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Characteristic classes of mixed Hodge modules

JORG SCHJRMANN

ABSTRACT. This paper is an extended version of an expository talkrgate
the workshop “Topology of Stratified Spaces” at MSRI in Segter 2008.
It gives an introduction and overview about recent develepis on the in-
teraction of the theories of characteristic classes an@dnikodge theory for
singular spaces in the complex algebraic context.

It uses M. Saito’s deep theory of mixed Hodge modules as & lag,
thinking about them as “constructible or perverse shea¥ddodge struc-
tures”, having the same functorial calculus of Grothendigmctors. For
the “constant Hodge sheaf”, one gets the “motivic charatterclasses” of
Brasselet, Sdivrmann, and Yokura, whereas the classes of the “intersectio
homology Hodge sheaf” were studied by Cappell, Maxim, arah®kon. The
classes associated to “good” variation of mixed Hodge &ires where studied
in connection with understanding the monodromy action legdéthree authors
together with Libgober, and also by the author.

There are two versions of these characteristic classes. KFtieeoretical
classes capture information about the graded pieces oflteeefl de Rham
complex of the filtered>-module underlying a mixed Hodge module. Appli-
cation of a suitable Todd class transformation then givassas in homology.
These classes are functorial for proper pushdown and exteroducts, to-
gether with some other properties one would expect for afaatory theory
of characteristic classes for singular spaces.

For “good” variation of mixed Hodge structures they have plieit clas-
sical description in terms of “logarithmic de Rham comp&xeOn a point
space they correspond to a specialization of the Hodge poiial of a mixed
Hodge structure, which one gets by forgetting the weighsfilon.

We also indicate some relations with other subjects of thidezence, like
index theorems, signaturé;classes, elliptic genera and motivic characteristic
classes for singular spaces.
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1. Introduction

This paper gives an introduction and overview about recem¢éldpments on
the interaction of the theories of characteristic classelsmaixed Hodge theory
for singular spaces in the complex algebraic context. Thdeeis not assumed
to have a background on any of these subjects, and the papaistabe used
as a bridge for communication between researchers on omesé subjects.

General references for the theory of characteristic ctasgsingular spaces
are the survey [48] and the paper [55] in these proceedingseferences for
mixed Hodge theory one can use [38; 52], as well as the nicerg&7] for
explaining the motivic viewpoint to mixed Hodge theory. &y as an intro-
duction to M. Saito’s deep theory of mixed Hodge modules care use [38,
Chapter 14], [41] as well as the introduction [45].

The theory of mixed Hodge modules is used here more or lesblaslabox;
we think about them as constructible or perverse sheave®dféistructures,
having the same functorial calculus of Grothendieck fursctd he underlying
theory of constructible and perverse sheaves can be foufd 80; 47].

For the “constant Hodge shea@? one gets the “motivic characteristic
classes” of Brasselet, Satmann, and Yokura [9], as explained in these pro-
ceedings [55]. The classes of the “intersection homologgdéosheaf”/ Cg
were studied by Cappell, Maxim, and Shaneson in [10; 11]oAflse classes
associated to “good” variation of mixed Hodge structuresrehstudied via
Atiyah—Meyer type formulae by Cappell, Libgober, MaximdaBhaneson in
[12; 13]. For a summary compare also with [35].

There are two versions of these characteristic classesmtiaic Chern
class transformation MHE and themotivic Hirzebruch class transformation
MHT, .. TheK-theoretical classédHC, capture information about the graded
pieces of the filtered de Rham complex of the filted®@dnodule underlying a
mixed Hodge module. Application of a suitable twisting; ;. ,) of the Todd
class transformationd, of Baum, Fulton, and MacPherson [5; 22] then gives
the classeMH Ty« =td(;+,)°oMHC, in homology. Itis thenotivic Hirzebruch
class transformation MH J, which unifies three concepts:
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(y =—1) the (rationalizedhern class transformatiosn. of MacPherson [34];
(y = 0) theTodd class transformation/, of Baum—Fulton—-MacPherson [5];
(y = 1) the L-class transformatiorl,. of Cappell and Shaneson [14].

(Compare with [9; 48] and also with [55] in these proceedingBut in this
paper we focus on th&-theoretical classeSIHC,, because these imply then
also the corresponding results fefH T, . just by application of the (twisted)
Todd class transformation. So theotivic Chern class transformation MBC
studied here is really the basic one!

Here we explain the functorial calculus of these classest, diating in a very
precise form the key results used from Saito’s theory of chidedge modules,
and then explaining how to get from this the basic resultsuabize motivic
Chern class transformatidiHC,. These results are illustrated by many inter-
esting examples. For the convenience of the reader, the geosral results
are only stated near the end of the paper. In fact, while miosteopaper is a
detailed survey of th& -theoretical version of the theory as developed in [9; 12;
13; 35], itis this last section that contains new resultshenmportant functorial
properties of these characteristic classes. The first tatioss do not use mixed
Hodge modules and are formulated in the now classical laggyoé (variation
of) mixed Hodge structures. Here is the plan of the paper:

SECTION 2 introduces pure and mixed Hodge structures and the comdsm
Hodge genera, such as tiiepolynomial and they,-genus. These are suit-
able generating functions of Hodge numbers withusing only the Hodge
filtration F, whereas the:-polynomial also uses the weight filtration. We
also carefully explain why only thg,-genus can be further generalized to
characteristic classes, i.e., why one has to forget thehwéitration for ap-
plications to characteristic classes.

SECTION 3 motivates and explains the notion of a variation (or fajnilypure
and mixed Hodge structures over a smooth (or maybe singodesg. Basic
examples come from the cohomology of the fibers of a familyoohplex al-
gebraic varieties. We also introduce the notion of a “goatiation of mixed
Hodge structures on a complex algebraic manifidd to shorten the notion
for a graded polarizable variation of mixed Hodge structume) that isad-
missiblein the sense of Steenbrink and Zucker [50] and Kashiwara j2i#h
quasi-unipotent monodronaf infinity, i.e., with respect to a compactification
M of M by a compact complex algebraic manifald, with complement
D := M\ M anormal crossing divisor with smooth irreducible compdaen
Later on these will give the basic example of so-called “sthbmixed Hodge
modules. And for these good variations we introduce a simpit®mological
characteristic class transformatibtHC”, which behaves nicely with respect
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to smooth pullback, duality and (exterior) products. As st fpproximation
to more general mixed Hodge modules and their charactegkisses, we
also study in detail functorial properties of the canonbaligne extension
across a normal crossing divisprat infinity (as above), leading mhomo-

logical characteristic class@dHC” (j«(-)) defined in terms of “logarithmic
de Rham complexes”. These classes of good variations hare siedied
in detail in [12; 13; 35], and most results described herenaxe functorial

reformulations of the results from these sources.

SECTION 4 starts with an introduction to Saito’s functorial theorfyatgebraic
mixed Hodge modules, explaining its power in many examgleduding
how to get a pure Hodge structure on the global intersect@romology
IH*(Z) of a compact complex algebraic varie®. From this we deduce
the basic calculus of Grothendieck groufig(MHM(-)) of mixed Hodge
modules needed for our motivic Chern class transformadétcC,,. We also
explain the relation to the motivic viewpoint coming fromateve Grothen-
dieck groups of complex algebraic varieties.

SECTIONS.1 is devoted to the definition of our motivic characteciftbmology
classtransformationdMHC,, and MHT ., for mixed Hodge modules. By
Saito’s theory they commute with push down for proper maspts, and on
a compact space one gets back the correspondirgenus by pushing down
to a point, i.e., by taking the degree of these characteifistimology classes.

SECTIONS5.2 AND 5.3 finally explain other important functoriality propexst

(1) multiplicativity for exterior products;

(2) the behavior under smooth pullback given by a VerdiemRien—Roch
formula;

(3) a “going up and down” formula for proper smooth morphisms

(4) multiplicativity betweertMHC” andMHC,, for a suitable (co)homological
pairing in the context of a morphism with smooth target (asc&d cases
one gets interesting Atiyah and Atiyah—Meyer type formpkestudied in
[12; 13; 35));

(5) the relation betweeMHC, and duality, i.e., the Grothendieck duality
transformation for coherent sheaves and Verdier dualtyrfixed Hodge
modules;

(6) the identification oMHT_;, with the (rationalized) Chern class trans-

formation ¢« ® Q of MacPherson for the underlying constructible sheaf
complex or function.

Note that such a functorial calculus is expected for any gbedry of functorial
characteristic classes of singular spaces (compare [®; 48]
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o for MacPherson’s Chern class transformatiaqncompare with [9; 31; 34;
48];

« for the Baum—Fulton—MacPherson Todd class transformatiqncompare
with [5; 6; 9; 22; 24; 48];

 for Cappell and Shanesonis-class transformatioid. . compare with [2; 3;
4; 9; 14, 48; 49; 54].

The counterpart of mixed Hodge modules in these theoriex@mstructible
functions and sheaves (for), coherent sheaves (foil,) and selfdual perverse
or constructible sheaf complexes (fbx). The cohomological counterpart of the
smooth mixed Hodge modules (i.e., good variation of mixeddostructures)
are locally constant functions and sheaves {fgr locally free coherent sheaves
or vector bundles (for the Chern charactéi*) and selfdual local systems (for
a twisted Chern character of thé0-classes of Meyer [36]).

In this paper we concentrate mainly on pointing out the i@ta&and analogy
to the L-class story related to important signature invariantsahse these are
the subject of many other talks from the conference given énentopological
terms. Finally also some relations to other themes of théecence, like index
theorems L2-cohomology, elliptic genera and motivic characteristasses for
singular spaces, will be indicated.

2. Hodge structures and genera

2A. Pure Hodge structures. Let M be a compacKahler manifold(e.g., a
complex projective manifold) of complex dimensien By classical Hodge
theory one gets the decomposition (for n < 2m)

H'(M.C)= @ HPI(M) (2-1)
pt+q=n

of the complex cohomology a¥/ into the space$/?-( M) of harmonic forms
of type (p, ¢). This decomposition doesn’'t depend on the choice ofahl&r
form (or metric) onM, and for a complex algebraic manifol it is of alge-
braic nature. Here it is more natural to work with tHedge filtration

Fi(M):= @ HP (M) (2-2)

p=i

sothatH?9(M)= FP(M)N F1(M), with F4(M ) the complex conjugate of
F4(M) with respect to the real structufé” (M,C) = H"(M,R) ® C. If

d d
23, =104, om)
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denotes the usual holomorphic de Rham complex (i in degree zero),
then one gets

H*(M,C)=H*(M, 23,)
by the holomorphic Poincarlemma, and the Hodge filtration is induced from

the “stupid” decreasing filtration

d d
FPQ3 =[0 — ---0 2% nl. (2-3)

More precisely, the correspondiitpdge to de Rham spectral sequenegen-
erates atf'(, with

EPT = HI(M, 23,) ~ HP1(M). (2-4)

The same results are true for a compact complex manilgldhat is only
bimeromorphic to a Ehler manifold(compare [38, Corollary 2.30], for ex-
ample). This is especially true for a compact complex algiebmanifold A .
Moreover in this case one can calculate by Serre’s GAGA tadf * (M, 23,)
also with the algebraic (filtered) de Rham complex in the gartiopology.

Abstracting these properties, one can sayhlf¢ M, Q) gets an inducedure
Hodge structure of weight in the following sense:

DEFINITION 2.1. LetV be a finite-dimensional rational vector space. A (ratio-
nal) Hodge structure of weighton V is a decomposition

Vei=V®oC= @ VP, with V4» =VP4 (Hodge decomposition).
ptq=n

In terms of the (decreasingjodge filtration F/ V¢ := EBPZ,- VP4 this is equiv-
alent to the condition

FPV NF1V ={0} wheneverp+¢g =n+1 (n-opposed filtration).

ThenV P4 = FP N F4, with h?9(V) := dim(V 79) the correspondinglodge
number

If V.V’ are rational vector spaces with Hodge structures of weighnd z,
thenV ® V' gets an induced Hodge structure of weight m, with Hodge
filtration
Frvevhc= @ FVe® F/VL. (2-5)
i+j=k
Similarly the dual vector spacé" gets an induced Hodge structure of weight
—n, with
FRWYy = (F%ve)V. (2-6)
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A basic example is th@ate Hodge structuref weight —2n € Z given by the
one-dimensional rational vector space
Q) :=(@2ni)"-QcC, withQ(n)c = (Q(n)c)™™".
Then integration defines an isomorphism
H*(P'(C).Q) = Q(-),
with Q(—n) = Q(—=1)®", Q(1) = Q(=1)V andQ(n) = Q(1)®" for n > 0.
DEFINITION 2.2. Apolarizationof a rational Hodge structurg of weightn is
a rational(—1)"-symmetric bilinear formS on V such that
S(FP,F"—Ptly—0 forall p
and
i?79Su,i) >0 forall nonzerou € V74,
So forn evenone gets in particular

(—1)?™2Su, i) >0 forall ¢ and all nonzerar € V244, (2-7)
V is calledpolarizableif such a polarization exists.

