consisting of elements of
GL(V¢) which preservéV and act by real isometries on &y acts transitively.
Next, let Gc denote the Lie group consisting of elements of (®t) which
preservel¥ and act bycomplexisometries on GF . Then, in analogy with the
pure case, the “compact dua¥t of M is the complex manifold

M = Ge/Ge

for any base poinf¥, € M. The subgroufirr = G N GL(Vg) acts transitively
on the real-analytic submanifold1r consisting of points¥ € M such that
(F, W) is split overR.

EXAMPLE 73. Let M be the classifying space of mixed Hodge structures with
Hodge numberg!! = 4%0 = 1. Then,M = C.

The proof of Schmid’s nilpotent orbit theorem depends eaity upon the fact
that the classifying spad has negative holomorphic sectional curvature along
horizontal directions [GS]. Thus, although one can forgnedirry out all of the
constructions leading up to the statement of the nilpotéit theorem in the
mixed case, in light of the previous example it follows thaeaan not have
negative holomorphic sectional curvature in the mixed case hence there
is no reason to expect an analog of Schmid’s Nilpotent Orh&dFem in the
mixed case. Indeed, for this classifying spédeie the period map(s) = exp(s)
gives an example of a period map with trivial monodromy wttiels an essential
singularity atco. Some additional condition is clearly required, and thishere
admissibility comes in.
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In the geometric case of a degeneration of pure Hodge stejcdtieenbrink
[St] gave an alternative construction of the limit Hodgerdilion that can be
extended to variations of mixed Hodge structure of geometigin [SZ]. More
generally, given aradmissiblevariation of mixed Hodge structurg over a
smooth complex algebraic variety € S such thatD = S — S is a normal
crossing divisor, and any poinpt € D about whichV has unipotent local mon-
odromy, one has an associated nilpotent o(bﬁf ZiNi Foo, W) with limit
mixed Hodge structuréF,, M) where M is therelative weight filtrationof
N = Zj N; andW.!! Furthermore, one has the following “group theoretic”
version of the nilpotent orbit theorem: As in the pure caseration of mixed
Hodge structure’ — (A*)” with unipotent monodromy gives a holomorphic
map

Y (A% > M,
2 e  2HNF(z),
and this extends ta\” if V is admissible. Let

Joo = @ gt
r<o0
wherege = Lie(Ge) = EB,,S g% relative to the limit mixed Hodge structure
(Fo, M). Thenge is a nilpotent Lie subalgebra @t which is a vector space
complement to the isotropy algeb,ujé‘>o of Fs. Consequently, there exists an
open neighborhoot! of zero ingc such that

U—»M,
ur> e Foo

is a biholomorphism, and hence after shrinkinf as necessary we can write
v(s) = eF(s)-Foo

relative to a uniqug«o-valued holomorphic functiod™ on A” which vanishes
at 0. Recalling the construction af from the lifted period mapF, it follows
that
F(zy,...,z;) = e2i ZiNi o TG) F

This is called théocal normal formof V at p and will be used in the calculations
of §5.4-5.

There is also a version of Schmid’s gbrbit theorem for admissible nilpo-
tent orbits. In the case of 1-variable and weight filtratiohshort length, the is
due to the second author in [Pe2]. More generally, Kato, Make and Usui

ITRecall [SZ] that in general the relative weight filtratidd = M (N, W) is the unique filtration (if it
exists) such thalV(M},) C Mj._, and M induces the monodromy weight filtration &f on each G}fV
(centered about).
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proved a several variable $lorbit theorem with arbitrary weight filtration in
[KNUL1]. Despite the greater generality of [KNU1], in thisgex we are going

to stick with the version of the Sl-orbit theorem from [Pe2] as it is sufficient
for our needs and has the advantage that for normal func¢tiomstis mutandis,

it is identical to Schmid’s result.

4.4. Outline of proof of Theorem 61. Let us now specialize to the case of an
admissible normal functiom : S — J(H) over a curve and outline the proof
[BP1] of Theorem 61. Before proceeding, we do need to addnessispect of
the Sly-orbit theorem in the mixed case. Lt (e*N.F, W) be an admissible
nilpotent orbit with limit mixed Hodge structurgF, M) which is split overR.
Then, § induces an Sh-orbit on each q’f/ and hence a corresponding-
representationy,.

DEFINITION 74. Let W be an increasing filtration, indexed I#; of a finite
dimensional vector spack. A gradingof W is a direct sum decomposition
Wi = Vi @& W._, for each index.

In particular, a mixed Hodge structu¢é’, W) on V gives a grading o#V by
theruleV = @p+q=k 17+, Furthermore, if the ground field has characteristic
zero, a grading of¥ is the same thing as a semisimple endomorphisf 1/
which acts as multiplication by on V.. If (F, W) is a mixed Hodge structure
we letYr py denote the grading d¥ which acts o/ 7+ as multiplication by
p + ¢, theDeligne gradingof (F, W).

Returning to the admissible nilpotent orbitonsidered above, we now have
a system of representatiopg on Gr,’cV . To construct an/,-representation on
the reference fibel’, we need to pick a grading of W. Clearly for each Hodge
flag F(z) in the orbit we have the Deligne gradingrg ;) w); but we are after
something more canonical. Now we also have the Deligne ggaliiz ar) of
M associated to the,-splitting of the LMHS. In the unpublished letter [De3],
Deligne observed that:

THEOREM 75. There exists a unique grading of W which commutes with
Y(£,m) and has the property that (N, H, N0+) denote the liftings of thel,-
triples attached to the graded representatignsvia Y then[N — Ny, NO+] =0.

With this choice ofi/-triple, andd an admissible nilpotent orbit in 1-variable of
the type arising from an admissible normal function, themtheorem of [Pe2]
asserts that one has a direct analog of Schmid’s-&bit theorem as stated
above ford.

REMARK 76. More generally, given an admissible nilpotent otbt™ F, W)
with relative weight filtrationM = M (N, W), Deligne shows that there exists
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agradingY = Y (N, Y(F ar)) with similar properties. See [BP1] for details and
further references.

REMARK 77. In the case of a normal function, if we decompésaccording to
adY we haveN = Ny+ N_; whereN_; must be either zero or a highest weight
vector of weight—1 for the representation of,(R) defined by(Ny, H, N0+).
Accordingly, since there are no vectors of highest weightwe haveN = N,
and hencgY, N]1= 0.

The next thing that we need to recall is thavif S — J(H) is an admissible
normal function which is represented by an extension

0—-H—->V—->Z0)—0

in the category of admissible variations of mixed Hodgecttrie onS then the
zero locusZ of v is exactly the set of points where the corresponding Deligne
grading Y(r ) is integral. In the case wherg C S is a curve, in order to
prove the algebraicity of, all we need to do is show th& cannot contain a
sequence of points() which accumulate to a punctugee S — S unlessy is
identically zero. The first step towards the proof of Theofdnis the following
result [BP1]:

THEOREM78. Letgp : A* — I'\ M denote the period map of an admissible nor-
mal functionv : A* — J(H) with unipotent monodromywndY be the grading
of W attached to the nilpotent orbit of ¢ by Deligne’s constructioiTheorem
75). Let F : U — M denote the lifting of to the upper half-planeThen for
Re(z) restricted to an interval of finite lengthve have

lim Y(F(z),W) =Y

Im(z)—o0

SKETCH OF PROOF Using [De3], one can prove this result in the case where
is a nilpotent orbit with limit mixed Hodge structure whichsplit overR. Let
z = x +iy. In general, one writes

F(Z) — eZNeF(S).FOO — exNeinel"(s)e—inein‘Foo

where eXV is real, ¢V F,, can be approximated by an $lrbit and the
functione™?N eI ®)e=¥N decays tol very rapidly. O

In particular, if there exists a sequeng@:) which converges tp along which
Y(r,w) is integral it then follows from the previous theorem tixats integral.
An explicit computation then shows that the equation of #e2ocus neap
is given by the equation

Ad(eT @)y =y,

which is clearly holomorphic on a neighborhoodofn S.
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That concludes the proof fd§ a curve. In the case whefhas a compact-
ification S such thatS — S is a smooth divisor, one can prove Theorem 61 by
the same techniques by studying the dependence of the prgeauhstructions
on holomorphic parameters, i.e., at a pointinve get a nilpotent orbit

0(z:82,...,8,) = eZN.Foo(sz, ceSr),
where Foo (52, . .., 5,) depend holomorphically on the parametérs . . ., s,).

4.5. Zero loci and filtrations on Chow groups. Returning now to the al-
gebraicity of the Hodge locus discussed at the beginnindnisf gection, the
Hodge Conjecture would further imply thatif: X — S can be defined over an
algebraically closed subfield @fthen so can the germ @f. Claire Voisin [Vo1]
gave sufficient conditions foF to be defined ove® if f/ : X — S is defined
overQ. Very recently F. Charles [Ch] carried out an analogousstigation of
the field of definition of the zero locug of a normal function motivated over
F. We reprise this last notion (from Sections 1 and 2):

DEFINITION 79. LetS be a smooth quasiprojective variety defined over a
subfieldF, C C, and letF C C be a finitely generated extension Bf. An
admissible normal function € ANF(S, H) is motivated ovef if there exists

a smooth quasiprojective variefiy, a smooth projective morphisrfi: X — S,

and an algebraic cyclg € Z™(X)prim, all defined overF, such thatH is a
SubVHS of(R*"~! £,7) ® Og andv = v3.

REMARK 80. HereZ™(X)pim denotes algebraic cycles with homologically
trivial restriction to fibers. One traditionally also asses is flat over.S, but
this can always be achieved by restrictingltoC S sufficiently small (Zariski
open); and then by [S1]) v3,, is S admissible.Next, for anys, € S one can
move 3 by a rational equivalence to intersekf, (hence the{X;} for s in an
analytic neighborhood of)) properly, and then use the remarks at the beginning
of [Ki] or [GGK, §1I1I.B] to see that(ii) v3 is defined and holomorphic over all
of S. Putting (i) and(ii) together with [BFNP, Lemma 7.1], we see thgtis
itself admissible.

