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This is an overview of interpolation problems: when, and how, do zero-
dimensional schemes in projective space fail to impose independent conditions
on hypersurfaces?
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1. The interpolation problem

We give an overview of the exciting class of problems in algebraic geometry
known as interpolation problems: basically, when points (or more generally
zero-dimensional schemes) in projective space may fail to impose independent
conditions on polynomials of a given degree, and by how much.

We work over an arbitrary field K . Our starting point is this elementary
theorem:

Theorem 1.1. Given any z1, . . . zd+1 ∈ K and a1, . . . ad+1 ∈ K , there is a unique
f ∈ K [z] of degree at most d such that

f (zi )= ai , i = 1, . . . , d + 1.

More generally:

Theorem 1.2. Given any z1, . . . , zk ∈ K , natural numbers m1, . . . ,mk ∈N with∑
mi = d + 1, and

ai, j ∈ K , 1≤ i ≤ k; 0≤ j ≤ mi − 1,

there is a unique f ∈ K [z] of degree at most d such that

f ( j)(zi )= ai, j for all i, j.

The problem we’ll address here is simple: What can we say along the same
lines for polynomials in several variables?
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First, introduce some language/notation. The “starting point” statement
Theorem 1.1 says that the evaluation map

H 0(OP1(d))→
⊕

K pi

is surjective; or, equivalently,

h1(I{p1,...,pe}(d))= 0

for any distinct points p1, . . . , pe ∈ P1 whenever e ≤ d + 1. More generally,
Theorem 1.2 says that

h1(Im1
p1
· · ·Imk

pk
(d))= 0

when
∑

mi ≤ d+1. To generalize this, let 0⊂Pr be an subscheme of dimension
0 and degree n. We say that 0 imposes independent conditions on hypersurfaces
of degree d if the evaluation map

ρ : H 0(OPr (d))→ H 0(O0(d))

is surjective, that is, if
h1(I0(d))= 0;

we’ll say it imposes maximal conditions if ρ has maximal rank—that is, is either
injective or surjective, or equivalently if h0(I0(d))h1(I0(d))= 0. Note that the
rank of ρ is just the value of the Hilbert function of 0 at d:

rank(ρ)= h0(d);

and we’ll denote it in this way in the future.
In these terms, the starting point statement is that any subscheme of P1 imposes

maximal conditions on polynomials of any degree. Accordingly, we ask in
general when a zero-dimensional subscheme 0⊂Pr may fail to impose maximal
conditions, and by how much: that is, we want to
• characterize geometrically subschemes that fail to impose independent

conditions; and
• say by how much they may fail: that is, how large h1(I0(d)) may be

(equivalently, how small h0(d) may be).
We will focus primarily on two cases: when 0 is reduced; and when 0 is a

union of “fat points”—that is, the scheme

0 = V (Im1
p1
· · ·Imk

pk
)

defined by a product of powers of maximal ideals of points. Other cases have
been studied, such as curvilinear schemes (zero-dimensional schemes having
tangent spaces of dimension at most 1; see [Ciliberto and Miranda 1998b]), but
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we’ll focus on these two here. (It’s unreasonable to ask about arbitrary zero-
dimensional subschemes 0 ⊂ Pr , since we have no idea what they look like.)

As we’ll see, these two cases give rise to very different questions and answers,
but there is a common thread to both, and it is this that we hope to bring out in
the course of this note.

2. Reduced schemes

In this case, the first observation is that general points always impose maxi-
mal conditions. So, we ask when special points may fail to impose maximal
conditions, and by how much—that is, how small h0(d) can be.

In the absence of further conditions, this is trivial: h0(d) is minimal for 0
contained in a line. It’s still trivial if we require 0 to be nondegenerate: the
minimum then is to put n − r + 1 points on a line. So we typically impose a
“uniformity” condition, such as linear general position—that is, we require that
any r + 1 or fewer of the points of 0 are linearly independent. In this case, we
have the fundamental

Theorem 2.1 (Castelnuovo). If 0 ⊂ Pr is a collection of n points in linear
general position, then

h0(d)≥min{rd + 1, n}.

The proof is elementary: when n ≥ rd+1, we exhibit hypersurfaces of degree
d containing rd points of 0 and no others by the union of d hyperplanes, each
spanned by r of the points of 0. What is striking, given the apparent crudeness
of the argument, is that in fact this inequality is sharp: configurations 0 lying on
a rational normal curve C ⊂ Pr have exactly this Hilbert function.

