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Rigidity properties of Fano varieties
TOMMASO DE FERNEX AND CHRISTOPHER D. HACON

We overview some recent results on Fano varieties giving evidence of their
rigid nature under small deformations.

1. Introduction

From the point of view of the Minimal Model Program, Fano varieties constitute
the building blocks of uniruled varieties. Important information on the biregular
and birational geometry of a Fano variety is encoded, via Mori theory, in certain
combinatorial data corresponding to the Néron–Severi space of the variety. It
turns out that, even when there is actual variation in moduli, much of this
combinatorial data remains unaltered, provided that the singularities are “mild”
in an appropriate sense. One should regard any statement of this sort as a rigidity
property of Fano varieties.

This paper gives an overview of Fano varieties, recalling some of their most
important properties and discussing their rigid nature under small deformations.
We will keep a colloquial tone, referring the reader to the appropriate references
for many of the proofs. Our main purpose is indeed to give a broad overview of
some of the interesting features of this special class of varieties. Throughout the
paper, we work over the complex numbers.

2. General properties of Fano varieties

A Fano manifold is a projective manifold X whose anticanonical line bundle
−K X :=

∧nTX is ample (here n = dim X ).
The simplest examples of Fano manifolds are given by the projective spaces

Pn . In this case, in fact, even the tangent space is ample. (By [Mori 1979], we
know that projective spaces are the only manifolds with this property.)

In dimension two, Fano manifolds are known as del Pezzo surfaces. This
class of surfaces has been widely studied in the literature (it suffices to mention
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that several books have been written just on cubic surfaces), and their geometry
is quite well understood. There are ten families of del Pezzo surfaces. The
following theorem, obtained as a result of a series of papers [Nadel 1990; 1991;
Campana 1991; 1992; Kollár et al. 1992a; 1992b], shows that this is a general
phenomenon.

Theorem 2.1. For every n, there are only finitely many families of Fano mani-
folds of dimension n.

This theorem is based on the analysis of rational curves on Fano manifolds.
In this direction, we should also mention the following important result:

Theorem 2.2 [Campana 1992; Kollár et al. 1992a]. Fano manifolds are ratio-
nally connected.

Fano varieties arise naturally in the context of the Minimal Model Program.
This however leads us to work with possibly singular varieties. The smallest
class of singularities that one has to allow is that of Q-factorial varieties with
terminal singularities. However, one can enlarge the class of singularities further,
and work with Q-Gorenstein varieties with log terminal (or, in some cases, even
log canonical) singularities. In either case, one needs to consider −K X as a
Weil divisor. The hypothesis guarantees that some positive multiple −mK X is
Cartier (i.e., OX (−mK X ) is a line bundle), so that one can impose the condition
of ampleness.

For us, a Fano variety will be a variety with Q-Gorenstein log terminal
singularities such that −K X is ample. We will however be mostly interested in
the case where the singularities are Q-factorial and terminal.

The above results are however more delicate in the singular case. By a recent
result of Zhang [2006], it is known that Fano varieties are rationally connected
(see [Hacon and Mckernan 2007] for a related statement). Boundedness of Fano
varieties is instead an open problem. The example of a cone over a rational
curve of degree d shows that even for surfaces, we must make some additional
assumptions. In this example one has that the minimal log discrepancies are
given by 1/d. One may hope that if we bound the minimal log discrepancies
away from 0 the boundedness still holds. More precisely, the BAB conjecture
(due to Alexeev, Borisov, Borisov) states that for every n > 0 and any ε > 0,
there are only finitely many families of Fano varieties of dimension n with ε-log
terminal singularities (in particular, according to this conjecture, for every n there
are only finitely many families of Fano varieties with canonical singularities).

Note that, by Theorem 2.2, it follows that Fano manifolds have the same
cohomological invariants as rational varieties (namely hi (OX ) = h0(�

q
X ) = 0

for all i, q > 0). On the other hand, by celebrated results of Iskovskikh and
Manin [1971] and of Clemens and Griffiths [1972], it is known that there are
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examples of Fano manifolds that are nonrational. The search for these examples
was motivated by the Lüroth Problem. Note that it is still an open problem to
find examples of Fano manifolds that are not unirational.

