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An exponential history of functions with
logarithmic growth

MATT KERR AND GREGORY PEARLSTEIN

ABSTRACT. We survey recent work on normal functions, including limits and
singularities of admissible normal functions, the Griffiths–Green approach to
the Hodge conjecture, algebraicity of the zero locus of a normal function,
Néron models, and Mumford–Tate groups. Some of the material and many
of the examples, especially in Sections 5 and 6, are original.
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In a talk on the theory of motives, A. A. Beilinson remarked that according to
his time-line of results, advances in the (relatively young) field were apparently a
logarithmic function oft ; hence, one could expect to wait 100 years for the next
significant milestone. Here we allow ourselves to be more optimistic: following
on a drawn-out history which begins with Poincaré, Lefschetz, and Hodge, the
theory ofnormal functionsreached maturity in the programs of Bloch, Griffiths,

The second author was supported by NSF grant DMS-0703956.

281



282 MATT KERR AND GREGORY PEARLSTEIN

Zucker, and others. But the recent blizzard of results and ideas, inspired by
works of M. Saito on admissible normal functions, and Green and Griffiths on
the Hodge Conjecture, has been impressive indeed. Besides further papers of
theirs, significant progress has been made in work of P. Brosnan, F. Charles,
H. Clemens, H. Fang, J. Lewis, R. Thomas, Z. Nie, C. Schnell, C. Voisin,
A. Young, and the authors — much of this in the last 4 years. This seems like a
good time to try to summarize the state of the art and speculate about the future,
barring (say) 100 more results between the time of writing and the publication
of this volume.

In the classical algebraic geometry of curves, Abel’s theorem and Jacobi
inversion articulate the relationship (involving rational integrals) between con-
figurations of points with integer multiplicities, or zero-cycles, and an abelian
variety known as the Jacobian of the curve: the latter algebraically parametrizes
the cycles of degree 0 modulo the subgroup arising as divisors of meromorphic
functions. Given a familyX of algebraic curves over a complete base curve
S , with smooth fibers overS� (S minus a finite point seṫ over which fibers
have double point singularities), Poincaré [P1; P2] definednormal functionsas
holomorphic sections of the corresponding family of Jacobians overS which
behave normally (or logarithmically) in some sense near theboundary. His main
result, which says essentially that they parametrize1-dimensional cycles onX ,
was then used by Lefschetz (in the context whereX is a pencil of hyperplane
sections of a projective algebraic surface) to prove his famous .1; 1/ theorem
for algebraic surfaces [L]. This later became the basis for the Hodge conjecture,
which says that certaintopological-analyticinvariants of analgebraicvariety
must come fromalgebraicsubvarieties:

CONJECTURE1. For a smooth projective complex algebraic varietyX , with
Hgm.X /Q the classes inH 2m

sing.X
an
C ;Q/ of type.m;m/, andCH m.X / the Chow

group of codimension-m algebraic cycles modulo rational equivalence, the fun-
damental class mapCH m.X /˝ Q ! Hgm.X /Q is surjective.

Together with a desire to learn more about the structure of Chow groups (the
Bloch–Beilinson conjectures reviewed in~ 5), this can be seen as the primary
motivation behind all the work described (as well as the new results) in this
paper. In particular, in~ 1 (after mathematically fleshing out the Poincaré–
Lefschetz story) we describe the attempts to directly generalize Lefschetz’s
success to higher-codimension cycles which led to Griffiths’ Abel–Jacobi map
(from the codimensionm cycle group of a varietyX to its m-th “intermedi-
ate” Jacobian), horizontality and variations of mixed Hodge structure, and S.
Zucker’s Theorem on Normal Functions. As is well-known, thebreakdown
(beyond codimension 1) of the relationship between cycles and (intermediate)
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Jacobians, and the failure of the Jacobians to be algebraic,meant that the same
game played in 1 parameter would not work outside very special cases.

It has taken nearly three decades to develop the technical underpinnings for
a study of normal functions over ahigher-dimensional baseS : Kashiwara’s
work on admissible variations of mixed Hodge structure [K],M. Saito’s intro-
duction of mixed Hodge modules [S4], multivariable nilpotent and SL2-orbit
theorems ([KNU1],[Pe2]), and so on. And then in 2006, Griffiths and Green
had a fundamental idea tying the Hodge conjecture to the presence ofnontor-
sion singularities— nontrivial invariants in local intersection cohomology —
for multiparameter normal functions arising from Hodge classes on algebraic
varieties [GG]. We describe their main result and the follow-up work [BFNP]
in ~ 3. Prior to that the reader will need some familiarity with the boundary
behavior of “admissible” normal functions arising from higher codimension al-
gebraic cycles. The two principal invariants of this behavior are calledlimits
andsingularities, and we have tried in~ 2 to give the reader a geometric feel for
these through several examples and an explanation of the precise sense in which
the limit of Abel–Jacobi invariants (for a family of cycles)is again some kind of
Abel–Jacobi invariant. In general throughout~ ~ 1–2 (and~ 4.5–6) normal func-
tions are “of geometric origin” (arise from cycles), whereas in the remainder the
formal Hodge-theoretic point of view dominates (though Conjecture 1 is always
in the background). We should emphasize that the first two sections are intended
for a broad audience, while the last four are of a more specialized nature; one
might say that the difficulty level increases exponentially.

The transcendental (nonalgebraic) nature of intermediateJacobians means
that even for a normal function of geometric origin, algebraicity of its vanishing
locus (as a subset of the baseS), let alone its sensitivity to the field of def-
inition of the cycle, is not a foreordained conclusion. Following a review of
Schmid’s nilpotent and SL2-orbit theorems (which lie at the heart of the limit
mixed Hodge structures introduced in~ 2), in ~ 4 we explain how generaliza-
tions of those theorems to mixed Hodge structures (and multiple parameters)
have allowed complex algebraicity to be proved for the zero loci of “abstract”
admissible normal functions [BP1; BP2; BP3; S5]. We then address the field
of definition in the geometric case, in particular the recentresult of Charles
[Ch] under a hypothesis on the VHS underlying the zero locus,the situation
when the family of cycles is algebraically equivalent to zero, and what all this
means for filtrations on Chow groups. Another reason one would want the zero
locus to be algebraic is that the Griffiths–Green normal function attached to a
nontrivial Hodge class can then be shown, by an observation of C. Schnell, to
have a singularity in the intersection of the zero locus withthe boundarẏ � S

(though this intersection could very well be empty).
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Now, a priori, admissible normal functions (ANFs) are only horizontal and
holomorphic sections of a Jacobian bundle overSn˙ which are highly con-
strained along the boundary. Another route (besides orbit theorems) that leads to
algebraicity of their zero loci is the construction of a “Néron model” — a partial
compactification of the Jacobian bundle satisfying a Hausdorff property (though
not a complex analytic space in general) and graphing admissible normal func-
tions over all ofS . Néron models are taken up in~ 5; as they are better un-
derstood they may become useful in defining global invariants of (one or more)
normal functions. However, unless the underlying variation of Hodge structure
(VHS) is a nilpotent orbit the group of components of the Néron model (i.e., the
possible singularities of ANFs at that point) over a codimension� 2 boundary
point remains mysterious. Recent examples of M. Saito [S6] and the second
author [Pe3] show that there are analytic obstructions which prevent ANFs from
surjecting onto (or even mapping nontrivially to) the putative singularity group
for ANFs (rational.0; 0/ classes in the local intersection cohomology). At first
glance this appears to throw the existence of singularitiesfor Griffiths–Green
normal functions (and hence the Hodge conjecture) into serious doubt, but in
~ 5.5 we show that this concern is probably ill-founded.

The last section is devoted to a discussion of Mumford–Tate groups of mixed
Hodge structures (introduced by Y. André [An]) and variations thereof, in partic-
ular those attached to admissible normal functions. The motivation for writing
this section was again to attempt to “force singularities toexist” via conditions
on the normal function (e.g., involving the zero locus) which maximize the mon-
odromy of the underlying local system inside the M-T group; we were able to
markedly improve Andŕe’s maximality result (but not to produce singularities).
Since the general notion of (non)singularity of a VMHS at a boundary point is
defined here (in~ 6.3), which generalizes the notion of singularity of a normal
function, we should point out that there is another sense in which the word
“singularity” is used in this paper. The “singularities” ofa period mapping
associated to a VHS or VMHSare points where the connection has poles or
the local system has monodromy (˙ in the notation above), and at which one
must compute a limit mixed Hodge structure (LMHS). These contain the “sin-
gularities of the VMHS”, nearly always as aproper subset; indeed, pure VHS
never have singularities (in the sense of~ 6.3), though their corresponding period
mappings do.

This paper has its roots in the first author’s talk at a conference in honor of
Phillip Griffiths’ 70th birthday at the IAS, and the second author’s talk at MSRI
during the conference on the topology of stratified spaces towhich this volume
is dedicated. The relationship between normal functions and stratifications oc-
curs in the context of mixed Hodge modules and the Decomposition Theorem



AN EXPONENTIAL HISTORY OF FUNCTIONS WITH LOGARITHMIC GROWTH 285

[BBD], and is most explicitly on display in the constructionof the multivariable
Néron model in~ 5 as a topological group whose restrictions to the strata of a
Whitney stratification are complex Lie groups. We want to thank the conference
organizers and Robert Bryant for doing an excellent job at putting together and
hosting a successful interdisciplinary meeting blending (amongst other topics)
singularities and topology of complex varieties,L2 and intersection cohomol-
ogy, and mixed Hodge theory, all of which play a role below. Weare indebted
to Patrick Brosnan, Phillip Griffiths, and James Lewis for helpful conversations
and sharing their ideas. We also want to thank heartily both referees as well as
Chris Peters, whose comments and suggestions have made thisa better paper.

One observation on notation is in order, mainly for experts:to clarify the dis-
tinction in some places between monodromy weight filtrations arising in LMHS
and weight filtrations postulated as part of the data of an admissible variation
of mixed Hodge structure (AVMHS), the former are always denoted M� (and
the latterW�) in this paper. In particular, for a degeneration of (pure) weightn
HS with monodromy logarithmN , the weight filtration on the LMHS is written
M.N /� (and centered atn). While perhaps nontraditional, this is consistent with
the notationM.N;W /� for relative weight monodromy filtrations for (admissi-
ble) degenerations of MHS. That is, whenW is “trivial” ( Wn DH, Wn�1 D f0g)
it is simply omitted.

Finally, we would like to draw attention to the interesting recent article [Gr4]
of Griffiths which covers ground related to our~ ~ 2–5, but in a complementary
fashion that may also be useful to the reader.

1. Prehistory and classical results

The present chapter is not meant to be heroic, but merely aimsto introduce
a few concepts which shall be used throughout the paper. We felt it would
be convenient (whatever one’s background) to have an up-to-date, “algebraic”
summary of certain basic material on normal functions and their invariants in
one place. For background or further (and better, but much lengthier) discussion
of this material the reader may consult the excellent books [Le1] by Lewis and
[Vo2] by Voisin, as well as the lectures of Green and Voisin from the “Torino
volume” [GMV] and the papers [Gr1; Gr2; Gr3] of Griffiths.

Even experts may want to glance this section over since we have included
some bits of recent provenance: the relationship between log-infinitesimal and
topological invariants, which uses work of M. Saito; the result on inhomoge-
neous Picard–Fuchs equations, which incorporates a theorem of Müller-Stach
and del Angel; the important example of Morrison and Walcherrelated to open
mirror symmetry; and the material onK-motivation of normal functions (see
~ 1.3 and~ 1.7), which will be used in Sections 2 and 4.
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Before we begin, a word on thecurrentsthat play a r̂ole in the bullet-train
proof of Abel’s Theorem in~ 1.1. These are differential forms with distribution
coefficients, and may be integrated againstC 1 forms, with exterior deriva-
tive d defined by “integration by parts”. They form a complex computing C-
cohomology (of the complex manifold on which they lie) and includeC 1chains
and log-smooth forms. For example, for aC 1 chain� , the delta currentı�
has the defining property

R
ı� ^ ! D

R
� ! for any C 1 form !. (For more

details, see Chapter 3 of [GH].)

1.1. Abel’s Theorem. Our (historically incorrect) story begins with a divisor
D of degree zero on a smooth projective algebraic curveX=C; the associated
analytic varietyX an is a Riemann surface. (Except when explicitly mentioned,
we continue to work overC.) Writing D D

P
finite nipi 2 Z1.X /hom (ni 2 Z

such that
P

ni D 0, pi 2 X.C/), by Riemann’s existence theorem one has a
meromorphic1-form O! with Respi

. O!/D ni (8i). Denoting byf!1; : : : ; !gg a
basis for̋ 1.X /, consider the map

Z1.X /hom
//

eAJ
**

˝1.X /_R
H1.X ;Z/. � /

evf!i g

Š
//

Cg

�2g
DW J 1.X /

D
ffl

//

R
�

ffl

//

�R
� !1; : : : ;

R
� !g

�

(1-1)

where� 2 C1.X
an/ is any chain with@� D D andJ 1.X / is theJacobianof X .

The1-current� WD O!� 2� iı� is closed; moreover, ifeAJ .D/D 0 then� may
be chosen so that all

R
� !i D 0 implies

R
X �^!i D 0. We can therefore smooth

� in its cohomology class to!D ��d� (! 2˝1.X /; �2 D0.X /D0-currents),
and

f WD exp
˚R
. O! �!/

	
(1-2)

D e2� i
R

ı� e� (1-3)

+3

−1 −2

D

Γ
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is single-valued — though possibly discontinuous — by (1-3), while being mero-
morphic — though possibly multivalued — by (1-2). Locally atpi , e

R
.ni =z/ dz D

C zni has the right degree; and so the divisor off is preciselyD. Conversely,
if D D .f /D f �1.0/�f �1.1/ for f 2 C.X /�, then

t ‘
Z

f �1.
�!
0:t /

. � /

induces a holomorphic mapP1 ! J 1.X /. Such a map is necessarily constant
(say, to avoid pulling back a nontrivial holomorphic1-form), and by evaluating
at t D 0 one finds that this constant is zero. So we have proved part (i)of

THEOREM 2. (i) [Abel] Writing Z1.X /rat for the divisors of functionsf 2
C.X /�, eAJ descends to an injective homomorphism of abelian groups

CH 1.X /hom WD Z1.X /hom

Z1.X /rat

AJ� J 1.X /:

(ii) [Jacobi inversion]AJ is surjective; in particular, fixing q1; : : : ; qg 2 X.C/

the morphismSymg X ! J 1.X / induced byp1 C� � �Cpg ‘
R

@�1.
P

pi �qi /. � /
is birational.

Here@�1D means any1-chain bounding onD. Implicit in (ii) is that J 1.X / is
an (abelian) algebraic variety; this is a consequence of ampleness of the theta
line bundle (onJ 1.X /) induced by the polarization

Q W H 1.X;Z/� H 1.X;Z/! Z

(with obvious extensions toQ, R, C) defined equivalently by cup product, inter-
section of cycles, or integration.!; �/‘

R
X ! ^ �. The ampleness boils down

to the second Riemann bilinear relation, which says thatiQ. � ; N� / is positive
definite on˝1.X /.

1.2. Normal functions. We now wish to vary the Abel–Jacobi map in families.
Until ~ 2, all our normal functions shall be over a curveS . Let X be a smooth
projective surface, andN� W X ! S a (projective) morphism which is

(a) smooth off a finite seṫ D fs1; : : : ; seg � S , and
(b) locally of the form.x1;x2/‘ x1x2 at singularities (ofN�).
Write Xs WD N��1.s/ (s 2 S) for the fibers. The singular fibersXsi

(i D
1; : : : ; e) then have only nodal (ordinary double point) singularities, and writing
X � for their complement we have� W X � ! S� WD Sn˙ . Fixing a general
s0 2 S�, the local monodromiesTsi

2 Aut
�
H 1.Xs0

;Z/DW HZ;s0

�
of the local

systemHZ WD R1��ZX� are then computed by the Picard–Lefschetz formula

.Tsi
� I/
 D

X

j

.
 � ıj /ıj : (1-4)
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π

Herefıj g are the Poincaré duals of the (possibly nondistinct) vanishing cycle
classes2 ker

˚
H1.Xs0

;Z/! H1.Xsi
;Z/

	
associated to each node onXsi

; we
note .Tsi

� I/2 D 0. For a family of elliptic curves, (1-4) is just the familiar
Dehn twist:

T

α

β

Τ(α)=α

Τ(β)=β+α β

β+α

∆

Ε Εs 00

0
s 0

(For the reader new to such pictures, the two crossing segments in the “local
real” picture at the top of the page become the two touching “thimbles”, i.e., a
small neighborhood of the singularity inE0, in this diagram.)

Now, in our setting, the bundle of JacobiansJ WD
S

s2S� J 1.Xs/ is a complex
(algebraic) manifold. It admits a partial compactificationto a fiber space of
complex abelian Lie groups, by defining

J 1.Xsi
/ WD

H 0.!Xsi
/

im fH 1.Xsi
;Z/g

(with !xs
the dualizing sheaf) andJe WD

S
s2S J 1.Xs/. (How this is topolo-

gized will be discussed in a more general context in~ 5.) The same notation will
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denote their sheaves of sections,

0 ! HZ ! F_ ! J ! 0 .on S�/ (1-5)

0 ! HZ;e ! .Fe/
_ ! Je ! 0 .on S/; (1-6)

with F WD ��!X=S , Fe WD N��!X=S , HZ D R1��Z, HZ;e D R1 N��Z.

DEFINITION 3. A normal function(NF) is a holomorphic section (overS�) of
J . An extended(or Poincaŕe) normal function(ENF) is a holomorphic section
(overS) of Je. An NF isextendableif it lies in imfH 0.S;Je/! H 0.S�;J /g.
Next consider the long exact cohomology sequence (sectionsoverS�)

0 ! H 0.HZ/! H 0.F_/! H 0.J /! H 1.HZ/! H 1.F_/I (1-7)

the topological invariantof a normal function� 2 H 0.J / is its imageŒ�� 2
H 1.S�;HZ/. It is easy to see that the restriction ofŒ�� to H 1.��

i ;HZ/ (�i a
punctured disk aboutsi) computes the local monodromy.Tsi

� I/ Q� (where Q�
is a multivalued local lift of� to F_), modulo the monodromy of topological
cycles. We say that� is locally liftable if all these restrictions vanish, i.e.,if

.Tsi
� I/ Q� 2 im f.Tsi

� I/HZ;s0
g:

Together with the assumption that as a (multivalued, singular) “section” ofF_
e ,

Q�e has at worst logarithmic divergence atsi (the “logarithmic growth” in the
title), this is equivalent to extendability.

1.3. Normal functions of geometric origin. Let Z 2 Z1.X /prim be a divisor
properly intersecting fibers ofN� and avoiding its singularities, and which is
primitive in the sense that eachZs WD Z � Xs (s 2 S�) is of degree 0. (In fact,
the intersection conditions can be done away with, by movingthe divisor in a
rational equivalence.) Thens ‘ AJ.Zs/ defines a section�Z of J , and it can
be shown that a multipleN�Z D �N Z of �Z is always extendable. One says that
�Z itself is admissible.

Now assumeN� has a section� W S ! X (also avoiding singularities) and
consider the analog of (1-7) forJe

0 ! H 0.F_
e /

H 0.HZ;e/
! H 0.Je/! ker

˚
H 1.HZ;e/! H 1.F_

e /
	

! 0:

With a bit of work, this becomes

0 ! J 1.X=S/fix
// ENF

Œ � �
//

Hg1.X /prim

Z
˝
ŒXs0

�
˛ ! 0; (1-8)

where the Jacobian of the fixed partJ 1.X=S/fix Œ J 1.Xs/ (8s 2 S) gives a
constant subbundle ofJe and the primitive Hodge classes Hg1.X /prim are the
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Q-orthogonal complement of a general fiberXs0
of N� in Hg1.X / WDH 2.X ;Z/\

H 1;1.X ;C/.

PROPOSITION4. Let� be an ENF.

(i) If Œ��D 0 then� is a constant section ofJfix WD
S

s2S J 1.X=S/fix � Je.
(ii) If .� D/�Z is of geometric origin, thenŒ�Z�D ŒZ� (ŒZ�D fundamental class).
(iii) [Poincaŕe Existence Theorem]Every ENF is of geometric origin.

We note that (i) follows from considering sectionsf!1; : : : ; !gg.s/ of F_
e whose

restrictions to generalXs are linearly independent (such do exist), evaluating a
lift Q� 2 H 0.F_

e / against them, and applying Liouville’s Theorem. The resulting
constancy of the abelian integrals, by a result in Hodge Theory (cf. end of~ 1.6),
implies the membership of�.s/2Jfix . To see (iii), apply “Jacobi inversion with
parameters” andqi.s/D �.s/ (8i) overS� (really, over the generic point ofS),
and then take Zariski closure.1 Finally, when� is geometric, the monodromies
of a lift Q� (to F_

e ) around each loop inS (which determineŒ��) are just the cor-
responding monodromies of a bounding1-chain�s (@�s D Zs), which identify
with the Leray.1; 1/ component ofŒZ� in H 2.X /; this gives the gist of (ii).

T∆ 0
s 0

A normal function is said to bemotivated overK (K � C a subfield) if it is
of geometric origin as above, and if the coefficients of the defining equations of
Z, X , N�, andS belong toK.

1.4. Lefschetz (1,1) Theorem.Now takeX � PN to be a smooth projective
surface of degreed , andfXs WD X � Hsgs2P1 a Lefschetz pencilof hyperplane
sections: the singular fibers have exactly one (nodal) singularity. Letˇ WX “ X

denote the blow-up at the base locusB WD
T

s2P1 Xs of the pencil, andN� W
X ! P1 DW S the resulting fibration. We are now in the situation considered
above, with�.S/ replaced byd sectionsE1 q � � � q Ed D ˇ�1.B/, and fibers
of genusg D

�
d�1

2

�
; and with the added bonus that there is no torsion in any

1Here theqi .s/ are as in Theorem 2(ii) (but varying with respect to a parameter). If at a generic point
�.�/ is a special divisor then additional argument is needed.
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H 1.��
i ;HZ/, so that admissible) extendable. Hence, givenZ 2 Z1.X /prim

(deg.Z �Xs0
/D 0): ˇ�Z is primitive,vZ WD �ˇ�Z is an ENF, andŒvZ �Dˇ�ŒZ�

underˇ� W Hg1.X /prim Œ Hg1.X /prim=ZhŒXs0
�i.

If, on the other hand, we start with a Hodge class� 2 Hg1.X /prim, ˇ�� is (by
(1-8) + Poincaŕe existence) the class of a geometric ENF�Z; andŒZ�� Œ�Z��ˇ��

mod ZhŒXs0
�i implies � � ˇ�ˇ

�� � Œˇ�Z DW Z� in Hg1.X /=ZhŒXs0
�i, which

implies � D ŒZ0� for someZ0 2 Z1.X /.prim/. This is the gist of Lefschetz’s
original proof [L] of

THEOREM 5. LetX be a(smooth projective algebraic) surface. The fundamen-

tal class mapCH 1.X /
Œ � �! Hg1.X / is (integrally) surjective.

This continues to hold in higher dimension, as can be seen from an inductive
treatment with ENF’s or (more easily) from the “modern” treatment of Theo-
rem 5 using the exponential exact sheaf sequence

0 ! ZX � OX
e2�i. � /

� O�
X ! 0:

One simply puts the induced long exact sequence in the form

0 ! H 1.X;O/

H 1.X;Z/
! H 1.X;O�/! ker

˚
H 2.X;Z/! H 2.X;O/

	
! 0;

and interprets it as

0 // J 1.X / //

n
holomorphic
line bundles

o

››

ffl

ffl

ffl

// Hg1.X / // 0

CH 1.X /

99

s

s

s

s

s

s

s

s

s

s

s

(1-9)

where the dotted arrow takes the divisor of a meromorphic section of a given
bundle. Existence of the section is a standard but nontrivial result.

We note that forX ! P1 a Lefschetz pencil ofX , in (1-8) we have

J 1.X=P1/fix D J 1.X / WD H 1.X;C/

F1H 1.X;C/C H 1.X;Z/
;

which is zero ifX is a complete intersection; in that caseENF is finitely gen-
erated anď � embeds Hg1.X /prim in ENF.

EXAMPLE 6. For X a cubic surface� P3, divisors with support on the27

lines already surject onto Hg1.X / D H 2.X;Z/ Š Z7. Differences of these
lines generate all primitive classes, hence all of im.ˇ�/ (Š Z6) in ENF .Š Z8).



292 MATT KERR AND GREGORY PEARLSTEIN

Note thatJe is essentially an elliptic surface andENF comprises the (holomor-
phic) sections passing through theC�’s over points oḟ . There are no torsion
sections.

1.5. Griffiths’ AJ map. A Z-Hodge structure (HS) of weightm comprises a
finitely generated abelian groupHZ together with a descending filtrationF � on
HC WD HZ ˝Z C satisfyingFpHC ˚ Fm�pC1HC D HC, theHodge filtration;
we denote the lot byH . Examples include them-th (singular/Betti + de Rham)
cohomology groups of smooth projective varieties overC, with FpH m

dR
.X;C/

being that part of the de Rham cohomology represented byC 1 forms onX an

with at leastp holomorphic differentials wedged together in each monomial
term. (These are forms ofHodge type.p;m � p/C .p C 1;m � p � 1/C � � � ;
note thatH p;m�p

C WD FpHC \Fm�pHC.) To accommodateH m of nonsmooth
or incomplete varieties, the notion of a (Z-)mixed Hodge structure (MHS)V is
required: in addition toF � on VC, introduce a decreasingweight filtrationW�

on VQ such that the
�
GrWi VQ; .GrWi .VC;F

�//
�

areQ-HS of weighti . Mixed
Hodge structures have Hodge group

Hgp.V / WD kerfVZ ˚ FpW2pVC ! VCg

(for for VZ torsion-free becomesVZ \ FpW2pVC) and Jacobian group

J p.V / WD W2pVC

FpW2pVC C W2pVQ \ VZ

;

with special cases Hgm.X / WD Hgm.H 2mX // andJ m.X / WD J m.H 2m�1.X //.
Jacobians of HS yield complex tori, and subtori correspond bijectively to sub-
HS.