Recall that the level of a VH3{ is (for a generic fibeld;) the maximum dif-
ference|p; — p,| for HP191 and H?2:92 both nonzero. A fundamental open
guestion about motivic normal functions is then:

CONJECTURESL. (i) [3£(D, E)] For everyF c C finitely generated ove®,
S /F smooth quasiprojective of dimensiédh and’H — S VHS of weighi—1)
and level< 2 E —1, the following holdsv motivated oveF implies thatZ(v) is
an at most countable union of subvarietiesSoflefined ovefpossibly different
finite extensions df.
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(i) [333(0, E)] Under the same hypothese&(v) is an algebraic subvariety
of S defined over an algebraic extensionifof

Clearly Theorem 57 and Conjectupel(D, E) together impIyBAf:(D, E), but

it is much more natural to phrase some statements (espeBialposition 86
below) interms oBL(D, E). Iftrue even forD =1 (but generaF), Conjecture
81(i) would resolve a longstanding question on the strectditChow groups of
complex projective varieties. To wit, the issue is whether $second Bloch—
Beilinson filtrand and the kernel of théJ map must agree; we now wish to
describe this connection. We shall wri:ﬁE(D, 1)ag for the case whemw is
motivated by a family of cycles algebraically equivalenzeyo.

Let X be smooth projective and € N. Denoting ‘®Q” by a subscriptQ, we
have the two “classical” invariantsy o : CH" (X)g — Hg" (X)g and4Jx g :
ker(cly,g) — J™(X)q. Itis perfectly natural both to ask for further Hodge-
theoretic invariants for cycle-classes in kévy ), and inquire as to what sort
of filtration might arise from their successive kernels. Tthea of a (conjec-
tural) systenof decreasing filtrations on the rational Chow groupalbfmooth
projective varieties ovet, compatible with the intersection product, morphisms
induced by correspondences, and the algebraimi€th components of the diag-
onal Ay, was introduced by A. Beilinson [Be], and independently bBch.
(One has to assume something like the Hard Lefschetz Congest that these
Kiinneth components exist; the compatibility roughly sags @& CH™ (X)g
is controlled byH?”~#(X).) Such a filtrationF 3 is unique if it exists and is
universally known as Bloch—Beilinson filtratioBBF); there is a wide variety
of constructions which yield a BBF under the assumption ofows more-or-
less standard conjectures. The one which is key for thetidtrgdue to Lewis
[Le2]) we shall consider is tharithmetic Bloch—Beilinson Conjectu(@BC):

CONJECTURES2. If X/Q is a quasiprojective variefythe absolute-Hodge
cycle-class map

cx : CH™(X)g — HA™ (X2, Q(m)) (4-6)

is injective (HereCH™ (X)) denotes=4-classes of cycles ovéd, and differs
from CH™(X¢).)

Now for X/C, ¢y on CH™ (X )q is far from injective (the kernel usually not
even being parametrizable by an algebraic variety); butgivgn cycleZ <
Z"™(X) (a priori defined ovet) is in fact defined over a subfield C C finitely
generated ove), say of transcendence degre€onsideringX, Z over K, the
Q-spread then provides

* a smooth projective variet§ /Q of dimensionz, with Q(S) Sk andsy :
SpecK) — S the corresponding generic point;
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« a smooth projective variety’ and projective morphisnt : X — S, both
defined overQ, such that’ = X, := X x;, Spe¢K); and
« an algebraic cycl§ € Z" (X)) with Z = 3 x4, Spe¢K).

Writing 75" =: 7 : X — S (and3 := 3N X), we denote byJ C S any affine
Zariski open subvariety defined ov@r and putYy := 7~ (U), 3y := 3N Xy;
note thats, factors through all sucly.

The point is that exchanging the field of definition for adzhitl geometry
allows ¢y to “see” more; in fact, since we are m@r it should now (by BBC)
see everything. Nowy(3y) packages cycle-class and Abel-Jacobi invariants
together, and the idea behind Lewis’s filtration (and filtmas of M. Saito and
Green/Griffiths) is to split the whole package up into Leragdgd pieces with
respect tor. Miraculously, the0-th such piece turns out to agree with the
fundamental class df, and the next piece is the normal function generated by
3yu. The pieces after that define the so-caléghercycle-class andiJ maps.

More precisely, we have
CH™(X(x))o

= lspread

im{CH"™(X)q — lim CH"(Xy)q} (4-7)
U

lm—z

3 s = (B3 Q) i 13 (). Q)

with ¢y; (hence?) conjecturally injective. Lewis [Le2] defines a Leray filian
L£* H3" with graded pieces
0

|

JO (lim W H=\(U, R2m—l’n*Q(m)))

T
H H 0 W rri 2m—i
im Il_lr]n) Hg (Gr0 H (;J,R m@(m)))
(4-8)
Gr H3!"

o

Hg” (tim Wo H! (U. R/, Q(m) )
U
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and setsC'CH™(Xg)g := ¥~ 1 (L' H2™). For Z € L'CH™(Xk)q, We put
i (Z):= oz(GfL ¥(2)); if this vanishes then G (Z) =: ﬁ(aj/{,‘l (Z)), and
vanishing ofc/*(Z) anda;j*~'(Z) implies membership irC’*!. One easily
finds thatc/y (Z) identifies withc/y,o(Z) € H? (X )q.

REMARK 83. The arguments of Hgand J? in (4-8) have canonical and func-
torial MHS by [Ar]. One should think of the top term as’pP of the lowest-

weight part of J”(Xy) and the bottom as Ggrof the lowest-weight part of
Hg"” (Xy) (both in the limit overU).

Now to get a candidate BBF, Lewis takes

i — )

L CHm(XC)Q.— lim ElCHm(XK)@.
KcCcC
f.g./Q

Some consequences of the definition of a BBF mentioned alspesifically
the compatibility with the Kinneth components afy, include these:

FggCH™ (X)g = CH™ (X)q,
(@) 4 FagCH™(X)g = CH" (X)qg,
F3CH™(X)g C ken(AJy g),
(b) Fggt'CH™(X) = {0}.
These are sometimes stated as additional requirement$BiBFa
THEOREM 84 [Le2]. L* is intersection- and correspondence-compatilaled

satisfiega). Assuming BBCL* satisfiesb); and additionally assuming HLC
L*is a BBE

The limits in (4-8) inside/ ° and Hd' stabilize for sufficiently small/; replacing
S by such aU, we may consider the normal functiog € ANF(S, H3/s"!
attached to thé)-spread ofZ.

PROPOSITIONSS. (i) Fori =1, (4-8)becomes
0— JI(X/S)g — Grk HZ" — (H'(S, R*" ' m,.Q)) Y - 0.

(i) For Z € CH[? (Xk)q, we havecl}‘((Z) = [v3]o. If this vanishesthen
aj)‘}(Z) = AJx(Z)g € JiL(X/S)o C J™(X)q (implying L2 C kerAJg).

So for Z € CH[}! (Xk) with @-spread3 over S, the information contained
in Gr1£ Y(Z) is (up to torsion) precisely3. Working overC, 3- Xy, = Z
is the fiber of the spread atwery general pointy € S(C): trdegQ(sq)/Q)
is maximal, i.e., equal to the dimension §f SinceAJ is atranscendental
(rather than algebraic) invariant, there is no outrightrgngee that vanishing of
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AJx(Z) € J™(X)—or equivalently, of the normal function at a very general
point—implies the identical vanishing of or even[vs]. To display explicitly
the depth of the question:

PROPOSITIONS6. () 3L(1, E) (VE €N) <= L2CH™(X)g = ker(AJx g)
(V sm proj. X/C).

(i) 3£(1, Daig <= L2CH™ (X )oNCHY (X )g =ker(AJx o) NCHJ (X )q
(V sm proj. X/C).

Roughly speaking, these statements say that “sensiti¥ittyeozero locus (of a
cycle-generated normal function) to field of definition” tpuévalent to “spreads
of homologically andA4 J-trivial cycles give trivial normal functions”. In (ii),
the cycles in both statements are assumed algebraicaliyagept to zero.

PROOF. We first remark that for any variety with field of definition of mini-
mal transcendence degree, no prdpaubvariety ofS contains (in its complex
points) a very general point df.

() (=) : Let 3 be theQ-spread ofZ with AJ(Z)gp = 0, and suppose
Gr}: v(Z)= Gr}: ¢1¢(3) does not vanish. Taking kdimensional very general

multiple hyperplane sectiofiy C S throughsg (So is “minimally” defined over

trdeg 1
k < K), the restriction Gk cn(30) # 0 by weak Lefschetz. Since each

Z(vN3,) € So is aunion of subvarieties defined oveand contains, for some
N €N, one of these is all afy (which implies G‘Es ¥ (Z) =0), a contradiction.
SoZ e L2

(<) : Let Xy — So, 30 € Z™(Xp)prim, diM(Sp) = 1, all be defined ovek
and suppose(v3,) contains a pointy not defined ovek. Spreading this out
overQto 3, X, S DSy > so, we haveis, € S is very general3 is theQ-spread
of Z = 30+ Xs,, and AJ(Z)g = 0. So Z € £2 implies v3 is torsion, which
implies vs,, is torsion. But thervs, is zero since it is zero somewhere (gJ.
So Z(v3,) is eitherS, or a (necessarily countable) union/ofoints of S.

