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Introduction to birational anabelian geometry
FEDOR BOGOMOLOV AND YURI TSCHINKEL

We survey recent developments in the Birational Anabelian Geometry pro-
gram aimed at the reconstruction of function fields of algebraic varieties over
algebraically closed fields from pieces of their absolute Galois groups.
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Introduction

The essence of Galois theory is to lose information, by passing from a field k,
an algebraic structure with two compatible operations, to a (profinite) group, its
absolute Galois group Gk or some of its quotients. The original goal of testing
solvability in radicals of polynomial equations in one variable over the rationals
was superseded by the study of deeper connections between the arithmetic in
k, its ring of integers, and its completions with respect to various valuations on
the one hand, and (continuous) representations of Gk on the other hand. The
discovered structures turned out to be extremely rich, and the effort led to the
development of deep and fruitful theories: class field theory (the study of abelian
extensions of k) and its nonabelian generalizations, the Langlands program. In
fact, techniques from class field theory (Brauer groups) allowed one to deduce
that Galois groups of global fields encode the field:
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Theorem 1 [Neukirch 1969; Uchida 1977]. Let K and L be number fields or
function fields of curves over finite fields with isomorphic Galois groups

G K solv/K ' GLsolv/L

of their maximal solvable extensions. Then

L ' K .

In another, more geometric direction, Galois theory was subsumed in the
theory of the étale fundamental group. Let X be an algebraic variety over a field
k. Fix an algebraic closure k̄/k and let K = k(X) be the function field of X . We
have an associated exact sequence

1→ π1(X k̄)→ π1(X)
prX
−→ Gk→ 1 (9X )

of étale fundamental groups, exhibiting an action of the Galois group of the
ground field k on the geometric fundamental group π1(X k̄). Similarly, we have
an exact sequence of Galois groups

1→ G k̄(X)→ G K
prK
−→ Gk→ 1. (9K )

Each k-rational point on X gives rise to a section of prX and prK .
When X is a smooth projective curve of genus g≥2, its geometric fundamental

group π1(X k̄) is a profinite group in 2g generators subject to one relation. Over
fields of characteristic zero, these groups depend only on g but not on the curve.
However, the sequence (9X ) gives rise to a plethora of representations of Gk

and the resulting configuration is so strongly rigid1 that it is natural to expect
that it encodes much of the geometry and arithmetic of X over k.

For example, let k be a finite field and X an abelian variety over k of dimension
g. Then Gk is the procyclic group Ẑ, generated by the Frobenius, which acts on
the Tate module

T`(X)= πa
1,`(X k̄)' Z

2g
` ,

where πa
1,`(X k̄) is the `-adic quotient of the abelianization πa

1 (X k̄) of the étale
fundamental group. By a theorem of Tate [1966], the characteristic polynomial
of the Frobenius determines X , up to isogeny. Moreover, if X and Y are abelian
varieties over k then

HomGk (T`(X), T`(Y ))' Homk(X, Y )⊗Z`.

Similarly, if k is a number field and X, Y abelian varieties over k then

HomGk (π
a
1 (X), π

a
1 (Y ))' Homk(X, Y )⊗ Ẑ,

by a theorem of Faltings [1983].

1“ausserordentlich stark” [Grothendieck 1997].
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With these results at hand, Grothendieck [1997] conjectured that there is
a certain class of anabelian varieties, defined over a field k (which is finitely
generated over its prime field), which are characterized by their fundamental
groups. Main candidates are hyperbolic curves and varieties which can be
successively fibered by hyperbolic curves. There are three related conjectures:

Isom: An anabelian variety X is determined by (9X ), i.e., by the profinite group
π1(X) together with the action of Gk .

Hom: If X and Y are anabelian, then there is a bijection

Homk(X, Y )= HomGk (π1(X), π1(Y ))/∼

between the set of dominant k-morphisms and Gk-equivariant open homomor-
phisms of fundamental groups, modulo conjugacy (inner automorphisms by the
geometric fundamental group of Y ).

Sections: If X is anabelian then there is a bijection between the set of rational
points X (k) and the set of sections of prX (modulo conjugacy).

Similar conjectures can be made for nonproper varieties. Excising points from
curves makes them “more” hyperbolic. Thus, one may reduce to the generic
point of X , replacing the fundamental group by the Galois group of the function
field K = k(X). In the resulting birational version of Grothendieck’s conjectures,
the exact sequence (9X ) is replaced by (9K ) and the projection prX by prK .

These conjectures have generated wide interest and stimulated intense research.
Here are some of the highlights of these efforts:

• proof of the birational Isom-conjecture for function fields over k, where k
is finitely generated over its prime field, by Pop [1994];

• proof of the birational Hom-conjecture over sub-p-adic fields k, i.e., k
which are contained in a finitely generated extension of Qp, by Mochizuki
[1999];

• proof of the birational Section-conjecture for local fields of characteristic
zero, by Königsmann [2005].

Here is an incomplete list of other significant result in this area: [Nakamura
1990; Voevodsky 1991a; 1991b; Tamagawa 1997]. In all cases, the proofs relied
on nonabelian properties in the structure of the Galois group G K , respectively,
the relative Galois group. Some of these developments were surveyed in [Ihara
and Nakamura 1997; Faltings 1998; Nakamura et al. 1998; Pop 1997; 2000;
Mochizuki 2003].

After the work of Iwasawa the study of representations of the maximal pro-`-
quotient GK of the absolute Galois group G K developed into a major branch of
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number theory and geometry. So it was natural to turn to pro-`-versions of the
hyperbolic anabelian conjectures, replacing the fundamental groups by their max-
imal pro-`-quotients and the absolute Galois group G K by GK . Several results
in this direction were obtained in [Corry and Pop 2009; Saïdi and Tamagawa
2009b].

A very different intuition evolved from higher-dimensional birational algebraic
geometry. One of the basic questions in this area is the characterization of fields
isomorphic to purely transcendental extensions of the ground field, i.e., varieties
birational to projective space. Interesting examples of function fields arise from
faithful representations of finite groups

G→ Aut(V ),

where V = An
k is the standard affine space over k. The corresponding variety

X = V/G

is clearly unirational. When n ≤ 2 and k is algebraically closed the quotient is
rational (even though there exist unirational but nonrational surfaces in positive
characteristic). The quotient is also rational when G is abelian and k algebraically
closed.

Noether’s problem (inspired by invariant theory and the inverse problem in
Galois theory) asks whether or not X = V/G is rational for nonabelian groups.
The first counterexamples were constructed in [Saltman 1984]. Geometrically,
they are quotients of products of projective spaces by projective actions of finite
abelian groups. The first obstruction to (retract) rationality was described in
terms of Azumaya algebras and the unramified Brauer group

Brnr (k(X))= H2
nr (X),

(see Section 7). A group cohomological interpretation of these examples was
given in [Bogomolov 1987]; it allowed one to generate many other examples and
elucidated the key structural properties of the obstruction group. This obstruction
can be computed in terms of G, in particular, it does not depend on the chosen
representation V of G:

B0(G) := Ker
(

H2(G,Q/Z)→
∏

B

H2(B,Q/Z)

)
,

where the product ranges over the set of subgroups B ⊂ G which are generated
by two commuting elements. A key fact is that, for X = V/G,

B0(G)= Brnr (k(X))= H2
nr (X),
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see Section 7 and Theorem 22.

One has a decomposition into primary components

B0(G)=⊕` B0,`(G), (0-1)

and computation of each piece reduces to computations of cohomology of the
`-Sylow subgroups of G, with coefficients in Q`/Z`.

We now restrict to this case, i.e., finite `-groups G and Q`/Z`-coefficients.
Consider the exact sequence

1→ Z→ Gc
→ Ga

→ 1,

where
Gc
= G/[[G,G],G]

is the canonical central extension of the abelianization

Ga
= G/[G,G].

We have
B0(Gc) ↪→ B0(G) (0-2)

(see Section 7); in general, the image is a proper subgroup. The computation
of B0(Gc) is a problem in linear algebra: We have a well-defined map (from
“skew-symmetric matrices” on Ga , considered as a linear space over Z/`) to the
center of Gc: ∧2

(Ga)
λ
−→ Z , (γ1, γ2) 7→ [γ̃1, γ̃2],

where γ̃ is some lift of γ ∈ Ga to Gc. Let

R(Gc) := Ker(λ)

be the subgroup of relations in
∧2
(Ga) (the subgroup generated by “matrices”

of rank one). We say that γ1, γ2 form a commuting pair if

[γ̃1, γ̃2] = 1 ∈ Z .

Let
R∧(Gc) := 〈γ1 ∧ γ2〉 ⊂ R(Gc)

be the subgroup generated by commuting pairs. It is proved in [Bogomolov
1987] that

B0(Gc)=
(
R(Gc)/R∧(Gc)

)∨
.

Using this representation it is easy to produce examples with nonvanishing B0(G),
thus nonrational fields of G-invariants, already for central extensions of (Z/`)4

by (Z/`)3 [Bogomolov 1987].
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Note that for K = k(V )G the group G is naturally a quotient of the absolute
Galois group G K . The sketched arguments from group cohomology suggested
to focus on GK , the pro-`-quotient of G K and the pro-`-cohomology groups
introduced above. The theory of commuting pairs explained in Section 4 implies
that the groups GK are very special: for any function field K over an algebraically
closed field one has

B0,`(G K )= B0(GK )= B0(G
c
K ).

This lead to a dismantling of nonabelian aspects of anabelian geometry. For
example, from this point of view it is unnecessary to assume that the Galois
group of the ground field k is large. On the contrary, it is preferable if k is
algebraically closed, or at least contains all `n-th roots of 1. More significantly,
while the hyperbolic anabelian geometry has dealt primarily with curves C , the
corresponding B0(Gk(C)), and hence B0(G

c
k(C)), are trivial, since the `-Sylow

subgroups of Gk(C) are free. Thus we need to consider function fields K of
transcendence degree at least 2 over k. It became apparent that in these cases, at
least over k = F̄p,

B0(G
c
K )= H2

nr (k(X))

encodes a wealth of information about k(X). In particular, it determines all
higher unramified cohomological invariants of X (see Section 3).

Let p and ` be distinct primes and k = F̄p an algebraic closure of Fp. Let X
be an algebraic variety over k and K = k(X) its function field (X will be called
a model of K ). In this situation, Ga

K is a torsion-free Z`-module. Let 6K be
the set of not procyclic subgroups of Ga

K which lift to abelian subgroups in the
canonical central extension

Gc
K = GK /[[GK ,GK ],GK ] → Ga

K .

The set 6K is canonically encoded in

R∧(Gc
K )⊂

∧2
(Ga

K ),

a group that carries less information than Gc
K (see Section 6).