A polarizationof a Hodge structureH is a morphismQ of HS (defined over
Z; complexification respectsF �) from H �H to the trivial HSZ.�m/ of weight
2m (and type.m;m/), such that viewed as a pairingQ is nondegenerate and
satisfies a positivity constraint generalizing that in~ 1.1 (thesecond Hodge–
Riemann bilinear relation). A consequence of this definition is that underQ,
Fp is the annihilator ofFm�pC1 (thefirst Hodge–Riemann bilinear relationin
abstract form). IfX is a smooth projective variety of dimensiond , Œ˝� the class
of a hyperplane section, write (fork � d , say)

H m.X;Q/prim WD kerfH m.X;Q/
[˝d�kC1

� H 2d�mC2.X;Q/g:

This Hodge structure is then polarized byQ.�; �/ WD .�1/.
m
2 /

R
X �^�^˝d�k ,

Œ˝� the class of a hyperplane section (obviously since this is aQ-HS, the polar-
ization is only defined overQ).
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Let X be a smooth projective.2m�1/-fold; we shall consider some equiva-
lence relations on algebraic cycles of codimensionm onX . Writing Zm.X / for
the free abelian group on irreducible (complex) codimension p subvarieties of
X , two cyclesZ1;Z2 2 Zm.X / are homologically equivalent if their difference
bounds aC 1 chain� 2 C

top
2m�1

.X anI Z/ (of real dimension2m�1). Algebraic
equivalence is generated by (the projection toX of) differences of the form
W �.X �fp1g/�W �.X �fp2g/whereC is an algebraic curve,W 2 Zm.X �C /,
andp1;p2 2 C.C/ (or C.K/ if we are working over a subfieldK � C). Rational
equivalence is obtained by takingC to be rational (C Š P1), and form D 1 is
generated by divisors of meromorphic functions. We writeZm.X /rat for cycles
�rat 0, etc. Note that

CH m.X / WD Zm.X /

Zm.X /rat
� CH m.X /hom WD Zm.X /hom

Zm.X /rat

and

CH m.X /hom � CH m.X /alg WD Zm.X /alg

Zm.X /rat

are proper inclusions in general.
Now letW � X �C be an irreducible subvariety of codimensionm, with �X

and�C the projections from a desingularization ofW to X andC . If we put
Zi WD �X�

��
C

fpig, thenZ1 �alg Z2 implies Z1 �hom Z2, which can be seen
explicitly by setting� WD �X�

��
C
.�!q:p/ (so thatZ1 � Z2 D @� ).

qp

W

X

C

+

+

−

−

Z
π

π
C

X

Let! be ad-closed form of Hodge type.j ; 2m�j �1/ on X , for j at least
m. Consider

R
� ! D

R q
p �, where� WD �C�

��
X
! is ad-closed1-current of type

.j � m C 1;m � j / as integration along the.m � 1/-dimensional fibers of�C

eats up.m � 1;m � 1/. So� D 0 unlessj D m, and by a standard regularity
theorem in that case� is holomorphic. In particular, ifC is rational, we haveR

� ! D 0. This is essentially the reasoning behind the following result:
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PROPOSITION7. The Abel–Jacobi map

CH m.X /hom
AJ

//

�
FmH 2m�1.X;C/

�_

R
H2m�1.X ;Z/. � / Š J m.X / (1-10)

induced byZ D @� ‘
R

� . � /, is well-defined and restricts to

CH m.X /alg
AJalg

//

FmH 2m�1
hdg .X;C/R

H2m�1.X ;Z/. � / Š J m.H 2m�1
hdg .X //DW J m

h
.X /; (1-11)

whereH 2m�1
hdg .X / is the largest sub-HS ofH 2m�1.X / contained(after tensor-

ing with C) in H m�1;m.X;C/˚ H m;m�1.X;C/. While J m.X / is in general
only a complex torus(with respect to the complex structure of Griffiths), J m

h
.X /

is an abelian variety. Further, assuming a special case of the generalized Hodge
conjecture, if X is defined overk thenJ m

h
.X / andAJalg.Z/ are defined overNk.

REMARK 8. (i) To see thatJ m
h
.X / is an abelian variety, one uses the Kodaira

embedding theorem: by the Hodge–Riemann bilinear relations, the polarization
of H 2m�1.X / induces a K̈ahler metrich.u; v/ D �iQ.u; Nv/ on J m

h
.X / with

rational K̈ahler class.

(ii) The mapping (1-10) is neither surjective nor injectivein general, and (1-11)
is not injective in general; however, (1-11) is conjecturedto be surjective, and
regardless of thisJ m

alg.X / WD im.AJalg/� J m
h
.X / is in fact a subabelian variety.

(iii) A point in J m.X / is naturally the invariant of an extension of MHS

0 ! .H D/H 2m�1.X;Z.m//! E ! Z.0/! 0

(where the “twist” Z.m/ reduces weight by2m, to .�1/). The invariant is
evaluated by taking two lifts�F 2 F0W0EC, �Z 2 W0EZ of 1 2 Z.0/, so that
�F � �Z 2 W0HC is well-defined modulo the span ofF0W0HC and W0HZ

hence is inJ 0.H /Š J m.X /. The resulting isomorphism

J m.X /Š Ext1MHS.Z.0/;H
2m�1.X;Z.m///

is part of an extension-class approach toAJ maps (and their generalizations)
due to Carlson [Ca].

(iv) The Abel–Jacobi map appears in [Gr3].

1.6. Horizontality. Generalizing the setting of~ 1.2, letX be a smooth projec-
tive 2m-fold fibered over a curveS with singular fibersfXsi

g each of either

(i) NCD (normal crossing divisor) type: locally.x1; : : : ;x2m/
�‘

Qk
jD1 xj ; or
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(ii) ODP (ordinary double point) type: locally.x/‘
P2m

jD1 x2
j .

An immediate consequence is that allTsi
2 Aut

�
H 2m�1.Xs0

;Z/
�

areunipo-
tent: .Tsi

�I/n D 0 for n � 2m in case (i) orn � 2 in case (ii). (If all fibers are
of NCD type, then we say the familyfXsg of .2m � 1/-folds issemistable.)

The Jacobian bundle of interest isJ WD
S

s2S� J m.Xs/ .� Jalg/. Writing
˚
F .m/ WD R2m�1��˝

��m
X�=S�

	
�

˚
H WD R2m�1��˝

�

X�=S�

	

�
˚
HZ WD R2m�1��ZX�

	
;

and notingF_ ŠH=F viaQ W H2m�1�H2m�1 !OS� , the sequences (1-5) and
(1-7), as well as the definitions of NF and topological invariantŒ � �, all carry over.
A normal function of geometric origin, likewise, comes fromZ 2 Zm.X /prim

with Zs0
WD Z � Xs0

�hom 0 (on Xs0
), but now has an additional feature known

ashorizontality, which we now explain.
Working locally over an analytic ballU � S� containings0, let

Q! 2 � .XU ;F
mC1˝2m�1

X1 /

be a “lift” of !.s/ 2 � .U;FmC1/, and�s 2 C
top
2m�1

.XsI Z/ be a continuous
family of chains with@�s D Zs. Let P " be a path froms0 to s0 C "; then
O� " WD

S
s2P " �s has boundary�s0C" ��s0

C
S

s2P " Zs, and
�
@

@s

Z

�s

!.s/

�

sDs0

D lim
"!0

1

"

Z

�s0C"��s0

Q!

D lim
"!0

1

"

�Z

@ O� "

Q! �
Z s0C"

s0

Z

Zs

!.s/

�

D
Z

�s0

˝
Ad=dt ; d Q!

˛
�

Z

Zs0

!.s0/; (1-12)

where��
Ad=dt D d=dt (with Ad=dt tangent to O� ", OZ").

The Gauss–Manin connectionr W H!H˝˝1
S� differentiates the periods of

cohomology classes (against topological cycles) in families, satisfies Griffiths
transversalityr.Fm/� Fm�1 ˝˝1

S� , and is computed by

r! D
�˝
Ad=dt ; d Q!

˛�
˝ dt:

Moreover, the pullback of any form of typeFm to Zs0
(which is of dimension

m � 1) is zero, so that
R

Zs0

!.s0/ D 0 and
R

�s0

r! is well-defined. If Q� 2
� .U;H/ is any lift of AJ.�s/ 2 � .U;J /, we therefore have

Q
�
rd=dt

Q� ; !
�

D d

ds
Q. Q� ; !/� Q. Q� ;r!/D d

ds

Z

�s

! �
Z

�s

r!;
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which is zero by (1-12) and the remarks just made. We have shown thatrd=dt
Q�

kills FmC1, and sord=dt
Q� is a local section ofFm�1.

DEFINITION 9. A normal function� 2 H 0.S�;J / is horizontal if r Q� 2
� .U;Fm�1 ˝ ˝1

U
/ for any local lift Q� 2 � .U;H/. Equivalently, if we set

Hhor WD ker
�
H

r! H

Fm�1 ˝˝1
S�

�
� Fm DW F , .F_/hor WD Hhor

F
, andJhor WD

.F_/hor
HZ

, then NFhor WD H 0.S;Jhor/.

Much as anAJ image was encoded in a MHS in Remark 8(ii), we may encode
horizontal normal functions in terms of variations of MHS. AVMHS V=S�

consists of aZ-local systemV with an increasing filtration ofVQ WD VZ ˝Z Q

by sub- local systemsWiVQ, a decreasing filtration ofV.O/ WD VQ ˝Q OS� by
holomorphic vector bundlesFj .D FjV/, and a connectionr W V ! V ˝˝1

S�

such thatr.V/ D 0, the fibers.Vs;W�;Vs;F
�

s / yield Z-MHS, andr.Fj / �
Fj�1 ˝ ˝1

S� (transversality). (Of course, a VHS is just a VMHS with one
nontrivial GrWi VQ, and..HZ;H;F

�/;r/ in the geometric setting above gives
one.) A horizontal normal function corresponds to an extension

0 !

wt:�1
VHS‚…„ƒ
H.m/ ! E ! Z.0/S� ! 0 (1-13)

“varying” the setup of Remark 8(iii), with the transversality of the lift of �F .s/

(together with flatness of�Z.s/) reflecting horizontality.

REMARK 10. Allowing the left-hand term of (1-13) to have weight lessthan�1

yields “higher” normal functions related to families ofgeneralized(“higher”)
algebraic cycles. These have been studied in [DM1; DM2; DK],and will be
considered in later sections.

An important result on VHS over a smooth quasiprojective base is that the global
sectionsH 0.S�;V/ (resp.H 0.S�;VR/, H 0.S�;VC/) span theQ-local system
(resp. its tensor product withR, C) of a (necessarily constant) sub-VMHS� V ,
called thefixed partVfix (with constant Jacobian bundleJfix).

1.7. Infinitesimal invariant. Given � 2 NFhor, the “r Q�” for various local
liftings patch together after going modulorFm � Fm�1 ˝˝1

S� . If r Q� D rf
for f 2 � .U;Fm/, then the alternate liftQ� � f is flat, i.e., equals

P
i ci
i

wheref
ig � � .U;VZ/ is a basis and theci are complex constants. Since the

composition (s 2 S�) H 2m�1.Xs;R/Œ H 2m�1.Xs;C/“
H 2m�1.Xs;C/

F m is an
isomorphism, we may take theci 2 R, and then they are unique inR=Z. This
implies thatŒ�� lies in the torsion group ker

�
H 1.HZ/! H 1.HR/

�
, so that a

multiple N� lifts to H 0.S�;HR/ � Hfix . This motivates the definition of an
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infinitesimal invariant

ı� 2 H1
�
S�;Fm r! Fm�1 ˝˝1

S�

� if S�

affine
H 0

�
S; F

m�1˝˝1

Fm

�
(1-14)

as the image of� 2 H 0
�
S�; Hhor

F

�
under the connecting homomorphism induced

by

0 ! Cone
�
Fm r! Fm�1 ˝˝1

�
Œ�1�! Cone

�
H

r! H˝˝1
�
Œ�1�

! Hhor

F
! 0: (1-15)

PROPOSITION11. If ı� D 0, then up to torsion, Œ�� D 0 and� is a (constant)
section ofJfix .

An interesting application to the differential equations satisfied by normal func-
tions is essentially due to Manin [Ma]. For simplicity letS D P1, and suppose
H is generated by! 2 H 0.S�;F2m�1/ as aD-module, with monicPicard–
Fuchs operatorF.rıs WDs d

ds
/ 2 C.P1/�Œrıs

� killing !. Then its periods satisfy

the homogeneous P-F equationF.ıs/
R


i
! D 0, and one can look at the multi-

valued holomorphic functionQ. Q�; !/ (whereQ is the polarization, andQ� is a
multivalued lift of � to Hhor=F), which in the geometric case is just

R
�s
!.s/.

The resulting equation

.2� i/mF.ıs/Q. Q�; !/DW G.s/ (1-16)

is called theinhomogeneous Picard–Fuchs equationof �.

PROPOSITION12. (i) [DM1] G 2 C.P1/� is a rational function holomorphic on
S�; in theK-motivated setting(taking also! 2 H 0.P1; N��!X=P1/, and hence

F , overK), G 2 K.P1/�.

(ii) [Ma; Gr1] G � 0 ” ı� D 0.

EXAMPLE 13. [MW] The solutions to

.2� i/2
n
ı4

z � 5z
4Q

`D1

.5ız C `/
o
. � /D �15

4

p
z

are the membrane integrals
R

�s
!.s/ for a family of 1-cycles on the mirror

quintic family of Calabi–Yau3-folds. (The family of cycles is actually only
well-defined on the double-cover of this family, as reflectedby the

p
z.) What

makes this example particularly interesting is the “mirrordual” interpretation
of the solutions as generating functions of open Gromov–Witten invariants of a
fixed Fermat quintic3-fold.
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The horizontality relationr Q� 2 Fm�1 ˝ ˝1 is itself a differential equation,
and the constraints it puts on� over higher-dimensional bases will be studied in
~ 5.4–5.

Returning to the setting described in~ 1.6, there arecanonical extensionsHe

andF�

e of H;F� across thesi as holomorphic vector bundles or subbundles
(reviewed in~ 2 below); for example, if all fibers are of NCD type thenFp

e Š
R2m�1 N��˝

��p

X=S
.log.XnX �//. Writing2

HZ;e WD R2m�1 N��ZX and He;hor WD ker

�
He

r! He

Fm�1
e

˝˝1
S .log˙/

�
;

we have short exact sequences

0 ! HZ;e !
He.;hor/

Fm
e

! Je.;hor/ ! 0 (1-17)

and setENF.hor/ WD H 0.S;Je.;hor//.

THEOREM 14. (i) Z 2 Zm.X /prim impliesN�Z 2 ENFhor for someN 2 N.
(ii) � 2 ENFhor with Œ�� torsion impliesı� D 0.

REMARK 15. (ii) is essentially a consequence of the proof of Corollary 2 in
[S2]. For� 2 ENFhor, ı� lies in the subspace

H1
�
S;Fm r! Fm�1

e ˝˝1
S .log˙/

�
;

the restriction of

H1
�
S�;Fm r! Fm�1 ˝˝1

S�

�
! H 1.S�;HC/

to which is injective.

1.8. The Hodge Conjecture? Putting together Theorem 14(ii) and Proposi-
tion 12, we see that a horizontal ENF with trivial topological invariant lies in
H 0.S;Jfix/DWJ m.X=S/fix (constant sections). In fact, the long exact sequence
associated to (17) yields

0 ! J m.X=S/fix ! ENFhor
Œ � �! Hgm.X /prim

im
˚

Hgm�1.Xs0
/
	 ! 0;

with Œ�Z� D ŒZ� (if �Z 2 ENF) as before. IfX
N�! P1 D S is a Lefschetz pencil

on a2m-fold X , this becomes

2Warning: whileHe has no jumps in rank, the stalk ofHZ;e at si 2 ˙ is of strictly smaller rank than at
s 2 S�.
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J m.X /
ffl �

// ENFhor
Œ � �

.�/
// // Hgm.X /prim ˚ ker

n
Hgm�1.B/
!Hgm.X /

o

CH m.X /prim

�. � /

OO

ker.Œ � �/

AJ

OO

ffl �
// CH m.X /prim

v. � /

cc

Œ � �

.��/
//

ˇ�

OO

Hgm.X /prim
?ffl

.id;0/

OO

(1-18)

where the surjectivity of.�/ is due to Zucker (compare Theorems 31 and 32 in
~ 3 below; his result followed on work of Griffiths and Bloch establishing the
surjectivity forsufficiently ampleLefschetz pencils). What we are after (modulo
tensoring withQ) is surjectivity of the fundamental class map.��/. This would
clearly follow from surjectivity of�. � /, i.e., a Poincaŕe existence theorem, as in
~ 1.4. By Remark 8(ii) this cannot work in most cases; however we have this:

THEOREM 16. The Hodge Conjecture HC.m;m/ is true for X if J m.Xs0
/ D

J m.Xs0
/alg for a general member of the pencil.

EXAMPLE 17 [Zu1]. AsJ 2 D J 2
alg is true for cubic threefolds by the work of

Griffiths and Clemens [GC], HC.2; 2/ holds for cubic fourfolds inP5.

The Lefschetz paradigm, of taking a1-parameter family of slices of a primi-
tive Hodge class to get a normal function and constructing a cycle by Jacobi
inversion, appears to have led us (for the most part) to a deadend in higher
codimension. A beautiful new idea of Griffiths and Green, to be described in
~ 3, replaces the Lefschetz pencil by a complete linear system(of higher degree
sections ofX ) so that dim.S/ � 1, and proposes to recover algebraic cycles
dual to the given Hodge class from features of the (admissible) normal function
in codimension� 2 on S .

1.9. Deligne cycle-class.This replaces the fundamental andAJ classes by
one object. WritingZ.m/ WD .2� i/mZ, define the Deligne cohomology ofX

(smooth projective of any dimension) by

H �
D.X

an;Z.m// WD
H �

�
Cone

˚
C �

top.X
anI Z.m//˚ FmD�.X an/! D�.X an/

	
Œ�1�

�
;

andcD W CH m.X /! H 2m
D
.X;Z.m// by Z ‘ .2� i/m.Ztop; ıZ ; 0/. One easily

derives the exact sequence

0 ! J m.X /! H 2m
D .X;Z.m//! Hgm.X /! 0;

which invites comparison to the top row of (1-18).
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2. Limits and singularities of normal functions

Focusing on the geometric case, we now wish to give the readera basic intu-
ition for many of the objects — singularities, Néron models, limits of NF’s and
VHS — which will be treated from a more formal Hodge-theoretic perspective
in later sections.3 The first part of this section (~ ~ 2.2–8) considers a coho-
mologically trivial cycle on a 1-parameter semistably degenerating family of
odd-dimensional smooth projective varieties. Such a family has two invariants
“at” the central singular fiber:

� the limit of the Abel–Jacobi images of the intersections of the cycle with the
smooth fibers, and

� the Abel–Jacobi image of the intersection of the cycle with the singular fiber.

We define what these mean and explain the precise sense in which they agree,
which involves limit mixed Hodge structures and the Clemens–Schmid exact
sequence, and links limits ofAJ maps to the Bloch–Beilinson regulator on
higherK-theory.

In the second part, we consider what happens if the cycle is only assumed to
be homologically trivialfiberwise. In this case, just as the fundamental class of
a cycle on a variety must be zero to define itsAJ class, the family of cycles has
a singularity class which must be zero in order to define the limit AJ invari-
ant. Singularities are first introduced for normal functions arising from families
of cycles, and then in the abstract setting of admissible normal functions (and
higher normal functions). At the end we say a few words about the relation
of singularities to the Hodge conjecture, their rôle in multivariable Ńeron mod-
els, and the analytic obstructions to singularities discovered by M. Saito, topics
which ~ 3, ~ 5.1–2, and~ 5.3–5, respectively, will elaborate extensively upon.

We shall begin by recastingcD from ~ 1.9 in a more formal vein, which works
˝Q. The reader should note that henceforth in this paper, we have to introduce
appropriate Hodge twists (largely suppressed in~ 1) into VHS, Jacobians, and
related objects.

2.1. AJ map. As we saw earlier (Section 1), theAJ map is the basic Hodge-
theoretic invariant attached to a cohomologically trivialalgebraic cycle on a
smooth projective algebraic varietyX=C; say dim.X /D 2m�1. In the diagram
that follows, ifclX ;Q.Z/D 0 thenZ D @� for � (say) a rationalC 1 .2m�1/-
chain onX an, and

R
� 2 .FmH 2m�1.X;C//_ inducesAJX ;Q.Z/.

3Owing to our desire to limit preliminaries and/or notational complications here, there are a few unavoid-
able inconsistencies of notation between this and later sections.
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HomMHS

�
Q.0/;H 2m.X;Q.m//

�
.H 2m.X //

.m;m/
Q

CH m.X /

clX

55

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

// Ext1
DbMHS

�
Q.0/;K�Œ2m�.m/

�

OO

ker.clX /
?ffl

OO

AJX
// Ext1

MHS

�
Q.0/;H 2m�1.X;Q.m//

�

OO

J m.X /Q Š
�
FmH 2m�1

C

�_

H 2m�1
Q.m/

(2-1)

The middle term in the vertical short-exact sequence is isomorphic to Deligne
cohomology and Beilinson’s absolute Hodge cohomologyH 2m

H
.X an;Q.m//,

and can be regarded as the ultimate strange fruit of Carlson’s work on extensions
of mixed Hodge structures. HereK� is a canonical complex of MHS quasi-
isomorphic (noncanonically) to

L
i H i.X /Œ�i �, constructed from two general

configurations of hyperplane sectionsfHig2m�1
iD0

, f QHj g2m�1
jD0

of X . More pre-
cisely, looking (forjI j; jJ j > 0) at the corresponding “cellular” cohomology
groups

C
I;J

H ; QH
.X / WD H 2m�1

�
X n

S
i2I

Hi ;
S

j2J

Hj n � � � I Q
�
;

one sets
K` WD

M

I;J
jI j�jJ jD`�2mC1

C
I;J

H ; QH
.X /I

refer to [RS]. (Ignoring the description ofJ m.X / andAJ , and the comparisons
to cD;HD, all of this works for smooth quasiprojectiveX as well; the vertical
short-exact sequence is true even without smoothness.)

The reason for writingAJ in this way is to make plain the analogy to (2-9)
below. We now pass back toZ-coefficients.

2.2. AJ in degenerating families. To let AJX .Z/ vary with respect to a pa-
rameter, consider a semistable degeneration (SSD) over an analytic disk

X � ffl �
//

�

››

X

N�

››

X0

››

? _

{0

oo

S
i Yi

�� ffl � |
// � f0g? _oo

(2-2)

where X0 is a reduced NCD with smooth irreducible componentsYi , X is
smooth of dimension2m, N� is proper and holomorphic, and� is smooth. An
algebraic cycleZ 2 Zm.X / properly intersecting fibers gives rise to a family

Zs WD Z � Xs 2 Zm.Xs/ ; s 2�:
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Assume0 D ŒZ� 2 H 2m.X / [which implies0 D ŒZs � 2 H 2m.Xs/]; then is there
a sense in which

lim
s!0

AJXs
.Zs/D AJX0

.Z0/? (2-3)

(Of course, we have yet to say what either side means.)

2.3. Classical example.Consider a degeneration of elliptic curvesEs which
pinches 3 loops in the same homology class to points, yielding for E0 threeP1’s
joined at0 and1 (called a “Ńeron3-gon” or “Kodaira typeI3” singular fiber).

pinch loops

to points

z

z

z

2

1

3

E Es 0 coordinates:

Denote the total space byE
N�!�. One has a family of holomorphic1-forms

!s 2 ˝1.Es/ limiting to fdlog.zj /g3
jD1

on E0; this can be thought of as a

holomorphic section ofR0 N��˝
1
E=�

.logE0/.
There are two distinct possibilities for limiting behaviorwhenZs D ps � qs

is a difference of points. (These do not include the case where one or both of
p0, q0 lies in the intersection of two of theP1’s, since in that caseZ is not
considered to properly intersectX0.)

Case (I):

ps
p
0

q
0

s
q

Herep0 andq0 lie in the sameP1 (thej D 1 component, say): in which case

AJEs
.Zs/D

Z ps

qs

!s 2 C=Z
˝ R

˛s
!s;

R
ˇs
!s

˛

limits to
Z q0

p0

dlog.z1/D log
z1.p0/

z1.q0/
2 C=2� iZ:
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Case (II):

βα
ps

sq

p

q0

0

??
In this case,p0 andq0 lie in different P1 components, in which case0 ¤

ŒZ0�2 H 2.X0/ [which impliesŒZ�¤ 0] and we say thatAJ.Z0/ is “obstructed”.

2.4. Meaning of the LHS of (2-3). If we assume only that0D ŒZ��2H 2m.X �/,
then

AJXs
.Zs/ 2 J m.Xs/ (2-4)

is defined for eachs 2 ��. We can make this into a horizontal, holomorphic
section of a bundle of intermediate Jacobians, which is whatwe shall mean
henceforth by anormal function(on�� in this case).

Recall the ingredients of a variation of Hodge structure (VHS) over��:

H D ..H;HO;F
�/;r/; rFp � Fp�1 ˝˝1

S ; 0 ! H ! HO

Fm
! J ! 0;

whereH D R2m�1��Z.m/ is a local system,HO D H ˝Z O�� is [the sheaf of
sections of] a holomorphic vector bundle with holomorphic subbundlesF�, and
these yield HS’sHs fiberwise (notation:Hs D .Hs;Hs.;C/;F

�

s /). Henceforth
we shall abbreviateHO to H.

