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Geometry of varieties of minimal rational
tangents

JUN-MUK HWANG

We present the theory of varieties of minimal rational tangents (VMRT), with
an emphasis on its own structural aspect, rather than applications to concrete
problems in algebraic geometry. Our point of view is based on differential
geometry, in particular, Cartan’s method of equivalence. We explain various
aspects of the theory, starting with the relevant basic concepts in differential
geometry and then relating them to VMRT. Several open problems are pro-
posed, which are natural from the view point of understanding the geometry
of VMRT itself.

1. Introduction

The concept of varieties of minimal rational tangents (VMRT) on uniruled
projective manifolds first appeared as a tool to study the deformation of Hermitian
symmetric spaces [Hwang and Mok 1998]. For many classical examples of
uniruled manifolds, VMRT is a very natural geometric object associated to low
degree rational curves, and as such, it had been studied and used long before
its formal definition appeared in that reference. At a more conceptual level,
namely, as a tool to investigate unknown varieties, it had been already used in
[Mok 1988] for manifolds with nonnegative curvature. However, in the context
of that work, its very special relation with the curvature property of the Kihler
metric somewhat overshadowed its role as an algebro-geometric object, so it had
not been considered for general uniruled manifolds. Thus it is fair to say that
the concept as an independent geometric object defined on uniruled projective
manifolds really originated from [Hwang and Mok 1998]. Shortly after this
formal debut, numerous examples of its applications to classical problems of
algebraic geometry were discovered. In the early MSRI survey [Hwang and Mok
1999], written only a couple of years after the first discovery, one can already
find a substantial list of problems in a wide range of topics, which can be solved
by the help of VMRT.
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Since the beginning VMRT has been studied exclusively in relation with
some classical problems, namely, problems which do not involve VMRT itself
explicitly. In particular, this is the case for most of my collaboration with N. Mok.
In other words, VMRT has mostly served as a tool to study uniruled manifolds.
However, after more than a decade’s service, I believe it is time to give due
recognition and it is not unreasonable to start to regard VMRT itself as a central
object of research. The purpose of this exposition is to introduce and advertise
this new viewpoint. In fact, the title of the current article, as opposed to that of
my old survey [Hwang 2001], is deliberately chosen to emphasize this shift of
perspective.

As a result, in this article, I intentionally avoided talking about applications.
Also, only a minimal number of examples are given. This omission is happily
justifiable by the appearance of the excellent survey paper [Mok 2008a], which
covers many recent applications. The old surveys [Hwang and Mok 1999] and
[Hwang 2001] as well as [Mok 2008a] all emphasize the applications to concrete
geometric problems. The reader is encouraged to look at these surveys for explicit
examples and applications.

There is another reason that I believe it is justifiable to give such an emphasis
on the theoretical aspect of the theory. After seeing many applications of the
techniques developed so far, it seems to me that we need a considerable advance-
ment of the structural theory of VMRT itself, to enhance the applicability of the
theory to a wider class of geometric problems. With this motivation in mind, I
will propose several open problems of this sort throughout the article, which I
believe are not only natural, but will be useful in applications.

Most of these open problems are likely to be of less interest unless one believes
that VMRT itself is an interesting object. In this regard, part of my aim is to
advertise VMRT, trying to convince the reader that the subject is exciting and
amusing. In other words, by presenting these open problems, I hope to transfer
to the reader the kind of perspective I have about this subject. The reader is
encouraged to try to think about the meaning of the open problems and why they
are interesting, to understand the underlying philosophy.

The basic framework of my presentation is essentially differential geometric,
belonging to Cartanian geometry. Since this is an article for algebraic geometers,
very little knowledge of differential geometry will be assumed. Essentially all
differential geometric concepts are explained from the very definition. This
differential geometric framework has been in the background of most of my joint
work with N. Mok, but has not been explicitly explained in publications so far.
The basic idea is that VMRT is a special kind of cone structure and one of the
key issue is to understand what is special about it. In this article, we will mostly
concentrate on the existence of a characteristic connection among the special
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properties. Schematically, we may put it as
{ cone strucures } D { characteristic connections } D { VMRT }.

Some of the discussion below works for cone structures, some for characteristic
connections and some for VMRT.

For me, the most amusing aspect of the study of VMRT is the interaction, or
rather the fusion, of algebraic geometry and differential geometry. I hope that
this expository article helps algebraic geometers to become more familiar with
the concepts and methods originating from differential geometry. Most of the
sections start with an introduction of certain differential geometric concepts and
then mix them with the algebraic geometry of rational curves.

