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Chow groups
and derived categories of K3 surfaces

DANIEL HUYBRECHTS

The geometry of a K3 surface (over C or over Q̄) is reflected by its Chow group
and its bounded derived category of coherent sheaves in different ways. The
Chow group can be infinite dimensional over C (Mumford) and is expected
to inject into cohomology over Q̄ (Bloch–Beilinson). The derived category is
difficult to describe explicitly, but its group of autoequivalences can be studied
by means of the natural representation on cohomology. Conjecturally (Bridge-
land) the kernel of this representation is generated by squares of spherical
twists. The action of these spherical twists on the Chow ring can be determined
explicitly by relating it to the natural subring introduced by Beauville and
Voisin.

1. Introduction

In algebraic geometry a K3 surface is a smooth projective surface X over a fixed
field K with trivial canonical bundle ωX '�

2
X and H 1(X,OX )= 0. For us the

field K will be either a number field, the field of algebraic numbers Q̄ or the
complex number field C. Nonprojective K3 surfaces play a central role in the
theory of K3 surfaces and for some of the results that will be discussed in this
text in particular, but here we will not discuss those more analytical aspects.

An explicit example of a K3 surface is provided by the Fermat quartic in P3

given as the zero set of the polynomial x4
0 + · · · + x4

3 . Kummer surfaces, i.e.,
minimal resolutions of the quotient of abelian surfaces by the sign involution,
and elliptic K3 surfaces form other important classes of examples. Most of the
results and questions that will be mentioned do not lose any of their interest
when considered for one of theses classes of examples or any other particular
K3 surface.

This text deals with three objects naturally associated with any K3 surface X :

Db(X), CH∗(X) and H∗(X,Z).

If X is defined over C, its singular cohomology H∗(X,Z) is endowed with
the intersection pairing and a natural Hodge structure. The Chow group CH∗(X)
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of X , defined over an arbitrary field, is a graded ring that encodes much of the
algebraic geometry. The bounded derived category Db(X), a linear triangulated
category, is a more complicated invariant and in general difficult to control.

As we will see, all three objects, H∗(X,Z), CH∗(X), and Db(X) are related
to each other. On the one hand, H∗(X,Z) as the easiest of the three can be used
to capture some of the features of the other two. But on the other hand and
maybe a little surprising, one can deduce from the more rigid structure of Db(X)
as a linear triangulated category interesting information about cycles on X , i.e.,
about some aspects of CH∗(X).

This text is based on my talk at the conference Classical Algebraic Geometry
Today at MSRI in January 2009 and is meant as a nontechnical introduction to the
standard techniques in the area. At the same time it surveys recent developments
and presents some new results on a question on symplectomorphisms that was
raised in this talk (see Section 6). I wish to thank the organizers for the invitation
to a very stimulating conference.

2. Cohomology of K3 surfaces

The second singular cohomology of a complex K3 surface is endowed with the
additional structure of a weight two Hodge structure and the intersection pairing.
The global Torelli theorem shows that it determines the K3 surface uniquely. We
briefly recall the main features of this Hodge structure and of its extension to
the Mukai lattice which governs the derived category of the K3 surface. For the
general theory of complex K3 surfaces see [Barth et al. 2004] or [Beauville et al.
1985], for example. In this section all K3 surfaces are defined over C.

2.1. To any complex K3 surface X we can associate the singular cohomol-
ogy H∗(X,Z) (of the underlying complex or topological manifold). Clearly,
H 0(X,Z)' H 4(X,Z)' Z. Hodge decomposition yields

H 1(X,C)' H 1,0(X)⊕ H 0,1(X)= 0,

since by assumption H 0,1(X) ' H 1(X,OX ) = 0, and hence H 1(X,Z) = 0.
One can also show H 3(X,Z) = 0. Thus, the only interesting cohomology
group is H 2(X,Z) which together with the intersection pairing is abstractly
isomorphic to the unique even unimodular lattice of signature (3, 19) given by
U⊕3
⊕ E8(−1)⊕2. Here, U is the hyperbolic plane and E8(−1) is the standard

root lattice E8 changed by a sign. Thus, the full cohomology H∗(X,Z) endowed
with the intersection pairing is isomorphic to U⊕4

⊕ E8(−1)⊕2.
For later use we introduce H̃(X,Z), which denotes H∗(X,Z) with the Mukai

paring, i.e., with a sign change in the pairing between H 0 and H 4. Note that as
abstract lattices H∗(X,Z) and H̃(X,Z) are isomorphic.
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2.2. The complex structure of the K3 surface X induces a weight two Hodge
structure on H 2(X,Z) given explicitly by the decomposition

H 2(X,C)= H 2,0(X)⊕ H 1,1(X)⊕ H 0,2(X).

It is determined by the complex line H 2,0(X)⊂ H 2(X,C) which is spanned by
a trivializing section of ωX and by requiring the decomposition to be orthogonal
with respect to the intersection pairing. This natural Hodge structure induces at
the same time a weight two Hodge structure on the Mukai lattice H̃(X,Z) by
setting H̃ 2,0(X)= H 2,0(X) and requiring (H 0

⊕ H 4)(X,C)⊂ H̃ 1,1(X).
The global Torelli theorem and its derived version, due to Piatetski-Shapiro

and Shafarevich [1971] on the one hand and Mukai and Orlov on the other, can
be stated as follows. For complex projective K3 surfaces X and X ′ one has:

i) There exists an isomorphism X ' X ′ (over C) if and only if there exists an
isometry of Hodge structures H 2(X,Z)' H 2(X ′,Z).

ii) There exists a C-linear exact equivalence Db(X)' Db(X ′) if and only if
there exists an isometry of Hodge structures H̃(X,Z)' H̃(X ′,Z).

