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ABSTRACT. This paper is an extended version of an expository talk given at
the workshop “Topology of Stratified Spaces” at MSRI in September 2008.
It gives an introduction and overview about recent developments on the in-
teraction of the theories of characteristic classes and mixed Hodge theory for
singular spaces in the complex algebraic context.

It uses M. Saito’s deep theory of mixed Hodge modules as a black box,
thinking about them as “constructible or perverse sheaves of Hodge struc-
tures”, having the same functorial calculus of Grothendieck functors. For
the “constant Hodge sheaf”, one gets the “motivic characteristic classes” of
Brasselet, Scḧurmann, and Yokura, whereas the classes of the “intersection
homology Hodge sheaf” were studied by Cappell, Maxim, and Shaneson. The
classes associated to “good” variation of mixed Hodge structures where studied
in connection with understanding the monodromy action by these three authors
together with Libgober, and also by the author.

There are two versions of these characteristic classes. TheK-theoretical
classes capture information about the graded pieces of the filtered de Rham
complex of the filteredD-module underlying a mixed Hodge module. Appli-
cation of a suitable Todd class transformation then gives classes in homology.
These classes are functorial for proper pushdown and exterior products, to-
gether with some other properties one would expect for a satisfactory theory
of characteristic classes for singular spaces.

For “good” variation of mixed Hodge structures they have an explicit clas-
sical description in terms of “logarithmic de Rham complexes”. On a point
space they correspond to a specialization of the Hodge polynomial of a mixed
Hodge structure, which one gets by forgetting the weight filtration.

We also indicate some relations with other subjects of the conference, like
index theorems, signature,L-classes, elliptic genera and motivic characteristic
classes for singular spaces.
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1. Introduction

This paper gives an introduction and overview about recent developments on
the interaction of the theories of characteristic classes and mixed Hodge theory
for singular spaces in the complex algebraic context. The reader is not assumed
to have a background on any of these subjects, and the paper can also be used
as a bridge for communication between researchers on one of these subjects.

General references for the theory of characteristic classes of singular spaces
are the survey [48] and the paper [55] in these proceedings. As references for
mixed Hodge theory one can use [38; 52], as well as the nice paper [37] for
explaining the motivic viewpoint to mixed Hodge theory. Finally as an intro-
duction to M. Saito’s deep theory of mixed Hodge modules one can use [38,
Chapter 14], [41] as well as the introduction [45].

The theory of mixed Hodge modules is used here more or less as ablack box;
we think about them as constructible or perverse sheaves of Hodge structures,
having the same functorial calculus of Grothendieck functors. The underlying
theory of constructible and perverse sheaves can be found in[7; 30; 47].

For the “constant Hodge sheaf”QH
Z one gets the “motivic characteristic

classes” of Brasselet, Schürmann, and Yokura [9], as explained in these pro-
ceedings [55]. The classes of the “intersection homology Hodge sheaf”IC H

Z

were studied by Cappell, Maxim, and Shaneson in [10; 11]. Also, the classes
associated to “good” variation of mixed Hodge structures where studied via
Atiyah–Meyer type formulae by Cappell, Libgober, Maxim, and Shaneson in
[12; 13]. For a summary compare also with [35].

There are two versions of these characteristic classes, themotivic Chern
class transformation MHCy and themotivic Hirzebruch class transformation
MHTy�. TheK-theoretical classesMHCy capture information about the graded
pieces of the filtered de Rham complex of the filteredD-module underlying a
mixed Hodge module. Application of a suitable twistingtd.1Cy/ of the Todd
class transformationtd� of Baum, Fulton, and MacPherson [5; 22] then gives
the classesMHTy�D td.1Cy/ıMHCy in homology. It is themotivic Hirzebruch
class transformation MHTy�, which unifies three concepts:
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.yD�1/ the (rationalized)Chern class transformationc� of MacPherson [34];

.y D 0/ theTodd class transformationtd� of Baum–Fulton–MacPherson [5];

.y D 1/ theL-class transformationL� of Cappell and Shaneson [14].

(Compare with [9; 48] and also with [55] in these proceedings.) But in this
paper we focus on theK-theoretical classesMHCy , because these imply then
also the corresponding results forMHTy� just by application of the (twisted)
Todd class transformation. So themotivic Chern class transformation MHCy

studied here is really the basic one!

Here we explain the functorial calculus of these classes, first stating in a very
precise form the key results used from Saito’s theory of mixed Hodge modules,
and then explaining how to get from this the basic results about the motivic
Chern class transformationMHCy . These results are illustrated by many inter-
esting examples. For the convenience of the reader, the mostgeneral results
are only stated near the end of the paper. In fact, while most of the paper is a
detailed survey of theK-theoretical version of the theory as developed in [9; 12;
13; 35], it is this last section that contains new results on the important functorial
properties of these characteristic classes. The first two sections do not use mixed
Hodge modules and are formulated in the now classical language of (variation
of) mixed Hodge structures. Here is the plan of the paper:

SECTION 2 introduces pure and mixed Hodge structures and the corresponding
Hodge genera, such as theE-polynomial and the�y-genus. These are suit-
able generating functions of Hodge numbers with�y using only the Hodge
filtration F , whereas theE-polynomial also uses the weight filtration. We
also carefully explain why only the�y-genus can be further generalized to
characteristic classes, i.e., why one has to forget the weight filtration for ap-
plications to characteristic classes.

SECTION 3 motivates and explains the notion of a variation (or family) of pure
and mixed Hodge structures over a smooth (or maybe singular)base. Basic
examples come from the cohomology of the fibers of a family of complex al-
gebraic varieties. We also introduce the notion of a “good” variation of mixed
Hodge structures on a complex algebraic manifoldM , to shorten the notion
for a graded polarizable variation of mixed Hodge structures onM that isad-
missiblein the sense of Steenbrink and Zucker [50] and Kashiwara [28], with
quasi-unipotent monodromyat infinity, i.e., with respect to a compactification
M of M by a compact complex algebraic manifoldM , with complement
D WDM nM a normal crossing divisor with smooth irreducible components.
Later on these will give the basic example of so-called “smooth” mixed Hodge
modules. And for these good variations we introduce a simplecohomological
characteristic class transformationMHCy , which behaves nicely with respect



422 J̈ORG SCḦURMANN

to smooth pullback, duality and (exterior) products. As a first approximation
to more general mixed Hodge modules and their characteristic classes, we
also study in detail functorial properties of the canonicalDeligne extension
across a normal crossing divisorD at infinity (as above), leading tocohomo-
logical characteristic classesMHCy.j�. � // defined in terms of “logarithmic
de Rham complexes”. These classes of good variations have been studied
in detail in [12; 13; 35], and most results described here arenew functorial
reformulations of the results from these sources.

SECTION 4 starts with an introduction to Saito’s functorial theory of algebraic
mixed Hodge modules, explaining its power in many examples,including
how to get a pure Hodge structure on the global intersection cohomology
IH �.Z/ of a compact complex algebraic varietyZ. From this we deduce
the basic calculus of Grothendieck groupsK0.MHM. � // of mixed Hodge
modules needed for our motivic Chern class transformationMHCy . We also
explain the relation to the motivic viewpoint coming from relative Grothen-
dieck groups of complex algebraic varieties.

SECTION 5.1 is devoted to the definition of our motivic characteristic homology
class transformationsMHCy and MHTy� for mixed Hodge modules. By
Saito’s theory they commute with push down for proper morphisms, and on
a compact space one gets back the corresponding�y-genus by pushing down
to a point, i.e., by taking the degree of these characteristic homology classes.

SECTIONS5.2 AND 5.3 finally explain other important functoriality properties:

(1) multiplicativity for exterior products;

(2) the behavior under smooth pullback given by a Verdier Riemann–Roch
formula;

(3) a “going up and down” formula for proper smooth morphisms;

(4) multiplicativity betweenMHCy andMHCy for a suitable (co)homological
pairing in the context of a morphism with smooth target (as special cases
one gets interesting Atiyah and Atiyah–Meyer type formulae, as studied in
[12; 13; 35]);

(5) the relation betweenMHCy and duality, i.e., the Grothendieck duality
transformation for coherent sheaves and Verdier duality for mixed Hodge
modules;

(6) the identification ofMHT�1� with the (rationalized) Chern class trans-
formation c� ˝ Q of MacPherson for the underlying constructible sheaf
complex or function.

Note that such a functorial calculus is expected for any goodtheory of functorial
characteristic classes of singular spaces (compare [9; 48]):
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� for MacPherson’s Chern class transformationc� compare with [9; 31; 34;
48];

� for the Baum–Fulton–MacPherson Todd class transformationtd� compare
with [5; 6; 9; 22; 24; 48];

� for Cappell and Shaneson’sL-class transformationL� compare with [2; 3;
4; 9; 14; 48; 49; 54].

The counterpart of mixed Hodge modules in these theories areconstructible
functions and sheaves (forc�), coherent sheaves (fortd�) and selfdual perverse
or constructible sheaf complexes (forL�). The cohomological counterpart of the
smooth mixed Hodge modules (i.e., good variation of mixed Hodge structures)
are locally constant functions and sheaves (forc�), locally free coherent sheaves
or vector bundles (for the Chern characterch�) and selfdual local systems (for
a twisted Chern character of theKO-classes of Meyer [36]).

In this paper we concentrate mainly on pointing out the relation and analogy
to theL-class story related to important signature invariants, because these are
the subject of many other talks from the conference given in more topological
terms. Finally also some relations to other themes of the conference, like index
theorems,L2-cohomology, elliptic genera and motivic characteristic classes for
singular spaces, will be indicated.

2. Hodge structures and genera

2A. Pure Hodge structures. Let M be a compactKähler manifold(e.g., a
complex projective manifold) of complex dimensionm. By classical Hodge
theory one gets the decomposition (for0� n� 2m)

H n.M; C/D
M

pCqDn

H p;q.M / (2-1)

of the complex cohomology ofM into the spacesH p;q.M / of harmonic forms
of type .p; q/. This decomposition doesn’t depend on the choice of a Kähler
form (or metric) onM , and for a complex algebraic manifoldM it is of alge-
braic nature. Here it is more natural to work with theHodge filtration

F i.M / WD
M

p�i

H p;q.M / (2-2)

so thatH p;q.M /DFp.M /\Fq.M /, with Fq.M / the complex conjugate of
Fq.M / with respect to the real structureH n.M; C/DH n.M; R/˝C. If

˝�

M
D ŒO

M

d
����! � � �

d
����! ˝m

M
�
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denotes the usual holomorphic de Rham complex (withOM in degree zero),
then one gets

H �.M; C/DH �.M; ˝�

M /

by the holomorphic Poincaré lemma, and the Hodge filtration is induced from
the “stupid” decreasing filtration

Fp˝�

M
D Œ0 ����! � � � 0 ����! ˝

p
M

d
����! � � �

d
����! ˝m

M
�: (2-3)

More precisely, the correspondingHodge to de Rham spectral sequencedegen-
erates atE1, with

E
p;q
1
DH q.M; ˝

p
M

/'H p;q.M /: (2-4)

The same results are true for a compact complex manifoldM that is only
bimeromorphic to a K̈ahler manifold(compare [38, Corollary 2.30], for ex-
ample). This is especially true for a compact complex algebraic manifoldM .
Moreover in this case one can calculate by Serre’s GAGA theoremH �.M; ˝�

M
/

also with the algebraic (filtered) de Rham complex in the Zariski topology.

Abstracting these properties, one can say theH n.M; Q/ gets an inducedpure
Hodge structure of weightn in the following sense:

DEFINITION 2.1. LetV be a finite-dimensional rational vector space. A (ratio-
nal) Hodge structure of weightn on V is a decomposition

VC WD V ˝Q C D
M

pCqDn

V p;q; with V q;p D V p;q (Hodge decomposition).

In terms of the (decreasing)Hodge filtrationF iVC WD
L

p�i V p;q, this is equiv-
alent to the condition

FpV \FqV D f0g wheneverpC q D nC 1 (n-opposed filtration).

ThenV p;q D Fp \Fq, with hp;q.V / WD dim.V p;q/ the correspondingHodge
number.

If V; V 0 are rational vector spaces with Hodge structures of weightn andm,
then V ˝ V 0 gets an induced Hodge structure of weightnCm, with Hodge
filtration

Fk.V ˝V 0/C WD
M

iCjDk

F iVC ˝F jV 0
C : (2-5)

Similarly the dual vector spaceV _ gets an induced Hodge structure of weight
�n, with

Fk.V _
C / WD .F�kVC/_: (2-6)
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A basic example is theTate Hodge structureof weight�2n 2 Z given by the
one-dimensional rational vector space

Q.n/ WD .2� i/n �Q � C; with Q.n/C D .Q.n/C/�n;�n.

Then integration defines an isomorphism

H 2.P 1.C/; Q/'Q.�1/;

with Q.�n/DQ.�1/˝n, Q.1/DQ.�1/_ andQ.n/DQ.1/˝n for n > 0.

DEFINITION 2.2. Apolarizationof a rational Hodge structureV of weightn is
a rational.�1/n-symmetric bilinear formS on V such that

S.Fp; Fn�pC1/D 0 for all p

and

ip�qS.u; Nu/ > 0 for all nonzerou 2 V p;q :

So forn evenone gets in particular

.�1/p�n=2S.u; Nu/ > 0 for all q and all nonzerou 2 V p;q : (2-7)

V is calledpolarizableif such a polarization exists.

For example, the cohomologyH n.M; Q/ of a projective manifold is polarizable
by the choice of a suitable K̈ahler form! Also note that a polarization of a rational
Hodge structureV of weightn induces an isomorphism of Hodge structures (of
weightn):

V ' V _.�n/ WD V _˝Q Q.�n/:

So if we choose the isomorphism of rational vector spaces

Q.�n/D .2� i/�n �Q 'Q;

then a polarization induces a.�1/n-symmetric duality isomorphismV ' V _.