In another direction, although it is written for algebraic geometers, I hope this
article will attract differential geometers, especially those working on Cartanian
geometry, to problems arising from the algebraic geometry of rational curves.
Many of the problems I propose have differential geometric components. More-
over, | think the theory of VMRT provides a lot of new examples of geometric
structures which are highly interesting from a differential geometric point of
view.

2. Preliminaries on distributions

Throughout the paper, we will work over the complex numbers. All differential
geometric objects are holomorphic. In this section, we collect some terms and
facts about distributions. These will be used throughout the paper.

A distribution D on a complex manifold U means a vector subbundle D C
T (U) of the tangent bundle. In particular, 7(U)/D is locally free.

The Frobenius tensor of the distribution D is the homomorphism of vector
bundles B : A°’D — T(U)/D defined by

B, w)=[v,w] mod D,

where for x € U and two vectors v, w € D,, v and w are local sections of D
extending v and w in a neighborhood of x, and [v, w] denotes the bracket of
v and w as holomorphic vector fields. It is easy to see that 8(v, w) does not
depend on the choice of the extensions v, w. By the Frobenius theorem, if the
Frobenius tensor is identically zero then the distribution comes from a foliation,
i.e., a partition of U into complex submanifolds whose tangent spaces correspond
to D. In this case, we say that the distribution is integrable.
For each x € U define

Ch(D), :={v e Dy, B(v,w)=0 forall we D,.}.



200 JTUN-MUK HWANG
In a Zariski open subset U’ C U,
{Ch(D),x e U'}

defines a distribution, called the Cauchy characteristic of D and denoted by
Ch(D). This distribution is always integrable.

Given a distribution D on U, its first derived system, denoted by 0D, is
the distribution defined on a Zariski open subset of U whose associated sheaf
corresponds to O(D) + [O(D), O(D)]. Define successively

a'D:=dD, 9*D:=0(" 'D).

There exists some £ such that 3D = 3+ D so that the Frobenius tensor of 3¢ D
is zero. The foliation on a Zariski open subset of U determined by 3¢ D is called
the foliation generated by D. We say that the distribution is bracket-generating
if 3*D = T (U’) on some Zariski open subset U’ and £ > 0.

Let f : M — B be a holomorphic submersion between two complex manifolds,
ie.,df : T(M) — f*T(B) is a surjective bundle homomorphism. The distri-
bution Kerdf on M is integrable and the corresponding foliation of M has the
fibers of f as leaves. Given a distribution D on B, we have a distribution f~'D
on M, called the inverse-image of the distribution D, given by the subbundle
df~'(f*D) of T(M) where f*D C f*T(B) is the pull-back of D C T(B). It
is clear that Kerdf C Ch(f~'D).

3. Equivalence of cone structures

A well-known philosophy, going back to Klein’s Erlangen program, is that the
fundamental problem in any area of geometry is the study of invariant properties
under equivalence relations. Algebraic geometry is no exception. In classical
projective geometry, the most fundamental equivalence relation is the equivalence
of two subvarieties of projective space under a projective transformation, or more
generally, the equivalence of two families of subvarieties under a family of
projective transformations. One possible formulation of this equivalence relation
is the following.

Definition 3.1. Let U and U’ be a (connected) complex manifold. Let V" and
¥’ be vector bundles on U and U’, respectively, and let PV and PV be their
projectivizations, as sets of 1-dimensional subspaces in the fibers. Given (not
necessarily irreducible) subvarieties € C PV and €’ C P of pure dimension,
surjective over U and U’ respectively, we say that 6 and €’ are equivalent as
families of projective subvarieties if there exist a biholomorphic map ¢ : U — U’
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and a projective bundle isomorphism v : P — PV’ with a commuting diagram

pv L py
2 J

o
U — U

such that v (€¢) = €’. For a point x € U and a point x" € U’, we say that
the family 6 at x is locally equivalent to the family €’ at x’, if there exist a
neighborhood W C U of x and a neighborhood W’ C U’ of x’ such that the
restriction €|y C PV|w is equivalent to the restriction 6’|y C PV’ |y .

Suppose that V" and ¥ in Definition 3.1 are the tangent bundles 7' (U) and
T (U'). Then we have the following finer equivalence relation.