(i) The spread3 of Z(,) =ag 0 has every fibelZ; =54 0, hencevs is a
section ofJ(H), H C (R*" '7,Q(m)) ® Og a subVHS of level one (which
can be taken to satisffl; = (H>"~!(X;)), for a.e.s € S). The rest is as
in (i). O

REMARK 87. A related candidate BBF which occurs in work of the firghau
with J. Lewis [KL, § 4], is defined via successive kernelsgaieralizechormal
functions (associated to tli@-spread3 of a cycle). These take values on very
general(i — 1)-dimensional subvarieties & (rather than at points), and have
the abover/’(Z) as their topological invariants.
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4.6. Field of definition of the zero locus.We shall begin by showing that the
equivalent conditions of Proposition 86(ii) are satisfithe idea of the argument
is due in part to S. Saito [Sa]. The first paragraph in the ¥ahg in fact gives
more:

THEOREM 88. 37:(0, 1)aig holds for all D € N. That is the zero locus of any
normal function motivated by a family of cycles o¥eslgebraically equivalent
to zerq is defined over an algebraic extensiontof

Consequentlycycles algebraically and Abel-Jacobi-equivalent to zemao
smooth projective variety ovér, lie in the second Lewis filtrand

PROOF Consider3 € Z"(X)pim and f : X — S defined overK (K being
finitely generated ove®), with Z, =490 Vs € §; and letsy € Z(v3). (Note:
s is just a complex point of.) We need to show:

dN e N such thab (sg) € Z(vy3) for anyo € Gal(C/K). (4-9)

Here is why (4-9) will suffice: the analytic closure of the e&all conjugate
points is simply the point'sk-spreadS, C S, a (possibly reducible) algebraic
subvariety defined oveK. Clearly, on thesy-connected component ¢f, vz
itself then vanishes; and this component is defined overgabedic extension of
K. Trivially, Z(v3) is the union of such connected spreads of its paigitsind
sinceK is finitely generated ove®, there are only countably many subvarieties
of Sy defined overk or algebraic extensions thereof. This proged D, 1)aqg,
hence (by Theorem 53£(D, 1)ay.

To show (4-9), writeX = X;,, Z = Z,,, and L(/ K) for their field of defi-
nition. There exist ovel.

» a smooth projective curv€ and point, g € C(L);

« an algebraic cyclé/ € Z™(C x X) such thatZ = W, (¢ —0); and

. another cycld™ € Z1(J(C) x C) defining Jacobi inversion.

Writing ® := W ol € Z™(J(C) x X), the induced map

[0+ J(C) = I (X)ag (S J" (X))

is necessarily a morphism of abelian varieties aoliethence the identity con-
nected component of k§®].) is a subabelian variety of (C) defined over an
algebraic extensiol.”’ D L. Definef := ®|g € Z™(B x X), and observe that
[0]« : B — J™(X)alqg is zero by construction, so that(f) € £2H*™(B x X).
Now, sincedJyx (Z) = 0, a multipleb := N.AJ¢ (¢ — 0) belongs toB, and
thenN.Z = 6.b. This “algebraizes” thed J -triviality of N.Z: conjugating the
6-tuple(so. Z, X, B, 0,b) 10 (0(s0). Z°[= Z g (59)]: X°[= X5 (5)]: B 07.07),
we still haveN.Z% = 62b° andcl(0°) € L2 H*™(B° x X°) by motivicity of
the Leray filtration [Ar], and this implieV.AJ(Z°%) =[0°]+b° = 0 as desired.
Il
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We now turn to the result of [Ch] indicated at the outse§ 4f5. While inter-
esting, it sheds no light op£(1, E) or filtrations, since the hypothesis that the
VHS H have no global sections is untenable over a point.

THEOREM89 [Ch, Theorem 3]Let Z be the zero locus offa-motivated normal
functionv : S — J(H). Assume thaf is algebraic andH¢ has no nonzero
global sections oveE. ThenZ is defined over a finite extension/af

PrROOF Charles’s proof of this result uses tlieadic Abel-Jacobi map. Al-
ternatively, we can proceed as follows (using, wWikh= k, the notation of
Definition 79): takeZ, C Z(v) to be an irreducible component (without loss
of generality assumed smooth), apd, the restriction of3 to Z,. Let[3z,]
and[3z,]sr denote the Betti and de Rham fundamental classe®zpf and

L the Leray filtration. Then, G{3z,] is the topological invariant of3 z,] in
H'(Zy, R*™~! £,7), whereas G¥3z,]uz is the infinitesimal invariant of
over Zy. In particular, sinceZ is contained in the zero locus of,

Gr{:[SZO]dR =0, j=0,1. (4-10)

Furthermore, by the algebraicity of the Gauss—Manin cotmmec(4-10) is in-
variant under conjugation:

Gril3zg1ar = (Gry[32,lar)”

and hence G{3z¢]4g = 0 for j = 0, 1. Therefore, GF[3z¢] = 0 for j =

0, 1, and hencedJ(Z;) takes values in the fixed part of(H) for s € Z7.
By assumptionH¢ has no fixed part oveg,, and hence no fixed part over
Z7 (since conjugation maps-flat sections tov-flat sections by virtue of the
algebraicity of the Gauss—Manin connection). As such, ugatjion must take
us to another component &f, and hence (sincg is algebraic ove€ impliesZ
has only finitely many componentsy, must be defined over a finite extension
of k. O

We conclude with a more direct analog of Voisin’s result [V@heorem 0.5(2)]
on the algebraicity of the Hodge locus. W is a variation of mixed Hodge
structure over a complex manifold and

o € (fpﬂWZPHV@)SO

for somes, € S, then the Hodge locu%' of « is the set of points ir§ where
some parallel translate aof belongs taF?.

REMARK 90. If (F, W) is amixed Hodge structure dnandv € FPNW,,NVg
thenv is of type(p, p) with respect to Deligne’s bigrading ¢¥, W).
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THEOREM 91. Let S be a smooth complex algebraic variety defined over a
subfieldk of C, andV be an admissible variation of mixed Hodge structure of
geometric origin ovelS. Suppose thal” is an irreducible subvariety of over
C such that

(a) T is an irreducible component of the Hodge locus of some

o< (fp ﬂsz ﬂV@)tO;

(b) 71 (T, t,) fixes only the line generated by
Then T is defined ovek.

PROOF If V = Q(p) for somep thenT = S. Otherwise,T' cannot be an
isolated point without violating (b). Assume thereforettdan 7" > 0. Over

T, we can extend to a flat family of de Rham classes. By the algebraicity of
the Gauss—Manin connection, the conjugetes flat over7?. Furthermore, if
T° supports any additional flat families of de Rham classegugation byo !
gives a contradiction to (b). Therefore®, = AB, wheref is an; (T ?)-invariant
Betti class on7"® which is unique up to scaling. Moreover,

Q@) = 0@, a%) =22 Q(B, B)

and hence there are countably many Hodge classes that ocemjagatex to
via GalC/ k). Accordingly, T must be defined ovek. O

5. The Neron model and obstructions to singularities

The unifying theme of the previous sections is the study gélataic cycles
via degenerations using the Abel-Jacobi map. In particiutathe case of a
semistable degeneration : X — A and acohomologically trivialcycle Z
which properly intersects the fibers, we have

lim AJx, (Zs) = AJx,(Zo)
s—0

as explained in detail i2. In general however, the existence of the limit Abel—
Jacobi map is obstructed by the existence of the singw@ardf the associated
normal function. Nonetheless, using the description ofakanptotic behavior
provided by the nilpotent and Storbit theorems, we can define the limits of
admissible normal functions along curves and prove thebadggity of the zero
locus.

5.1. Neron models in one parameter.In this section we consider the problem
of geometrizing these constructions (ANFs and their siagtigs, limits and
zeroes) by constructing aékon model which graphs admissible normal func-
tions. The quest to construct such objects has a long higtioigh traces back to
the work of Neron on minimal models for abelian varietidg defined over the
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field of fractionsK of a discrete valuation rin@. In [Na], Nakamura proved the
existence of an analytic&on model for a family of abelian varietie$— A*
arising from a variation of Hodge structuté — A* of level 1 with unipotent
monodromy. With various restrictions, this work was theteaded to normal
functions arising from higher codimension cycles in thekvairClemens [CI2],
El Zein and Zucker [EZ], and Saito [S1].

REMARK 92. Unless otherwise noted, throughout this section wenasghat
the local monodromy of the variation of Hodge structlif@nder consideration
is unipotent, and the local systéefy, is torsion free.

A common feature in all of these analytic constructions érdh models for
variations of Hodge structure over* is that the fiber oved € A is a complex Lie
group which has only finitely many components. Furthermtire,component
into which a given normal functiom extends is determined by the value of
0z.0(v). Using the methods of the previous section, one way to seedtas
follows: Let

0->H—->V—->27Z0)—0

represent an admissible normal functiond* — J(H) and F : U — M denote
the lifting of the period map ol to the upper half-plane, with monodromy
T =eN. Then, using the Si-orbit theorem of the previous section, it follows
(cf. Theorem 4.15 of [Pe2]) that

Yhodge= lIm  e™*N Yiryw)
Im(z)—>o0
exists, and is equal to the gradid@ N, Y(r_ ar)) constructed in the previous
section; recall also thal' (N, Y(r_ ar)) € ker(@adN) due to the short length
of the weight filtration. Suppose further that there existisirdegral grading
Ygetii € ker(ad V) of the weight filtrationW. Let j : A* — A andi : {0} —> A
denote the inclusion maps. The¥yodge— Yaeti defines an element in

J(Ho) = Extyns(Z(0), H(i* R;. H)) (5-1)

by simply applyingYHodge— Ygeti to any lift of 1 € Z(0) = GrgV . Reviewing§ 2
and§ 3, we see that the obstruction to the existence of such argyd@iy; is
exactly the classz o(v).

REMARK 93. More generally, if{ is a variation of Hodge structure of weight
—1 over a smooth complex algebraic varighandsS is a good compactification
of S, given a points € S we define

J(Hy) = Extyys(Z, Hy), (5-2)
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whereHs = HO(if Rj«H) andj : S — S, is : {s} — S are the inclusion maps.
In caseS\S is a NCD in a neighborhood &, with {N;} the logarithms of the
unipotent parts of the local monodromies, thidn~ ﬂj ker(Nj).

In general, except in the classical case of degeneratioh®dfe structure of
level 1, the dimension of (Hy) is usually strictly less than the dimension of
the fibers of/(H) over A*. Therefore, any generalizedekbn model/ 4 (H) of
J(H) which graphs admissible normal functions cannot be a comgualytic
space. Rather, in the terminology of Kato and Usui [KU; GGK§ obtain a
“slit analytic fiber space”. In the case where the base iseegtine observations
above can be combined into the following result:

THEOREM94. Let’H be a variation of pure Hodge structure of weight over a
smooth algebraic curvé with smooth projective completic. Let j : S — S
denote the inclusion maprhen there exists a Bron model forJ(H), i.e, a
topological group/ ¢ (H) over S satisfying the following two conditions

(i) Jg(H) restricts toJ(H) oversS.