For example, the cohomology” (M, Q) of a projective manifold is polarizable
by the choice of a suitabledhler form! Also note that a polarization of a rational
Hodge structurd” of weightn induces an isomorphism of Hodge structures (of
weightn):

V = VY(—n):=V" ®qpQ(—n).
So if we choose the isomorphism of rational vector spaces

Q(=n)=Q2ri)™"-Q=Q,

then a polarization induces(a 1)"”-symmetric duality isomorphisiy ~ V'V,

2B. Mixed Hodge structures. The cohomology (with compact support) of
a singular or noncompact complex algebraic variety, deehb;eH”c)(X, Q),
can't have a pure Hodge structure in general, but by Delgywerk [20; 21] it
carries a canonical functorial (graded polarizaleyed Hodge structur the
following sense:

DEFINITION 2.3. A finite-dimensional rational vector spagehas a mixed
Hodge structure if there is a (finite) increasiwgight filtration W = W, on V
(by rational subvector spaces), and a (finite) decreasirtykeléltration F = F*
on V¢, such thatF induces a Hodge structure of weighton Gr)V'V :=
W,V /W,_1V for all n. Such a mixed Hodge structure is callepgded po-
larizableif each graded piec@rnWV is polarizable.
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A morphism of mixed Hodge structures is just a homomorphismatonal
vector spaces compatible with both filtrations. Such a misrplis thenstrictly
compatible with both filtrations, so that the categomp<?) of (graded po-
larizable) mixed Hodge structures is an abelian categoitj @rf/, Gr}, and
Gr*FGrZV preserving short exact sequences. The categufg?) is also en-
dowed with a tensor produe and a duality(-)Y, where the corresponding
Hodge and weight filtrations are defined as in (2-5) and (Z6)for a complex
algebraic varietyX’ one can consider its cohomology class

[H{y(X)]:= Z (=)' [H,(X. Q)] € Ko(mHSP))

1

in the Grothendieck group,(mH<?)) of (graded polarizable) mixed Hodge
structures. The functoriality of Deligne’s mixed Hodgeusture means, in
particular, that for a closed complex algebraic subvariéty X, with open
complementy/ = X'\ Y, the corresponding long exact cohomology sequence

- Hy(U,Q) — H{(X,Q) = H (Y, Q) — - (2-8)
is an exact sequence of mixed Hodge structures. Similastycdmplex alge-
braic varietiesY, Z, the Kilnneth isomorphism

H (X, Q)® H (Z,Q) = H (X x Z,Q) (2-9)

is an isomorphism of mixed Hodge structures. Let us denot€diyar/ pt) the
Grothendieck group of complex algebraic varieties, itee ftee abelian group of
isomorphism classds(] of such varieties divided out by treaditivity relation

[X]=[Y]+[X\Y]

for Y C X a closed complex subvariety. This is then a commutative \itly
addition resp. multiplication induced by the disjoint umigesp. the product of
varieties. So by (2-8) and (2-9) we get an induced ring honrpitism

Xndg: Ko(var/ pt) — Ko(mHSP)); [X] - [H} (X))]. (2-10)
2C. Hodge genera. The E-polynomial
E(V):=Y_hP4(V)-uPv? € Z[u™' v*] (2-11)
p.q

of a rational mixed Hodge structuié with Hodge numbers
hP4(V) = dime GraGr)Y, (Vo).
induces aing homomorphism

E : Ko(mHSP) > Z[ut' v*1],  with E(Q(=1)) = uv.
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Note thatE (V') (u, v) is symmetridn u andv, sinceh(V) =", h(W,V) and
V4P = VP4 for a pure Hodge structure. With respectdoality one has in
addition the relation

EVY)u,v)=EWV)w v, (2-12)
Later on we will be mainly interested in the specialized firegnomorphism
Xy = E(=p. 1) s KomHS?) — Z[y*']. - with x5 (Q(=1) = —,
defined by

xp(V) = dimg (Gri(Ve)) - (—)”. (2-13)
p
So here one uses only the Hodge and forgets the weight fitrati a mixed

Hodge structure. With respect tluality one has then the relation
Xy(VY) = x1/p(V). (2-14)
Note thaty_; (V) = dim(V') and for a pure polarized Hodge structureof
weightn one has by (V) = (=1)"x1(VY) = (=1)"x1(V) and (2-7):

0 for n odd,
sgnV  for n even,

xl(V>={

where sgr¥ is thesignatureof the induced symmetric bilinear forg-1)"/2.S
on V. A similar but deeper result is the famodedge index theorerftcompare
[52, Theorem 6.3.3], for example):
x1((H*(M)]) = sgn(H™ (M, Q))
for M a compact Khler manifold of even complex dimensien= 2n. Here
the right side denotes the signature of the symmetric iet¢icn pairing
H™(M.Q) x H"(M.Q) —— H>"(M.Q) = Q.

The advantage of, compared toE (and the use of-y in the definition)
comes from the following question:

Let E(X) := E([H*(X)]) for X a complex algebraic variety For M a
compact complex algebraic manifold one getgy):

EM)= )" (=)P*9.dimc HI(M, 2})-u?v?.
p,9=0

Is there a(normalized multiplicativiecharacteristic class

cl* :1so(C — VB(M)) — H*(M)[uil, vﬂ:l]
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of complex vector bundles such that the E-polynomial is aathiaristic number
in the sense that

E(M)=#(M):=dedc/*(TM)N[M)) € H*(pt)u™' vF]  (2-15)

for any compact complex algebraic manifald with fundamental clasg\/ ]?

So the cohomology class*(V) € H*(M)[u*", v*!] should only depend
on the isomorphism class of the complex vector buridiever M and commute
with pullback. Multiplicativity says

c*(Vy=cl*(VYUel*(V") € H*(M)[ut!, vt
for any short exact sequengée> V' — V — V" — 0 of complex vector bundles
on M. Finally ¢/* is normalized ifc/*(trivial) = 1 € H*(M) for any trivial
vector bundle. Then the answer to the questionagative because there are
unramified coveringy : M’ — M of elliptic curvesM, M’ of (any) degree

d>0.Thenp*TM ~TM’ and p.([M']) = d -[M], so the projection formula
would give for the topological characteristic numbers thation

f(M') =d-§(M).
But one has
E(M)=(1-u)(1-v) = E(M') #0,

so the equalityE (M) = #(M) is not possible! Here we don’t need to ask
cl* to be multiplicative or normalized. But if we use the invatig, (X) :=

xy ([H*(X)]), theny, (M) =0 for an elliptic curve, ang, (M) is a characteris-
tic number in the sense above by the famgeseralized Hirzebruch Riemann—
Roch theorenp27]:

THEOREM 2.4 (GHRR). There is a unique normalized multiplicative charac-
teristic class
Ty* :1so(C — VB(M)) — H*(M,Q)[y]
such that
Xy(M) = deqT;(TM) N [M]) = (T, (TM),[M]) € Z[y] C Q[y]
for any compact complex algebraic manifald. Here (-, -) is the Kronecker
pairing between cohomology and homology

Yy
classes and numbers:

TheHirzebruch clasg’; andy,-genus unify the following (total) characteristic

y | Ty [name] Xy [name]

—1 | ¢* Chernclass x Euler characteristig
0 | td* Toddclass| x, arithmetic genus
1| L* L-class | sgn signature
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In fact, gHRR is just a cohomological version of the follogik -theoretical
calculation. LetM be a compact complex algebraic manifold, so that

Xy (M) =Y (=1)PH.dimg HI(M.25,) - (-y)?
p.9=0

=) x(H* (M, 25)- " (2-16)
p=0

Let us denote byk2(Y) (or G§"(Y)) the Grothendieck group of the exact
(or abelian) category of holomorphic vector bundles (orezehtOy-module
sheaves) on the complex variety i.e., the free abelian group of isomorphism
classed’ of such vector bundles (or sheaves), divided out by theioslat

[V]=[V']+[V"] forany short exact sequente> V' —V — V" — 0.
ThenG2"(Y) (or K2,(Y)) is of (co)homological nature, with
fe 1 GNX) = GEY),  [Flm ) (—1) [R'foF]
i>0

the functorial pushdown for a proper holomorphic m@apY — Y. In particular,
for X compact, the constant map. X — pt is proper, with

X(H* (X, F)) = k«((F]) € G§"(pt) ~ Kgy(pt) ~ Z.
Moreover, the tensor produgip, induces a natural pairing
N=&: Ko(Y)x G(Y) — GI(Y),

where we identify a holomorphic vector bundtewith its locally free coherent
sheaf of section¥. So for X compact we can definekronecker pairing

Koo X) x G3(X) = G§(pt) = Z; (V) [F]) := ks ([V @0y F)).
Thetotal A-classof the dual vector bundle
Ay (V)= ANV
i>0
defines a multiplicative characteristic class
hy (1)) 1 K3(Y) = KZ(Y)[V].

And for a compact complex algebraic manifaldl one gets the equality

Xy (M) = kil2)]- )"

i>0

= (hy(T* M), [Om]) € Gg"(p1)[y] = Z[y]. (2-17)
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3. Characteristic classes of variations of mixed Hodge structures

This section explains the definition cbhomologicalcharacteristic classes
associated to good variations of mixed Hodge structuresoamtex algebraic
and analytic manifolds. These were previously considened2; 13; 35] in
connection with Atiyah—Meyer type formulae of Hodge-thetar nature. Here
we also consider important functorial properties of thdasses.

3A. Variation of Hodge structures. Let f : X — Y be aproper smooth
morphism of complex algebraic varieties opejective smootimorphism of
complex analytic varieties. Then the higher direct imageasll. = L" :=
R"f.Qy is alocally constant sheadn Y with finite-dimensional stalks

Ly=(R"f:Qx)y=H"({/ =»}.Q)

foryeY. LetL := L ®q, Oy =~ R”f*(.Q;(/Y) denote the corresponding
holomorphic vector bundle (or locally free sheaf), \M‘?q,/y therelative holo-
morphic de Rham complexThen the stupid filtration on)'(/Y determines a
decreasing filtration” of £ by holomorphic subbundleg? £, with

Gri((RP* f,Qx) ®qy Ov) = RUfu(27,y). (3-1)
inducing for ally € Y the Hodge filtrationF on the cohomology

H'({f =y} Q®CxL],

of the compact and smooth algebraic fihg¢r= y} (compare [38, Chapter 10]).
If Y (and therefore als&’) is smooth, ther gets an inducethtegrable Gauss—
Manin connection

V:L—>L®o, 2y, Wwith L ~kerVandVoV =0,
satisfying theGriffiths transversality condition
V(FPL) C FP7 'L ®0, 24 forall p. (3-2)
This motivates the following notion:

DeFINITION 3.1. A holomorphic family(L, F) of Hodge structures of weight
n on the reduced complex spakeis a local systeni. with rational coefficients
and finite-dimensional stalks dn, and a decreasing filtratiof of £ = L ®q,
Oy by holomorphic subbbundleB? £ such thatF determines by, ®q C ~
L], a pure Hodge structure of weighton each stali, (y € Y).

If Y is a smooth complex manifold, then such a holomorphic farfily F)
is called avariation of Hodge structures of weight if, in addition, Griffiths
transversality (3-2) holds for the induced connecionf — £ ®¢o, .(2)1,
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Finally apolarizationof (L, F) is a pairing of local systemS : L ®q, L —
Qy that induces a polarization of Hodge structures on eack &tal(y € Y').

For example in the geometric case above, one can get suchrizptibn onL =
R'f,.Qyx for f: X — Y aprojective smootimorphism of complex algebraic
(or analytic) varieties. The existence of a polarizationgeded for example for
the following important result of Schmid [46, Theorem 7:22]

THEOREM 3.2 (RGIDITY). LetY be a connected complex manifold Zarisky
open in a compact complex analytic manifdfd with (L, F) a polarizable
variation of pure Hodge structures ah. ThenH (Y, L) gets an induced Hodge
structure such that the evaluation ma&p° (Y, L) — L, is an isomorphism of
Hodge structures for all € Y. In particular the variation(L, F) is constant if
the underlying local systeth is constant

3B. Variation of mixed Hodge structures. If one considers a morphisnf :
X — Y of complex algebraic varieties with smooth, which is a topological
fibration with possible singular or noncompact fiber, thea lttcally constant
directimage sheaveds= L" := R"f,Qyx (n > 0) arevariations of mixed Hodge
structuresin the sense of the following definitions.

DEFINITION 3.3. LetY be a reduced complex analytic spaceh@domorphic
family of mixed Hodge structurem Y consists of

(1) a local systeml of rational vector spaces o with finite-dimensional
stalks,

(2) a finite decreasinglodge filtration F of £ = L ®q, Oy by holomorphic
subbundleg? L,

(3) afinite increasingveight filtration W of L by local subsystem#, L,

such that the induced filtrations @ ~ L, ® C and L, define a mixed Hodge
structure on all stalkg.,, (y € Y).

If Y is a smooth complex manifold, such a holomorphic faniily F, W) is
called avariation of mixed Hodge structuref in addition, Griffiths transver-
sality (3-2) holds for the induced connectidh: £ — £ ®o,, .(2,1,

Finally, (L, F, W) is calledgraded polarizablef the induced family (or vari-
ation) of pure Hodge structur@r,?’ L (with the induced Hodge filtratio#’) is
polarizable for all:.

With the obvious notion of morphisms, the two categorf@mH<?)(Y) and
VmHS$P)(Y) of (graded polarizable) families and variations of mixeddge
structures ort’ become abelian categories with a tensor produeind duality
(-)V. Again, any such morphism is strictly compatible with thedge and
weight filtrations. Moreover, one has for a holomorphic m@ap X — Y (of
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complex manifolds) a functorial pullback
7*: FmHEP (Y) > FmHEP (X)  (or f* : VmHSP) (Y) — VmHS$P) (X)),

commuting with tensor produed and duality(-)¥. On a point space one
just gets back the category

FmHSP) (pr) = VmHEP) (pr) = mHLP)

of (graded polarizable) mixed Hodge structures. Using thiback under the
constant magk : Y — pt, we get the constant family (or variation) of Tate
Hodge structure®y (n) := k*Q(n) onY.