Definition 3.2. For a complex manifold U, a subvariety of pure dimension
€ C PT (U) which is surjective over the base U will be called a cone structure
on U. Here, we do not assume that 6 is irreducible. The fiber dimension of
the projection € — U, i.e., dim € — dim U, will be called the projective rank
of the cone structure. The rank of the cone structure is the projective rank of
the cone structure plus one. A cone structure ¢ C PT(U) on U and a cone
structure €' C PT (U’) on U’ are equivalent as cone structures if there exists a
biholomorphic map ¢ : U — U’ such that the projective bundle isomorphism
Y PT(U) — PT(U') induced by the differential dg : T(U) — T(U’) of ¢

prw) =% prw)

\ \
¢

u — U
satisfies ¥ (6) = €’. For a point x € U and a point x" € U’, we say that the
cone structure € at x is locally equivalent to the cone structure 6 at x’, if
there exist a neighborhood W C U of x and a neighborhood W’ C U’ such that
the restriction €|y C PT (W) is equivalent as cone structures to the restriction
@' |\w C PT(W).

Notice the essential difference between Definitions 3.1 and 3.2: the projective
bundle isomorphism 1/ is arbitrary in the former as long as it is compatible with
the map ¢ while v is completely determined by ¢ in the latter. Since ¥ comes
from the derivative of ¢ in Definition 3.2, the equivalence of cone structures has
features of differential geometry as well as algebraic geometry. Let us look at
two classical examples.

Example 3.3. A cone structure € C PT (U) where each fiber 6,, x € U, is a
linear subspace of PT(U) is equivalent to a distribution on U. The rank of the
distribution (as a subbundle of 7' (U)) is equal to the rank of the cone structure.
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Two such cone structures € C PT(U) and €’ C PT (U’) of the same projective
rank on complex manifolds U, U’ of the same dimension are always locally
equivalent as families of projective subvarieties. Their local equivalence as cone
structures is much more subtle. For example, an integrable distribution cannot
be locally equivalent to a non-integrable one.

Example 3.4. A cone structure € C PT (U) where each fiber €., x € U, is a
nonsingular quadric hypersurface of PT, (U) is called a conformal structure on
U. Locally, a conformal structure is determined by a nondegenerate holomorphic
symmetric bilinear form g : S>T(U) — Oy, i.e., a holomorphic Riemannian
metric, up to multiplication by nowhere-zero holomorphic functions. Two con-
formal structures 6 C PT(U) and ¢’ C PT(U’) on complex manifolds U and
U’ of the same dimension are always locally equivalent as families of projective
subvarieties. They are locally equivalent as cone structures if the associated
holomorphic Riemannian metrics are conformally isometric. The study of this
equivalence relation is the subject of conformal geometry, an active area of
research in differential geometry.

A more “modern” version of Definition 3.1 is the equivalence of families
of polarized projective varieties. Let us assume that the family is smooth for
simplicity. One possible formulation is as follows.

Definition 3.5. A polarized family f : M — U is just a smooth projective
morphism between two complex manifolds M and U with a line bundle L on M
which is f-ample. Here we assume that U is connected, M is of pure dimension,
but not necessarily connected. The line bundle L is called a polarization. Two
polarized families f : M — U with a polarization L and f': M’ — U’ with a
polarization L’ are equivalent as polarized families if there exist a biholomor-
phism ¢ : U — U’ and a biholomorphism v : M — M’ satisfying o f = f'oy
and L = y*L/.

In Definition 3.5, taking a sufficiently high power L®" to make it f-very-
ample, we get an embedding M — P(f,L®™)* whose image € is a family of
projective subvarieties. The equivalence in Definition 3.5 implies the equivalence
in the sense of Definition 3.1 for this family ‘¢ of projective subvarieties. The
more intrinsic formulation of Definition 3.5 is often more convenient than the
classical version in Definition 3.1. Analogously, sometimes it is convenient to
have a more intrinsic formulation of Definition 3.2 as follows.

Definition 3.6. Given a polarized family f : M — U with a polarization L, a
distribution $ C T (M) on M is called a precone structure if Kerdf C $ and the
quotient bundle ¢/ Kerdf is a line bundle isomorphic to the dual line bundle L*
of L. Two precone structures (f: M — U, L, $)and (f':M' — U', L', §') are
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equivalent if they are equivalent as polarized families in the sense of Definition 3.5
such that the differential dyr : T (M) — T (M’) sends the distribution § to §'.