2B. Mixed Hodge structures. The cohomology (with compact support) of
a singular or noncompact complex algebraic variety, denoted by H n

.c/
.X; Q/,

can’t have a pure Hodge structure in general, but by Deligne’s work [20; 21] it
carries a canonical functorial (graded polarizable)mixed Hodge structurein the
following sense:

DEFINITION 2.3. A finite-dimensional rational vector spaceV has a mixed
Hodge structure if there is a (finite) increasingweight filtrationW DW� on V

(by rational subvector spaces), and a (finite) decreasing Hodge filtrationF DF �

on VC , such thatF induces a Hodge structure of weightn on GrW
n V WD

WnV =Wn�1V for all n. Such a mixed Hodge structure is called (graded) po-
larizable if each graded pieceGrW

n V is polarizable.
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A morphism of mixed Hodge structures is just a homomorphism of rational
vector spaces compatible with both filtrations. Such a morphism is thenstrictly
compatible with both filtrations, so that the categorymHs.p/ of (graded po-
larizable) mixed Hodge structures is an abelian category, with GrW

� ; Gr�
F and

Gr�
F GrW

� preserving short exact sequences. The categorymHs.p/ is also en-
dowed with a tensor product̋ and a duality. � /_, where the corresponding
Hodge and weight filtrations are defined as in (2-5) and (2-6).So for a complex
algebraic varietyX one can consider its cohomology class

ŒH �
.c/.X /� WD

X

i

.�1/i � ŒH i
.c/.X; Q/� 2K0.mHs.p//

in the Grothendieck groupK0.mHs.p// of (graded polarizable) mixed Hodge
structures. The functoriality of Deligne’s mixed Hodge structure means, in
particular, that for a closed complex algebraic subvarietyY � X , with open
complementU DXnY , the corresponding long exact cohomology sequence

� � �H i
c .U; Q/!H i

c .X; Q/!H i
c .Y; Q/! � � � (2-8)

is an exact sequence of mixed Hodge structures. Similarly, for complex alge-
braic varietiesX; Z, the Künneth isomorphism

H �
c .X; Q/˝H �

c .Z; Q/'H �
c .X �Z; Q/ (2-9)

is an isomorphism of mixed Hodge structures. Let us denote byK0.var=pt/ the
Grothendieck group of complex algebraic varieties, i.e., the free abelian group of
isomorphism classesŒX � of such varieties divided out by theadditivity relation

ŒX �D ŒY �C ŒXnY �

for Y � X a closed complex subvariety. This is then a commutative ringwith
addition resp. multiplication induced by the disjoint union resp. the product of
varieties. So by (2-8) and (2-9) we get an induced ring homomorphism

�Hdg WK0.var=pt/!K0.mHs.p//I ŒX �‘ ŒH �
c .X /�: (2-10)

2C. Hodge genera. TheE-polynomial

E.V / WD
X

p;q

hp;q.V / �upvq 2 ZŒu˙1; v˙1� (2-11)

of a rational mixed Hodge structureV with Hodge numbers

hp;q.V / WD dimC Grp
F

GrW
pCq.VC/;

induces aring homomorphism

E WK0.mHs.p//! ZŒu˙1; v˙1�; with E.Q.�1//D uv.
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Note thatE.V /.u; v/ is symmetricin u andv, sinceh.V /D
P

n h.WnV / and
V q;p D V p;q for a pure Hodge structure. With respect toduality one has in
addition the relation

E.V _/.u; v/DE.V /.u�1; v�1/: (2-12)

Later on we will be mainly interested in the specialized ringhomomorphism

�y WDE.�y; 1/ WK0.mHs.p//! ZŒy˙1�; with �y.Q.�1//D�y,

defined by

�y.V / WD
X

p

dimC.Grp
F

.VC// � .�y/p: (2-13)

So here one uses only the Hodge and forgets the weight filtration of a mixed
Hodge structure. With respect toduality one has then the relation

�y.V _/D �1=y.V /: (2-14)

Note that��1.V /D dim.V / and for a pure polarized Hodge structureV of
weightn one has by�1.V /D .�1/n�1.V _/D .�1/n�1.V / and (2-7):

�1.V /D

�

0 for n odd,
sgnV for n even,

where sgnV is thesignatureof the induced symmetric bilinear form.�1/n=2S

on V . A similar but deeper result is the famousHodge index theorem(compare
[52, Theorem 6.3.3], for example):

�1.ŒH �.M /�/D sgn.H m.M; Q//

for M a compact K̈ahler manifold of even complex dimensionm D 2n. Here
the right side denotes the signature of the symmetric intersection pairing

H m.M; Q/�H m.M; Q/
[

����! H 2m.M; Q/'Q:

The advantage of�y compared toE (and the use of�y in the definition)
comes from the following question:

Let E.X / WD E.ŒH �.X /�/ for X a complex algebraic variety. For M a
compact complex algebraic manifold one gets by(2-4):

E.M /D
X

p;q�0

.�1/pCq �dimC H q.M; ˝
p
M

/ �upvq:

Is there a(normalized multiplicative) characteristic class

cl� W Iso.C �VB.M //!H �.M /Œu˙1; v˙1�
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of complex vector bundles such that the E-polynomial is a characteristic number
in the sense that

E.M /D ].M / WD deg.cl�.TM /\ ŒM �/ 2H �.pt/Œu˙1; v˙1� (2-15)

for any compact complex algebraic manifoldM with fundamental classŒM �?
So the cohomology classcl�.V / 2 H �.M /Œu˙1; v˙1� should only depend

on the isomorphism class of the complex vector bundleV overM and commute
with pullback. Multiplicativity says

cl�.V /D cl�.V 0/[ cl�.V 00/ 2H �.M /Œu˙1; v˙1�

for any short exact sequence0!V 0!V !V 00! 0 of complex vector bundles
on M . Finally cl� is normalized ifcl�.trivial/ D 1 2 H �.M / for any trivial
vector bundle. Then the answer to the question isnegative, because there are
unramified coveringsp W M 0 ! M of elliptic curvesM; M 0 of (any) degree
d > 0. Thenp�TM ' TM 0 andp�.ŒM 0�/D d � ŒM �, so the projection formula
would give for the topological characteristic numbers the relation

].M 0/D d � ].M /:

But one has

E.M /D .1�u/.1� v/DE.M 0/¤ 0;

so the equalityE.M / D ].M / is not possible! Here we don’t need to ask
cl� to be multiplicative or normalized. But if we use the invariant �y.X / WD

�y.ŒH �.X /�/, then�y.M /D0 for an elliptic curve, and�y.M / is a characteris-
tic number in the sense above by the famousgeneralized Hirzebruch Riemann–
Roch theorem[27]:

THEOREM 2.4 (GHRR). There is a unique normalized multiplicative charac-
teristic class

T �
y W Iso.C �VB.M //!H �.M; Q/Œy�

such that

�y.M /D deg.T �
y .TM /\ ŒM �/D hT �

y .TM /; ŒM �i 2 ZŒy��QŒy�

for any compact complex algebraic manifoldM . Here h � ; � i is the Kronecker
pairing between cohomology and homology.

TheHirzebruch classT �
y and�y-genus unify the following (total) characteristic

classes and numbers:
y T �

y [name] �y [name]

�1 c� Chern class � Euler characteristic
0 td� Todd class �a arithmetic genus
1 L� L-class sgn signature
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In fact, gHRR is just a cohomological version of the following K-theoretical
calculation. LetM be a compact complex algebraic manifold, so that

�y.M /D
X

p;q�0

.�1/pCq �dimC H q.M; ˝
p
M

/ � .�y/p

D
X

p�0

�.H �.M; ˝
p
M

// �yp: (2-16)

Let us denote byK0
an.Y / (or Gan

0
.Y /) the Grothendieck group of the exact

(or abelian) category of holomorphic vector bundles (or coherentOY -module
sheaves) on the complex varietyY , i.e., the free abelian group of isomorphism
classesV of such vector bundles (or sheaves), divided out by the relation

ŒV �D ŒV 0�C ŒV 00� for any short exact sequence0! V 0! V ! V 00! 0.

ThenGan
0

.Y / (or K0
an.Y /) is of (co)homological nature, with

f� WG
an
0 .X /!Gan

0 .Y /; ŒF �‘
X

i�0

.�1/i ŒRif�F �

the functorial pushdown for a proper holomorphic mapf WX!Y . In particular,
for X compact, the constant mapk WX ! pt is proper, with

�.H �.X;F//D k�.ŒF �/ 2Gan
0 .pt/'K0

an.pt/' Z:

Moreover, the tensor product̋OY
induces a natural pairing

\D˝ WK0
an.Y /�Gan

0 .Y /!Gan
0 .Y /;

where we identify a holomorphic vector bundleV with its locally free coherent
sheaf of sectionsV . So forX compact we can define aKronecker pairing

K0
an.X /�Gan

0 .X /! Gan
0 .pt/' ZI hŒV �; ŒF �i WD k�.ŒV˝OX

F �/:

The total �-classof the dual vector bundle

�y.V _/ WD
X

i�0

�i.V _/ �yi

defines a multiplicative characteristic class

�y.. � /_/ WK0
an.Y /!K0

an.Y /Œy�:

And for a compact complex algebraic manifoldM one gets the equality

�y.M /D
X

i�0

k�Œ˝i
M � �yi

D h�y.T �M /; ŒOM �i 2Gan
0 .pt/Œy�' ZŒy�: (2-17)
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3. Characteristic classes of variations of mixed Hodge structures

This section explains the definition ofcohomologicalcharacteristic classes
associated to good variations of mixed Hodge structures on complex algebraic
and analytic manifolds. These were previously considered in [12; 13; 35] in
connection with Atiyah–Meyer type formulae of Hodge-theoretic nature. Here
we also consider important functorial properties of these classes.

3A. Variation of Hodge structures. Let f W X ! Y be aproper smooth
morphism of complex algebraic varieties or aprojective smoothmorphism of
complex analytic varieties. Then the higher direct image sheaf L D Ln WD

Rnf�QX is a locally constant sheafon Y with finite-dimensional stalks

Ly D .Rnf�QX /y DH n.ff D yg; Q/

for y 2 Y . Let L WD L˝QY
OY ' Rnf�.˝�

X =Y
/ denote the corresponding

holomorphic vector bundle (or locally free sheaf), with̋�
X =Y

therelative holo-
morphic de Rham complex. Then the stupid filtration of̋ �

X =Y
determines a

decreasing filtrationF of L by holomorphic subbundlesFpL, with

Grp
F

..RpCqf�QX /˝QY
OY /'Rqf�.˝

p

X =Y
/; (3-1)

inducing for ally 2 Y the Hodge filtrationF on the cohomology

H n.ff D yg; Q/˝C ' Ljy

of the compact and smooth algebraic fiberff D yg (compare [38, Chapter 10]).
If Y (and therefore alsoX ) is smooth, thenL gets an inducedintegrable Gauss–
Manin connection

r W L! L˝OY
˝1

Y ; with L' kerr andr ır D 0;

satisfying theGriffiths transversality condition

r.Fp
L/� Fp�1

L˝OY
˝1

Y for all p. (3-2)

This motivates the following notion:

DEFINITION 3.1. A holomorphic family.L; F / of Hodge structures of weight
n on the reduced complex spaceY is a local systemL with rational coefficients
and finite-dimensional stalks onY , and a decreasing filtrationF of LDL˝QY

OY by holomorphic subbbundlesFpL such thatF determines byLy˝Q C '

Ljy a pure Hodge structure of weightn on each stalkLy (y 2 Y ).
If Y is a smooth complex manifold, then such a holomorphic family.L; F /

is called avariation of Hodge structures of weightn if, in addition, Griffiths
transversality (3-2) holds for the induced connectionr W L! L˝OY

˝1
Y

.
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Finally apolarizationof .L; F / is a pairing of local systemsS WL˝QY
L!

QY that induces a polarization of Hodge structures on each stalk Ly (y 2 Y ).

For example in the geometric case above, one can get such a polarization onLD
Rnf�QX for f W X ! Y a projective smoothmorphism of complex algebraic
(or analytic) varieties. The existence of a polarization isneeded for example for
the following important result of Schmid [46, Theorem 7.22]:

THEOREM 3.2 (RIGIDITY ). Let Y be a connected complex manifold Zarisky
open in a compact complex analytic manifoldY , with .L; F / a polarizable
variation of pure Hodge structures onY . ThenH 0.Y; L/ gets an induced Hodge
structure such that the evaluation mapH 0.Y; L/! Ly is an isomorphism of
Hodge structures for ally 2 Y . In particular the variation.L; F / is constant if
the underlying local systemL is constant.

3B. Variation of mixed Hodge structures. If one considers a morphismf W
X ! Y of complex algebraic varieties withY smooth, which is a topological
fibration with possible singular or noncompact fiber, then the locally constant
direct image sheavesLDLn WDRnf�QX (n�0) arevariations of mixed Hodge
structuresin the sense of the following definitions.

DEFINITION 3.3. LetY be a reduced complex analytic space. Aholomorphic
family of mixed Hodge structureson Y consists of

(1) a local systemL of rational vector spaces onY with finite-dimensional
stalks,

(2) a finite decreasingHodge filtrationF of L D L˝QY
OY by holomorphic

subbundlesFpL,
(3) a finite increasingweight filtrationW of L by local subsystemsWnL,

such that the induced filtrations onLy'Ly˝Q C andLy define a mixed Hodge
structure on all stalksLy (y 2 Y ).