Perhaps the most important result known to hold for Fano varieties (for mild
singularities and independently of their dimension), concerns the combinatorial
structure associated to the cone of effective curves. The first instance of this was
discovered by Mori [1982] in the smooth case. It is a particular case of the Cone
Theorem (which holds for all varieties with log terminal singularities).

Theorem 2.3 (Cone theorem for Fano varieties). The Mori cone of a Fano variety
is rational polyhedral, generated by classes of rational curves.

Naturally one may also ask if there are similar results concerning the structure
of other cones of curves. From a dual perspective, one would like to understand
the structure of the various cones of divisors on a Fano variety. The strongest
result along these lines was conjectured by Hu and Keel [2000] and recently
proved by Birkar, Cascini, Hacon, and McKernan:

Theorem 2.4 [Birkar et al. 2010]. Fano varieties are Mori dream spaces in the
sense of Hu and Keel.

The meaning and impact of these results will be discussed in the next section.

3. Mori-theoretic point of view

Let X be a normal projective variety and consider the dual R-vector spaces

N1(X) := (Z1(X)/≡)⊗R and N 1(X) := (Pic(X)/≡)⊗R,

where ≡ denotes numerical equivalence. The Mori cone of X is the closure
NE(X)⊂ N1(X) of the cone spanned by classes of effective curves. Its dual cone
is the nef cone Nef(X)⊂ N 1(X), which by Kleiman’s criterion is the closure of
the cone spanned by ample classes. The closure of the cone spanned by effective
classes in N 1(X) is the pseudo-effective cone PEff(X). Sitting in between the
nef cone and the pseudo-effective cone is the movable cone of divisors Mov(X),
given by the closure of the cone spanned by classes of divisors moving in a linear
system with no fixed components. All of these cones,

Nef(X)⊂Mov(X)⊂ PEff(X)⊂ N 1(X),

carry important geometric information about the variety X .
The Cone Theorem says that NE(X) is generated by the set of its K X positive

classes NE(X)K X≥0 = {α ∈NE(X)|K X ·α ≥ 0} and at most countably many K X

negative rational curves Ci ⊂ X of bounded anti-canonical degree 0<−K X ·Ci ≤

2 dim(X). In particular the only accumulation points for the curve classes [Ci ]
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in NE(X) lie along the hyperplane determined by K X ·α = 0. Thus, for a Fano
variety, the Mori cone NE(X) is a rational polyhedral cone. By duality, it follows
that the nef cone Nef(X)= (NE(X))∨ is also a rational polyhedral cone.

The geometry of X is reflected to a large extent in the combinatorial properties
of NE(X). Every extremal face F of NE(X) corresponds to a surjective morphism
contF : X → Y , which is called a Mori contraction. The morphism contF

contracts precisely those curves on X with class in F . Conversely, any morphism
with connected fibers onto a normal variety arises in this way.

Remark 3.1. When X is not a Fano variety, NE(X)K X<0 may fail to be finitely
generated, and even in very explicit examples such as blow-ups of P2, the
structure of the K X positive part of the Mori cone is in general unknown. Consider,
for example, the long-standing open conjectures of Nagata and Segre–Harbourne–
Gimigliano–Hirschowitz. Also, the fact that the extermal faces of the cone of
curves can always be contracted is only known when X is Fano (or, more
generally, “log Fano”).

A similar behavior, that we will now describe, also occurs for the cone of
nef curves. By definition the cone of nef curves NM(X)⊂ N1(X) is the closure
of the cone generated by curves belonging to a covering family (a family of
curves that dominates the variety X ). It is clear that if α ∈ NM(X) and D is an
effective Cartier divisor on X , then α · D ≥ 0. It follows that α · D ≥ 0 for any
pseudo-effective divisor D on X . We have this remarkable result:

Theorem 3.2 [Boucksom et al. 2004]. The cone of nef curves is dual to the cone
of pseudo-effective divisors, i.e., NM(X)= PEff(X)∨.