3C. Cohomological characteristic classes. The Grothendieck grou2,(Y)
of holomorphic vector bundles on the complex vari&tys a commutative ring
with multiplication induced by and has a duality involution induced By)" .
For a holomorphic mag’ : X — Y one has a functorial pullback* of rings
with involutions. The situation is similar fok2,(Y)[y*!], if we extend the
duality involution by

V1-y5)Y =Y (1/0)k.

For a family (or variation) of mixed Hodge structur@s, F, W) onY let us
introduce the characteristic class

MHC? (L. F.W)):= Y [GrE(L)]- (=»)? € KM (3-3)
p

Because morphisms of families (or variations) of mixed Hodtructures are
strictly compatible with the Hodge filtrations, we get inddogroup homomor-
phisms of Grothendieck groups:

MHC” : Ko(FmHEP) (Y)) — K2 (V)[yE!],
MHC” : Ko(VmHEP) (1)) — K2 (YV)[yE'].

Note thatMHC™' (L, F, W)) = [£] € K2(Y) is just the class of the asso-
ciated holomorphic vector bundle. And fér = pt a point, we get back the
Xy-genus:

Xy = MHC? : Ko(mHS?)) = Ko(FmHS?) (pt)) — Ko (pHlyE' = Z[y*!].
THEOREM 3.4. The transformations

MHC? : Ko(FmHSP)(Y)) — KO (¥)[»E!].
MHC” : Ko(VMHS? (Y)) — K3 (V).
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are contravariant functorigland are transformations of commutative rings with
unit, i.e., they commute with products and respect unMHC” ([Qy (0)]) =
[Oy]. Similarly they respect duality involutions

MHC” (L, F, W)¥])) = Y [(Grg” (L) ]- (=) = (MHC (L, F, W) " .
p

ExamMpPLE 3.5. Let f : X — Y be aproper smoothmorphism of complex
algebraic varieties or grojective smoothmorphism of complex analytic va-
rieties, so that the higher direct image shédf:= R"f,Qyx (n > 0) with the
induced Hodge filtration as in (3-1) defines a holomorphicifiaof pure Hodge
structures ort’. If m is the complex dimension of the fibers, theép = 0 for
n > 2m, so one can define

2m
[RfxQx]:= D" (=1)"-[(R"fxQyx. F)] € Ko(FMHLY)).

n=0

Then one gets, by (3-1),

MHCY (R fxQx]) = D (=P [RIf:28 1y]- (=)”

p,q=0
= fl2g,y)- 7
p=0
= fx(M(Txy)) € Kn(Y)Iy]: (3-4)

Assume moreover that

(@) Y is a connected complex manifold Zarisky open in a compactpexm
analytic manifoldY’, and
(b) all direct images sheavds' := R"f,.Qx (n > 0) areconstant

Then one gets by thegidity theorem3.2 (forz € Y):

S (T p)) = xy({f = 21 [Oy] € Kgi(V)[y].

COROLLARY 3.6 (MULTIPLICATIVITY ). Let f: X — Y be a smooth morphism
of compact complex algebraic manifoldsgith Y connected Let T;/Y be the
relative holomorphic cotangent bundle of the fihditing into the short exact
sequence

0—>f*T*Y—>T*X—>T;/Y—>O.

Assume all direct images sheave® := R"f.Qyx (n > 0) are constanti.e,,
71(Y) acts trivially on the cohomology?*({ /' = z}) of the fiber Then one
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gets the multiplicativity of thg,-genus(with k : Y — pt the constant map

Xy (X) = (ko f)«[Ay(T* X))
= ka fx (A (T ] ® [ Ay (T*Y)])
= kx (Xy({f =z})- [)\y(T*Y)])
= xS =z xX). (3-5)

REMARK 3.7. The multiplicativity relation (3-5) specializes for= 1 to the
classical multiplicativity formula

sgn(X) = sgn({f = z}) -sgn¥)

of Chern, Hirzebruch, and Serre [16] for the signature of aented fibration

of smooth coherently oriented compact manifoldsg;ifY) acts trivially on the
cohomologyH™*({ f = z}) of the fiber. So it is a Hodge theoretic counterpart
of this. Moreover, the corresponding Euler characteristimula fory = —1

x(X) = x({f =z -x(¥)

is even truewithoutr; (Y) acting trivially on the cohomology?*({ / = z}) of
the fiber!

The Chern—Hirzebruch—Serre signature formula was mativak for many
subsequent works which studied monodromy contributiomsveriants (genera
and characteristic classes). See, for exmaple, [1; 4; 1t 2;113; 14; 35; 36].

Instead of working with holomorphic vector bundles, we cdrcaurse also
use only the underlying topological complex vector bundigkich gives the
forgetful transformation

For : Kg(Y) — Kgp(Y).

Here the target can also be viewed as the even paftedraded topological
complex K-cohomology. Of course, the forgetful transformation isitca-
variant functorial and commutes with produgtand with duality(-)¥. This
duality induces &,-grading onk g, (Y)[ 3] by splitting into the (anti-)invariant
part, and similarly fork3,(Y)[ 5 |. Then the (anti-)invariant part a€,(Y)[ 5|
can be identified with the even part @f;-graded topological reak-theory
KO%,(Y)[5] (@and KOZ,(Y)[5)).

Assume now thatL, F) is a holomorphic family of pure Hodge structures of
weightn on the complex variety”, with a polarizationS : L ®q, L — Qy.
This induces an isomorphism of families of pure Hodge stmas of weight::

L>~LY(—n):=L"YQ®Qy(—n).
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So if we choose the isomorphism of rational local systems

Qy(—n) = Q2ni)™" -Qy ~Qy,

the polarization induces @-1)"-symmetric duality isomorphisni ~ LY of
the underlying local systems. And for such an (anti)symimetelfdual local
systemL Meyer [36] has introduced & O-characteristic class

[Llxo € KOgy(N)[3]® KOgp(V)[ 1)) = Kigp(V)[ 5]

so that forY a compact oriented manifold of even real dimensianthe fol-
lowing twisted signature formulas true:

sgnH™ (Y, L)) = (ch*(¥*([L]k0)), L*(TM) N[M]). (3-6)

Here H™ (Y, L) gets an induced (anti)symmetric duality, with $&H"(Y, L))
defined as 0 in case of an antisymmetric pairing. Moreeveris the Chern
charactery? the second Adams operation ahd is the Hirzebruch—Thond.-
class.

We now explain thafL]|x o agrees up to some universal signs with
For(MHC!((L, F)).

The underlying topological complex vector bundleohas a natural real struc-
ture, so that, as a topological complex vector bundle, ong ge orthogonal
decomposition

L= P HP. withHP4=FPLNFIL =T,
p+q=n

with
For(MHC! (L. F)) = Y [HP4]— ) [HP9]. (3-7)

peven p odd
9q q

If n is even, both sums on the right are invariant under conjagatAnd, by
(2-7), (—1)7"/2. S is positive definite on the corresponding real vector bundle
(B, eveng H??). and negative definite oD, o4q, H7*?) - So if we choose
the pairing(—1)"/2 - S for the isomorphismL ~ LY, then this agrees with the
splitting introduced by Meyer [36] in the definition of hi§O-characteristic
class[L]xo associated to thisymmetricduality isomorphism of.:

For(MHC'((L, F)) = [L]ko € KOgy(Y)[3].

Similarly, if » is odd, both sums of the right hand side in (3-7) are exchanged
under conjugation. If we choose the pairifigl )+ 1)/2. S for the isomorphism
L ~ LY, then this agrees by Definition 2.2 with the splitting intnogd by
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Meyer [36] in the definition of hiK O-characteristic clagd.|x o associated to
this antisymmetriauality isomorphism of_:

For(MHC' (L. F)) = [Llxo € KOgy(Y)[3]-

COROLLARY 3.8.Let(L, F) be a holomorphic family of pure Hodge structures
of weightn on the complex variety, with a polarizationS chosen The class
[L]ko introduced in[36] for the duality isomorphism coming from the pairing
(—1)n+1/2. g is equal to

For(MHC'((L. F)) = [Llxo € KOQ,(Y)[ 3] ® KOL,(Y)[5] = Kgp(M)[3]-

It is therefore independent of the choice of the polarizatto Moreover this
identification is functorial under pullback and compatiméh products(as de-
fined in[36, p. 26]for (anti)symmetric selfdual local systens

There are Hodge theoretic counterparts of the twisted gigadormula (3-6).

Here we formulate a correspondirig-theoretical result. LetL, F, W) be a

variation of mixed Hodge structures on thedimensional complex manifold
M. Then

H"(M, L) ~ H"(M, DR(L))

gets an induced (decreasing)filtration coming from the filtration of the holo-
morphic de Rham complex of the vector bundlevith its integrable connec-

tion V;

DR(L) =[L ——s -+ — > L0, Q1]

(with £ in degree zero), defined by

FPDR(L) = [FPL —s .. — s FPmLgo, Q0] (38
Note that here we are using Griffiths transversality (3-2)!

The following result is due to Deligne and Zucker [56, Theor29, Lemma
2.11] in the case of a compactkler manifold, whereas the case of a compact
complex algebraic manifold follows from Saito’s generauks as explained in
the next section.

THEOREM3.9. AssumeVf is a compact Khler manifold or a compact complex
algebraic manifold with (L, F, W) a graded polarizable variation of mixed
(or pure) Hodge structures o/ . ThenH" (M, L) ~ H"(M, DR(L)) gets an
induced mixedor pure) Hodge structure with the Hodge filtration Moreover,
the corresponding Hodge to de Rham spectral sequence degenat £, so
that

Gre(H"(M, L)) ~ H"(M,Gr% DR(L)) forall n, p.
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Therefore one gets as a corollary (compare [12; 13; 35]):
Xy(H*(M.L)) =Y (=1)"-dimg (H"(M.Gry, DR(L))) - (—y)”
n,p
= Z x(H*(M,Gr%DR(L))) - (—y)?
p
=" (=) (H*(M.Gri (L) ®0y, 241)) - (—1)”
D,

= ku (MHCY (L) ® A, (T*M))
=: (MHC? (L), A, (T*M) N [Op]) € Z[y*"]. (3-9)

3D. Good variation of mixed Hodge structures.

DEFINITION 3.10 (GOOD VARIATION). Let M be a complex algebraic mani-
fold. A graded polarizable variation of mixed Hodge strueg{L, F, W) on M

is called good if it isadmissiblein the sense of Steenbrink and Zucker [50] and
Kashiwara [28], withguasi-unipotent monodronay infinity, i.e., with respect to

a compactification/ of M by a compact complex algebraic manifald, with
complementD := M\ M a normal crossing divisor with smooth irreducible
components.

EXAMPLE 3.11 (PURE AND GEOMETRIC VARIATIONS. Two important exam-
ples for such a good variation of mixed Hodge structurestagddllowing:

() A polarizable variation ofpure Hodge structures is always admissible by a
deep theorem of Schmid [46, Theorem 6.16]. So it is good pegcivhen it
has quasi-unipotent monodromy at infinity.

(ii) Consider a morphisny : X — Y of complex algebraic varieties with
smooth, which is a topological fibration with possible silagwr noncompact
fiber. The locally constant direct image shea®¥s,.Qx andR"/Qx (n >
0) are good variations of mixed Hodge structures (comparedriedh 4).

This class of good variations o is again an abelian categoxymHg (M)
stable under tensor produgt, duality (-)V and pullback/™ for " an algebraic
morphism of complex algebraic manifolds. Moreover, in tbése all vector
bundles F? L of the Hodge filtration carry the structure of a unigue under-
lying complex algebraic vector bundle (in the Zariski tamp)), so that the
characteristic class transformatibHC” can be seen as a natural contravariant
transformation of rings with involution

MHC? : Ko(VmHS (M) — Kg(M)[y*"].
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In fact, consider a (partial) compactificatidd of M as above, withD :=
M\ M a normal crossing divisor with smooth irreducible compdsemd; :
M — M the open inclusion. Then the holomorphic vector bunflevith
integrable connectiolV corresponding tad. has a uniquecanonical Deligne
extension(Z, V) to a holomorphic vector bundlg on M, with meromorphic
integrable connection

V:L— L&oy 21 (log(D)) (3-10)

havinglogarithmic polesalong D. Here theresiduesof V along D have real
eigenvalues, sincé hasquasi-unipotent monodronatong D. And the canon-
ical extension is characterized by the property that abeheigenvalues are in
the half-open intervgD, 1). Moreover, also the Hodge filtratiok of £ extends
uniquely to a filtrationF of £ by holomorphic subvector bundles

FPL:= j (FPLYNL C jiL,
sinceL is admissiblealong D. Finally, Griffiths transversality extends to
V(FPL) C FP7' L ®oy,; 25;(Iog(D)) forall p. (3-11)

For more details see [19, Proposition 5.4] and [3&1.1, 14.4].

If we chooseM as a compact algebraic manifold, then we can apply Serre’s
GAGA theorem to conclude that and all F7 £ arealgebraicvector bundles,
with V analgebraicmeromorphic connection.