If Y is a smooth complex manifold, such a holomorphic family.L; F; W / is
called avariation of mixed Hodge structuresif, in addition, Griffiths transver-
sality (3-2) holds for the induced connectionr W L! L˝OY

˝1
Y

.
Finally, .L; F; W / is calledgraded polarizableif the induced family (or vari-

ation) of pure Hodge structuresGrW
n L (with the induced Hodge filtrationF ) is

polarizable for alln.

With the obvious notion of morphisms, the two categoriesFmHs.p/.Y / and
VmHs.p/.Y / of (graded polarizable) families and variations of mixed Hodge
structures onY become abelian categories with a tensor product˝ and duality
. � /_. Again, any such morphism is strictly compatible with the Hodge and
weight filtrations. Moreover, one has for a holomorphic mapf W X ! Y (of
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complex manifolds) a functorial pullback

f � W FmHs.p/.Y /! FmHs.p/.X / (or f � W VmHs.p/.Y /! VmHs.p/.X /),

commuting with tensor product̋ and duality. � /_. On a point spacept one
just gets back the category

FmHs.p/.pt/D VmHs.p/.pt/DmHs.p/

of (graded polarizable) mixed Hodge structures. Using the pullback under the
constant mapk W Y ! pt , we get the constant family (or variation) of Tate
Hodge structuresQY .n/ WD k�Q.n/ on Y .

3C. Cohomological characteristic classes. The Grothendieck groupK0
an.Y /

of holomorphic vector bundles on the complex varietyY is a commutative ring
with multiplication induced by̋ and has a duality involution induced by. � /_.
For a holomorphic mapf W X ! Y one has a functorial pullbackf � of rings
with involutions. The situation is similar forK0

an.Y /Œy˙1�, if we extend the
duality involution by

.ŒV � �yk/_ WD ŒV _� � .1=y/k :

For a family (or variation) of mixed Hodge structures.L; F; W / on Y let us
introduce the characteristic class

MHCy..L; F; W // WD
X

p

ŒGr
p
F

.L/� � .�y/p 2K0
an.Y /Œy˙1�: (3-3)

Because morphisms of families (or variations) of mixed Hodge structures are
strictly compatible with the Hodge filtrations, we get induced group homomor-
phisms of Grothendieck groups:

MHCy WK0.FmHs.p/.Y //!K0
an.Y /Œy˙1�;

MHCy WK0. VmHs.p/.Y //!K0
an.Y /Œy˙1�:

Note thatMHC�1..L; F; W // D ŒL� 2 K0
an.Y / is just the class of the asso-

ciated holomorphic vector bundle. And forY D pt a point, we get back the
�y-genus:

�y DMHCy WK0.mHs.p//DK0.FmHs.p/.pt//!K0
an.pt/Œy˙1�D ZŒy˙1�:

THEOREM 3.4. The transformations

MHCy WK0.FmHs.p/.Y //!K0
an.Y /Œy˙1�;

MHCy WK0. VmHs.p/.Y //!K0
an.Y /Œy˙1�;
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are contravariant functorial, and are transformations of commutative rings with
unit, i.e., they commute with products and respect units: MHCy.ŒQY .0/�/ D

ŒOY �. Similarly they respect duality involutions:

MHCy.Œ.L; F; W /_�/D
X

p

Œ.Gr
�p
F

.L//_� �.�y/pD
�

MHCy.Œ.L; F; W /�/
�_

:

EXAMPLE 3.5. Let f W X ! Y be aproper smoothmorphism of complex
algebraic varieties or aprojective smoothmorphism of complex analytic va-
rieties, so that the higher direct image sheafLn WD Rnf�QX (n � 0) with the
induced Hodge filtration as in (3-1) defines a holomorphic family of pure Hodge
structures onY . If m is the complex dimension of the fibers, thenLn D 0 for
n > 2m, so one can define

ŒRf�QX � WD

2m
X

nD0

.�1/n � Œ.Rnf�QX ; F /� 2K0.FmHs.Y //:

Then one gets, by (3-1),

MHCy.ŒRf�QX �/D
X

p;q�0

.�1/pCq � ŒRqf�˝
p

X =Y
� � .�y/p

D
X

p�0

f�Œ˝
p

X =Y
� �yp

DW f�

�

�y.T �
X =Y /

�

2K0
an.Y /Œy�: (3-4)

Assume moreover that

(a) Y is a connected complex manifold Zarisky open in a compact complex
analytic manifoldY , and

(b) all direct images sheavesLn WDRnf�QX (n� 0) areconstant.

Then one gets by therigidity theorem3.2 (for z 2 Y ):

f�

�

�y.T �
X =Y /

�

D �y.ff D zg/ � ŒOY � 2K0
an.Y /Œy�:

COROLLARY 3.6 (MULTIPLICATIVITY ). Letf WX!Y be a smooth morphism
of compact complex algebraic manifolds, with Y connected. Let T �

X =Y
be the

relative holomorphic cotangent bundle of the fibers, fitting into the short exact
sequence

0! f �T �Y ! T �X ! T �
X =Y ! 0:

Assume all direct images sheavesLn WD Rnf�QX (n � 0) are constant, i.e.,
�1.Y / acts trivially on the cohomologyH �.ff D zg/ of the fiber. Then one
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gets the multiplicativity of the�y-genus(with k W Y ! pt the constant map):

�y.X /D .k ıf /�Œ�y.T �X /�

D k�f�

�

Œ�y.T �
X =Y /�˝ f �Œ�y.T �Y /�

�

D k�

�

�y.ff D zg/ � Œ�y.T �Y /�
�

D �y.ff D zg/ ��y.Y /: (3-5)

REMARK 3.7. The multiplicativity relation (3-5) specializes fory D 1 to the
classical multiplicativity formula

sgn.X /D sgn.ff D zg/ � sgn.Y /

of Chern, Hirzebruch, and Serre [16] for the signature of an oriented fibration
of smooth coherently oriented compact manifolds, if�1.Y / acts trivially on the
cohomologyH �.ff D zg/ of the fiber. So it is a Hodge theoretic counterpart
of this. Moreover, the corresponding Euler characteristicformula fory D�1

�.X /D �.ff D zg/ ��.Y /

is even truewithout�1.Y / acting trivially on the cohomologyH �.ff D zg/ of
the fiber!

The Chern–Hirzebruch–Serre signature formula was motivational for many
subsequent works which studied monodromy contributions toinvariants (genera
and characteristic classes). See, for exmaple, [1; 4; 10; 11; 12; 13; 14; 35; 36].

Instead of working with holomorphic vector bundles, we can of course also
use only the underlying topological complex vector bundles, which gives the
forgetful transformation

For WK0
an.Y /!K0

top.Y /:

Here the target can also be viewed as the even part ofZ2-graded topological
complex K-cohomology. Of course, the forgetful transformation is contra-
variant functorial and commutes with product̋and with duality. � /_. This
duality induces aZ2-grading onK0

top.Y /
�

1
2

�

by splitting into the (anti-)invariant
part, and similarly forK0

an.Y /
�

1
2

�

. Then the (anti-)invariant part ofK0
top.Y /

�

1
2

�

can be identified with the even part ofZ4-graded topological realK-theory
KO0

top.Y /
�

1
2

�

(andKO2
top.Y /

�

1
2

�

).

Assume now that.L; F / is a holomorphic family of pure Hodge structures of
weight n on the complex varietyY , with a polarizationS W L˝QY

L! QY .
This induces an isomorphism of families of pure Hodge structures of weightn:

L'L_.�n/ WDL_˝QY .�n/:
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So if we choose the isomorphism of rational local systems

QY .�n/D .2� i/�n �QY 'QY ;

the polarization induces a.�1/n-symmetric duality isomorphismL ' L_ of
the underlying local systems. And for such an (anti)symmetric selfdual local
systemL Meyer [36] has introduced aKO-characteristic class

ŒL�KO 2KO0
top.Y /

�

1
2

�

˚KO2
top.Y /

�

1
2

�

/DK0
top.Y /

�

1
2

�

;

so that forY a compact oriented manifold of even real dimension2m the fol-
lowing twisted signature formulais true:

sgn.H m.Y; L//D hch�.	2.ŒL�KO//; L�.TM /\ ŒM �i: (3-6)

HereH m.Y; L/ gets an induced (anti)symmetric duality, with sgn.H m.Y; L//

defined as 0 in case of an antisymmetric pairing. Moreoverch� is the Chern
character,	2 the second Adams operation andL� is the Hirzebruch–ThomL-
class.

We now explain thatŒL�KO agrees up to some universal signs with

For.MHC1..L; F //:

The underlying topological complex vector bundle ofL has a natural real struc-
ture, so that, as a topological complex vector bundle, one gets an orthogonal
decomposition

LD
M

pCqDn

H
p;q; with Hp;q D FpL\FqLDHq;p,

with
For.MHC1..L; F //D

X

p even
q

ŒHp;q ��
X

p odd
q

ŒHp;q �: (3-7)

If n is even, both sums on the right are invariant under conjugation. And, by
(2-7), .�1/�n=2 �S is positive definite on the corresponding real vector bundle
�
L

p even;q H
p;q

�

R
, and negative definite on

�
L

p odd;q H
p;q

�

R
. So if we choose

the pairing.�1/n=2 �S for the isomorphismL' L_, then this agrees with the
splitting introduced by Meyer [36] in the definition of hisKO-characteristic
classŒL�KO associated to thissymmetricduality isomorphism ofL:

For.MHC1..L; F //D ŒL�KO 2KO0
top.Y /

�

1
2

�

:

Similarly, if n is odd, both sums of the right hand side in (3-7) are exchanged
under conjugation. If we choose the pairing.�1/.nC1/=2 �S for the isomorphism
L ' L_, then this agrees by Definition 2.2 with the splitting introduced by
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Meyer [36] in the definition of hisKO-characteristic classŒL�KO associated to
this antisymmetricduality isomorphism ofL:

For.MHC1..L; F //D ŒL�KO 2KO2
top.Y /

�

1
2

�

:

COROLLARY 3.8. Let.L; F / be a holomorphic family of pure Hodge structures
of weightn on the complex varietyY , with a polarizationS chosen. The class
ŒL�KO introduced in[36] for the duality isomorphism coming from the pairing
.�1/n.nC1/=2 �S is equal to

For.MHC1..L; F //D ŒL�KO 2KO0
top.Y /

�

1
2

�

˚KO2
top.Y /

�

1
2

�

DK0
top.Y /

�

1
2

�

:

It is therefore independent of the choice of the polarization S . Moreover, this
identification is functorial under pullback and compatiblewith products(as de-
fined in[36, p. 26]for (anti)symmetric selfdual local systems).

There are Hodge theoretic counterparts of the twisted signature formula (3-6).
Here we formulate a correspondingK-theoretical result. Let.L; F; W / be a
variation of mixed Hodge structures on them-dimensional complex manifold
M . Then

H n.M; L/'H n.M; DR.L//

gets an induced (decreasing)F filtration coming from the filtration of the holo-
morphic de Rham complex of the vector bundleL with its integrable connec-
tion r:

DR.L/D ŒL
r

����! � � �
r

����! L˝OM
˝m

M
�

(with L in degree zero), defined by

FpDR.L/D ŒFpL
r

����! � � �
r

����! Fp�mL˝OM
˝m

M
�: (3-8)

Note that here we are using Griffiths transversality (3-2)!

The following result is due to Deligne and Zucker [56, Theorem 2.9, Lemma
2.11] in the case of a compact Kähler manifold, whereas the case of a compact
complex algebraic manifold follows from Saito’s general results as explained in
the next section.

THEOREM3.9. AssumeM is a compact K̈ahler manifold or a compact complex
algebraic manifold, with .L; F; W / a graded polarizable variation of mixed
(or pure) Hodge structures onM . ThenH n.M; L/'H n.M; DR.L// gets an
induced mixed(or pure) Hodge structure withF the Hodge filtration. Moreover,
the corresponding Hodge to de Rham spectral sequence degenerates atE1 so
that

Grp
F

.H n.M; L//'H n.M; Grp
F

DR.L// for all n; p.
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Therefore one gets as a corollary (compare [12; 13; 35]):

�y.H �.M; L//D
X

n;p

.�1/n �dimC

�

H n.M; Grp
F

DR.L//
�

� .�y/p

D
X

p

�
�

H �.M; Grp
F

DR.L//
�

� .�y/p

D
X

p;i

.�1/i ��
�

H �.M; Grp�i
F

.L/˝OM
˝i

M /
�

� .�y/p

D k�

�

MHCy.L/˝�y.T �M /
�

DW hMHCy.L/; �y.T �M /\ ŒOM �i 2 ZŒy˙1�: (3-9)

3D. Good variation of mixed Hodge structures.

DEFINITION 3.10 (GOOD VARIATION). Let M be a complex algebraic mani-
fold. A graded polarizable variation of mixed Hodge structures.L; F; W / onM

is called good if it isadmissiblein the sense of Steenbrink and Zucker [50] and
Kashiwara [28], withquasi-unipotent monodromyat infinity, i.e., with respect to
a compactificationM of M by a compact complex algebraic manifoldM , with
complementD WD M nM a normal crossing divisor with smooth irreducible
components.

EXAMPLE 3.11 (PURE AND GEOMETRIC VARIATIONS). Two important exam-
ples for such a good variation of mixed Hodge structures are the following:

(i) A polarizable variation ofpureHodge structures is always admissible by a
deep theorem of Schmid [46, Theorem 6.16]. So it is good precisely when it
has quasi-unipotent monodromy at infinity.

(ii) Consider a morphismf W X ! Y of complex algebraic varieties withY
smooth, which is a topological fibration with possible singular or noncompact
fiber. The locally constant direct image sheavesRnf�QX andRnf!QX (n�
0) are good variations of mixed Hodge structures (compare Remark 4.4).