We now turn our attention to the case of Q-factorial Fano varieties. In this case,
the cone of nef curves NM(X) is also rational polyhedral and every extremal ray
corresponds to a Mori fiber space X ′→ Y ′ on a model X ′ birational to X . More
precisely:

Theorem 3.3 [Birkar et al. 2010, 1.3.5]. R is an extremal ray of NM(X) if and
only if there exists a Q-divisor D such that (X, D) is Kawamata log terminal,
and a (K X + D) Minimal Model Program X 99K X ′ ending with a Mori fiber
space X ′→ Y ′, such that the numerical transform of any curve in the fibers of
X ′→ Y ′ (e.g., the proper transform of a general complete intersection curve on
a general fiber of X ′→ Y ′) has class in R.

We will refer to the induced rational map X 99K Y ′ as a birational Mori fiber
structure on X . We stress that we only consider Mori fiber structures that are the
output of a Minimal Model Program. This was first studied by Batyrev [1992]
in dimension three. The picture in higher dimensions was recently established
by Birkar–Cascini–Hacon–McKernan for Fano varieties and, in a more general
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context, by Araujo [2010] and Lehman [2008]. As a side note, even if it is known
that the fibers of any Mori fibration X ′→ Y ′ are covered by rational curves, it
still remains an open question whether the extremal rays of NM(X) are spanned
by classes of rational curves. This is related to a delicate question on the rational
connectivity of the smooth locus of singular varieties.

The dual point of view (looking at N 1(X) rather than N1(X)), also offers
a natural way of refining the above results. As mentioned above, if X is a
Q-factorial Fano variety, then it is a Mori dream space [Hu and Keel 2000;
Birkar et al. 2010]. The movable cone Mov(X) of a Mori dream space admits a
finite decomposition into rational polyhedral cones, called Mori chambers. One
of these chambers is the nef cone of X . The other chambers are given by nef
cones of Q-factorial birational models X ′ ∼bir X which are isomorphic to X in
codimension one. Note indeed that any such map gives a canonical isomorphism
between N 1(X) and N 1(X ′). Wall-crossings between contiguous Mori chambers
correspond to flops (or flips, according to the choice of the log pair structure)
between the corresponding birational models. We can therefore view the Mori
chamber decomposition of Mov(X) as encoding information not only on the
biregular structure of X but on its birational structure as well.

There is a way of recovering all this information from the total coordinate ring,
or Cox ring, of a Mori dream space X , via a GIT construction. For simplicity,
we assume that the map Pic(X)→ N 1(X) is an isomorphism and that the class
group of Weil divisors Cl(X) of X is finitely generated. These properties hold
if X is a Fano variety. The property that Pic(X) ∼= N 1(X) simply follows by
the vanishing of H i (X,OX ) for i > 0. The finite generation of Cl(X) is instead
a deeper property; a proof can be found in [Totaro 2009]. Specifically, see
Theorem 3.1 there, which implies that the natural map Cl(X)→ H2n−2(X,Z)

is an isomorphism for any n-dimensional Fano variety X (recall that in our
definition of Fano variety we assume that the singularities are log terminal).

A Cox ring of X is, as defined in [Hu and Keel 2000], a ring of the type

R(L1, . . . , Lr ) :=
⊕
m∈Zρ

H 0(X,OX (m1L1+ · · ·+mρLρ)),

for any choice of line bundles L1, . . . , Lρ inducing a basis of N 1(X). Here
ρ = ρ(X) is the Picard number of X , and m = (m1, . . . ,mr ). We will call the
full Cox ring of X the ring

R(X) :=
⊕

[D]∈Cl(X)

H 0(X,OX (D)).