REMARK 3.12. The canonical Deligne extensign(as above) with its Hodge
filtration F has the following compabilities (compare [19, Part I1]):

SMOOTH PULLBACK: Let f: M’ — M be a smooth morphism so thaY :=
YD) is also a normal crossing divisor with smooth irreduciblenpo-
nents onM’ with complementd’. Then one has

fX(L)~ f*L and [*(FPL)~ FP f*L forall p. (3-12)

EXTERIOR PRODUCT Let L and L’ be two good variations o/ and M.
Then their canonical Deligne extensions satisfy

LRy, 00 £~ LRo ., L,

since the residues of the corresponding meromorphic cdonscare com-
patible. Then one has for gil

FP (Lo, £~ P (F'L)Roy,, ., (FFL). (3-13)
i+k=p
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TENSOR PRODUCT In general the canonical Deligne extensions of two good
variationsL and L’ on M arenot compatible with tensor products, because
of the choice of different residues for the correspondingam®rphic con-
nections. This problem doesn’t appear if one of these vanat lets say’,
is already defined o/ . Let L and L’ be a good variation od/ and M,
respectively. Then their canonical Deligne extensionisfyat

Lo, (L'|M) ~ Z®0M L,
and one has for alp:

FP(L®o,, (L'IM)~ @ (F'L)®o,, (FFL). (3-14)
itk=p

L_etj\7 be a partial compactification d¥f as before, i.e., we don't assume that
M is compact, withm := dim¢ (M). Then thelogarithmic de Rham complex

DRiog(L) :=[L ——> - —— L®o,, 2" (log(D))]

(with £ in degree zero) is by [19] quasi-isomorphicRg. L, so that
H*(M, L)~ H*(M, DRiog(L)).

So these cohomology groups get an induced (decreagirgjration coming
from the filtration

Vv

FPDRiog(L) = [FPL FPL®o,, 27 (log(D))]
(3-15)
For M a compact algebraic manifold, this is again the Hodge fidirabf an

induced mixed Hodge structure dih* (M, L) (compare with Corollary 4.7).

THEOREM 3.13. AssumeM is a smooth algebraic compactification of the al-
gebraic manifoldM with the complemenD a normal crossing divisor with
smooth irreducible componentéet (L, F, W) be a good variation of mixed
Hodge structures ot/ . ThenH" (M, L)~ H* (M, DRiog(L)) gets an induced
mixed Hodge structure witlh" the Hodge filtration Moreover, the correspond-
ing Hodge to de Rham spectral sequedegenerates ak'; so that

Gre(H"(M, L)) ~ H" (M,Gr%.DRiog(£)) forall n, p.
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Therefore one gets as a corollary (compare [12; 13; 35]):

Xy (H*(M. L)) =Y (=1)"-dim¢ (H" (M, Gr%.DRiog(L))) - (—3)”
n,p
=" x(H*(M.GrhDRg(L))) - (—3)”
p

= > (=Dix(H*(M.Gr}™ (L) ®oy, 24(109(D)))) (—3)?

D
=: (MHC? (Rjx L), 1y (2};(09(D))) N[Oz} € Z[y*!)
(3-16)
Here we use the notation
MHC? (RjxL) := Y " [GrE(D)]- (—1)? € Kgo(M)[y*"]. (3-17)

p

Remark 3.12 then implies:
COROLLARY 3.14.Let M be a smooth algebraic partial compactifiction of the
algebraic manifoldd/ with the complemend a normal crossing divisor with
smooth irreducible componentThen MHC' (R« (-)) induces a transforma-
tion

MHC” (ji(+)) : Ko(VMHSE (M) — Kgg(M)[y*'].

(1) This is contravariant functorial for a smooth morphisfn: M’ — M of

such partial compactifications.e.,

ST (MHC? (i (+))) = MHC” (j.(f*(+))) -
(2) It commutes with exterior products for two good variatiadnsL':
MHC? ((j < j)+[(L Bgy . L]) = MHC? ([ L) IMHCY (i [(L]).

(3) Let L be a good variation o/, and L’ one onM . Then MHC ([ -]) is
multiplicative in the sense that

MHC” (j«[(L ®q,, (L'|M)]) = MHC” (j«[L]) ® MHC ([L).

4. Calculus of mixed Hodge modules

4A. Mixed Hodge modules. Before discussing extensions of the characteristic
cohomology classeMHC” to the singular setting, we need to briefly recall
some aspects of Saito’s theory [39; 40; 41; 43; 44] of algebrdaxed Hodge
modules, which play the role of singular extensions of goadgtions of mixed
Hodge structures.
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To each complex algebraic varie®, Saito associated a categdWHM (Z)
of algebraic mixed Hodge modules Z (cf. [39; 40]). If Z is smooth, an
object of this category consists of an algebraic (regulatdtomic D-module
(M, F) with a good filtrationF together with a perverse she&f of rational
vector spaces, both endowed a finite increasing filtrakidsuch that

o: DR(M)*"~ K®q, Cz is compatible withW

under the Riemann—Hilbert correspondence coming fromghitéd) analytic
de Rham complex (witlr a chosen isomorphism). Here we use Iefinodules,
and the sheaD, of algebraic differential operators afi has the increasing
filtration F with F; D given by the differential operators of orderi (i € Z).
Then agoodfiltration F of the algebraic holonomi®-module M is given by
a bounded from below, increasing and exhaustive filtrafigr\1 by coherent
algebraicO z-modules such that

Fipz(FpM) C Fp+iM for all 7, D,

4-1
and this is an equality far big enough. (4-1)

In general, for a singular variety one works with suitable local embeddings
into manifolds and corresponding filterédtmodules supported o#. In addi-
tion, these objects are required to satisfy a long list of plisated properties
(not needed here). THergetfulfunctor rat is defined as

rat: MHM(Z) — Per(Q ), (M(F),K, W) K.
THEOREM4.1 (M. SAITO). MHM(Z) is an abelian category with
rat: MHM(Z) — Per Q »)
exact and faithfullt extends to a functor
rat: D’MHM(Z) — D% (Q )

to the derived category of complexes@fsheaves with algebraically construc-
tible cohomologyThere are functors

feo fis /5 L ®. K, D onDMHM(Z),

which are “lifts” via rat of the similar(derived functors defined oan Q2),
with (/*, fx) and( £, /') also pairs of adjoint functorsOne has a natural map
fit = f«, which is an isomorphism fof proper. HereD is a duality involution
D? ~ id “lifting” the Verdier duality functor, with

Do f*~ f'oD and Do fi~ fioD.
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Compare with [40, Theorem 0.1 agd] for more details (as well as with [43]
for a more general formal abstraction). The usual trunnatioon D?MHM(Z)
corresponds to thperverse truncatio t< on D(’f (Z) so that

ratoH = PHorat,

whereH stands for the cohomological functor B MHM(Z) and ?H{ denotes
the perverse cohomology (always with respect to the self-tchiddle perver-

sity).

EXAMPLE 4.2. Let M be a complex algebraic manifold of pure complex di-
mensiorm, with (L, F, W) a good variation of mixed Hodge structures ih
Then £ with its integrable connectiol is a holonomic (left)D-module with

a : DR(L)2" ~ L[m], where this time we use the shifted de Rham complex

\% \Y%
DR(L) :=[L L R0y, 27

with £ in degree—m, so thatDR(L£)2"~ L[m] is a perverse sheaf ol . The
filtration F induces by Griffiths transversality (3-2) a good filtratibp(L) :=
F~PL as a filteredD-module. As explained before, this comes from an un-
derlying algebraic filtered>-module. Finallyx is compatible with the induced
filtration W defined by

Wi(L[m]) := W™ Lm] and W'(L):= (W' ™L)®qg,, Oum.

And this defines a mixed Hodge modul on M, with rat.M)[—m] a local
system onM .

A mixed Hodge moduleéV1 on the puren-dimensional complex algebraic man-
ifold M is calledsmoothif rat(AM)[—m] is a local system o/ . Then this ex-
ample corresponds to [40, Theorem 0.2], whereas the nextaimrecorresponds
to [40, Theorem 3.27 and remark on p. 313]:

THEOREM 4.3 (M. SAITO). Let M be a purem-dimensional complex alge-
braic manifold Associating to a good variation of mixed Hodge structures
V = (L, F,W) on M the mixed Hodge modul&t := Vg as in Examplet.2
defines an equivalence of categories

MHM (M )gm =~ VmHE (M)

between the categories of smooth mixed Hodge modules MHA)y},, and good
variation of mixed Hodge structures @ . This commutes with exterior product
X and with the pullbacks

£*:VmHE (M) —VmHE(M') and  f*[m'—m]:MHM (M) — MHM (M)
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for an algebraic morphism of smooth algebraic manifols M’ of dimension
m,m’. For M = pt a point, one gets in particular an equivalence

MHM (pt) ~ mH<.

REMARK 4.4. These two theorems explain why a geometric variationigéd
Hodge structures as in Example 3.11(2) is good.

By the last identification of the theorem, there exists a u@i@ate object
Q" (n) e MHM(p1)
such that ratQ (n)) = Q(rn) andQ*H (n) is of type(—n, —n):
MHM (p1) > QH (n) ~ Q(n) € mHS.
For a complex varietyZ with constant mag : Z — pt, define
Q4 (n) == k*Q¥ (n) e DPMHM(2),  with rat(Q4 (n)) = Q7 (n).

So tensoring witng(n) defines the Tate twis{r) of mixed Hodge modules.
To simplify the notation, leQ% := Q# (0). If Z is smoothof complex dimen-
sionn thenQ z[n] is perverse o1, anng[n] € MHM(Z) is a single mixed
Hodge module, explicitly described by

QZ = ((0z.F).Qzn. W), withgrf =0=gr}¥ foralli#o0.

It follows from the definition that everymt € MHM (Z) has a finite increasing
weight filtration W so that the functo — Gr,fVM is exact. We say that
M e DPMHM(Z) hasweights<n (resp.> n) if Gr}¥ H' M =0 forall j > n-+i
(resp.j <n+1i). M is calledpure of weight: if it has weights both< » and
> n. For the following results compare with [40, Propositio@&@and (4.5.2)]:

PROPOSITION4.5.If f is a map of algebraic varietieshen f, and /* preserve
weight<n, and f; and /' preserve weight n. If f is smooth of pure complex
fiber dimensionn, then ' ~ f*[2m](m) so that /*, /' preserve pure objects
for / smooth Moreovet if M € DPMHM(X) is pure andf : X — Y is proper;
then fx M € DPMHM(Y) is pure of the same weight as!.

Similarly the duality functo® exchanges “weigh& »” and “weight > —n" ,
in particular it preserves pure object$inally let j : U — Z be the inclusion
of a Zariski open subseThen thantermediate extensiciunctor

Jjix :MHM(U) = MHM(Z) : M > Im(H°(iM) — HO(jx(M))  (4-2)

preserves weight n and > n, and so preserves pure obje¢ts weightn).
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We say thatM € DPMHM(Z) is supported or§ C Z if and only if rat M) is
supported orS. There are the abelian subcategoiéd(Z, k)? ¢ MHM(Z)

of pure Hodge modules of weight which in the algebraic context are assumed
to be polarizable (and extendable at infinity).

For eachk € Z, the abelian categolyiH(Z, k)? is semisimple, in the sense
that every pure Hodge module @hcan be uniquely written as a finite direct sum
of pure Hodge modules with strict support in irreducibleseld subvarieties of
Z. LetMHg(Z, k)? denote the subcategory péire Hodge modules of weight
k with strict support inS. Then everyM € MHg(Z, k)? is generically a good
variation of Hodge structure¥y of weight k — d (whered = dimS) on a
Zariski dense smooth open subgétC S; i.e., Vy is polarizable with quasi-
unipotent monodromy at infinity. This follows from Theoren84nd the fact
that a perverse sheaf is generically a shifted local systera smooth dense
Zariski open subsa/ C S. Conversely, every such good variation of Hodge
structuresV on such arU corresponds by Theorem 4.3 to a pure Hodge module
Vg on U, which can be extended in an unigue way to a pure Hodge module
71« Vg on S with strict support (herg : U — S is the inclusion). Under this
correspondence, faWf € MHg(Z, k)? we have that

rat(M) = ICs (V)

is thetwisted intersection cohomology compfex V the corresponding varia-
tion of Hodge structures. Similarly

D(uVr) = ju(Vi)(d). (4-3)

Moreover, apolarizationof M € MHg(Z, k)P corresponds to an isomor-
phism of Hodge modules (compare [38, Definition 14.35, R&mdr36])

S : M ~ D(M)(—k), (4-4)

whose restriction td/ gives a polarization o¥. In particular it induces a self-
duality isomorphism

S :rat(M) >~ D(rat(M))(—k) ~ D(rat(M))

of the underlying twisted intersection cohomology compléan isomorphism
Qu(—k) ~ Qy is chosen.

Soif U is smooth of pure complex dimensinnthen@g[n] is a pure Hodge
module of weight:. If moreover; : U — Z is a Zariski-open dense subset in
Z, then theintermediate extensiop, for mixed Hodge modules (cf. also with
[7]) preserves the weights. This shows tha¥ifis a complex algebraic variety
of pure dimensiom and;j : U — Z is the inclusion of a smooth Zariski-open
dense subset then the intersection cohomology moﬁﬂ@ = jz*((@g[n]) is
pure of weightz, with underlying perverse sheaf (acg) =1Cz.
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Note that the stability of a pure objedit € MHM (X)) under a proper mor-
phism /' : X — Y implies the famousiecomposition theoreraf [7] in the
context of pure Hodge modules [40, (4.5.4) on p. 324]:

SfsiM =~ H feM[-i]. with H'f, M semisimple for ali.  (4-5)

AssumeY is pure-dimensional, witlf : X — Y aresolution of singularities
i.e., X is smooth with /' a proper morphism, which generically is an isomor-
phism on some Zariski dense open sutis’etThen@X is pure, sinceX is
smooth, andCH has to be the dlrectsummandldf’f*QX which corresponds

toQ¥.

COROLLARY 4.6. Assumé&’ is pure-dimensionawith f : X — Y aresolution
of singularities Then/C{ is a direct summand of,. Q% € D’MHM(Y).

Finally we get the following results about the existence ahi&ed Hodge
structure on the cohomology (with compact suppdﬂpc)(z M) for M €
D°MHM(2).