This class of good variations onM is again an abelian categoryVmHsg.M /

stable under tensor product̋, duality . � /_ and pullbackf � for f an algebraic
morphism of complex algebraic manifolds. Moreover, in thiscase all vector
bundlesFpL of the Hodge filtration carry the structure of a unique under-
lying complex algebraic vector bundle (in the Zariski topology), so that the
characteristic class transformationMHCy can be seen as a natural contravariant
transformation of rings with involution

MHCy WK0.VmHsg.M //!K0
alg.M /Œy˙1�:
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In fact, consider a (partial) compactificationM of M as above, withD WD
M nM a normal crossing divisor with smooth irreducible components andj W

M ! M the open inclusion. Then the holomorphic vector bundleL with
integrable connectionr corresponding toL has a uniquecanonical Deligne
extension.L;r/ to a holomorphic vector bundleL on M , with meromorphic
integrable connection

r W L! L˝O
M

˝1

M
.log.D// (3-10)

having logarithmic polesalongD. Here theresiduesof r alongD have real
eigenvalues, sinceL hasquasi-unipotent monodromyalongD. And the canon-
ical extension is characterized by the property that all these eigenvalues are in
the half-open intervalŒ0; 1/. Moreover, also the Hodge filtrationF of L extends
uniquely to a filtrationF of L by holomorphic subvector bundles

Fp
L WD j�.Fp

L/\L� j�L;

sinceL is admissiblealongD. Finally, Griffiths transversality extends to

r.Fp
L/� Fp�1

L˝O
M

˝1

M
.log.D// for all p. (3-11)

For more details see [19, Proposition 5.4] and [38,~ 11.1, 14.4].
If we chooseM as a compact algebraic manifold, then we can apply Serre’s

GAGA theorem to conclude thatL and allFpL arealgebraicvector bundles,
with r analgebraicmeromorphic connection.

REMARK 3.12. The canonical Deligne extensionL (as above) with its Hodge
filtration F has the following compabilities (compare [19, Part II]):

SMOOTH PULLBACK: Let f WM 0!M be a smooth morphism so thatD0 WD

f �1.D/ is also a normal crossing divisor with smooth irreducible compo-
nents onM 0 with complementM 0. Then one has

f �.L/' f �L and f �.Fp
L/' Fpf �L for all p. (3-12)

EXTERIOR PRODUCT: Let L and L0 be two good variations onM and M 0.
Then their canonical Deligne extensions satisfy

LˆOM �M 0
L0 ' LˆO

M�M 0
L0;

since the residues of the corresponding meromorphic connections are com-
patible. Then one has for allp

Fp.LˆOM �M 0
L0/'

M

iCkDp

.F i
L/ ˆO

M�M 0
.Fk

L0/: (3-13)
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TENSOR PRODUCT: In general the canonical Deligne extensions of two good
variationsL andL0 on M arenot compatible with tensor products, because
of the choice of different residues for the corresponding meromorphic con-
nections. This problem doesn’t appear if one of these variations, lets sayL0,
is already defined onM . Let L andL0 be a good variation onM andM ,
respectively. Then their canonical Deligne extensions satisfy

L˝OM
.L0jM /' L˝O

M
L

0;

and one has for allp:

Fp.L˝OM
.L0jM //'

M

iCkDp

.F i
L/˝O

M
.Fk

L
0/: (3-14)

Let M be a partial compactification ofM as before, i.e., we don’t assume that
M is compact, withm WD dimC.M /. Then thelogarithmic de Rham complex

DRlog.L/ WD ŒL
r

����! � � �
r

����! L˝O
M

˝m

M
.log.D//�

(with L in degree zero) is by [19] quasi-isomorphic toRj�L, so that

H �.M; L/'H �
�

M ; DRlog.L/
�

:

So these cohomology groups get an induced (decreasing)F -filtration coming
from the filtration

FpDRlog.L/D ŒFpL
r

����! � � �
r

����! Fp�mL˝O
M

˝m

M
.log.D//�:

(3-15)
For M a compact algebraic manifold, this is again the Hodge filtration of an

induced mixed Hodge structure onH �.M; L/ (compare with Corollary 4.7).

THEOREM 3.13. AssumeM is a smooth algebraic compactification of the al-
gebraic manifoldM with the complementD a normal crossing divisor with
smooth irreducible components. Let .L; F; W / be a good variation of mixed
Hodge structures onM . ThenH n.M; L/'H �

�

M ; DRlog.L/
�

gets an induced
mixed Hodge structure withF the Hodge filtration. Moreover, the correspond-
ing Hodge to de Rham spectral sequencedegenerates atE1 so that

Grp
F

.H n.M; L//'H n
�

M; Grp
F

DRlog.L/
�

for all n; p.
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Therefore one gets as a corollary (compare [12; 13; 35]):

�y.H �.M; L//D
X

n;p

.�1/n �dimC

�

H n
�

M; Grp
F

DRlog.L/
��

� .�y/p

D
X

p

�
�

H �
�

M; Grp
F

DRlog.L/
��

� .�y/p

D
X

p;i

.�1/i�
�

H �
�

M; Grp�i
F

.L/˝O
M

˝i

M
.log.D//

��

.�y/p

DW hMHCy.Rj�L/; �y

�

˝1

M
.log.D//

�

\ ŒOM �i 2 ZŒy˙1�:

(3-16)
Here we use the notation

MHCy.Rj�L/ WD
X

p

ŒGr
p
F

.L/� � .�y/p 2K0
alg.M /Œy˙1�: (3-17)

Remark 3.12 then implies:

COROLLARY 3.14.LetM be a smooth algebraic partial compactifiction of the
algebraic manifoldM with the complementD a normal crossing divisor with
smooth irreducible components. Then MHCy.Rj�. � // induces a transforma-
tion

MHCy.j�. � // WK0.VmHsg.M //!K0
alg.M /Œy˙1�:

(1) This is contravariant functorial for a smooth morphismf W M 0 ! M of
such partial compactifications, i.e.,

f �
�

MHCy.j�. � //
�

'MHCy
�

j 0
�.f �. � //

�

:

(2) It commutes with exterior products for two good variationsL; L0:

MHCy
�

.j � j 0/�Œ.L ˆQM �M 0
L0�

�

DMHCy.j�ŒL�/ ˆ MHCy.j 0
�Œ.L0�/:

(3) Let L be a good variation onM , andL0 one onM . Then MHCy.j�Œ � �/ is
multiplicative in the sense that

MHCy
�

j�Œ.L˝QM
.L0jM /�

�

DMHCy.j�ŒL�/˝MHCy.ŒL0�/:

4. Calculus of mixed Hodge modules

4A. Mixed Hodge modules. Before discussing extensions of the characteristic
cohomology classesMHCy to the singular setting, we need to briefly recall
some aspects of Saito’s theory [39; 40; 41; 43; 44] of algebraic mixed Hodge
modules, which play the role of singular extensions of good variations of mixed
Hodge structures.
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To each complex algebraic varietyZ, Saito associated a categoryMHM.Z/

of algebraic mixed Hodge moduleson Z (cf. [39; 40]). If Z is smooth, an
object of this category consists of an algebraic (regular) holonomicD-module
.M; F / with a good filtrationF together with a perverse sheafK of rational
vector spaces, both endowed a finite increasing filtrationW such that

˛ WDR.M/an'K˝QZ
CZ is compatible withW

under the Riemann–Hilbert correspondence coming from the (shifted) analytic
de Rham complex (with̨ a chosen isomorphism). Here we use leftD-modules,
and the sheafDZ of algebraic differential operators onZ has the increasing
filtration F with FiDZ given by the differential operators of order� i (i 2 Z).
Then agoodfiltration F of the algebraic holonomicD-moduleM is given by
a bounded from below, increasing and exhaustive filtrationFpM by coherent
algebraicOZ -modules such that

FiDZ .FpM/� FpCiM for all i; p,

and this is an equality fori big enough.
(4-1)

In general, for a singular varietyZ one works with suitable local embeddings
into manifolds and corresponding filteredD-modules supported onZ. In addi-
tion, these objects are required to satisfy a long list of complicated properties
(not needed here). Theforgetful functor rat is defined as

rat WMHM.Z/! Perv.QZ /; .M.F /; K; W /‘K:

THEOREM 4.1 (M. SAITO). MHM.Z/ is an abelian category with

rat WMHM.Z/! Perv.QZ /

exact and faithful. It extends to a functor

rat WDbMHM.Z/!Db
c .QZ /

to the derived category of complexes ofQ-sheaves with algebraically construc-
tible cohomology. There are functors

f�; f!; f �; f !; ˝; ˆ; D onDbMHM.Z/;

which are “lifts” via rat of the similar(derived) functors defined onDb
c .QZ /,

with .f �; f�/ and.f!; f !/ also pairs of adjoint functors. One has a natural map
f!! f�, which is an isomorphism forf proper. HereD is a duality involution
D2 ' id “lifting” the Verdier duality functor, with

D ıf � ' f ! ıD and D ıf� ' f! ıD:
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Compare with [40, Theorem 0.1 and~ 4] for more details (as well as with [43]
for a more general formal abstraction). The usual truncation �� onDbMHM.Z/

corresponds to theperverse truncationp�� on Db
c .Z/ so that

ratıH D p
H ı rat;

whereH stands for the cohomological functor inDbMHM.Z/ and pH denotes
the perverse cohomology (always with respect to the self-dual middle perver-
sity).

EXAMPLE 4.2. LetM be a complex algebraic manifold of pure complex di-
mensionm, with .L; F; W / a good variation of mixed Hodge structures onM .
ThenL with its integrable connectionr is a holonomic (left)D-module with
˛ WDR.L/an'LŒm�, where this time we use the shifted de Rham complex

DR.L/ WD ŒL
r

����! � � �
r

����! L˝OM
˝m

M
�

with L in degree�m, so thatDR.L/an' LŒm� is a perverse sheaf onM . The
filtration F induces by Griffiths transversality (3-2) a good filtrationFp.L/ WD

F�pL as a filteredD-module. As explained before, this comes from an un-
derlying algebraic filteredD-module. Finally̨ is compatible with the induced
filtration W defined by

W i.LŒm�/ WDW i�mLŒm� and W i.L/ WD .W i�mL/˝QM
OM :

And this defines a mixed Hodge moduleM on M , with rat.M/Œ�m� a local
system onM .

A mixed Hodge moduleM on the purem-dimensional complex algebraic man-
ifold M is calledsmoothif rat.M/Œ�m� is a local system onM . Then this ex-
ample corresponds to [40, Theorem 0.2], whereas the next theorem corresponds
to [40, Theorem 3.27 and remark on p. 313]:

THEOREM 4.3 (M. SAITO). Let M be a purem-dimensional complex alge-
braic manifold. Associating to a good variation of mixed Hodge structures
V D .L; F; W / on M the mixed Hodge moduleM WD VH as in Example4.2
defines an equivalence of categories

MHM.M /sm ' VmHsg.M /

between the categories of smooth mixed Hodge modules MHM.M /sm and good
variation of mixed Hodge structures onM . This commutes with exterior product
ˆ and with the pullbacks

f � WVmHsg.M /!VmHsg.M 0/ and f �Œm0�m� WMHM.M /!MHM.M 0/
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for an algebraic morphism of smooth algebraic manifoldsM; M 0 of dimension
m; m0. For M D pt a point, one gets in particular an equivalence

MHM.pt/'mHsp:

REMARK 4.4. These two theorems explain why a geometric variation ofmixed
Hodge structures as in Example 3.11(2) is good.

By the last identification of the theorem, there exists a unique Tate object

QH .n/ 2MHM.pt/

such that rat.QH .n//DQ.n/ andQH .n/ is of type.�n;�n/:

MHM.pt/ 3QH .n/'Q.n/ 2mHsp:

For a complex varietyZ with constant mapk WZ! pt , define

QH
Z .n/ WD k�QH .n/ 2DbMHM.Z/; with rat.QH

Z .n//DQZ .n/.

So tensoring withQH
Z .n/ defines the Tate twist�.n/ of mixed Hodge modules.

To simplify the notation, letQH
Z WDQH

Z .0/. If Z is smoothof complex dimen-
sionn thenQZ Œn� is perverse onZ, andQH

Z Œn� 2MHM.Z/ is a single mixed
Hodge module, explicitly described by

QH
Z Œn�D ..OZ ; F /; QZ Œn�; W /; with grF

i D 0D grW
iCn for all i ¤ 0.

It follows from the definition that everyM2MHM.Z/ has a finite increasing
weight filtration W so that the functorM ! GrW

k
M is exact. We say that

M2DbMHM.Z/ hasweights�n .resp.�n/ if GrW
j H iM D0 for all j >nCi

(resp.j < nC i). M is calledpure of weightn if it has weights both� n and
� n. For the following results compare with [40, Proposition 2.26 and (4.5.2)]:

PROPOSITION4.5. If f is a map of algebraic varieties, thenf! andf � preserve
weight� n, andf� andf ! preserve weight� n. If f is smooth of pure complex
fiber dimensionm, thenf ! ' f �Œ2m�.m/ so thatf �; f ! preserve pure objects
for f smooth. Moreover, if M2DbMHM.X / is pure andf WX!Y is proper,
thenf�M 2DbMHM.Y / is pure of the same weight asM.

Similarly the duality functorD exchanges “weight� n” and “weight ��n” ,
in particular it preserves pure objects. Finally let j W U ! Z be the inclusion
of a Zariski open subset. Then theintermediate extensionfunctor

j!� WMHM.U /!MHM.Z/ W M‘ Im
�

H 0.j!M/!H 0.j�.M/
�

(4-2)

preserves weight� n and� n, and so preserves pure objects(of weightn).
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We say thatM 2DbMHM.Z/ is supported onS �Z if and only if rat.M/ is
supported onS . There are the abelian subcategoriesMH.Z; k/p � MHM.Z/

of pure Hodge modules of weightk, which in the algebraic context are assumed
to be polarizable (and extendable at infinity).