Note that for purely lattice theoretical reasons the weight two Hodge structures
H̃(X,Z) and H̃(X ′,Z) are isometric if and only if their transcendental parts (see
2.3) are.

2.3. The Hodge index theorem shows that the intersection pairing on H 1,1(X,R)

has signature (1, 19). Thus the cone of classes α with α2 > 0 decomposes into
two connected components. The connected component CX containing the Kähler
cone KX (the cone of all Kähler classes) is called the positive cone. Note that
for the Mukai lattice H̃(X,Z) the set of real (1, 1)-classes of positive square is
connected.

The Néron–Severi group NS(X) is identified with H 1,1(X)∩ H 2(X,Z) and
its rank is the Picard number ρ(X). Since X is projective, the intersection
form on NS(X)R has signature (1, ρ(X)− 1). The transcendental lattice T (X)
is by definition the orthogonal complement of NS(X) ⊂ H 2(X,Z). Hence,
H 2(X,Q)= NS(X)Q⊕ T (X)Q which can be read as an orthogonal decomposi-
tion of weight two rational Hodge structures (but in general not over Z). Note
that T (X)Q cannot be decomposed further, it is an irreducible Hodge structure.
The ample cone is the intersection of the Kähler cone KX with NS(X)R and is
spanned by ample line bundles.

Analogously, one has the extended Néron–Severi group

ÑS(X) := H̃ 1,1(X)∩ H̃(X,Z)= NS(X)⊕ (H 0
⊕ H 4)(X,Z).

Note that ÑS(X) is simply the lattice of all algebraic classes. More precisely,
ÑS(X) can be seen as the image of the cycle map CH∗(X) // H∗(X,Z) or the
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set of all Mukai vectors v(E)= ch(E).
√

td(X)= ch(E).(1, 0, 1) with E ∈Db(X).
Note that the transcendental lattice in H̃(X,Z) coincides with T (X).

2.4. The so-called (−2)-classes, i.e., integral (1, 1)-classes δ with δ2
=−2, play

a central role in the classical theory as well as in the modern part related to
derived categories and Chow groups.

Classically, one considers the set 1X of (−2)-classes in NS(X). For instance,
every smooth rational curve P1

' C ⊂ X defines by adjunction a (−2)-class,
hence C is called a (−2)-curve. Examples of (−2)-classes in the extended Néron–
Severi lattice ÑS(X) are provided by the Mukai vector v(E) of spherical objects
E ∈Db(X) (see 4.2 and 5.1). Note that v(OC) 6= [C], but v(OC(−1))= [C]. For
later use we introduce 1̃X as the set of (−2)-classes in ÑS(X).

Clearly, an ample or, more generally, a Kähler class has positive intersection
with all effective curves and with (−2)-curves in particular. Conversely, one
knows that every class α ∈ CX with (α.C) > 0 for all (−2)-curves is a Kähler
class (cf. [Barth et al. 2004, VIII, Corollary 3.9]).

To any (−2)-class δ one associates the reflection sδ : α
� // α+ (α.δ)δ which

is an orthogonal transformation of the lattice also preserving the Hodge structure.
The Weyl group is by definition the subgroup of the orthogonal group generated
by the reflections sδ. So one has two groups

WX ⊂ O(H 2(X,Z)) and W̃X ⊂ O(H̃(X,Z)).

The union of hyperplanes
⋃
δ∈1X

δ⊥ is locally finite in the interior of CX

and endows CX with a chamber structure. The Weyl group WX acts simply
transitively on the set of chambers and the Kähler cone is one of the chambers.
The action of WX on NS(X)R ∩CX can be studied analogously. It can also be
shown that the reflections s[C] with C ⊂ X a smooth rational curve generate WX .

Another part of the global Torelli theorem complementing i) in 2.2 says that
a nontrivial automorphism f ∈ Aut(X) acts always nontrivially on H 2(X,Z).
Moreover, any Hodge isometry of H 2(X,Z) preserving the positive cone is
induced by an automorphism up to the action of WX . In fact, Piatetski-Shapiro
and Shafarevich also showed that the action on NS(X) is essentially enough to
determine f . More precisely, one knows that the natural homomorphism

Aut(X) // O(NS(X))/WX

has finite kernel and cokernel. Roughly, the kernel is finite because an auto-
morphism that leaves invariant a polarization is an isometry of the underlying
hyperkähler structure and these isometries form a compact group. For the
finiteness of the cokernel note that some high power of any automorphism f
always acts trivially on T (X).



CHOW GROUPS AND DERIVED CATEGORIES OF K3 SURFACES 181

The extended Néron–Severi group plays also the role of a period domain for
the space of stability conditions on Db(X) (see 4.5). For this consider the open
set P(X)⊂ ÑS(X)C of vectors whose real and imaginary parts span a positively
oriented positive plane. Then let P0(X)⊂P(X) be the complement of the union
of all codimension two sets δ⊥ with δ ∈ ÑS(X) and δ2

=−2 (or, equivalently,
δ = v(E) for some spherical object E ∈ Db(X) as we will explain later):

P0(X) := P(X) \
⋃
δ∈1̃X

δ⊥.

Since the signature of the intersection form on ÑS(X) is (2, ρ(X)), the set
P0(X) is connected. Its fundamental group π1(P0(X)) is generated by loops
around each δ⊥ and the one induced by the natural C∗-action.