COROLLARY 4.7. Let Z be a complex algebraic variety with constant map
k : Z — pt. Then the cohomologfwith compact suppo)tH’ (Z, M) of
M e D’MHM(Z) gets an induced graded polarizable mixed Hodge structure

H,\(Z. M) = H' (ky(yM) € MHM(p1) ~ mHS".
In particular:

(1) The rational cohomologgwith compact suppo)tH(ic)(Z ,Q) of Z gets an
induced graded polarizable mixed Hodge structure by

H'(Z,Q) =rat(H' (k:k*QH)) and H!(Z.Q) = rat(H' (kik*Q)).

(2) LetVy be a good variation of mixed Hodge structures on a smooth pure
dimensional complex variety, which is Zariski open and dense in a variety
Z,with j : U — Z the open inclusionThen the global twisted intersection
cohomologywith compact suppoyt

IH{(Z.V) := H{;(Z, ICz(V)[-n])
gets a mixed Hodge structure by
IH{(Z,V) = H' (kuyICz (V)[=n]) = H' (kuqy j1x(V)[-1]).

If Z is compactwith V a polarizable variation of pure Hodge structures of
weightw, then also/H*(Z, V) has a(polarizable pure Hodge structure of
weightw + 7.
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(3) LetV be a good variation of mixed Hodge structures on a smdptire-
dimensiongl complex manifold\/, which is Zariski open and dense in com-
plex algebraic manifold/, with complementD a normal crossing divisor
with smooth irreducible component¥hen H! (M, V) gets a mixed Hodge
structure by

H' (M, V)~ H (M, jxV) ~ H' (ks jxV),
with j : U — Z the open inclusion

REMARK 4.8. Here are important properties of these mixed Hodgetsires:

(1) By a deep theorem of Saito [44, Theorem 0.2, Corollary, 4l8 mixed
Hodge structure om{("c)(Z, Q) defined as above coincides with the classical
mixed Hodge structure constructed by Deligne ([20; 21]).

(2) Assume we are in the context of Corollary 4.7(3) with= M projective and
V a good variation of pure Hodge structureslioe= M . Then the pure Hodge
structure of (2) on the global intersection cohomold@¥ (Z, V) agrees with
that of [15; 29] defined in terms df 2-cohomology with respect to adler
metric with Poincag singularities along (compare [40, Remark 3.15]). The
case of al-dimensional complex algebraic curZe= M due to Zucker [56,
Theorem 7.12] is used in the work of Saito [39, (5.3.8.2)]ha proof of the
stability of pure Hodge modules under projective morphi$8® Theorem
5.3.1] (compare also with the detailed discussion of thiBmensional case
in [45]).

(3) Assume we are in the context of Corollary 4.7(3) with compact. Then
the mixed Hodge structure ali’ (M, V) is the one of Theorem 3.13, whose
Hodge filtration F comes from the filtered logarithmic de Rham complex
(compare [40§3.10, Proposition 3.11]).

4B. Grothendieck groupsof algebraic mixed Hodge modules. In this section,
we describe the functorial calculus of Grothendieck grovifpasigebraic mixed
Hodge modules. LeZ be a complex algebraic variety. By associating to (the
class of) a complex the alternating sum of (the classes ©fjdhomology ob-
jects, we obtain the following identification (compare, &tample, [30, p. 77]
and [47, Lemma 3.3.1])

Ko(DPMHM(Z)) = Ko(MHM(Z)). (4-6)
In particular, if Z is a point, then

Ko(DPMHM(p1)) = Ko(mHS), (4-7)
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and the latter is a commutative ring with respect to the tepsaduct, with unit
[QH]. Then we have, for any complek®* € D?MHM(Z), the identification

[M*]= D (=)[H (M")] € Ko(D’MHM(Z)) = Ko(MHM(Z)).  (4-8)
i€Z
In particular, if foranyM € MHM (Z) andk € Z we regardM[—k] as a complex
concentrated in degrée then

[M[—k]] = (=1)*[M] € Ko(MHM(Z)). (4-9)

All the functors fix, fi, f*, f’, ®, X, D induce corresponding functors on
Ko(MHM(+)). Moreover,Ko(MHM(Z)) becomes & o(MHM(pt))-module,
with the multiplication induced by the exact exterior protwith a point space:

5 : MHM(Z) x MHM(pt) — MHM(Z x {pt}) ~ MHM(Z).

Also note that
H H
MQ7 xMRQ,; ~M

for all M € MHM(Z). Therefore,Ko(MHM(Z)) is a unitaryKo(MHM(pt))-
module. The functors, fi, /* f' commute with exterior products (ant*
also commutes with the tensor prod@), so that the induced maps at the level
of Grothendieck group&y(MHM(-)) are Ko(MHM(pt))-linear. SimilarlyD
defines an involution oKy (MHM( -)). Moreover, by the functor

rat: Ko(MHM(Z)) — Ko(D2(Q2)) ~ Ko(Per(Q2)).

all these transformations lift the corresponding transitions from the (topo-
logical) level of Grothendieck groups of constructible farverse) sheaves.

REMARK 4.9. The Grothendieck groukio(MHM(Z)) has two different types
of generators:

(1) Itis generated by the classes of pure Hodge modul€g (V)] with strict
support in an irreducible complex algebraic subSet Z, with V a good
variation of (pure) Hodge structures on a dense Zariski gmenoth subset
U of S. These generators behave well under duality.

(2) Itis generated by the classég /. V], with f : M — Z a proper morphism
from the smooth complex algebraic manifald, j : M — M the inclusion
of a Zariski open and dense subgét with complementD a normal crossing
divisor with smooth irreducible components, aié good variation of mixed
(or if one wants also pure) Hodge structuresidn These generators will be
used in the next section about characteristic classes @htibodge modules.



448 DRG SCHIRMANN

Here (1) follows from the fact that a mixed Hodge module hasigefiweight

filtration, whose graded pieces are pure Hodge modules are.finite direct
sums of pure Hodge modula&s (V) with strict supportS as above. The
claim in (2) follows by induction from resolution of singuites and from the
existence of a “standard” distinguished triangle asseditt a closed inclusion.

Leti : Y — Z be a closed inclusion of complex algebraic varieties witarop
complementj : U = Z\Y — Z. Then one has by Saito’s work [40, (4.4.1)]
the following functorial distinguished triangle iB® MHM (Z):

gt g e U (4-10)

Here the mapad are the adjunction maps, with = i, sincei is proper. If
f:Z — X is a complex algebraic morphism, then we can apfilyo get
another distinguished triangle

S QE U oB L pavE UL @1
On the level of Grothendieck groups, we get the importattitivity relation
AQET= (f o NIQ T+ (f 0inlQY]
€ Ko(DPMHM (X)) = Ko(MHM(X)). (4-12)
COROLLARY 4.10.0ne has a natural group homomorphism
Xrdg: Ko(var/X) — Ko(MHM(X)): [/ : Z — X] = [/iQZ].

which commutes with pushdowfy exterior productX and pullbackg™*. For
X = pt this corresponds to the ring homomorphi$210) under the identifi-
cation MHM(pt) ~ mH¢.

Here Ky (var/ X)) is the motivicrelative Grothendieck groupf complex alge-
braic varieties ovelX, i.e., the free abelian group generated by isomorphism
classes f]=[f : Z — X] of morphismsf to X, divided out be thedditivity
relation

[f1=1foi]+[f /]

for a closed inclusion: Y — Z with open complement: U = Z\Y — Z. The
pushdownf,, exterior produc and pullbacke * for these relative Grothendieck
groups are defined by composition, exterior product andpaok of arrows. The
fact thatyndg commutes with exterior produ@f (or pullbackg*) follows then
from the corresponding #neth (or base change) theorem for the functor

fi: DPMHM(Z) — DPMHM(X)
(contained in Saito’s work [43] and [40, (4.4.3))).
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LetL:=[AL] € Ko(var/pr) be the class of the affine line, so that

xndg(L) = [H*(P'(C), Q)] = [Q(-1)] € Ko(MHM(p1)) = Ko(mHS)

is the Lefschetz clasg)(—1)]. This class is invertible inKo(MHM(pt?)) =
Ko(mH¢’) so that the transformatiopnqg of Corollary 4.10 factorizes over the
localization

My(var/X) := Ko(var/X)[L™!].
Altogether we get the following diagram of natural trangfiations commuting
with 7, X andg*:

F(X) <2 Myvar/X) <«—— Ko(var/X)

XstalkT lXHdg (4-13)
Ko(D(X)) <—— Ko(MHM(X)).

Here F(X) is the group of algebraically constructible functionsXnwhich
is generated by the collectidn z }, for Z C X a closed complex algebraic sub-
set, withxstaik given by the Euler characteristic of the stalk complexesnjoare
[47,§2.3]). The pushdowr, for algebraically constructible functions is defined
for a morphismf : Y — X by

Nz (x):=x (HN(Zn{f =x},Q)) forxeX,
so that the horizontal arrow marked “can” is given by
can:[f :Y — X]— fi(ly), withcanl) = 1,,.

The advantage od/y(var/ X)) compared taKy(var/ X) is that it has an in-
duceddualityinvolutionD : My (var/ X)) — My (var/ X') characterized uniquely
by the equality

D(fM—->X)=L"-[f: M — X]
for f: M — X a proper morphism withM smooth and pure:-dimensional

(compare [8]). This “motivic duality’D commutes with pushdowy for proper
J so thatynqg also commutes with duality by

Xhdg (Dlidas]) = xmag (L7 - [idas]) = [QH (m)]
= [QF[2m](m)] = [D(QF)] = D (xndg (idp]))  (4-14)

for M smooth and pure:-dimensional. In fact by resolution of singularities and
“additivity”, Ky(var/X) is generated by such classgfdy/]=[f: M — X].
Then all the transformations in the diagram (4-t8mmute with duality
were KO(DS(X)) gets this involution from Verdier duality, ant® = id for
algebraically constructible functions by cd@(—1)]) = 1,; (compare also with
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[47,§6.0.6]). Similarly they commute withfy andg' defined by the relations
(compare [8]):

Dog*=g'oD and Do f, = fioD.
For example for an open inclusioh: M — M, one gets

XHdg (J«lidas]) = ]*[Qﬁ] (4-15)

5. Characteristic classes of mixed Hodge modules

5A. Homological characteristic classes. In this section we explain the theory
of K-theoretical characteristic homology classes of mixedd¢anodules based
on the following result of Saito (compare with [392.3] and [44 § 1] for the
first part, and with [40§ 3.10, Proposition 3.11]) for part (2)):

THEOREMb5.1 (M. SAITO). Let Z be a complex algebraic varietyrhen there
is a functor of triangulated categories

Grf DR : D’PMHM(Z) — D%,(Z) (5-1)

commuting with proper push-dowmith GrIfDR(/\/l) = 0 for almost all p
and M fixed where Dé’oh(Z) is the bounded derived category of sheaves of
algebraicO z-modules with coherent cohomology sheaved/ is a (purem-

dimensiongl complex algebraic manifoJdhen one has in addition

(1) Let M € MHM(M) be a single mixed Hodge modul‘éhenGrIfDR(M)
is the corresponding complex associated to the de Rham esmpthe un-
derlying algebraic leftD-module M with its integrable connectioR':

v v
DR(M) =[M M®o,, 23]
with M in degree—m, filtered by
v v
FPDR(M) = [Fp./\/l e Fp+m./\/l R0 .Q]'\nl]

(2) Let M be a smooth partial compactification of the complex algebraan-
ifold M with complementD a normal crossing divisor with smooth irre-
ducible componentsvith j : M — M the open inclusionLetV = (L, F, W)
be a good variation of mixed Hodge structures &h Then the filtered de
Rham complex

(DR(jxV),F) of j,VeMHM(M)[—m]C DPMHM (M)

is filtered quasi-isomorphic to the logarithmic de Rham clax@R qg(L)
with the increasing filtrationf_ , := F'? (p € Z) associated to the decreasing
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F-filtration (3-15).In particular GrX , DR(j«xV) (p € Z) is quasi-isomorphic
to

G2 DRiog(L) = [GrAL Y, ... 1Y

Gry "L®os, 27 (log(D))]-

Here the filtrationf, DR (M) of the de Rham complex is well defined, since
the action of the integrable connecti®nis given in local coordinate&y, ...,

Zm) by

m
0 0
Vi)=Y —(- ; ith — e F,D
() ; 5 () ®dzi, with o= & Fi Dy
so thatV(F, M) C F,4 M for all p by (4-1). For later use, let us point that
the mapsGr V andGr V in the complexes

Grf DR(M) and Gr% DRiog(L)
areO-linear!

EXAMPLE 5.2. Let M be a puren-dimensional complex algebraic manifold.
Then
Grf DR ~ 28 [-pl € Doy(M)

coh

if 0 <p <m, and GrprR(Qﬁ) ~ 0 otherwise. Assume in addition that
f M — Y is a resolution of singularities of the pure-dimensionainptex
algebraic variety'. ThenIC{f’ is a direct summand of*Qﬁ € DPMHM(Y)
so that by functc_)rialit)grprR(ICf) is a direct summand oR £, 25 [—p] €
DL (Y). In particular

Grf,DRUIC{)~0 forp<O0orp>m.