Then (2-4) yields a section of the intermediate Jacobian bundle

�Z 2 � .��;J /:

Any holomorphic vector bundle over�� is trivial, each trivialization inducing
an extension to�. The extensions we want are the “canonical” or “privileged”
ones (denoted. � /e); as in~ 1.7, we define an extended Jacobian bundleJe by

0 ! |�H ! He

Fm
e

! Je ! 0: (2-5)

THEOREM 18 [EZ]. There exists a holomorphicN�Z 2 � .�;Je/ extending�Z.

Define lims!0 AJXS
.Zs/ WD N�Z.0/ in .Je/0, the fiber over0 of the Jacobian

bundle. To be precise: sinceH 1.�; |�H/D f0g, we can lift theN�Z to a section
of the middle term of (2-5), i.e., of a vector bundle, evaluate at0, then quotient
by .|�H/0.
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2.5. Meaning of the RHS of (2-3). Higher Chow groups

CH p.X; n/ WD

�
“admissible, closed” codimension p

algebraic cycles onX � An

�

“higher” rational equivalence

were introduced by Bloch to compute algebraicKn-groups ofX , and come with
“regulator maps” regp;n to generalized intermediate Jacobians

J p;n.X / WD H 2p�n�1.X;C/

FpH 2p�n�1.X;C/C H 2p�n�1.X;Z.p//
:

(Explicit formulas for regp;n have been worked out by the first author with J.
Lewis and S. M̈uller-Stach in [KLM].) The singular fiberX0 has motivic coho-
mology groupsH �

M
.X0;Z. � // built out of higher Chow groups on the substrata

Y Œ`� WD qjI jD`C1YI WD qjI jD`C1.
\

i2I

Yi/;

(which yield a semi-simplicial resolution ofX0). Inclusion induces

{�
0 W CH m.X /hom ! H 2m

M .X0;Z.m//hom

and we defineZ0 WD {�
0

Z. TheAJ map

AJX0
W H 2m

M .X0;Z.m//hom ! J m.X0/ WD H 2m�1.X0;C/�
FmH 2m�1.X0;C/C
H 2m�1.X0;Z.m//

�

is built out of regulator maps on substrata, in the sense thatthe semi-simplicial
structure ofX0 induces “weight” filtrationsM� on both sides4 and

GrM�` H 2m
M .X0;Z.m//hom

GrM
�`

AJ
� GrM�` J m.X0/

boils down to

fsubquotient ofCH m.Y Œ`�; `/g
regm;`

� fsubquotient ofJ m;`.Y Œ`�/g:

4For the advanced reader, we note that ifM� is Deligne’s weight filtration onH 2m�1.X0; Z.m//, then
M�`J m.X0/ WD Ext1MHS.Z.0/; M�`�1H 2m�1.X0; Z.m///. The definition of theM� filtration on
motivic cohomology is much more involved, and we must refer the reader to [GGK, sec. III.A].
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2.6. Meaning of equality in (2-3). Specializing (2-5) to0, we have

. N�Z.0/ 2/ J m
lim.Xs/ WD .Je/0 D .He/0

.Fm
e /0 C .|�H/0

;

where.|�H/0 are the monodromy invariant cycles (and we are thinking of the
fiber .He/0 over 0 as the limit MHS ofH, see next subsection). H. Clemens
[Cl1] constructed a retraction mapr W X “ X0 inducing

H 2m�1.X0;Z/

�

ıı

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

r�
// H 2m�1.X ;Z/

››

� .��;H/

››

� .�; |�H/

››

.|�H/0� _

››

H 2m�1
lim .Xs;Z/

(2-6)

(where� is a morphism of MHS), which in turn induces

J.�/ W J m.X0/! J m
lim.Xs/:

THEOREM 19 [GGK]. lims!0 AJXs
.Zs/D J.�/

�
AJX0

.Z0/
�
:

2.7. Graphing normal functions. On��, let T W H ! H be the counterclock-
wise monodromy transformation, which is unipotent since the degeneration is
semistable. Hence the monodromy logarithm

N WD log.T /D
2m�1X

kD1

.�1/k�1

k
.T � I/k

is defined, and we can use it to “untwist” the local system˝Q:

HQ ‘ QHQ WD exp

�
� logs

2� i
N

�
HQ Œ He:

In fact, this yields a basis for, and defines, the privileged extensionHe. More-
over, sinceN acts onQHQ, it acts onHe, and therefore on.He/0 D H 2m�1

lim .Xs/,
inducing a “weight monodromy filtration”M�. Writing H DH 2m�1

lim .Xs;Q.m//,
this is the unique filtrationf0g � M�2m � � � � � M2m�2 D H satisfying
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N.Mk/ � Mk�2 andN k W GrM�1Ck H
Š! GrM�1�k H for all k. In general it

is centered about the weight of the original variation (cf. the convention in the
Introduction).

EXAMPLE 20. In the “Dehn twist” example of~ 1.2,N DT �I (with N.˛/D0,
N.ˇ/D ˛) so that Q̨ D ˛, Q̌ D ˇ� logs

2� i
˛ are monodromy free and yield anO�-

basis ofHe. We haveM�3 D f0g, M�2 D M�1 D h˛i, M0 D H .

REMARK 21. Rationally, ker.N /D ker.T � I/ even whenN ¤ T � I .

By [Cl1], � mapsH 2m�1.X0/ onto ker.N / � H 2m�1
lim .Xs/ and is compatible

with the twoM�’s; together with Theorem 19 this implies

THEOREM 22. lims!0 AJXs
.Zs/ 2 J m .ker.N // .� J m

lim.Xs//. (Here we re-
ally mean ker.T � I/ so thatJ m is defined integrally.)

Two remarks:

� This was not visible classically for curves (J 1.ker.N //D J 1
lim.Xs/).

� Replacing.Je/0 by J m.ker.N // yieldsJ 0
e, which is a “slit-analytic5 Haus-

dorff topological space” (Je is non-Hausdorff because in the quotient topol-
ogy there are nonzero points in.Je/0 that look like limits of points in the
zero-section ofJe, hence cannot be separated from0 2 .Je/0.6) This is the
correct extended Jacobian bundle for graphing “unobstructed” (in the sense
of the classical example) or “singularity-free” normal functions. Call this the
“pre-Néron-model”.

2.8. Nonclassical example.Take a degeneration of Fermat quintic 3-folds

X D semistable reductionof

�
s

4P
jD1

z5
j D

4Q
kD0

zk

�
� P4 ��;

so thatX0 is the union of5 P3’s blown up along curves isomorphic toC D
fx5 C y5 C z5 D 0g. Its motivic cohomology groupH 4

M
.X0;Q.2//hom has

GrM0 isomorphic to 10 copies of Pic0.C /, GrM�1 isomorphic to 40 copies ofC�,
GrW�2 D f0g, and GrM�3 Š Kind

3
.C/. One has a commuting diagram

H 4
M
.X0;Q.2//hom

AJX0
// J 2.X0/Q J 2.ker.N //Q

Kind
3
.C/

reg2;3

//

?ffl

OO

C=.2� i/2Q
Im

//

?ffl

OO

R

(2-7)

5That is, each point has a neighborhood of the form: open ball about 0 in CaCb intersected with
..Canf0g/ � Cb/ [ .f0g � Cc/, wherec � b.

6See the example before Theorem II.B.9 in [GGK].
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and explicit computations with higher Chow precycles in [GGK, ~ 4] lead to the
result:

THEOREM 23. There exists a family of1-cyclesZ 2 CH 2.X /hom;Q such that
Z0 2 M�3H 4

M
and Im.AJX0

.Z0// D D2.
p

�3/, whereD2 is the Bloch–
Wigner function.

Hence, lims!0 AJXs
.Zs/ ¤ 0 and so the generalZs in this family is not

rationally equivalent to zero. The main idea is that the family of cycles limits to
a (nontrivial) higher cycle in a substratum of the singular fiber.

2.9. Singularities in 1 parameter. If only ŒZs �D 0 (s 2��), andŒZ��D 0 fails,
then

lim
s!0

AJ is obstructed

and we sayN�Z.s/ has a singularity (ats D 0), measured by the finite group

G Š Im.TQ � I/\ HZ

Im.TZ � I/
D

�
Z=3Z in the classical example,
.Z=5Z/3 in the nonclassical one.

(The .Z=5Z/3 is generated by differences of lines limiting to distinct compo-
nents ofX0.) The Ńeron model is then obtained by replacingJ.ker.N // (in the
pre-Ńeron-model) by its product withG (this will graphall admissible normal
functions, as defined below).

The next example demonstrates the “finite-group” (or torsion) nature of singu-
larities in the 1-parameter case. In~ 2.10 we will see how this feature disappears
when there are many parameters.

EXAMPLE 24. Let� 2 C be general and fixed. Then

Cs D fx2 C y2 C s.x2y2 C �/D 0g

defines a family of elliptic curves (inP1 �P1) over�� degenerating to a Ńeron
2-gon ats D 0. The cycle

Zs WD
�

i

r
1C�s
1Cs

; 1

�
�

�
�i

r
1C�s
1Cs

; 1

�

is nontorsion, with points limiting to distinct components. (See figure on next
page.)

Hence,AJCs
.Zs/DW �.s/ limits to the nonidentity component (Š C�) of the

Néron model. The presence of the nonidentity component removes the obstruc-
tion (observed in case (II) of~ 2.3) to graphing ANFs with singularities.
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∆

Ε Εs 00

s 0

Neron

2−gon

α

Ζ
Ζ

s
0

T

Τ(ν)=ν+α

ν

Two remarks:

� By tensoring withQ, we can “correct” this: writę ; ˇ for a basis forH 1.Cs/

andN for the monodromy log about0, which sends̨ ‘0 andˇ‘2˛. Since
N.�/D˛D N.1

2
ˇ/, �� 1

2
ˇ will pass through the identity component (which

becomes isomorphic toC=Q.1/ after tensoring withQ, however).
� Alternately, to avoid tensoring withQ, one can add a2-torsion cycle like

Ts WD .i�
1
4 ; �

1
4 /� .�i�

1
4 ;�� 1

4 /:

2.10. Singularities in 2 parameters.

EXAMPLE 25. Now we will effectively allow� (from the last example) to vary:
consider the smooth family

Cs;t WD fx2 C y2 C sx2y2 C t D 0g

over.��/2. The degenerationst ! 0 ands ! 0 pinch physically distinct cycles
in the same homology class to zero, so thatC0;0 is anI2; we have obviously
thatN1 D N2 (both senď ‘ ˛ ‘ 0). Take

Zs;t WD
�

i

r
1Ct

1Cs
; 1

�
�

�
�i

r
1Ct

1Cs
; 1

�

for our family of cycles, which splits between the two components of theI2 at
.0; 0/. See figure at top of next page.

Things go much more wrong here. Here are 3 ways to see this:

� try to correct monodromy (as we did in Example 24 with�1
2
ˇ): N1.�/D ˛,

N1.ˇ/D ˛, N2.�/D 0, N2.ˇ/D ˛ implies an impossibility;
� in Ts (from Example 1),�1=4 becomes (here).t=s/1=4 — so its obvious ex-

tension isn’t well-defined. In fact, there isno 2-torsion family of cycles with
fiber over.0; 0/ a difference of two points in the two distinct components of
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T(s,t)

(0,0)(0,t)

(s,0)

ν

2 :ν−>ν

T1:ν−>ν+α

C0;0 (that is, one that limits to have the same cohomology class inH 2.C0;0/

asZ0;0).
� take the “motivic limit” of AJ at t D 0: under the uniformization ofCs;0 by

P1 3 z ’
�

2z

1 � sz2
;

2iz

1 C sz2

�
;

�
i

s
.1 C

p
1 C s/

�
�

�
i

s
.1 �

p
1 C s/

�
’ Zs;0:

Moreover, the isomorphismC� Š K1.C/ Š M�1H 2
M
.Cs;0;Z.1// .3 Zs;0/

sends
1 C

p
1 C s

1 �
p

1 C s
2 C�

to Zs;0, and ats D 0 (considering it as a precycle inZ1.�; 1/) this obviously
has a residue.

The upshot is thatnontorsionsingularities appear in codimension 2 and up.

2.11. Admissible normal functions. We now pass to the abstract setting of
a complex analytic manifoldNS (for example a polydisk or smooth projective
variety) with Zariski open subsetS , writing D D NS n S for the complement.
Throughout, we shall assume that�0.S/ is finite and�1.S/ is finitely generated.
Let V D .V;V.O/;F

�;W�/ be a variation of MHS overS .
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Admissibilityis a condition which guarantees (at eachx 2 D) a well-defined
limit MHS for V up to the actionF� ‘ exp.� logT /F� (� 2 C) of local unipo-
tent monodromiesT 2 �.�1.Ux \ S//. If D is a divisor with local normal
crossings atx, andV is admissible, then a choice of coordinatess1; : : : ; sm on
an analytic neighborhoodU D �k of x (with fs1 � � � sm D 0g D D) produces
the LMHS . sV/x . Here we shall only indicate what admissibility, and this
LMHS, is in two cases: variations of pure HS, and generalizednormal functions
(cf. Definition 26).

As a consequence of Schmid’s nilpotent- and SL2-orbit theorems, pure varia-
tion is always admissible. IfV DH is a pure variation in one parameter, we have
(at least in the unipotent case) already defined “Hlim” and now simply replace
that notation by “. sH/x”. In the multiple parameter (or nonunipotent) setting,
simply pull the variation back to an analytic curve�� ! .��/m ��k�m � S

whose closure passes throughx, and take the LMHS of that. The resulting
. sH/x is independent of the choice of curve (up to the action of local mon-
odromy mentioned earlier). In particular, lettingfNig denote the local mon-
odromy logarithms, the weight filtrationM� on . sH/x is just the weight mon-
odromy filtration attached to their sumN WD

P
aiNi (where thefaig are arbi-

trary positive integers).

Now let r 2 N.

DEFINITION 26. A .higher/ normal functionoverS is a VMHS of the formV

in (the short-exact sequence)

0 ! H � V � ZS .0/! 0 (2-8)

whereH is a [pure] VHS of weight.�r/ and the [trivial, constant] variation
ZS .0/ has trivial monodromy. (The terminology “higher” only applies when
r > 1.) This is equivalent to a holomorphic, horizontal section of the generalized
Jacobian bundle

J.H/ WD H

F0HC HZ

:

EXAMPLE 27. Given a smooth proper familyX
�! S , with x0 2 S . A higher al-

gebraic cycleZ 2CH p.X ; r �1/prim WDkerfCH p.X ; r �1/!CH p.Xx0
; r �1/

! Hgp;r�1.Xx0
/g yields a section ofJ.R2p�r��C ˝OS /DW J p;r�1; this is

what we shall mean by a(higher) normal function of geometric origin.7 (The
notion ofmotivation overK likewise has an obvious extension from the classical
1-parameter case in~ 1.)

7Note that Hgp;r �1.Xx0
/Q WD H 2p�r C1.Xx0

; Q.p// \ F pH 2p�r C1.Xx0
; C/ is actually zero

for r > 1, so that the “prim” comes for free for some multiple ofZ.
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We now give the definition of admissibility for VMHS of the form in Def-
inition 26 (but simplifying toD D fs1 � � � sk D 0g), starting with the local
unipotent case. For this we need Deligne’s definition [De1] of the Ip;q.H /

of a MHSH , for which the reader may refer to Theorem 68 (in~ 4) below. To
simplify notation, we shall abbreviateIp;q.H / to H .p;q/, so that, for instance,
H

.p;p/
Q D Ip;p.H /\ HQ, and drop the subscriptx for the LMHS notation.

DEFINITION 28. LetS D .��/k , V 2 NFr .S;H/Q (i.e., as in Definition 26,
˝Q), andx D .0/.

(I) [unipotent case] Assume the monodromiesTi of H are unipotent, so that the
logarithmsNi and associated monodromy weight filtrationsM .i/

�
are defined.

(Note that thefNig resp.fTig automatically commute, since any local system
must be a representation of�1..�

�/k/, an abelian group.) We may “untwist”
the local system̋ Q via

QV WD exp

� �1

2�
p

�1

X

i

log.si/Ni

�
V.Q/;

and setVe WD QV ˝O�k for the Deligne extension. ThenV is ( NS-)admissible if
and only if

(a)H is polarizable,

(b) there exists a lift�Q 2 . QV/0 of 1 2 Q.0/ such thatNi�Q 2 M
.i/
�2
. sH/Q (8i),

and

(c) there exists a lift�F .s/2� .S ;Ve/ of 1 2 QS .0/ such that�F jS 2� .S;F0/.

(II) In general there exists a minimal finite cover� W .��/k ! .��/k (sending
s ‘ s�) such that theT �i

i are unipotent.V is admissible if and only if��V

satisfies (a), (b), and (c).

The main result [K; SZ] is then thatV 2 NFr .S;H/ad
NS

has well-defined sV ,
given as follows. On the underlying rational structure. QV/0 we put the weight
filtration Mi D Mi sHC Q

˝
�Q

˛
for i � 0 andMi D Mi sH for i < 0; while

on its complexification (Š .Ve/0) we put the Hodge filtrationF j D F j sHC C
C h�F .0/i for j � 0 and F j D F j sH for j > 0. (Here we are using the
inclusion QH � QV, and the content of the statement is that this actually does
define a MHS.)

We can draw some further conclusions from (a)–(c) in case (I). With some
work, it follows from (c) that

(c0) �F .0/ gives a lift of1 2 Q.0/ satisfyingNi�F .0/ 2 . sH/
.�1;�1/I

and one can also show thatNi�Q 2M�2. sH/Q (8i). Furthermore, ifr D1 then
eachNi�Q [resp.Ni�F .0/] belongs to the image underNi W  sH ! sH.�1/
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of a rational [resp. type-.0; 0/] element. To see this, use the properties ofNi

to deduce that im.Ni/ � M
.i/
�r�1

; then for r D 1 we have, from (b) and (c),
Ni�F .0/; Ni�Q 2 M

.i/
�2

.

(III) The definition of admissibility over an arbitrary smooth baseS together
with good compactificationNS is then local, i.e., reduces to the.��/k setting.
Another piece of motivation for the definition of admissibility is this, for which
we refer the reader to [BZ, Theorem 7.3]:

THEOREM 29. Any(higher) normal function of geometric origin is admissible.

2.12. Limits and singularities of ANFs. Now the idea of the “limit of a
normal function” should be to interpret sV as an extension ofQ.0/ by  sH.
The obstruction to being able to do this is the singularity, as we now explain.
All MHS in this section areQ-MHS.

According to [BFNP, Corollary 2.9], we have

NFr .S;H/ad
NS

˝ Q Š Ext1
VMHS.S/ad

NS

.Q.0/;H/;

as well as an equivalence of categories VMHS.S/
ad
NS ' MHM.S/

ps
NS . We want to

push (in a sense canonically extend) our ANFV into NS and restrict the result tox.
Of course, writing| W S Œ NS , |� is not right exact; so to preserve our extension,
we take the derived functorR|� and land in the derived categoryDbMHM. NS/.
Pulling back toDbMHM.fxg/Š DbMHS by {�

x , we have defined an invariant
.{�

xR|�/
Hdg:

HomMHS

�
Q.0/;H 1K�

�

NFr .S;H/

singx

44

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

.{�
xR|�/Hdg

// Ext1
DbMHS

�
Q.0/;K� WD {�

xRj�H
�

OO

ker.singx/
?ffl

OO

limx
// Ext1

MHS

�
Q.0/;H 0K�

�

OO

(2-9)

where the diagram makes a clear analogy to (2-1).
For S D .��/k andHZ unipotent we have

K� '
˚
 sH

˚Ni�
M

i

 sH.�1/�
M

i<j

 sH.�2/� � � �
	
;

and the map

singx W NFr ..��/k ;H/ad
�k ! .H 1K�/

.0;0/
Q .Š coker.N /.�1/ for k D 1/
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is induced byV ‘ fNi�Qg � fNi�F .0/g. The limits, which are computed by

limx W ker.singx/! J
�T

i ker.Ni/
�
;

more directly generalize the 1-parameter picture. The target J.
T

ker.Ni// is
exactly what to put in over0 to get the multivariable pre-Ńeron-model.

We have introduced the general caser � 1 because of interesting applica-
tions of higher normal functions to irrationality proofs, local mirror symmetry
[DK]. In caser D 1 — we are dealing with classical normal functions — we can
replaceR|� in the above by perverse intermediate extension|!� (which by a
lemma in [BFNP] preserves the extension in this case: see Theorem 46 below).
Correspondingly,K� is replaced by the local intersection cohomology complex

K�

red '
˚
 sH

˚Ni�
M

i

Im.Ni/.�1/�
M

i<j

Im.NiNj /.�2/! � � �
	
I

while the target for limx is unchanged, the one for singx is reduced to0 if k D 1

and to �
ker.N1/\ im.N2/

N2.kerN1/

�.�1;�1/

Q

(2-10)

if k D 2.

2.13. Applications of singularities. We hint at some good things to come:

(i) Replacing the singx-target (e.g., (2-10)) by actualimagesof ANFs, and using
their differences to glue pre-Ńeron components together yields a generalized
Néron model (over�r , or NS more generally) graphing ANFs. Again overx one
gets an extension of a discrete (but not necessarily finite) singularity group by
the torusJ.\ ker.Ni//. A. Young [Yo] did this for abelian varieties, then [BPS]
for general VHS. This will be described more precisely in~ 5.2.

(ii) (Griffiths and Green [GG]) The Hodge conjecture (HC) on a2p-dimensional
smooth projective varietyX is equivalent to the following statement foreach
primitive Hodge.p;p/ class� and very ample line bundleL ! X : there exists
k � 0 such that the natural normal function8 �� overjLk jn OX (the complement
of the dual variety in the linear system) has a nontorsion singularity at some
point of OX . So, in asense, the analog of HC for.��/k is surjectivity of singx
onto.H 1K�

red/
.0;0/
Q , and thisfails:

(iii) (M. Saito [S6], Pearlstein [Pe3]) LetH0=�
� be a VHS of weight3 rank4

with nontrivial Yukawa coupling. Twisting it into weight�1, assume the LMHS
is of typeII1: N 2 D 0, with GrM�2 of rank 1. Take forH=.��/2 the pullback
of H0 by .s; t/ ‘ st . Then (2-10)¤ f0g D sing0fNF1..��/2;H/ad

�2g. The

8cf. ~ 3.2–3, especially (3-5).
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obstruction to the existence of normal functions with nontrivial singularity is
analytic; and comes from a differential equation produced by the horizontality
condition (see~ 5.4–5).

(iv) One can explain the meaning of the residue of the limitK1 class in Example
25 above: writing|1 W .��/2 Œ�� ��, |2 W�� ��Œ�2, factor.{�

xRj!�/
Hdg

by .{�
xR|2

� /
Hdgı.{�

��|
1
!�
/Hdg (where the{�Rj 2

� corresponds to the residue). That
is, limit a normal function (or family of cycles) to a higher normal function (or
family of higher Chow cycles) over a codimension-1 boundary component; the
latter can then have (unlike normal functions) a singularity in codimension1 —
i.e., in codimension2 with respect to the original normal function.

This technique gives a quick proof of the existence of singularities for the
Ceresa cycle by limiting it to an Eisenstein symbol (see [Co]and the Introduction
to [DK]). Additionally, one gets a geometric explanation ofwhy one does not
expect the singularities in (ii) to be supported in high-codimension substrata of
OX (supporting very degenerate hypersurfaces ofX ): along these substrata one

may reach (in the sense of (iv)) higher Chow cycles with rigidAJ invariants,
hence no residues. For this reason codimension2 tends to be a better place
to look for singularities than in much higher codimension. These “shallow”
substrata correspond to hypersurfaces with ordinary double points, and it was
the original sense of [GG] that such points should trace out an algebraic cycle
“dual” to the original Hodge class, giving aneffectiveproof of the HC.

3. Normal functions and the Hodge conjecture

In this section, we discuss the connection between normal functions and the
Hodge conjecture, picking up where~ 1 left off. We begin with a review of
some properties of the Abel–Jacobi map. Unless otherwise noted, all varieties
are defined overC.

3.1. Zucker’s Theorem on Normal Functions.Let X be a smooth projective
variety of dimensiondX . Recall thatJ p

h
.X / is the intermediate Jacobian asso-

ciated to the maximal rationally defined Hodge substructureH of H 2p�1.X /

such thatHC � H p;p�1.X /˚ H p�1;p.X /, and that (by a result of Lieberman
[Li])

J p.X /alg D im
˚
AJX W CH p.X /alg ! J p.X /

	

is a subabelian variety ofJ p.X /h:
(3-1)

NOTATION 30. If f W X ! Y is a projective morphism thenf sm denotes
the restriction off to the largest Zariski open subset ofY over whichf is
smooth. Also, unless otherwise noted, in this section, the underlying lattice
HZ of every variation of Hodge structure is assumed to be torsion free, and
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hence for a geometric familyf W X ! Y , we are really consideringHZ D
.Rkf sm

� Z/=ftorsiong.

As reviewed in~ 1, Lefschetz proved that every integral.1; 1/ class on a smooth
projective surface is algebraic by studying Poincaré normal functions associ-
ated to such cycles. We shall begin here by revisiting Griffiths’ program (also
recalled in~ 1) to prove the Hodge conjecture for higher codimension classes by
extending Lefschetz’s methods: By induction on dimension,the Hodge conjec-
ture can be reduced to the case of middle-dimensional Hodge classes on even-
dimensional varieties [Le1, Lecture 14]. Suppose therefore thatX � Pk is a
smooth projective variety of dimension2m. Following [Zu2, ~ 4], let us pick
a Lefschetz pencil of hyperplane sections ofX , i.e., a family of hyperplanes
Ht � Pk of the formt0w0 C t1w1 D 0 parametrized byt D Œt0; t1� 2 P1 relative
to a suitable choice of homogeneous coordinatesw D Œw0; : : : ; wk � on Pk such
that:

� for all but finitely many pointst 2 P1, the corresponding hyperplane section
of Xt D X \ Ht is smooth;

� the base locusB D X \ fw 2 Pk j w0 D w1 D 0g is smooth; and
� each singular hyperplane section ofX has exactly one singular point, which

is an ordinary double point.