The main goal of this survey is to explain the background of this result:

Theorem 2 [Bogomolov and Tschinkel 2008b; 2009b]. Let K and L be function
fields over algebraic closures of finite fields k and l, of characteristic 6= `. Assume
that the transcendence degree of K over k is at least two and that there exists an
isomorphism

9 =9K ,L : Ga
K
∼
−→ Ga

L (0-3)
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of abelian pro-`-groups inducing a bijection of sets

6K =6L .

Then k = l and there exists a constant ε ∈ Z×` such that ε−1
·9 is induced from a

unique isomorphism of perfect closures

9̄∗ : L̄
∼
−→ K̄ .

The intuition behind Theorem 2 is that the arithmetic and geometry of varieties
of transcendence degree ≥ 2 over algebraically closed ground fields is governed
by abelian or almost abelian phenomena. One of the consequences is that central
extensions of abelian groups provide universal counterexamples to Noether’s
problem, and more generally, provide all finite cohomological obstructions to
rationality, at least over F̄p (see Section 3).

Conceptually, the proof of Theorem 2 explores a skew-symmetric incarnation
of the field, which is a symmetric object, with two symmetric operations. Indeed,
by Kummer theory, we can identify

Ga
K = Hom(K×/k×,Z`).

Dualizing again, we obtain

Hom(Ga
K ,Z`)= K̂×,

the pro-`-completion of the multiplicative group of K . Recall that

K× = KM
1 (K ),

the first Milnor K-group of the field. The elements of
∧2
(Ga

K ) are matched with
symbols in Milnor’s K-group KM

2 (K ). The symbol ( f, g) is infinitely divisible
in KM

2 (K ) if and only if f, g are algebraically dependent, i.e., f, g ∈ E = k(C)
for some curve C (in particular, we get no information when tr degk(K ) = 1).
In Section 2 we describe how to reconstruct homomorphisms of fields from
compatible homomorphisms

KM
1 (L)

ψ1 // KM
1 (K ),

KM
2 (L)

ψ2 // KM
2 (K ).

Indeed, the multiplicative group of the ground field k is characterized as the
subgroup of infinitely divisible elements of K×, thus

ψ1 : P(L)= L×/ l×→ P(K )= K×/k×,

a homomorphism of multiplicative groups (which we assume to be injective).
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Compatibility with ψ2 means that infinitely divisible symbols are mapped to infin-
itely divisible symbols, i.e., ψ1 maps multiplicative groups F× of 1-dimensional
subfields F ⊂ L to E× ⊂ K×, for 1-dimensional E ⊂ K . This implies that
already each P1

⊂ P(L) is mapped to a P1
⊂ P(K ). The Fundamental theorem

of projective geometry (see Theorem 5) shows that (some rational power of) ψ1

is a restriction of a homomorphisms of fields L→ K .
Theorem 2 is a pro-`-version of this result. Kummer theory provides the

isomorphism
9∗ : L̂×→ K̂×

The main difficulty is to recover the lattice

K×/k×⊗Z×(`) ⊂ K̂×.

This is done in several stages. First, the theory of commuting pairs [Bogo-
molov and Tschinkel 2002a] allows one to reconstruct abelianized inertia and
decomposition groups of valuations

Ia
ν ⊂ Da

ν ⊂ Ga
K .

Note that for divisorial valuations ν we have Ia
ν ' Z`, and the set

Ia
= {Ia

ν}

resembles a Z`-fan in Ga
K ' Z∞` . The key issue is to pin down, canonically, a

topological generator for each of these Ia
ν . The next step is to show that

9∗(F×/ l×)⊂ Ê× ⊂ K̂×

for some 1-dimensional E⊂K . This occupies most of [Bogomolov and Tschinkel
2008b], for function fields of surfaces. The higher-dimensional case, treated in
[2009b], proceeds by induction on dimension. The last step, i.e., matching of
projective structures on multiplicative groups, is then identical to the arguments
used above in the context of Milnor K-groups.

The Bloch–Kato conjecture says that Gc
K contains all information about the

cohomology of G K , with finite constant coefficients (see Section 3 for a detailed
discussion). Thus we can consider Theorem 2 as a homotopic version of the
Bloch–Kato conjecture, i.e., Gc

K determines the field K itself, modulo purely
inseparable extension.

Almost abelian anabelian geometry evolved from the Galois-theoretic inter-
pretation of Saltman’s counterexamples described above and the Bloch–Kato
conjecture. These ideas, and the “recognition” technique used in the proof of
Theorem 2, were put forward in [Bogomolov 1987; 1991a; 1991b; 1992; 1995b],
and developed in [Bogomolov and Tschinkel 2002a; 2008b; 2009a; 2009b]. In
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recent years, this approach has attracted the attention of several experts, including
F. Pop; see [Pop 2003], as well as his webpage, for other preprints on this topic,
which contain his version of the recognition procedure of K from Gc

K , for the
same class of fields K . Other notable contributions are found in [Chebolu et al.
2009; Chebolu and Mináč 2009].

Several ingredients of the proof of Theorem 2 sketched above appeared already
in Grothendieck’s anabelian geometry, relating the full absolute Galois group
of function fields to the geometry of projective models. Specifically, even
before Grothendieck’s insight, it was understood by Uchida and Neukirch (in
the context of number fields and function fields of curves over finite fields)
that the identification of decomposition groups of valuations can be obtained
in purely group-theoretic terms as, roughly speaking, subgroups with nontrivial
center. Similarly, it was clear that Kummer theory essentially captures the
multiplicative structure of the field and that the projective structure on Pk(K )
encodes the additive structure. The main difference between our approach and the
techniques of, e.g., Mochizuki [1999] and Pop [2003] is the theory of commuting
pairs which is based on an unexpected coincidence: the minimal necessary
condition for the commutation of two elements of the absolute Galois group of a
function field K is also sufficient and already implies that these elements belong
to the same decomposition group. It suffices to check this condition on Gc

K ,
which linearizes the commutation relation. Another important ingredient in our
approach is the correspondence between large free quotients of Gc

K and integrally
closed 1-dimensional subfields of K . Unfortunately, in full generality, this
conjectural equivalence remains open (see the discussion in Section 6). However,
by exploiting geometric properties of projective models of K we succeed in
proving it in many important cases, which suffices for solving the recognition
problem and for several other applications.

Finally, in Section 9 we discuss almost abelian phenomena in Galois groups
of curves that occur for completely different reasons. An application of a recent
result of Corvaja–Zannier concerning the divisibility of values of recurrence se-
quences leads to a Galois-theoretic Torelli-type result for curves over finite fields.

1. Abstract projective geometry

Definition 3. A projective structure is a pair (S,L) where S is a set (of points)
and L a collection of subsets l⊂ S (lines) such that

P1 there exist an s ∈ S and an l ∈ L such that s /∈ l;

P2 for every l ∈ L there exist at least three distinct s, s ′, s ′′ ∈ l;
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P3 for every pair of distinct s, s ′ ∈ S there exists exactly one

l= l(s, s ′) ∈ L

such that s, s ′ ∈ l;

P4 for every quadruple of pairwise distinct s, s ′, t, t ′ ∈ S one has

l(s, s ′)∩ l(t, t ′) 6=∅ ⇒ l(s, t)∩ l(s ′, t ′) 6=∅.

In this context, one can define (inductively) the dimension of a projective
space: a two-dimensional projective space, i.e., a projective plane, is the set
of points on lines passing through a line and a point outside this line; a three-
dimensional space is the set of points on lines passing through a plane and a
point outside this plane, etc.

A morphism of projective structures ρ : (S,L)→ (S′,L′) is a map of sets
ρ : S→ S′ preserving lines, i.e., ρ(l) ∈ L′, for all l ∈ L.

A projective structure (S,L) satisfies Pappus’ axiom if

PA for all 2-dimensional subspaces and every configuration of six points and
lines in these subspaces as in the figure, the intersections are collinear.

The following Fundamental theorem of abstract projective geometry goes
back at least to Schur and Hessenberg, but there were many researchers before
and after exploring the various interconnections between different sets of axioms
(Poncelet, Steiner, von Staudt, Klein, Pasch, Pieri, Hilbert, and others).2

Theorem 4 (Reconstruction). Let (S,L) be a projective structure of dimension
n ≥ 2 which satisfies Pappus’ axiom. Then there exists a vector space V over a
field k and an isomorphism

σ : Pk(V )
∼
−→ S.

For any two such triples (V, k, σ ) and (V ′, k ′, σ ′) there is an isomorphism

2“But there is one group of deductions which cannot be ignored in any consideration of the
principles of Projective Geometry. I refer to the theorems, by which it is proved that numerical
coordinates, with the usual properties, can be defined without the introduction of distance as a
fundamental idea. The establishment of this result is one of the triumphs of modern mathematical
thought.” A. N. Whitehead, The axioms of projective geometry, 1906, p. v.
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V/k
∼
−→ V ′/k ′

compatible with σ, σ ′ and unique up to homothety v 7→ λv, λ ∈ k×.

Main examples are of course the sets of k-rational points of the usual projective
Pn space over k of dimension n ≥ 2. Then Pn(k) carries a projective structure:
lines are the usual projective lines P1(k)⊂ Pn(k).

A related example arises as follows: Let K/k be an extension of fields. Then

S := Pk(K )= (K \ 0)/k×

carries a natural (possibly, infinite-dimensional) projective structure. Moreover,
the multiplication in K×/k× preserves this structure. In this setup we have the
following reconstruction theorem:

Theorem 5 (Reconstructing fields [Bogomolov and Tschinkel 2008b, Theorem
3.6]). Let K/k and K ′/k ′ be field extensions of degree ≥ 3 and

ψ̄ : S = Pk(K )→ Pk′(K ′)= S′

an injective homomorphism of abelian groups compatible with projective struc-
tures. Then k ' k ′ and K is isomorphic to a subfield of K ′.

The following strengthening is due to M. Rovinsky.

Theorem 6. Let S be an abelian group equipped with a compatible structure of
a projective space. Then there exist fields k and K such that S = Pk(K ).