Even more striking, though, is the converse:

Theorem 2.2 (Castelnuovo). If 0 ⊂ Pr is a collection of n ≥ 2r + 3 points in
linear general position, and

h0(2)= 2r + 1,

then 0 is contained in a rational normal curve.

Thus we have a complete characterization of at least the extremal examples of
failure to impose independent conditions. The question is, can we extend this?
We believe we can: we have the

Conjecture 2.3. For α = 1, 2, . . . , r − 1, if 0 ⊂ Pr is a collection of n ≥
2r + 2α+ 1 points in uniform position, and

h0(2)≤ 2r +α,

then 0 is contained in a curve C ⊂ Pr of degree at most r − 1+α.
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“Uniform position” means that, if 0′, 0′′⊂0 are subsets of the same cardinal-
ity, then h0′ = h0′′ . This is in some sense a strong form of linear general position:
given that the points of 0 span Pr , linear general position is tantamount to the
statement that h0′(1) = h0′′(1) for subsets 0′, 0′′ ⊂ 0 of the same cardinality.
It is not very restrictive; for example, if C ⊂ Pr+1 is any irreducible curve, the
points of a general hyperplane section of C have this property [Arbarello et al.
1985].

There are a number of remarks to make about this conjecture. The first is
that it is known in cases α = 2 (Fano; see [Harris 1982]) and α = 3 [Petrakiev
2008]. A second is that it can’t be extended as stated beyond α = r − 1: for
example, configurations 0 ⊂ Pr contained in a rational normal surface scroll
satisfy h0(2)≤ 3r , but need not lie on a curve of small degree.

A third remark is that we know how to classify irreducible, nondegenerate
subvarieties X ⊂ Pr with Hilbert function h X (2) = 2r + α. Thus all we have
to do to prove the conjecture is to show that the intersection of the quadrics
containing 0 is positive-dimensional.

Finally, and perhaps most importantly, a proof of the conjecture would yield a
complete answer to the classical problem: for which triples (n, d, g) does there
exist a smooth, irreducible, nondegenerate curve C ⊂ Pn of degree d and genus
g?

We will take a moment out to describe this connection, since it’s the original
motivation for much of the study of Hilbert functions of points. Let n = r + 1,
and let C ⊂ Pn be an irreducible, nondegenerate curve of degree d and genus g;
let 0 ⊂ Pr be a general hyperplane section of C . Briefly, Castelnuovo observed
that for large m,

g = dm− hC(m)+ 1;

and using the inequality

hC(m)− hC(m− 1)≤ h0(m)

we arrive at the bound

g ≤
∞∑

m=1

(
d − h0(m)

)
=

∞∑
m=1

h1(I0(m)).

Applying the bound in Theorem 2.1, Castelnuovo then arrives at his bound on
the genus

g ≤ π(d, n)=
(

m0

2

)
(n− 1)+m0ε,

where m0 =

[d−1
n−1

]
and ε = d − 1−m0(n− 1).
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Now suppose we have a curve C as above that achieves this maximal genus.
Assuming d > 2n, then, we can apply the converse Theorem 2.2 to conclude that
C must lie on a surface S ⊂ Pn of minimal degree n− 1; and indeed when we
look on such surfaces we find curves of this maximal genus, showing that the
bound is in fact sharp.

But this is just the beginning of the story. Assuming Conjecture 2.3, we can
bound from below the Hilbert function of a configuration of points in uniform
position not lying on a rational normal curve, and conclude that any curve C ⊂Pn

that does not lie on a surface of minimal degree must satisfy a stronger bound

g ≤ π1(d, n)∼
d2

2n
.

In other words, any curve as above with genus g > π1(d, n) must lie on a
surface of minimal degree. Now, we know what those surfaces look like (they
are either rational normal scrolls or the quadratic Veronese surface), and we
know correspondingly exactly what the arithmetic genus of a curve of given
degree d on such a surface may be; thus we can say exactly which g in the range
π1(d, n)< g≤π(d, n) occur as the genus of an irreducible, nondegenerate curve
of degree d in Pn .