(i) There is a one-to-one correspondence between the set aésiileinormal
functionsv : S — J(H) and the set of continuous sections S — Js(H)
which restrict to holomorphichorizontal sections af () overS.

Furthermore
(i) There is a short exact sequence of topological groups
0— Js(H)* - J5(H) - G —0,

whereGy is the torsion subgroup ((fR}*HZ)s foranys e S.

(iv) Jg (H) is a slit analytic fiber spagewith fiber J(H;) overs € S.

(v) If v:S — J(H) is an admissible normal function with extensiothen the
image ofv in Gy at the points € S — S is equal tooz s (v). Furthermore if
0z,s(v) = 0 then the value of at s is given by the class dfodge— Ygetti @S
in (5-1). Equivalently in the geometric settingdf oz s(v) = 0 then the value
of v ats is given by the limit Abel-Jacobi map

Regarding the topology of theéon model, let us consider more generally the
case of smooth complex variesywith good compactificatioss', and recall from

§ 2 that we have also have the Zucker extens}igr(H) obtained by starting from
the short exact sequence of sheaves

0— Hy — Ho/F°— J(H) =0

and replacindgdly, by j.Hz andHo/FO by its canonical extension. Following
[S5], let us suppose thdd = S — S is a smooth divisor, and IeIZ(H)'”" be
the subset 01‘7 Z (H) defined by the local monodromy mvarlants
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THEOREM95 [S5]. The Zucker extensiahZ (H) has the structure of a complex
Lie group overS, and it is a Hausdorff topological space on a neighborhood of
J—Z(H)Inv

S D
Specializing this result to the case whérés a curve, we then recover the result
of the first author together with Griffiths and Green tﬂgl(?—[)o is Hausdorff,
since in this case we can identifig (#)° with JSZ (H)'RY.

REMARK 96. Using this Hausdorff property, Saito was able to proJ&h] the
algebraicity of the zero locus of an admissible normal fiomctn this setting
(i.e., D smooth).

5.2. Neron models in many parameters. To extend this construction further,
we have to come to terms with the fact that unl&ssas a compactification
S such thatD = S — S is a smooth divisor, the normal functions that we
consider may have nontorsion singularities along the bagndivisor. This
will be reflected in the fact that the fibers; of G need no longer be finite
groups. The first test case is whehis a Hodge structure of level 1. In this
case, a leron model forJ () was constructed in the thesis of Andrew Young
[Yo]. More generally, in joint work with Patrick Brosnan amdorihiko Saito,
the second author proved the following result:

THEOREM 97 [BPS].Let S be a smooth complex algebraic variety ardbe
a variation of Hodge structure of weightl overS. Let j : S — S be a good
compactification oS and{S,} be a Whitney stratification o§ such that

(a) S is one of the strata of, and

(b) the R¥j,H, are locally constant on each stratum

Then there exists a generalizedékbn model forJ(H), i.e., a topological
group J ¢ (H) over S which extends/ (1) and satisfies these two conditions
(i) The restriction of/¢(H) to S is J(H).
(i) Any admissible normal function: S — J(H) has a unique extension to a

continuous section of J g (H).
Furthermore

(i) There is a short exact sequence of topological groups
0= Jg(H)® = Jg(H) > G —0

over S such thatG is a discrete subgroup @fR'j,Hy), for any points € S.
(iv) The restriction of/g (H)° to any stratumS,, is a complex Lie group over
S, with fiber J(Hy) overs € S.
(V) If v:S — J(H) is an admissible normal function with extensiothen the
image ofii(s) in Gy is equal tooz 5(v) for all s € S. If o7.4(v) = 0 for all
s € S then? restricts to a holomorphic section afs (H)° over each strata
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REMARK 98. Mare generally, this is true under the following hypdailse

(1) S is a complex manifold and : S — S is a partial compactification of
S as an analytic space;

(2) H is a variation of Hodge structure ¢ of negative weight, which need
not have unipotent monodromy.

To construct the identity componeng (H)°, letv: S — J(H) be an admissible
normal function which is represented by an extension

0->H—->V—->27Z0)—0 (5-3)

and; : S — S denote the inclusion map. Also, givere S letis : {s} — S
denote the inclusion map. Then, the short exact sequerngkgifsiuces an exact
sequence of mixed Hodge structures

0— Hy — H°(ifRj.V) — Z(0) — H'(if RjxH), (5-4)

where the arrowzZ(0) — H'(i} Rj.H) is given byl — o7.5(v). Accordingly,
if 0z,s(v) = 0 then (5-4) determines a poiits) € J(Hy). Therefore, as a set,
we define

Ts(H)° = [ [ 7(Hy)

ses

and topologize by identifying it with a subspace of the Zucéoeensionlg (H).

Now, by condition (b) of Theorem 97 and the theory of mixed g®dnod-
ules[S4], it follows that if, : S — S are the inclusion maps thefi (iyg RjxH)
are admissible variations of mixed Hodge structure oveh ei@tumsS,. In
particular, the restriction of 5 (7)° to S, is a complex Lie group.

Suppose now that : S — J(H) is an admissible normal function with ex-
tensioni : § — J5(H) such thab s(v) = 0 for eachs € S. Then, in order to
prove that is a continuous section offs (H)° which restricts to a holomorphic
section over each stratum, it is sufficient to prove thatoincides with the
section of the Zucker extension (cf. [S1, Proposition 2.Br this, it is in turn
sufficient to consider the curve case by restriction to thgalnal curveA — A”
byt (¢,...,1); see [BPS§1.4].

It remains now to constructs () via the following gluing procedure: Let
U be an open subset 8fandv : U — J(H) be an admissible normal function
with cohomological invariant

oz,u(v) =3(1) € H' (U, Hy)
defined by the map
3: H%(U,Z(0)) - H' (U, Hy)
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induced by the short exact sequence (5-3) @efhen, we declardy (Hyns)”
to be the component ofg () overU, and equip/y (Hyns)” with a canonical
morphism

Ju(Huns)” = Ju(Huns)®
which sends to the zero section. Ift is another admissible normal function
overU with o7,y (v) = o7,y (1) then there is a canonical isomorphism

Ju(Huns)" = Ju(Huns)*
which corresponds to the section- 1 of Jy(Hyns)® overU.

Addendum to§5.2. Since the submission of this article, there have been devera
important developments in the theory oéfdén models for admissible normal
functions on which we would like to report here. To this erat,Us suppose
that is a variation of Hodge structure of level 1 over a smooth euhc S.

Let As denote the corresponding abelian scheme wighoN modelA g over

S. Then, we have a canonical morphism

As = J5(H)

which is an isomorphism ove¥. However, unlesg{ has unipotent local mon-
odromy about each poiate S — S, this morphism is not an isomorphism [BPS].
Recently however, building upon his work on local dualitydanixed Hodge
modules [SI2], Christian Schnell has found an alternatiwestruction of the
identity component of a Bron model which contains the construction of [BPS]
in the case of unipotent local monodromy and agrees [SS] thighclassical
Néron model for VHS of level 1 in the case of nonunipotent meaog. In
the paragraphs below, we reproduce a summary of this catistnuvhich has
been generously provided by Schnell for inclusion in thigcks.

The genesis of the new construction is in unpublished worklefmens on
normal functions associated to primitive Hodge classeseMihis a smooth
hyperplane section of a smooth projective variéfyof dimension2n, and
H7 = H*"71(Y, Z)yan its vanishing cohomology modulo torsion, the interme-
diate Jacobiat/(Y) can be embedded into a bigger objektY) in Clemens’s
notation, defined as

(H°(X, 23" (nY))”

HZn—l (Ya Z)van ‘
The point is that the vanishing cohomology Bfis generated by residues of
meromorphi@n-forms onX', with the Hodge filtration determined by the order
of the pole (provided tha®y (Y) is sufficiently ample). Clemens introduced

K(Y) with the hope of obtaining a weak, topological form of Jacobersion
for its points, and because of the observation that the ratimein its definition

K(Y)=
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makes senseven whert” becomes singularin his Ph.D. thesis [SI3], Schnell
proved that residues and the pole order filtration actualrg g filtered holo-
nomic D-module on the projective space parametrizing hyperplangons of
X'; and that thiD-module underlies the polarized Hodge module correspgndin
to the vanishing cohomology by Saito’s theory. At least ia fgometric case,
therefore, there is a close connection between the questiertending inter-
mediate Jacobians, and filter&dmodules (with the residue calculus providing
the link).

The basic idea behind Schnell’s construction is to germrdliom the geo-
metric setting above to arbitrary bundles of intermediaieobians. As before,
let H be a variation of polarized Hodge structure of weigtit on a complex
manifoldS, andM its extension to a polarized Hodge moduleSiri_et (M, F)
be its underlying filtered lefD-module: M is a regular holonomi®-module,
and F = F,M a good filtration by coherent subsheaves. In particutgr
is a coherent sheaf ofi that naturally extends the Hodge bundi€H». Now
consider the analytic space ou&r given by

T = T (FoM) = Speg; (Symy  (FoM)).

whose sheaf of sections(i$yM)". (OversS, itis nothing but the vector bundle
corresponding toF°Hp)V.) It naturally contains a cop¥;, of theétale space of
the sheafj.Hyz; indeed, every point of that space corresponds to a locéibsec
of Hz, and it can be shown that every such section defines a mBpnodbdules
M — Og via the polarization.