Proof. There is an embedding of S=P(V ) as a projective subspace into PGL(V ).
Its preimage in GL(V ) is a linear subspace minus a point. Since V is invariant
under products (because P(V ) is) we obtain that V is a commutative subalgebra
of Mat(V ) and every element is invertible — hence it is a field. �

Related reconstruction theorems of “large” fields have recently emerged in
model theory. The setup there is as follows: A combinatorial pregeometry
(finitary matroid) is a pair (P, cl) where P is a set and

cl : Subsets(P)→ Subsets(P),

such that for all a, b ∈ P and all Y, Z ⊆ P one has:

• Y ⊆ cl(Y ),

• if Y ⊆ Z , then cl(Y )⊆ cl(Z),

• cl(cl(Y ))= cl(Y ),

• if a ∈ cl(Y ), then there is a finite subset Y ′ ⊂ Y such that a ∈ cl(Y ′) (finite
character),

• (exchange condition) if a ∈ cl(Y ∪ {b}) \ cl(Y ), then b ∈ cl(Y ∪ {a}).
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A geometry is a pregeometry such that cl(a)= a, for all a ∈P, and cl(∅)=∅.
Standard examples are provided by:

(1) P= V/k, a vector space over a field k and cl(Y ) the k-span of Y ⊂ P;

(2) P= Pk(V ), the usual projective space over a field k;

(3) P = Pk(K ), a field K containing an algebraically closed subfield k and
cl(Y )— the normal closure of k(Y ) in K , note that a geometry is obtained
after factoring by x ∼ y if and only if cl(x)= cl(y).

It turns out that a sufficiently large field can reconstructed from the geometry
of its 1-dimensional subfields.

Theorem 7 [Evans and Hrushovski 1991; 1995; Gismatullin 2008]. Let k and k ′

be algebraically closed fields, K/k and K ′/k ′ field extensions of transcendence
degree≥5 over k, resp. k ′. Then, every isomorphism of combinatorial geometries

Pk(K )→ Pk′(K ′)

is induced by an isomorphism of purely inseparable closures

K̄ → K ′.

In the next section, we show how to reconstruct a field of transcendence
degree ≥ 2 from its projectivized multiplicative group and the “geometry” of
multiplicative groups of 1-dimensional subfields.

2. K-theory

Let KM
i (K ) be i-th Milnor K-group of a field K . Recall that

KM
1 (K )= K×

and that there is a canonical surjective homomorphism

σK : KM
1 (K )⊗KM

1 (K )→ KM
2 (K );

we write (x, y) for the image of x⊗ y. The kernel of σK is generated by symbols
x ⊗ (1− x), for x ∈ K× \ 1. Put

K̄M
i (K ) := KM

i (K )/infinitely divisible elements, i = 1, 2.

Theorem 8 [Bogomolov and Tschinkel 2009a]. Let K and L be function fields
of transcendence degree ≥ 2 over an algebraically closed field k, resp. l. Let

ψ̄1 : K̄M
1 (K )→ K̄M

1 (L)

be an injective homomorphism.
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Assume that there is a commutative diagram

K̄M
1 (K )⊗ K̄M

1 (K )
ψ̄1⊗ψ̄1 //

σK

��

K̄M
1 (L)⊗ K̄M

1 (L)

σL

��
K̄M

2 (K )
ψ̄2

// K̄M
2 (L).

Assume that ψ̄1(K×/k×) 6⊆ E×/ l×, for a 1-dimensional field E ⊂ L (i.e., a field
of transcendence degree 1 over l).

Then there exist an m ∈Q and a homomorphism of fields

ψ : K → L

such that the induced map on K×/k× coincides with ψ̄m
1 .

Sketch of proof. First we reconstruct the multiplicative group of the ground field
as the subgroup of infinitely divisible elements: An element f ∈ K× = KM

1 (K )
is infinitely divisible if and only if f ∈ k×. In particular,

K̄M
1 (K )= K×/k×.

Next, we characterize multiplicative groups of 1-dimensional subfields: Given a
nonconstant f1 ∈ K×/k×, we have

Ker2( f1)= E×/k×,

where E= k( f1)
K

is the normal closure in K of the 1-dimensional field generated
by f1 and

Ker2( f ) := { g ∈ K×/k× = K̄M
1 (K ) | ( f, g)= 0 ∈ K̄M

2 (K ) }.

At this stage we know the infinite-dimensional projective subspaces P(E)⊂
P(K ). To apply Theorem 5 we need to show that projective lines P1

⊂P(K ) are
mapped to projective lines in P(L). It turns out that lines can be characterized
as intersections of (shifted) P(E), for appropriate 1-dimensional E ⊂ K . The
following technical result lies at the heart of the proof. �

Proposition 9 [Bogomolov and Tschinkel 2009a, Theorem 22]. Let k be an
algebraically closed field, K be an algebraically closed field extension of k,
x, y ∈ K algebraically independent over k, and take p ∈ k(x)

× r k · xQ and
q ∈ k(y)

×r k · yQ. Suppose that

k(x/y)
×
· y ∩ k(p/q)

×
· q 6=∅.
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Then there exist a ∈Q and c1, c2 ∈ k× such that

p ∈ k× · (xa
− c1)

1/a, q ∈ k× · (ya
− c2)

1/a

and
k(x/y)

×
· y ∩ k(p/q)

×
· q = k× · (xa

− cya)1/a,

where c = c1/c2.

Proof. The following proof, which works in characteristic zero, has been sug-
gested by M. Rovinsky (the general case in [Bogomolov and Tschinkel 2009a]
is more involved).

Assume that there is a nontrivial

I ∈ k(x/y)
×
· y ∩ k(p/q)

×
· q.

We obtain equalities in �K/k :

d(I/y)
I/y

= r ·
d(x/y)

x/y
and

d(I/q)
I/q

= s ·
d(p/q)

p/q
, (2-1)

for some
r ∈ k(x/y)

×
and s ∈ k(p/q)

×
.

Using the first equation, rewrite the second as

r ·
d(x/y)

x/y
+

d(y/q)
y/q

= s ·
d(p/q)

p/q
,

or

r
dx
x
− s

dp
p
= r ·

dy
y
+

d(q/y)
q/y

− s
dq
q
.

The differentials on the left and on the right are linearly independent, thus both
are zero, i.e., r = s f = sg− g+ 1, where

f = xp′/p ∈ k(x)
×

and g = yq ′/q ∈ k(y)
×
,

and p′ is derivative with respect to x , q ′ the derivative In particular, s = 1−g
f−g .

Applying d log to both sides, we get

ds
s
=

g′dy
g− 1

+
g′dy− f ′dx

f − g
=

f ′

g− f
dx +

g′(1− f )
(1− g)( f − g)

dy.

As ds/s is proportional to

d(p/q)
p/q

=
p′

p
dx −

q ′

q
dy = f

dx
x
− g

dy
y

dy,

we get

x
f ′

f
= y

g′(1− f )
(1− g)g

, x
f ′

(1− f ) f
= y

g′

(1− g)g
.
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Note that the left side is in k(x)
×

, while the right hand side is in k(y)
×

. It follows
that

x
f ′

(1− f ) f
= y

g′

(1− g)g
= a ∈ k.

Solving the ordinary differential equation(s), we get

f
f − 1

= c−1
1 xa and

g
g− 1

= c−1
2 ya

for some c1, c2 ∈ k× and a ∈Q, so

f = (1− c1x−a)−1
= x

d
dx

log(xa
− c1)

1/a,

g = (1− c2 y−a)−1
= y

d
dy

log(ya
− c2)

1/a.

Thus finally,

p = b1 · (xa
− c1)

1/a and q = b2 · (ya
− c2)

1/a.

We can now find

s =
(1− c1x−a)−1c2 y−a

c2 y−a − c1x−a =
c2(xa

− c1)

c2xa − c1 ya

and then

r = s f =
c2xa

c2xa − c1 ya = (1− c(x/y)−a)−1,

where c = c1/c2. From (2-1) we find

d log(I/y)=−
1
a

dT
T (1− T )

,

where T = c(x/y)−a , and thus,

I = y · b3(1− c−1(x/y)a)1/a = b0(xa
− cya)1/a. �

This functional equation has the following projective interpretation: If E =
k(x) then the image of each P1

⊂ P(E) under 9 lies in a rational normal curve
given by the conclusion of Proposition 9, where a may a priori depend on
x . However, a simple lemma shows that it is actually independent of x (in
characteristic zero), thus 91/a extends to a field homomorphism. (In general, it
is well-defined modulo powers of p, this brings up purely inseparable extensions,
which are handled by an independent argument.)
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3. Bloch-Kato conjecture

Let K be a field and ` a prime distinct from the characteristic of K . Let

µ`n := {
`n
√

1 } and Z`(1)= lim
←−

µ`n .

We will assume that K contains all `n-th roots of unity and identify Z` and Z`(1).
Let Ga

K be the abelianization of the maximal pro-`-quotient of the absolute Galois
group G K .

Theorem 10 (Kummer theory). There is a canonical isomorphism

H1(GK ,Z/`n)= H1(Ga
K ,Z/`n)= K×/`n. (3-1)

More precisely, the discrete group K×/(K×)`
n

and the compact profinite
group Ga

K /`
n are Pontryagin dual to each other, for a µ`n -duality, i.e., there is a

perfect pairing
K×/(K×)`

n
×Ga

K /`
n
→ µ`n .

Explicitly, this is given by

( f, γ ) 7→ γ ( `
n√

f )/ `n
√

f ∈ µ`n .

For K = k(X), with k algebraically closed of characteristic 6= `, we have

• K×/k× is a free Z-module and

K×/(K×)`
n
= (K×/k×)/`n for all n ∈ N;

• identifying K×/k×
∼
−→ Z(I), one has K×/(K×)`

n ∼
−→ (Z/`n)(I) and

Ga
K /`

n ∼
−→ (Z/`n(1))I;

in particular, the duality between K̂× = K̂×/k× and Ga
K is modeled on that

between

{functions I→ Z` tending to 0 at ∞} and ZI
`.

Since the index set I is not finite, taking double-duals increases the space of
functions with finite support to the space of functions with support converging to
zero, i.e., the support modulo `n is finite, for all n ∈ N. For function fields, the
index set is essentially the set of irreducible divisors on a projective model of
the field. This description is a key ingredient in the reconstruction of function
fields from their Galois groups.

In particular, an isomorphism of Galois groups

9K ,L : Ga
K
∼
−→ Ga

L



INTRODUCTION TO BIRATIONAL ANABELIAN GEOMETRY 33

as in Theorem 2 implies a canonical isomorphism

9∗ : K̂× ' L̂×.

The Bloch–Kato conjecture, now a theorem established by Voevodsky [2003;
2010], with crucial contributions by Rost and Weibel [2009; 2009], describes
the cohomology of the absolute Galois group G K through Milnor K-theory for
all n:

KM
n (K )/`

n
= Hn(G K ,Z/`n). (3-2)

There is an alternative formulation. Let Gc
K be the canonical central extension of

Ga
K as in the Introduction. We have the diagram

G K

πc

��

π

��
Gc

K πa
// Ga

K

Theorem 11. The Bloch–Kato conjecture (3-2) is equivalent to:

(1) The map
π∗ : H∗(Ga

K ,Z/`n)→ H∗(GK ,Z/`n)

is surjective and

(2) Ker(π∗a )= Ker(π∗).