Similarly, if we assume the conjecture in general, we can define a series of
functions

πα(d, n)∼
d2

2(n+α− 1)
, α = 1, 2, . . . , n− 1

such that any curve C of genus g > πα(d, n) must lie on a surface of degree
at most n+α− 2. Again, we know what all such surfaces look like, and what
may be the genera of curves on them (we’re in the range α ≤ n− 1, so all such
surfaces are rational or ruled), and so we can say exactly which g > πn−1(d, n)
occur as the genus of an irreducible, nondegenerate curve of degree d in Pn .
Finally, I think it’s the case that every genus g ≤ πn−1(d, n) occurs, and in fact
occurs on a K3 surface S ⊂ Pn of degree 2n− 2.

Returning to the original question of Hilbert functions of collections of points
in Pr , we can express the bottom line as follows: Configurations 0 ⊂ Pr of
points having small Hilbert function do so because they lie on small subvarieties
X ⊂ Pr —meaning, subvarieties with small Hilbert function. In this case, for
small d the hypersurfaces of degree d containing 0 will just be the hypersurfaces
containing X ; in particular, X will be the intersection of the quadrics containing 0.

Usually, to prove results along these lines it’s enough to show the base locus
|I0(d)| is positive-dimensional.
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3. Fat points

We now take up the second case of our general question: we let p1, . . . , pk ∈ Pr

be points, m1, . . . ,mk ∈ N, and let

0 = V (Im1
p1
· · ·Imk

pk
).

Right off the bat, we see a fundamental difference from the case of reduced
points: it is not always the case that for p1, . . . , pk ∈Pr general, 0 imposes max-
imal conditions on hypersurfaces of degree d! So the first question is: assuming
the points pi are general, for what values of the integers r , k, m1, . . . ,mk and d
does 0 fail to impose maximal conditions?

This is a very different flavor of question, if only because the answer is
numerical rather than geometric. The fact is, we don’t even have a conjectured
answer in general! One case where we do know the answer is the case of double
points—that is, where all mi = 2. Here we have:

Theorem 3.1 [Alexander and Hirschowitz 1995]. For pi ∈ Pr general,

0 = V (I2
p1
· · ·I2

pk
)

imposes maximal conditions on hypersurfaces of degree d , with four exceptions:

(1) k≥2, d=2;

(2) r=2, k=5, d=4;

(3) r=3, k=9, d=4;

(4) r=4, k=7, d=3;

It’s straightforward to see that the first three cases are counterexamples to
the general statement. For example, it’s three conditions for a polynomial on
P2 to vanish to order 2, and the vector space of quadratic polynomials is six-
dimensional, so we might expect that there is no conic double at each of two
assigned points p, q ∈ P2, but there is: the double of the line pq. Another way
to say this is that if we require a quadratic polynomial to vanish to order 2 at a
point p ∈ Pr and simply to vanish at another point q , it must vanish identically
along the line L = pq; the condition that its directional derivative at q in the
direction of L also vanish is thus redundant.

Similarly, we don’t expect that there should be a quartic curve in P2 double
at five assigned points, but there is: if a quartic in P2 is double at four points
p1, . . . , p4 and passes through a fifth p5, it necessarily contains the conic through
all five, so one of the two additional conditions to be double at p5 is dependent.
The third example is likewise clear: since the space of quartic polynomials on
P3 has dimension 35, and it’s four conditions to vanish to order two at a point,
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there shouldn’t be a quartic double at nine points; but the double of the quadric
containing them is one such.

The last example is trickier. As in the last two, we don’t expect that there will
be a cubic hypersurface in P4 double at seven general points, but there is: the
secant variety of the (unique) rational normal quartic curve passing through the
seven points.

For general multiplicities mi and general r , as we said we don’t even have a
conjectured answer. For r = 2, though, we do. To express it, we introduce some
more notation:

Let p1, . . . , pk ∈ P2 be general, and let

S = Bl{p1,...,pk}P
2

be the blow-up of the plane at the pi . Let H be the divisor class of the preimage
of a line in P2, and Ei the exceptional divisor over the point pi . Let L be the
line bundle

OS(d H −
∑

mi Ei )

on S. Then
hi (L)= hi (Im1

p1
· · ·Imk

pk
(d)).

In particular, the “expected dimension” of h0(L) is

(d + 1)(d + 2)
2

−

∑ mi (mi + 1)
2

and this is exceeded exactly when the scheme 0 fails to impose independent
conditions in degree d.