Schnell proves thal;, C T is a closed analytic subset, discrete on fibers of
T — S. This makes the fiberwise quotient spate= T/ T into an analytic
space, naturally extending the bundle of intermediatehlans for H. He also
shows that admissible normal functions with no singulesigxtend uniquely to
holomorphic sections of — S. To motivate the extension process, note that
the intermediate Jacobian of a polarized Hodge structuveeajht—1 has two
models,

Hc (F°Hp)Y
FOH(C + Hy, o Hy ’

with the isomorphism coming from the polarization. An exd@m of mixed
Hodge structure of the form

0—H—->V—>7Z0)—0 (5-5)

gives a point in the second model in the following manner.
Let H* = Hom(H, Z(0)) be the dual Hodge structure, isomorphicHg—1)
via the polarization. After dualizing, we have

0—7(0)—V*"—> H* -0,
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and thus an isomorphisti! V¥ ~ F'H} ~ F°Hc. Therefore, anw € V3
lifting 1 € Z gives a linear mag® He — C, well-defined up to elements @iz,
this is the point in the second model 6 H) that corresponds to the extension
in (5-5).

It so happens that this second construction is the one the@s to all ofS.
Given a normal functiow on S, let

0—-Hy—>Vy—>Zs—0

be the corresponding extension of local systems. By applyin it gives an
exact sequence

0— julz — juVz — Zgs — R'jHz,
and wherv has no singularities, an extension of sheaves
0— j*HZ —>j*VZ — ZS’ — 0.

Using duality for filteredD-modules, one obtains local sections (dfy M)V
from local sections 0§, V7, just as above, and thus a well-defined holomorphic
section of/ — S that extends.

As in the one-variable case, where the observation is duedaerG Griffiths,
and Kerr, horizontality constrains such extended normattions to a certain
subset of/; Schnell proves that this subset is precisely the identitymonent
of the Neron model constructed by Brosnan, Pearlstein, and Saitth the
induced topology, the latter is therefore a Hausdorff spaseexpected. This
provides an additional proof for the algebraicity of theazkercus of an admissi-
ble normal function, similar in spirit to the one-variabksult in Saito’s paper,
in the case when the normal function has no singularities.

The other advance, is the recent construction [KNU2] of loggrimediate
Jacobians by Kato, Nakayama and Usui. Although a propersitigo of this
topic would take us deep into logarithmic Hodge theory [Ktbg basic idea is
as follows: LetH — A* be a variation of Hodge structure of weight with
unipotent monodromy. Then, we have a commutative diagram

JH) =2~ F\ M
l lerz (5-6)
A —2 >\ D

whereg andg are the respective period maps. In [KU], Kato and Usui exyeldi
how to translate the bottom row of this diagram into logamith Hodge theory.
More generally, building on the ideas of [KU] and the seveaalable Sl;-orbit

theorem [KNUL1], Kato, Nakayama and Usui are able to constubeory of
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logarithmic mixed Hodge structures which they can thenapplthe top row

of the previous diagram. In this way, they obtain a log intedmate Jacobian
which serves the role of a&on model and allows them to give an alternate
proof of Theorem 57 [KNU3].

5.3. Singularities of normal functions overlying nilpotert orbits. We now
consider the group of components of Jg(H) ats € S. For simplicity, we
first consider the case whefte is a nilpotent orbitHpip over (A*)". To this
end, we recall that in the case of a variation of Hodge strackiover (A*)"
with unipotent monodromy, the intersection cohomologefis computed by
the cohomology of a compledB® (N, ..., N,), d) (cf. §3.4). Furthermore, the
short exact sequence of sheaves

0—Hgp—Vg—Q0)—0

associated to an admissible normal function(A*)" — J(H) with unipotent
monodromy gives a connecting homomorphism

3 : IH%(Q(0)) — IH! (Hg)

such that

(1) = [(N1(¢g); -, Nr(eg)] = singy(v),
whereey is an element in the reference fibigs of V¢ overs, € (A*)” which
maps tol € Q(0). After passage to complex coefficients, the admissibility o
Y allows us to pick an alternate litt, € V¢ to be of type(0, 0) with respect
to the limit MHS of V. It also forcesh; = Nj(e,) to equalN;( f;) for some
elementf; € Hc of type (0, 0) with respect to the limit MHS of{. Moreover,

ed —eg =:h maps to0 € Gr’, hence lies inlc, so

(N (ei)Q), ...,N,(eé‘}’)) = (Ny(eg). ..., Nr(ep)) modulod(B®) =im é} N;
j=1

(i.e., up to(Ny(h), ..., N.(h))).
COROLLARY 99. sing(v) is a rational class of typ€0, 0) in IH 1(]1-]1@).

SKETCH OF PROOE This follows from the previous paragraph together with
the explicit description of the mixed Hodge structure on toomology of
B*(Ny,...,N,y) given in [CKS2]. O

Conversely, we have:

LEMMA 100. Let Hpjpp = e2iZ%iNi Fo bea nilpotent orbit of weight-1 over
A*" with rational structureHg. Then any classB of type(0, 0) in IH! (Hg) is
representable by &-normal functionv which is an extension d@®(0) by Hnip
such thatsing, (v) = B.
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PROOF By the remarks above§ corresponds to a collection of elemenise
N;(Hc) such that

@) hy,...,h, are of type(—1,—1) with respect to the limit mixed Hodge
structure ofHpiip,

(b)d(hy,....hy)=0,i.e,Nj(hx)— Ni(hj) =0, and

(c) There exist# € Hc such thatV; (h) + hj € Hg for eachj, i.e., the class
of (hy,...,hy)in IH! (Hc) belongs to the imagiH ! (Hg) — IH! (Hc).

We now define the desired nilpotent orbit by formally settiig= Ce, &
H¢, wheree, is of type (0, 0) with respect to the limit mixed Hodge structure
and lettingVy = Q(e, + 1) ® Hgp. We defineN;j(e,) = hj. Then, following
Kashiwara [Ka]:

(a) The resulting nilpotent orbity is pre-admissible.
(b) The relative weight filtration of

W_,=0, W. =Hy We=W

with respect to eaclV; exists.

Consequentlyyip is admissible, and the associated normal functidmas
singularity 8 at 0. O

5.4. Obstructions to the existence of normal functions wittprescribed sin-
gularity class. Thus, in the case of a nilpotent orbit, we have a complete de-
scription of the group of components of thémdn modelR Q. In analogy with
nilpotent orbits, one might expect that given a variatioiotige structuré{ of
weight—1 over (A*)” with unipotent monodromy, the group of components of
the Neron model®Q to equal the classes of tyge, 0) in IH! (Hg). However,
Saito [S6] has managed to construct examples of variatibrRodge structure
over(A*)” which do not admit any admissible normal functions with @wosion
singularities. We now want to describe Saito’s class of edlam We begin
with a discussion of the deformations of an admissible mdpborbit into an
admissible variation of mixed Hodge structure o¢ar*)”.

Lety : (A*)" — I'\D be the period map of a variation of pure Hodge struc-
ture with unipotent monodromy. Then, after lifting the perimap ofH to the
product of upper half-plane§’”, the work of Cattani, Kaplan and Schmid on
degenerations of Hodge structure gives us a local normal &the period map

F(zi,....,z;) = e2i ZiNi o TG) p .

Here,(sq,...,s,) are the coordinates oft”, (z1,..., z,) are the coordinates on
U relative to which the covering malg” — (A*)” is given bys; = e?7!%;
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Ir: A" —gc
is a holomorphic function which vanishes at the origin arleéesavalues in the
subalgebra
a=@p o

p<0

and@p,q g?-? denotes the bigrading of the MHS induced gn(cf. §4.2) by
the limit MHS (Foo, W(N; + --- N,)[1]) of H. The subalgebrg is graded

nilpotent .
1=P da. 9= ¢’
b

a<0

with Ny, ..., N, € q—;. Therefore,
eZ] Z]]V]er(s) e eX(Zlﬁ"',Zr)’

where X takes values i, and hence the horizontality of the period map be-

comes Yo X
e e =0X_q,

whereX = X_; + X_, + --- relative to the grading of. Equality of mixed
partial derivatives then forces

8X_1 7AN 3X_1 =0
Equivalently,

ar_ ar_

[N,- S+ 2isj——%, Ni +2misg 1} =0. (5-7)
dsj 0sk

REMARK 101. The function” and the local normal form of the period map

appear in [CK].

In his letter to Morrison [De4], Deligne showed that for VH®0 (A*)” with
maximal unipotent boundary points, one could reconstiuetMHS from data
equivalent to the nilpotent orbit and the functidh,. More generally, one can
reconstruct the functiol” starting fromd.X_; using the equation

deX = eX0X_,

subject to the integrability conditiodX_; AdX_; = 0. This is shown by Cattani
and Javier Fernandez in [CF].

The above analysis applies to VMHS owet™)” as well: As discussed in
the previous section, a VMHS is given by a period map from tamameter
space into the quotient of an appropriate classifying spdggaded-polarized
mixed Hodge structuréd1. As in the pure case, we have a Lie gratGpvhich
acts onM by biholomorphisms and a complex Lie groGp which acts on the
“compact dual’M.
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As in the pure case (and also discussed 4, an admissible VMHS with
nilpotent Orbit(ezf zjNj Fo, W) will have a local normal form

F(zq,...,z;) = e2i %N oTG) F_

wherel" : A" — g takes values in the subalgebra

a=6p ¢7.

p<0

Conversely (given an admissible nilpotent orbit), subjecthe integrability
condition (5-7) above, any functiafi_; determines a corresponding admissible
VMHS; see [Pel, Theorem 6.16].

Returning to Saito’s examples (which for simplicity we ochnsider in the
two-dimensional case), |6 be a variation of Hodge structure of weight
over A* with local normal formF(z) = e*Nel® Fo. Letw : A2 — A by
w(s1,52) = s152. Then, forz*(H), we have

I 1(s1,52) = I'_1(s152).

In order to construct a normal function, we need to extéhg(s;, s,) and
N; = N, = N on the reference fibelic of H to include a new clasg, of type
(0, 0) which projects tal in Z(0). Set

Ni(ug) = hy, Ny (ug) = hs, I_i(s1,82)up = a(sy,s2).

Note that(/, h,) determines the cohomology class of the normal function so
constructed, and that, — #; depends only on the cohomology class, and not
the particular choice of representatii/g , /1,).