The relation between Definition 3.2 and Definition 3.6 is given by the following
proposition, which is essentially [ Yamaguchi 1982, Lemma 1.5], attributed to N.
Tanaka.

Proposition 3.7. Given a precone structure, (f : M — U, L, $), define a mor-
phismt: M — PT(U) by

foreachoa e M, (o) :=df ($a),

called the tangent morphism. The image of T determines a cone structure
€ :=1(M) C PT(U). Moreover, when O(1) is the relative hyperplane bundle
on PT (U), the polarization L is isomorphic to T*0(1), implying that t is a finite
morphism over its image. The rank of this cone structure is equal to the rank of
the distribution $.

Note that although M — U in Definition 3.6 is assumed to be a smooth
morphism, the induced cone structure ¢ — U by the tangent morphism is not
necessarily smooth. This is one advantage of Definition 3.6, in the sense that
a cone structure coming from a precone structure has a hidden regularity. The
VMRT structure in the next section is such an example. It is easy to see that
when a cone structure € — U is smooth, it comes from a precone structure:

Proposition 3.8. Given a cone structure € C PT (U) such that the projection
f 6 — U is a smooth morphism, the distribution $ on € defined by

for each a € €, $o :=df; (@)

where & C T (U), x = f(a), is the 1-dimensional subspace corresponding to a,
is a precone structure on 6. The cone structure induced by this precone structure
via Proposition 3.7 agrees with the original cone structure ‘€ C PT (U).

4. Varieties of minimal rational tangents

Now we define the cone structure which is our main interest.

Definition 4.1. A rational curve C C X on a projective manifold X is free if under
the normalization v : P; — C, the vector bundle v*T (X) is nef. The normalized
space of free rational curves on X, to be denoted by FRC(X), is a smooth
scheme with countably many components, by [Kollar 1996, I1.3]. We have the
universal family Univ(X) with a P;-bundle structure Univ(X) — FRC(X) and
the evaluation morphism Univ(X) — X.

Note that FRC(X) # & if and only if X is a uniruled projective manifold.
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Definition 4.2. Let X be a uniruled projective manifold. An irreducible com-
ponent K of FRC(X) is called a minimal component if for the universal family
0:U— K and pu : U — X obtained by restricting Univ(X) to I, the morphism
w is generically projective, i.e., the fiber ¥, := pu~!(x) over a general point
x € X is projective. A member of ¥ is called a minimal free rational curve.

Proposition 4.3. For a minimal component I, there exists a Zariski open subset
X, C X such that

(i) each fiber w'(x), x € X,, is smooth;
(ii) Kerdu NKerdp = 0 at every point of u="(X,); and
(iii) the dual bundle L of the line bundle Ker dp C T (W) is p-ample on w N (X,).

In particular, the distribution $ := Ker du + Ker dp defines a precone structure
on the family -1 (x,) : w " (X,) = X, of smooth projective varieties with the
polarization L.

Proof. Part (i) is [Kolldr 1996, Corollary 11.3.11.5]. Parts (ii) and (iii) follow
from [Kebekus 2002, Theorem 3.4]. l

Definition 4.4. The cone structure € C PT(X,) associated to the precone
structure of Proposition 4.3 via Proposition 3.7 is called the family of varieties
of minimal rational tangents (in short, VMRT) of the minimal component ¥.
Its fiber €, at x € X, is called the variety of minimal rational tangents at x.
For each x € X,, the restriction 7, : ,u*l(x) — €, of the tangent morphism
T : w1 (X,) — % defined in Proposition 3.7 is called the tangent morphism at
X.

This cone structure, VMRT, is our main interest. Before going into the study
of VMRT in detail, let us give at least one reason why it is interesting to consider
the equivalence problem for such a cone structure. The following is the main
result of [Hwang and Mok 2001].

Theorem 4.5. Let X and X' be two Fano manifolds of Picard number 1. Let i
and I’ be minimal components on X and X', respectively, with associated VMRT
€ and 6'). Assume that the VMRT €, C PT,(X) at a general point x € X is not
a finite union of linear subspaces. Suppose € at some point x € X, is locally
equivalent as cone structures to €’ at some point x' € X|. Then X and X' are
biregular.