For eachk 2 Z, the abelian categoryMH.Z; k/p is semisimple, in the sense
that every pure Hodge module onZ can be uniquely written as a finite direct sum
of pure Hodge modules with strict support in irreducible closed subvarieties of
Z. Let MHS .Z; k/p denote the subcategory ofpure Hodge modules of weight
k with strict support inS . Then everyM 2MHS .Z; k/p is generically a good
variation of Hodge structuresVU of weight k � d (whered D dimS) on a
Zariski dense smooth open subsetU � S ; i.e., VU is polarizable with quasi-
unipotent monodromy at infinity. This follows from Theorem 4.3 and the fact
that a perverse sheaf is generically a shifted local system on a smooth dense
Zariski open subsetU � S . Conversely, every such good variation of Hodge
structuresV on such anU corresponds by Theorem 4.3 to a pure Hodge module
VH on U , which can be extended in an unique way to a pure Hodge module
j!�VH on S with strict support (herej W U ! S is the inclusion). Under this
correspondence, forM 2MHS .Z; k/p we have that

rat.M/D ICS .V/

is the twisted intersection cohomology complexfor V the corresponding varia-
tion of Hodge structures. Similarly

D.j!�VH /' j!�.V_
H /.d/: (4-3)

Moreover, apolarizationof M 2 MHS .Z; k/p corresponds to an isomor-
phism of Hodge modules (compare [38, Definition 14.35, Remark 14.36])

S WM'D.M/.�k/; (4-4)

whose restriction toU gives a polarization ofV. In particular it induces a self-
duality isomorphism

S W rat.M/'D.rat.M//.�k/'D.rat.M//

of the underlying twisted intersection cohomology complex, if an isomorphism
QU .�k/'QU is chosen.

So if U is smooth of pure complex dimensionn, thenQH
U Œn� is a pure Hodge

module of weightn. If moreoverj W U ŒZ is a Zariski-open dense subset in
Z, then theintermediate extensionj!� for mixed Hodge modules (cf. also with
[7]) preserves the weights. This shows that ifZ is a complex algebraic variety
of pure dimensionn andj W U ŒZ is the inclusion of a smooth Zariski-open
dense subset then the intersection cohomology moduleIC H

Z
WD j!�.QH

U Œn�/ is
pure of weightn, with underlying perverse sheaf rat.IC H

Z
/D ICZ .
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Note that the stability of a pure objectM 2 MHM.X / under a proper mor-
phism f W X ! Y implies the famousdecomposition theoremof [7] in the
context of pure Hodge modules [40, (4.5.4) on p. 324]:

f�M'
M

i

H if�MŒ�i �; with H if�M semisimple for alli . (4-5)

AssumeY is pure-dimensional, withf WX!Y a resolution of singularities,
i.e., X is smooth withf a proper morphism, which generically is an isomor-
phism on some Zariski dense open subsetU . ThenQH

X is pure, sinceX is
smooth, andIC H

Y
has to be the direct summand ofH 0f�QH

X which corresponds
to QH

U .

COROLLARY 4.6. AssumeY is pure-dimensional, with f WX ! Y a resolution
of singularities.ThenIC H

Y
is a direct summand off�QH

X 2DbMHM.Y /.

Finally we get the following results about the existence of amixed Hodge
structure on the cohomology (with compact support)H i

.c/
.Z;M/ for M 2

DbMHM.Z/.

COROLLARY 4.7. Let Z be a complex algebraic variety with constant map
k W Z ! pt . Then the cohomology(with compact support) H i

.c/
.Z;M/ of

M 2DbMHM.Z/ gets an induced graded polarizable mixed Hodge structure:

H i
.c/.Z;M/DH i.k�.!/M/ 2MHM.pt/'mHsp:

In particular:

(1) The rational cohomology(with compact support) H i
.c/

.Z; Q/ of Z gets an
induced graded polarizable mixed Hodge structure by

H i.Z; Q/D rat.H i.k�k�QH // and H i
c .Z; Q/D rat.H i.k!k

�QH //:

(2) Let VU be a good variation of mixed Hodge structures on a smooth puren-
dimensional complex varietyU , which is Zariski open and dense in a variety
Z, with j W U ! Z the open inclusion. Then the global twisted intersection
cohomology(with compact support)

IH i
.c/.Z; V/ WDH i

.c/

�

Z; ICZ .V/Œ�n�
�

gets a mixed Hodge structure by

IH i
.c/.Z; V/DH i

�

k�.!/ICZ .V/Œ�n�
�

DH i
�

k�.!/j!�.V/Œ�n�
�

:

If Z is compact, with V a polarizable variation of pure Hodge structures of
weightw, then alsoIH i.Z; V/ has a(polarizable) pure Hodge structure of
weightwC i .
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(3) Let V be a good variation of mixed Hodge structures on a smooth(pure-
dimensional) complex manifoldM , which is Zariski open and dense in com-
plex algebraic manifoldM , with complementD a normal crossing divisor
with smooth irreducible components. ThenH i.M; V/ gets a mixed Hodge
structure by

H i.M; V/'H i.M ; j�V/'H i.k�j�V/;

with j W U !Z the open inclusion.

REMARK 4.8. Here are important properties of these mixed Hodge structures:

(1) By a deep theorem of Saito [44, Theorem 0.2, Corollary 4.3], the mixed
Hodge structure onH i

.c/
.Z; Q/ defined as above coincides with the classical

mixed Hodge structure constructed by Deligne ([20; 21]).
(2) Assume we are in the context of Corollary 4.7(3) withZDM projective and

V a good variation of pure Hodge structures onU DM . Then the pure Hodge
structure of (2) on the global intersection cohomologyIH i.Z; V/ agrees with
that of [15; 29] defined in terms ofL2-cohomology with respect to a K̈ahler
metric with Poincaŕe singularities alongD (compare [40, Remark 3.15]). The
case of a1-dimensional complex algebraic curveZ DM due to Zucker [56,
Theorem 7.12] is used in the work of Saito [39, (5.3.8.2)] in the proof of the
stability of pure Hodge modules under projective morphisms[39, Theorem
5.3.1] (compare also with the detailed discussion of this1-dimensional case
in [45]).

(3) Assume we are in the context of Corollary 4.7(3) withM compact. Then
the mixed Hodge structure onH i.M; V/ is the one of Theorem 3.13, whose
Hodge filtrationF comes from the filtered logarithmic de Rham complex
(compare [40,~ 3.10, Proposition 3.11]).

4B. Grothendieck groups of algebraic mixed Hodge modules. In this section,
we describe the functorial calculus of Grothendieck groupsof algebraic mixed
Hodge modules. LetZ be a complex algebraic variety. By associating to (the
class of) a complex the alternating sum of (the classes of) its cohomology ob-
jects, we obtain the following identification (compare, forexample, [30, p. 77]
and [47, Lemma 3.3.1])

K0.DbMHM.Z//DK0.MHM.Z//: (4-6)

In particular, ifZ is a point, then

K0.DbMHM.pt//DK0.mHsp/; (4-7)
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and the latter is a commutative ring with respect to the tensor product, with unit
ŒQH �. Then we have, for any complexM� 2DbMHM.Z/, the identification

ŒM��D
X

i2Z

.�1/i ŒH i.M�/� 2K0.DbMHM.Z//ŠK0.MHM.Z//: (4-8)

In particular, if for anyM2MHM.Z/ andk 2Z we regardMŒ�k� as a complex
concentrated in degreek, then

ŒMŒ�k��D .�1/k ŒM� 2K0.MHM.Z//: (4-9)

All the functorsf�, f!, f �, f !, ˝, ˆ, D induce corresponding functors on
K0.MHM. � //. Moreover,K0.MHM.Z// becomes aK0.MHM.pt//-module,
with the multiplication induced by the exact exterior product with a point space:

ˆ WMHM.Z/�MHM.pt/!MHM.Z � fptg/'MHM.Z/:

Also note that

M˝QH
Z 'Mˆ QH

pt 'M

for all M 2MHM.Z/. Therefore,K0.MHM.Z// is a unitaryK0.MHM.pt//-
module. The functorsf�, f!, f �, f ! commute with exterior products (andf �

also commutes with the tensor product˝), so that the induced maps at the level
of Grothendieck groupsK0.MHM. � // areK0.MHM.pt//-linear. SimilarlyD
defines an involution onK0.MHM. � //. Moreover, by the functor

rat WK0.MHM.Z//!K0.Db
c .QZ //'K0.Perv.QZ //;

all these transformations lift the corresponding transformations from the (topo-
logical) level of Grothendieck groups of constructible (orperverse) sheaves.

REMARK 4.9. The Grothendieck groupK0.MHM.Z// has two different types
of generators:

(1) It is generated by the classes of pure Hodge modulesŒICS .V/� with strict
support in an irreducible complex algebraic subsetS � Z, with V a good
variation of (pure) Hodge structures on a dense Zariski opensmooth subset
U of S . These generators behave well under duality.

(2) It is generated by the classesf�Œj�V�, with f WM !Z a proper morphism
from the smooth complex algebraic manifoldM , j WM !M the inclusion
of a Zariski open and dense subsetM , with complementD a normal crossing
divisor with smooth irreducible components, andV a good variation of mixed
(or if one wants also pure) Hodge structures onM . These generators will be
used in the next section about characteristic classes of mixed Hodge modules.
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Here (1) follows from the fact that a mixed Hodge module has a finite weight
filtration, whose graded pieces are pure Hodge modules, i.e., are finite direct
sums of pure Hodge modulesICS .V/ with strict supportS as above. The
claim in (2) follows by induction from resolution of singularities and from the
existence of a “standard” distinguished triangle associated to a closed inclusion.

Let i W Y !Z be a closed inclusion of complex algebraic varieties with open
complementj W U D ZnY ! Z. Then one has by Saito’s work [40, (4.4.1)]
the following functorial distinguished triangle inDbMHM.Z/:

j!j
�

adj

����! id
adi

����! i�i�
Œ1�
����! : (4-10)

Here the mapsad are the adjunction maps, withi� D i! sincei is proper. If
f W Z ! X is a complex algebraic morphism, then we can applyf! to get
another distinguished triangle

f!j!j
�QH

Z

adj

����! f!Q
H
Z

adi

����! f!i!i
�QH

Z

Œ1�
����! : (4-11)

On the level of Grothendieck groups, we get the importantadditivity relation

f!ŒQ
H
Z �D .f ı j /!ŒQ

H
U �C .f ı i/!ŒQ

H
Y �

2K0.DbMHM.X //DK0.MHM.X //: (4-12)

COROLLARY 4.10.One has a natural group homomorphism

�Hdg WK0.var=X /!K0.MHM.X //I Œf WZ!X �‘ Œf!Q
H
Z �;

which commutes with pushdownf!, exterior product̂ and pullbackg�. For
X D pt this corresponds to the ring homomorphism(2-10)under the identifi-
cation MHM.pt/'mHsp.

HereK0.var=X / is the motivicrelative Grothendieck groupof complex alge-
braic varieties overX , i.e., the free abelian group generated by isomorphism
classesŒf �D Œf WZ! X � of morphismsf to X , divided out be theadditivity
relation

Œf �D Œf ı i �C Œf ı j �

for a closed inclusioni WY !Z with open complementj WU DZnY !Z. The
pushdownf!, exterior product̂ and pullbackg� for these relative Grothendieck
groups are defined by composition, exterior product and pullback of arrows. The
fact that�Hdg commutes with exterior product̂ (or pullbackg�) follows then
from the corresponding K̈unneth (or base change) theorem for the functor

f! WD
bMHM.Z/!DbMHM.X /

(contained in Saito’s work [43] and [40, (4.4.3)]).
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Let L WD ŒA1
C � 2K0.var=pt/ be the class of the affine line, so that

�Hdg.L/D ŒH 2.P 1.C/; Q/�D ŒQ.�1/� 2K0.MHM.pt//DK0.mHsp/

is the Lefschetz classŒQ.�1/�. This class is invertible inK0.MHM.pt// D

K0.mHsp/ so that the transformation�Hdg of Corollary 4.10 factorizes over the
localization

M0.var=X / WDK0.var=X /ŒL�1�:

Altogether we get the following diagram of natural transformations commuting
with f!, ˆ andg�:

F.X /
can
 ���� M0.var=X /  ���� K0.var=X /

�stalk

x

?

?

?

?

y

�Hdg

K0.Db
c .X //  ����

rat
K0.MHM.X //:

(4-13)

HereF.X / is the group of algebraically constructible functions onX , which
is generated by the collectionf1Z g, for Z �X a closed complex algebraic sub-
set, with�stalk given by the Euler characteristic of the stalk complexes (compare
[47, ~ 2.3]). The pushdownf! for algebraically constructible functions is defined
for a morphismf W Y ! X by

f!.1Z /.x/ WD �
�

H �
c .Z \ff D xg; Q/

�

for x 2X ,

so that the horizontal arrow marked “can” is given by

canW Œf W Y ! X �‘ f!.1Y /; with can.L/D 1pt .

The advantage ofM0.var=X / compared toK0.var=X / is that it has an in-
ducedduality involutionD WM0.var=X /!M0.var=X / characterized uniquely
by the equality

D .Œf WM ! X �/D L�m � Œf WM !X �

for f WM ! X a proper morphism withM smooth and purem-dimensional
(compare [8]). This “motivic duality”D commutes with pushdownf! for proper
f , so that�Hdg also commutes with duality by

�Hdg .DŒidM �/D �Hdg
�

L�m � ŒidM �
�

D ŒQH
M .m/�

D ŒQH
M Œ2m�.m/�D ŒD.QH

M /�DD
�

�Hdg .ŒidM �/
�

(4-14)

for M smooth and purem-dimensional. In fact by resolution of singularities and
“additivity”, K0.var=X / is generated by such classesf!ŒidM �D Œf WM !X �.