3. Chow ring

We now turn to the second object that can naturally be associated with any K3
surface X defined over an arbitrary field K , the Chow group CH∗(X). For a
separably closed field like Q̄ or C it is torsion free due to a theorem of Roitman
[1980] and for number fields we will simply ignore everything that is related to
the possible occurrence of torsion. The standard reference for Chow groups is
[Fulton 1998]. For the interplay between Hodge theory and Chow groups see
[Voisin 2002], for example.

3.1. The Chow group CH∗(X) of a K3 surface (over K ) is the group of cy-
cles modulo rational equivalence. Thus, CH0(X) ' Z (generated by [X ]) and
CH1(X) = Pic(X). The interesting part is CH2(X) which behaves differently
for K = Q̄ and K = C. Let us begin with the following celebrated result.

Theorem 3.2 [Mumford 1968]. If K = C, then CH2(X) is infinite dimensional.

(A priori CH2(X) is simply a group, so one needs to explain what it means
that CH2(X) is infinite dimensional. A first and very weak version says that
dimQ CH2(X)Q =∞. For a more geometrical and more precise definition of
infinite dimensionality see e.g. [Voisin 2002, Chapter 22].)

For K = Q̄ the situation is expected to be different. The Bloch–Beilinson
conjectures lead one to the following conjecture for K3 surfaces.

Conjecture 3.3. If K is a number field or K = Q̄, then CH2(X)Q =Q.

So, if X is a K3 surface defined over Q̄, then one expects dimQ CH2(X)Q= 1,
whereas for the complex K3 surface XC obtained by base change from X one
knows dimQ CH2(XC)Q=∞. To the best of my knowledge not a single example
of a K3 surface X defined over Q̄ is known where finite dimensionality of
CH2(X)Q could be verified.
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Also note that the Picard group does not change under base change from Q̄ to
C, i.e., for X defined over Q̄ one has Pic(X)' Pic(XC) (see 5.4). But over the
actual field of definition of X , which is a number field in this case, the Picard
group can be strictly smaller.

The central argument in Mumford’s proof is that an irreducible component
of the closed subset of effective cycles in Xn rationally equivalent to a given
cycle must be proper, due to the existence of a nontrivial regular two-form
on X , and that a countable union of those cannot cover Xn if the base field
is not countable. This idea was later formalized and has led to many more
results proving nontriviality of cycles under nonvanishing hypotheses on the
nonalgebraic part of the cohomology (see e.g. [Voisin 2002, Chapter 22]). There
is also a more arithmetic approach to produce arbitrarily many nontrivial classes
in CH2(X) for a complex K3 surface X which proceeds via curves over finitely
generated field extensions of Q̄ and embeddings of their function fields into C.
See [Green et al. 2004], for example.

The degree of a cycle induces a homomorphism CH2(X) // Z and its kernel
CH2(X)0 is the group of homologically (or algebraically) trivial classes. Thus,
the Bloch–Beilinson conjecture for a K3 surface X over Q̄ says that CH2(X)0= 0
or, equivalently, that

CH∗(X)' ÑS(XC)
� � // H̃(XC,Z).

3.4. The main results presented in my talk were triggered by the paper [Beauville
and Voisin 2004] on a certain natural subring of CH∗(X). They show in particular
that for a complex K3 surface X there is a natural class cX ∈ CH2(X) of degree
one with the following properties:

i) cX = [x] for any point x ∈ X contained in a (possibly singular) rational
curve C ⊂ X .

ii) c1(L)2 ∈ ZcX for any L ∈ Pic(X).
iii) c2(X)= 24cX .

Let us introduce

R(X) := CH0(X)⊕CH1(X)⊕ZcX .

Then ii) shows that R(X) is a subring of CH∗(X). A different way of expressing
ii) and iii) together is to say that for any L ∈ Pic(X) the Mukai vector

vCH(L)= ch(L)
√

td(X)

is contained in R(X) (see 4.1). It will be in this form that the results of Beauville
and Voisin can be generalized in a very natural form to the derived context
(Theorem 5.3).
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Note that the cycle map induces an isomorphism R(X) ' ÑS(X) and that
for a K3 surface X over Q̄ the Bloch–Beilinson conjecture can be expressed by
saying that base change yields an isomorphism CH∗(X)' R(XC).

So, the natural filtration CH∗(X)0 ⊂ CH∗(X) (see also below) with quotient
ÑS(X) admits a split given by R(X). This can be written as

CH∗(X)= R(X)⊕CH∗(X)0

and seems to be a special feature of K3 surfaces and higher-dimensional sym-
plectic varieties. For instance, in [Beauville 2007] it was conjectured that any
relation between c1(L i ) of line bundles L i on an irreducible symplectic variety
X in H∗(X) also holds in CH∗(X). The conjecture was completed to also
incorporate Chern classes of X and proved for low-dimensional Hilbert schemes
of K3 surfaces in [Voisin 2008]. See also the more recent thesis [Ferretti 2009]
which deals with double EPW sextics, which are special deformations of four-
dimensional Hilbert schemes.

3.5. The Bloch–Beilinson conjectures also predict for smooth projective varieties
X the existence of a functorial filtration

0= F p+1CHp(X)⊂ F pCHp(X)⊂ · · · ⊂ F1CHp(X)⊂ F0CHp(X)

whose first step F1 is simply the kernel of the cycle map. Natural candidates for
such a filtration were studied e.g. by Green, Griffiths, Jannsen, Lewis, Murre,
and S. Saito (see [Green and Griffiths 2003] and the references therein).

For a surface X the interesting part of this filtration is 0 ⊂ ker(albX ) ⊂

CH2(X)0 ⊂ CH2(X). Here albX : CH2(X)0 // Alb(X) denotes the Albanese
map.