Given such a Lefschetz pencil, let

Y D f .x; t/ 2 X � P1 j x 2 Ht g

and let� W Y ! P1 denote projection onto the second factor. LetU denote the
set of pointst 2 P1 such thatXt is smooth andH be the variation of Hodge
structure overU with integral structureHZ DR2m�1�sm

� Z.m/. Furthermore, by
Schmid’s nilpotent orbit theorem [Sc], the Hodge bundlesF� have a canonical
extension to a system of holomorphic bundlesF�

e over P1. Accordingly, we
have a short exact sequence of sheaves

0 ! j�HZ ! He=F
m
e ! J m

e ! 0; (3-2)

wherej W U ! P1 is the inclusion map. As before, let us call an element
� 2 H 0.P1;J m

e / a Poincaŕe normal function. Then, we have the following two
results [Zu2, Thms. 4.57, 4.17], the second of which is knownas the Theorem
on Normal Functions:

THEOREM 31. Every Poincaŕe normal function satisfies Griffiths horizontality.

THEOREM 32. Every primitive integral Hodge class onX is the cohomology
class of a Poincaŕe normal function.
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The next step in the proof of the Hodge conjecture via this approach is to show
that for t 2 U , the Abel–Jacobi map

AJ W CH m.Xt /hom ! J m.Xt /

is surjective. However, form > 1 this is rarely true (even granting the con-
jectural equality ofJ m.X /alg and J m

h
.X /) sinceJ m.Xt / ¤ J m

h
.Xt / unless

H 2m�1.Xt ;C/D H m;m�1.Xt /˚ H m�1;m.Xt /. In plenty of cases of interest
J m

h
.X / is in fact trivial; Theorem 33 and Example 35 below give two different

instances of this.

THEOREM 33 [Le1, Example 14.18].If X � Pk is a smooth projective variety
of dimension2m such thatH 2m�1.X / D 0 and fXtg is a Lefschetz pencil of
hyperplane sections ofX such thatFmC1H 2m�1.Xt / ¤ 0 for every smooth
hyperplane section, then for generict 2 U , J m

h
.Xt /D 0.

THEOREM 34. If J
p

h
.X /D 0, then the image ofCH m.W /hom in J p.X / under

the Abel–Jacobi map is countable.

SKETCH OF PROOF. As a consequence of (3-1), ifJ
p

h
.X /D 0 the Abel–Jacobi

map vanishes onCH p.X /alg. Therefore, the cardinality of the image of the
Abel–Jacobi map onCH p.X /hom is bounded by the cardinality of the Griffiths
groupCH p.X /hom=CH p.X /alg, which is known to be countable. ˜

EXAMPLE 35. Specific hypersurfaces withJ p

h
.X / D 0 were constructed by

Shioda [Sh]: LetZn
m denote the hypersurface inPnC1 defined by the equation

nC1X

iD0

xix
m�1
iC1 D 0 .xnC2 D x0/:

Suppose thatn D 2p � 1 > 1, m � 2 C 3=.p � 1/ and

d0 D f.m � 1/nC1 C .�1/nC1g=m

is prime. ThenJ p

h
.Zn

m/D 0.

3.2. Singularities of admissible normal functions. In [GG], Griffiths and
Green proposed an alternative program for proving the Hodgeconjecture by
studying the singularities of normal functions over higher-dimensional parame-
ter spaces. Following [BFNP], letS a complex manifold andHD .HZ;F

�HO/

be a variation of polarizable Hodge structure of weight�1 over S . Then, we
have the short exact sequence

0 ! HZ ! H=F0 ! J.H/! 0



AN EXPONENTIAL HISTORY OF FUNCTIONS WITH LOGARITHMIC GROWTH 317

of sheaves and hence an associated long exact sequence in cohomology. In
particular, the cohomology class cl.�/ of a normal function� 2 H 0.S;J.H//

is just the image of� under the connecting homomorphism

@ W H 0.S;J.H//! H 1.S;HZ/:

Suppose now thatS is a Zariski open subset of a smooth projective variety
NS . Then the singularity of� at p 2 NS is the quantity

�Z;p.�/D lim��!
p2U

cl.�jU \S / 2 lim��!
p2U

H 1.U \ S;HZ/D .R1j�HZ/p

where the limit is taken over all analytic open neighborhoods U of p, andj W
S ! NS is the inclusion map. The image of�Z;p.�/ in cohomology with rational
coefficients will be denoted by singp.��/.

REMARK 36. If p 2 S then�Z;p.�/D 0.

THEOREM 37 [S1]. Let � be an admissible normal function on a Zariski open
subset of a curveNS . Then, �Z;p.�/ is of finite order for each pointp 2 NS .

PROOF. By [S1], an admissible normal function� W S ! J.H/ is equivalent to
an extension

0 ! H ! V ! Z.0/! 0 (3-3)

in the category of admissible variations of mixed Hodge structure. By the mon-
odromy theorem for variations of pure Hodge structure, the local monodromy of
V about any pointp 2 NS � S is always quasi-unipotent. Without loss of gener-
ality, let us assume that it is unipotent and thatT D eN is the local monodromy
of V at p acting on some fixed reference fiber with integral structureVZ. Then,
due to the length of the weight filtrationW , the existence of the relative weight
filtration of W andN is equivalent to the existence of anN -invariant splitting of
W [SZ, Proposition 2.16]. In particular, leteZ 2 VZ project to1 2 GrW0 Š Z.0/.
Then, by admissibility, there exists an elementhQ 2 HQ D W�1 \VQ such that

N.eZ C hQ/D 0

and hence.T � I/.eZ C hQ/ D 0.9 Any two such choices ofeZ differ by an
elementhZ 2 W�1\VZ. Therefore, an admissible normal function� determines
a class

Œ��D Œ.T � I/eZ� 2
.T � I/.HQ/

.T � I/.HZ/

Tracing through the definitions, one finds that the left-handside of this equation
can be identified with�Z;p.�/, whereas the right-hand side is exactly the torsion
subgroup of.R1j�HZ/p. ˜

9Alternatively, one can just derive this from Definition 28(I).
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DEFINITION 38 [BFNP]. An admissible normal function� defined on a Zariski
open subset ofNS is singular on NS if there exists a pointp 2 NS such that
singp.�/¤ 0.

Let S be a complex manifold andf W X ! S be a family of smooth projective
varieties overS . Let H be the variation of pure Hodge structure of weight�1

over S with integral structureHZ D R2p�1f�Z.p/. Then, an elementw 2
J p.X / .D J 0.H 2p�1.X;Z.p//// defines a normal function�w W S ! J.H/

by the rule
�w.s/D i�

s .w/; (3-4)

whereis denotes inclusion of the fiberXs D f �1.s/ into X . More generally, let
H

2p
D
.X;Z.p// denote the Deligne cohomology ofX , and recall that we have a

short exact sequence

0 ! J p.X /! H
2p
D
.X;Z.p//! H p;p.X;Z.p//! 0:

Call a Hodge class

� 2 H p;p.X;Z.p// WD H p;p.X;C/\ H 2p.X;Z.p//

primitive with respect tof if i�
s .�/ D 0 for all s 2 S , and letH p;p

prim.X;Z.p//

denote the group of all such primitive Hodge classes. Then, by the functoriality
of Deligne cohomology, a choice of liftingQ� 2 H

2p
D
.X;Z.p// of a primitive

Hodge class� determines a map�Q�
W S ! J.H/. A short calculation (cf. [CMP,

Ch. 10]) shows that�Q�
is a (horizontal) normal function overS . Furthermore,

in the algebraic setting (meaning thatX;S; f are algebraic),�Q�
is an admissible

normal function [S1]. Let ANF.S;H/ denote the group of admissible normal
functions with underlying variation of Hodge structureH. By abuse of notation,
let J p.X /� ANF.S;H/ denote the image of the intermediate JacobianJ p.X /

in ANF.S;H/ under the mapw ‘ �w. Then, since any two liftsQ� of � to
Deligne cohomology differ by an element of the intermediateJacobianJ p.X /,
it follows that we have a well-defined map

AJ W H
p;p
prim.X;Z.p//! ANF.S;H/=J p.X /: (3-5)

REMARK 39. We are able to drop the notation NF.S;H/ad
NS

used in~ 2, because
in the global algebraic case it can be shown that admissibility is independent of
the choice of compactificationNS .

3.3. The Main Theorem. Returning to the program of Griffiths and Green, let
X be a smooth projective variety of dimension2m andL ! X be a very ample
line bundle. Let NP D jLj and

X D
˚
.x; s/ 2 X � NP j s.x/D 0

	
(3-6)
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be the incidence variety associated to the pair.X;L/. Let � W X ! NP denote
projection on the second factor, and letOX � NP denote the dual variety ofX
(the pointss 2 NP such thatXs D ��1.s/ is singular). LetH be the variation
of Hodge structure of weight�1 overP D NP � OX attached to the local system
R2m�1�sm

� Z.m/.
For a pair.X;L/ as above, an integral Hodge class� of type .m;m/ on X

is primitive with respect to�sm if and only if it is primitive in the usual sense
of being annihilated by cup product withc1.L/. Let H m;m

prim .X;Z.m// denote
the group of all such primitive Hodge classes, and note thatH m;m

prim .X;Z.m// is
unchanged upon replacingL by L˝d for d > 0. Given � 2 H m;m

prim .X;Z.m//,
let

�� D AJ.�/ 2 ANF.P;H/=J m.X /

be the associated normal function (3-5).

LEMMA 40. If �w W P ! J.H/ is the normal function(3-4) associated to an
elementw 2 J m.X / thensingp.�w/D 0 at every pointp 2 OX .

Accordingly, for any pointp 2 OX we have a well defined map

singp W ANF.P;H/=J m.X /! .R1j�HQ/p

which sends the elementŒ��2 ANF.P;H/=J m.X / to singp.�/. In keeping with

our prior definition, we say that�� is singular on NP if there exists a pointp 2 OX
such that singp.�/¤ 0.

CONJECTURE41 [GG; BFNP].Let L be a very ample line bundle on a smooth
projective varietyX of dimension2m. Then, for every nontorsion class� in
H

m;m
prim .X;Z.m// there exists an integerd > 0 such thatAJ.�/ is singular on

NP D jL˝d j.

THEOREM 42 [GG; BFNP; dCM].Conjecture41holds( for every even-dimen-
sional smooth projective variety) if and only if the Hodge conjecture is true.

To outline the proof of Theorem 42, observe that for any pointp 2 OX , we have
the diagram

H
m;m
prim .X;Z.m//

AJ
//

p̨

››

ANF.P;H/=J m.X /

singp
››

H 2m.Xp;Q.m//
p̌

??
// .R1j�HQ/p

(3-7)

where p̨ W H
m;m
prim .X;Z.m//! H 2m.Xp;Q.m// is the restriction map.
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Suppose that there exists a map

p̌ W H 2m.Xp;Q.m//! .R1j�HQ/p; (3-8)

which makes the diagram (3-7) commute, and that after replacing L by L˝d for
somed > 0 the restriction of̌ p to the image of̨ p is injective. Then, existence
of a pointp 2 OX such that singp.��/¤ 0 implies that the Hodge class� restricts
nontrivially toXp. Now recall that by Poincaré duality and the Hodge–Riemann
bilinear relations, the Hodge conjecture for a smooth projective varietyY is
equivalent to the statement that for every rational.q; q/ class onY there exists
an algebraic cycleW of dimension2q on Y such that
 [ ŒW �¤ 0.

Let f W QXp ! Xp be a resolution of singularities ofXp and g D i ı f ,
wherei W Xp ! X is the inclusion map. By a weight argumentg�.�/ ¤ 0,
and so there exists a class� 2 Hgm�1. QXp/ with � [ � ¤ 0. Embedding QXp in
some projective space, and inducing onevendimension, we can assume that
the Hodge conjecture holds for a general hyperplane sectionI W Y Œ QXp. This
yields an algebraic cycleW on Y with ŒW � D I�.�/. Varying Y in a pencil,
and using weak Lefschetz,W traces out10 a cycleW D

P
j aj Wj on QXp with

ŒW �D �, so thatg�.�/[ ŒW �¤ 0; in particular,� [ g�ŒWj �¤ 0 for somej .
Conversely, by the work of Thomas [Th], if the Hodge conjecture is true then

the Hodge class� must restrict nontrivially to some singular hyperplane section
of X (again for someL˝d for d sufficiently large). Now one uses the injectivity
of p̌ on im. p̨/ to conclude that�� has a singularity.

EXAMPLE 43. Let X � P3 be a smooth projective surface. For every� 2
H

1;1
prim.X;Z.1//, there is a reducible hypersurface sectionXp � X and compo-

nent curveW of Xp such that deg.�jW / ¤ 0. (Note that deg.�jXp
/ is neces-

sarily 0.) As the reader should check, this follows easily from Lefschetz (1,1).
Moreover (writingd for the degree ofXp), p is a point in a codimension� 2

substratumS 0 of OX � PH 0.O.d// (since fibers over codimension-one substrata
are irreducible), and singq.��/¤ 0 8q 2 S 0.

REMARK 44. There is a central geometric issue lurking in Conjecture41:

If the HC holds, andL D OX .1/ (for some projective embedding ofX ), is
there some minimumd0 — uniform in some sense — for whichd � d0 implies
that�� is singular?

In [GG] it is established that, at best, such ad0 could only be uniform in
moduli of the pair.X; �/. (For example, in the case dim.X / D 2, d0 is of the
form C �j� ��j, for C a constant. Since the self-intersection numbers of integral

10More precisely, one uses here a spread or Hilbert scheme argument. See for example the beginning of
Chapter 14 of [Le1].
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classes becoming Hodge in various Noether–Lefschetz loci increase without
bound, there is certainly not anyd0 uniform in moduli ofX .) Whether there
is some such “lower bound” of this form remains an open question in higher
dimension.

3.4. Normal functions and intersection cohomology.The construction of the
map p̌ depends on the decomposition theorem of Beilinson, Bernstein, and
Deligne [BBD] and Morihiko Saito’s theory of mixed Hodge modules [S4]. As
first step in this direction, recall [CKS2] that ifH is a variation of pure Hodge
structure of weightk defined on the complementS D NS�D of a normal crossing
divisor on a smooth projective varietyNS then

H `
.2/.S;HR/Š IH`. NS ;HR/;

where the left-hand side isL2-cohomology and the right-hand side is inter-
section cohomology. Furthermore, via this isomorphismIH`. NS ;HC/ inherits a
canonical Hodge structure of weightk C `.

REMARK 45. If Y is a complex algebraic variety, MHM.Y / is the category of
mixed Hodge modules onY . The category MHM.Y / comes equipped with a
functor

rat W MHM.Y /! Perv.Y /

to the category of perverse sheaves onY . If Y is smooth andV is a variation of
mixed Hodge structure onY thenV ŒdY � is a mixed Hodge module onY , and
rat.V ŒdY �/ Š VŒdY � is just the underlying local systemV shifted into degree
�dY .

If Y ı is a Zariski open subset ofY andP is a perverse sheaf onY ı then

IH`.Y;P/D H`�dY .Y; j!�P ŒdY �/

wherej!� is the middle extension functor [BBD] associated to the inclusion map
j W Y ı ! Y . Likewise, for any pointy 2 Y , the local intersection cohomology
of P at y is defined to be

IH`.Y;P/y D Hk�dY .fyg; i�j!�P ŒdY �/

wherei W fyg ! Y is the inclusion map. IfP underlies a mixed Hodge module,
the theory of MHM puts natural MHS on these groups, which in particular is
how the pure HS onIH`. NS ;HC/ comes about.

THEOREM46 [BFNP, Theorem 2.11].Let NS be a smooth projective variety and
H be a variation of pure Hodge structure of weight�1 on a Zariski open subset
S � NS . Then, the group homomorphism

cl W ANF.S;H/! H 1.S;HQ/
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factors through IH1. NS ;HQ/.

SKETCH OF PROOF. Let � 2 ANF.S;H/ be represented by an extension

0 ! H ! V ! Z.0/! 0

in the category of admissible variations of mixed Hodge structure onS . Let
j W S ! NS be the inclusion map. Then, becauseV has only two nontrivial
weight graded quotients which are adjacent, it follows by [BFNP, Lemma 2.18]
that

0 ! j!�HŒdS �! j!�V ŒdS �! Q.0/ŒdS �! 0

is exact in MHM. NS/. ˜

REMARK 47. In this particular context,j!�V ŒdS � can be described as the unique
prolongation ofV ŒdS � to NS with no nontrivial sub or quotient object supported
on the essential image of the functori WMHM.Z/!MHM. NS/whereZ D NS�S

andi W Z ! NS is the inclusion map.

In the local case of an admissible normal function on a product of punctured
polydisks.��/r with unipotent monodromy, the fact that sing0.�/ (where0 is
the origin of�r � .��/r ) factors through the local intersection cohomology
groups can be seen as follows: Such a normal function� gives a short exact
sequence of local systems

0 ! HQ ! VQ ! Q.0/! 0

over .��/r . Fix a reference fiberVQ of VQ and letNj 2 Hom.VQ;VQ/ denote
the monodromy logarithm ofVQ about thej -th punctured disk. Then [CKS2],
we get a complex of finite-dimensional vector spaces

Bp.VQ/D
M

i1<i2<���<ip

Ni1
Ni2

� � � Nip .VQ/

with differentiald , which acts on the summands ofBp.VQ/ by the rule

Ni1
� � � ONi`

� � � NipC1
.VQ/

.�1/`�1Ni`� Ni1
� � � Ni`

� � � NipC1
.VQ/

(and taking the sum over all insertions). LetB�.HQ/ andB�.Q.0// denote the
analogous complexes attached to the local systemsHQ andQ.0/. By [GGM],
the cohomology of the complexB�.HQ/ computes the local intersection coho-
mology of HQ. In particular, since the complexesB�.Q.0// andB�.HQ/ sit
inside the standard Koszul complexes which compute the ordinary cohomology
of Q.0/ andHQ, in order show that sing0 factors throughIH1.HQ/ it is sufficient
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to show that@cl.�/2H 1..��/r ;HQ/ is representable by an element ofB1.HQ/.
Indeed, letv be an element ofVQ which maps to1 2 Q.0/. Then,

@ cl.�/D @1 D Œ.N1.v/; : : : ;Nr .v//�

By admissibility and the short length of the weight filtration, for eachj there
exists an elementhj 2 HQ such thatNj .hj / D Nj .v/, which is exactly the
condition that

.N1.v/; : : : ;Nr .v// 2 B1.VQ/:

THEOREM48 [BFNP, Theorem 2.11].Under the hypothesis of Theorem46, for
any pointp 2 NS the group homomorphismsingp W ANF.S;H/ ! .R1j�HQ/p
factors through the local intersection cohomology group IH1.HQ/p.

To continue, we need to pass from Deligne cohomology to absolute Hodge coho-
mology. Recall that MHM.Spec.C// is the category MHS of graded-polarizable
Q mixed Hodge structures. LetQ.p/ denote the Tate object of type.�p;�p/ in
MHS andQY .p/Da�

Y
Q.p/whereaY WY !Spec.C/ is the structure morphism.

Let QY D QY .0/.

DEFINITION 49. LetM be an object of MHM.Y /. Then,

H n
AH.Y;M /D HomDbMHM .QY ;M Œn�/

is the absolute Hodge cohomology ofM .

The functor ratW MHM.Y /! Perv.Y / induces a “cycle class map”

rat W H n
AH.Y;M /! Hn.Y; rat.M //

from the absolute Hodge cohomology ofM to the hypercohomology of rat.M /.
In the case whereY is smooth and projective,H 2p

AH
.Y;QY .p// is the Deligne

cohomology groupH 2p
D
.Y;Q.p// and rat is the cycle class map on Deligne

cohomology.

DEFINITION 50. Let NS be a smooth projective variety andV be an admissible
variation of mixed Hodge structure on a Zariski open subsetS of NS . Then,

IHn
AH.

NS ;V/D HomDbMHM. NS/.Q NS ŒdS � n�; j!�V ŒdS �/;

IHn
AH.

NS ;V/s D HomDbMHS.QŒdS � n�; i�j!�V ŒdS �/;

wherej W S ! NS andi W fsg ! NS are inclusion maps.

The following lemma links absolute Hodge cohomology and admissible normal
functions:

LEMMA 51. [BFNP, Proposition 3.3]LetH be a variation of pure Hodge struc-
ture of weight�1 defined on a Zariski open subsetS of a smooth projective
variety NS . Then, IH1

AH
. NS ;H/Š ANF.S;H/˝ Q.
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3.5. Completion of the diagram (3-7). Let f W X ! Y be a projective mor-
phism between smooth algebraic varieties. Then, by the workof Morihiko Saito
[S4], there is a direct sum decomposition

f�QX ŒdX �D
M

i

H i .f�QX ŒdX �/ Œ�i � (3-9)

in MHM.Y /. Furthermore, each summandH i.f�QX ŒdX �/ is pure of weight
dX C i and admits a decomposition according to codimension of support:

H i .f�QX ŒdX �/ Œ�i �D
L

j Eij Œ�i �I (3-10)

i.e., Eij Œ�i � is a sum of Hodge modules supported on codimensionj subva-
rieties ofY . Accordingly, we have a system of projection operators (inserting
arbitrary twists)

L
˘ij W H n

AH
.X;Q.`/ŒdX �/

Š!
L

ij H n�i
AH

.Y;Eij .`//;

L
˘ij W H n

AH
.Xp;Q.`/ŒdX �/

Š!
L

ij H n�i
AH

.Y; ��Eij .`//;

L
˘ij W Hn.X; rat.Q.`/ŒdX �//

Š!
L

ij Hn�i.Y; rat.Eij .`///;

L
˘ij W Hn.Xp; rat.Q.`/ŒdX �//

Š!
L

ij Hn�i.Y; ��rat.Eij .`///;

wherep 2 Y and� W fpg ! Y is the inclusion map.

LEMMA 52 [BFNP, Equation 4.12].Let Hq D Rqf sm
� QX and recall that we

have a decomposition

H2k�1 D H2k�1
van ˚H2k�1

fix

whereH2k�1
fix is constant andH2k�1

van has no global sections. For any point
p 2 Y , we have a commutative diagram

H 2k
AH
.X;Q.k//

i�

››

˘
// ANF.Y sm;H2k�1

van .k//

i�

››

H 2k.Xp;Q.k// ˘
// IH1.H2k�1.k//p

(3-11)

whereY sm is the largest Zariski open set over whichf is smooth and̆ is
induced by̆ r0 for r D 2k � 1 � dX C dY .

We now return to the setting of Conjecture 41:X is a smooth projective variety
of dimension2m, L is a very ample line bundle onX andX is the associated
incidence variety (3-6), with projections� W X ! NP and prW X ! X . Then, we
have the following “Perverse weak Lefschetz theorem”:
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THEOREM 53 [BFNP, Theorem 5.1].LetX be the incidence variety associated
to the pair.X;L/ and��QX D

L
ij Eij in accord with(3-9)and(3-10).Then:

(i) Eij D 0 unlessi � j D 0.
(ii) Ei0 D H i.X;QX Œ2m � 1�/˝ Q NP Œd NP �. for i < 0.

Note that by hard Lefschetz,Eij Š E�i;j .�i/ [S4].
To continue, recall that given a Lefschetz pencil� � NP of hyperplane sec-

tions of X , we have an associated system of vanishing cyclesfıpgp2�\ OX �
H 2m�1.Xt ;Q/ on the cohomology of the smooth hyperplane sectionsXt of
X with respect to�. As one would expect, the vanishing cycles of� are
nonvanishingif for some (hence all)p 2 �\ OX , ıp ¤ 0 (in H 2m�1.Xt ;Q/).
Furthermore, this property depends only onL and not the particular choice of
Lefschetz pencil�. This property can always be arranged by replacingL by
L˝d for somed > 0.

THEOREM 54. If all vanishing cycles are nonvanishing thenE01 D 0. Other-
wise, E01 is supported on a dense open subset ofOX .

Using the Theorems 53 and 54, we now prove that the diagram

H 2m
D
.X;Z.m//prim

AJ
//

pr�

››

ANF.P;H/=J m.X /

˝Q

››

H 2m
AH
.X ;Q.m//

˘
// ANF.P;Hvan/˝ Q

(3-12)

commutes, whereH 2m
D
.X;Z.m//prim is the subgroup ofH 2m

D
.X;Z.m// whose

elements project to primitive Hodge classes inH 2m.X;Z.m//, and˘ is in-
duced by̆ 00 together with projection ontoHvan. Indeed, by the decomposition
theorem,

H 2m
AH.X ;Q.m//D H

1�d NP

AH
.X ;Q.m/Œ2m C d NP � 1�/

D
L

H
1�d NP

AH
. NP ;Eij .m/Œ�i �/:

Let Q� 2 H 2m
D
.X;Z.m// be a primitive Deligne class and!D

L
ij !ij denote

the component of! D pr�. Q�/ with respect toEij .m/Œ�i � in accord with the
previous equation. Then, in order to prove the commutativity of (3-12) it is
sufficient to show that.!/q D .!00/q for all q 2 P . By Theorem 53, we know
that!ij D 0 unlessij D 0. Furthermore, by [BFNP, Lemma 5.5],.!0j /q D 0 for
j > 1. Likewise, by Theorem 54,.!01/q D 0 for q 2 P sinceE01 is supported
on OX .

Thus, in order to prove the commutativity of (3-12), it is sufficient to show that
.!i0/q D 0 for i > 0. However, as a consequence of Theorem 53(ii),Ei0.m/D
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KŒd NP �, whereK is a constant variation of Hodge structure onNP ; and hence

H 1�d NP .X ;Ei0.m/Œ�i �/D Ext
1�d NP

DbMHM. NP/
.Q NP ;KŒd NP � i �/

D Ext1�i

DbMHM. NP/
.Q NP ;K/:

Therefore,.!i0/q D 0 for i > 1 while .!10/q corresponds to an element of
Hom.Q.0/;Kq/ whereK is the constant variation of Hodge structure with
fiber H 2m.Xq;Q.m// over q 2 P . It therefore follows from the fact thatQ� is
primitive that .!10/q D 0. Splicing diagram (3-12) together with (3-11) (and
replacingf W X ! Y by � W X ! NP , etc.) now gives the diagram (3-7).