Proof. The proof uses the first two cases of the Bloch–Kato conjecture. The first
is (3-1), i.e., Kummer theory. Recall that the cohomology ring of a torsion-free
abelian group is the exterior algebra on H1. We apply this to Ga

K ; combining
with (3-1) we obtain:

H∗(Ga
K ,Z/`n)=

∧
∗
(K×/`n).

Since Gc is a central extension of the torsion-free abelian group Ga
K , the kernel

of the ring homomorphism

π∗a : H∗(Ga
K ,Z/`n)→ H∗(Gc

K ,Z/`n)

is an ideal I HK (n) generated by

Ker
(
H2(Ga

K ,Z/`n)→ H2(Gc
K ,Z/`n)

)
(as follows from the standard spectral sequence argument). We have an exact
sequence

0→ I HK (n)→
∧
∗
(K×/`n)→ H∗(Gc,Z/`n).
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On the other hand, we have a diagram for the Milnor K-functor:

1 // ĨK (n) //

����

⊗
∗(K×/`n) //

����

KM
∗
(K )/`n // 1

1 // IK (n) // ∧∗(K×/`n) // KM
∗
(K )/`n // 1

H∗(Ga
K ,Z/`n)

Thus the surjectivity of π∗ is equivalent to the surjectivity of

KM
n (K )/`

n
→ Hn(GK ,Z/`n).

Part (2) is equivalent to

I HK (n)' IK (n),

under the isomorphism above. Both ideals are generated by degree 2 components.
In degree 2, the claimed isomorphism follows from the Merkurjev–Suslin theorem

H2(GK ,Z/`n)= KM
2 (K )/`

n. �

Thus the Bloch–Kato conjecture implies that Gc
K completely captures the

`-part of the cohomology of GK . This led the first author to conjecture in
[Bogomolov 1991a] that the “homotopy” structure of GK is also captured by
Gc

K and that morphisms between function fields L→ K should be captured (up
to purely inseparable extensions) by morphisms Gc

K → Gc
L . This motivated the

development of the almost abelian anabelian geometry.

We now describe a recent related result in Galois cohomology, which could be
considered as one of the incarnations of the general principle formulated above.
Let G be a group and ` a prime number. The descending `n-central series of G
is given by

G(1,n)
= G, G(i+1,n)

:= (G(i,n))`
n
[G(i,n),G], i = 1, . . . .

We write
Gc,n
= G/G(3,n), Ga,n

= G/G(2,n),

so that
Gc
= Gc,0, Ga

= Ga,0.

Theorem 12 [Chebolu et al. 2009]. Let K and L be fields containing `n-th roots
of 1 and

9 : GK → GL
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a continuous homomorphism. The following are equivalent:

(i) the induced homomorphism

9c
: Gc,n

K → Gc,n
L

is an isomorphism;

(ii) the induced homomorphism

9∗ : H∗(GL ,Z/`n)→ H∗(GK ,Z/`n)

is an isomorphism.

4. Commuting pairs and valuations

A value group, 0, is a totally ordered (torsion-free) abelian group. A (nonar-
chimedean) valuation on a field K is a pair ν = (ν, 0ν) consisting of a value
group 0ν and a map

ν : K → 0ν,∞ = 0ν ∪∞

such that

• ν : K×→ 0ν is a surjective homomorphism;

• ν(κ + κ ′)≥min(ν(κ), ν(κ ′)) for all κ, κ ′ ∈ K ;

• ν(0)=∞.

The set of all valuations of K is denoted by VK .
Note that F̄p admits only the trivial valuation; we will be mostly interested

in function fields K = k(X) over k = F̄p. A valuation is a flag map on K :
every finite-dimensional F̄p-subspace, and also Fp-subspace, V ⊂ K has a flag
V = V1 ⊃ V2 · · · such that ν is constant on V j \ V j+1. Conversely, every flag
map gives rise to a valuation.

Let Kν , oν,mν , and K ν := oν/mν be the completion of K with respect to ν,
the valuation ring of ν, the maximal ideal of oν , and the residue field, respectively.
A valuation of K = F̄p(X), is called divisorial if the residue field is the function
field of a divisor on X ; the set of such valuations is denoted by DVK . We have
exact sequences:

1→ o×ν → K×→ 0ν→ 1,

1→ (1+mν)→ o×ν → K×ν → 1.

A homomorphism χ : 0ν→ Z`(1) gives rise to a homomorphism

χ ◦ ν : K×→ Z`(1),
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thus to an element of Ga
K , an inertia element of ν. These form the inertia subgroup

Ia
ν ⊂ Ga

K . The decomposition group Da
ν is the image of Ga

Kν
in Ga

K . We have an
embedding Ga

Kν
↪→ Ga

K and an isomorphism

Da
ν/I

a
ν ' Ga

K ν
.

We have a dictionary (for K = k(X) and k = F̄p):

Ga
K = {homomorphisms γ : K×/k×→ Z`(1)},

Da
ν = {µ ∈ Ga

K |µ trivial on (1+mν)},

Ia
ν = {ι ∈ Ga

K | ι trivial on o×ν }.

In this language, inertia elements define flag maps on K . If E ⊂ K is a subfield,
the corresponding homomorphism of Galois groups GK → GE is simply the
restriction of special Z`(1)-valued functions on the space Pk(K ) to the projective
subspace Pk(E).

The following result is fundamental in our approach to anabelian geometry.

Theorem 13 [Bogomolov and Tschinkel 2002a; 2008b, Section 4]. Let K be any
field containing a subfield k with #k≥11. Assume that there exist nonproportional
homomorphisms

γ, γ ′ : K×→ R

where R is either Z, Z` or Z/`, such that

(1) γ, γ ′ are trivial on k×;

(2) the restrictions of the R-module 〈γ, γ ′, 1〉 to every projective line P1
⊂

Pk(K )= K×/k× has R-rank ≤ 2.

Then there exists a valuation ν of K with value group 0ν , a homomorphism
ι : 0ν→ R, and an element ιν in the R-span of γ, γ ′ such that

ιν = ι ◦ ν.

In (2), γ, γ ′, and 1 are viewed as functions on a projective line and the
condition states simply that these functions are linearly dependent.

This general theorem can be applied in the following contexts: K is a function
field over k, where k contains all `-th roots of its elements and R = Z/`, or
k= F̄p with ` 6= p and R=Z`. In these situations, a homomorphism γ : K×→ R
(satisfying the first condition) corresponds via Kummer theory to an element
in Ga

K /`, resp. Ga
K . Nonproportional elements γ, γ ′ ∈ Ga

K lifting to commuting
elements in Gc

K satisfy condition (2). Indeed, for 1-dimensional function fields
E ⊂ K the group Gc

E is a free central extension of Ga
E . This holds in particular for

k(x)⊂ K . Hence γ, γ ′ are proportional on any P1 containing 1; the restriction
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of σ = 〈γ, γ ′〉 to such P1 is isomorphic to Z`. Property (2) follows since every
P1
⊂ Pk(K ) is a translate, with respect to multiplication in Pk(K )=K×/k×, of

the “standard” P1
= Pk(k⊕ kx), x ∈ K×. Finally, the element ιν obtained in the

theorem is an inertia element for ν, by the dictionary above.

Corollary 14. Let K be a function field of an algebraic variety X over an
algebraically closed field k of dimension n. Let σ ∈6K be a liftable subgroup.
Then

• rkZ`(σ )≤ n;

• there exists a valuation ν ∈ VK and a subgroup σ ′ ⊆ σ such that σ ′ ⊆ Ia
ν ,

σ ⊂ Da
ν , and σ/σ ′ is topologically cyclic.

Theorem 13 and its Corollary 14 allow to recover inertia and decomposition
groups of valuations from (Ga

K , 6K ). In reconstructions of function fields we
need only divisorial valuations; these can be characterized as follows:

Corollary 15. Let K be a function field of an algebraic variety X over k = F̄p

of dimension n. If σ1, σ2 ⊂ Ga
K are maximal liftable subgroups of Z`-rank n such

that Ia
:= σ1 ∩ σ2 is topologically cyclic then there exists a divisorial valuation

ν ∈ DVK such that Ia
= Ia

ν .

Here we restricted to k = F̄p to avoid a discussion of mixed characteristic
phenomena. For example, the obtained valuation may be a divisorial valuation
of a reduction of the field, and not of the field itself.

This implies that an isomorphism of Galois groups

9 : Ga
K → Ga

L

inducing a bijection of the sets of liftable subgroups

6K =6L

induces a bijection of the sets of inertial and decomposition subgroups of valua-
tions

{Ia
ν}ν∈DVK = {I

a
ν}ν∈DVL , {D

a
ν}ν∈DVK = {D

a
ν}ν∈DVL .

Moreover, 9 maps topological generators δν,K of procyclic subgroups Ia
ν ⊂ Ga

K ,
for ν ∈DVK , to generators δν,L of corresponding inertia subgroups in Ga

L , which
pins down a generator up to the action of Z×` .

Here are two related results concerning the reconstruction of valuations.

Theorem 16 [Efrat 1999]. Assume that char(K ) 6= `, −1 ∈ (K×)`, and that∧2
(K×/(K×)`)

∼
−→ KM

2 (K )/`.
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Then there exists a valuation ν on K such that

• char(K ν) 6= `;

• dimF`(0ν/`)≥ dimF`(K
×/(K×)`)− 1;

• either dimF`(0ν/`)= dimF`(K
×/(K×)`) or K ν 6= K `

ν .

In our terminology, under the assumption that K contains an algebraically
closed subfield k and ` 6= 2, the conditions mean that Ga

K modulo ` is liftable,
i.e., Gc

K = Ga
K . Thus there exists a valuation with abelianized inertia subgroup

(modulo `) of corank at most one, by Corollary 14. The third assumption
distinguishes the two cases, when the corank is zero versus one. In the latter case,
the residue field K ν has nontrivial `-extensions, hence satisfies K×ν 6= (K

×
ν )
`.

Theorem 17 [Engler and Koenigsmann 1998; Engler and Nogueira 1994]. Let
K be a field of characteristic 6= ` containing the roots of unity of order `. Then
K admits an `-Henselian valuation ν (i.e., ν extends uniquely to the maximal
Galois `-extension of K ) with char(K ν) 6= ` and non-`-divisible 0ν if and only if
GK is noncyclic and contains a nontrivial normal abelian subgroup.

Again, under the assumption that K contains an algebraically closed field k,
of characteristic 6= `, we can directly relate this result to our Theorem 13 and
Corollary 14 as follows: The presence of an abelian normal subgroup in GK

means that modulo `n there is a nontrivial center. Thus there is a valuation ν
such that GK =Dν , the corresponding decomposition group. Note that the inertia
subgroup Iν ⊂ GK maps injectively into Ia

ν .