A cycle 0 ∈ CH2(X × X) naturally acts on cohomology and on the Chow
group. We write [0]i,0

∗
for the induced endomorphism of H 0(X, �i

X ) and [0]∗
for the action on CH2(X). The latter respects the natural filtration ker(albX )⊂

CH2(X)0 ⊂ CH2(X) and thus induces an endomorphism gr[0]∗ of the graded
object ker(albX )⊕Alb(X)⊕Z.

The following is also a consequence of Bloch’s conjecture; see [Bloch 1980]
or [Voisin 2002, Chapter 11], not completely unrelated to Conjecture 3.3.

Conjecture 3.6. [0]2,0
∗
= 0 if and only if gr[0]∗ = 0 on ker(albX ).

It is known that this conjecture is implied by the Bloch–Beilinson conjecture
for X× X when X and 0 are defined over Q̄. But otherwise, very little is known
about it. Note that the analogous statement [0]1,0

∗
= 0 if and only if gr[0]∗ = 0

on Alb(X) holds true by definition of the Albanese.
For K3 surfaces the Albanese map is trivial and so the Bloch–Beilinson

filtration for K3 surfaces is simply 0 ⊂ ker(albX ) = CH2(X)0 ⊂ CH2(X). In
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particular Conjecture 3.6 for a K3 surface becomes: [0]2,0
∗
= 0 if and only if

gr[0]∗ = 0 on CH2(X)0. In this form the conjecture seems out of reach for the
time being, but the following special case seems more accessible and we will
explain in Section 6 to what extend derived techniques can be useful to answer
it.

Conjecture 3.7. Let f ∈ Aut(X) be a symplectomorphism of a complex projec-
tive K3 surface X , i.e., f ∗ = id on H 2,0(X). Then f ∗ = id on CH2(X).

Remark 3.8. Note that the converse is true: If f ∈Aut(X) acts as id on CH2(X),
then f is a symplectomorphism. This is reminiscent of a consequence of the
global Torelli theorem which for a complex projective K3 surface X states:

f = id ⇐⇒ f ∗= id on the Chow ring(!) CH∗(X).

4. Derived category

The Chow group CH∗(X) is the space of cycles divided by rational equivalence.
Equivalently, one could take the abelian or derived category of coherent sheaves
on X and pass to the Grothendieck K-groups. It turns out that considering the
more rigid structure of a category that lies behind the Chow group can lead
to new insight. See [Huybrechts 2006] for a general introduction to derived
categories and for more references to the original literature.

4.1. For a K3 surface X over a field K the category Coh(X) of coherent sheaves
on X is a K -linear abelian category and its bounded derived category, denoted
Db(X), is a K -linear triangulated category.

If E• is an object of Db(X), its Mukai vector v(E•) =
∑
(−1)iv(E i ) =∑

(−1)iv(Hi (E•)) ∈ ÑS(X)⊂ H̃(X,Z) is well defined. By abuse of notation,
we will write the Mukai vector as a map

v : Db(X) // ÑS(X).

Since the Chern character of a coherent sheaf and the Todd genus of X exist as
classes in CH∗(X), the Mukai vector with values in CH∗(X) can also be defined.
This will be written as

vCH
: Db(X) // CH∗(X).

(It is a special feature of K3 surfaces that the Chern character really is integral.)
Note that CH∗(X) can also be understood as the Grothendieck K-group of the

abelian category Coh(X) or of the triangulated category Db(X), i.e., K (X) '
K (Coh(X))'K (Db(X))'CH∗(X). (In order to exclude any torsion phenomena
we assume here that K is algebraically closed, i.e., K = C or K = Q̄, or,
alternatively, pass to the associated Q-vector spaces.)
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Clearly, the lift of a class in CH∗(X) to an object in Db(X) is never unique.
Of course, for certain classes there are natural choices; for instance, vCH(L)
naturally lifts to L which is a spherical object (see below).

4.2. Due to a result of Orlov, every K -linear exact equivalence

8 : Db(X) ∼ // Db(X ′)

between the derived categories of two smooth projective varieties is a Fourier–
Mukai transform, i.e., there exists a unique object E ∈ Db(X × X ′), the kernel,
such that 8 is isomorphic to the functor 8E = p∗(q∗( )⊗E). Here p∗, q∗, and
⊗ are derived functors. It is known that if X is a K3 surface also X ′ is one.

It would be very interesting to use Orlov’s result to deduce the existence of
objects in Db(X × X ′) that are otherwise difficult to describe. However, we
are not aware of any nontrivial example of a functor that can be shown to be
an equivalence, or even just fully faithful, without actually describing it as a
Fourier–Mukai transform.

Here is a list of essentially all known (auto)equivalences for K3 surfaces:
i) Any isomorphism f : X ∼ // X ′ induces an exact equivalence

f∗ : Db(X) ∼ // Db(X ′)

with Fourier–Mukai kernel the structure sheaf O0 f of the graph 0 f ⊂ X×X ′ of f .
ii) The tensor product L ⊗ ( ) for a line bundle L ∈ Pic(X) defines an autoe-

quivalence of Db(X) with Fourier–Mukai kernel 1∗L .
iii) An object E ∈ Db(X) is called spherical if Ext∗(E, E)' H∗(S2, K ) as

graded vector spaces. The spherical twist

TE : Db(X) ∼ // Db(X)

associated with it is the Fourier–Mukai equivalence whose kernel is given as the
cone of the trace map

E∗� E // (E∗� E)|1
∼ //1∗(E∗⊗ E) // O1.