In order to construct a normal function in this way, we needheck hori-
zontality. This amounts to checking the equation

oo oo
N (Sz— — 51 —) + 518217 (s152) (hy — hy)

2 o da o
+2misyso 7 (s152) [ s2=— —s1— ) =0.
8S2 8s1

Computation shows that the coefficient(®fs,)™” on the left side is

(m)
————T 7 (0)(hy — hy). 5-8
m—1 -1 (0)(ha —hy) (5-8)
Hence, a necessary condition for the cohomology classsepted by(/, /4,)
to arise from an admissible normal function is for—/ to belong to the kernel
of I"_1(¢). This condition is also sufficient since, under this hypsifieone can
simply sete = 0.
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EXAMPLE 102. LetX > A be a family of Calabi—Ya-folds (smooth over
A*, smooth total space) with Hodge numbérfs? = 12! = 412 = 93 = |
and central singular fiber having an ODP. Setthig= > «/a+(2), the LMHS
has as its nonzer@g?-4's =21 [~1=1 [90 and 1172, Assume that the
Yukawa coupling(Vs, )* € HomoA (H3 0 HO 3) is nonzero §; = s d/ds), and
thus the restriction of _; (s) to Homp , (I~1~!, 1721, does not vanish iden-
tically. Then for any putative singularity clasﬁ; Fhy—hy e (I71 g =~
ker(N) (th|s being isomorphic to (2-10) in this case, which is juséo
dlmen3|onal) for admissible normal functions overlyia§jH, nonvanishing of
I'_1(s)(hy, — hy) on A implies that (5-8) cannot be zero for every

5.5. Implications for the Griffiths—Green conjecture. Returning now to the
work of Griffiths and Green on the Hodge conjecture via siagties of normal
functions, it follows using the work of Richard Thomas that & sufficiently
high power ofZ, the Hodge conjecture implies that one can forgéo have a
singularity at a pointp € X such thatz—!(p) has only ODP singularities. In
general, on a neighborhood of such a po)fﬁtneed not be a normal crossing
divisor. However, the image of the monodromy represemasmevertheless
abelian. Using a result of Steenbrink anériethi [NS], it then follows from the
properties of the monodromy cone of a nilpotent orbit of pdoelge structure
that sing, (v¢) persists under blowup. Therefore, it is sufficient to studyFO
degenerations in the normal crossing case (cf. [BFNP, sgcWhat we will
find below is that the “infinitely many” conditions above (vstning of (5-8) for
all m) are replaced by surjectivity of a single logarithmic KadaiSpencer map
at each boundary component. Consequently, as suggestesgimtrioduction, it
appears that M. Saito’s examples are not a complete shgpeatdor existence
of singularities for Griffiths—Green normal functions.

The resulting limit mixed Hodge structure is of the form

IO’O
[—2,1 I—l,O IO,—l Il,—2
]—l,—l

and N2 = 0 for every element of the monodromy cofie The weight filtration
is given by

M_y(N)=>_ Nj(Hc). M_{(N)=(")ker(N;). Mo(N)=Hc
For simplicity of notation, let us restrict to a two parantetersion of such a

degeneration, and consider the obstruction to constigietiradmissible normal
function with cohomology class represented(by, /1,) as above. As in Saito’s
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example, we need to add a clagsof type (0, 0) such thatV; (u,) = h; and
constructe = I'_1(u,). Then, the integrability conditiodX_; A dX_; =0
becomes

or_
as

or_
2 as

1

+ (2misy)(2mwisy) ( —— ——) =0, (5-9)

—Qnisy)——(hy) + Qrisy)——(ha)

sincea = I'_1(u,) takes values inV_;(N).
Write o = Y, ; s{shajp andIy =Y, sVs3y,, on He. Then, forab
nonzero, the coefficient crl‘fsé’ on the left side of equation (5-9) is

—2mibyap(hy) + 2miayay(hy) + Qi) > (pk —qj)vpe(@ji)-
ptj=a
q+k=b
Define

Sab = 2ibYap(ha) = 2miayay(hy) — Qri)® Y (pk —qj)vpa(@ji)-
pt+j=a

Then, equation (5-9) is equivalent to

Qi) byio(@@—1)p) — 27i)*ayor (@ap-1)) = Lab,

wherea; occurs ing,, only in total degreej + k < a + b — 1. Therefore,
providedthat

V10 Vo1 - Fao / Foy — F37/ F3!
are surjective, we can always solve (nonuniquely!) for thefficientsa;y,

and hence formally (i.e., modulo checking convergence @frésulting series)
construct the required admissible normal function witregicohomology class.

REMARK 103. (i) Of course, it is not necessary to have only ODP sentfigs
for the analysis above to apply. It is sufficient merely thatlimit mixed Hodge
structure have the stated form. In particular, this is abuaye for degenerations
of level 1. Furthermore, in this case;i[ = 0, and hence, after tensoring with
Q, the group of components of theekbn model surjects onto the Tate classes
of type (0,0) in IH! (Hg).

(i) In Saito’s examples fron§ 5.4, even ifl”"  (0) # 0, we will havey,; =
0 = y10, Since the condition of being a pullback V&, s) — s15, means

I'_1(s1.8) = Zp,q sfsgypq =, 8185V
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EXAMPLE 104. In the case of a degeneration of Calabi—Yau threefoltts w
limit mixed Hodge structure on the middle cohomology (&dfto weight—1)

10,0
1—2,1 1—1,0 10,—1 11,—2
I—l,—l

the surjectivity of the partial derivatives @t_; are related to the Yukawa cou-
pling as follows: Let

F(z) = eXi 5iNiel®) p

be the local normal form of the period map as above. Then, lsagloonvan-
ishing holomorphic section of the canonical extensiotFdf(i.e., of 7> before
we shift to weight—1) is of the form

Q=eki ZfoeF(s)o*oo(s),
whereo, : A” — I'>=2 is holomorphic and nonvanishing. Then, the Yukawa
coupling of £2 is given by
0(82,Dj DDy R2), Dy, =—.

In keeping with the notation above, le¥ = ¢2i ZNiel'®) and4; = D; X_;.
Using the first Hodge—Riemann bilinear relation and the tiaate X is an auto-
morphism ofQ, it follows that

O(82,Dj DDy 2) = Q(00o(s), Aj A Ay 000 (5)).
Moreover (cf. [CK; Pel]), the horizontality of the period mpianplies that
[Iilg=0. Nk] =0
Using this relation, it then follows that

Q(£2. Dj Dy Dy §2)
s—0 (2mis;)(2misg)(2misy)

= 0(000(0). Gj G G(0(0))

for j # k, where
J# o
Ga -

o5, 0).

In particular, if for each indey there exist indices and{ with k # £ such that
the left-hand side of the previous equation is nonzero then(Fy!/FY) —
(F;2/F) is surjective.
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6. Global considerations: monodromy of normal functions

Returning to a normal functiol € NF' (S, H)%d over acompletebase, we
want to speculate a bit about how one might “force” singtiksito exist. The
(inconclusive) line of reasoning we shall pursue rests anltasic principles:

(i) maximality of the geometric (global) monodromy group ¥fmay be
deduced from hypotheses on the torsion locu¥’;cdind

(i) singularities of)Y can be interpreted in terms of the local monodromy of
V being sufficiently large.

While it is unclear what hypotheses (if any) would allow onepass from
global to local monodromy-largeness, the proof of the firgigiple is itself of
interest as a first application of algebraic groups (thelakge variety analog of
Lie groups, originally introduced by Picard) to normal ftinos.

6.1. Background. Mumford—Tate groups of Hodge structures were introduced
by Mumford [Mu] for pure HS and by Andr[An] in the mixed setting. Their
power and breadth of applicability is not well-known, so wi first attempt

a brief summary. They were first brought to bear h(A4) for 4 an abelian
variety, which has led to spectacular results:

e Deligne’s theorem [De2] thaD-Bettiness of a class inFl’Hjj;(Ak) for k
algebraically closed is independent of the embedding ofto C (“Hodge
implies absolute Hodge");

e the proofs by Hazama [Ha] and Murty [Mr] of the HC fdr‘nondegenerate”
(MT of H!(A) is maximal in a sense to be defined below); and

» the density of special (Shimura) subvarieties in Shimungetias and the
partial resolution of the And—Oort Conjecture by Klingler and Yafaev [KY].

More recently, MT groups have been studied for higher welffls; one can
still use them to define specif-subvarieties of (non-Hermitian-symmetric)
period domainsD, which classify polarized HS’s with fixed Hodge numbers
(and polarization). In particular, tHedimensional subdomains — still dense in
D —correspond to HS with CM (complex multiplication); thatvgith abelian
MT group. One understands these HS well: their irreducibleHS may be
constructed directly from primitive CM types (and have emdophism algebra
equal to the underlying CM field), which leads to a complegssification; and
their Weil and Griffiths intermediate Jacobians are CM aleliarieties [Bo].
Some further applications of MT groups include:

e Polarizable CM-HS are motivic [Ab]; when they come from a Cafiety,
the latter often has good modularity properties;
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e Given H* of a smooth projective variety, the level of the MT Lie algebr
furnishes an obstruction to the variety being dominatedpduct of curves
[Scl;

e Transcendence degree of the space of periods of a VHS (ovas&Ssh),
viewed as a field extension @f(.S) [An];

and specifically in the mixed case:

« the recent proof [AK] of a key case of the Beilinson—Hodge j€oture for
semiabelian varieties and products of smooth curves.

The latter paper, together with [An] and [DeZ2], are the bestrences for the
definitions and properties we now summarize.

To this end, recall that an algebraic groGpover a fieldk is an algebraic
variety overk together withk-morphisms of varietie$g : Speck) — G, “mul-
tiplication” ug : G x G — G, and “inversion”ig : G — G satisfying obvious
compatibility conditions. The latter ensure that for anje@sionK/ k, the K-
pointsG(K) form a group.

DEFINITION 105. (i) A (k-)closed algebraic subgroud < G is one whose
underlying variety is £-)Zariski closed.

(i) Given a subgroupM < G(K), thek-closure ofM is the smallest-closed
algebraic subgroups of G with K-points M (K) > M.