We now sketch the proof of Theorem 13. Reformulating the claim, we see
that the goal is to produce a flag map on Pk(K ). Such a map ι jumps only on
projective subspaces of Pk(K ), i.e., every finite dimensional projective space
Pn
⊂ Pk(K ) should admit a flag by projective subspaces

Pn
⊃ Pn−1

⊃ · · ·

such that ι is constant on Pr (k) \Pr−1(k), for all r . Indeed, a flag map defines a
partial order on K× which is preserved under shifts by multiplication in K×/k×,
hence a scale of k-subspaces parametrized by some ordered abelian group 0.

We proceed by contradiction. Assuming that the R-span σ := 〈γ, γ ′〉 does not
contain a flag map we find a distinguished P2

⊂ Pk(K ) such that σ contains no
maps which would be flag maps on this P2 (this uses that #k ≥ 11). To simplify
the exposition, assume now that k = Fp.

Step 1. If p> 3 then α : P2(Fp)→ R is a flag map if and only if the restriction
to every P1(Fp)⊂ P2(Fp) is a flag map, i.e., constant on the complement of one
point.
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A counterexample for p = 2 and R = Z/2 is provided by the Fano plane:

(0:1:0)

(1:0:0)(1:0:1)(0:0:1)

(0:1:1) (1:1:0)

Step 2. On the other hand, assumptions (1) and (2) imply that the map

K×/k× = Pk(K )
ϕ
−→ A2(R), f 7→ (γ ( f ), γ ′( f )),

maps every projective line into an affine line, a collineation. This imposes strong
conditions on ϕ = ϕγ,γ ′ and both γ, γ ′. For example, for all P2

⊂ Pk(K ) the
image ϕ(P2) is contained in a union of an affine line and at most one extra point
in A2(R).

Step 3. At this stage we are working with maps

P2(Fp)→ A2(R),

preserving the geometries as above. Using Step 2 we may even reduce to
considerations of maps with image consisting of 3 points:

P2(Fp)→ {•, ◦, ?}

and such that every line P1(Fp) ⊂ P2(Fp) is mapped to exactly two points.
Projective/affine geometry considerations produce a flag map in the R-linear
span of γ, γ ′, contradicting the assumption.

The case where K is of characteristic 0 is more complicated; see [Bogomolov
and Tschinkel 2002a].

5. Pro-`-geometry

One of the main advantages in working with function fields K as opposed to
arbitrary fields is the existence of normal models, i.e., algebraic varieties X with
K = k(X), and a divisor theory on X . Divisors on these models give rise to a
rich supply of valuations of K , and we can employ geometric considerations in
the study of relations between them.



40 FEDOR BOGOMOLOV AND YURI TSCHINKEL

We now assume that k = F̄p, with p 6= `. Let Div(X) be the group of (locally
principal) Weil divisors of X and Pic(X) the Picard group. The exact sequence

0→ K×/k×
divX
−→ Div(X)

ϕ
−→ Pic(X)→ 0, (5-1)

allows us to connect functions f ∈ K× to divisorial valuations, realized by
irreducible divisors on X .

We need to work simultaneously with two functors on Z-modules of possibly
infinite rank:

M 7→ M` := M ⊗Z` and M 7→ M̂ := lim
←−

M ⊗Z/`n.

Some difficulties arise from the fact that these are “the same” at each finite level,
(mod `n). We now recall these issues for functions, divisors, and Picard groups
of normal projective models of function fields (see [Bogomolov and Tschinkel
2008b, Section 11] for more details).

Equation (5-1) gives rise to an exact sequence

0→ K×/k×⊗Z`
divX
−→ Div0(X)`

ϕ`
−→ Pic0(X){`} → 0. (5-2)

where
Pic0(X){`} = Pic0(X)⊗Z`

is the `-primary component of the torsion group of k = F̄p-points of Pic0(X),
the algebraic group parametrizing classes of algebraically equivalent divisors
modulo rational equivalence. Put

T`(X) := lim
←−

Tor1(Z/`
n,Pic0(X){`}).

We have T`(X) ' Z
2g
` , where g is the dimension of Pic0(X). In fact, T` is a

contravariant functor, which stabilizes on some normal projective model X , i.e.,
T`(X̃) = T`(X) for all X̃ surjecting onto X . In the sequel, we will implicitly
work with such X and we write T`(K ).

Passing to pro-`-completions in (5-2) we obtain an exact sequence:

0→ T`(K )→ K̂×
divX
−→ D̂iv0(X)−→ 0, (5-3)

since Pic0(X) is an `-divisible group. Note that all groups in this sequence are
torsion-free. We have a diagram

0 // K×/k×⊗Z`

��

divX // Div0(X)`

��

ϕ` // Pic0(X){`}

��

// 0

0 // T`(K ) // K̂×
divX // D̂iv0(X) // 0
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Galois theory allows one to “reconstruct” the second row of this diagram. The
reconstruction of fields requires the first row. The passage from the second
to the first employs the theory of valuations. Every ν ∈ DVK gives rise to a
homomorphism

ν : K̂×→ Z`.

On a normal model X , where ν = νD for some divisor D ⊂ X , ν( f̂ ) is the
`-adic coefficient at D of divX ( f̂ ). “Functions”, i.e., elements f ∈ K×, have
finite support on models X of K , i.e., only finitely many coefficients ν( f ) are
nonzero. However, the passage to blowups of X introduces more and more
divisors (divisorial valuations) in the support of f . The strategy in [Bogomolov
and Tschinkel 2008b], specific to dimension two, was to extract elements of K̂×

with intrinsically finite support, using the interplay between one-dimensional
subfields E ⊂ K , i.e., projections of X onto curves, and divisors of X , i.e.,
curves C ⊂ X . For example, Galois theory allows one to distinguish valuations
ν corresponding to rational and nonrational curves on X . If X had only finitely
many rational curves, then every blowup X̃→ X would have the same property.
Thus elements f̂ ∈ K̂× with finite nonrational support, i.e., ν( f )= 0 for all but
finitely many nonrational ν, have necessarily finite support on every model X of
K , and thus have a chance of being functions. A different geometric argument
applies when X admits a fibration over a curve of genus≥ 1, with rational generic
fiber. The most difficult case to treat, surprisingly, is the case of rational surfaces.
See Section 12 of [Bogomolov and Tschinkel 2008b] for more details.

The proof of Theorem 2 in [Bogomolov and Tschinkel 2009b] reduces to
dimension two, via Lefschetz pencils.

6. Pro-`-K-theory

Let k be an algebraically closed field of characteristic 6= ` and X a smooth
projective variety over k, with function field K = k(X). A natural generalization
of (5-1) is the Gersten sequence (see, e.g., [Suslin 1984]):

0→ K2(X)→ K2(K )→
⊕
x∈X1

K1(k(x))→
⊕
x∈X2

Z→ CH2(X)→ 0,

where Xd is the set of points of X of codimension d and CH2(X) is the second
Chow group of X . Applying the functor

M 7→ M∨ := Hom(M,Z`)

and using the duality
Ga

K = Hom(K×,Z`)
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we obtain a sequence

K2(X)∨ K2(K )∨oo
∏

D⊂X
Ga

k(D).oo

Dualizing the sequence

0→ IK →
∧2
(K×)→ K2(K )→ 0

we obtain
I∨K ←

∧2
(Ga

K )← K2(K )∨← 0

On the other hand, we have the exact sequence

0→ Z K → Gc
K → Ga

K → 0

and the resolution of Z K =
[
Gc

K ,Gc
K

]
0→ R(K )→

∧2
(Ga

K )→ Z K → 0.

Recall that Ga
K =Hom(K×/k×,Z`) is a torsion-free Z`-module, with topology

induced from the discrete topology on K×/k×. Thus any primitive finitely
generated subgroup A ⊂ K×/k× is a direct summand and defines a continuous
surjection Ga

K → Hom(A,Z`). The above topology on Ga
K defines a natural

topology on ∧2(Ga
K ). On the other hand, we have a topological profinite group

Gc
K with topology induced by finite `-extensions of K , which contains a closed

abelian subgroup Z K = [G
c
K ,Gc

K ].

Proposition 18 [Bogomolov 1991a]. We have

R(K )= (Hom(K2(K )/Image(k×⊗ K×),Z`)= K2(K )∨.

Proof. There is continuous surjective homomorphism

∧
2(Ga

K ) → Z K

γ ∧ γ ′ 7→ [γ, γ ′]

The kernel R(K ) is a profinite group with the induced topology. Any r ∈ R(K )
is trivial on symbols (x, 1− x) ∈∧2(K×/k×) (since the corresponding elements
are trivial in H2(Ga

K ,Z/`n), for all n ∈ N). Thus R(K )⊆ K2(K )∨.
Conversely, let α ∈K2(K )∨ \R(K ); so that it projects nontrivially to Z K , i.e.,

to a nontrivial element modulo `n , for some n ∈N. Finite quotient groups of Gc
K

with Z(Gc
i )= [G

c
i ,Gc

i ] form a basis of topology on Gc
K . The induced surjective

homomorphisms Ga
K → Ga

i define surjections ∧2(Ga
K )→ [Gi ,Gi ] and

R(K )→ Ri := Ker(∧2(Ga
i )→ [Gi ,Gi ]).
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Fix a Gi such that α is nontrivial of Gc
i . Then the element α is nonzero in the

image of H2(Ga
i ,Z/`n)→H2(Gc

i ,Z/`n). But this is incompatible with relations
in K2(K ), modulo `n . �

It follows that R(K ) contains a distinguished Z`-submodule

R∧(K )= Image of
∏

D⊂X

Ga
k(D) (6-1)

and that
K2(X)∨ ⊇ R(K )/R∧(K ).

In general, let
K2,nr (K )= Ker(K2(K )→

⊕
ν∈DVK

K×ν )

be the unramified K2-group. Combining Proposition 18 and (6-1), we find that

K̂2,nr (K )⊆ Hom(R(K )/R∧(K ),Z`).

This sheds light on the connection between relations in Gc
K and the K-theory of

the field, more precisely, the unramified Brauer group of K . This in turn helps
to reconstruct multiplicative groups of 1-dimensional subfields of K .

We now sketch a closely related, alternative strategy for the reconstruction of
these subgroups of K̂× from Galois-theoretic data. We have a diagram

0 // Gc
K

��

//
∏
E

Gc
K

��

ρc
E // Gc

E

��
0 // Ga

K
//
∏
E

Ga
K

ρa
E // Ga

E

where the product is taken over all normally closed 1-dimensional subfields
E ⊂ K , equipped with the direct product topology, and the horizontal maps are
closed embeddings. Note that Ga

K is a primitive subgroup given by equations

Ga
K = {γ | (xy)(γ )− (x)(γ )− (y)(γ )= 0} ⊂

∏
E

Ga
E

where x, y are algebraically independent in K and xy, x, y ∈ K× are considered
as functionals on Ga

k(xy),Ga
k(x),Ga

k(y), respectively. The central subgroup

Z K ⊂ Gc
K ⊂

∏
E

∧
2(Ga

E)

is the image of ∧2(Ga
K ) in

∏
E ∧

2(Ga
E). Thus for any finite quotient `-group G

of Gc
K there is an intermediate quotient which is a subgroup of finite index in the
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product of free central extensions. The following fundamental conjecture lies at
the core of our approach.