(For examples of spherical objects see 5.1.)
iv) If X ′ is a fine projective moduli space of stable sheaves and dim(X ′)= 2,

then the universal family E on X × X ′ (unique up to a twist with a line bundle
on X ′) can be taken as the kernel of an equivalence Db(X) ∼ // Db(X ′).

4.3. Writing an equivalence as a Fourier–Mukai transform allows one to associate
directly to any autoequivalence 8 : Db(X) ∼ // Db(X) of a complex K3 surface
X an isomorphism

8H
: H̃(X,Z)

∼ // H̃(X,Z)
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which in terms of the Fourier–Mukai kernel E is given by α � // p∗(q∗α.v(E)).
As was observed by Mukai, this isomorphism is defined over Z and not only
over Q. Moreover, it preserves the Mukai pairing and the natural weight two
Hodge structure, i.e., it is an integral Hodge isometry of H̃(X,Z). As above,
v(E) denotes the Mukai vector v(E)= ch(E)

√
td(X×X).

Clearly, the latter makes also sense in CH∗(X × X) and so one can as well
associate to the equivalence 8 a group automorphism

8CH
: CH∗(X) ∼ // CH∗(X).

The reason why the usual Chern character is replaced by the Mukai vector
is the Grothendieck–Riemann–Roch formula. With this definition of 8H and
8CH one finds that 8H (v(E))= v(8(E)) and 8CH(vCH(E))= vCH(8(E)) for
all E ∈ Db(X).

Note that 8H and 8CH do not preserve, in general, neither the multiplicative
structure nor the grading of H̃(X,Z) or CH∗(X).

The derived category Db(X) is difficult to describe in concrete terms. Its
group of autoequivalences, however, seems more accessible. So let Aut(Db(X))
denote the group of all K -linear exact equivalences 8 : Db(X) ∼ // Db(X) up to
isomorphism. Then 8 � //8H and 8 � //8CH define the two representations

ρH
:Aut(Db(X)) // O(H̃(X,Z)) and ρCH

:Aut(Db(X)) // Aut(CH∗(X)).

Here, O(H̃(X,Z)) is the group of all integral Hodge isometries of the weight
two Hodge structure defined on the Mukai lattice H̃(X,Z) and Aut(CH∗(X))
denotes simply the group of all automorphisms of the additive group CH∗(X).

Although CH∗(X) is a much bigger group than H̃(X,Z), at least over K =C,
both representations carry essentially the same information. More precisely one
can prove (see [Huybrechts 2010]):

Theorem 4.4. ker(ρH )= ker(ρCH).

In the following we will explain what is known about this kernel and the
images of the representations ρH and ρCH.

4.5. Due to the existence of the many spherical objects in Db(X) and their
associated spherical twists, the kernel ker(ρH )= ker(ρCH) has a rather intriguing
structure. Let us be a bit more precise: If E ∈ Db(X) is spherical, then T H

E is
the reflection sδ in the hyperplane orthogonal to δ := v(E). Hence, the square
T 2

E is an element in ker(ρH ) which is easily shown to be nontrivial.
Due to the existence of the many spherical objects on any K3 surface (all line

bundles are spherical) and the complicated relations between them, the group
generated by all T 2

E is a very interesting object. In fact, conjecturally ker(ρH )
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is generated by the T 2
E ’s and the double shift. This and the expected relations

between the spherical twists are expressed by the following conjecture:

Conjecture 4.6 [Bridgeland 2008]. ker(ρH )= ker(ρCH)' π1(P0(X)).

For the definition of P0(X) see 2.4. The fundamental group of P0(X) is
generated by loops around each δ⊥ and the generator of π1(P(X))'Z. The latter
is naturally lifted to the autoequivalence given by the double shift E � // E[2].

Since each (−2)-vector δ can be written as δ= v(E) for some spherical object,
one can lift the loop around δ⊥ to T 2

E . However, the spherical object E is by
no means unique. Just choose any other spherical object F and consider T 2

F (E)
which has the same Mukai vector as E . Even for a Mukai vector v = (r, `, s)
with r > 0 there is in general more than one spherical bundle(!) E with v(E)= v
(see 5.1).

Nevertheless, Bridgeland does construct a group homomorphism

π1(P0(X)) // ker(ρH )⊂ Aut(Db(X)).

The injectivity of this map is equivalent to the simply connectedness of the
distinguished component 6(X) ⊂ Stab(X) of stability conditions considered
by Bridgeland. If 6(X) is the only connected component, then the surjectivity
would follow.

Note that, although ker(ρH ) is by definition not visible on H̃(X,Z) and by
Theorem 4.4 also not on CH∗(X), it still seems to be governed by the Hodge
structure of H̃(X,Z). Is this in any way reminiscent of the Bloch conjecture
(see 3.5)?

4.7. On the other hand, the image of ρH is well understood which is (see
[Huybrechts et al. 2009]):

Theorem 4.8. The image of ρH
: Aut(Db(X)) // O(H̃(X,Z)) is the group

O+(H̃(X,Z)) of all Hodge isometries leaving invariant the natural orientation
of the space of positive directions.

Recall that the Mukai pairing has signature (4, 20). The classes Re(σ ), Im(σ ),
1−ω2/2, ω, where 0 6= σ ∈ H 2,0(X) and ω ∈ KX an ample class, span a real
subspace V of dimension four which is positive definite with respect to the Mukai
pairing. Using orthogonal projection, the orientations of V and 8H (V ) can be
compared.