REMARK 55. The effect of passing fromH toHvan in the constructions above is
to annihilateJ m.X /� H 2m

D
.X;Z.m//prim. Therefore, in (3-12) we can replace

H 2m
D
.X;Z.m//prim by H

m;m
prim .X;Z.m//.

Finally, if all the vanishing cycles are nonvanishing,E01 D 0. Using this fact,
we then get the injectivity of̌p on the image of̨ p.

Returning to the beginning of this section, we now see that although extend-
ing normal functions along Lefschetz pencils is insufficient to prove the Hodge
conjecture for higher codimension cycles, the Hodge conjecture is equivalent to
a statement about the behavior of normal functions on the complement of the
dual variety ofX insidejLj for L � 0. We remark that an interpretation of the
GHC along similar lines has been done recently by the authorsin [KP].

4. Zeroes of normal functions

4.1. Algebraicity of the zero locus. Some of the deepest evidence to date in
support of the Hodge conjecture is the following result of Cattani, Deligne and
Kaplan on the algebraicity of the Hodge locus:

THEOREM 56 [CDK]. LetH be a variation of pure Hodge structure of weight0

over a smooth complex algebraic varietyS . Let˛so
be an integral Hodge class

of type.0; 0/ on the fiber ofH at so. Let U be a simply connected open subset
of S containingso and˛ be the section ofHZ overU defined by parallel trans-
lation of ˛so

. Let T be the locus of points inU such that̨ .s/ is of type.0; 0/
on the fiber ofH overs. Then, the analytic germ ofT at p is the restriction of
a complex algebraic subvariety ofS .

More precisely, as explained in the introduction of [CDK], in the case where
H arises from the cohomology of a family of smooth projective varietiesf W
X ! S , the algebraicity of the germ ofT follows from the Hodge conjecture.
A natural analog of this result for normal functions is this:
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THEOREM 57. Let S be a smooth complex algebraic variety, and � W S !
J.H/ be an admissible normal function, whereH is a variation of pure Hodge
structure of weight�1. Then, the zero locus

Z.�/D f s 2 S j �.s/D 0 g
is a complex algebraic subvariety ofS .

This theorem was still a conjecture when the present articlewas submitted, and
has just been proved by the second author in work with P. Brosnan [BP3]. It is of
particular relevance to the Hodge conjecture, due to the following relationship
between the algebraicity ofZ.�/ and the existence of singularities of normal
functions. Say dim.X / D 2m, and let.X;L; �/ be a triple consisting of a
smooth complex projective varietyX , a very ample line bundleL on X and
a primitive integral Hodge class� of type .m;m/. Let �� (assumed nonzero)

be the associated normal function on the complement of the dual variety OX
constructed in~ 3, andZ be its zero locus. Then, assuming thatZ is algebraic
and positive-dimensional, the second author conjectured that� should have sin-
gularities along the intersection of the closure ofZ with OX .

THEOREM 58 [Sl1]. Let .X;L; �/ be a triple as above, and assume thatL is
sufficiently ample that, given any pointp 2 OX , the restriction of̌ p to the image
of p̨ in diagram(3-7) is injective. Suppose thatZ contains an algebraic curve.
Then, �� has a nontorsion singularity at some point of the intersection of the

closure of this curve withOX .

SKETCH OF PROOF. LetC be the normalization of the closure of the curve inZ.
Let X ! NP be the universal family of hyperplane sections ofX over NP D jLj
andW be the pullback ofX to C . Let � W W ! C be the projection map, and
U the set of pointsc 2 C such that��1.c/ is smooth andWU D ��1.U /. Via
the Leray spectral sequence for�, it follows that restriction of� to WU is zero
becauseU � Z and� is primitive. On the other hand, sinceW “ X is finite, �
must restrict (pull back) nontrivially toW , and hence� must restrict nontrivially
to the fiber��1.c/ for some pointc 2 C in the complement ofU . ˜

Unfortunately, crude estimates for the expected dimensionof the zero locusZ
arising in this context appear to be negative. For instance,take X to be an
abelian surface in the following:

THEOREM 59. LetX be a surface andL DOX .D/ be an ample line bundle on
X . Then, for n sufficiently large, the expected dimension of the zero locus of the
normal function�� attached to the triple.X;L˝n; �/ as above is

h2;0 � h1;0 � n.D:K/� 1;

whereK is the canonical divisor ofX .
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SKETCH OF PROOF. Since Griffiths’ horizontality is trivial in this setting,com-
puting the expected dimension boils down to computing the dimension ofjLj
and genus of a smooth hyperplane section ofX with respect toL. ˜

REMARK 60. In Theorem 59, we construct�� from a choice of lift to Deligne
cohomology (or an algebraic cycle) to get an element of ANF.P;H/. But this is
disingenuous, since we are starting with a Hodge class. It ismore consistent to
work with �� 2 ANF.P;H/=J 1.X / as in equation (3-5), and then the dimension
estimate improves by dim.J 1.X // D h1;0 to h2;0 � n.D:K/ � 1. Notice that
this salvages at least the abelian surface case (though it isstill a crude estimate).
For surfaces of general type, one is still in trouble withoutmore information,
like the constantC in Remark 44.

We will not attempt to describe the proof of Theorem 57 in general, but we will
explain the following special case:

THEOREM61 [BP2].LetS be a smooth complex algebraic variety which admits
a projective completionNS such thatD D NS � S is a smooth divisor. LetH be a
variation of pure Hodge structure of weight�1 on S and� W S ! J.H/ be an
admissible normal function. Then, the zero locusZ of � is an complex algebraic
subvariety ofS .

REMARK 62. This result was obtained contemporaneously by MorihikoSaito
in [S5].

In analogy with the proof of Theorem 56 on the algebraicity ofthe Hodge lo-
cus, which depends heavily on the several variable SL2-orbit theorem for nilpo-
tent orbits of pure Hodge structure [CKS1], the proof of Theorem 57 depends
upon the corresponding result for nilpotent orbits of mixedHodge structure. For
simplicity of exposition, we will now review the1-variable SL2-orbit theorem
in the pure case (which is due to Schmid [Sc]) and a version of the SL2-orbit
theorem in the mixed case [Pe2] sufficient to prove Theorem 61. For the proof of
Theorem 57, we need the full strength of the several variableSL2-orbit theorem
of Kato, Nakayama and Usui [KNU1].

4.2. The classical nilpotent and SL2-orbit theorems. To outline the proof of
Theorem 61, we now recall the theory of degenerations of Hodge structure: Let
H be a variation of pure Hodge structure of weightk over a simply connected
complex manifoldS . Then, via parallel translation back to a fixed reference
fiber H D Hso

we obtain a period map

' W S ! D; (4-1)

whereD is Griffiths’ classifying space of pure Hodge structures onH with fixed
Hodge numbersfhp;k�pg which are polarized by the bilinear formQ of H . The
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setD is a complex manifold upon which the Lie group

GR D AutR.Q/

acts transitively by biholomorphisms, and henceD Š GR=G
Fo

R , whereG
Fo

R is
the isotropy group ofFo 2 D. The compact dual ofD is the complex manifold

LD Š GC=G
Fo

C

whereFo is any point inD. (In general,F D F � denotes a Hodge filtration.) If
S is not simply connected, then the period map (4-1) is replaced by

' W S ! � nD (4-2)

where� is the monodromy group ofH ! S acting on the reference fiberH .
For variations of Hodge structure of geometric origin,S will typically be a

Zariski open subset of a smooth projective varietyNS . By Hironaka’s resolution
of singularities theorem, we can assumeD D NS �S to be a divisor with normal
crossings. The period map (4-2) will then have singularities at the points ofD
about whichH has nontrivial local monodromy. A precise local description of
the singularities of the period map of a variation of Hodge structure was obtained
by Schmid [Sc]: Let' W .��/r ! � nD be the period map of variation of pure
polarized Hodge structure over the product of punctured disks. First, one knows
that ' is locally liftable with quasi-unipotent monodromy. Afterpassage to a
finite cover, we therefore obtain a commutative diagram

U r
F

//

››

D

››

.��/r
'

// � nD
(4-3)

whereU r is the r -fold product of upper half-planes andU r ! .��/r is the
covering map

sj D e2� izj ; j D 1; : : : ; r

with respect to the standard Euclidean coordinates.z1; : : : ; zr / onU r � Cr and
.s1; : : : ; sr / on .��/r � Cr .

Let Tj D eNj denote the monodromy ofH aboutsj D 0. Then,

 .z1; : : : ; zr /D e�
P

j zj Nj :F.z1; : : : ; zr /

is a holomorphic map fromU r into LD which is invariant under the transforma-
tion zj ‘ zj C 1 for eachj , and hence drops to a map.��/r ! LD which we
continue to denote by .
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DEFINITION 63. LetD be a classifying space of pure Hodge structure with
associated Lie groupGR. LetgR be the Lie algebra ofGR. Then, a holomorphic,
horizontal map� W Cr ! LD is a nilpotent orbit if

(a) there exists̨ > 0 such that�.z1; : : : ; zr / 2 D if Im .zj / > ˛ 8j ; and
(b) there exist commuting nilpotent endomorphismsN1; : : : ;Nr 2 gR and a

point F 2 LD such that�.z1; : : : ; zr /D e
P

j zj Nj :F .

THEOREM 64 (NILPOTENT ORBIT THEOREM [Sc]). Let' W .��/r ! � nD be
the period map of a variation of pure Hodge structure of weight k with unipotent
monodromy. Let dD be aGR-invariant distance onD. Then:

(a)F1 D lims!0  .s/ exists, i.e., .s/ extends to a map�r ! LD;
(b) �.z1; : : : ; zr /D e

P
j zj Nj :F1 is a nilpotent orbit; and

(c) there exist constantsC , ˛ andˇ1; : : : ; ˇr such that ifIm.zj / > ˛ 8j then
�.z1; : : : ; zr / 2 D and

dD.�.z1; : : : ; zr /;F.z1; : : : ; zr // < C
X

j

Im.zj / ǰ e�2� Im.zj /:

REMARK 65. Another way of stating part (a) of this theorem is that theHodge
bundlesFp of HO extend to a system of holomorphic subbundles of the canon-
ical extension ofHO. Indeed, recall from~ 2.7 that one way of constructing a
model of the canonical extension in the unipotent monodromycase is to take a
flat, multivalued framef�1; : : : ; �mg of HZ and twist it to form a single valued
holomorphic framef Q�1; : : : ; Q�mg over .��/r where Q�j D e� 1

2�i

P
j log.sj /Nj �j ,

and then declaring this twisted frame to define the canonicalextension.

Let N be a nilpotent endomorphism of a finite-dimensional vector space over a
field k. Then,N can be put into Jordan canonical form, and hence (by consider-
ing a Jordan block) it follows that there is a unique, increasing filtration W.N /

of V , such that, for each indexj ,

(a) N.W.N /j /� W.N /j�2 and

(b) N j W GrW.N /
j ! GrW.N /

�j is an isomorphism.

If ` is an integer then.W.N /Œ`�/j D W.N /jC`.

THEOREM 66. Let ' W �� ! � nD be the period map of a variation of pure
Hodge structure of weightk with unipotent monodromyT D eN . Then, the limit
Hodge filtrationF1 of ' pairs with theweight monodromy filtrationM.N / WD
W.N /Œ�k� to define a mixed Hodge structure relative to whichN is a.�1;�1/-
morphism.

REMARK 67. The limit Hodge filtrationF1 depends upon the choice of local
coordinates, or more precisely on the value of.ds/0. Therefore, unless one has
a preferred coordinate system (say, if the field of definitionmatters), in order
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to extract geometric information from the limit mixed HodgestructureH1 D
.F1;M.N // one usually has to pass to the mixed Hodge structure induced by
H1 on the kernel or cokernel ofN . In particular, ifX ! � is a semistable
degeneration, the local invariant cycle theorem asserts that we have an exact
sequence

H k.X0/! H1
N! H1;

where the mapH k.X0/! H1 is obtained by first including the reference fiber
Xso

into X and then retractingX ontoX0.

The proof of Theorem 66 depends upon Schmid’s SL2-orbit theorem. Infor-
mally, this result asserts that any 1-parameter nilpotent orbit is asymptotic to
a nilpotent orbit arising from a representation of SL2.R/. In order to properly
state Schmid’s results we need to discuss splittings of mixed Hodge structures.

THEOREM68 (DELIGNE [De1]). Let.F;W / be a mixed Hodge structure onV .
There exists a unique, functorial bigrading

VC D
M

p;q

Ip;q

such that

(a)Fp D
L

a�p Ia;b ;

(b) Wk D
L

aCb�k Ia;b;
(c) Ip;q D Iq;p mod

L
r<q;s<p I r;s .

In particular, if.F;W / is a mixed Hodge structure onV then.F;W / induces
a mixed Hodge structure ongl.V /Š V ˝ V � with bigrading

gl.VC/D
M

r;s

gl.V /r;s

wheregl.V /r;s is the subspace ofgl.V / which mapsIp;q to IpCr;qCs for all
.p; q/. In the case where.F;W / is graded-polarized, we have an analogous
decompositiongC D

L
r;s gr;s of the Lie algebra ofGC.D Aut.VC;Q//. For

future use, we define
�

�1;�1
.F;W /

D
M

r;s<0

gl.V /r;s (4-4)

and note that by properties (a)–(c) of Theorem 68

� 2��1;�1
.F;W /

) I
p;q

.e�:F;W /
D e�:I

p;q

.F;W /
: (4-5)

A mixed Hodge structure.F;W / is split overR if NIp;q D Iq;p for .p; q/. In
general, a mixed Hodge structure.F;W / is not split overR. However, by a
theorem of Deligne [CKS1], there is a functorial splitting operation

.F;W /‘ . OFı;W /D .e�iı:F;W /
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which assigns to any mixed Hodge structure.F;W / a split mixed Hodge struc-
ture. OFı;W /, such that

(a) ı D Nı,
(b) ı 2��1;�1

.F;W /
, and

(c) ı commutes with all.r; r/-morphisms of.F;W /.

REMARK 69.��1;�1
.F;W /

D�
�1;�1

. OFı;W /
.

A nilpotent orbit O�.z/ D ezN :F is an SL2-orbit if there exists a group homo-
morphism� W SL2.R/! GR such that

O�.g:
p

�1/D �.g/: O�.
p

�1/

for all g 2 SL2.R/. The representation� is equivalent to the data of ansl2-triple
.N;H;N C/ of elements inGR such that

ŒH;N �D �2N; ŒN C;N �D H; ŒH;N C�D 2N C

We also note that, for nilpotent orbits of pure Hodge structure, the statement that
ezN :F is an SL2-orbit is equivalent to the statement that the limit mixed Hodge
structure.F;M.N // is split overR [CKS1].

THEOREM 70 (SL2-ORBIT THEOREM, [Sc]). Let�.z/D ezN :F be a nilpotent
orbit of pure Hodge structure. Then, there exists a unique SL2-orbit O�.z/ D
ezN: OF and a distinguished real-analytic function

g.y/ W .a;1/! GR

(for somea 2 R) such that
(a)�.iy/D g.y/: O�.iy/ for y > a, and
(b) bothg.y/ andg�1.y/ have convergent series expansions about1 of the

form

g.y/D 1 C
X

k>0

gj y�k ; g�1.y/D 1 C
X

k>0

fky�k

with gk , fk 2 ker.adN /kC1.
Furthermore, the coefficientsgk andfk can be expressed in terms of univer-

sal Lie polynomials in the Hodge components ofı with respect to. OF ;M.N //

andadN C.

REMARK 71. The precise meaning of the statement thatg.y/ is a distinguished
real-analytic function, is thatg.y/ arises in a specific way from the solution of
a system of differential equations attached to� .
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REMARK 72. If � is a nilpotent orbit of pure Hodge structures of weightk

and O� D ezN : OF is the associated SL2-orbit then. OF ;M.N // is split overR.
The map.F;M.N // ‘ . OF ;M.N // is called thesl2-splitting of .F;M.N //.
Furthermore, OF D e�� :F where� is given by universal Lie polynomials in the
Hodge components ofı. In this way, one obtains ansl2-splitting .F;W / ‘
. OF ;W / for any mixed Hodge structure.F;W /.

4.3. Nilpotent and SL2-orbit theorems in the mixed case. In analogy to
the theory of period domains for pure HS, one can form a classifying space
of graded-polarized mixed Hodge structureM with fixed Hodge numbers. Its
points are the decreasing filtrationsF of the reference fiberV which pair with
the weight filtrationW to define a graded-polarized mixed Hodge structure (with
the given Hodge numbers). Given a variation of mixed Hodge structureV of
this type over a complex manifoldS , one obtains a period map

� W S ! � nM:

M is a complex manifold upon which the Lie groupG, consisting of elements of
GL.VC/ which preserveW and act by real isometries on GrW , acts transitively.
Next, let GC denote the Lie group consisting of elements of GL.VC/ which
preserveW and act bycomplexisometries on GrW . Then, in analogy with the
pure case, the “compact dual”LM of M is the complex manifold

LM Š GC=G
Fo

C

for any base pointFo 2 M. The subgroupGR D G \ GL.VR/ acts transitively
on the real-analytic submanifoldMR consisting of pointsF 2 M such that
.F;W / is split overR.

EXAMPLE 73. LetM be the classifying space of mixed Hodge structures with
Hodge numbersh1;1 D h0;0 D 1. Then,M Š C.

The proof of Schmid’s nilpotent orbit theorem depends critically upon the fact
that the classifying spaceD has negative holomorphic sectional curvature along
horizontal directions [GS]. Thus, although one can formally carry out all of the
constructions leading up to the statement of the nilpotent orbit theorem in the
mixed case, in light of the previous example it follows that one can not have
negative holomorphic sectional curvature in the mixed case, and hence there
is no reason to expect an analog of Schmid’s Nilpotent Orbit Theorem in the
mixed case. Indeed, for this classifying spaceM, the period map'.s/D exp.s/
gives an example of a period map with trivial monodromy whichhas an essential
singularity at1. Some additional condition is clearly required, and this iswhere
admissibility comes in.
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In the geometric case of a degeneration of pure Hodge structure, Steenbrink
[St] gave an alternative construction of the limit Hodge filtration that can be
extended to variations of mixed Hodge structure of geometric origin [SZ]. More
generally, given anadmissiblevariation of mixed Hodge structureV over a
smooth complex algebraic varietyS � NS such thatD D NS � S is a normal
crossing divisor, and any pointp 2 D about whichV has unipotent local mon-
odromy, one has an associated nilpotent orbit.e

P
j zj Nj :F1;W / with limit

mixed Hodge structure.F1;M / whereM is the relative weight filtrationof
N D

P
j Nj andW .11 Furthermore, one has the following “group theoretic”

version of the nilpotent orbit theorem: As in the pure case, avariation of mixed
Hodge structureV ! .��/r with unipotent monodromy gives a holomorphic
map

 W .��/r ! LM;

z ‘ e�
P

zj Nj F.z/;

and this extends to�r if V is admissible. Let

q1 D
M

r<0

gr;s

wheregC D Lie.GC/ D
L

r;s gr;s relative to the limit mixed Hodge structure
.F1;M /. Thenq1 is a nilpotent Lie subalgebra ofgC which is a vector space
complement to the isotropy algebragF1

C of F1. Consequently, there exists an
open neighborhoodU of zero ingC such that

U ! LM;

u ‘ eu:F1

is a biholomorphism, and hence after shrinking�r as necessary we can write

 .s/D e� .s/:F1

relative to a uniqueq1-valued holomorphic function� on�r which vanishes
at 0. Recalling the construction of from the lifted period mapF , it follows
that

F.z1; : : : ; zr /D e
P

j zj Nj e� .s/:F1:

This is called thelocal normal formof V atp and will be used in the calculations
of ~ 5.4–5.

There is also a version of Schmid’s SL2-orbit theorem for admissible nilpo-
tent orbits. In the case of 1-variable and weight filtrationsof short length, the is
due to the second author in [Pe2]. More generally, Kato, Nakayama and Usui

11Recall [SZ] that in general the relative weight filtrationM D M.N; W / is the unique filtration (if it
exists) such thatN.Mk/ � Mk�2 andM induces the monodromy weight filtration ofN on each GrW

i

(centered abouti).
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proved a several variable SL2-orbit theorem with arbitrary weight filtration in
[KNU1]. Despite the greater generality of [KNU1], in this paper we are going
to stick with the version of the SL2-orbit theorem from [Pe2] as it is sufficient
for our needs and has the advantage that for normal functions, mutatis mutandis,
it is identical to Schmid’s result.

4.4. Outline of proof of Theorem 61. Let us now specialize to the case of an
admissible normal function� W S ! J.H/ over a curve and outline the proof
[BP1] of Theorem 61. Before proceeding, we do need to addressone aspect of
the SL2-orbit theorem in the mixed case. LetO� D .ezN :F;W / be an admissible
nilpotent orbit with limit mixed Hodge structure.F;M / which is split overR.
Then, O� induces an SL2-orbit on each GrWk , and hence a correspondingsl2-
representation�k .

DEFINITION 74. Let W be an increasing filtration, indexed byZ, of a finite
dimensional vector spaceV . A grading of W is a direct sum decomposition
Wk D Vk ˚ Wk�1 for each indexk.

In particular, a mixed Hodge structure.F;W / on V gives a grading ofW by
the ruleVk D

L
pCqDk Ip;q. Furthermore, if the ground field has characteristic

zero, a grading ofW is the same thing as a semisimple endomorphismY of V

which acts as multiplication byk on Vk . If .F;W / is a mixed Hodge structure
we letY.F;W / denote the grading ofW which acts onIp;q as multiplication by
p C q, theDeligne gradingof .F;W /.

Returning to the admissible nilpotent orbitO� considered above, we now have
a system of representations�k on GrWk . To construct ansl2-representation on
the reference fiberV , we need to pick a gradingY of W . Clearly for each Hodge
flag F.z/ in the orbit we have the Deligne gradingY.F.z/;W /; but we are after
something more canonical. Now we also have the Deligne grading Y. OF ;M / of
M associated to thesl2-splitting of the LMHS. In the unpublished letter [De3],
Deligne observed that:

THEOREM 75. There exists a unique gradingY of W which commutes with
Y. OF ;M / and has the property that if.N0;H;N

C
0
/ denote the liftings of thesl2-

triples attached to the graded representations�k via Y thenŒN �N0;N
C
0
�D 0.

With this choice ofsl2-triple, andO� an admissible nilpotent orbit in 1-variable of
the type arising from an admissible normal function, the main theorem of [Pe2]
asserts that one has a direct analog of Schmid’s SL2-orbit theorem as stated
above for O� .

REMARK 76. More generally, given an admissible nilpotent orbit.ezN F;W /

with relative weight filtrationM D M.N;W /, Deligne shows that there exists
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a gradingY D Y .N;Y.F;M // with similar properties. See [BP1] for details and
further references.

REMARK 77. In the case of a normal function, if we decomposeN according to
adY we haveN D N0CN�1 whereN�1 must be either zero or a highest weight
vector of weight�1 for the representation ofsl2.R/ defined by.N0;H;N

C
0
/.

Accordingly, since there are no vectors of highest weight�1, we haveN D N0

and henceŒY;N �D 0.

The next thing that we need to recall is that if� W S ! J.H/ is an admissible
normal function which is represented by an extension

0 ! H ! V ! Z.0/! 0

in the category of admissible variations of mixed Hodge structure onS then the
zero locusZ of � is exactly the set of points where the corresponding Deligne
gradingY.F ;W/ is integral. In the case whereS � NS is a curve, in order to
prove the algebraicity ofZ, all we need to do is show thatZ cannot contain a
sequence of pointss.m/ which accumulate to a puncturep 2 NS � S unless� is
identically zero. The first step towards the proof of Theorem61 is the following
result [BP1]:

THEOREM78. Let' W�� !� nM denote the period map of an admissible nor-
mal function� W�� ! J.H/ with unipotent monodromy, andY be the grading
of W attached to the nilpotent orbit� of ' by Deligne’s construction(Theorem
75). Let F W U ! M denote the lifting of' to the upper half-plane. Then, for
Re.z/ restricted to an interval of finite length, we have

lim
Im.z/!1

Y.F.z/;W / D Y

SKETCH OF PROOF. Using [De3], one can prove this result in the case where'

is a nilpotent orbit with limit mixed Hodge structure which is split overR. Let
z D x C iy. In general, one writes

F.z/D ezN e� .s/:F1 D exN eiyN e� .s/e�iyN eiyN:F1

where exN is real, eiyN:F1 can be approximated by an SL2-orbit and the
functioneiyN e� .s/e�iyN decays to1 very rapidly. ˜

In particular, if there exists a sequences.m/ which converges top along which
Y.F ;W/ is integral it then follows from the previous theorem thatY is integral.
An explicit computation then shows that the equation of the zero locus nearp
is given by the equation

Ad.e� .s//Y D Y;

which is clearly holomorphic on a neighborhood ofp in NS .
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That concludes the proof forS a curve. In the case whereS has a compact-
ification NS such that NS � S is a smooth divisor, one can prove Theorem 61 by
the same techniques by studying the dependence of the preceding constructions
on holomorphic parameters, i.e., at a point inD we get a nilpotent orbit

�.zI s2; : : : ; sr /D ezN:F1.s2; : : : ; sr /;

whereF1.s2; : : : ; sr / depend holomorphically on the parameters.s2; : : : ; sr /.