The transformationé?rlfDR (p € Z) induce functors on the level of Grothen-
dieck groups. Therefore, fiy(Z) ~ Ko(Dé’oh(Z)) denotes the Grothendieck
group of coherenalgebraic O z-sheaves o, we get group homomorphisms

GrE DR : Ko(MHM(Z)) = Ko(DPMHM(Z)) — Ko(D(2)) = Go(Z).
DEeFINITION 5.3. Themotivic Hodge Chern class transformation
MHC, : Ko(MHM(Z)) — Go(Z) ® Z[y*!]
is defined by
Ml (=D [H(GrE, DR(M))]- (=y)?. (5-2)

i,p
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So this characteristic class captures information frongtlaged pieces of the
filtered de Rham complex of the filterdd-module underlying a mixed Hodge
module M € MHM(Z), instead of the graded pieces of the filterlBeémodule
itself (as more often studied). Let = min{p | F,, M # 0}. Using Theorem
5.1(1) for a local embedding < M of Z into a complex algebraic manifold
M of dimensiorm, one gets

GrfDR(M) =0 forp<p —m,
and
Grp_wDR(M) = (Fy M) ®0,,0Mm
is a coherentD z-sheaf independent of the local embedding. Here we are us-

ing left D-modules (related to variation of Hodge structures), waeffer this
guestion the corresponding filtered rightmodule (as used in [42])

M =M R0y OM with Fer = (Fp+mM) Q0O OM
would work better. Then the coefficient of the “top-dimemsiti power of y in

MHC, (M) = [Fy M ®0,,om]® (=) 2 + 3 ()3 € Go(Z2)y*!]
i<m—p’ (5-3)

is given by the clas$Fyy M ®o0,, wym] € Go(Z) of this coherentO z-sheaf
(up to a sign). Using resolution of singularities, one getseéxample for an
m-dimensional complex algebraic varieky that

MHC, (QZ) = [mewp] -y + ) ()" € Go(2)y™'],
<m
with = : M — Z any resolution of singularities of (compare [44, Corollary
0.3]). More generally, for an irreducible complex variefyand M = ICg (L)
a pure Hodge module with strict suppdft, the corresponding cohereét, -
sheaf
Sz(L):= FyICH (L) ®0y oM
only depends or¥ and the good variation of Hodge structué®n a Zariski
open smooth subset &f, and it behaves much like a dualizing sheaf. Its formal
properties are studied in Saito’s proof given in [42] of ajecture of Kolar. So
the “top-dimensional” power of in MHC,, ([1C§1 (/:)]) exactly picks out (up
to a sign) the clasgSz(£)] € Go(Z) of this interesting coherent she8f, (£)
onZ.
Letzd(; 4, be thetwisted Todd transformation

td14y):Go(Z2) R Z[y*'| > Ho(Z) @ Q™" (1+ »)7'];
[Fl> ) tde (FD - (1 + )75, (5-4)

k=0
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where H,(-) stands either for the Chow homology group#l. (-) or for the
Borel-Moore homology grouszliM(-) (in even degrees), andy, is the de-
greek component inf (Z) of the Todd class transformatiords : Go(Z) —
H«(Z)® Q of Baum, Fulton, and MacPherson [5], which is linearly exieh
overZ[y*!]. Compare also with [22, Chapter 18] and [24, Part II].

DEFINITION 5.4. The (un)normalizednotivic Hirzebruch class transforma-
tions MHT,« (andMHT ) are defined by the composition

MHT . := td(14y) o MHCy : Ko(MHM(Z)) — Hi(Z) @ Q[y=!, (1 + ») ']
5-5

and (>-3)
MHT . := tdy o MHC, : Ko(MHM(Z)) — Hy(Z) ® Q[y*!].  (5-6)

REMARK 5.5. By precomposing with the transformatignqg from Corollary
4.10 one gets similar transformations

mCy :=MHCy 0 xpag, Tyx := MHTys0 xrdg,  Tyx := MHT 4 0 xHdg

defined on the relative Grothendieck group of complex algiebvarieties as
studied in [9]. Then it is the (normalized) motivic Hirzebfuclass transfor-
mation 7),«, which, as mentioned in the Introduction, “unifies” in a ftorcal
way

(y =—1) the (rationalized) Chern class transformatiqrof MacPherson [34];
(y = 0) the Todd class transformatiod, of Baum—Fulton—MacPherson [5];
(y = 1) the L-class transformatioii . of Cappell and Shaneson [14].

(Compare with [9; 48] and also with [55] in these proceedings

In this paper we work most the time only with the more impart&rtheoretical
transformatiorMHC,,. The corresponding results fHT,, . follow from this
by the known properties of the Todd class transformatiin(compare [5; 22;
24]).

EXAMPLE 5.6. LetV = (V, F, W) e MHM(pt) = mHY be a (graded polariz-
able) mixed Hodge structure. Then:
MHC, ([V]) = ) _ dimc(GriVe) - (—3)? = xy (V) € Z[y™']
? =Go(p®Z*'.  (5-7)

So over a point the transformatidiHC,, coincides with they,-genus ring

homomorphismy, : Ko(mH) — Z[y*!] (and similarly for MHT,, and
MHT, ).



454 DRG SCHIRMANN

Themotivic Chern clas€, (Z) and themotivic Hirzebruch clasd),«(Z) of a
complex algebraic variety are defined by

Cy(Z):=MHC,(QZ]) and Ty«(Z):=MHT,:(QZ). (5-8)

Similarly, if U is a puren-dimensional complex algebraic manifold ahds a
local system orU underlying a good variation of mixed Hodge structugs
we define thewisted motivic Chern and Hirzebruch characteristic clesby
(compare [12; 13; 35])

Cy(U; L) :=MHC, (L)) and T).(U;L):=MHT,.(£H]), (5-9)

where£H [n] is the smooth mixed Hodge module brwith underlying perverse
sheafL[n]. Assume, in addition, thdf is dense and Zariski open in the complex
algebraic varietyZ. Let ICH, 1CH (L) e MHM(Z) be the (twisted) intersec-
tion homology (mixed) Hodge module éf, whose underlying perverse sheaf is
I1Cz orICz(L), as the case may be. Then we defirtersection characteristic
classesas follows (compare [9; 11; 13; 35]):

ICy(Z) := MHC, ([ICZ[-n]]), (5-10)
ITy(Z) := MHT i ([ICH [-n]]),

and, similarly,

ICy(Z; L) := MHC,,([1CZ (£)[-n])). (5-11)
[Ty (Z; L) := MHT, ([1CF (L)[-n]]).

By definition and Theorem 5.1, the transformatidfidC,, andMHT,,, com-
mute with proper push-forwardThe following normalizationproperty holds
(compare [9]): IfM is smooth, then

Cy(Z2) =hp(T*M)N[Op] and Ty (Z2) =T, (TM)N[M], (5-12)
whereT 7 (T'M) is the cohomology Hirzebruch class &f as in Theorem 2.4.

EXAMPLE 5.7. LetZ be a compact (possibly singular) complex algebraic va-
riety, with k : Z — pt the proper constant map to a point. Then fof
D°MHM(Z) the pushdown

ke (MHC,,(M)) = MHCy (ks M) = x,, ((H*(Z. M)])
is the Hodge genus

X (HYZ M) =Y (~D) dime(GrEH (Z, M) - (-p)P.  (5-13)
In particular: o
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(1) If Z is smooth, then
kxCy(Z) = xy(Z) := Xy ([H*(Z’Q)])
kv Cy(Z; L) = x,(Z: L) := xy ((H*(Z. L)]).
(2) If Z is pure-dimensional, then

kxICy(Z) = Ixy(Z) := x, (TH*(Z,Q)))
k«IC,(Z: L) =Ix,(Z: L) = xy (IH*(Z.L))]).
Note that, forZ compact,

Ix-1(Z) = x(IH*(Z: Q)]

is theintersection(co)homology Euler characteristiof Z, whereas, foZ pro-
jective,

Ix(Z) = sgn(IH*(Z,Q))
is the intersection(co)homology signaturef Z, introduced by Goresky and
MacPherson [25]. In fact this follows as in the smooth confexm Saito’s
relative version of the Hodge index theorem for intersectohomology [39,
Theorem 5.3.2]. Finallyyo(Z) and I xo(Z) are two possible extensions to
singular varieties of tharithmetic genus Here it makes sense to take= 0,
since one has, by Example 5.2,

kx ICy(Z) = Ix,(Z) € Zy.

It is conjectured that, for a puredimensional compact variety,

ITy,(2) £ Lu(Z) € Hyu(Z,Q)

is the Goresky—MacPherson homolofiyclass [25] of the Witt space’; see
[9, Remark 5.4]. Similarly one should expect for a pure-disienal compact
variety Z that

a(IC\(2)) = A(Z) € KOP(2)[L] @ KOP(2)[1] ~ KP(2)[1]. (5-14)

wherex : Go(Z) — KBOP(Z ) is the K -theoretical Riemann—Roch transformation
of Baum, Fulton, and MacPherson [6], ahdZ) is theSullivan clas®f the Witt
spaceZ (compare with [3] in these proceedings). These conjectacgtlities
are true for a smootlr, or more generally for a pure-dimensional compact
complex algebraic varieti with asmall resolutiorof singularitiesf : M — Z,

in which case one hak (Q)) = ICH[-n], so that

IT\«(Z) = fxiT1x(M) = fu Ls(M) = Ly«(Z)
and
a (IC(2)) = [fx (@(C1(M))) = [xAM) = A(Z).
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Here the functorialityf« L« (M) = L«(Z) and fx A(M) = A(Z) for a small
resolution follows, for instance, from [54], which allows® to think of the
characteristic classek, and A as covariant functors for suitable Witt groups
of selfdual constructible sheaf complexes.

In particular, the classeg.Ci (M) and f.T1+(M) do not depend on the
choice of a small resolution. In fact the same functoriadityument applies to

I1Cy(Z2) = [xCy(M) € Go(Z) ® Z]Y],
[Ty (Z) = fi Ty (M) € Hy(Z) @ QLy, (1 4+ )7 '];

compare [11; 35]. Note that in general a complex varigtydoesn't have a
small resolution, and even if it exists, it is in general notque. This type of
independence question were discussed by Totaro [51],ipgintt the relation
to the famouselliptic genus and classggompare also with [32; 53] in these
proceedings). Note that we get such a result forRhtheoretical class

1Cy(Z) = [+Cy(M) € Go(Z) @ Z[y]!

5B. Calculusof characteristic classes. So far we only discussed the functorial-
ity of MHC,, with respect to proper push down, and the correspondingorla
to Hodge genera for compaét coming from the push down for the proper
constant mag : Z — pt. Now we explain some other important functoriality
properties. Their proof is based on the following (see [3%5)], for instance):

ExAMPLE 5.8. LetM be a smooth partial compactification of the complex alge-
braic manifoldM with complementD a normal crossing divisor with smooth ir-
reducible components, with: M — M the open inclusion. LéY = (L, F, W)

be a good variation of mixed Hodge structuresidn Then the filtered de Rham
complex

(DR(jxV), F) of j.VeMHM(M)[-m]C D’MHM(M)

is by Theorem 5.1(2) filtered quasi-isomorphic to the layanic de Rham com-
plex DRiog(£) with the increasing filtrationf_ , := F? (p € Z) associated to
the decreasing’-filtration (3-15). Then

MHC, (j«V) = > (=1)'[H(Gr DRiog(L))] - (—)”
i,p
= " [Grh DRiog(L)] - (—3)”
P
D3 G (L) ®o,, 25 (0g(D))]- (—1)”
i,p

= MHC” (RjxL) N (Ay (2L (log(D))) N[O 37]). (5-15)
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In particular forj =id : M — M we get the followingAtiyah—Meyer type
formula(compare [12; 13; 35]):

MHC, (V) = MHC? (£) N (A, (T* M) N [O]) . (5-16)

REMARK 5.9. The formula (5-15) is a class version of the formula §3-af
Theorem 3.13, which one gets back from (5-15) by pushing dovenpoint for
the proper constant map: M — pt on the compactification/ of M.

Also note that in the equalityx in (5-15) we use the fact that the com-
plex Grf,DRbg(L‘) has coherent (locally free) objects, withy;-linear maps
between them.

The formula (5-15) describessalitting of the characteristic clasdHC,, (V)
into two terms:

(coh) a cohomological terrIHC” (R« L), capturing the information of the
good variation of mixed Hodge structur€s and

(hom) the homological term,, (21 (log(D))) N[O3;] = MHC, (j*Qﬁ),Eap—
turing the information of the underlying space or embedding/ — M.

By Corollary 3.14, the ternMHC” (R« L) has good functorial behavior with
respect to exterior and suitable tensor products, as wérasnooth pullbacks.
For the exterior products one gets similarly (compare [18pBsition 3.2]):

247.5(109(D x M'UM x D)) ~ (£21;(log(D))) K (223, (log(D")))
so that
My (237,57 (109(D x M' UM x D)) N[Ox7,57]
= (Ay (2L (I0g(D))) N[O37]) B (Ay (2%, (log(D))) N[O57.])

for the product of two partial compactifications as in exanpl8. But the
Grothendieck grouKo(MHM(Z)) of mixed Hodge modules on the complex
variety Z is generated by classes of the foyin( j«[V]), with f: M — Z proper
andM, M,V as before. Finally one also has the multiplicativity

(fxfx= S5

for the push down for proper mags: M — Z and f': M’ — Z' on the level of
Grothendieck group%o(MHM(-)) as well as forGy(-) ® Z[y*!]. Then one
gets the following result from Corollary 3.14 and Exampl& &s in [9, Proof
of Corollary 2.1(3)]):
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COROLLARY 5.10 (MULTIPLICATIVITY FOR EXTERIOR PRODUCTY. The
motivic Chern class transformation MB@ommutes with exterior products

MHC, (M X M']) = MHC, (IM]X[M])
= MHC, ((M]) KMHC, ([M]) (5-17)

for M € DPMHM(Z) and M’ € DPMHM(Z").