To show that Im(ρH ) has at most index two in O(H̃(X,Z)) uses techniques
of Mukai and Orlov and was observed by Hosono, Lian, Oguiso, Yau [Hosono
et al. 2004] and Ploog. As it turned out, the difficult part is to prove that the
index is exactly two. This was predicted by Szendrői, based on considerations in
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mirror symmetry, and recently proved in a joint work with Macrì and Stellari
[Huybrechts et al. 2009].

Let us now turn to the image of ρCH. The only additional structure the Chow
group CH∗(X) seems to have is the subring R(X) ⊂ CH∗(X) (see 3.4). And
indeed, this subring is preserved under derived equivalences (see [Huybrechts
2010]):

Theorem 4.9. If ρ(X)≥ 2 and8∈Aut(Db(X)), then8H preserves the subring
R(X)⊂ CH∗(X).

In other words, autoequivalences (and in fact equivalences) respect the direct
sum decomposition CH∗(X)= R(X)⊕CH∗(X)0 (see 3.4).

The assumption on the Picard rank should eventually be removed, but as for
questions concerning potential density of rational points the Picard rank one case
is indeed more complicated.

Clearly, the action of 8CH on R(X) can be completely recovered from the
action of 8H on ÑS(X). On the other hand, according to the Bloch conjecture
(see 3.5) the action of 8CH on CH∗(X)0 should be governed by the action of 8H

on the transcendental part T (X). Note that for K = Q̄ one expects CH∗(X)0= 0,
so nothing interesting can be expected in this case. However, for K = C well-
known arguments show that 8H

6= id on T (X) implies 8CH
6= id on CH∗(X)0

(see [Voisin 2002]). As usual, it is the converse that is much harder to come by.
Let us nevertheless rephrase the Bloch conjecture once more for this case.

Conjecture 4.10. Suppose 8H
= id on T (X). Then 8CH

= id on CH∗(X)0.

By Theorem 4.4 one has 8CH
= id under the stronger assumption 8H

= id
not only on T (X) but on all of H̃(X,Z). The special case of 8 = f∗ will be
discussed in more detail in Section 6

Note that even if the conjecture can be proved we would still not know how
to describe the image of ρCH. It seems, CH∗(X) has just not enough structure
that could be used to determine explicitly which automorphisms are induced by
derived equivalences.

5. Chern classes of spherical objects

It has become clear that spherical objects and the associated spherical twists play
a central role in the description of Aut(Db(X)). Together with automorphisms
of X itself and orthogonal transformations of H̃ coming from universal families
of stable bundles, they determine the action of Aut(Db(X)) on H̃(X,Z). The
description of the kernel of ρCH should only involve squares of spherical twists
by Conjecture 4.6.
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5.1. It is time to give more examples of spherical objects.
i) Every line bundle L ∈ Pic(X) is a spherical object in Db(X) with Mukai

vector v = (1, `, `2/2+1) where `= c1(L). Note that the spherical twist TL has
nothing to do with the equivalence given by the tensor product with L . Also the
relation between TL and, say, TL2 , is not obvious.

ii) If C ⊂ X is a smooth irreducible rational curve, then all OC(i) are spherical
objects with Mukai vector v= (0, [C], i+1). The spherical twist TOC (−1) induces
the reflection s[C] on H̃(X,Z), an element of the Weyl group WX .

iii) Any simple vector bundle E which is also rigid, i.e., Ext1(E, E)= 0, is
spherical. This generalizes i). Note that rigid torsion free sheaves are automati-
cally locally free (see [Mukai 1987, Proposition 2.14]). Let v= (r, `, s)∈ Ñ S(X)
be a (−2)-class with r > 0 and H be a fixed polarization. Then due to a result
of Mukai there exists a unique rigid bundle E with v(E) = v which is slope
stable with respect to H (see [Huybrechts and Lehn 2010, Theorem 6.16] for
the uniqueness). However, varying H usually leads to (finitely many) different
spherical bundles realizing v. They should be considered as nonseparated points
in the moduli space of simple bundles (on deformations of X ). This can be
made precise by saying that for two different spherical bundles E1 and E2 with
v(E1)= v(E2) there always exists a nontrivial homomorphism E1 // E2.

5.2. The Mukai vector v(E) of a spherical object E ∈ Db(X) is an integral
(1, 1)-class of square −2 and every such class can be lifted to a spherical object.
For the Mukai vectors in CH∗(X) we have:

Theorem 5.3 [Huybrechts 2010]. If ρ(X)≥ 2 and E ∈Db(X) is spherical, then
vCH(E) ∈ R(X).

In particular, two nonisomorphic spherical bundles realizing the same Mukai
vector in H̃(X,Z) are also not distinguished by their Mukai vectors in CH∗(X).
Again, the result should hold without the assumption on the Picard group.

This theorem is first proved for spherical bundles by using Lazarsfeld’s tech-
nique to show that primitive ample curves on K3 surfaces are Brill–Noether
general [Lazarsfeld 1986] and the Bogomolov–Mumford theorem on the existence
of rational curves in ample linear systems [Mori and Mukai 1983] (which is
also at the core of [Beauville and Voisin 2004]). Then one uses Theorem 4.4
to generalize this to spherical objects realizing the Mukai vector of a spherical
bundle. For this step one observes that knowing the Mukai vector of the Fourier–
Mukai kernel of TE in CH∗(X × X) allows one to determine vCH(E).

Actually Theorem 5.3 is proved first and Theorem 4.9 is a consequence of it,
Indeed, if8 :Db(X) ∼ // Db(X) is an equivalence, then for a spherical object E ∈
Db(X) the image 8(E) is again spherical. Since vCH(8(E))=8CH(vCH(E)),
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Theorem 5.3 shows that 8CH sends Mukai vectors of spherical objects, in partic-
ular of line bundles, to classes in R(X). Clearly, R(X) is generated as a group
by the vCH(L) with L ∈ Pic(X) which then proves Theorem 4.9.