4.5. Zero loci and filtrations on Chow groups. Returning now to the al-
gebraicity of the Hodge locus discussed at the beginning of this section, the
Hodge Conjecture would further imply that iff W X ! S can be defined over an
algebraically closed subfield ofC then so can the germ ofT . Claire Voisin [Vo1]
gave sufficient conditions forT to be defined overNQ if f W X ! S is defined
overQ. Very recently F. Charles [Ch] carried out an analogous investigation of
the field of definition of the zero locusZ of a normal function motivated over
F. We reprise this last notion (from Sections 1 and 2):

DEFINITION 79. Let S be a smooth quasiprojective variety defined over a
subfieldF0 � C, and letF � C be a finitely generated extension ofF0. An
admissible normal function� 2 ANF.S;H/ is motivated overF if there exists
a smooth quasiprojective varietyX , a smooth projective morphismf W X ! S ,
and an algebraic cycleZ 2 Zm.X /prim, all defined overF, such thatH is a
subVHS of.R2m�1f�Z/˝OS and� D �Z.

REMARK 80. HereZm.X /prim denotes algebraic cycles with homologically
trivial restriction to fibers. One traditionally also assumesZ is flat overS , but
this can always be achieved by restricting toU � S sufficiently small (Zariski
open); and then by [S1](i) �ZU

is NS admissible.Next, for anys0 2 S one can
moveZ by a rational equivalence to intersectXs0

(hence thefXsg for s in an
analytic neighborhood ofs0) properly, and then use the remarks at the beginning
of [Ki] or [GGK, ~ III.B] to see that(ii) �Z is defined and holomorphic over all
of S . Putting (i) and(ii) together with [BFNP, Lemma 7.1], we see that�Z is
itself admissible.

Recall that the level of a VHSH is (for a generic fiberHs) the maximum dif-
ferencejp1 � p2j for H p1;q1 andH p2;q2 both nonzero. A fundamental open
question about motivic normal functions is then:

CONJECTURE81. (i) [ZL.D;E/] For everyF � C finitely generated overNQ,
S=F smooth quasiprojective of dimensionD, andH ! S VHS of weight.�1/

and level� 2E �1, the following holds: � motivated overF implies thatZ.�/ is
an at most countable union of subvarieties ofS defined over(possibly different)
finite extensions ofF.
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(ii) [ fZL.D;E/] Under the same hypotheses, Z.�/ is an algebraic subvariety
of S defined over an algebraic extension ofF.

Clearly Theorem 57 and ConjectureZL.D;E/ together implyfZL.D;E/, but
it is much more natural to phrase some statements (especially Proposition 86
below) in terms ofZL.D;E/. If true even forD D1 (but generalE), Conjecture
81(i) would resolve a longstanding question on the structure of Chow groups of
complex projective varieties. To wit, the issue is whether the second Bloch–
Beilinson filtrand and the kernel of theAJ map must agree; we now wish to
describe this connection. We shall writefZL.D; 1/alg for the case when� is
motivated by a family of cycles algebraically equivalent tozero.

Let X be smooth projective andm 2 N. Denoting “̋ Q” by a subscriptQ, we
have the two “classical” invariantsclX ;Q W CH m.X /Q ! Hgm.X /Q andAJX ;Q W
ker.clX ;Q/ ! J m.X /Q. It is perfectly natural both to ask for further Hodge-
theoretic invariants for cycle-classes in ker.AJX ;Q/, and inquire as to what sort
of filtration might arise from their successive kernels. Theidea of a (conjec-
tural)systemof decreasing filtrations on the rational Chow groups ofall smooth
projective varieties overC, compatible with the intersection product, morphisms
induced by correspondences, and the algebraic Künneth components of the diag-
onal�X , was introduced by A. Beilinson [Be], and independently by S. Bloch.
(One has to assume something like the Hard Lefschetz Conjecture so that these
Künneth components exist; the compatibility roughly says that Gri CH m.X /Q
is controlled byH 2m�i.X /.) Such a filtrationF �

BB is unique if it exists and is
universally known as aBloch–Beilinson filtration(BBF); there is a wide variety
of constructions which yield a BBF under the assumption of various more-or-
less standard conjectures. The one which is key for the filtration (due to Lewis
[Le2]) we shall consider is thearithmetic Bloch–Beilinson Conjecture(BBC):

CONJECTURE82. If X= NQ is a quasiprojective variety, the absolute-Hodge
cycle-class map

cH W CH m.X /Q ! H 2m
H .X an

C ;Q.m// (4-6)

is injective. (HereCH m.X / denotes�rat-classes of cycles overNQ, and differs
from CH m.XC/.)

Now for X=C, cH on CH m.X /Q is far from injective (the kernel usually not
even being parametrizable by an algebraic variety); but anygiven cycleZ 2
Zm.X / (a priori defined overC) is in fact defined over a subfieldK � C finitely
generated overNQ, say of transcendence degreet . ConsideringX;Z overK, the
NQ-spread then provides

� a smooth projective varietyNS= NQ of dimensiont , with NQ. NS/ Š! K ands0 W
Spec.K/! NS the corresponding generic point;
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� a smooth projective varietyNX and projective morphismN� W NX ! NS , both
defined overNQ, such thatX D Xs0

WD X �s0
Spec.K/; and

� an algebraic cycleNZ 2 Zm.X. NQ// with Z D NZ �s0
Spec.K/.

Writing N�sm DW � W X ! S (andZ WD NZ \X ), we denote byU � S any affine
Zariski open subvariety defined overNQ, and putXU WD��1.U /, ZU WD NZ\XU ;
note thats0 factors through all suchU .

The point is that exchanging the field of definition for additional geometry
allowscH to “see” more; in fact, since we are overNQ, it should now (by BBC)
see everything. NowcH.ZU / packages cycle-class and Abel–Jacobi invariants
together, and the idea behind Lewis’s filtration (and filtrations of M. Saito and
Green/Griffiths) is to split the whole package up into Leray graded pieces with
respect to�. Miraculously, the0-th such piece turns out to agree with the
fundamental class ofZ, and the next piece is the normal function generated by
ZU . The pieces after that define the so-calledhighercycle-class andAJ maps.

More precisely, we have
CH m.X.K //Q

spreadŠ
››

	 WD

˘˘

imfCH m. NX /Q ! lim�!
U

CH m.XU /Qg

cH

››

H 2m
H

W im
�
H 2m

D
. NX an

C ;Q.m//! lim�!
U

H 2m
H
..XU /

an
C ;Q.m//

�

(4-7)

with cH (hence	 ) conjecturally injective. Lewis [Le2] defines a Leray filtration
L�H 2m

H
with graded pieces

0

››

J 0
�
lim�!
U

W�1H i�1.U;R2m�i��Q.m//
�

im lim�!
U

Hg0
�
GrW0 H i.U;R2m�i��Q.m//

�

ˇ

››

Gri
L

H 2m
H

˛

››

Hg0
�
lim�!
U

W0H i.U;R2m�i��Q.m//
�

››

0

(4-8)
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and setsLiCH m.XK /Q WD 	�1.LiH 2m
H
/. For Z 2 LiCH m.XK /Q, we put

cl i
X
.Z/ WD ˛.GriL 	.Z//; if this vanishes then Gri

L 	.Z/DWˇ.aj i�1
X

.Z//, and
vanishing ofcl i.Z/ andaj i�1.Z/ implies membership inLiC1. One easily
finds thatcl0

X
.Z/ identifies withclX ;Q.Z/ 2 Hg0.X /Q.

REMARK 83. The arguments of Hg0 andJ 0 in (4-8) have canonical and func-
torial MHS by [Ar]. One should think of the top term as Gri�1

L of the lowest-
weight part ofJ m.XU / and the bottom as Gri

L of the lowest-weight part of
Hgm.XU / (both in the limit overU ).

Now to get a candidate BBF, Lewis takes

LiCH m.XC/Q WD lim���!
K�C

f:g:= NQ

LiCH m.XK /Q:

Some consequences of the definition of a BBF mentioned above,specifically
the compatibility with the K̈unneth components of�X , include these:

(a)

8
<̂

:̂

F0
BBCH m.X /Q D CH m.X /Q;

F1
BBCH m.X /Q D CH m

hom.X /Q;

F2
BBCH m.X /Q � ker.AJX ;Q/;

(b) FmC1
BB CH m.X /D f0g.

These are sometimes stated as additional requirements for aBBF.

THEOREM 84 [Le2]. L� is intersection- and correspondence-compatible, and
satisfies(a). Assuming BBC, L� satisfies(b); and additionally assuming HLC,
L� is a BBF.

The limits in (4-8) insideJ 0 and Hg0 stabilize for sufficiently smallU ; replacing
S by such aU , we may consider the normal function�Z 2 ANF.S;H2m�1

X=S
/

attached to theNQ-spread ofZ.

PROPOSITION85. (i) For i D 1, (4-8)becomes

0 ! J m
fix.X=S/Q ! Gr1L H 2m

H !
�
H 1.S;R2m�1��Q/

�.0;0/ ! 0:

(ii) For Z 2 CH m
hom.XK /Q, we havecl1

X
.Z/ D Œ�Z�Q. If this vanishes, then

aj 0
X
.Z/D AJX .Z/Q 2 J m

fix.X=S/Q � J m.X /Q (implying L2 � kerAJQ).

So for Z 2 CH m
hom.XK / with NQ-spreadZ over S , the information contained

in Gr1
L
	.Z/ is (up to torsion) precisely�Z. Working overC, Z � Xs0

D Z

is the fiber of the spread at avery general points0 2 S.C/: trdeg. NQ.s0/= NQ/
is maximal, i.e., equal to the dimension ofS . SinceAJ is a transcendental
(rather than algebraic) invariant, there is no outright guarantee that vanishing of
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AJX .Z/ 2 J m.X /— or equivalently, of the normal function at a very general
point — implies the identical vanishing of�Z or evenŒ�Z�. To display explicitly
the depth of the question:

PROPOSITION86. (i) ZL.1;E/ .8E 2 N/ ” L2CH m.X /Q D ker.AJX ;Q/

.8 sm. proj. X=C/.
(ii) ZL.1; 1/alg ”L2CH m.X /Q\CH m

alg.X /Q Dker.AJX ;Q/\CH m
alg.X /Q

.8 sm. proj. X=C/.

Roughly speaking, these statements say that “sensitivity of the zero locus (of a
cycle-generated normal function) to field of definition” is equivalent to “spreads
of homologically andAJ -trivial cycles give trivial normal functions”. In (ii),
the cycles in both statements are assumed algebraically equivalent to zero.

PROOF. We first remark that for any varietyS with field of definitionF of mini-
mal transcendence degree, no properNF-subvariety ofS contains (in its complex
points) a very general point ofS .

(i) .) / W Let Z be the NQ-spread ofZ with AJ.Z/Q D 0, and suppose
Gr1

L
	.Z/D Gr1

L
cH.Z/ does not vanish. Taking a1-dimensional very general

multiple hyperplane sectionS0 � S throughs0 (S0 is “minimally” defined over

k
trdeg:1

� K), the restriction Gr1
L

cH.Z0/ ¤ 0 by weak Lefschetz. Since each
Z.�N Z0

/�S0 is a union of subvarieties defined overNk and containss0 for some
N 2 N, one of these is all ofS0 (which implies Gr1

L
	.Z/D 0), a contradiction.

SoZ 2 L2.

.(/ W Let X0 ! S0, Z0 2 Zm.X0/prim, dim.S0/ D 1, all be defined overk
and supposeZ.�Z0

/ contains a points0 not defined overNk. Spreading this out
over NQ to Z;X ;S � S0 3 s0, we have:s0 2 S is very general,Z is the NQ-spread
of Z D Z0 � Xs0

, andAJ.Z/Q D 0. SoZ 2 L2 implies �Z is torsion, which
implies �Z0

is torsion. But then�Z0
is zero since it is zero somewhere (ats0).

SoZ.�Z0
/ is eitherS0 or a (necessarily countable) union ofNk-points ofS0.

(ii) The spreadZ of Z.s0/ �alg 0 has every fiberZs �alg 0, hence�Z is a
section ofJ.H/, H � .R2m�1��Q.m//˝OS a subVHS of level one (which
can be taken to satisfyHs D .H 2m�1.Xs//h for a.e.s 2 S). The rest is as
in (i). ˜

REMARK 87. A related candidate BBF which occurs in work of the first author
with J. Lewis [KL, ~ 4], is defined via successive kernels ofgeneralizednormal
functions (associated to theNQ-spreadZ of a cycle). These take values on very
general.i � 1/-dimensional subvarieties ofS (rather than at points), and have
the abovecl i.Z/ as their topological invariants.
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4.6. Field of definition of the zero locus.We shall begin by showing that the
equivalent conditions of Proposition 86(ii) are satisfied;the idea of the argument
is due in part to S. Saito [Sa]. The first paragraph in the following in fact gives
more:

THEOREM 88. fZL.D; 1/alg holds for allD 2 N. That is, the zero locus of any
normal function motivated by a family of cycles overF algebraically equivalent
to zero, is defined over an algebraic extension ofF.

Consequently, cycles algebraically and Abel–Jacobi-equivalent to zero on a
smooth projective variety overC, lie in the second Lewis filtrand.

PROOF. ConsiderZ 2 Zm.X /prim andf W X ! S defined overK (K being
finitely generated overNQ), with Zs �alg 0 8s 2 S ; and lets0 2 Z.�Z/. (Note:
s0 is just a complex point ofS .) We need to show:

9N 2 N such that�.s0/ 2 Z.�N Z/ for any� 2 Gal.C=K/: (4-9)

Here is why (4-9) will suffice: the analytic closure of the setof all conjugate
points is simply the point’sK-spreadS0 � S , a (possibly reducible) algebraic
subvariety defined overK. Clearly, on thes0-connected component ofS0, �Z

itself then vanishes; and this component is defined over an algebraic extension of
K. Trivially, Z.�Z/ is the union of such connected spreads of its pointss0; and
sinceK is finitely generated overNQ, there are only countably many subvarieties
of S0 defined overK or algebraic extensions thereof. This provesZL.D; 1/alg,
hence (by Theorem 57)fZL.D; 1/alg.

To show (4-9), writeX D Xs0
, Z D Zs0

, andL.=K/ for their field of defi-
nition. There exist overL

� a smooth projective curveC and points0; q 2 C.L/;
� an algebraic cycleW 2 Zm.C � X / such thatZ D W�.q � 0/; and
� another cycle� 2 Z1.J.C /� C / defining Jacobi inversion.
Writing � WD W ı� 2 Zm.J.C /� X /, the induced map

Œ��� W J.C /! J m.X /alg
�
� J m.X /h

�

is necessarily a morphism of abelian varieties overL; hence the identity con-
nected component of ker.Œ���/ is a subabelian variety ofJ.C / defined over an
algebraic extensionL0 � L. Define� WD�jB 2 Zm.B � X /, and observe that
Œ� �� W B ! J m.X /alg is zero by construction, so thatcl.�/ 2 L2H 2m.B � X /.

Now, sinceAJX .Z/D 0, a multipleb WD N:AJC .q � 0/ belongs toB, and
thenN:Z D ��b. This “algebraizes” theAJ -triviality of N:Z: conjugating the
6-tuple.s0;Z;X;B; �; b/ to .�.s0/;Z

� ŒDZ�.s0/�;X
� ŒDX�.s0/�;B

� ; �� ; b� /;

we still haveN:Z� D ��
� b� andcl.�� / 2 L2H 2m.B� � X � / by motivicity of

the Leray filtration [Ar], and this impliesN:AJ.Z� /D Œ�� ��b� D 0 as desired.
˜
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We now turn to the result of [Ch] indicated at the outset of~ 4.5. While inter-
esting, it sheds no light onZL.1;E/ or filtrations, since the hypothesis that the
VHS H have no global sections is untenable over a point.

THEOREM89 [Ch, Theorem 3].LetZ be the zero locus of ak-motivated normal
function� W S ! J.H/. Assume thatZ is algebraic andHC has no nonzero
global sections overZ. ThenZ is defined over a finite extension ofk.

PROOF. Charles’s proof of this result uses the`-adic Abel–Jacobi map. Al-
ternatively, we can proceed as follows (using, withF D k, the notation of
Definition 79): takeZ0 � Z.�/ to be an irreducible component (without loss
of generality assumed smooth), andZZ0

the restriction ofZ to Z0. Let ŒZZ0
�

and ŒZZ0
�dR denote the Betti and de Rham fundamental classes ofZZ0

, and
L the Leray filtration. Then, Gr1

L
ŒZZ0

� is the topological invariant ofŒZZ0
� in

H 1.Z0;R
2m�1f�Z/, whereas Gr1

L
ŒZZ0

�dR is the infinitesimal invariant of�Z

overZ0. In particular, sinceZ0 is contained in the zero locus of�Z,

Grj
L
ŒZZ0

�dR D 0; j D 0; 1: (4-10)

Furthermore, by the algebraicity of the Gauss–Manin connection, (4-10) is in-
variant under conjugation:

Grj
L
ŒZZ

�
0
�dR D .Grj

L
ŒZZ0

�dR/
�

and hence Grj
L
ŒZZ

�
0
�dR D 0 for j D 0, 1. Therefore, Grj

L
ŒZZ

�
0
� D 0 for j D

0, 1, and henceAJ.Zs/ takes values in the fixed part ofJ.H/ for s 2 Z�
0

.
By assumption,HC has no fixed part overZ0, and hence no fixed part over
Z�

0
(since conjugation mapsr-flat sections tor-flat sections by virtue of the

algebraicity of the Gauss–Manin connection). As such, conjugation must take
us to another component ofZ, and hence (sinceZ is algebraic overC impliesZ
has only finitely many components),Z0 must be defined over a finite extension
of k. ˜

We conclude with a more direct analog of Voisin’s result [Vo1, Theorem 0.5(2)]
on the algebraicity of the Hodge locus. IfV is a variation of mixed Hodge
structure over a complex manifold and

˛ 2 .Fp \W2p \ VQ/so

for someso 2 S , then the Hodge locusT of ˛ is the set of points inS where
some parallel translate of̨ belongs toFp.

REMARK 90. If .F;W / is a mixed Hodge structure onV andv2Fp\W2p\VQ

thenv is of type.p;p/ with respect to Deligne’s bigrading of.F;W /.
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THEOREM 91. Let S be a smooth complex algebraic variety defined over a
subfieldk of C, andV be an admissible variation of mixed Hodge structure of
geometric origin overS . Suppose thatT is an irreducible subvariety ofS over
C such that:

(a)T is an irreducible component of the Hodge locus of some

˛ 2 .Fp \W2p \ VQ/to
I

(b) �1.T; to/ fixes only the line generated by̨.

Then, T is defined overNk.

PROOF. If V Š Q.p/ for somep then T D S . Otherwise,T cannot be an
isolated point without violating (b). Assume therefore that dimT > 0. Over
T , we can extend̨ to a flat family of de Rham classes. By the algebraicity of
the Gauss–Manin connection, the conjugate˛� is flat overT � . Furthermore, if
T � supports any additional flat families of de Rham classes, conjugation by��1

gives a contradiction to (b). Therefore,˛� D�ˇ, whereˇ is a�1.T
� /-invariant

Betti class onT � which is unique up to scaling. Moreover,

Q.˛; ˛/D Q.˛� ; ˛� /D �2Q.ˇ; ˇ/

and hence there are countably many Hodge classes that one canconjugatę to
via Gal.C=k/. Accordingly,T must be defined overNk. ˜

5. The Néron model and obstructions to singularities

The unifying theme of the previous sections is the study of algebraic cycles
via degenerations using the Abel–Jacobi map. In particular, in the case of a
semistable degeneration� W X ! � and acohomologically trivialcycle Z

which properly intersects the fibers, we have

lim
s!0

AJXs
.Zs/D AJX0

.Z0/

as explained in detail in~ 2. In general however, the existence of the limit Abel–
Jacobi map is obstructed by the existence of the singularities of the associated
normal function. Nonetheless, using the description of theasymptotic behavior
provided by the nilpotent and SL2-orbit theorems, we can define the limits of
admissible normal functions along curves and prove the algebraicity of the zero
locus.

5.1. Ńeron models in one parameter.In this section we consider the problem
of geometrizing these constructions (ANFs and their singularities, limits and
zeroes) by constructing a Néron model which graphs admissible normal func-
tions. The quest to construct such objects has a long historywhich traces back to
the work of Ńeron on minimal models for abelian varietiesAK defined over the
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field of fractionsK of a discrete valuation ringR. In [Na], Nakamura proved the
existence of an analytic Ńeron model for a family of abelian varietiesA !��

arising from a variation of Hodge structureH ! �� of level 1 with unipotent
monodromy. With various restrictions, this work was then extended to normal
functions arising from higher codimension cycles in the work of Clemens [Cl2],
El Zein and Zucker [EZ], and Saito [S1].

REMARK 92. Unless otherwise noted, throughout this section we assume that
the local monodromy of the variation of Hodge structureH under consideration
is unipotent, and the local systemHZ is torsion free.

A common feature in all of these analytic constructions of Néron models for
variations of Hodge structure over�� is that the fiber over02� is a complex Lie
group which has only finitely many components. Furthermore,the component
into which a given normal function� extends is determined by the value of
�Z;0.�/. Using the methods of the previous section, one way to see this is as
follows: Let

0 ! H ! V ! Z.0/! 0

represent an admissible normal function� W�� ! J.H/ andF W U !M denote
the lifting of the period map ofV to the upper half-plane, with monodromy
T D eN . Then, using the SL2-orbit theorem of the previous section, it follows
(cf. Theorem 4.15 of [Pe2]) that

YHodgeD lim
Im.z/!1

e�zN :Y.F.z/;W /

exists, and is equal to the gradingY .N;Y.F1;M // constructed in the previous
section; recall also thatY .N;Y.F1;M // 2 ker.adN / due to the short length
of the weight filtration. Suppose further that there exists an integral grading
YBetti 2 ker.adN / of the weight filtrationW . Let j W�� !� andi W f0g !�

denote the inclusion maps. Then,YHodge� YBetti defines an element in

J.H0/D Ext1MHS.Z.0/;H
0.i�Rj�

H// (5-1)

by simply applyingYHodge�YBetti to any lift of 1 2 Z.0/D GrW0 . Reviewing~ 2
and~ 3, we see that the obstruction to the existence of such a grading YBetti is
exactly the class�Z;0.�/.

REMARK 93. More generally, ifH is a variation of Hodge structure of weight
�1 over a smooth complex algebraic varietyS and NS is a good compactification
of S , given a points 2 NS we define

J.Hs/D Ext1MHS.Z;Hs/; (5-2)
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whereHs D H 0.i�
s Rj�H/ andj W S ! NS , is W fsg ! NS are the inclusion maps.

In case NSnS is a NCD in a neighborhood ofS , with fNig the logarithms of the
unipotent parts of the local monodromies, thenHs Š

T
j ker.Nj /.

In general, except in the classical case of degenerations ofHodge structure of
level 1, the dimension ofJ.H0/ is usually strictly less than the dimension of
the fibers ofJ.H/ over��. Therefore, any generalized Néron modelJ�.H/ of
J.H/ which graphs admissible normal functions cannot be a complex analytic
space. Rather, in the terminology of Kato and Usui [KU; GGK],we obtain a
“slit analytic fiber space”. In the case where the base is a curve, the observations
above can be combined into the following result:

THEOREM94. LetH be a variation of pure Hodge structure of weight�1 over a
smooth algebraic curveS with smooth projective completionNS . Let j W S ! NS
denote the inclusion map. Then, there exists a Ńeron model forJ.H/, i.e., a
topological groupJ NS .H/ over NS satisfying the following two conditions:

(i) J NS .H/ restricts toJ.H/ overS .
(ii) There is a one-to-one correspondence between the set of admissible normal

functions� W S ! J.H/ and the set of continuous sectionsN� W NS ! J NS .H/

which restrict to holomorphic, horizontal sections ofJ.H/ overS .

Furthermore:

(iii) There is a short exact sequence of topological groups

0 ! J NS .H/
0 ! J NS .H/! G ! 0;

whereGs is the torsion subgroup of.R1
j�HZ/s for anys 2 NS .

(iv) J NS .H/
0 is a slit analytic fiber space, with fiberJ.Hs/ overs 2 NS .

(v) If � W S ! J.H/ is an admissible normal function with extensionN� then the
image ofN� in Gs at the points 2 NS � S is equal to�Z;s.�/. Furthermore, if
�Z;s.�/D 0 then the value ofN� at s is given by the class ofYHodge� YBetti as
in (5-1). Equivalently, in the geometric setting, if �Z;s.�/D 0 then the value
of N� at s is given by the limit Abel–Jacobi map.

Regarding the topology of the Néron model, let us consider more generally the
case of smooth complex varietyS with good compactificationNS , and recall from
~ 2 that we have also have the Zucker extensionJ Z

NS
.H/ obtained by starting from

the short exact sequence of sheaves

0 ! HZ ! HO=F
0 ! J.H/! 0

and replacingHZ by j�HZ andHO=F
0 by its canonical extension. Following

[S5], let us suppose thatD D NS � S is a smooth divisor, and letJ Z
NS
.H/Inv

D
be

the subset ofJ Z
NS
.H/ defined by the local monodromy invariants.
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THEOREM95 [S5].The Zucker extensionJ Z
NS
.H/ has the structure of a complex

Lie group over NS , and it is a Hausdorff topological space on a neighborhood of
J Z

NS
.H/Inv

D
.

Specializing this result to the case whereS is a curve, we then recover the result
of the first author together with Griffiths and Green thatJ NS .H/

0 is Hausdorff,
since in this case we can identifyJ NS .H/

0 with J Z
NS
.H/Inv

D
.

REMARK 96. Using this Hausdorff property, Saito was able to prove in[S5] the
algebraicity of the zero locus of an admissible normal function in this setting
(i.e., D smooth).

5.2. Ńeron models in many parameters.To extend this construction further,
we have to come to terms with the fact that unlessS has a compactification
NS such thatD D NS � S is a smooth divisor, the normal functions that we
consider may have nontorsion singularities along the boundary divisor. This
will be reflected in the fact that the fibersGs of G need no longer be finite
groups. The first test case is whenH is a Hodge structure of level 1. In this
case, a Ńeron model forJ.H/ was constructed in the thesis of Andrew Young
[Yo]. More generally, in joint work with Patrick Brosnan andMorihiko Saito,
the second author proved the following result:

THEOREM 97 [BPS].Let S be a smooth complex algebraic variety andH be
a variation of Hodge structure of weight�1 overS . Let j W S ! NS be a good
compactification ofNS andfS˛g be a Whitney stratification ofNS such that

(a)S is one of the strata ofNS , and
(b) theRkj�HZ are locally constant on each stratum.