Next we explain the behavior ®HC,, for smooth pullbacks. Consider a carte-
sian diagram of morphisms of complex algebraic varieties

4

M - Ma
f/

L b

-z,
g

/

with g smooth, f proper andM, M,V as before. Ther’ too is smooth and
/"’ is proper, and one has tlh@se change isomorphism

g = fig”

on the level of Grothendieck group§o(MHM(-)) as well as forGo(-) ®
Z[y*1]. Finally for the induced partial compactificatidd’ of M’ := g’~' (M),
with complementD’ the induced normal crossing divisor with smooth irre-
ducible components, one has a short exact sequence of ectdies ond/’:

0— ¢"*(23;(log(D))) — 24, (log(D") — T — 0,

with T;/ the relative cotangent bundle along the fibers of the smoatiphism
g’. And by base change one hig, = f™(Ty). So for the corresponding
lambda classes we get
Ay (823, (log(D")) = (g™ Ay (823, (I0g(D)))) ® A, (T;)
= (¢ 4y (25;(I0g(D)))) ® S 4y (T}).

Finally (compare also with [9, Proof of Corollary 2.1(4)by using thepro-
jection formula

M(TH® fL() = FL ([ M(THR ()
Go(M') ® Z[y*'] — Go(Z2)) ® Z[y*"]

(5-18)

one gets from Corollary 3.14 and Example 5.8 the followingsamuence:
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COROLLARY 5.11 (VRRFOR SMOOTH PULLBACKS. For a smooth morphism
g : Z' — Z of complex algebraic varieties one has for the motivic Cretass
transformation the following Verdier Riemann—Roch foranul

Ay(Tg) N g*MHC, (IM]) = MHC, (g*[M]) = MHC, ([g"M])  (5-19)
for M € DPMHM(Z). In particular
g*MHC, (IM]) = MHC, (g*[M]) = MHC,,([g" M) (5-20)

for g anétale morphisni.e., a smooth morphism with zero dimensional fibers
or in more topological termdor g an unramified coveringThe most important
special case is that of an open embedding

If moreoverg is also proper, then one gets from Corollary 5.11 and thesptian
formula the following result:

COROLLARY 5.12 (GOING UP AND DOWN). Letg : Z" — Z be a smooth and
proper morphism of complex algebraic varietiéghen one has for the motivic
Chern class transformation the following going up und doamnula

MHC,, (g+g"[M]) = g«xMHCy (g*[M])

= g« (Ay(Tg) N g"MHC, (IM)]))

= (gxAy(T)) NMHC, (M) (5-21)
for M € DPMHM(Z), with

gx (M (T) = D (=D [RIgu(RF, )] 7 € K3o(2)])]
p,9=0
the algebraic cohomology class being gi@s in Example3.5) by
MHCY([Rg«Qz/ ) = Y (=D)7-[Rg«(25,, )] »".
p,9=0
Note that all higher direct image sheavg$ g, (.Qp,/Z) are locally free in this
case sinceg is a smooth and proper morphism of complex algebraic vaseti
(compare with [18])In particular
g+Cy(Z') = (g*ky(T;)) NGy (2),
and
g1Cy(Z) = (g*)\y(T;)) NI1Cy(Z)

for Z and Z' pure-dimensional If, in addition, Z and Z’ are compactwith
k : Z — pt the constant proper maghen

Xy (&¥[M]) = ki g«MHCy (g¥[M]) = (g+Ay (Ty), MHC, ((M])).  (5-22)
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In particular,
X (Z') = (g*)\y(T;)» Cy(Z2)) and Iy,(Z') = (g*)\y(T;)’ 1Cy(2)).

The result of this corollary can also be seen form a diffevéawpoint, by mak-
ing the “going up and down” calculation already on the levieGoothendieck
groups of mixed Hodge modules, where this time one only ngedassumption
that /' : Z' — Z is proper (to get the projection formula):

fe S IMI=Lf M = £QE & £* M) = QF |9[M] € Ko(MHM(Z))

for M € DPMHM(Z). The problem for a singulaZ is then that we do not
have a precise relation between

[/+QZ ] e Ko(MHM(Z)) and [RfxQz/]€ Ko(FMHS (2)).

REMARK 5.13. What is missing up to now is the right notion of a goodatam
(or family) of mixed Hodge structures onsingularcomplex algebraic variety
Z! This class should contain at least

(1) the higher direct image local systemR$ f,Q », (i € Z) for a smooth and
proper morphismf : Z’ — Z of complex algebraic varieties, and

(2) the pullbackg*L of a good variation of mixed Hodge structuréson a
smooth complex algebraic manifoltf under an algebraic morphisg :
Z— M.

At the moment we have to assume tlats smooth (and pure-dimensional), so
as to use Theorem 4.3.

Nevertheless, in case (2) above we can already prove tlenialy interesting
result (compare with [3%4.1] for a similar result foMHT, . in the case when
fis a closed embedding):

COROLLARY 5.14 (MULTIPLICATIVITY ). Let f : Z — N be a morphism of
complex algebraic varietiesvith N smooth and pura-dimensional Then one
has a natural pairing

SN () 2 Ko(VMHE (V) x Ko(MHM(Z)) — Ko(MHM(Z)),
(L] IMD) =[5 (£ @ M.

Here £H [m] is the smooth mixed Hodge modulerwith underlying perverse
sheafL[m]. One also has a similar pairing ofto)homological level

SHNC): KYy(N) R Z[y™' % Go(Z) ® Z[y™ ' > Go(Z) ® Z[y™],
V-V Fy ) = ) @ Fl- .
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And the motivic Chern class transformations MH&nd MHC, commute with
these natural pairings
MHC, (L/*(£) ® M]) = MHC ([/*£L]) N MHC, (IM])
= /*(MHC”([£])) " MHC,,(IM]) (5-23)

for £ € VmHE (N) and M € DPMHM(Z).

For the proof we can once more assume= g, j.V for g : M — Z proper,
with M a pure-dimensional smooth complex algebraic manifgldp — M

a Zariski open inclusion with complemeiit a normal crossing divisor with
smooth irreducible components, and findllya good variation of mixed Hodge
structures onV . Using the projection formula, it is then enough to prove

MHC, ([g*f*(L7) ® jV]) = MHCY ([g*/*L]) N MHC, ([ V).

But g*/* L is a good variation of mixed Hodge structuresn Therefore, by
Example 5.8 and Corollary 3.14(3), both sides are equal to

(MHC” (g**£) ® MHC” (i, V)) N (A, (2L (log(D))) N[O37]).
As an application of the very special case where=id : Z — N is the
identity of a complex algebraic manifold, with
MHC, (QZ]) = 4,(T*Z) N[Oz],
one gets the Atiyah—Meyer type formula (5-16) as well as thewing result
(cf. [12; 13; 35]):

EXAMPLE 5.15 (ATIYAH TYPE FORMULA). Letg : Z/ — Z be a proper mor-
phism of complex algebraic varieties, wi#h smooth and connected. Assume
that for a givenM € D?MHM(Z’) all direct image sheaves

Rigrat(M) (i €Z) are locally constant

for instance g may be a locally trivial fibration andA1 = @5’, orM = IC?,
(for Z’ pure-dimensional), so that they all underlie a good vamatf mixed
Hodge structures. Then one can define

[Rgx ratlM)] =Y (1) - [R' g rat(M)] € Ko(VMHS (2)).
I€Z
with
g+MHC,, ((M]) = MHC, (g+[M])
= MHC” ([Rg« ratM)]) ® (A (T*Z)N[Og]).  (5-24)

Here is a final application:
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EXAMPLE 5.16 (FORMULA OF ATIYAH—MEYER TYPE FOR INTERSECTION
COHOMOLOGY). Let f: Z — N be amorphism of complex algebraic varieties,
with & smooth and pure-dimensional (e.g., a closed embedding). Assume also
Z is purem-dimensional. Then one has for a good variation of mixed Hodg
structuresC on N the equality

ICH (f*0)[-m] ~ f*£H @ ICH[-m] e MHM(Z)[-m] € DPMHM(Z),
so that
ICy(Z; f*L)=MHC? (f*L)NICy(Z) = f* (MHCY (L))NICy(Z). (5-25)
If in addition Z is also compact, then one gets by pushing down to a point:
Ixy(Z: f*L) = (MHC (f*L). I1Cy(Z)). (5-26)

REMARK 5.17. This example should be seen as a Hodge-theoreticabuesf
the corresponding result of Banagl, Cappell, and Shanefdar[the L-classes
L.(ICz(L)) of a selfdualPoincaré local systenl. on all of Z. The special
case of Example 5.16 fof’ a closed inclusion was already explained in [35,
§4.1].

Finally note that all the results of this section can easiydpplied to the
(un)normalizednotivic Hirzebruch class transformation MI;]J(andmy*),

because th@odd class transformationd, : Go(-) — Hs«(-) ® Q of Baum,
Fulton, and MacPherson [5] has the following propertiesr(gare also with
[22, Chapter 18] and [24, Part Il]):

FUNCTORIALITY: The Todd class transformatiamn/, commutes with push-
down f for a proper morphisny : Z — X:

tds (f« ([FD) = fi tdx ([F]))  for [F] e Go(Z).

MULTIPLICATIVITY FOR EXTERIOR PRODUCTS The Todd class transforma-
tion rd, commutes with exterior products:

tde (FRF) = tdi (F)Ridy (F])  for [F] € Go(Z) and[F'] € Go(Z').

VRR FOR SMOOTH PULLBACKS For a smooth morphisng : Z’ — Z of
complex algebraic varieties one has for the Todd class fvamation 7 d.
the following Verdier Riemann—Roch formula:

1d*(Tg) N g tdx([F]) = 1dx(g"[F]) = tdx([g" F]) for [F] € Go(Z).

MULTIPLICATIVITY : Let ch* : Kglg(-) — H*(-) ® Q be the cohomological
Chern characterto the cohomologyH *(-) given by the operational Chow
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ring CH*(-) or the usual cohomologif>*( -, Z) in even degrees. Then one
has the multiplicativity relation

tdx([V ® F) = ch*([V]) Ntd([F])

for [V] € Kglg(Z) and|[F] € Go(Z), with Z a (possible singular) complex

algebraic variety.
5C. Characteristic classes and duality. In this final section we explain the
characteristic class version of the duality formula (2-fbf)the x,-genus. We
also show that the specializationdH T, for y = —1 exists and is equal to the
rationalized MacPherson Chern classof the underlying constructible sheaf
complex. The starting point is the following result [32.4.4]:

THEOREM5.18 (M. SAITO). Let M be a purem-dimensional complex alge-
braic manifold Then one has foM € D?MHM(M) the duality result(for
VASY)

Grf (DR(DM)) = D(Gr¥; DR(M)) € DLy (M). (5-27)
HereD on the left side is the duality of mixed Hodge moduldseresD on the
right is the Grothendieck duality

D = Rhom(-, wpr[m]) : Dioy(M) — DE(M),
with wps = 27 the canonical sheaf o¥/ .

A priori this is a duality for the corresponding analytic f@mology) sheaves.
Since M and DR(M) can be extended to smooth complex algebraic compact-
ification M, one can apply Serre’s GAGA theorem to get the same result als
for the underlying algebraic (cohomology) sheaves.

COROLLARY 5.19 (CHARACTERISTIC CLASSES AND DUALITY). Let Z be
a complex algebraic variety witdualizing complexw?, € Dé’oh(Z), so that
the Grothendieck duality transformatid® = Rhom(-, »?,) induces a duality
involution

D:Gy(Z) — Go(2).
Extend this t0G¢(Z) ® Z[y*'] by y — 1/y. Then the motivic Hodge Chern
class transformation MHE commutes with dualit§p:
MHC,(D(-)) = D(MHC, () : Ko(MHM(Z)) — Go(Z) ® Z[y*']. (5-28)

Note that forZ = pt a point this reduces to the duality formula (2-14) for
the x,-genus. For dualizing complexes and (relative) Grothestddriality we
refer to [26; 17; 33] as well as [24, Par§l7]). Note that forA smooth of pure
dimensiorm, one has

wpm[m] ~ wy, € Db (M).
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Moreover, for a proper morphisni : X — Z of complex algebraic varieties
one has the relative Grothendieck duality isomorphism

Rfx (Rhom(F, wy)) =~ Rhom(Rf F,w%) for F € D5, (X),

coh

so that the duality involution
D:Go(2) ®ZIy*' = Go(2) @ Z[y*']

commutes with proper push down. Sinkg(MHM (Z)) is generated by classes
J«[M], with 1 : M — Z proper morphism from a pure dimensional complex
algebraic manifold/ (and. M € MHM(M)), itis enough to prove (5-28) in the
caseZ = M a pure dimensional complex algebraic manifold, in whichedas
directly follows from Saito’s result (5-27).

For a systematic study of the behavior of the Grothendiecddityutrans-
formationD : Go(Z) — Go(Z) with respect to exterior products and smooth
pullback, we refer to [23] and [24, Par§l7], where a corresponding “bivariant”
result is stated. Here we only point out that the dualities’ andD commute
with the pairings of Corollary 5.14:

A ((H)N@E) =D (f*()N()):
K3g(N) @ Z[yEx Go(Z2) @ ZIy*' — Go(2) @ Z[y =],

and similarly

(5-29)

()@ =D(f*()N()):
Ko(VMmHZ (N)) x Ko(MHM(Z)) — Ko(MHM(Z)).
Here the last equality needs only be checked for cld$€&s(£)], with S € Z
irreducible of dimensio and £ a good variation of pure Hodge structures on

a Zariski dense open smooth subsebf S, andV a good variation of pure
Hodge structures ofv. But then the claim follows from

TV ®ICs(L) = ICs(f* (MU & L)

and (4-3) in the form

D(ICs(f*WN|U ® L)) = ICs((f*(V)|U & £)¥)(d)

~ ICs(f*(VV)|U ® LY)(d).