Then all the transformations in the diagram (4-13)commute with duality,
were K0.Db

c .X // gets this involution from Verdier duality, andD D id for
algebraically constructible functions by can.ŒQ.�1/�/D1pt (compare also with
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[47, ~ 6.0.6]). Similarly they commute withf� andg! defined by the relations
(compare [8]):

D ıg� D g! ıD and D ıf� D f! ıD:

For example for an open inclusionj WM !M , one gets

�Hdg .j�ŒidM �/D j�ŒQH
M �: (4-15)

5. Characteristic classes of mixed Hodge modules

5A. Homological characteristic classes. In this section we explain the theory
of K-theoretical characteristic homology classes of mixed Hodge modules based
on the following result of Saito (compare with [39,~ 2.3] and [44,~ 1] for the
first part, and with [40,~ 3.10, Proposition 3.11]) for part (2)):

THEOREM 5.1 (M. SAITO). Let Z be a complex algebraic variety. Then there
is a functor of triangulated categories

GrF
p DR WDbMHM.Z/!Db

coh.Z/ (5-1)

commuting with proper push-down, with GrF
p DR.M/ D 0 for almost all p

and M fixed, whereDb
coh.Z/ is the bounded derived category of sheaves of

algebraicOZ -modules with coherent cohomology sheaves. If M is a (purem-
dimensional) complex algebraic manifold, then one has in addition:

(1) LetM 2 MHM.M / be a single mixed Hodge module. ThenGrF
p DR.M/

is the corresponding complex associated to the de Rham complex of the un-
derlying algebraic leftD-moduleM with its integrable connectionr:

DR.M/D ŒM
r

����! � � �
r

����! M˝OM
˝m

M
�

with M in degree�m, filtered by

FpDR.M/D ŒFpM
r

����! � � �
r

����! FpCmM˝OM
˝m

M
�:

(2) Let M be a smooth partial compactification of the complex algebraic man-
ifold M with complementD a normal crossing divisor with smooth irre-
ducible components, with j WM!M the open inclusion. LetVD .L; F; W /

be a good variation of mixed Hodge structures onM . Then the filtered de
Rham complex

.DR.j�V/; F / of j�V 2MHM.M /Œ�m��DbMHM.M /

is filtered quasi-isomorphic to the logarithmic de Rham complex DRlog.L/

with the increasing filtrationF�p WDFp (p2Z) associated to the decreasing
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F -filtration (3-15). In particular GrF
�pDR.j�V/ (p2Z) is quasi-isomorphic

to

Grp
F

DRlog.L/D ŒGrp
F
L

Gr r
����! � � �

Gr r
����! Grp�m

F
L˝O

M
˝m

M
.log.D//�:

Here the filtrationFpDR.M/ of the de Rham complex is well defined, since
the action of the integrable connectionr is given in local coordinates.z1; : : : ;

zm/ by

r. � /D

m
X

iD1

@

@zi
. � /˝ dzi ; with

@

@zi
2 F1DM ;

so thatr.FpM/ � FpC1M for all p by (4-1). For later use, let us point that
the mapsGr r andGr r in the complexes

GrF
p DR.M/ and Grp

F
DRlog.L/

areO-linear!

EXAMPLE 5.2. LetM be a purem-dimensional complex algebraic manifold.
Then

GrF
�pDR.QH

M /'˝
p
M

Œ�p� 2Db
coh.M /

if 0 � p � m, andGrF
�pDR.QH

M / ' 0 otherwise. Assume in addition that
f W M ! Y is a resolution of singularities of the pure-dimensional complex
algebraic varietyY . ThenIC H

Y
is a direct summand off�QH

M 2DbMHM.Y /

so that by functorialitygrF
�pDR.IC H

Y
/ is a direct summand ofRf�˝

p
M

Œ�p�2

Db
coh.Y /. In particular

GrF
�pDR.IC H

Y /' 0 for p < 0 or p > m.

The transformationsGrF
p DR (p 2 Z) induce functors on the level of Grothen-

dieck groups. Therefore, ifG0.Z/ ' K0.Db
coh.Z// denotes the Grothendieck

group of coherentalgebraicOZ -sheaves onZ, we get group homomorphisms

GrF
p DR WK0.MHM.Z//DK0.DbMHM.Z//!K0.Db

coh.Z//'G0.Z/:

DEFINITION 5.3. Themotivic Hodge Chern class transformation

MHCy WK0.MHM.Z//! G0.Z/˝ZŒy˙1�

is defined by

ŒM�‘
X

i;p

.�1/i ŒHi.GrF
�pDR.M//� � .�y/p: (5-2)
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So this characteristic class captures information from thegraded pieces of the
filtered de Rham complex of the filteredD-module underlying a mixed Hodge
moduleM 2MHM.Z/, instead of the graded pieces of the filteredD-module
itself (as more often studied). Letp0 D minfp j FpM ¤ 0g. Using Theorem
5.1(1) for a local embeddingZŒM of Z into a complex algebraic manifold
M of dimensionm, one gets

GrF
p DR.M/D 0 for p < p0�m;

and

GrF
p0�mDR.M/' .Fp0M/˝OM

!M

is a coherentOZ -sheaf independent of the local embedding. Here we are us-
ing left D-modules (related to variation of Hodge structures), whereas for this
question the corresponding filtered rightD-module (as used in [42])

M
r WDM˝OM

!M with FpM
r WD

�

FpCmM
�

˝OM
!M

would work better. Then the coefficient of the “top-dimensional” power ofy in

MHCy.ŒM�/D ŒFp0M˝OM
!M �˝.�y/m�p0

C
X

i<m�p0

. � � � / �yi 2G0.Z/Œy˙1�

(5-3)

is given by the classŒFp0M ˝OM
!M � 2 G0.Z/ of this coherentOZ -sheaf

(up to a sign). Using resolution of singularities, one gets for example for an
m-dimensional complex algebraic varietyZ that

MHCy.ŒQH
Z �/D Œ��!M � �ymC

X

i<m

. � � � / �yi 2G0.Z/Œy˙1�;

with � WM ! Z any resolution of singularities ofZ (compare [44, Corollary
0.3]). More generally, for an irreducible complex varietyZ andMD IC H

Z
.L/

a pure Hodge module with strict supportZ, the corresponding coherentOZ -
sheaf

SZ .L/ WD Fp0IC H
Z .L/˝OM

!M

only depends onZ and the good variation of Hodge structuresL on a Zariski
open smooth subset ofZ, and it behaves much like a dualizing sheaf. Its formal
properties are studied in Saito’s proof given in [42] of a conjecture of Kolĺar. So
the “top-dimensional” power ofy in MHCy

�

ŒIC H
Z

.L/�
�

exactly picks out (up
to a sign) the classŒSZ .L/� 2 G0.Z/ of this interesting coherent sheafSZ .L/

on Z.
Let td.1Cy/ be thetwisted Todd transformation

td.1Cy/ WG0.Z/˝ZŒy˙1�!H�.Z/˝QŒy˙1; .1Cy/�1� I

ŒF �‘
X

k�0

tdk.ŒF �/ � .1Cy/�k ; (5-4)
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whereH�. � / stands either for the Chow homology groupsCH�. � / or for the
Borel–Moore homology groupsH BM

2�
. � / (in even degrees), andtdk is the de-

greek component inHk.Z/ of theTodd class transformationtd� W G0.Z/!

H�.Z/˝Q of Baum, Fulton, and MacPherson [5], which is linearly extended
overZŒy˙1�. Compare also with [22, Chapter 18] and [24, Part II].

DEFINITION 5.4. The (un)normalizedmotivic Hirzebruch class transforma-
tions MHTy� (andAMHTy�) are defined by the composition

MHTy� WD td.1Cy/ ıMHCy WK0.MHM.Z//!H�.Z/˝QŒy˙1; .1Cy/�1�

(5-5)
and

AMHTy� WD td� ıMHCy WK0.MHM.Z//!H�.Z/˝QŒy˙1�: (5-6)

REMARK 5.5. By precomposing with the transformation�Hdg from Corollary
4.10 one gets similar transformations

mCy WDMHCy ı�Hdg; Ty� WDMHTy� ı�Hdg; QTy� WDAMHTy� ı�Hdg

defined on the relative Grothendieck group of complex algebraic varieties as
studied in [9]. Then it is the (normalized) motivic Hirzebruch class transfor-
mationTy�, which, as mentioned in the Introduction, “unifies” in a functorial
way

.yD�1/ the (rationalized) Chern class transformationc� of MacPherson [34];

.y D 0/ the Todd class transformationtd� of Baum–Fulton–MacPherson [5];

.y D 1/ theL-class transformationL� of Cappell and Shaneson [14].

(Compare with [9; 48] and also with [55] in these proceedings.)

In this paper we work most the time only with the more important K-theoretical
transformationMHCy . The corresponding results forMHTy� follow from this
by the known properties of the Todd class transformationtd� (compare [5; 22;
24]).

EXAMPLE 5.6. LetVD .V; F; W / 2MHM.pt/DmHsp be a (graded polariz-
able) mixed Hodge structure. Then:

MHCy.ŒV�/D
X

p

dimC.Gr
p
F

VC/ � .�y/p D �y.ŒV�/ 2 ZŒy˙1�

DG0.pt/˝ZŒy˙1�: (5-7)

So over a point the transformationMHCy coincides with the�y-genus ring
homomorphism�y W K0.mHsp/ ! ZŒy˙1� (and similarly for AMHTy� and
MHTy�).
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Themotivic Chern classCy.Z/ and themotivic Hirzebruch classTy�.Z/ of a
complex algebraic varietyZ are defined by

Cy.Z/ WDMHCy.ŒQH
Z �/ and Ty�.Z/ WDMHTy�.ŒQH

Z �/: (5-8)

Similarly, if U is a puren-dimensional complex algebraic manifold andL is a
local system onU underlying a good variation of mixed Hodge structuresL,
we define thetwisted motivic Chern and Hirzebruch characteristic classesby
(compare [12; 13; 35])

Cy.U IL/ WDMHCy.ŒLH �/ and Ty�.U IL/ WDMHTy�.ŒLH �/; (5-9)

whereLH Œn� is the smooth mixed Hodge module onU with underlying perverse
sheafLŒn�. Assume, in addition, thatU is dense and Zariski open in the complex
algebraic varietyZ. Let IC H

Z
; IC H

Z
.L/ 2MHM.Z/ be the (twisted) intersec-

tion homology (mixed) Hodge module onZ, whose underlying perverse sheaf is
ICZ or ICZ .L/, as the case may be. Then we defineintersection characteristic
classesas follows (compare [9; 11; 13; 35]):

ICy.Z/ WDMHCy

��

IC H
Z Œ�n�

��

;

ITy�.Z/ WDMHTy�

��

IC H
Z Œ�n�

��

;
(5-10)

and, similarly,

ICy.ZIL/ WDMHCy

��

IC H
Z .L/Œ�n�

��

;

ITy�.ZIL/ WDMHTy�

��

IC H
Z .L/Œ�n�

��

:
(5-11)

By definition and Theorem 5.1, the transformationsMHCy andMHTy� com-
mute with proper push-forward. The following normalizationproperty holds
(compare [9]): IfM is smooth, then

Cy.Z/D �y.T �M /\ ŒOM � and Ty�.Z/D T �
y .TM /\ ŒM �; (5-12)

whereT �
y .TM / is the cohomology Hirzebruch class ofM as in Theorem 2.4.

EXAMPLE 5.7. LetZ be a compact (possibly singular) complex algebraic va-
riety, with k W Z ! pt the proper constant map to a point. Then forM 2

DbMHM.Z/ the pushdown

k�.MHCy.M//DMHCy.k�M/D �y

�

ŒH �.Z;M/�
�

is the Hodge genus

�y.ŒH �.Z;M/�/D
X

i;p

.�1/i dimC.Gr
p
F

H i.Z;M// � .�y/p: (5-13)

In particular:
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(1) If Z is smooth, then

k�Cy.Z/D �y.Z/ WD �y

�

ŒH �.Z; Q/�
�

k�Cy.ZIL/D �y.ZIL/ WD �y

�

ŒH �.Z;L/�
�

:

(2) If Z is pure-dimensional, then

k�ICy.Z/D I�y.Z/ WD �y

�

ŒIH �.Z; Q/�
�

k�ICy.ZIL/D I�y.ZIL/ WD �y

�

ŒIH �.Z;L/�
�

:

Note that, forZ compact,

I��1.Z/D �.ŒIH �.ZIQ/�

is theintersection(co)homology Euler characteristicof Z, whereas, forZ pro-
jective,

I�1.Z/D sgn
�

IH �.Z; Q/
�

is the intersection(co)homology signatureof Z, introduced by Goresky and
MacPherson [25]. In fact this follows as in the smooth context from Saito’s
relative version of the Hodge index theorem for intersection cohomology [39,
Theorem 5.3.2]. Finally�0.Z/ and I�0.Z/ are two possible extensions to
singular varieties of thearithmetic genus. Here it makes sense to takey D 0,
since one has, by Example 5.2,

k�ICy.Z/D I�y.Z/ 2 ZŒy�:

It is conjectured that, for a puren-dimensional compact varietyZ,

IT1�.Z/
?
DL�.Z/ 2H2�.Z; Q/

is the Goresky–MacPherson homologyL-class [25] of the Witt spaceZ; see
[9, Remark 5.4]. Similarly one should expect for a pure-dimensional compact
varietyZ that

˛.IC1.Z//
?
D4.Z/ 2KO

top
0

.Z/
�

1
2

�

˚KO
top
2

.Z/
�

1
2

�

'K
top
0

.Z/
�

1
2

�

; (5-14)

wherę WG0.Z/!K
top
0

.Z/ is theK-theoretical Riemann–Roch transformation
of Baum, Fulton, and MacPherson [6], and4.Z/ is theSullivan classof the Witt
spaceZ (compare with [3] in these proceedings). These conjecturedequalities
are true for a smoothZ, or more generally for a puren-dimensional compact
complex algebraic varietyZ with asmall resolutionof singularitiesf WM!Z,
in which case one hasf�.QH

M /D IC H
Z

Œ�n�, so that

IT1�.Z/D f�T1�.M /D f�L�.M /DL�.Z/

and

˛ .IC1.Z//D f� .˛.C1.M ///D f�4.M /D4.Z/:
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Here the functorialityf�L�.M /D L�.Z/ andf�4.M /D4.Z/ for a small
resolution follows, for instance, from [54], which allows one to think of the
characteristic classesL� and4 as covariant functors for suitable Witt groups
of selfdual constructible sheaf complexes.