Conjecture 19. Let K be a function field over F̄p, with p 6= `, Fa a torsion-free
topological Z`-module of infinite rank. Assume that

9a
F : G

a
K → Fa

is a continuous surjective homomorphism such that

rkZ`(9
a
F (σ ))≤ 1

for all liftable subgroups σ ∈ 6K . Then there exist a 1-dimensional subfield
E ⊂ K , a subgroup F̃a

⊂ Fa of finite corank, and a diagram

Ga
K

~~   
Ga

E
// F̃a

We expect that F̃a = Fa , when π1(X) is finite. Note that there can exist at
most one normally closed subfield E ⊂ F satisfying this property.

The intuition behind this conjecture is that such maps should arise from
surjective homomorphisms onto free central extensions, i.e., we should be able
to factor as follows:

9c
F = Gc

K
ρc

F
−→ Gc

F → Fc

where Fc is a free central extension of Fa:

0→
∧2
(Fa)→ Fc

→ Fa
→ 0.

We can prove the conjecture under some additional geometric assumptions.
Assuming the conjecture, the proofs in [Bogomolov and Tschinkel 2008b; 2009b]
would become much more straightforward. Indeed, consider the diagram

Ga
K

∼ // Ga
L

��
Ga

F

Applying Conjecture 19 we find a unique normally closed subfield E ⊂ K and a
canonical isomorphism

9 : Ga
E → Ga

F , F ⊂ L ,



INTRODUCTION TO BIRATIONAL ANABELIAN GEOMETRY 45

Moreover, this map gives a bijection between the set of inertia subgroups of
divisorial valuations on E and of F ; these are the images of inertia subgroups of
divisorial valuations on K and L . At this stage, the simple rationality argument
(see [Bogomolov and Tschinkel 2008b, Proposition 13.1 and Corollary 15.6])
implies that

9∗ : L̂×
∼
−→ K̂×

induces an isomorphism

L×/ l×⊗Z(`)
∼
−→ ε

(
K×/k×⊗Z(`)

)
,

for some ε ∈ Z×` , respecting multiplicative subgroups of 1-dimensional subfields.
Moreover, for each 1-dimensional rational subfield l(y)⊂ L we obtain

9∗(l(y)×/ l×)= ε · εy ·
(
k(x)×/k×

)
for some εy ∈Q. Proposition 2.13 in [Bogomolov and Tschinkel 2008b] shows
that this implies the existence of subfields L̄ and K̄ such that L/L̄ and K/K̄ are
purely inseparable extensions and such that ε−1

·9∗ induces an isomorphism of
multiplicative groups

P(L̄)= L̄×/ l×
∼
−→ P(K̄ )= K̄×/k×.

Moreover, this isomorphism maps lines P1
⊂ P(l(y)) to lines P1

⊂ P(k(x)).
Arguments similar to those in Section 2 allow us to show that 9∗ induces an
bijection of the sets of all projective lines of the projective structures. The
Fundamental theorem of projective geometry (Theorem 5) allows to match the
additive structures and leads to an isomorphism of fields.

The proof of Theorem 2 in [Bogomolov and Tschinkel 2008b] is given for
the case of the fields of transcendence degree two. However, the general case
immediately follows by applying Theorem 5 from Section 1 (or [Bogomolov
and Tschinkel 2009b]). Indeed, it suffices to show that for all x, y ∈ L×/ l×

9∗(l(x, y)×/ l×)⊂ k(x, y)
×
/k×⊗Z(`) ⊂ K×/k×⊗Z(`).

Note that the groups l(x)
×
/ l× map into subgroups k(x)

×
/k××Z(`) since 9∗

satisfies the conditions of [Bogomolov and Tschinkel 2009b, Lemma 26], i.e.,
the symbol

(9∗(y),9∗(z)) ∈ KM
2 (K )⊗Z`

is infinitely `-divisible, for any y, z ∈ l(x)
×
/ l×. Thus

9∗(l(x/y)
×
) ∈ k(x, y)

×
/k×⊗Z(`)
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and similarly for 9∗(l(x + by)
×
)/ l×, b ∈ l, since by multiplicativity

9∗(l(x + y)
×
/ l×)⊂∪n(yn

·9∗(l(x/y+ b)
×
/ l×)=∪n(yn

·9∗(l(x/y)
×
/ l×)).

Thus
9∗(x/y)/ l×, 9∗(x + y)/ l× ∈ k(x, y)

×
/k×⊗Z(`),

so that Theorem 2, for fields of arbitrary transcendence degree, follows from the
result for transcendence degree two.

7. Group theory

Our intuition in Galois theory and Galois cohomology is based on the study of
finite covers and finite groups. Our goal is to recover fields or some of their
invariants from invariants of their absolute Galois groups and their quotients.

In this section, we study some group-theoretic constructions which appear, in
disguise, in the study of function fields. Let G be a finite group. We have

Gc
= G/[[G,G],G], Ga

= G/[G,G].

Let
B0(G) := Ker

(
H2(G,Q/Z)→

∏
B

H2(B,Q/Z)

)
be the subgroup of those Schur multipliers which restrict trivially to all bicyclic
subgroups B ⊂ G. The first author conjectured in [Bogomolov 1992] that

B0(G)= 0

for all finite simple groups. Some special cases were proved in [Bogomolov et al.
2004], and the general case was settled [Kunyavski 2010].

In computations of this group it is useful to keep in mind the following diagram

B0(Gc)

��

H2(Ga)

����

B0(G)

��
H2(Gc)

��

H2(Gc)

��

// H2(G)

��∏
B⊂Gc H2(B)

∏
B⊂Gc H2(B) // // ∏

B⊂G H2(B).

Thus we have a homomorphism

B0(Gc)→ B0(G).

We also have an isomorphism

Ker
(
H2(Ga,Q/Z)→ H2(G,Q/Z)

)
= Ker

(
H2(Ga,Q/Z)→ H2(Gc,Q/Z)

)
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Combining with the fact that B0(Gc) is in the image of

π∗a : H2(Ga,Q/Z)→ H2(G,Q/Z)

this implies that
B0(Gc) ↪→ B0(G). (7-1)

Let ` be a prime number. We write G` for the maximal `-quotient of G and
fix an `-Sylow subgroup Syl`(G)⊂ G, all considerations below are independent
of the conjugacy class. We have a diagram

G

����

// // Gc

����

// // Ga

����
Syl`(G) // // G`

// // Gc
`

// // Ga
`

Note that
Gc
` = Syl`(G

c) and Ga
` = Syl`(G

a),

but that, in general, Syl`(G) is much bigger than G`.

We keep the same notation when working with pro-`-groups.

Proposition 20 [Bogomolov 1995b]. Let X be a projective algebraic variety of
dimension n over a field k. Assume that X (k) contains a smooth point. Then

Syl`(Gk(X))= Syl`(Gk(Pn)).

Proof. First of all, let X and Y be algebraic varieties over a field k with function
fields K = k(X), resp. L = k(Y ). Let X → Y be a map of degree d and ` a
prime not dividing d and char(k). Then

Syl`(G K )= Syl`(GL).

Let X→ Pn+1 be a birational embedding as a (singular) hypersurface of degree
d ′. Consider two projections onto Pn: the first, πx from a smooth point x in the
image of X and the second, πy , from a point y in the complement of X in Pn+1.
We have deg(πy) = d ′ and deg(πy)− deg(πx) = 1, in particular, one of these
degrees is coprime to `. The proposition follows from the first step. �

Remark 21. This shows that the full Galois group G K is, in some sense, too
large: the isomorphism classes of its `-Sylow subgroups depend only on the
dimension and the ground field. We may write

Syl`(G K )= Syl`,n,k .

In particular, they do not determine the function field. However, the maximal
pro-`-quotients do [Mochizuki 1999; Pop 1994]. Thus we have a surjection from
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a universal group, depending only on the dimension and ground field k, onto
a highly individual group Gc

K , which by Theorem 2 determines the field K , for
k = F̄p, ` 6= p, and n ≥ 2.

The argument shows in particular that the group Syl`,k,n belongs to the class
of self-similar groups. Namely any open subgroup of finite index in Syl`,k,n
is isomorphic to Syl`,k,n . The above construction provides with isomorphisms
parametrized by smooth k-points of n-dimensional algebraic varieties. Note
that the absence of smooth k-points in K may lead to a nonisomorphic group
Syl`,k,n , as seen already in the example of a conic C over k = R with C(R)=∅
[Bogomolov 1995b].

Theorem 22 [Bogomolov 1991a, Theorem 13.2]. Let G K be the Galois group
of a function field K = k(X) over an algebraically closed ground field k. Then,
for all ` 6= char(k) we have

B0,`(G K )= B0(G
c
K ).

Here is a sample of known facts:
• If X is stably rational over k, then

B0(G K )= 0.

• If X = V/G, where V is a faithful representation of G over an algebraically
closed field of characteristic coprime to the order of G, and K = k(X), then

B0(G)= B0(G K ),

thus nonzero in many cases.

Already this shows that the groups G K are quite special. The following “Free-
ness conjecture” is related to the Bloch–Kato conjecture discussed in Section 3;
it would imply that all cohomology of G K is induced from metabelian finite
`-groups.

Conjecture 23 (Bogomolov). For K = k(X), with k algebraically closed of
characteristic 6= `, let

Syl(2)`,n,k = [Syl`,n,k,Syl`,n,k],

and let M be a finite Syl(2)`,n,k-module. Then

Hi (Syl(2)`,n,k,M)= 0, for all i ≥ 2.

Further discussions in this direction, in particular, concerning the connections
between the Bloch–Kato conjecture, “Freeness”, and the Koszul property of the
algebra KM

∗
(K )/`, can be found in [Positselski 2005] and [Positselski and Vishik

1995].
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8. Stabilization

The varieties V/G considered in the Introduction seem very special. On the
other hand, let X be any variety over a field k and let

Gk(X)→ G

be a continuous homomorphism from its Galois group onto some finite group.
Let V be a faithful representation of G. Then we have two homomorphisms (for
cohomology with finite coefficients and trivial action)

κX : H∗(G)→ H∗(Gk(X))

and

κV/G : H∗(G)→ H∗(Gk(V/G)).