REMARK 5.20. The Todd class transformatiod, : Go(-) — H«(-) ® Q,
too, commutes with duality (compare with [22, Example 1B3and [24, Part
I, Corollary 7.2.3]) if the duality involutiorD : Hy(-) @ Q — Hx(-) ® Q in
homology is defined aB := (—1)!-id on H;(-) ® Q. So also the unnormalized

Hirzebruch class transformatidiH T, commutes with duality, if this duality
in homology is extended téf, (-) @ Q[y*!] by y+1/y.

(5-30)
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As a final result of this paper, we have:

PROPOSITIONS.21.Let Z be a complex algebraic varietgand considefM] e
Ko(MHM(Z)). Then

MHT,.(M]) € Hi(Z) ® Q™' C Hu(Z) @ Q™" (1+ 1],
so that the specialization MHT; , ([M]) € H«(Z) ® Q for y = —1 is defined
Then
MHT_ 1, (IM]) = cx([rattM)]) =: cx(xstar([ratiM)])) € H«(Z) ® Q (5-31)

is the rationalized MacPherson Chern class of the undegly@onstructible
sheaf complexat(M) (or the constructible functionsiak([rat(M)])). In par-
ticular

MHT_1«(DIM]) = MHT_,+([DM]) = MHT_y+([M]). (5-32)

Hereystakis the transformation form the diagram (4-13). Similarlitlze trans-
formations from this diagram (4-13), likesiak @and rat, commute with dualitip.
This implies already the last claim, sinée= id for algebraically constructible
functions (compare [4%,6.0.6]). So we only need to prove the first part of the
proposition. SincéMHT_;, andc, both commute with proper push down, we
can assum@M] = [, V], with Z = M a smooth pure-dimensional complex
algebraic manifold, : M — M a Zariski open inclusion with complement

a normal crossing divisor with smooth irreducible compdseandV a good
variation of mixed Hodge structures di. So

MHT . ([ V]) = ch* (MHC? (R} L) "MHT 1 (1« Qi7])) € Hx (M) QL *']

by (5-15) and thenultiplicativity of the Todd class transformatiod,. Introduce
thetwisted Chern character

chH): KQy() @ Qy* ' - H* (1) @ Q™ '],
V] 37 Zchi([V]) (14 )y, (5-33)

i=0
with ch?([V]) € H (-) ® Q thei-th component of/*. Then one easily gets
MHT ([ VD) = ch T (MHC? (R} £) N MHT 1 ([ Q37 ])
€ Ho(M)®Qy™", (1+»)7"].
But [xQ2] = xndg(jxlidas]) is by (4-15) in the image of
Xhdg : Mo(var/M) = Ko(var/M)[L™"]— Ko(MHM(M)).

So forMHTy*([j*Qﬁ]) we can apply the following special case of Proposition
5.21:
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LEMMA 5.22.The transformation
Tyw = MHT 1 0 xhag: Mo(Var/Z) — Ho(Z) ® QyE", (1 + )]
takes values it (Z) ® Q[y*!] € H«(Z) @ Q[y*!, (1 + )~ 1], with
T_1x=T_1x0D=cxocan: My(var/Z) — H«(Z) R Q.

Assuming this lemma, we can derive from the following comative diagram
that the specializatioMHT_1, ([« V]) for y = —1 exists:

H*()®@QUyE x He () @ QDyEL (14 )71 — o Hu(-) @ QyEL (14 3)71]

incl.]‘ Tincl.

H*()®Q)E! x Ho()®Qy*! ]  —1  Hu()eQDE!]
y=—1J J'y=—1
H*(-)®Qx He(-)®Q SELLEN He()®0Q.

Moreoverch(1+?) (MHCY (R« L)) specializes foy = —1 just to
k(L) =ch®(L]) e H* (M) ®Q,
with rk(L) the rank of the local systerh on M. So we get
MHT 1 ([« V]) = rK(L) - cx (jxar) = ex(tK(L) - ju 1) € He(M) @ Q,

with k(L) - j«1ar = xstax(rat([ 7« V])).

It remains to prove Lemma 5.22. But all transformationgy, D, ¢« and
can—commute with pushdown for proper maps. Moreover, bglugsn of
singularities and additivityM, (var / Z) is generated by classgg: N — Z]-L¥
(k € Z), with N smooth pure:-dimensional andf proper. So it is enough to
prove thatT . (fidx]- L) € Hi(N) ® Q[y*!], with

Tys(lidn]-1LF) = Ty (D(lidn]-15)) = cx (can(idn] - 19)).

But by thenormalization conditiorfor our characteristic class transforma-
tions one has (compare [9]):

Ty«(lidn]) = T,/ (TN) N[N] € H(N) ® Q[y],
with 7_ 1 ([idy]) = ¢*(TN) N [N] = cx(15). Similarly
Ty« (L) = x,([(Q(-=D) =—y and cadL]) = 1,;,
so the multiplicativity of7, for exterior products (with a point space) yields

Ty«(lidy]- LK) € Ho(N) @ Q[p*!].
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Moreover
T_1x(lidy]-LF) = ex(1y) = ex(can(idy] - LY)).
Finally D([idy]- LX) = [idx]- LK~ by the definition ofD, so that
T_1x(fidn]- LX) = 714 (D(lidn] - LY)).

Acknowledgements

This paper is an extended version of an expository talk giatehe workshop
“Topology of Stratified Spaces” at MSRI in September 200&alnk the orga-
nizers (G. Friedman, E. Hunsicker, A. Libgober and L. Maxiar)the invitation
to this workshop. | also would like to thank S. Cappell, L. Nevand S. Yokura
for some discussions on the subject of this paper.

References
[1] M. F. Atiyah, The signature of fiber bundlggp. 73—-84 inGlobal analysis: papers
in honor of K. Kodaira Univ. Tokyo Press, Tokyo, 1969.
[2] M. Banagl,Topological invariants of stratified spaceSpringer, Berlin, 2007.

[3] M. Banagl, The signature of singular spaces and its refinements to géined
homology theoriepp. 227-263 in this volume.

[4] M. Banagl, S. E. Cappell, J. L. Shanes@pmputing twisted signatures arid-
classes of stratified spacddath. Ann. 326 (2003), 589-623.

[5] P. Baum, W. Fulton, R. MacPhersoRjemann—Roch for singular varietieBubl.
IHES 45 (1975), 101-145.

[6] P. Baum, W. Fulton, R. MacPhersdRiemann—Roch and topologic&l-theory for
singular varieties Acta Math. 143 (1979), 155-192.

[7] A. A. Beilinson, J. Bernstein, P. Delign€aisceaux perversAstérisque 100, Soc.
Math. de France, Paris, 1982.

[8] F. Bittner, The universal Euler characteristic for varieties of chaexistic zerqg
Comp. Math. 140 (2004), 1011-1032.

[9] J. P. Brasselet, J. Sahmann, S. YokuraHirzebruch classes and motivic Chern
classes of singular spacek Topol. Anal. 2 (2010), 1-55.

[10] S. E. Cappell, L. G. Maxim, J. L. Shanesdtyler characteristics of algebraic
varieties Comm. Pure Appl. Math. 61 (2008), 409-421.

[11] S. E. Cappell, L. G. Maxim, J. L. Shanest#inpdge genera of algebraic varieties,
I, Comm. Pure Appl. Math. 61 (2008), 422—-449.

[12] S. E. Cappell, A. Libgober, L. G. Maxim, J. L. Shanestindge genera of
algebraic varieties, || Math. Annalen 345 (2009), 925-972.



468 DRG SCHIRMANN

[13] S. E. Cappell, A. Libgober, L. G. Maxim, J. L. Shanesétodge genera and
characteristic classes of complex algebraic varigtlElectron. Res. Announc. Math.
Sci. 15 (2008), 1-7.

[14] S. E. Cappell, J. L. Shaneso8iratifiable maps and topological invariants.
Amer. Math. Soc. 4 (1991), 521-551

[15] E. Cattani, A. Kaplan, W. Schmid[?> and intersection cohomologies for a
polarizable variation of Hodge structurénv. Math. 87 (1987), 217-252.

[16] S. S. Chern, F. Hirzebruch, J.-P. Sei@# the index of a fibered manifql&roc.
Amer. Math. Soc. 8 (1957), 587-596.

[17] B. Conrad,Grothendieck Duality and Base Chandecture Notes in Mathemat-
ics, Vol. 1750. Springer, 2000.

[18] P. Deligne, Théoreme de Lefschetz et @&ies de @gerérescence de suites spec-
trales Publ. Math. IHES 35 (1968), 107-126.

[19] P. Deligne,Equation diférentielles a point singularégulier, Springer, Berlin,
1969.

[20] P. Deligne, Théorie de Hodge |IPubl. Math. IHES 40 (1971), 5-58.
[21] P. Deligne,Théorie de Hodge IlIPubl. Math. IHES 44 (1974), 5-78.
[22] W. Fulton,Intersection theorySpringer, 1981.

[23] W. Fulton, L. Lang Riemann—Roch algebr&pringer, New York, (1985).

[24] W. Fulton, R. MacPhersorCategorical framework for the study of singular
spacesMemoirs Amer. Math. Soc. 243 (1981).

[25] M. Goresky, R. MacPhersoimtersection homology Jlinvent. Math. 71 (1983),
77-129.

[26] R. HartshorneResidues and dualityLecture Notes in Mathematics, Vol. 20.
Springer, New York, 1966.

[27] F. HirzebruchTopological methods in algebraic geometBpringer, Berlin, 1966.

[28] M. Kashiwara A study of a variation of mixed Hodge structur@ubl. RIMS 22
(1986), 991-1024.

[29] M. Kashiwara, T. KawaiThe Poincaé lemma for variations of polarized Hodge
structures Publ. RIMS 23 (1987), 345—-407.

[30] M. Kashiwara, P. Schapir&heaves on manifoldSpringer, Berlin, 1990.

[31] G. KennedyMacPherson’s Chern classes of singular varieti€smm. Alg. 18
(1990), 2821-2839.

[32] A. Libgober, Elliptic genera, real algebraic varieties and quasi-Jacdbrms,
pp. 99-125 in these proceedings.

[33] J. Lipmann, M. Hashimotd;oundations of Grothendieck Duality for Diagrams of
Schemed_ecture Notes in Mathematics, Vol. 1960. Springer, 2009.

[34] R. MacPhersorChern classes for singular algebraic varietiggn. of Math. (2)
100 (1974), 423-432.



CHARACTERISTIC CLASSES OF MIXED HODGE MODULES 469

[35] L. Maxim, J. SclirmannHodge-theoretic Atiyah—Meyer formulae and the strat-
ified multiplicative propertypp. 145-167 in “Singularities I: algebraic and analytic
aspects”, Contemp. Math. 474 (2008).

[36] W. Meyer, Die Signatur von lokalen Koeffizientensystemen und Féseidin
Bonner Mathematische Schriften 53, (UnivaiisiBonn), 1972.

[37] C. PetersTata lectures on motivic aspects of Hodge thehamscture Notes of the
Tata Institute of Fundamental Research, 2010.

[38] C. Peters, J. Steenbrindjixed Hodge structuregrgebnisse der Math. (3) Vol. 52,
Springer, Berlin, 2008.

[39] M. Saito,Modules de Hodge polarisableBubl. RIMS 24 (1988), 849-995.
[40] M. Saito,Mixed Hodge module®ubl. RIMS 26 (1990), 221-333.

[41] M. Saito,Introduction to mixed Hodge modulgsp. 145-162 in Actes du Colloque
de Theorie de Hodge (Luminy, 1987), Asisque Vol. 179-180 (1989).

[42] M. Saito,On Kollar's Conjecture Proceedings of Symposia in Pure Mathematics
52, Part 2 (1991), 509-517.

[43] M. Saito,On the formalism of mixed sheayeseprint, arXiv:math/0611597.

[44] M. Saito,Mixed Hodge complexes on algebraic varietigsth. Ann. 316 (2000),
283-331.

[45] C. SabbahHodge theory, singularities and-modules preprint (2007), home-
page of the author.

[46] W. SchmidVariation of Hodge structures: the singularities of theipermapping
Inv. Math. 22 (1973), 211-319.

[47] J. Schirmann,Topology of singular spaces and constructible sheaviemografie
Matematyczne, Vol.63, Birkduser, Basel, 2003.

[48] J. Sclurmann, S. YokuraA survey of characteristic classes of singular spaces
pp. 865-952 in “Singularity theory” (Marseille, 2005), &l by D. Cleniot et al.,
World Scientific, Singapore, 2007.

[49] P. H. Siegel Witt spaces: A geometric cycle theory f&0O-homology at odd
primes Amer. J. Math. 105 (1983), 1067-1105.

[50] J. Steenbrink, S. ZuckeKariations of mixed Hodge structurebwv. Math. 80
(1983).

[51] B. Totaro,Chern numbers for singular varieties and elliptic homolpgyn. of
Math. (2) 151 (2000), 757—791.

[52] C. Voisin,Hodge theory and complex algebraic geometi@ambridge Studies in
Advanced Mathematics 76, Cambridge University Press, 2002

[53] R. Waelder,Rigidity of differential operators and Chern numbers ofgsilar
spacespp. 35-54 in this volume.

[54] J. Woolf, Witt groups of sheaves on topological spgggsmment. Math. Helv. 83
(2008), 289-326.



470 DRG SCHIRMANN

[55] S. YokuraMotivic characteristic classepp. 375—-418 in these proceedings.

[56] S. Zucker,Hodge theory with degenerating coefficienis;-cohomology in the
Poincae metric Ann. Math. 109 (1979), 415-476.

JORG SCHURMANN

MATHEMATISCHE INSTITUT

UNIVERSITAT MUNSTER

EINSTEINSTR 62

48149 MINSTER

GERMANY
jschuerm@math.uni-muenster.de