If M := M(K) for an algebraidc-subgroupM < G, then thek-closure of
M is just thek-Zariski closure ofM (i.e., the algebraic variety closure).

But in general, this is not true: insteatl, may be obtained as the Zariski
(algebraic variety) closure of the group generated byktlspread ofM.

We refer the reader to [Sp] (especially Chapter 6) for thendefns of reductive,
semisimple, unipotent, etc. in this context (which are &zssial for the sequel).
We will write DG =[G, G] (< G) for the derived group.

6.2. Mumford-Tate and Hodge groups. Let V' be a (graded-polarizable)
mixed Hodge structure with dud™ and tensor spaces
TmhY - — V®m ® (V\/)®n

(n,m € Z=o). These carry natural MHS, and apye GL(V') acts naturally on
T™"YV,
DEFINITION 106. (i) AHodge(p, p)-tensoris anyt € (T™" V)(g’”’).

(i) The MT group My of V is the (largestlQ-algebraic subgroup of GLIV)
fixing!? the Hodge(0, 0)-tensors for alkn, n. The weight filtrationW, on V is
preserved byl .

124Fixing” means fixing pointwise; the term for “fixing as a sét™stabilizing”.
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Similarly, theHodge groupM, of V' is theQ-algebraic subgroup of GIV)
fixing the Hodgd p, p)-tensors for alln, n, p. (In an unfortunate coincidence of
terminology, these are completely different objects frortheugh not unrelated
to—the finitely generated abelian groups”Hd{) discussed i§ 1.)

(iii) The weight filtration onV induces one on MT/Hodge:

WoiMS = {ge MY | (g—id)W.V C Wui VI < MY,

One has:WoM,(,") = M,(,°); W_lM,(,") is unipotent; and Gf MI(/°) =~ Mf,i?,m
(VSPit:= B, o, G V), cf. [An].

Clearly M, < M,; and unlesd’ is pure of weighD, we haveM,, / M), = G,.

If V has polarizatiorQ € Hommus (V ® V, Q(—k)) for k € Z\{0}, thenMy; is

of finite index inMy N GL(V, Q) (whereg € GL(V, Q) meansQ(gv, gw) =
Q(v,w)), and if in additionV (= H) is pure (or at least split) then both are
reductive. One has in general tHat.; My € DMy € M C M,,.

DEFINITION 107. (i) If My is abelian & My (C) = (C*)*4), V is called a
CM-MHS (A subMHS of a CM-MHS is obviously CM.)

(i) The endomorphisms ERghs(V) can be interpreted as tligpoints of the
algebra(End(V))Mv =: Ey. One always hadfy c GL(V, Ey) (=centralizer
of Ey); if this is an equality, ther is said to benondegenerate

Neither notion implies the other; however: any CM or nondegate MHS is
(Q-)split, i.e., V (= VSPIY) js a direct sum of pure HS in different weights.

REMARK 108. (a) We point out why CM-MHS are split. ¥/}, is abelian,
then My C Ey and soMy (Q) consists of morphisms of MHS. But then any
g€ W_1 My (Q), henceg—id, is a morphism of MHS witl{g —id) W, C W,_y;
sog = id, and My = My sit, which impliesV = VsPit,

(b) For an arbitrary MHS/, the subquotient tensor representations\ff
killing DMy (i.e., factoring through the abelianization) are CM-MHS. @),
they are split, so tha’_; My, acts trivially; this givesW_; My € DMy .

Now we turn to the representation-theoretic point of viewMiAS. Define the
algebraicQ-subgroupd/ C S C GL, via their complex points:

o —{(5 1)
o —1{(5 )

a,fpeC ~ " " 1
(o, ﬂ) 75 (0, 0) }eigenvalue(g xC (Z’ ;)

(6-1)

Ny

O[,,BE(C } o~

@+ p2=1 —>=C*



362 MATT KERR AND GREGORY PEARLSTEIN

where the top map senoﬂg% 5) — (@ +if,a—if) =:(z,w). (Points inS(C)
will be represented by the “eigenvalue®’, w).) Let

¢: SC)— GL(Vp)
be given by
@(z, w)|rr.acery := multiplication byz?w? (Vp,q).

Note that this map is in general only defined o@rthough in the pure case
it is defined overR (and asS(R) c S(C) consists of tuplegz, z), one tends
not to see precisely the approach above in the literaturad. fédllowing useful
result? allows one to compute MT groups in some cases.

PROPOSITION109. My is theQ-closure ofp(S(C)) in GL(V).

REMARK 110. In the pure ¥ = H) case, this condition can be replaced by
My R) D ¢(S(R)), and M, defined similarly as th&-closure ofp(U(R));
unfortunately, forV a non{Q-split MHS theQ-closure ofp(U(C)) is smaller
than M ;.

Now let H be a pure polarizable HS with Hodge numbg#s?, and takeD
(with compact duaD) to be the classifying space for such. We may vibvas

a quasiprojective variety ové€) in a suitable flag variety. Consider the subgroup
Mg , C Mg with real pointsMg (R) := (M5, (R))*SE)_1f we view M,

as acting on a Hodge flag dic with respect to a (fixed) basis dfp,.then
M;I,(p is the stabilizer of the Hodge flag. This leads to a Noethdisdletz-
type substratum imD:

PropPOSITION111. The MT domain

M2 (R) M2(C) .
Dy :=—X ( A =D )
7 Mg )\ M (© "

classifies HS with Hodge group containedifyy, or equivalently with Hodge-
tensor set containing that d#. The action ofd;, upon H embedsDy <> D
as a quasiprojective subvarietgtefined over an algebraic extension(@f The
GL(Hg, Q)-translates ofDy give isomorphic subdomairf&ith conjugate MT
groups dense inD.

A similar definition works for certain kinds of MHS. The trdelwith applying

this in the variational setting (which is our main concerregis that the “tauto-
logical VHS” (or VMHS) over such domains (outside of a fewssdical cases in
low weight or level) violate Griffiths transversality henaee not actually VHS.

13proof of this, and of Proposition 111 below, will appear in arkvof the first author with P. Griffiths
and M. Green.
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Still, it can happen that MT domains in non-Hermitian symmeeperiod do-
mains are themselves Hermitian symmetric. For instank&ga8ym’ of HS'’s
embeds the classifying space §) of (polarized) weight-1 Hodge structures
with Hodge numbersl, 1) into that of weight-3 Hodge structures with Hodge
numberg(1, 1,1, 1).

6.3. MT groups in the variational setting. Let S be a smooth quasiprojec-
tive variety with good compactificatio, andV e VMHS(S)%"; assumey is
graded-polarized, which means we have

0 € @5 Homuuns(s) (G V)&%, Q(—i))

satisfying the usual positivity conditions. The Hodge flagoeds the universal
coverS‘(—» S) in a flag variety; let thémage-pointof 5o (— s¢) be of maximal
transcendence degree. (One might.sag S(C) is a “very general point in the
sense of Hodge”; we aneot sayingsg is of maximal transcendence degree.)
Parallel translation along the local syst&hygives rise to the monodromy rep-
resentationo : 1 (S, s0) = GL(Vs,,0. We, Q). Moreover, taking as basis for
Vi,0 the parallel translate of one fdfy, o, My, is constant on paths (fromy)
avoiding a countable uniof of proper analytic subvarieties 6f, where in fact
S§°:=S\T is pathwise connected. (At points 7', My, C My,; and even the
MT group of the LMHSy,V atx € S\S naturally includes inMy; .)

DEFINITION 112. (i) We callMy, =: My the MT group andMV : M
theHodge groupof V. One has Enst(Vso) = Endymns(s)(V); see [PSZ]

(ii) The identity connected componefit, of theQ-closure ofo(1 (S, sg)) is
the geometric monodromy group Bf it is invariant under finite cover§ — S
(and semisimple in the split case).

PROPOSITION113. (André) [Ty, < DM,

SKETCH OF PROOF By a theorem of Chevalley, any clos€dalgebraic sub-
group of GL(Vy,) is the stabilizer, for some multitensoe &; 7" (V,.q)
of Q (t). For My, we can arrange for thig, to beitself fixed and to lie in
@, (T (Vs(,))( 0, By genericity ofso, Q (t,,) extends to a subVMHS with
(again by3 of Q) finite monodromy group, and s is fixed by ITy,. This
proveslTy C My (in fact, C M,; since monodromy preserves). Normality
of this inclusion then follows from the Theorem of the Fixeart? the largest
constant sublocal system of afy™" (V) (stuff fixed by ITy,) is a SUbVMHS,
hence subMHS at, and stable unde#s,,.
Now let
ab._ My ab Iy

MJP = , mP= ——— c M,
VT DMy V" Ty N DMy,
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(which is a connected component of teclosure of somer?® MS‘”(Z)),
and (taking a more exotic route than Ayl 2° be the (CM)MHS correspond-
ing to a faithful representation dM{;‘b. For each irreducibled c V2, the

imageM{j‘b has integer pointsz O for some CM fieldZ, andMSb*"(Q) cL
consists of elements of norinunder any embedding. The latter generate
(a well-known fact for CM fields) but, by a theorem of Kronegckieave finite
intersection withO7 : the roots of unity. It easily follows from this thdl ab
hencelT2, is trivial. O

DEFINITION 114. Letx € S with neighborhood A*)* x A*~* in § and local
(commuting) monodromy logarithn{sV; };'# define the weight monodromy fil-
tration M) := M(N, W), whereN := Zf;l N;. In the following we assume
a choice of path froms to x:

() Write 735 for thelocal monodromy groum GL(V;, z. W.. Q) generated
by the T; = (T;)ss¢™i, andp* for the corresponding representation.

(b) We say thaV is nonsingular atx if V= @j Gr]W Vi, asp*-modules. In
this case, the condition that,V = ; ¥s Gr]W V is independent of the choice
of local coordinatessy, ..., s,) atx, andV is calledsemisplit (honsingularat
x when this is satisfied.