If X is factorial (that is, if the map Pic(X)→ Cl(X) is an isomorphism) and the
line bundles L i induce a basis of the Picard group, then the two rings coincide.
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These rings were first systematically studied by Cox [1995] when X is a toric
variety. If X is a toric variety and 1 is the fan of X , then the full Cox ring is the
polynomial ring

R(X)= C[xλ | λ ∈1(1)],

where each xλ defines a prime toric invariant divisor of X . When X is smooth,
this property characterizes toric varieties. More precisely:

Theorem 3.4 [Hu and Keel 2000]. Assume that X is a smooth Mori dream space.
Then R(X) is isomorphic to a polynomial ring if and only if X is a toric variety.

More generally, Hu and Keel prove that a Q-factorial Mori dream space X
can be recovered from any of its Cox rings via a GIT construction. Moreover,
the Mori chamber decomposition of X descends to X via this construction
from a chamber decomposition associated to variations of linearizations in the
GIT setting. From this perspective, the Cox ring of a Fano variety is a very
rich invariant, encoding all essential information on the biregular and birational
geometry of the variety.

The above discussion shows how the main features of the geometry of a
Fano variety X , both from a biregular and a birational standpoint, are encoded in
combinatorial data embedded in the spaces N1(X) and N 1(X). Loosely speaking,
we will say that geometric properties of X that are captured by such combinatorial
data constitute the Mori structure of X .

In the remaining part of the paper, we will discuss to what extent the Mori
structure of a Fano variety is preserved under flat deformations. Any positive
result in this direction should be thought of as a rigidity statement.

The following result is the first strong evidence that Fano varieties should
behave in a somewhat rigid way under deformations:

Theorem 3.5 [Wiśniewski 1991; 2009]. The nef cone is locally constant in
smooth families of Fano varieties.

First notice that if f : X→ T is a smooth family of Fano varieties, then f is
topologically trivial, and thus, if we denote by X t := f −1(t) the fiber over t , the
space N 1(X t), being naturally isomorphic to H 2(X t ,R), varies in a local system.
By the polyhedrality of the nef cone, this local system has finite monodromy.
This implies that, after suitable étale base change, one can reduce to a setting
where the spaces N 1(X t) are all naturally isomorphic. The local constancy can
therefore be intended in the étale topology.

Wiśniewski’s result is the underlying motivation for the results that will be
discussed in the following sections.
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4. Deformations of the Cox rings

The proof of Theorem 3.5 has three main ingredients: the theory of deformations
of embedded rational curves, Ehresmann’s Theorem, and the Hard Lefschetz
Theorem. All these ingredients use in an essential way the fact that the family
is smooth. On the other hand, the very definitions involved in the whole Mori
structure of a Fano variety use steps in the Minimal Model Program, which
unavoidably generate singularities. With this in mind, we will present a different
approach to the general problem of studying the deformation of Mori structures.
The main ingredients of this approach will be the use of the Minimal Model
Program in families, and an extension theorem for sections of line bundles (and,
more generally, of divisorial reflexive sheaves). The first implications of such
approach will be on the Cox rings. These applications will be discussed in this
section. Further applications will then presented in the following section.

When working with families of singular Fano varieties, one needs to be very
cautious. This is evident for instance in the simple example of quadric surfaces
degenerating to a quadric cone: in this case allowing even the simplest surface
singularity creates critical problems (the Picard number dropping in the central
fiber), yielding a setting where the questions themselves cannot be posed.

We will restrict ourselves to the smallest category of singularities which is
preserved in the Minimal Model Program, that of Q-factorial terminal singulari-
ties. This is the setting considered in [de Fernex and Hacon 2011]. As explained
in [Totaro 2009], many of the results presented below hold in fact under weaker
assumptions on the singularities.

We consider a small flat deformation f : X→ T of a Fano variety X0. Here
T is a smooth curve with a distinguished point 0 ∈ T , and X0 = f −1(0). We
assume that X0 has terminal Q-factorial singularities. A proof of the following
basic result can be found in [de Fernex and Hacon 2011, Corollary 3.2 and
Proposition 3.8], where an analogous but less trivial result is also proven to hold
for small flat deformations of weak log Fano varieties with terminal Q-factorial
singularities.