5.4. The true reason behind Theorem 5.3 and in fact behind most of the results in
[Beauville and Voisin 2004] is the general philosophy that every rigid geometric
object on a variety X is already defined over the smallest algebraically closed field
of definition of X . This is then combined with the Bloch–Beilinson conjecture
which for X defined over Q̄ predicts that R(XC)= CH∗(X).

To make this more precise consider a K3 surface X over Q̄ and the associated
complex K3 surface XC. An object E ∈Db(XC) is defined over Q̄ if there exists
an object F ∈ Db(X) such that its base-change to XC is isomorphic to E . We
write this as E ' FC.

The pull-back yields an injection of rings CH∗(X) � � // CH∗(XC) and if E ∈
Db(XC) is defined over Q̄ its Mukai vector vCH(E) is contained in the image of
this map. Now, if we can show that CH∗(X)= R(XC), then the Mukai vector of
every E ∈ Db(XC) defined over Q̄ is contained in R(XC).

Eventually one observes that spherical objects on XC are defined over Q̄. For
line bundles L ∈ Pic(XC) this is well-known, i.e., Pic(X)' Pic(XC). Indeed, the
Picard functor is defined over Q̄ (or in fact over the field of definition of X ) and
therefore the set of connected components of the Picard scheme does not change
under base change. The Picard scheme of a K3 surface is zero-dimensional, a
connected component consists of one closed point and, therefore, base change
identifies the set of closed points. For the algebraically closed field Q̄ the set
of closed points of the Picard scheme of X is the Picard group of X which thus
does not get bigger under base change e.g. to C.

For general spherical objects in Db(XC) the proof uses results of Inaba and
Lieblich (see [Inaba 2002], for instance) on the representability of the functor
of complexes (with vanishing negative Ext’s) by an algebraic space. This is
technically more involved, but the underlying idea is just the same as for the
case of line bundles.

6. Automorphisms acting on the Chow ring

We come back to the question raised as Conjecture 3.7. So suppose f ∈ Aut(X)
is an automorphism of a complex projective K3 surface X with f ∗σ = σ where
σ is a trivializing section of the canonical bundle ωX . In other words, the Hodge
isometry f ∗ of H 2(X,Z) (or of H̃(X,Z)) is the identity on H 0,2(X)= H̃ 0,2(X)
or, equivalently, on the transcendental lattice T (X). What can we say about the
action induced by f on CH2(X)? Obviously, the question makes sense for K3
surfaces defined over other fields, say Q̄, but C is the most interesting case (at
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least in characteristic zero) and for Q̄ the answer should be without any interest
due to the Bloch–Beilinson conjecture.

In this section we will explain that the techniques of the earlier sections and
of [Huybrechts 2010] can be combined with results of Kneser on the orthogonal
group of lattices to prove Conjecture 3.7 under some additional assumptions on
the Picard group of X .

6.1. Suppose f ∈ Aut(X) is a nontrivial symplectomorphism, i.e., f ∗σ = σ .
If f has finite order n, then n = 2, . . . , 7, or 8. This is a result from [Nikulin
1980] and follows from the holomorphic fixed point formula (see [Mukai 1988]).
Moreover, in this case f has only finitely many fixed points, all isolated, and
depending on n the number of fixed points is 8, 6, 4, 4, 2, 3, 2, respectively. The
minimal resolution of the quotient Y // X̄ := X/〈 f 〉 yields again a K3 surface
Y . Thus, for symplectomorphisms of finite order Conjecture 3.7 is equivalent
to the bijectivity of the natural map CH2(Y )Q // CH2(X)Q. Due to a result of
Nikulin the action of a symplectomorphism f of finite order on H 2(X,Z) is
as an abstract lattice automorphism independent of f and depends only on the
order. For prime order 2, 3, 5, and 7 it was explicitly described and studied in
[van Geemen and Sarti 2007; Garbagnati and Sarti 2007]. For example, for a
symplectic involution the fixed part in H 2(X,Z) has rank 14. The moduli space
of K3 surfaces X endowed with a symplectic involution is of dimension 11 and
the Picard group of the generic member contains E8(−2) as a primitive sublattice
of corank one.

Explicit examples of symplectomorphisms are easy to construct. For example,
(x0 : x1 : x2 : x3)

� // (−x0 : −x1 : x2 : x3) defines a symplectic involution on the
Fermat quartic X0 ⊂ P3. On an elliptic K3 surface with two sections one can
use fiberwise addition to produce symplectomorphisms.

6.2. The orthogonal group of a unimodular lattice 3 has been investigated in
detail in [Wall 1963]. Subsequently, there have been many attempts to generalize
some of his results to nonunimodular lattices. Of course, often new techniques
are required in the more general setting and some of the results do not hold any
longer.

The article [Kneser 1981] turned out to be particularly relevant for our purpose.
Before we can state Kneser’s result we need to recall a few notions. First, the
Witt index of a lattice 3 is the maximal dimension of an isotropic subspace
in 3R. So, if 3 is nondegenerate of signature (p, q), then the Witt index is
min{p, q}. The p-rank rkp(3) of 3 is the maximal rank of a sublattice 3′ ⊂3
whose discriminant is not divisible by p.