In these terms, we can interpret the basic example of conics in P2 double at
two points p, q as saying that, since the restriction to the line pq of the line
bundle OP2(2) has degree 2, the requirement that the restriction of a section
vanish four times along pq is necessarily redundant. Equivalently, if we let S be
the blow-up S of P2 at p and q , and D ⊂ S the proper transform of the line pq ,
and set

L = OS(2H − E p − Eq),

then L|D has degree −2, and from an examination of the exact sequence

0→ L(−D)→ L→ L|D→ 0

we see that h1(L|D) 6= 0 implies that h1(L) 6= 0. A similar interpretation
can be given for the example of quartics double at 5 points (the line bundle
L = OS(4H−E1−· · ·−E5) has degree −2 on the proper transform of the conic
through the five); and in general we have the
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Conjecture 3.2 (Harbourne–Hirschowitz). Let S be the blow-up of P2 at k
general points, L any line bundle on S. Then h1(L) 6= 0 if and only there is a
(−1)-curve E ⊂ S such that

deg(L|E)≤−2.

An equivalent formulation is that if h1(L) 6= 0, then the base locus of the
linear system |L| contains a multiple (−1)-curve.

There are a number of remarks to be made here. The first is that if true,
the Harbourne–Hirschowitz conjecture gives a complete answer to our question
for r = 2: conjecturally (more about this in a moment), we know where the
(−1)-curves on S are, and can check the condition deg(L|E)≤−2.

Two cases where the conjecture is known is known are for k ≤ 9 (in this case
S has an effective anticanonical divisor), and when max{mi } ≤ 7 (Stephanie
Yang; [Yang 2007])

To explicate the conjecture, and the fact that it does answer our question, we
should make a small digression to discuss our abysmal ignorance about curves of
negative self-intersection on surfaces. To start, let X be any smooth, projective
surface, and consider the self-intersections of curves of X ; that is, set

6 = {(C ·C) : C ⊂ S integral} ⊂ Z.

The first question we might ask is: is 6 bounded below?
The answer isn’t known in characteristic 0, though János Kollár points out

that there are examples in characteristic p of surfaces with integral curves of
arbitrarily negative self-intersection: take B a smooth curve of genus g ≥ 2,
S = B× B and Cn ⊂ S the graph of the nth power of Frobenius. In characteristic
zero, we don’t know the answer even for X = S a blow-up of the plane!

We can, however, make a strong conjecture in this case. Consider an arbitrary
line bundle L = OS(d H −

∑
mi Ei ) on a general blow-up S. The expected

dimension of h0(L) is

(d + 1)(d + 2)
2

−

∑ mi (mi + 1)
2

;

and the genus of a curve C ∈ |L| is

(d − 1)(d − 2)
2

−

∑ mi (mi − 1)
2

.

If we assume the first is positive and the second nonnegative, it follows that the
self-intersection of C is

(C ·C)= d2
−

∑
m2

i ≥−1.

Thus we may make the following conjecture:
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Conjecture 3.3. Let S be a general blow-up of the plane, C ⊂ S any integral
curve. Then

(C ·C)≥−1,

and if equality holds then C is a smooth rational curve.

If we believe this, the Harbourne–Hirschowitz conjecture should be equivalent
to the weaker version:

Conjecture 3.4 (Harbourne–Hirschowitz; weak form). Let S be the blow-up of
P2 at general points, L any line bundle on S. If the linear system |L| contains an
integral curve, then h1(L)= 0.

If we believe the weak Harbourne–Hirschowitz, then by the calculation above
Conjecture 3.3 on self-intersections of curves on S follows, and we can in turn
deduce strong Harbourne–Hirschowitz. Thus, it’s possible to prove that the two
versions of Harbourne–Hirschowitz are equivalent. Note moreover that if we
believe any version, it’s possible to locate all the (−1)-curves on S, as primitive
solutions of the system of equations

(d − 1)(d − 2)
2

−

∑ mi (mi − 1)
2

= 0 and d2
−

∑
m2

i ≥−1.

Thus the condition that the line bundle L have degree −2 on a (−1)-curve E ⊂ S
is algorithmically checkable.

It’s worth taking a moment to describe some approaches to Harbourne–
Hirschowitz. Briefly, all approaches taken to Harbourne–Hirschowitz (in case
k > 9) involve specialization—Ciliberto and Miranda ([Ciliberto and Miranda
2000], [Ciliberto and Miranda 1998a]) specialize a subset of the points pi onto
a line L ⊂ P2; Yang specializes the points onto a line one at a time. Either
approach involves an “apparent” loss of conditions; the goal is to understand
what conditions the limit of the linear series |I0(d)| will satisfy beyond the
obvious multiplicity ones. These questions are fascinating in their own right.