In particular, the classesf�C1.M / and f�T1�.M / do not depend on the
choice of a small resolution. In fact the same functorialityargument applies to

ICy.Z/D f�Cy.M / 2G0.Z/˝ZŒy�;

ITy�.Z/D f�Ty�.M / 2H2�.Z/˝QŒy; .1Cy/�1�I

compare [11; 35]. Note that in general a complex varietyZ doesn’t have a
small resolution, and even if it exists, it is in general not unique. This type of
independence question were discussed by Totaro [51], pointing out the relation
to the famouselliptic genus and classes(compare also with [32; 53] in these
proceedings). Note that we get such a result for theK-theoretical class

ICy.Z/D f�Cy.M / 2G0.Z/˝ZŒy� !

5B. Calculus of characteristic classes. So far we only discussed the functorial-
ity of MHCy with respect to proper push down, and the corresponding relation
to Hodge genera for compactZ coming from the push down for the proper
constant mapk WZ! pt . Now we explain some other important functoriality
properties. Their proof is based on the following (see [35, (4.6)], for instance):

EXAMPLE 5.8. LetM be a smooth partial compactification of the complex alge-
braic manifoldM with complementD a normal crossing divisor with smooth ir-
reducible components, withj WM !M the open inclusion. LetVD .L; F; W /

be a good variation of mixed Hodge structures onM . Then the filtered de Rham
complex

.DR.j�V/; F / of j�V 2MHM.M /Œ�m��DbMHM.M /

is by Theorem 5.1(2) filtered quasi-isomorphic to the logarithmic de Rham com-
plex DRlog.L/ with the increasing filtrationF�p WD Fp (p 2 Z) associated to
the decreasingF -filtration (3-15). Then

MHCy.j�V/D
X

i;p

.�1/i ŒHi.Grp
F

DRlog.L//� � .�y/p

D
X

p

ŒGrp
F

DRlog.L/� � .�y/p

.�/
D

X

i;p

.�1/i ŒGrp�i
F

.L/˝O
M

˝i
M

.log.D//� � .�y/p

DMHCy.Rj�L/\
�

�y

�

˝1
M

.log.D//
�

\ ŒOM �
�

: (5-15)
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In particular forj D id W M ! M we get the followingAtiyah–Meyer type
formula (compare [12; 13; 35]):

MHCy.V/DMHCy.L/\
�

�y.T �M /\ ŒOM �
�

: (5-16)

REMARK 5.9. The formula (5-15) is a class version of the formula (3-16) of
Theorem 3.13, which one gets back from (5-15) by pushing downto a point for
the proper constant mapk WM ! pt on the compactificationM of M .

Also note that in the equality (�) in (5-15) we use the fact that the com-
plex Grp

F
DRlog.L/ has coherent (locally free) objects, withOM -linear maps

between them.

The formula (5-15) describes asplitting of the characteristic classMHCy.j�V/

into two terms:

(coh) a cohomological termMHCy.Rj�L/, capturing the information of the
good variation of mixed Hodge structuresL, and

(hom) the homological term�y

�

˝1
M

.log.D//
�

\ ŒOM �DMHCy.j�QH
M /, cap-

turing the information of the underlying space or embeddingj WM !M .

By Corollary 3.14, the termMHCy.Rj�L/ has good functorial behavior with
respect to exterior and suitable tensor products, as well asfor smooth pullbacks.
For the exterior products one gets similarly (compare [19, Proposition 3.2]):

˝1
M �M 0.log.D �M 0[M �D0//'

�

˝1
M

.log.D//
�

ˆ
�

˝1
M 0.log.D0//

�

so that

�y

�

˝1
M�M 0.log.D �M 0[M �D0//

�

\ ŒOM�M 0 �

D
�

�y

�

˝1
M

.log.D//
�

\ ŒOM �
�

ˆ
�

�y

�

˝1
M 0.log.D0//

�

\ ŒOM 0 �
�

for the product of two partial compactifications as in example 5.8. But the
Grothendieck groupK0.MHM.Z// of mixed Hodge modules on the complex
varietyZ is generated by classes of the formf�.j�ŒV�/, with f WM!Z proper
andM; M ; V as before. Finally one also has the multiplicativity

.f � f 0/� D f� ˆ f 0
�

for the push down for proper mapsf WM !Z andf 0 WM 0!Z0 on the level of
Grothendieck groupsK0.MHM. � // as well as forG0. � /˝ZŒy˙1�. Then one
gets the following result from Corollary 3.14 and Example 5.8 (as in [9, Proof
of Corollary 2.1(3)]):
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COROLLARY 5.10 (MULTIPLICATIVITY FOR EXTERIOR PRODUCTS). The
motivic Chern class transformation MHCy commutes with exterior products:

MHCy.ŒM ˆ M 0�/DMHCy.ŒM � ˆ ŒM 0�/

DMHCy.ŒM �/ ˆ MHCy.ŒM 0�/ (5-17)

for M 2DbMHM.Z/ andM 0 2DbMHM.Z0/.

Next we explain the behavior ofMHCy for smooth pullbacks. Consider a carte-
sian diagram of morphisms of complex algebraic varieties

M 0
g0

����! M

f 0

?

?

y

?

?

y
f

Z0 ����!
g

Z;

with g smooth,f proper andM; M ; V as before. Theng0 too is smooth and
f 0 is proper, and one has thebase change isomorphism

g�f� D f 0
�g0�

on the level of Grothendieck groupsK0.MHM. � // as well as forG0. � / ˝

ZŒy˙1�. Finally for the induced partial compactificationM 0 of M 0 WDg0�1.M /,
with complementD0 the induced normal crossing divisor with smooth irre-
ducible components, one has a short exact sequence of vectorbundles onM 0:

0! g0�
�

˝1
M

.log.D//
�

!˝1
M 0.log.D0//! T �

g0 ! 0;

with T �
g0 the relative cotangent bundle along the fibers of the smooth morphism

g0. And by base change one hasT �
g0 D f 0�.T �

g /. So for the corresponding
lambda classes we get

�y

�

˝1
M 0.log.D0//

�

D
�

g0��y

�

˝1
M

.log.D//
��

˝�y.T �
g0/

D
�

g0��y

�

˝1
M

.log.D//
��

˝ f 0��y.T �
g /:

(5-18)

Finally (compare also with [9, Proof of Corollary 2.1(4)]),by using thepro-
jection formula

�y.T �
g /˝ f 0

�. � /D f 0
�

�

f 0��y.T �
g /˝ . � /

�

W

G0.M 0/˝ZŒy˙1�!G0.Z0/˝ZŒy˙1�

one gets from Corollary 3.14 and Example 5.8 the following consequence:
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COROLLARY 5.11 (VRRFOR SMOOTH PULLBACKS). For a smooth morphism
g WZ0!Z of complex algebraic varieties one has for the motivic Chernclass
transformation the following Verdier Riemann–Roch formula:

�y.T �
g /\g�MHCy.ŒM�/DMHCy.g�ŒM�/DMHCy.Œg�

M�/ (5-19)

for M 2DbMHM.Z/. In particular

g�MHCy.ŒM�/DMHCy.g�ŒM�/DMHCy.Œg�
M�/ (5-20)

for g anétale morphism(i.e., a smooth morphism with zero dimensional fibers),
or in more topological terms, for g an unramified covering. The most important
special case is that of an open embedding.

If moreoverg is also proper, then one gets from Corollary 5.11 and the projection
formula the following result:

COROLLARY 5.12 (GOING UP AND DOWN). Let g WZ0!Z be a smooth and
proper morphism of complex algebraic varieties. Then one has for the motivic
Chern class transformation the following going up und down formula:

MHCy.g�g�ŒM�/D g�MHCy.g�ŒM�/

D g�

�

�y.T �
g /\g�MHCy.ŒM�/

�

D
�

g��y.T �
g /

�

\MHCy.ŒM�/ (5-21)

for M 2DbMHM.Z/, with

g�

�

�y.T �
g /

�

WD
X

p;q�0

.�1/q � ŒRqg�.˝
p

Z 0=Z
/� �yp 2K0

alg.Z/Œy�

the algebraic cohomology class being given(as in Example3.5)by

MHCy.ŒRg�QZ 0 �/D
X

p;q�0

.�1/q � ŒRqg�.˝
p

Z 0=Z
/� �yp:

Note that all higher direct image sheavesRqg�.˝
p

Z 0=Z
/ are locally free in this

case, sinceg is a smooth and proper morphism of complex algebraic varieties
(compare with [18]).In particular

g�Cy.Z0/D
�

g��y.T �
g /

�

\Cy.Z/;

and

g�ICy.Z0/D
�

g��y.T �
g /

�

\ ICy.Z/

for Z and Z0 pure-dimensional. If , in addition, Z and Z0 are compact, with
k WZ! pt the constant proper map, then

�y.g�ŒM�/D k�g�MHCy.g�ŒM�/D hg��y.T �
g /; MHCy.ŒM�/i: (5-22)
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In particular,

�y.Z0/D hg��y.T �
g /; Cy.Z/i and I�y.Z0/D hg��y.T �

g /; ICy.Z/i:

The result of this corollary can also be seen form a differentviewpoint, by mak-
ing the “going up and down” calculation already on the level of Grothendieck
groups of mixed Hodge modules, where this time one only needsthe assumption
thatf WZ0!Z is proper (to get the projection formula):

f�f �ŒM�D Œf�f �
M�D Œf�.QH

Z 0˝f �
M/�D Œf�QH

Z 0 �˝ŒM�2K0.MHM.Z//

for M 2 DbMHM.Z/. The problem for a singularZ is then that we do not
have a precise relation between

Œf�QH
Z 0 � 2K0.MHM.Z// and ŒRf�QZ 0 � 2K0.FmHsp.Z//:

REMARK 5.13. What is missing up to now is the right notion of a good variation
(or family) of mixed Hodge structures on asingularcomplex algebraic variety
Z! This class should contain at least

(1) the higher direct image local systemsRif�QZ 0 (i 2 Z) for a smooth and
proper morphismf WZ0!Z of complex algebraic varieties, and

(2) the pullbackg�L of a good variation of mixed Hodge structuresL on a
smooth complex algebraic manifoldM under an algebraic morphismg W
Z!M .

At the moment we have to assume thatZ is smooth (and pure-dimensional), so
as to use Theorem 4.3.

Nevertheless, in case (2) above we can already prove the following interesting
result (compare with [35,~ 4.1] for a similar result forMHTy� in the case when
f is a closed embedding):

COROLLARY 5.14 (MULTIPLICATIVITY ). Let f W Z ! N be a morphism of
complex algebraic varieties, with N smooth and puren-dimensional. Then one
has a natural pairing

f �. � /\ . � / WK0.VmHsg.N //�K0.MHM.Z//!K0.MHM.Z//;

.ŒL�; ŒM�/‘ Œf �.LH /˝M�:

HereLH Œm� is the smooth mixed Hodge module onN with underlying perverse
sheafLŒm�. One also has a similar pairing on(co)homological level:

f �. � /\ . � / WK0
alg.N /˝ZŒy˙1��G0.Z/˝ZŒy˙1�! G0.Z/˝ZŒy˙1�;

.ŒV � �yi ; ŒF � �yj /‘ Œf �.V/˝F � �yiCj :
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And the motivic Chern class transformations MHCy and MHCy commute with
these natural pairings:

MHCy

�

Œf �.LH /˝M�
�

DMHCy.Œf �
L�/\MHCy.ŒM�/

D f �
�

MHCy.ŒL�/
�

\MHCy.ŒM�/ (5-23)

for L 2 VmHsg.N / andM 2DbMHM.Z/.