Then, there exists a generalized Néron model forJ.H/, i.e., a topological
groupJ NS .H/ over NS which extendsJ.H/ and satisfies these two conditions:

(i) The restriction ofJ NS .H/ to S is J.H/.
(ii) Any admissible normal function� W S ! J.H/ has a unique extension to a

continuous sectionN� of J NS .H/.

Furthermore:

(iii) There is a short exact sequence of topological groups

0 ! J NS .H/
0 ! J NS .H/! G ! 0

over NS such thatGs is a discrete subgroup of.R1j�HZ/s for any points 2 NS .
(iv) The restriction ofJ NS .H/

0 to any stratumS˛ is a complex Lie group over
S˛ with fiberJ.Hs/ overs 2 NS .

(v) If � W S ! J.H/ is an admissible normal function with extensionN� then the
image ofN�.s/ in Gs is equal to�Z;s.�/ for all s 2 NS . If �Z;s.�/ D 0 for all
s 2 NS then N� restricts to a holomorphic section ofJ NS .H/

0 over each strata.
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REMARK 98. More generally, this is true under the following hypothesis:
(1) S is a complex manifold andj W S ! NS is a partial compactification of

S as an analytic space;
(2) H is a variation of Hodge structure onS of negative weight, which need

not have unipotent monodromy.

To construct the identity componentJ NS .H/
0, let� W S ! J.H/ be an admissible

normal function which is represented by an extension

0 ! H ! V ! Z.0/! 0 (5-3)

andj W S ! NS denote the inclusion map. Also, givens 2 NS let is W fsg ! NS
denote the inclusion map. Then, the short exact sequence (5-3) induces an exact
sequence of mixed Hodge structures

0 ! Hs ! H 0.i�
s Rj�V/! Z.0/! H 1.i�

s Rj�H/; (5-4)

where the arrowZ.0/! H 1.i�
s Rj�H/ is given by1 ‘ �Z;s.�/. Accordingly,

if �Z;s.�/D 0 then (5-4) determines a pointN�.s/ 2 J.Hs/. Therefore, as a set,
we define

J NS .H/
0 D

a

s2 NS

J.Hs/

and topologize by identifying it with a subspace of the Zucker extensionJ Z
NS
.H/.

Now, by condition (b) of Theorem 97 and the theory of mixed Hodge mod-
ules[S4], it follows that ifi˛ WS˛ ! NS are the inclusion maps thenH k.i�

˛ Rj�H/

are admissible variations of mixed Hodge structure over each stratumS˛. In
particular, the restriction ofJ NS .H/

0 to S˛ is a complex Lie group.
Suppose now that� W S ! J.H/ is an admissible normal function with ex-

tensionN� W NS ! J NS .H/ such that�Z;s.�/D 0 for eachs 2 NS . Then, in order to
prove thatN� is a continuous section ofJ NS .H/

0 which restricts to a holomorphic
section over each stratum, it is sufficient to prove thatN� coincides with the
section of the Zucker extension (cf. [S1, Proposition 2.3]). For this, it is in turn
sufficient to consider the curve case by restriction to the diagonal curve�!�r

by t ‘ .t; : : : ; t/; see [BPS,~ 1.4].
It remains now to constructJ NS .H/ via the following gluing procedure: Let

U be an open subset ofNS and� W U ! J.H/ be an admissible normal function
with cohomological invariant

�Z;U .�/D @.1/ 2 H 1.U;HZ/

defined by the map

@ W H 0.U;Z.0//! H 1.U;HZ/
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induced by the short exact sequence (5-3) overU. Then, we declareJU .HU \S /
�

to be the component ofJ NS .H/ overU , and equipJU .HU \S /
� with a canonical

morphism
JU .HU \S /

� ! JU .HU \S /
0

which sends� to the zero section. If� is another admissible normal function
overU with �Z;U .�/D �Z;U .�/ then there is a canonical isomorphism

JU .HU \S /
� Š JU .HU \S /

�

which corresponds to the section� �� of JU .HU \S /
0 overU .

Addendum to ~ 5.2. Since the submission of this article, there have been several
important developments in the theory of Néron models for admissible normal
functions on which we would like to report here. To this end, let us suppose
thatH is a variation of Hodge structure of level 1 over a smooth curve S � NS .
Let AS denote the corresponding abelian scheme with Néron modelA NS over
NS . Then, we have a canonical morphism

A NS ! J NS .H/

which is an isomorphism overS . However, unlessH has unipotent local mon-
odromy about each points 2 NS �S , this morphism is not an isomorphism [BPS].
Recently however, building upon his work on local duality and mixed Hodge
modules [Sl2], Christian Schnell has found an alternative construction of the
identity component of a Ńeron model which contains the construction of [BPS]
in the case of unipotent local monodromy and agrees [SS] withthe classical
Néron model for VHS of level 1 in the case of nonunipotent monodromy. In
the paragraphs below, we reproduce a summary of this construction which has
been generously provided by Schnell for inclusion in this article.

The genesis of the new construction is in unpublished work ofClemens on
normal functions associated to primitive Hodge classes. When Y is a smooth
hyperplane section of a smooth projective varietyX of dimension2n, and
HZ D H 2n�1.Y;Z/van its vanishing cohomology modulo torsion, the interme-
diate JacobianJ.Y / can be embedded into a bigger object,K.Y / in Clemens’s
notation, defined as

K.Y /D
�
H 0

�
X; ˝2n

X
.nY /

�_

H 2n�1.Y;Z/van
:

The point is that the vanishing cohomology ofY is generated by residues of
meromorphic2n-forms onX , with the Hodge filtration determined by the order
of the pole (provided thatOX .Y / is sufficiently ample). Clemens introduced
K.Y / with the hope of obtaining a weak, topological form of Jacobiinversion
for its points, and because of the observation that the numerator in its definition
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makes senseeven whenY becomes singular. In his Ph.D. thesis [Sl3], Schnell
proved that residues and the pole order filtration actually give a filtered holo-
nomicD-module on the projective space parametrizing hyperplane sections of
X ; and that thisD-module underlies the polarized Hodge module corresponding
to the vanishing cohomology by Saito’s theory. At least in the geometric case,
therefore, there is a close connection between the questionof extending inter-
mediate Jacobians, and filteredD-modules (with the residue calculus providing
the link).

The basic idea behind Schnell’s construction is to generalize from the geo-
metric setting above to arbitrary bundles of intermediate Jacobians. As before,
let H be a variation of polarized Hodge structure of weight�1 on a complex
manifoldS , andM its extension to a polarized Hodge module onNS . Let.M;F /

be its underlying filtered leftD-module:M is a regular holonomicD-module,
andF D F�M a good filtration by coherent subsheaves. In particular,F0M

is a coherent sheaf onNS that naturally extends the Hodge bundleF0HO. Now
consider the analytic space overNS , given by

T D T .F0M/D SpecNS

�
SymO NS

.F0M/
�
;

whose sheaf of sections is.F0M/_. (OverS , it is nothing but the vector bundle
corresponding to.F0HO/

_.) It naturally contains a copyTZ of theétale space of
the sheafj�HZ; indeed, every point of that space corresponds to a local section
of HZ, and it can be shown that every such section defines a map ofD-modules
M ! O NS via the polarization.

Schnell proves thatTZ � T is a closed analytic subset, discrete on fibers of
T ! NS . This makes the fiberwise quotient spaceNJ D T=TZ into an analytic
space, naturally extending the bundle of intermediate Jacobians forH . He also
shows that admissible normal functions with no singularities extend uniquely to
holomorphic sections ofNJ ! NS . To motivate the extension process, note that
the intermediate Jacobian of a polarized Hodge structure ofweight�1 has two
models,

HC

F0HC C HZ

' .F0HC/
_

HZ

;

with the isomorphism coming from the polarization. An extension of mixed
Hodge structure of the form

0 ! H ! V ! Z.0/! 0 (5-5)

gives a point in the second model in the following manner.
Let H � D Hom.H;Z.0// be the dual Hodge structure, isomorphic toH.�1/

via the polarization. After dualizing, we have

0 ! Z.0/! V � ! H � ! 0;
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and thus an isomorphismF1V �
C ' F1H �

C ' F0HC. Therefore, anyv 2 VZ

lifting 1 2 Z gives a linear mapF0HC ! C, well-defined up to elements ofHZ;
this is the point in the second model ofJ.H / that corresponds to the extension
in (5-5).

It so happens that this second construction is the one that extends to all of NS .
Given a normal function� on S , let

0 ! HZ ! VZ ! ZS ! 0

be the corresponding extension of local systems. By applying j�, it gives an
exact sequence

0 ! j�HZ ! j�VZ ! Z NS ! R1j�HZ;

and when� has no singularities, an extension of sheaves

0 ! j�HZ ! j�VZ ! Z NS ! 0:

Using duality for filteredD-modules, one obtains local sections of.F0M/_

from local sections ofj�VZ, just as above, and thus a well-defined holomorphic
section of NJ ! NS that extends�.

As in the one-variable case, where the observation is due to Green, Griffiths,
and Kerr, horizontality constrains such extended normal functions to a certain
subset of NJ ; Schnell proves that this subset is precisely the identity component
of the Ńeron model constructed by Brosnan, Pearlstein, and Saito. With the
induced topology, the latter is therefore a Hausdorff space, as expected. This
provides an additional proof for the algebraicity of the zero locus of an admissi-
ble normal function, similar in spirit to the one-variable result in Saito’s paper,
in the case when the normal function has no singularities.

The other advance, is the recent construction [KNU2] of log intermediate
Jacobians by Kato, Nakayama and Usui. Although a proper exposition of this
topic would take us deep into logarithmic Hodge theory [KU],the basic idea is
as follows: LetH ! �� be a variation of Hodge structure of weight�1 with
unipotent monodromy. Then, we have a commutative diagram

J.H/
Q'

//

››

Q� nM
GrW

�1

››

��
'

// � nD

(5-6)

where Q' and' are the respective period maps. In [KU], Kato and Usui explained
how to translate the bottom row of this diagram into logarithmic Hodge theory.
More generally, building on the ideas of [KU] and the severalvariable SL2-orbit
theorem [KNU1], Kato, Nakayama and Usui are able to construct a theory of
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logarithmic mixed Hodge structures which they can then apply to the top row
of the previous diagram. In this way, they obtain a log intermediate Jacobian
which serves the role of a Ńeron model and allows them to give an alternate
proof of Theorem 57 [KNU3].

5.3. Singularities of normal functions overlying nilpotent orbits. We now
consider the group of componentsGs of J NS .H/ at s 2 NS . For simplicity, we
first consider the case whereH is a nilpotent orbitHnilp over .��/r . To this
end, we recall that in the case of a variation of Hodge structure H over .��/r

with unipotent monodromy, the intersection cohomology ofHQ is computed by
the cohomology of a complex.B�.N1; : : : ;Nr /; d/ (cf. ~ 3.4). Furthermore, the
short exact sequence of sheaves

0 ! HQ ! VQ ! Q.0/! 0

associated to an admissible normal function� W .��/r ! J.H/ with unipotent
monodromy gives a connecting homomorphism

@ W IH0.Q.0//! IH1.HQ/

such that
@.1/D Œ.N1.e

Q
o /; : : : ;Nr .e

Q
o /�D sing0.�/;

wheree
Q
o is an element in the reference fiberVQ of VQ overso 2 .��/r which

maps to1 2 Q.0/. After passage to complex coefficients, the admissibility of
V allows us to pick an alternate lifteo 2 VC to be of type.0; 0/ with respect
to the limit MHS ofV . It also forceshj D Nj .eo/ to equalNj .fj / for some
elementfj 2 HC of type.0; 0/ with respect to the limit MHS ofH. Moreover,
e

Q

0
� e0 DW h maps to0 2 GrW0 , hence lies inHC, so

.N1.e
Q

0
/; : : : ;Nr .e

Q

0
//� .N1.e0/; : : : ;Nr .e0// modulod.B0/D im

rL
jD1

Nj

(i.e., up to.N1.h/; : : : ;Nr .h//).

COROLLARY 99. sing0.�/ is a rational class of type.0; 0/ in IH1.HQ/.

SKETCH OF PROOF. This follows from the previous paragraph together with
the explicit description of the mixed Hodge structure on thecohomology of
B�.N1; : : : ;Nr / given in [CKS2]. ˜

Conversely, we have:

LEMMA 100. LetHnilp D e
P

j zj Nj:F1 be a nilpotent orbit of weight�1 over
��r with rational structureHQ. Then, any clasš of type.0; 0/ in IH1.HQ/ is
representable by aQ-normal function� which is an extension ofQ.0/ byHnilp

such thatsing0.�/D ˇ.
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PROOF. By the remarks above,̌ corresponds to a collection of elementshj 2
Nj .HC/ such that

(a) h1; : : : ; hr are of type.�1;�1/ with respect to the limit mixed Hodge
structure ofHnilp,

(b) d.h1; : : : ; hr /D 0, i.e.,Nj .hk/� Nk.hj /D 0, and
(c) There existsh 2 HC such thatNj .h/Chj 2 HQ for eachj , i.e., the class

of .h1; : : : ; hr / in IH1.HC/ belongs to the imageIH1.HQ/! IH1.HC/.

We now define the desired nilpotent orbit by formally settingVC D Ceo ˚
HC, whereeo is of type.0; 0/ with respect to the limit mixed Hodge structure
and lettingVQ D Q.eo C h/˚ HQ. We defineNj .eo/ D hj . Then, following
Kashiwara [Ka]:

(a) The resulting nilpotent orbitVnilp is pre-admissible.
(b) The relative weight filtration of

W�2 D 0; W�1 D HQ; W0 D VQ

with respect to eachNj exists.

ConsequentlyVnilp is admissible, and the associated normal function� has
singularityˇ at 0. ˜

5.4. Obstructions to the existence of normal functions withprescribed sin-
gularity class. Thus, in the case of a nilpotent orbit, we have a complete de-
scription of the group of components of the Néron model̋ Q. In analogy with
nilpotent orbits, one might expect that given a variation ofHodge structureH of
weight�1 over.��/r with unipotent monodromy, the group of components of
the Ńeron model̋ Q to equal the classes of type.0; 0/ in IH1.HQ/. However,
Saito [S6] has managed to construct examples of variations of Hodge structure
over.��/r which do not admit any admissible normal functions with nontorsion
singularities. We now want to describe Saito’s class of examples. We begin
with a discussion of the deformations of an admissible nilpotent orbit into an
admissible variation of mixed Hodge structure over.��/r .

Let ' W .��/r ! � nD be the period map of a variation of pure Hodge struc-
ture with unipotent monodromy. Then, after lifting the period map ofH to the
product of upper half-planesU r , the work of Cattani, Kaplan and Schmid on
degenerations of Hodge structure gives us a local normal form of the period map

F.z1; : : : ; zr /D e
P

j zj Nj e� .s/:F1:

Here,.s1; : : : ; sr / are the coordinates on�r , .z1; : : : ; zr / are the coordinates on
U r relative to which the covering mapU r ! .��/r is given bysj D e2� izj ;
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� W�r ! gC

is a holomorphic function which vanishes at the origin and takes values in the
subalgebra

q D
M

p<0

gp;qI

and
L

p;q gp;q denotes the bigrading of the MHS induced ongC (cf. ~ 4.2) by
the limit MHS .F1;W .N1 C � � � Nr /Œ1�/ of H. The subalgebraq is graded
nilpotent

q D
M

a<0

qa; qa D
M

b

ga;b;

with N1; : : : ;Nr 2 q�1. Therefore,

e
P

j zj Nj e� .s/ D eX .z1;:::;zr /;

whereX takes values inq, and hence the horizontality of the period map be-
comes

e�X @eX D @X�1;

whereX D X�1 C X�2 C � � � relative to the grading ofq. Equality of mixed
partial derivatives then forces

@X�1 ^ @X�1 D 0

Equivalently,
�
Nj C 2� isj

@��1

@sj
; Nk C 2� isk

@��1

@sk

�
D 0: (5-7)

REMARK 101. The function� and the local normal form of the period map
appear in [CK].

In his letter to Morrison [De4], Deligne showed that for VHS over .��/r with
maximal unipotent boundary points, one could reconstruct the VHS from data
equivalent to the nilpotent orbit and the function��1. More generally, one can
reconstruct the function� starting from@X�1 using the equation

@eX D eX @X�1

subject to the integrability condition@X�1^@X�1 D 0. This is shown by Cattani
and Javier Fernandez in [CF].

The above analysis applies to VMHS over.��/r as well: As discussed in
the previous section, a VMHS is given by a period map from the parameter
space into the quotient of an appropriate classifying spaceof graded-polarized
mixed Hodge structureM. As in the pure case, we have a Lie groupG which
acts onM by biholomorphisms and a complex Lie groupGC which acts on the
“compact dual” LM.
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As in the pure case (and also discussed in~ 4), an admissible VMHS with
nilpotent orbit.e

P
j zj Nj :F1;W / will have a local normal form

F.z1; : : : ; zr /D e
P

j zj Nj e� .s/:F1;

where� W�r ! gC takes values in the subalgebra

q D
M

p<0

gp;q:

Conversely (given an admissible nilpotent orbit), subjectto the integrability
condition (5-7) above, any function��1 determines a corresponding admissible
VMHS; see [Pe1, Theorem 6.16].

Returning to Saito’s examples (which for simplicity we onlyconsider in the
two-dimensional case), letH be a variation of Hodge structure of weight�1

over�� with local normal formF.z/ D ezN e� .s/:F1. Let � W �2 ! � by
�.s1; s2/D s1s2. Then, for��.H/, we have

��1.s1; s2/D ��1.s1s2/:

In order to construct a normal function, we need to extend��1.s1; s2/ and
N1 D N2 D N on the reference fiberHC of H to include a new classu0 of type
.0; 0/ which projects to1 in Z.0/. Set

N1.u0/D h1; N2.u0/D h2; ��1.s1; s2/u0 D ˛.s1; s2/:

Note that.h1; h2/ determines the cohomology class of the normal function so
constructed, and thath2 � h1 depends only on the cohomology class, and not
the particular choice of representative.h1; h2/.

In order to construct a normal function in this way, we need tocheck hori-
zontality. This amounts to checking the equation

N

�
s2

@˛

@s2

� s1

@˛

@s1

�
C s1s2�

0
�1.s1s2/.h2 � h1/

C 2� is1s2�
0

�1.s1s2/

�
s2

@˛

@s2

� s1

@˛

@s1

�
D 0:

Computation shows that the coefficient of.s1s2/
m on the left side is

1

.m � 1/!
�

.m/
�1

.0/.h2 � h1/: (5-8)

Hence, a necessary condition for the cohomology class represented by.h1; h2/

to arise from an admissible normal function is forh2�h1 to belong to the kernel
of ��1.t/. This condition is also sufficient since, under this hypothesis, one can
simply set̨ D 0.
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EXAMPLE 102. LetX
�! � be a family of Calabi–Yau3-folds (smooth over

��, smooth total space) with Hodge numbersh3;0 D h2;1 D h1;2 D h0;3 D 1

and central singular fiber having an ODP. SettingH WD H3
X�=��.2/, the LMHS

has as its nonzeroIp;q ’s I�2;1; I�1;�1; I0;0; and I1;�2. Assume that the
Yukawa coupling.rıs

/3 2 HomO�
.H

3;0
e ;H

0;3
e / is nonzero (ıs D s d=ds), and

thus the restriction of��1.s/ to HomO�
.I�1;�1; I�2;1/, does not vanish iden-

tically. Then, for any putative singularity class,0 ¤ h2 � h1 2 .I�1:�1/Q Š
ker.N /.�1;�1/

Q (this being isomorphic to (2-10) in this case, which is just one-
dimensional) for admissible normal functions overlying��H, nonvanishing of
��1.s/.h2 � h1/ on� implies that (5-8) cannot be zero for everym.

5.5. Implications for the Griffiths–Green conjecture. Returning now to the
work of Griffiths and Green on the Hodge conjecture via singularities of normal
functions, it follows using the work of Richard Thomas that for a sufficiently
high power ofL, the Hodge conjecture implies that one can force�� to have a
singularity at a pointp 2 OX such that��1.p/ has only ODP singularities. In
general, on a neighborhood of such a pointOX need not be a normal crossing
divisor. However, the image of the monodromy representation is nevertheless
abelian. Using a result of Steenbrink and Némethi [NS], it then follows from the
properties of the monodromy cone of a nilpotent orbit of pureHodge structure
that singp.��/ persists under blowup. Therefore, it is sufficient to study ODP
degenerations in the normal crossing case (cf. [BFNP, sec. 7]). What we will
find below is that the “infinitely many” conditions above (vanishing of (5-8) for
all m) are replaced by surjectivity of a single logarithmic Kodaira–Spencer map
at each boundary component. Consequently, as suggested in the introduction, it
appears that M. Saito’s examples are not a complete show-stopper for existence
of singularities for Griffiths–Green normal functions.

The resulting limit mixed Hodge structure is of the form

I0;0

� � � I�2;1 I�1;0 I0;�1 I1;�2 � � �
I�1;�1

andN 2 D 0 for every element of the monodromy coneC. The weight filtration
is given by

M�2.N /D
X

j

Nj .HC/; M�1.N /D
\

j

ker.Nj /; M0.N /D HC:

For simplicity of notation, let us restrict to a two parameter version of such a
degeneration, and consider the obstruction to constructing an admissible normal
function with cohomology class represented by.h1; h2/ as above. As in Saito’s
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example, we need to add a classuo of type .0; 0/ such thatNj .uo/ D hj and
construct˛ D ��1.uo/. Then, the integrability condition@X�1 ^ @X�1 D 0

becomes

�.2� is2/
@��1

@s2

.h1/C .2� is1/
@��1

@s1

.h2/

C .2� is1/.2� is2/

�
@��1

@s1

@˛

@s2

� @��1

@s2

@˛

@s1

�
D 0; (5-9)

since˛ D ��1.uo/ takes values inM�1.N /.
Write ˛ D

P
j ;k s

j
1
sk

2 j̨k and��1 D
P

p;q s
p
1

s
q
2

pq on HC. Then, forab

nonzero, the coefficient ofsa
1
sb

2
on the left side of equation (5-9) is

�2� ib
ab.h2/C 2� ia
ab.h1/C .2� i/2
X

pCjDa
qCkDb

.pk � qj /
pq. j̨k/:

Define

�ab D 2� ib
ab.h2/� 2� ia
ab.h1/� .2� i/2
X

pCjDa
qCkDb
pq¤0

.pk � qj /
pq. j̨k/:

Then, equation (5-9) is equivalent to

.2� i/2b
10.˛.a�1/b/� .2� i/2a
01.˛a.b�1//D �ab;

where j̨k occurs in�ab only in total degreej C k < a C b � 1. Therefore,
providedthat


10; 
01 W F�1
1 =F0

1 ! F�2
1 =F�1

1

are surjective, we can always solve (nonuniquely!) for the coefficients j̨k ,
and hence formally (i.e., modulo checking convergence of the resulting series)
construct the required admissible normal function with given cohomology class.

REMARK 103. (i) Of course, it is not necessary to have only ODP singularities
for the analysis above to apply. It is sufficient merely that the limit mixed Hodge
structure have the stated form. In particular, this is always true for degenerations
of level 1. Furthermore, in this case Gr�2

F1
D 0, and hence, after tensoring with

Q, the group of components of the Néron model surjects onto the Tate classes
of type.0; 0/ in IH1.HQ/.

(ii) In Saito’s examples from~ 5.4, even if� 0
�1
.0/ ¤ 0, we will have
01 D

0 D 
10, since the condition of being a pullback via.s1; s2/ ‘ s1s2 means
��1.s1; s2/D

P
p;q s

p
1

s
q
2

pq D

P
r sr

1
sr

2

rr .
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EXAMPLE 104. In the case of a degeneration of Calabi–Yau threefolds with
limit mixed Hodge structure on the middle cohomology (shifted to weight�1)

I0;0

I�2;1 I�1;0 I0;�1 I1;�2

I�1;�1

the surjectivity of the partial derivatives of��1 are related to the Yukawa cou-
pling as follows: Let

F.z/D e
P

j zj Nj e� .s/:F1

be the local normal form of the period map as above. Then, a global nonvan-
ishing holomorphic section of the canonical extension ofF1 (i.e., ofF3 before
we shift to weight�1) is of the form

˝ D e
P

j zj Nj e� .s/�1.s/;

where�1 W �r ! I1;�2 is holomorphic and nonvanishing. Then, the Yukawa
coupling of˝ is given by

Q.˝;Dj DkD` ˝/; Da D @

@za
:

In keeping with the notation above, leteX D e
P

j zj Nj e� .s/ andAj D Dj X�1.
Using the first Hodge–Riemann bilinear relation and the factthateX is an auto-
morphism ofQ, it follows that

Q.˝;Dj DkD`˝/D Q.�1.s/;Aj AkA` �1.s//:

Moreover (cf. [CK; Pe1]), the horizontality of the period map implies that
�
��1jsk D0 ;Nk

�
D 0

Using this relation, it then follows that

lim
s!0

Q.˝;Dj DkD` ˝/

.2� isj /.2� isk/.2� is`/
D Q.�1.0/;Gj GkG`�1.0//

for j ¤ k, where

Ga D @��1

@sa
.0/:

In particular, if for each indexj there exist indicesk and` with k ¤ ` such that
the left-hand side of the previous equation is nonzero thenGj W .F�1

1 =F0
1/ !

.F�2
1 =F�1

1 / is surjective.
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6. Global considerations: monodromy of normal functions

Returning to a normal functionV 2 NF1.S;H/ad
NS

over acompletebase, we
want to speculate a bit about how one might “force” singularities to exist. The
(inconclusive) line of reasoning we shall pursue rests on two basic principles:

(i) maximality of the geometric (global) monodromy group ofV may be
deduced from hypotheses on the torsion locus ofV ; and

(ii) singularities ofV can be interpreted in terms of the local monodromy of
V being sufficiently large.