Proposition 4.1. For every t in a neighborhood of 0 in T , the fiber X t is a Fano
variety with terminal Q-factorial singularities.

After shrinking T near 0, we can therefore assume that f : X → T is a flat
family of Fano varieties with terminal Q-factorial singularities. If t ∈ T is a
general point, the monodromy on N 1(X t) has finite order. This can be seen
using the fact that the monodromy action preserves the nef cone of X t , which is
finitely generated and spans the whole space. After a suitable base change, one
may always reduce to a setting where the monodromy is trivial.
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If f is a smooth family, then it is topologically trivial, and we have already
noticed that the spaces N 1(X t) vary in a local system. We have remarked how
in general the dimension of these spaces may jump if f is not smooth. Under
our assumptions on singularities the property remains however true. The proof
of the following result is given in [de Fernex and Hacon 2011, Proposition 6.5],
and builds upon results form [Kollár and Mori 1992, (12.10)].

Theorem 4.2. The spaces N 1(X t) and N1(X t) form local systems on T with
finite monodromy. After suitable base change, for every t ∈ T there are natural
isomorphisms N 1(X/T ) ∼= N 1(X t) and N1(X t) ∼= N1(X/T ) induced, respec-
tively, by pull-back and push-forward.

A similar property holds for the class group, and is stated next. The proof
of this property is given in [de Fernex and Hacon 2011, Lemma 7.2], and
uses the previous result in combination with a generalization of the Lefschetz
hyperplane theorem of Ravindra and Srinivas [2006] (the statement is only given
for toric varieties, but the proof works in general). As shown in [Totaro 2009,
Theorem 4.1], the same result holds more generally, only imposing that X is a
projective variety with rational singularities and H 1(X,OX )= H 2(X,OX )= 0
(these conditions hold for any Fano variety) and that X0 is smooth in codimension
2 and Q-factorial in codimension three.

Theorem 4.3. With the same assumptions as in Theorem 4.2, the class groups
Cl(X t) form a local system on T with finite monodromy. After suitable base
change, for every t ∈ T there are natural isomorphisms Cl(X/T ) ∼= Cl(X t)

induced by restricting Weil divisors to the fiber (the restriction is well-defined as
the fibers are smooth in codimension one and their regular locus is contained in
the regular locus of X ).

For simplicity, we henceforth assume that the monodromy is trivial. It follows
by the first theorem that one can fix a common grading for Cox rings of the fibers
X t of the type considered in [Hu and Keel 2000]. The second theorem implies
that the there is also a common grading, given by Cl(X/T ), for the full Cox
rings of the fibers. This is the first step needed to control the Cox rings along the
deformation. The second ingredient is the following extension theorem.

Theorem 4.4. With the above assumptions, let L be any Weil divisor on X that
does not contain any fiber of f in its support. Then, after possibly restricting T
(and consequently X ) to a neighborhood of 0, the restriction map

H 0(X,OX (L))→ H 0(X0,OX0(L|X0))

is surjective (here L|X0 denotes the restriction of L to X0 as a Weil divisor).
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When L is Cartier, this theorem is a small generalization of Siu’s invariance
of plurigenera for varieties of general type. The formulation for Weil divisors
follows by a more general result of [de Fernex and Hacon 2011], which is recalled
below in Theorem 5.4.

As a corollary of the above theorems, we obtain the flatness of the Cox rings.

Corollary 4.5. The full Cox ring R(X0) of X0, or any Cox ring R(L0,1, . . . ,L0,ρ)

of X0 (provided the line bundles L0,i on X0 are sufficiently divisible), deforms
flatly in the family.

The flatness of the deformation of the full Cox ring has a very interesting
consequence when applied to deformations of toric Fano varieties.

Corollary 4.6. Simplicial toric Fano varieties with terminal singularities are
rigid.