These satisfy

• Ker(κV/G)⊆ H∗(G) is independent of V , and the quotient

H∗s (G) := H∗(G)/Ker(κV/G)

is well-defined;

• Ker(κV/G)⊆ Ker(κX ).

The groups Hi
s(G) are called stable cohomology groups of G. They were

introduced and studied in [Bogomolov 1992]. A priori, these groups depend on
the ground field k. We get a surjective homomorphism

H∗s (G)→ H∗(G)/Ker(κX ).

This explains the interest in stable cohomology—all group-cohomological in-
variants arising from finite quotients of Gk(X) arise from similar invariants of
V/G. On the other hand, there is no effective procedure for the computation of
stable cohomology, except in special cases. For example, for abelian groups the
stabilization can be described already on the group level:

Proposition 24 (see, e.g., [Bogomolov 1992]). Let G be a finite abelian group
and σ : Zm

→ G a surjective homomorphism. Then κ∗ : H∗(G)→ H∗(Zm)

coincides with the stabilization map, i.e.,

Ker(κ∗)= Ker(κV/G)

for any faithful representation V of G, for arbitrary ground fields k with char(k)
coprime to the order of G.
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Geometrically, stabilization is achieved on the variety T/G ⊂ V/G, where G
acts faithfully on V by diagonal matrices and T ⊂ V is a G-invariant subtorus
in V (see, e.g., [Bogomolov 1995a]).

Similar actions exist for any finite group G: there is faithful representation V
and a torus T ⊂Aut(V ), with normalizer N = N (T ) such that G ⊂ N ⊂Aut(V ),
and such that G acts freely on T . We have an exact sequence

1→ π1(T )→ π1(T/G)→ G→ 1

of topological fundamental groups. Note that π1(T ) decomposes as a sum of
G-permutation modules and that π1(T/G) is torsion-free of cohomological
dimension dim(T )= dim(V ). Torus actions were considered in [Saltman 1987],
and the special case of actions coming from restrictions to open tori in linear
representations in [Bogomolov 1995a].

The following proposition, a consequence of the Bloch–Kato conjecture,
describes a partial stabilization for central extensions of abelian groups.

Proposition 25. Let Gc be a finite `-group which is a central extension of an
abelian group

0→ Z→ Gc
→ Ga

→ 0, Z = [Gc,Gc
], (8-1)

and K = k(V/Gc). Let
φa : Zm

` → Ga

be a surjection and
0→ Z→ Dc

→ Zm
` → 0

the central extension induced from (8-1). Then

Ker(H∗(Ga)→ H∗(Dc))= Ker(H∗(Ga)→ H∗(GK )),

for cohomology with Z/`n-coefficients, n ∈ N.

Proof. Since Ga
K is a torsion-free Z`-module we have a diagram

G K // // Gc
K

//

�����
�
�

Ga
K

//

����

0

0 // Z // Dc //

����

Zm
`

φa
����

// 0

0 // Z // Gc // Ga // 0

By Theorem 11,

Ker
(
H∗(Ga)→ H∗(G K )

)
= Ker

(
H∗(Ga)→ H∗(Gc

K )
)
.
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Note that
I := Ker

(
H∗(Ga)→ H∗(Dc)

)
is an ideal generated by its degree-two elements I2 and that

I2 = Ker
(
H2(Ga)→ H2(Gc)

)
⊕ δ(H1(Ga)).

Similarly, for all intermediate Dc

Ker
(
H∗(Ga)→ H∗(Dc)

)
is also generated by I2, and hence equals I . �

Corollary 26. Let Gc be a finite `-group as above, R⊆
∧2
(Ga) the subgroup of

relations defining Dc, and let

6 = {σi ⊂ Ga
}

be the set of subgroups of Ga liftable to abelian subgroups of Gc. Then the
image of H∗(Ga,Z/`n) in H∗s (G

c,Z/`n) coincides with
∧
∗
(Ga)∗/I2, where

I2 ⊆
∧2
(Ga) are the elements orthogonal to R (with respect to the natural

pairing).

Lemma 27. For any finite group Gc there is a torsion-free group Gc with Ga
=Zn

`

and [Gc,Gc
] = Zm

` with a natural surjection Gc
→ Gc and a natural embedding

Ker(H2(Ga)→ H2(Gc))= Ker(H2(Ga)→ H2(Gc)),

for cohomology with Q`/Z`-coefficients.

Proof. Assume that we have a diagram of central extensions

0 // ZG
//

��

Gc
πa,G //

πc
����

Ga // 0

0 // ZH
// Hc

πa,H
// Ha // 0

with Ga
=Ha , ZG, and ZH finite rank torsion-free Z`-modules. Assume that

Ker(π∗a,H) := Ker
(
H2(Ha,Z`)→ H2(Hc,Z`)

)
coincides with

Ker(π∗a,G) := Ker
(
H2(Ga,Z`)→ H2(Gc,Z`)

)
.

Then there is a section

s :Hc
→ Gc, π c

◦ s = id.
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Indeed, since Ha,Ga are torsion-free Z`-modules we have

H2(Ha,Z`))= H2(Ha,Z`)) (mod `n), for all n ∈ N,

and H2(Ha,Z`)) is a free Z`-module. The groups Gc,Hc are determined by the
surjective homomorphisms∧2

(Ha)→ ZH = [H
c,Hc
],

∧2
(Ga)→ ZG = [G

c,Gc
].

Since ZH, ZG are free Z`-modules, Ker(ZG→ ZH) is also a free Z`-module. �

Let G be a finite group, V a faithful representation of G over k and K =
k(V/G). We have a natural homomorphism G K → G. Every valuation ν ∈VK

defines a residue homomorphism

H∗s (G,Z/`n) ↪→ H∗(G K ,Z/`n)
δν
−→ H∗(G Kν

,Z/`n),

and we define the stable unramified cohomology as the kernel of this homomor-
phism, over all divisorial valuations ν:

H∗s,nr (G,Z/`n)= {α ∈ H∗s (G,Z/`n) | δν(α)= 0 for all ν ∈ DVK }.

Again, this is independent of the choice of V and is functorial in G. Fix an
element g ∈ G. We say that α ∈ H∗s (G,Z/`n) is g-unramified if the restriction
of α to the centralizer Z(g) of g in G is unramified (see [Bogomolov 1992] for
more details).

Lemma 28. Let G be a finite group of order coprime to p = char(k). Then

H∗s,nr (G,Z/`n)⊆ H∗s (G,Z/`n)

is the subring of elements which are g-unramified for all g ∈ G.

Proof. We may assume that G is an `-group, with ` coprime to char(k). By
functoriality, a class α ∈ H∗s,nr (G,Z/`n) is also g-unramified.

Conversely, let ν ∈ DVK be a divisorial valuation and X a normal projective
model of K = k(V/G) such that ν is realized by a divisor D ⊂ X and both
D, X are smooth at the generic point of D. Let D∗ be a formal neighborhood
of this point. The map V → V/G defines a G-extension of the completion
Kν . Geometrically, this corresponds to a union of finite coverings of formal
neighborhoods of D∗, since G has order coprime to p: the preimage of D∗ in
V̄ is a finite union of smooth formal neighborhoods D∗i of irreducible divisors
Di ⊂ V̄ . If the covering πi : D∗i → D is unramified at the generic point of Di then
δν(α)= 0. On the other hand, if there is ramification, then there is a g ∈G which
acts trivially on some Di , and we may assume that g is a generator of a cyclic
subgroup acting trivially on Di . Consider the subgroup of G which preserves
Di and acts linearly on the normal bundle of Di . This group is a subgroup of
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Z(g); hence there is a Z(g)-equivariant map D∗i → V for some faithful linear
representation of Z(g) such that α on D∗i /Z(g) is induced from V/Z(g). In
particular, if α ∈ H∗s,nr (Z(g),Z/`n) then δν(α)= 0. Thus an element which is
unramified for any g ∈ G in H∗s (G,Z/`n) is unramified. �

The considerations above allow to linearize the construction of all finite
cohomological obstructions to rationality.

Corollary 29. Let
1→ Z→ Gc

→ Ga
→ 1

be a central extension, g ∈ Ga a nontrivial element, and g̃ a lift of g to Gc. Then
Z(g̃) is a sum of liftable abelian subgroups σi containing g.

Lemma 30. An element in the image of H∗(Ga,Z/`n) ⊂ H∗s,nr (G
c,Z/`n) is

g̃-unramified for a primitive element g if and only if its restriction to Z(g̃) is
induced from Z(g̃)/〈g〉.

Proof. One direction is clear. Conversely, Z(g̃) is a central extension of its
abelian quotient. Hence the stabilization homomorphism coincides with the
quotient by the ideal I HK (n) (see the proof of Theorem 11). �

Corollary 31. The subring H∗s,nr (G
a,Z/`n) ⊂ H∗s (G

a,Z/`n) is defined by 6,
i.e., by the configuration of liftable subgroups σi .

Such cohomological obstructions were considered in [Colliot-Thélène and
Ojanguren 1989], where they showed that unramified cohomology is an invariant
under stable birational equivalence. In addition, they produced explicit examples
of nontrivial obstructions in dimension 3. Subsequently, Peyre [1993; 2008]
gave further examples with n = 3 and n = 4; see also [Saltman 1995; 1997].
Similarly to the examples with nontrivial H2

nr (G) in [Bogomolov 1987], one
can construct examples with nontrivial higher cohomology using as the only
input the combinatorics of the set of liftable subgroups 6 =6(Gc) for suitable
central extensions Gc. Since we are interested in function fields K = k(V/Gc)

with trivial H2
nr (K ), we are looking for groups Gc with R(G)= R∧(G). Such

examples can be found by working with analogs of quaternionic structures on
linear spaces Ga

= F4n
` , for n ∈ N.

9. What about curves?

In this section we focus on anabelian geometry of curves over finite fields. By
Uchida’s theorem (see Theorem 1), a curve over k=Fq is uniquely determined by
its absolute Galois group. Recently, Saidi–Tamagawa proved the Isom-version of
Grothendieck’s conjecture for the prime-to-characteristic geometric fundamental
(and absolute Galois) groups of hyperbolic curves [Saïdi and Tamagawa 2009b]
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(generalizing results of Tamagawa and Mochizuki which dealt with the full
groups). A Hom-form appears in [Saïdi and Tamagawa 2009a]. The authors
are interested in rigid homomorphisms of full and prime-to-characteristic Galois
groups of function fields of curves. Modulo passage to open subgroups, a
homomorphism

9 : G K → GL

is called rigid if it preserves the decomposition subgroups, i.e., if for all ν ∈DVK

9(Dν)= Dν′,

for some ν ′ ∈DVL . The main result is that there is a bijection between admissible
homomorphisms of fields and rigid homomorphisms of Galois groups

Homadm(L , K )
∼
−→ Homrig(G K ,GL)/∼,

modulo conjugation (here admissible essentially means that the extension of
function fields K/L is finite of degree coprime to the characteristic, see [Saïdi
and Tamagawa 2009a, p. 3] for a complete description of this notion).