For the proof we can once more assumeM D g�j�V for g WM ! Z proper,
with M a pure-dimensional smooth complex algebraic manifold,j WM !M

a Zariski open inclusion with complementD a normal crossing divisor with
smooth irreducible components, and finallyV a good variation of mixed Hodge
structures onM . Using the projection formula, it is then enough to prove

MHCy

�

Œg�f �.LH /˝ j�V�
�

DMHCy
�

Œg�f �
L�

�

\MHCy.Œj�V�/:

But g�f �L is a good variation of mixed Hodge structures onM . Therefore, by
Example 5.8 and Corollary 3.14(3), both sides are equal to

�

MHCy.g�f �
L/˝MHCy.j�V/

�

\
�

�y

�

˝1
M

.log.D//
�

\ ŒOM �
�

:

As an application of the very special case wheref D id W Z ! N is the
identity of a complex algebraic manifoldZ, with

MHCy.ŒQH
Z �/D �y.T �Z/\ ŒOZ �;

one gets the Atiyah–Meyer type formula (5-16) as well as the following result
(cf. [12; 13; 35]):

EXAMPLE 5.15 (ATIYAH TYPE FORMULA). Let g WZ0!Z be a proper mor-
phism of complex algebraic varieties, withZ smooth and connected. Assume
that for a givenM 2DbMHM.Z0/ all direct image sheaves

Rig� rat.M/ .i 2 Z/ are locally constantW

for instance,g may be a locally trivial fibration andMD QH
Z 0 or MD IC H

Z 0

(for Z0 pure-dimensional), so that they all underlie a good variation of mixed
Hodge structures. Then one can define

ŒRg� rat.M/� WD
X

i2Z

.�1/i � ŒRig� rat.M/� 2K0.VmHsg.Z//;

with

g�MHCy.ŒM�/DMHCy.g�ŒM�/

DMHCy.ŒRg� rat.M/�/˝
�

�y.T �Z/\ ŒOZ �
�

: (5-24)

Here is a final application:
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EXAMPLE 5.16 (FORMULA OF ATIYAH –MEYER TYPE FOR INTERSECTION

COHOMOLOGY). Letf WZ!N be a morphism of complex algebraic varieties,
with N smooth and puren-dimensional (e.g., a closed embedding). Assume also
Z is purem-dimensional. Then one has for a good variation of mixed Hodge
structuresL on N the equality

IC H
Z .f �

L/Œ�m�' f �
L

H ˝ IC H
Z Œ�m� 2MHM.Z/Œ�m��DbMHM.Z/;

so that

ICy.ZI f �
L/DMHCy.f �

L/\ICy.Z/Df �
�

MHCy.L/
�

\ICy.Z/: (5-25)

If in addition Z is also compact, then one gets by pushing down to a point:

I�y.ZI f �
L/D hMHCy.f �

L/; ICy.Z/i: (5-26)

REMARK 5.17. This example should be seen as a Hodge-theoretical version of
the corresponding result of Banagl, Cappell, and Shaneson [4] for theL-classes
L�.ICZ .L// of a selfdualPoincaŕe local systemL on all of Z. The special
case of Example 5.16 forf a closed inclusion was already explained in [35,
~ 4.1].

Finally note that all the results of this section can easily be applied to the
(un)normalizedmotivic Hirzebruch class transformation MHTy� (andAMHTy�),
because theTodd class transformationtd� W G0. � / ! H�. � /˝ Q of Baum,
Fulton, and MacPherson [5] has the following properties (compare also with
[22, Chapter 18] and [24, Part II]):

FUNCTORIALITY: The Todd class transformationtd� commutes with push-
downf� for a proper morphismf WZ! X :

td� .f� .ŒF �//D f� .td� .ŒF �// for ŒF � 2G0.Z/.

MULTIPLICATIVITY FOR EXTERIOR PRODUCTS: The Todd class transforma-
tion td� commutes with exterior products:

td�

�

ŒF ˆF
0�
�

D td� .ŒF �/ ˆ td�

�

ŒF 0�
�

for ŒF � 2G0.Z/ andŒF 0� 2G0.Z0/.

VRR FOR SMOOTH PULLBACKS: For a smooth morphismg W Z0 ! Z of
complex algebraic varieties one has for the Todd class transformation td�

the following Verdier Riemann–Roch formula:

td�.Tg/\g�td�.ŒF �/D td�.g�ŒF �/D td�.Œg�
F �/ for ŒF � 2G0.Z/.

MULTIPLICATIVITY : Let ch� W K0
alg. � /! H �. � /˝Q be the cohomological

Chern characterto the cohomologyH �. � / given by the operational Chow
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ring CH �. � / or the usual cohomologyH 2�. � ; Z/ in even degrees. Then one
has the multiplicativity relation

td�.ŒV˝F �/D ch�.ŒV �/\ td�.ŒF �/

for ŒV � 2 K0
alg.Z/ and ŒF � 2 G0.Z/, with Z a (possible singular) complex

algebraic variety.

5C. Characteristic classes and duality. In this final section we explain the
characteristic class version of the duality formula (2-14)for the�y-genus. We
also show that the specialization ofMHTy� for yD�1 exists and is equal to the
rationalized MacPherson Chern classc� of the underlying constructible sheaf
complex. The starting point is the following result [39,~ 2.4.4]:

THEOREM 5.18 (M. SAITO). Let M be a purem-dimensional complex alge-
braic manifold. Then one has forM 2 DbMHM.M / the duality result(for
j 2 Z)

GrF
j .DR.DM//'D

�

GrF
�j DR.M/

�

2Db
coh.M /: (5-27)

HereD on the left side is the duality of mixed Hodge modules, wheresD on the
right is the Grothendieck duality

DD Rhom. � ; !M Œm�/ WDb
coh.M /!Db

coh.M /;

with !M D˝m
M

the canonical sheaf ofM .

A priori this is a duality for the corresponding analytic (cohomology) sheaves.
SinceM andDR.M/ can be extended to smooth complex algebraic compact-
ification M , one can apply Serre’s GAGA theorem to get the same result also
for the underlying algebraic (cohomology) sheaves.

COROLLARY 5.19 (CHARACTERISTIC CLASSES AND DUALITY). Let Z be
a complex algebraic variety withdualizing complex!�

Z
2 Db

coh.Z/, so that
the Grothendieck duality transformationD D Rhom. � ; !�

Z
/ induces a duality

involution
D WG0.Z/!G0.Z/:

Extend this toG0.Z/˝ ZŒy˙1� by y ‘ 1=y. Then the motivic Hodge Chern
class transformation MHCy commutes with dualityD:

MHCy.D. � //DD.MHCy. � // WK0.MHM.Z//! G0.Z/˝ZŒy˙1�: (5-28)

Note that forZ D pt a point this reduces to the duality formula (2-14) for
the�y-genus. For dualizing complexes and (relative) Grothendieck duality we
refer to [26; 17; 33] as well as [24, Part I,~ 7]). Note that forM smooth of pure
dimensionm, one has

!M Œm�' !�

M 2Db
coh.M /:
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Moreover, for a proper morphismf W X ! Z of complex algebraic varieties
one has the relative Grothendieck duality isomorphism

Rf�

�

Rhom.F ; !�

X /
�

' Rhom.Rf�F ; !�

Z / for F 2Db
coh.X /,

so that the duality involution

D WG0.Z/˝ZŒy˙1�!G0.Z/˝ZŒy˙1�

commutes with proper push down. SinceK0.MHM.Z// is generated by classes
f�ŒM�, with f WM ! Z proper morphism from a pure dimensional complex
algebraic manifoldM (andM2MHM.M /), it is enough to prove (5-28) in the
caseZ DM a pure dimensional complex algebraic manifold, in which case it
directly follows from Saito’s result (5-27).

For a systematic study of the behavior of the Grothendieck duality trans-
formationD W G0.Z/! G0.Z/ with respect to exterior products and smooth
pullback, we refer to [23] and [24, Part I,~ 7], where a corresponding “bivariant”
result is stated. Here we only point out that the dualities. � /_ andD commute
with thepairingsof Corollary 5.14:

f �
�

. � /_
�

\ .D. � //DD
�

f �. � /\ . � /
�

W

K0
alg.N /˝ZŒy˙1��G0.Z/˝ZŒy˙1�! G0.Z/˝ZŒy˙1�;

(5-29)

and similarly

f �
�

. � /_
�

\ .D. � //DD
�

f �. � /\ . � /
�

W

K0.VmHsg.N //�K0.MHM.Z//!K0.MHM.Z//:
(5-30)

Here the last equality needs only be checked for classesŒICS .L/�, with S�Z

irreducible of dimensiond andL a good variation of pure Hodge structures on
a Zariski dense open smooth subsetU of S , andV a good variation of pure
Hodge structures onN . But then the claim follows from

f �.V/˝ ICS .L/' ICS .f �.V/jU ˝L/

and (4-3) in the form

D
�

ICS .f �.V/jU ˝L/
�

' ICS

�

.f �.V/jU ˝L/_
�

.d/

' ICS

�

f �.V_/jU ˝L
_

�

.d/:

REMARK 5.20. The Todd class transformationtd� W G0. � / ! H�. � /˝ Q,
too, commutes with duality (compare with [22, Example 18.3.19] and [24, Part
I, Corollary 7.2.3]) if the duality involutionD W H�. � /˝Q ! H�. � /˝Q in
homology is defined asD WD .�1/i � id onHi. � /˝Q. So also the unnormalized
Hirzebruch class transformationAMHTy� commutes with duality, if this duality
in homology is extended toH�. � /˝QŒy˙1� by y‘ 1=y.
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As a final result of this paper, we have:

PROPOSITION5.21.LetZ be a complex algebraic variety, and considerŒM�2

K0.MHM.Z//. Then

MHTy�.ŒM�/ 2H�.Z/˝QŒy˙1��H�.Z/˝QŒy˙1; .1Cy/�1�;

so that the specialization MHT�1�.ŒM�/ 2H�.Z/˝Q for y D �1 is defined.
Then

MHT�1�.ŒM�/D c�.Œrat.M/�/DW c�.�stalk.Œrat.M/�// 2H�.Z/˝Q (5-31)

is the rationalized MacPherson Chern class of the underlying constructible
sheaf complexrat.M/ (or the constructible function�stalk.Œrat.M/�/). In par-
ticular

MHT�1�.DŒM�/DMHT�1�.ŒDM�/DMHT�1�.ŒM�/: (5-32)

Here�stalk is the transformation form the diagram (4-13). Similarly, all the trans-
formations from this diagram (4-13), like�stalk and rat, commute with dualityD.
This implies already the last claim, sinceDD id for algebraically constructible
functions (compare [47,~ 6.0.6]). So we only need to prove the first part of the
proposition. SinceMHT�1� andc� both commute with proper push down, we
can assumeŒM� D Œj�V�, with Z D M a smooth pure-dimensional complex
algebraic manifold,j WM !M a Zariski open inclusion with complementD

a normal crossing divisor with smooth irreducible components, andV a good
variation of mixed Hodge structures onM . So

AMHTy�.Œj�V�/D ch�
�

MHCy.Rj�L/
�

\AMHTy�.Œj�QH
M �/2H�.M /˝QŒy˙1�

by (5-15) and themultiplicativityof the Todd class transformationtd�. Introduce
the twisted Chern character

ch.1Cy/ WK0
alg. � /˝QŒy˙1�!H �. � /˝QŒy˙1�;

ŒV � �yj ‘
X

i�0

chi.ŒV �/ � .1Cy/i �yj ; (5-33)

with chi.ŒV �/ 2H i. � /˝Q the i-th component ofch�. Then one easily gets

MHTy�.Œj�V�/D ch.1Cy/
�

MHCy.Rj�L/
�

\MHTy�.Œj�QH
M �/

2H�.M /˝QŒy˙1; .1Cy/�1�:

But Œj�QH
M �D �Hdg.j�ŒidM �/ is by (4-15) in the image of

�Hdg WM0.var=M /DK0.var=M /ŒL�1�!K0.MHM.M //:

So forMHTy�.Œj�QH
M �/ we can apply the following special case of Proposition

5.21:
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LEMMA 5.22.The transformation

Ty� DMHTy� ı�Hdg WM0.var=Z/!H�.Z/˝QŒy˙1; .1Cy/�1�

takes values inH�.Z/˝QŒy˙1��H�.Z/˝QŒy˙1; .1Cy/�1�, with

T�1� D T�1� ıD D c� ı canWM0.var=Z/!H�.Z/˝Q:

Assuming this lemma, we can derive from the following commutative diagram
that the specializationMHT�1�.Œj�V�/ for y D�1 exists:

H �. � /˝QŒy˙1��H�. � /˝QŒy˙1; .1Cy/�1�
\

�����! H�. � /˝QŒy˙1; .1Cy/�1�

incl:

x

?

?

?

x

?

?

?

incl:

H �. � /˝QŒy˙1��H�. � /˝QŒy˙1�
\

�����! H�. � /˝QŒy˙1�

yD�1

?

?

?

y

?

?

?

y

yD�1

H �. � /˝Q �H�. � /˝Q
\

�����! H�. � /˝Q:

Moreoverch.1Cy/ .MHCy.Rj�L// specializes fory D�1 just to

rk.L/D ch0.Œ L �/ 2H 0.M /˝Q;

with rk.L/ the rank of the local systemL on M . So we get

MHT�1�.Œj�V�/D rk.L/ � c�.j�1M /D c�.rk.L/ � j�1M / 2H�.M /˝Q;

with rk.L/ � j�1M D �stalk.rat.Œj�V�//.

It remains to prove Lemma 5.22. But all transformations —Ty�, D, c� and
can — commute with pushdown for proper maps. Moreover, by resolution of
singularities and additivity,M0.var=Z/ is generated by classesŒf WN!Z��Lk

(k 2 Z), with N smooth puren-dimensional andf proper. So it is enough to
prove thatTy�.ŒidN � �Lk/ 2H�.N /˝QŒy˙1�, with

Ty�.ŒidN � �Lk/D Ty�

�

D.ŒidN � �Lk/
�

D c�

�

can.ŒidN � �Lk/
�

:

But by thenormalization conditionfor our characteristic class transforma-
tions one has (compare [9]):

Ty�.ŒidN �/D T �
y .TN /\ ŒN � 2H�.N /˝QŒy�;

with T�1�.ŒidN �/D c�.TN /\ ŒN �D c�.1N /. Similarly

Ty�.ŒL�/D �y.ŒQ.�1/�/D�y and can.ŒL�/D 1pt ;

so the multiplicativity ofTy� for exterior products (with a point space) yields

Ty�.ŒidN � �Lk/ 2H�.N /˝QŒy˙1�:
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Moreover

T�1�.ŒidN � �Lk/D c�.1N /D c�

�

can.ŒidN � �Lk/
�

:

Finally D.ŒidN � �Lk/D ŒidN � �Lk�n by the definition ofD, so that

T�1�.ŒidN � �Lk/D T�1�

�

D.ŒidN � �Lk/
�

:
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Poincaŕe metric, Ann. Math. 109 (1979), 415–476.
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