The proof of this corollary is based on the simple observation that a polynomial
ring has no non-isotrivial flat deformations. This theorem appears in [de Fernex
and Hacon 2011]. When X is smooth, the result was already known, and follows
by a more general result of Bien and Brion on the vanishing of H 1(X, TX ) for
any smooth projective variety admitting a toroidal embedding (these are also
known as regular varieties). The condition that the toric variety is simplicial is
the translation, in toric geometry, of the assumption of Q-factoriality. The above
rigidity result holds in fact more in general, only assuming that the toric Fano
variety is smooth in codimension 2 and Q-factorial in codimension 3. This was
proven in [Totaro 2009] using the vanishing theorems of Danilov and Mustat,ă
H i (�̃ j

⊗ O(D)∗∗) = 0 for i > 0, j > 0 and D an ample Weil divisor on a
projective toric variety.

The above results can also be used to show that also the Picard group is locally
constant.

Corollary 4.7. With the same assumptions as in Theorem 4.2, the Picard groups
Pic(X t) form a local system on T with finite monodromy. After suitable base
change, for every t ∈ T there are natural isomorphisms Pic(X/T ) ∼= Pic(X t)

induced by restriction.

Proof. After suitable étale base change, we can assume that there is no mon-
odromy on Cl(X t). Then, as Pic(X t) is a subgroup of Cl(X t), in view of
Theorem 4.3 it suffices to show that every line bundle on X0 extends, up to
isomorphism, to a line bundle on X . Or, equivalently, that given any Cartier
divisor D0 on X0, there exists a Cartier divisor D on X not containing X0 in its
support and such that D|X0 ∼ D0. Since any Cartier divisor can be written as the
difference of two very ample divisors, we may assume that D0 is very ample.
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By Theorem 4.3, we can find a Weil divisor D on X not containing X0 in
its support and such that D|X0 ∼ D0. We need to show that D is Cartier in a
neighborhood of X0. We can replace D0 with D|X0 . After possibly shrinking T
near 0, every section of OX0(D0) extends to a section of OX (D) by Theorem 4.4.
Since OX0(D0) is generated by its global sections, it follows that the natural
homomorphism OX (D)→ OX0(D0) is surjective. As OX0(D0) is invertible, this
implies that so is OX (D), and thus that D is Cartier. �

5. Deformations of the Mori structure

The flatness of Cox rings in flat families of Fano varieties with terminal Q-
factorial singularities is already evidence of a strong rigidity property of such
varieties. In this section, we consider a flat family f : X→ T of Fano varieties
with terminal Q-factorial singularities, parametrized by a smooth curve T .

An immediate corollary of Theorem 4.4 is the following general fact.

Corollary 5.1. For any flat family f : X → T of Fano varieties with terminal
Q-factorial singularities over a smooth curve T , the pseudo-effective cones
PEff(X t) of the fibers of f are locally constant in the family.

If one wants to further investigate how the Mori structure varies in the family,
it becomes necessary to run the Minimal Model Program. This requires us to
step out, for a moment, from the setting of families of Fano varieties.

Suppose for now that f : X → T is just a flat projective family of normal
varieties with Q-factorial singularities. Let X0 be the fiber over a point 0 ∈ T .
We assume that the restriction map N 1(X)→ N 1(X0) is surjective, that X0

has canonical singularities, and that there is an effective Q-divisor D on X , not
containing X0 in its support, such that (X0, D|X0) is a Kawamata log terminal
pair. Assume furthermore that D|X0 − aK X0 is ample for some a > −1. Note
that this last condition always holds for Fano varieties.

The following result is crucial for our investigation.

Theorem 5.2. With the above notation, every step X i 99K X i+1 in the Minimal
Model Program of (X, D) over T with scaling of D − aK X is either trivial
on the fiber X i

0 of X i over 0, or it induces a step of the same type (divisorial
contraction, flip, or Mori fibration) X i

0 99K X i+1
0 in the Minimal Model Program

of (X0, D|X0) with scaling of D|X0 − aK X0 . In particular, at each step X i
0 is the

proper transform of X0.