(c) The G;M * ¥,V are always independent of We say that is totally
degenerate (TDatx if these G;M are (pure) Tate anstrongly degeneratésSD)
atx if they are CM-HS. Note that the SD condition is interestiirgady for the
nonboundary pointsx € S, k£ = 0).

We can now generalize results of AdAn] and Mustafin [Ms].

THEOREM115.If Vis semisplit TDO(resp SD) at a pointx € S, thenIT,, = My
(resp DMy).

REMARK 116. Note that semisplit SD ate S simply means thaty is a CM-
MHS (this case is done in [An]). Also, ifly, = M, then in factlTy, = DM, =
M.

%

PROOF Passing to a finite cover to identifyy, andp(r;), if we can show that
any invariant tensot € (77" Vso,@) Iy is also fixed byM,; (resp. DMy), we
are done by Chevalley. Now the spanid{ t is (sincelTy, < My) fixed by p(ry),
and (using the Theorem of the Fixed Part) extends to a canstd&oaVMHS
UucT™"y =:7. Now the hypotheses ow carry over to7 and taking LMHS
atx, U = Yl = @; ¥s Gr¥ U =@, GV U, we see thal/ splits (as VMHS).
As 7T is TD (resp. SD) at, U/ is split Hodge—Tate (resp. CM-MHS).
14Though this has been suppressed so far throughout this, payednag N; } and LMHS even in the gen-

eral case where the local monodromigsare only quasi-unipotent, by writingj; =: (77;)ss (T ), uniquely
as a product of semisimple and unipotent parts (Jordan deasition) and settingV; := log((7;).)-



AN EXPONENTIAL HISTORY OF FUNCTIONS WITH LOGARITHMIC GROWH 365

If ¢ is H-T then it consists of Hodge tensors; &G, acts trivially oni/ hence
ont.

If U is CM thenM 3|, = My} is abelian; and so the action 8f,; oni/ factors
through M}/ DM, so thatDM° fixest. O

Areason why one would want this “maximality” resiily, = M, is to satisfy the
hypothesis of the following interpretation of Theorem 9hieh was a partial
generalization of results of [Vol] and [Ch]). Recall that MMS V/S is k-
motivated if there is a family — S of quasiprojective varieties defined over
k with Vi = the canonical (Deligne) MHS ol” (X;) for eachs € S.

PROPOSITION117. Supposé&’ is motivated ovek with trivial fixed part and
let Ty C S be a connected component of the locus wlﬂdr,je fixes some vector
(in Vy). If T is algebraic(overC), My hasonly one fixed IlneandHVT =
M° , thenTj is defined ovek.

Of course, to be able to use this one also needs a result doraigey of 7y,
i.e., a generalization of the theorems of [CDK] and [BP3] toiteary VMHS.
Onenow has thisy work of Broshan, Schnell, and the second author:

THEOREM 118. Given any integral graded-polarizedy € VMHS(S)ad the
components of the Hodge locus of ang V; yield complex algebraic subvarl—
eties ofS.

6.4. MT groups of (higher) normal functions. We now specialize to the case
whereV € NF" (S, H)ad with H — S the underlying VHS of weight-r. M,

is then an extension df/[° ~ Mvsp,n( HOQs(0) by (and a semidirect product

with) an additive (unlpotent) group
U:=W_, My =Gz,

with 1 < rankHl. SinceM;; respects weights, there is a natural myap\/,; —
My, and one might ask when this is an isomorphism.

PROPOSITION119. u = 0 <= Vs torsion

E’ROOE First we note thad’ is torsion if and only if, for some finite cover
S — S, we have
{0} # HOTT'IVMHS(g) (Qs(0),V) = En%MHS(j) (V) nann’H)
M
= Enduns(Vy,) Nann(Hy,) = (Homg((Vy,/Hs,), Vsy)) ™~
The last expression can be interpreted as consisting obrgewte Hy, o that

satisfy (id — M)w = u whenever(} ) € M. This is possible only if there
is oneu for eachM, i.e., if n: M° — M° is an isomorphism. Conversely,
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assuming this, write. = n~!(M) [noting

7N (M M) =i (M) + Myi (M) ] (*)
and sew := 71(0). TakingM, =0 andM; = M in (x), we get(id— M)w =
(id—M)n=1(0) =7~ (M) = u forall M € M. O

We can now address the problem which lies at the heart of #duson: what
can one say about the monodromy of the normal function abodéeayond that
of the underlying VHS — for example, about the kernel of theurel map® :
ITy, — I13;? One can make some headway simply by translating Definitldn 1
and Theorem 115 into the language of normal functions; allskang conditions
are®Q.

PROPOSITION120. LetV be an admissible higher normal function ov&rand
let x € S with local coordinate system

(i) V is nonsingularias AVMH$ at x if and only ifsing, () = 0. Assuming
this, V is semi-simple at if and only iflim (V) =0. (In casex € S, sing, (V) =
0 is automatic andim, (V) = 0 if and only ifx is in the torsion locus o¥.)

(i) Vis TD(resp SD) at x if and only if the underlying VH& is. (Forx € S,
this just means thak/, is CM.)

(ii)) If sing, (V), lim (V) vanish andys’H is graded CM thenlTy, = DMy,.
(For x € S, we are just hypothesizing that the torsion locu3’afontains a CM
point of H.)

(iv) Letx € S\ S. If sing, (V), lim, (V) vanish anady, H is Hodge—Tatgethen
Iy = M.

(v) Under the hypotheses (i) and(iv), dim(ker(®)) = u. (In general one
has<.)

PrROOF All parts are self-evident except for (v), which follow®in observing
(in both cases (iii) and (iv)) via the diagram

Gt = Wy M$ = ker(n) € DMy —— IMy—— M)
l@ in (6-2)
HH% M’)(-[O)
that kekn) = kern(®). O
EXAMPLE 121. The Morrison—Walcher normal function fro§ii.7 (Exam-
ple 13) lives “over” the VHSH arising fromR* 7, Z(2) for a family of “mirror
quintic” CY 3-folds, and vanishes at= co. (One should take a suitable, e.qg., or-

der 2 or 10 pullback so thatis well-defined.) The underlying HF at this point
is of CM type(the fiber is the usualZ/57)* quotient of{>";_, Z? = 0} CP*),
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with Mg (Q) =Q(¢5). SoV would satisfy the conditions of Proposition 120(iii).
It should be interesting to work out the consequences ofdhalting equality
ITy, = DM,,.

There is a different aspect to the relationship betweer ki global behavior
of V. Assuming for simplicity that the local monodromiesyedre unipotent, let
Kkx := ker(my; — m3,) denote the local monodromy kernel, and the dimen-
sions of itsQ-closurex,. This is an additive (torsion-free) subgroup of (@,
and so dinfker(®)) > u, (Vx € S\S). Writing {N;} for the local monodromy
logarithms atx, we have the

PROPOSITION122. () ux > 0 impliessing, (V) # 0 (nontorsion singularity
(i) The converse holds assuming= 1 andrank(N;) =1 (V7).

PROOF. Let g € ny5, and definen € Q®* by log(g) =: Zle m; N;i. Writing
g, N; for g|m, Ni|g, consider the (commuting) diagram of morphisms of MHS

vsH
@Ni \
D; vsH(-1) ON VsV log(2) (6-3)
x %)
VsH(—=1)
wherey(wy..... wg) =Y *_, miw; andlogg) =Y%_, m; N;. Then sing.(V)

is nhonzero if and only if(@ N,-)vQ does not lie in intd N;), wherevg (see

Definition 2(b)) generategV /vy H.
(i) Supposeg € kx\{1}. Then0 = log(g) implies0 = x(im(®N;)) while

0 # log g implies0 # (log(g))vg = x((BN;)vg). So x “detects” a singularity.
Qi) If » =1we may replac@f‘=1 V¥sH(—1) in the diagram by the subspace
i—1(Ni(¥sH)). Since each summand is of dimension 1, and

(D Ni)vg ¢ im(p M)

(by assumption), we can choose= {m;} in order thaty kill im (9 N;) but
not (b N;)vg. Using the diagram, lo@) = 0 # log(g) impliesg € kx\{1}. O

REMARK 123. (a) The existence of a singular#iwaysimplies thaty is non-
torsion, hencet > 0.

(b) In the situation of [GG], we have = 1 and rank 1 local monodromy
logarithms; hence, by Proposition 122(ii), the existenica singularity implies
dim(ker(®)) > 0, consistent with (a).
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(c) By Proposition 122(i), in the normal function cage= 1), i = 0 along
codimension-1 boundary components.

(d) In the “maximal geometric monodromy” situation of Prsfiimn 120(v),
W=y Vx e S\S.

Obviously, for the purpose of forcing singularities to ¢xtee inequality in (d)
points in the wrong direction. One wonders if some sort ofeconspread on a
VMHS might be used to translate global into local monodroragnkl, but this
seems unlikely to be helpful.

We conclude with an amusing application of differential @stheory related
to a result of Ande [An]:

PROPOSITION124. Consider a normal functiol¥ of geometric origin together
with an Og-basis{w;} of holomorphic sections oF°H. (That is V; is the
extension of MHS corresponding #/(Z) € J?(X;) for some flat family of
cycles on a family of smooth projective varieties oef Let K denote the
extension ofC(S) by the(multivalued periods of the{w;}; and L denote the
further extension oK via the(multivalued Poinca© normal functions given by
pairing thew; with an integral lift of 1 € Qg(0) (i.e., the membrane integrals
[, wi(s) wheredl'y = Z). Thentrdeg L/ K) = dim(ker(©)).

The proof rests on a result of N. Katz [Ka, Corollary 2.3.1rélating tran-
scendence degrees and dimensions of differential Galoigpgr together with
the fact that the{frY w;} (for eachi) satisfy a homogeneous linear ODE with
regular singular points [Grl]. (This fact implies equalitydifferential Galois
and geometric monodromy groups, since monodromy invasiantions of such

an ODE belong t&(.S) which is the fixed field of the Galois group.) In the event
that’H has no fixed part (so thdt can introduce no new constants and one has
a “Picard—Vessiot field extension”) and the normal functi@motivated over

k = k, one can probably replad® by k in the statement.
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