While it is unclear what hypotheses (if any) would allow one to pass from
global to local monodromy-largeness, the proof of the first principle is itself of
interest as a first application of algebraic groups (the algebraic variety analog of
Lie groups, originally introduced by Picard) to normal functions.

6.1. Background. Mumford–Tate groups of Hodge structures were introduced
by Mumford [Mu] for pure HS and by André [An] in the mixed setting. Their
power and breadth of applicability is not well-known, so we will first attempt
a brief summary. They were first brought to bear onH 1.A/ for A an abelian
variety, which has led to spectacular results:

� Deligne’s theorem [De2] thatQ-Bettiness of a class inFpH
2p

dR
.Ak/ for k

algebraically closed is independent of the embedding ofk into C (“Hodge
implies absolute Hodge”);

� the proofs by Hazama [Ha] and Murty [Mr] of the HC forA “nondegenerate”
(MT of H 1.A/ is maximal in a sense to be defined below); and

� the density of special (Shimura) subvarieties in Shimura varieties and the
partial resolution of the André–Oort Conjecture by Klingler and Yafaev [KY].

More recently, MT groups have been studied for higher weightHS’s; one can
still use them to define specialNQ-subvarieties of (non-Hermitian-symmetric)
period domainsD, which classify polarized HS’s with fixed Hodge numbers
(and polarization). In particular, the0-dimensional subdomains — still dense in
D — correspond to HS with CM (complex multiplication); that is, with abelian
MT group. One understands these HS well: their irreducible subHS may be
constructed directly from primitive CM types (and have endomorphism algebra
equal to the underlying CM field), which leads to a complete classification; and
their Weil and Griffiths intermediate Jacobians are CM abelian varieties [Bo].
Some further applications of MT groups include:

� Polarizable CM-HS are motivic [Ab]; when they come from a CY variety,
the latter often has good modularity properties;
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� Given H � of a smooth projective variety, the level of the MT Lie algebra
furnishes an obstruction to the variety being dominated by aproduct of curves
[Sc];

� Transcendence degree of the space of periods of a VHS (over a baseS),
viewed as a field extension ofC.S/ [An];

and specifically in the mixed case:

� the recent proof [AK] of a key case of the Beilinson–Hodge Conjecture for
semiabelian varieties and products of smooth curves.

The latter paper, together with [An] and [De2], are the best references for the
definitions and properties we now summarize.

To this end, recall that an algebraic groupG over a fieldk is an algebraic
variety overk together withk-morphisms of varieties1G W Spec.k/! G, “mul-
tiplication” �G W G � G ! G, and “inversion”{G W G ! G satisfying obvious
compatibility conditions. The latter ensure that for any extensionK=k, theK-
pointsG.K/ form a group.

DEFINITION 105. (i) A (k-)closed algebraic subgroupM � G is one whose
underlying variety is (k-)Zariski closed.

(ii) Given a subgroupM�G.K/, thek-closure ofM is the smallestk-closed
algebraic subgroupM of G with K-pointsM.K/ � M.

If M WD M.K/ for an algebraick-subgroupM � G, then thek-closure of
M is just thek-Zariski closure ofM (i.e., the algebraic variety closure).

But in general, this is not true: instead,M may be obtained as thek-Zariski
(algebraic variety) closure of the group generated by thek-spread ofM.

We refer the reader to [Sp] (especially Chapter 6) for the definitions of reductive,
semisimple, unipotent, etc. in this context (which are lesscrucial for the sequel).
We will write DG WD ŒG;G� .E G/ for the derived group.

6.2. Mumford–Tate and Hodge groups. Let V be a (graded-polarizable)
mixed Hodge structure with dualV _ and tensor spaces

T m;nV WD V ˝m ˝ .V _/˝n

(n;m 2 Z�0). These carry natural MHS, and anyg 2 GL.V / acts naturally on
T m;nV .

DEFINITION 106. (i) A Hodge.p;p/-tensoris any� 2 .T m;nV /
.p;p/
Q .

(ii) The MT groupMV of V is the (largest)Q-algebraic subgroup of GL.V /
fixing12 the Hodge.0; 0/-tensors for allm; n. The weight filtrationW� on V is
preserved byMV .

12“Fixing” means fixing pointwise; the term for “fixing as a set”is “stabilizing”.
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Similarly, theHodge groupM ı
V

of V is theQ-algebraic subgroup of GL.V /
fixing the Hodge.p;p/-tensors for allm; n;p. (In an unfortunate coincidence of
terminology, these are completely different objects from —though not unrelated
to — the finitely generated abelian groups Hgm.H / discussed in~ 1.)

(iii) The weight filtration onV induces one on MT/Hodge:

W�iM
.ı/
V

WD
˚
g 2 M

.ı/
V

ˇ̌
.g � id/W�V � W��iV

	
E M

.ı/
V
:

One has:W0M
.ı/
V

D M
.ı/
V

; W�1M
.ı/
V

is unipotent; and GrW
0 M

.ı/
V

Š M
.ı/

V split

(V split WD
L

`2Z GrW` V ), cf. [An].

ClearlyM ı
V

E M
V

; and unlessV is pure of weight0, we haveM
V
=M ı

V
Š Gm.

If V has polarizationQ 2 HomMHS .V ˝ V;Q.�k// for k 2 Znf0g, thenM ı
V

is
of finite index inMV \ GL.V;Q/ (whereg 2 GL.V;Q/ meansQ.gv;gw/D
Q.v; w/), and if in additionV .D H / is pure (or at least split) then both are
reductive. One has in general thatW�1MV � DMV � M ı

V
� M

V
.

DEFINITION 107. (i) If MV is abelian (” MV .C/Š .C�/�a), V is called a
CM-MHS. (A subMHS of a CM-MHS is obviously CM.)

(ii) The endomorphisms EndMHS.V / can be interpreted as theQ-points of the
algebra.End.V //MV DW EV . One always hasMV � GL.V;EV / (Dcentralizer
of EV ); if this is an equality, thenV is said to benondegenerate.

Neither notion implies the other; however: any CM or nondegenerate MHS is
(Q-)split, i.e.,V .D V split/ is a direct sum of pure HS in different weights.

REMARK 108. (a) We point out why CM-MHS are split. IfMV is abelian,
thenMV � EV and soMV .Q/ consists of morphisms of MHS. But then any
g 2 W�1MV .Q/, henceg� id, is a morphism of MHS with.g� id/W� � W��1;
sog D id, andMV D MV split, which impliesV D V split.

(b) For an arbitrary MHSV , the subquotient tensor representations ofMV

killing DMV (i.e., factoring through the abelianization) are CM-MHS. By (a),
they are split, so thatW�1MV acts trivially; this givesW�1MV � DMV .

Now we turn to the representation-theoretic point of view onMHS. Define the
algebraicQ-subgroupsU � S � GL2 via their complex points:

S.C/ W
��

˛ ˇ

�ˇ ˛

� ˇ̌
ˇ̌ ˛; ˇ 2 C
.˛; ˇ/¤ .0; 0/

�
Š

eigenvalues
// C� � C�

�
z;

1

z

�

U.C/ W
?ffl

OO

��
˛ ˇ

�ˇ ˛

� ˇ̌
ˇ̌ ˛; ˇ 2 C

˛2 Cˇ2 D 1

�
Š

//

C�
?ffl

OO

z
_

OO

(6-1)
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where the top map sends
�

˛
�ˇ

ˇ
˛

�
‘ .˛C iˇ; ˛� iˇ/DW .z; w/. (Points inS.C/

will be represented by the “eigenvalues”.z; w/.) Let

' W S.C/! GL.VC/

be given by

'.z; w/jI p;q.H / WD multiplication byzpwq .8p; q/:

Note that this map is in general only defined overC, though in the pure case
it is defined overR (and asS.R/ � S.C/ consists of tuples.z; Nz/, one tends
not to see precisely the approach above in the literature). The following useful
result13 allows one to compute MT groups in some cases.

PROPOSITION109.MV is theQ-closure of'.S.C// in GL.V /.

REMARK 110. In the pure (V D H ) case, this condition can be replaced by
MH .R/ � '.S.R//, andM ı

H
defined similarly as theQ-closure of'.U.R//;

unfortunately, forV a non-Q-split MHS theQ-closure of'.U.C// is smaller
thanM ı

H
.

Now let H be a pure polarizable HS with Hodge numbershp;q, and takeD

(with compact dualLD) to be the classifying space for such. We may viewLD as
a quasiprojective variety overQ in a suitable flag variety. Consider the subgroup
M ı

H ;'
� M ı

H
with real pointsM ı

H ;'
.R/ WD .M ı

H
.R//'.S.R//. If we view M ı

H

as acting on a Hodge flag ofHC with respect to a (fixed) basis ofHQ;then
M ı

H ;'
is the stabilizer of the Hodge flag. This leads to a Noether–Lefschetz-

type substratum inD:

PROPOSITION111.The MT domain

DH WD
M ı

H
.R/

M ı
H ;'

.R/

�
�

M ı
H
.C/

M ı
H ;'

.C/
DW LDH

�

classifies HS with Hodge group contained inMH , or equivalently with Hodge-
tensor set containing that ofH . The action ofM ı

H
uponH embedsLDH Œ LD

as a quasiprojective subvariety, defined over an algebraic extension ofQ. The
GL.HQ;Q/-translates of LDH give isomorphic subdomains(with conjugate MT
groups) dense in LD.

A similar definition works for certain kinds of MHS. The trouble with applying
this in the variational setting (which is our main concern here), is that the “tauto-
logical VHS” (or VMHS) over such domains (outside of a few classical cases in
low weight or level) violate Griffiths transversality henceare not actually VHS.

13Proof of this, and of Proposition 111 below, will appear in a work of the first author with P. Griffiths
and M. Green.
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Still, it can happen that MT domains in non-Hermitian symmetric period do-
mains are themselves Hermitian symmetric. For instance, taking Sym3 of HS’s
embeds the classifying space (Š H) of (polarized) weight-1 Hodge structures
with Hodge numbers.1; 1/ into that of weight-3 Hodge structures with Hodge
numbers.1; 1; 1; 1/.

6.3. MT groups in the variational setting. Let S be a smooth quasiprojec-
tive variety with good compactificationNS , andV 2 VMHS.S/ad

NS
; assumeV is

graded-polarized, which means we have

Q 2
M

i

HomVMHS.S/

�
.GrWi V/˝2;Q.�i/

�

satisfying the usual positivity conditions. The Hodge flag embeds the universal
cover OS.“ S/ in a flag variety; let theimage-pointof Os0.‘ s0/ be of maximal
transcendence degree. (One might says0 2 S.C/ is a “very general point in the
sense of Hodge”; we arenot sayings0 is of maximal transcendence degree.)
Parallel translation along the local systemV gives rise to the monodromy rep-
resentation� W �1.S; s0/ ! GL.Vs0;Q;W�;Q/. Moreover, taking as basis for
Vs;Q the parallel translate of one forVs0;Q, MVs

is constant on paths (froms0/

avoiding a countable unionT of proper analytic subvarieties ofS , where in fact
Sı WD SnT is pathwise connected. (At pointst 2 T , MVt

� MVs
; and even the

MT group of the LMHS sV at x 2 NSnS naturally includes inMVs
.)

DEFINITION 112. (i) We callMVs0
DW MV the MT group, andM ı

Vs0
DW M ı

V

theHodge group, of V . One has EndMHS.Vs0
/Š EndVMHS.S/.V/; see [PS2].

(ii) The identity connected component̆V of theQ-closure of�.�1.S; s0// is
the geometric monodromy group ofV ; it is invariant under finite coversQS “ S

(and semisimple in the split case).

PROPOSITION113. (Andŕe) ˘V E DMV .

SKETCH OF PROOF. By a theorem of Chevalley, any closedQ-algebraic sub-
group of GL.Vs0

/ is the stabilizer, for some multitensort 2
L

i T mi ;ni .Vs0;Q/

of Q hti. For MV , we can arrange for thistV to be itself fixed and to lie inL
i

�
T mi ;ni .Vs0

/
�.0;0/

Q
. By genericity ofs0, Q htVi extends to a subVMHS with

(again by9 of Q) finite monodromy group, and sotV is fixed by˘V . This
proves˘V � MV (in fact, � M ı

V
since monodromy preservesQ). Normality

of this inclusion then follows from the Theorem of the Fixed Part: the largest
constant sublocal system of anyT m;n.V/ (stuff fixed by˘V ) is a subVMHS,
hence subMHS ats0 and stable underMV .

Now let

M ab
V WD MV

DMV

; ˘ab
V WD ˘V

˘V \ DMV

� M ab
V ;
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(which is a connected component of theQ-closure of some�ab � M
ab;ı
V

.Z/),
and (taking a more exotic route than André) V ab be the (CM)MHS correspond-
ing to a faithful representation ofM ab

V
. For each irreducibleH � V ab, the

imageM ab
V

has integer pointsŠ O�
L

for some CM fieldL, andM
ab;ı
V

.Q/� L

consists of elements of norm1 under any embedding. The latter generateL

(a well-known fact for CM fields) but, by a theorem of Kronecker, have finite
intersection withO�

L
: the roots of unity. It easily follows from this that̆ ab

V
,

hencĕ ab
V

, is trivial. ˜

DEFINITION 114. Letx 2 NS with neighborhood.��/k ��n�k in S and local
(commuting) monodromy logarithmsfNig;14 define the weight monodromy fil-
trationM x

�
WD M.N;W /� whereN WD

Pk
iD1 Ni . In the following we assume

a choice of path froms0 to x:
(a) Write�x

V
for the local monodromy groupin GL.Vs0;Z;W�;Q/ generated

by theTi D .Ti/sseNi , and�x for the corresponding representation.
(b) We say thatV is nonsingular atx if Vs0

Š
L

j GrWj Vs0
as�x-modules. In

this case, the condition that sV Š
L

j  s GrWj V is independent of the choice
of local coordinates.s1; : : : ; sn/ at x, andV is calledsemisplit (nonsingular)at
x when this is satisfied.

(c) The GrM
x

i  sV are always independent ofs. We say thatV is totally
degenerate (TD)atx if these GrMi are (pure) Tate andstrongly degenerate(SD)
atx if they are CM-HS. Note that the SD condition is interesting already for the
nonboundary points (x 2 S; k D 0).

We can now generalize results of André [An] and Mustafin [Ms].

THEOREM115. If V is semisplit TD(resp. SD) at a pointx 2 NS , then˘V D M ı
V

(resp. DM ı
V

).

REMARK 116. Note that semisplit SD atx 2 S simply means thatVx is a CM-
MHS (this case is done in [An]). Also, if̆ V D M ı

V
then in fact̆ V D DM ı

V
D

M ı
V

.

PROOF. Passing to a finite cover to identify̆V and�.�1/, if we can show that
any invariant tensort 2

�
T m;nVs0;Q

�
˘V is also fixed byM ı

V
(resp.DM ı

V
), we

are done by Chevalley. Now the span ofM ı
V

t is (sincĕ V EM ı
V

) fixed by�.�1/,
and (using the Theorem of the Fixed Part) extends to a constant subVMHS
U � T m;nV DW T . Now the hypotheses onV carry over toT and taking LMHS
atx, U D sU D

L
i  s GrWi U D

L
i GrWi U , we see thatU splits (as VMHS).

As T is TD (resp. SD) atx, U is split Hodge–Tate (resp. CM-MHS).

14Though this has been suppressed so far throughout this paper, one hasfNi g and LMHS even in the gen-
eral case where the local monodromiesTi are only quasi-unipotent, by writingTi DW .Ti /ss.Ti /u uniquely
as a product of semisimple and unipotent parts (Jordan decomposition) and settingNi WD log..Ti /u/.
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If U is H-T then it consists of Hodge tensors; soM ı
V

acts trivially onU hence
on t.

If U is CM thenM ı
V

jU D M ı
U

is abelian; and so the action ofM ı
V

onU factors
throughM ı

V
=DM ı

V
, so thatDM ı

V
fixes t. ˜

A reason why one would want this “maximality” result̆V DM ı
V

is to satisfy the
hypothesis of the following interpretation of Theorem 91 (which was a partial
generalization of results of [Vo1] and [Ch]). Recall that a VMHS V=S is k-
motivated if there is a familyX ! S of quasiprojective varieties defined over
k with Vs D the canonical (Deligne) MHS onH r .Xs/ for eachs 2 S .

PROPOSITION117. SupposeV is motivated overk with trivial fixed part, and
let T0 � S be a connected component of the locus whereM ı

Vs
fixes some vector

(in Vs). If T0 is algebraic(overC), M ı
VT0

hasonly one fixed line, and˘VT0
D

M ı
VT0

, thenT0 is defined overNk.

Of course, to be able to use this one also needs a result on algebraicity of T0,
i.e., a generalization of the theorems of [CDK] and [BP3] to arbitrary VMHS.
Onenow has thisby work of Brosnan, Schnell, and the second author:

THEOREM 118. Given any integral, graded-polarizedV 2 VMHS.S/ad
NS
, the

components of the Hodge locus of any˛ 2 Vs yield complex algebraic subvari-
eties ofS .

6.4. MT groups of (higher) normal functions. We now specialize to the case
whereV 2 NFr .S;H/ad

NS
, with H ! S the underlying VHS of weight�r . M ı

V

is then an extension ofM ı
H

Š M ı
Vsplit.DH˚QS .0//

by (and a semidirect product
with) an additive (unipotent) group

U WD W�r M ı
V Š G��

a ;

with � � rankH. SinceM ı
V

respects weights, there is a natural map� W M ı
V

“

M ı
H

and one might ask when this is an isomorphism.

PROPOSITION119.�D 0 ” V is torsion.

PROOF. First we note thatV is torsion if and only if, for some finite cover
QS “ S , we have

f0g ¤ HomVMHS. QS/
.QS .0/;V/D EndVMHS. QS/

.V/\ ann.H/

D EndMHS.Vs0
/\ ann.Hs0

/D
�
HomQ..Vs0

=Hs0
/;Vs0

/
�M ı

V :

The last expression can be interpreted as consisting of vectorsw 2 Hs0;Q that
satisfy.id � M /w D u whenever

�1
u

0
M

�
2 M ı

V
. This is possible only if there

is oneu for eachM , i.e., if � W M ı
V

! M ı
H

is an isomorphism. Conversely,
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assuming this, writeu D ��1.M /
�
noting

Q��1.M1M2/D Q��1.M1/C M1 Q��1.M2/
�

.�/

and setw WD Q��1.0/. TakingM2 D 0 andM1 D M in .�/, we get.id�M /wD
.id � M /��1.0/D Q��1.M /D u for all M 2 M ı

H
. ˜

We can now address the problem which lies at the heart of this section: what
can one say about the monodromy of the normal function above and beyond that
of the underlying VHS — for example, about the kernel of the natural map� W
˘V “˘H? One can make some headway simply by translating Definition 114
and Theorem 115 into the language of normal functions; all vanishing conditions
are˝Q.

PROPOSITION120.LetV be an admissible higher normal function overS , and
let x 2 NS with local coordinate systems.

(i) V is nonsingular(as AVMHS) at x if and only ifsingx.V/D 0. Assuming
this, V is semi-simple atx if and only iflimx.V/D0. (In casex 2S , singx.V/D
0 is automatic andlimx.V/D 0 if and only ifx is in the torsion locus ofV .)

(ii) V is TD(resp. SD) at x if and only if the underlying VHSH is. (For x 2 S ,
this just means thatHx is CM.)

(iii) If singx.V/, limx.V/ vanish and sH is graded CM, then˘V D DMV .
(For x 2 S , we are just hypothesizing that the torsion locus ofV contains a CM
point ofH.)

(iv) Letx 2 NSnS . If singx.V/, limx.V/ vanish and sH is Hodge–Tate, then
˘V D M ı

V
.

(v) Under the hypotheses of(iii) and(iv), dim.ker.�//D �. (In general one
has�.)

PROOF. All parts are self-evident except for (v), which follows from observing
(in both cases (iii) and (iv)) via the diagram

G
��
a Š W�1M

.ı/
V

D ker.�/� DMV ˘V
ffl �

//

�
››

››

M
.ı/
V

�
››

››

˘H
ffl �

// M
.ı/
H

(6-2)

that ker.�/D ker.�/. ˜

EXAMPLE 121. The Morrison–Walcher normal function from~ 1.7 (Exam-
ple 13) lives “over” the VHSH arising fromR3��Z.2/ for a family of “mirror
quintic” CY 3-folds, and vanishes atz D1. (One should take a suitable, e.g., or-
der 2 or 10 pullback so thatV is well-defined.) The underlying HSH at this point
is of CM type

�
the fiber is the usual.Z=5Z/3 quotient off

P4
iD0 Z5

i D 0g � P4
�
,
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with MH .Q/ŠQ.�5/. SoV would satisfy the conditions of Proposition 120(iii).
It should be interesting to work out the consequences of the resulting equality
˘V D DMV .

There is a different aspect to the relationship between local and global behavior
of V . Assuming for simplicity that the local monodromies atx are unipotent, let
�x WD ker.�x

V
“ �x

H
/ denote the local monodromy kernel, and�x the dimen-

sions of itsQ-closure�x. This is an additive (torsion-free) subgroup of ker.�/,
and so dim.ker.�//��x (8x 2 NSnS). Writing fNig for the local monodromy
logarithms atx, we have the

PROPOSITION122. (i) �x > 0 impliessingx.V/¤ 0 (nontorsion singularity)
(ii ) The converse holds assumingr D 1 andrank.Ni/D 1 .8i/.

PROOF. Let g 2 �x
V

, and definem 2 Q˚k by log.g/ DW
Pk

iD1 miNi . Writing
Ng, NNi for gjH, Ni jH , consider the (commuting) diagram of morphisms of MHS

 sHL
NNi

wwo

o

o

o

o

o

o

o

o

o

o

o

„ r

$$

I

I

I

I

I

I

I

I

I

log. Ng/

rr

L
i  sH.�1/

�
’’

O

O

O

O

O

O

O

O

O

O

O

 sV

L
Ni

oo

log.g/
zzu

u

u

u

u

u

u

u

u

 sH.�1/

(6-3)

where�.w1; : : : ; wk/D
Pk

iD1 miwi and log.g/D
Pk

iD1 mi
NNi . Then singx.V/

is nonzero if and only if
�L

Ni

�
�Q does not lie in im.˚ NNi/, where�Q (see

Definition 2(b)) generates sV= sH.
(i) Supposeg 2 �xnf1g. Then0 D log. Ng/ implies 0 D �.im.˚ NNi// while

0 ¤ logg implies0 ¤ .log.g//�Q D �..˚Ni/�Q/: So� “detects” a singularity.
(ii) If r D 1 we may replace

Lk
iD1 sH.�1/ in the diagram by the subspaceLk

iD1.Ni. sH//: Since each summand is of dimension 1, and
�L

Ni

�
�Q … im

�L NNi

�

(by assumption), we can choosem D fmig in order that� kill im
�L NNi

�
but

not
�L

Ni

�
�Q. Using the diagram, log. Ng/D 0 ¤ log.g/ impliesg 2 �xnf1g. ˜

REMARK 123. (a) The existence of a singularityalwaysimplies thatV is non-
torsion, hence� > 0.

(b) In the situation of [GG], we haver D 1 and rank 1 local monodromy
logarithms; hence, by Proposition 122(ii), the existence of a singularity implies
dim.ker.�// > 0, consistent with (a).
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(c) By Proposition 122(i), in the normal function case (r D 1), �x D 0 along
codimension-1 boundary components.

(d) In the “maximal geometric monodromy” situation of Proposition 120(v),
�� �x 8x 2 NSnS .

Obviously, for the purpose of forcing singularities to exist, the inequality in (d)
points in the wrong direction. One wonders if some sort of cone or spread on a
VMHS might be used to translate global into local monodromy kernel, but this
seems unlikely to be helpful.

We conclude with an amusing application of differential Galois theory related
to a result of Andŕe [An]:

PROPOSITION124.Consider a normal functionV of geometric origin together
with an OS -basisf!ig of holomorphic sections ofF0H. (That is, Vs is the
extension of MHS corresponding toAJ.Zs/ 2 J p.Xs/ for some flat family of
cycles on a family of smooth projective varieties overS .) Let K denote the
extension ofC.S/ by the(multivalued) periods of thef!ig; and L denote the
further extension ofK via the(multivalued) Poincaŕe normal functions given by
pairing the!i with an integral lift of1 2 QS .0/ (i.e., the membrane integralsR

�s
!i.s/ where@�s D Zs). Thentrdeg.L=K/D dim.ker.�//.

The proof rests on a result of N. Katz [Ka, Corollary 2.3.1.1]relating tran-
scendence degrees and dimensions of differential Galois groups, together with
the fact that thef

R
�s
!ig (for eachi) satisfy a homogeneous linear ODE with

regular singular points [Gr1]. (This fact implies equalityof differential Galois
and geometric monodromy groups, since monodromy invariantsolutions of such
an ODE belong toC.S/which is the fixed field of the Galois group.) In the event
thatH has no fixed part (so thatL can introduce no new constants and one has
a “Picard–Vessiot field extension”) and the normal functionis motivated over
k D Nk, one can probably replaceC by k in the statement.
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Algébrique d’Angers” (1979), pp. 107–127, Sijthoff & Noordhoff, Alphen aan def
Rijn—Germantown, Md., 1980.

[CDK] E. Cattani, P. Deligne, and A Kaplan,On the locus of Hodge classes, JAMS 8
(1995), 483–506.

[CF] E. Cattani and J. Fernandez,Asymptotic Hodge theory and quantum products,
math.AG/001113, in “Advances in algebraic geometry motivated my physics” (Low-
ell, MA), pp. 115–136, Contemp. Math. 276, AMS, Providence,RI, 2001.

[CK] E. Cattani and A. Kaplan,Degenerating variations of Hodge structure, in “Actes
du Colloque de Th́eorie de Hodge” (Luminy), Astérisque 179–180 (1989), 9, 67–96.
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