For a proof of this theorem, we refer the reader to [de Fernex and Hacon
2011] (specifically, see Theorem 4.1 and the proof of Theorem 4.5 there). The
key observation is that, by running a Minimal Model Program with scaling of
D− aK X , we can ensure that the property that D|X0 − aK X0 is ample for some
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a>−1 is preserved after each step of the program. By the semicontinuity of fiber
dimensions, it is easy to see that X i 99K X i+1 is a Mori fiber space if and only if
so is X i

0 99K X i+1
0 . If X i 99K X i+1 is birational, then the main issue is to show that

if X i 99K X i+1 is a flip and X i
→ Z i is the corresponding flipping contraction,

then X i
0 → Z i

0 is also a flipping contraction. If this were not the case, then
X i

0→ Z i
0 would be a divisorial contraction and hence Z i

0 would be Q-factorial.
Since Di

|X i
0
− aK X i

0
is nef over Z i

0, it follows that −K X i
0

is ample over Z i
0 and

hence that Z i
0 is canonical. By [de Fernex and Hacon 2011, Proposition 3.5]

it then follows that Z i is Q-factorial. This is the required contradiction as the
target of a flipping contraction is never Q-factorial. Therefore it follows that
X i
→ Z i is a flipping contraction if and only if so is X i

0→ Z i
0.

Remark 5.3. The theorem implies that X i
0 99K X i+1

0 is a divisorial contraction
or a Mori fibration if and only if so is X i

t 99K X i+1
t for general t ∈ T . However,

there exist flipping contractions X i 99K X i+1 which are the identity on a general
fiber X i

t . This follows from the examples of Totaro that we will briefly sketch at
the end of the section.

One of the main applications of this result is the following extension theorem,
which in particular implies the statement of Theorem 4.4 in the case of families
of Fano varieties.

Theorem 5.4 [de Fernex and Hacon 2011, Theorem 4.5]. With the same notation
as in Theorem 5.2, assume that (X0, D|X0) is canonical and, moreover, that
either D|X0 or K X0 + D|X0 is big. Let L be any Weil divisor whose support does
not contain X0 and such that L|X0 ≡ k(K X + D)|X0 for some rational number
k > 1. Then the restriction map

H 0(X,OX (L))→ H 0(X0,OX0(L|X0))

is surjective.

There are versions of the above results where the condition on the positivity of
D|X0 − aK X0 is replaced by the condition that the stable base locus of K X + D
does not contain any irreducible component of D|X0 [de Fernex and Hacon 2011,
Theorem 4.5]. The advantage of the condition considered here is that it only
requires us to know something about the special fiber X0. This is a significant
point, as after all we are trying to lift geometric properties from the special fiber
to the whole space and nearby fibers of an arbitrary flat deformation.

We now come back to the original setting, and hence assume that f : X→ T
is a flat family of Fano varieties with Q-factorial terminal singularities. After
étale base change, we can assume that N 1(X t)∼= N 1(X/T ) for every t .

Corollary 5.1 implies, by duality, that the cones of nef curves NM(X t) are
constant in the family. Combining this with Theorem 5.2, we obtain the following
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rigidity property of birational Mori fiber structures. Recall that we only consider
Mori fiber structures that are the output of some Minimal Model Program.

Theorem 5.5. The birational Mori fiber structures X t 99K X ′t → Y ′t are locally
constant in the family X→ T .

This result is implicit in [de Fernex and Hacon 2011]. As it was not explicitly
stated there, we provide a proof.

Proof. Let R0 be the extremal ray of NM(X0) corresponding to a given birational
Mori fiber structure on X0. Note that by [Birkar et al. 2010, 1.3.5] and its proof,
there exists an ample R-divisor A0 such that the K X0 Minimal Model Program
with scaling of A0 say X0 99K X ′0 ends with Mori fiber space X ′0→ Y ′0 which
is (K X0 + A0)-trivial. Notice also that if we make a general choice of A0 in
N 1(X0), then each step of this Minimal Model Program with scaling is uniquely
determined since at each step there is a unique K X0 + ti A0 trivial extremal ray.