Recall that every orthogonal transformation of the real vector space 3R can
be written as a composition of reflections. The spinor norm of a reflection with
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respect to a vector v ∈ 3R is defined as −(v, v)/2 in R∗/R∗2. In particular, a
reflection sδ for a (−2)-class δ ∈3 has trivial spinor norm. The spinor norm for
reflections is extended multiplicatively to a homomorphism O(3) // {±1}.

The following is a classical result due to Kneser, motivated by work of Ebeling,
which does not seem widely known.

Theorem 6.3. Let 3 be an even nondegenerate lattice of Witt index at least two
such that 3 represents −2. Suppose rk2(3) ≥ 6 and rk3(3) ≥ 5. Then every
g ∈ SO(3) with g = id on 3∗/3 and trivial spinor norm can be written as a
composition of an even number of reflections

∏
sδi with (−2)-classes δi ∈3.

By using that a (−2)-reflection has determinant −1 and trivial spinor norm
and discriminant, Kneser’s result can be rephrased as follows: Under the above
conditions on 3 the Weyl group W3 of 3 is given by

W3 = ker
(
O(3) // {±1}×O(3∗/3)

)
. (6-1)

The assumption on rk2 and rk3 can be replaced by assuming that the reduction
mod 2 resp. 3 are not of a very particular type. For instance, for p = 2 one has
to exclude the case x̄1 x̄2, x̄1 x̄2+ x̄2

3 , and x̄1 x̄2+ x̄3 x̄4+ x̄2
5 . See [Kneser 1981] or

details.

6.4. Kneser’s result can never be applied to the Néron–Severi lattice NS(X) of
a K3 surface X , because its Witt index is one. But the extended Néron–Severi
lattice ÑS(X)' NS(X)⊕U has Witt index two. The conditions on rk2 and rk3

for ÑS(X) become rk2(NS(X))≥ 4 and rk3(NS(X))≥ 3. This leads to the main
result of this section.

Theorem 6.5. Suppose rk2(NS(X)) ≥ 4 and rk3(NS(X)) ≥ 3. Then any sym-
plectomorphism f ∈ Aut(X) acts trivially on CH2(X).

Proof. First note that the discriminant of an orthogonal transformation of a
unimodular lattice is always trivial and that the discriminant groups of NS(X)
and T (X) are naturally identified. Since a symplectomorphism acts as id on
T (X), its discriminant on NS(X) is also trivial. Note that a (−2)-reflection sδ
has also trivial discriminant and spinor norm 1. Its determinant is −1.

Let now δ0 := (1, 0,−1), which is a class of square δ2
0 = 2 (and not −2).

So the induced reflection sδ has spinor norm and determinant both equal to
−1. Its discriminant is trivial. To a symplectomorphism f we associate the
orthogonal transformation g f as follows. It is f∗ if the spinor norm of f∗ is 1 and
sδ0 ◦ f∗ otherwise. Then g f has trivial spinor norm and trivial discriminant, By
Equation (6-1) this shows g f ∈ W̃X , i.e., f∗ or sδ0 ◦ f∗ is of the form

∏
sδi with

(−2)-classes δi . Writing δi = v(Ei ) with spherical Ei allows one to interpret the
right hand side as

∏
T H

Ei
.
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Clearly, the T H
Ei

preserve the orientation of the four positive directions and so
does f∗. But sδ0 does not, which proves a posteriori that the spinor norm of f∗
must always be trivial: g f = f∗.

Thus, f∗ =
∏

T H
Ei

and hence we proved that under the assumptions on NS(X)
the action of the symplectomorphism f on H̃(X,Z) coincides with the action
of the autoequivalence

8 :=
∏

TEi .

But by Theorem 4.4 their actions then coincide also on CH∗(X). To conclude,
use Theorem 5.3 which shows that the action of 8 on CH2(X)0 is trivial. �

Remark 6.6. The proof actually shows that the image of the subgroup of those
8 ∈ Aut(Db(X)) acting trivially on T (X) (the “symplectic equivalences”) in
O(ÑS(X)) is W̃X , i.e., coincides with the image of the subgroup spanned by all
spherical twists TE .

Unfortunately, Theorem 6.5 does not cover the generic case of symplecto-
morphisms of finite order. For example, the Néron–Severi group of a generic
K3 surface endowed with a symplectic involution is up to index two isomorphic
to Z`⊕ E8(−2) (see [van Geemen and Sarti 2007]). Whatever the square of `
is, the extended Néron–Severi lattice ÑS(X) will have rk2 = 2 and indeed its
reduction mod 2 is of the type x̄1 x̄2 explicitly excluded in Kneser’s result and its
refinement alluded to above.

Example 6.7. By a result from [Morrison 1984] one knows that for Picard
rank 19 or 20 the Néron–Severi group NS(X) contains E8(−1)⊕2 and hence the
assumptions of Theorem 6.5 are satisfied (by far). In particular, our result applies
to the members X t of the Dwork family

∑
x4

i + t
∏

xi in P3, so in particular to
the Fermat quartic itself. We can conclude that all symplectic automorphisms
of X t act trivially on CH2(X t). For the symplectic automorphisms given by
multiplication with roots of unities this was proved by different methods already
in [Chatzistamatiou 2009]. To come back to the explicit example mentioned
before: The involution of the Fermat quartic X0 given by

(x0 : x1 : x2 : x3)
� // (−x0 : −x1 : x2 : x3)

acts trivially on CH2(X).

Although K3 surfaces X with a symplectomorphism f and a Néron–Severi
group satisfying the assumptions of Theorem 6.5 are dense in the moduli space of
all (X, f ) without any condition on the Néron–Severi group, this is not enough
to prove Bloch’s conjecture for all (X, f ).
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