Our work on higher-dimensional anabelian geometry led us to consider ho-
momorphisms of Galois groups preserving inertia subgroups.

Theorem 32 [Bogomolov et al. 2010]. Let K = k(X) and L = l(Y ) be function
fields of curves over algebraic closures of finite fields. Assume that g(X) > 2 and
that

9 : Ga
K → Ga

L

is an isomorphism of abelianized absolute Galois groups such that for all ν ∈
DVK there exists a ν ′ ∈ DVL with

9(I a
ν )= I a

ν′ .

Then k = l and the corresponding Jacobians are isogenous.

This theorem is a Galois-theoretic incarnation of a finite field version of the
“Torelli” theorem for curves. Classically, the setup is as follows: let k be any field
and C/k a smooth curve over k of genus g(C) ≥ 2, with C(k) 6= ∅. For each
n ∈N, let J n be Jacobian of rational equivalence classes of degree n zero-cycles
on C . Put J 0

= J . We have

Cn // Symn(C)
λn // J n

Choosing a point c0 ∈C(k), we may identify J n
= J . The image Image(λg−1)=

2⊂ J is called the theta divisor. The Torelli theorem asserts that the pair (J,2)
determines C , up to isomorphism.
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Theorem 33 [Bogomolov et al. 2010]. Let C, C̃ be smooth projective curves of
genus g ≥ 2 over closures of finite fields k and k̃. Let

9 : J (k)
∼
−→ J̃ (k̃)

be an isomorphism of abelian groups inducing a bijection of sets

C(k)↔ C̃(k̃).

Then k = k̃ and J is isogenous to J̃ .

We expect that the curves C and C̃ are isomorphic over k̄.

Recall that
J (F̄p)= p-part⊕

⊕
`6=p

(Q`/Z`)
2g.

The main point of Theorem 33 is that the set C(F̄p)⊂ J (F̄p) rigidifies this very
large torsion abelian group. Moreover, we have

Theorem 34 [Bogomolov et al. 2010]. There exists an N , bounded effectively in
terms of g, such that

9(Fr)N and F̃rN

(the respective Frobenius) commute, as automorphisms of J̃ (k̃).

In some cases, we can prove that the curves C and C̃ are actually isomorphic,
as algebraic curves. Could Theorem 33 hold with k and k̃ replaced by C? Such
an isomorphism 9 matches all “special” points and linear systems of the curves.
Thus the problem may be amenable to techniques developed in [Hrushovski
and Zilber 1996], where an algebraic curve is reconstructed from an abstract
“Zariski geometry” (ibid., Proposition 1.1), analogously to the reconstruction of
projective spaces from an “abstract projective geometry” in Section 1.

The proof of Theorem 33 has as its starting point the following sufficient
condition for the existence of an isogeny:

Theorem 35 [Bogomolov et al. 2010; Bogomolov and Tschinkel 2008a]. Let
A and Ã be abelian varieties of dimension g over finite fields k1, resp. k̃1 (of
sufficiently divisible cardinality). Let kn/k1, resp. k̃n/k̃1, be the unique extensions
of degree n. Assume that

#A(kn) | # Ã(k̃n)

for infinitely many n ∈ N. Then char(k) = char(k̃) and A and Ã are isogenous
over k̄.

The proof of this result is based on the theorem of Tate:

Hom(A, Ã)⊗Z` = HomZ`[Fr](T`(A), T`( Ã))
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and the following, seemingly unrelated, theorem concerning divisibilities of
values of recurrence sequences.

Recall that a linear recurrence is a map R : N→ C such that

R(n+ r)=
r−1∑
i=0

ai R(n+ i),

for some ai ∈ C and all n ∈ N. Equivalently,

R(n)=
∑
γ∈00

cγ (n)γ n, (9-1)

where cγ ∈ C[x] and 00
⊂ C× is a finite set of roots of R. Throughout, we need

only simple recurrences, i.e., those where the characteristic polynomial of R
has no multiple roots so that cγ ∈ C×, for all γ ∈ 00. Let 0 ⊂ C× be the group
generated by 00. In our applications we may assume that it is torsion-free. Then
there is an isomorphism of rings

{Simple recurrences with roots in 0} ⇔ C[0],

where C[0] is the ring of Laurent polynomials with exponents in the finite-rank
Z-module 0. The map

R 7→ FR ∈ C[0]

is given by

R 7→ FR :=
∑
γ∈00

cγ xγ .

Theorem 36 [Corvaja and Zannier 2002]. Let R and R̃ be simple linear recur-
rences such that

(1) R(n), R̃(ñ) 6= 0, for all n, ñ� 0;

(2) the subgroup 0 ⊂ C× generated by the roots of R and R̃ is torsion-free;

(3) there is a finitely generated subring A⊂C with R(n)/R̃(n)∈A, for infinitely
many n ∈ N.

Then
Q : N → C

n 7→ R(n)/R̃(n)

is a simple linear recurrence. In particular, FQ ∈ C[0] and

FQ · FR̃ = FR.
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This very useful theorem concerning divisibilities is actually an application
of a known case of the Lang–Vojta conjecture concerning nondensity of integral
points on “hyperbolic” varieties, i.e., quasi-projective varieties of log-general
type. In this case, one is interested in subvarieties of algebraic tori and the
needed result is Schmidt’s subspace theorem. Other applications of this result to
integral points and diophantine approximation are discussed in [Bilu 2008], and
connections to Vojta’s conjecture in [Silverman 2005; 2007].

A rich source of interesting simple linear recurrences is geometry over finite
fields. Let X be a smooth projective variety over k1 = Fq of dimension d,
X̄ = X ×k1 k̄1, and let kn/k1 be the unique extension of degree n. Then

#X (kn) := tr(Frn)=

2d∑
i=0

(−1)i ci jα
n
i j ,

where Fr is Frobenius acting on étale cohomology H∗et(X̄ ,Q`), with ` - q, and
ci j ∈ C×. Let 00

:= {αi j } be the set of corresponding eigenvalues. and 0X ⊂

C× the multiplicative group generated by αi j . It is torsion-free provided the
cardinality of k1 is sufficiently divisible.

For example, let A be an abelian variety over k1, {α j } j=1,...,2g the set of
eigenvalues of the Frobenius on H1

et( Ā,Q`), for ` 6= p, and 0A ⊂ C× the
multiplicative subgroup spanned by the α j . Then

R(n) := #A(kn)=

2g∏
j=1

(αn
j − 1). (9-2)

is a simple linear recurrence with roots in 0A. Theorem 35 follows by applying
Theorem 36 to this recurrence and exploiting the special shape of the Laurent
polynomial associated to (9-2).

We now sketch a proof of Theorem 33, assuming for simplicity that C be a
nonhyperelliptic curve of genus g(C)≥ 3.

Step 1. For all finite fields k1 with sufficiently many elements (≥ cg2) the
group J (k1) is generated by C(k1), by [Bogomolov et al. 2010, Corollary 5.3].
Let

k1 ⊂ k2 ⊂ · · · ⊂ kn ⊂ · · ·

be the tower of degree 2 extensions. To characterize J (kn) it suffices to charac-
terize C(kn).

Step 2. For each n ∈N, the abelian group J (kn) is generated by c ∈C(k) such
that there exists a point c′ ∈ C(k) with

c+ c′ ∈ J (kn−1).
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Step 3. Choose k1, k̃1 (sufficiently large) such that

9(J (k1))⊂ J̃ (k̃1)

Define C(kn), resp. C̃(k̃n), intrinsically, using only the group- and set-theoretic
information as above. Then

9(J (kn))⊂ J̃ (k̃n), for all n ∈ N.

and
#J (kn) | # J̃ (k̃n).

To conclude the proof of Theorem 33 it suffices to apply Theorem 36 and
Theorem 35 about divisibility of recurrence sequences.

One of the strongest and somewhat counter-intuitive results in this area is a
theorem of Tamagawa:

Theorem 37 [Tamagawa 2004]. There are at most finitely many (isomorphism
classes of ) curves of genus g over k = F̄p with given (profinite) geometric
fundamental group.

On the other hand, in 2002 we proved:

Theorem 38 [Bogomolov and Tschinkel 2002b]. Let C be a hyperelliptic curve
of genus ≥ 2 over k = F̄p, with p ≥ 5. Then for every curve C ′ over k there exists
an étale cover π : C̃→ C and surjective map C̃→ C ′.

This shows that the geometric fundamental groups of hyperbolic curves are
“almost” independent of the curve: every such π1(C) has a subgroup of small
index and such that the quotient by this subgroup is almost abelian, surjecting
onto the fundamental group of another curve C ′.

This relates to the problem of couniformization for hyperbolic curves (see
[Bogomolov and Tschinkel 2002b]). The Riemann theorem says that the unit disc
in the complex plane serves as a universal covering for all complex projective
curves of genus ≥ 2, simultaneously. This provides a canonical embedding of the
fundamental group of a curve into the group of complex automorphisms of the
disc, which is isomorphic to PGL2(R). In particular, it defines a natural embed-
ding of the field of rational functions on the curve into the field of meromorphic
functions on the disc. The latter is unfortunately too large to be of any help in
solving concrete problems.

However, in some cases there is an algebraic substitute. For example, in the
class of modular curves there is a natural pro-algebraic object Mod (introduced
by Shafarevich) which is given by a tower of modular curves; the corresponding
pro-algebraic field, which is an inductive union M of the fields of rational
functions on modular curves. Similarly to the case of a disc the space Mod has
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a wealth of symmetries which contains a product
∏

p SL2(Zp) and the absolute
Galois group G(Q̄/Q).

The above result alludes to the existence of a similar disc-type algebraic object
for all hyperbolic curves defined over F̄p (or even for arithmetic hyperbolic
curves).

For example consider C6 given by y6
= x(x − 1) over Fp, with p 6= 2, 3, and

define C̃6 as a pro-algebraic universal covering of C6. Thus F̄p(C̃6)=
⋃

F̄p(Ci ),
where Ci range over all finite geometrically unramified coverings of C6. Then
F̄p(C̃6) contains all other fields F̄p(C), where C is an arbitrary curve defined
over some Fq ⊂ F̄p. Note that it also implies that étale fundamental group π1(C6)

contains a subgroup of finite index which surjects onto π1(C) with the action of
Ẑ= G(F̄p/Fq).

The corresponding results in the case of curves over number fields K ⊂ Q̄ are
weaker, but even in the weak form they are quite intriguing.
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