We may now assume that there is an ample R-divisor A on X such that
A0 = A|X0 . Consider running the K X Minimal Model Program over T with
scaling of A say X 99K X ′. Since X is uniruled, this ends with a Mori fiber
space X ′→ Y ′. By Theorem 5.2, this induces the Minimal Model Program with
scaling on the fiber X0 considered in the previous paragraph. Moreover, the
Minimal Model Program on X terminates with the Mori fiber space X ′→ Y ′

at the same step when the induced Minimal Model Program on X0 terminates
with the Mori fiber space X ′0→ Y ′0. This implies that the birational Mori fiber
structure X0 99K Y ′0 extends to the birational Mori fiber structure X 99K Y ′, and
thus deforms to a birational Mori fiber structure on the nearby fibers. �

A similar application of Theorems 5.2 and 5.4 leads to the following rigidity
result for the cone of moving divisors.

Theorem 5.6 [de Fernex and Hacon 2011]. The moving cone Mov(X t) of divi-
sors is locally constant in the family.

Proof. The proof is similar to the proof of Theorem 5.5 once we observe that
the faces of Mov(X) are determined by divisorial contractions and that given
an extremal contraction X → Z over T , this is divisorial if and only if the
contraction on the central fiber X0→ Z0 is divisorial. �

Regarding the behavior of the nef cone of divisors and, more generally, of
the Mori chamber decomposition of the moving cone, the question becomes
however much harder. In fact, once we allow even the mildest singularities, the
rigidity of the whole Mori structure only holds in small dimensions.

Theorem 5.7 [de Fernex and Hacon 2011, Theorem 6.9]. With the notation
above, assume that X0 is either at most 3-dimensional, or is 4-dimensional
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and Gorenstein. Then the Mori chamber decomposition of Mov(X t) is locally
constant for t in a neighborhood of 0 ∈ T .

Totaro [2009] provides families of examples that show that this result is
optimal. In particular, for every a > b > 1, he shows that there is a family of
terminal Q-factorial Gorenstein Fano varieties X→ T such that X t ∼= Pa

×Pb

for t 6= 0 and Nef(X0) is strictly contained in Nef(X t). The reason for this is that
there is a flipping contraction X→ Z over T which is an isomorphism on the
general fiber X t but contracts a copy of Pa contained in X0. Let X+→ Z be the
corresponding flip and fix H+ a divisor on X+ which is ample over T . If H is
its strict transform on X , then H is negative on flipping curves and hence H |X0

is not ample, however H |X t
∼= H+|X+t is ample for t 6= 0. Therefore, the nef

cone of X0 is strictly smaller than the nef cone of X t so that the Mori chamber
decomposition of Mov(X0) is finer than that of Mov(X t).

The construction of this example starts from the flip from the total space of
OPa (−1)⊕(b+1) to the total space of OPb(−1)⊕(a+1). The key idea is to interpret
this local setting in terms of linear algebra, by viewing the two spaces as small
resolutions of the space of linear maps of rank at most one from Cb+1 to Ca+1,
and to use such a description to compactify the setting into a family of Fano
varieties. Totaro also gives an example in dimension 4, where the generic element
of the family is isomorphic to the blow-up of P4 along a line, and the central fiber
is a Fano variety with Q-factorial terminal singularities that is not Gorenstein.

Remark 5.8. The fact that the Mori chamber decomposition is not in general lo-
cally constant in families of Fano varieties with Q-factorial terminal singularities
is not in contradiction with the flatness of Cox rings. The point is that the flatness
of such rings is to be understood only as modules, but it gives no information on
the ring structure. The changes in the Mori chamber decomposition are related
to jumps of the kernels of the multiplication maps.
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