As an example: suppose d = 4, k = 5 and (m1, . . . ,m5) = (1, 1, 1, 1, 3);
suppose that p1, . . . , p4 already lie on a line L and we specialize p5 onto L . The
limits of the curves passing through p1, . . . , p4 and triple at p5 will be of the
form L+C , with C a cubic double at p5. But there are too many of these: cubics
double at p5 form a 6-dimensional linear system, while the system of quartics
passing through p1, . . . , p4 and triple at the general p5 is only 4-dimensional.
So the question is: which cubics actually appear in the limiting curves? The
answer, somewhat unexpectedly, is: cubics with a cusp at p5, with tangent line
L there.
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It would be wonderful to understand better this limiting behavior. For example,
does something like this occur when we specialize similarly defined linear systems
on more general surfaces?

Before moving on, we should summarize one common thread running though
our discussions of Castelnuovo theory and the Harbourne–Hirschowitz conjec-
ture.

The content of the Harbourne–Hirschowitz conjectures may be thought of
as this: if general multiple points in P2 fail to impose maximal conditions, they
do so because they lie on a “small” curve—in this case, a curve of negative
self-intersection.

It’s hard to say how this might generalize to higher-dimensional space—as
we said, we don’t even have a conjectured answer to the question of when
general multiple points impose independent conditions in general. Based on our
experience in P2, though, we might be led to make a qualitative conjecture:

Conjecture 3.5. Let p1, . . . , pk ∈ Pr be general. If

h1(Im1
p1
· · ·Imk

pk
(d)) 6= 0

then the base locus of the linear series |Im1
p1
· · ·Imk

pk (d)| must have positive
dimension.

4. Recasting the problem

There is a common theme to our results and conjectures so far: we believe in
many cases that when a subscheme 0⊂Pr fails to impose independent conditions
on hypersurfaces of degree d—that is, has small Hilbert function h0(d)—it’s
because it’s contained in a small positive-dimensional subscheme X ⊂ Pr ; and
moreover, in this case X will appear as the intersection of the hypersurfaces of
degree d containing 0.

So let’s recast the problem: let’s drop all the conditions we’ve put on 0 at
various points above, and instead make just one assumption: that the intersection
of the hypersurfaces of degree d containing 0 is zero-dimensional; in other
words, 0 is a subscheme of a complete intersection of r hypersurfaces of degree
d. We ask: what bounds can we give on h1(I0(d)) (or h0(d), or h0(I0(d)))
under this hypothesis?

One further wrinkle: instead of specifying the degree n of 0 and asking for
estimates on the size of h0(I0(d)), let’s turn it around: let’s specify the dimension
h0(I0(d)), and ask for a bound on the degree of 0. Thus, the question is:

• Let V ⊂ H 0(OPr (d)) be an N-dimensional linear system of hypersurfaces of
degree d , with finite intersection 0. How large can the degree of 0 be?

As a first example, let’s try d = 2 and N = r + 1. The question is, in effect:
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• How many common zeroes can r + 1 quadrics in Pr have, if they have only
finitely many common zeroes?

• Let {p1, . . . , p2r }⊂Pr be a complete intersection of quadrics in Pr . How many
of the points pi can a quadric Q contain without containing them all?

The first few cases can be worked out ad hoc: for example, in case r = 2,
the answer is visibly 3. In case r = 3, the Cayley–Bachrach theorem [Eisenbud
et al. 1996] says that any quadric containing 7 of the 8 points of a complete
intersection of quadrics in P3 contains the eighth as well; the answer is 6. And in
case r = 4, let C = Q1∩ Q2∩ Q3. If two more quadrics had 13 common zeroes
on C , they would cut out a g1

3 on C . But C is not trigonal; thus the answer is 12.
All this leads us to the

Conjecture 4.1 (Green, Eisenbud, Harris). If Q1, . . . , Qr+1⊂Pr are linearly in-
dependent quadrics and 0= Q1∩· · ·∩Qr+1 their zero-dimensional intersection,
then

deg(0)≤ 3 · 2r−2.

In fact, this is just the first case of a general conjecture about linear systems of
quadrics, and of higher-degree hypersurfaces; the full statement can be found in
[Eisenbud et al. 1996]. And this particular case is in fact no longer a conjecture;
it’s been proved by Rob Lazarsfeld, under the mild extra hypothesis that 0 is
reduced.
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