To be precise, in [Hwang and Mok 2001], Theorem 4.5 is proved under
the stronger assumption that €, C PT,(X) has generically finite Gauss map.
However, one can extend the argument to the above form by using results from
[Hwang and Mok 2004]. See [Mok 2008a, Theorem 9] for a discussion of this
extension.
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Theorem 4.5 is not just of theoretical interest. It is used to identify certain
Fano manifolds of Picard number 1 in a number of classical problems. See
[Hwang and Mok 1999], [Hwang 2001] and [Mok 2008a] for concrete examples.

The VMRT is an algebraic object defined as a quasi-projective variety in
PT (X). It is convenient to introduce a local version of this definition:

Definition 4.6. A cone structure ¢’ C PT(U) on a complex manifold U is a
VMRT structure if there exists a VMRT € C PT (X,) as in Definition 4.4 such
that €' — U is locally equivalent as cone structures to € — X, at every point
of U.

This is not a truly local definition. It is introduced merely for linguistic
convenience. A truly local definition of VMRT structure as a cone structure with
certain distinguished differential geometric properties is still lacking. One special
property is obvious: from the very definition, it is provided with a connection in
the following sense.

Definition 4.7. Let $ C T(M) be a precone structure on a polarized family
(f:M — U, L). A connection of the precone structure is a line subbundle
F C $ with an isomorphism F = L* splitting the exact sequence

0— Kerdf — $— L* — 0.

By abuse of terminology, we will also say that F' is a connection for the cone
structure € C PT (U) induced by the precone structure. When € = PT (U), a
connection is called a projective connection on U.

From the fact that the set of splittings of the exact sequence in Definition 4.7
is HY (M, Kerdf ® L), we have

Proposition 4.8. Given a precone structure on M — U, if the fiber M at some
x € U satisfies HO(M,, T(M,)® L) =0, then a connection is unique if it exists.

A VMRT structure is naturally equipped with a connection given by Ker dp
of Proposition 4.3. This connection has a distinguished property.

Definition 4.9. A connection F C $ in Definition 4.7 is a characteristic connec-
tion if F C Ch(d$) on an open subset of M.

The following result is in [Hwang and Mok 2004, Proposition 8].

Proposition 4.10. In Proposition 4.3, the distribution 3§ on u='(X,) is of the
form p~'D for some distribution D on K. In particular, the line subbundle
Kerdp is a characteristic connection of the precone structure.

The existence of the characteristic connection is a key property of VMRT
structure. Most of the algebraic geometric applications of the local differential
geometry of VMRT come from this property. There are other local differential
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geometric properties of VMRT. For example, the admissibility condition of
[Bernstein and Gindikin 2003] holds for minimal free rational curves, which
can be interpreted as a property of the cone structure. However, I feel that
the investigation of these additional properties is not yet mature enough to be
discussed here.

An important property of a characteristic connection is the relation with the
projective differential geometry of the fibers of the cone structure. Let us start
the discussion by recalling some definitions from projective geometry.

Definition 4.11. For each point v € PV, let 0 C V be the 1-dimensional subspace
corresponding to v. Let Z C PV be a projective subvariety and let 7 C V be the
affine cone of Z. Denote by Sm(Z) the smooth locus of Z. For each z € Sm(Z),
let YA”Z(Z) C V be the affine tangent space to Z at z, i.e., the affine cone of the
projective tangent space to Z at z:

T.(Z) = T, (Z) for any 7’ € 2\ {0}.

Let Gr(p, V) be the Grassmannian of p-dimensional subspaces of V. The Gauss
map of Z is the morphism y : Sm(Z) — Gr(dim Z, V), defined by y (z) :=T;(Z).
The second fundamental form at z € Sm(Z) is the derivative of the Gauss map
at 7 defined as the homomorphism

1.(Z): S*T.(Z) — T.(PV)/T.(Z).

The following is an immediate property of having a connection. It follows
essentially from [Hwang and Mok 2004, Proposition 1].

Proposition 4.12. Let (f : M — U, $) be a precone structure with a connection.
For a point « € M where the tangent morphism t : M — € C PT(U) in
Proposition 3.7 is immersive,

dfa(@F) = Te(@)(€2)
with x = f(«).

The following proposition is proved in [Hwang and Mok 2004, Proposition 2],
where a precise meaning of “describes the second fundamental form” is given.

Proposition 4.13. Let $ be a precone structure on f: M — U with characteristic
connection F. Then the Frobenius tensor of 0$ at a point « € M describes the
second fundamental form of the projective variety €, C PT,(U),x = f(x) at
the point T («), via Proposition 4.12. In particular, the second fundamental form
remains unchanged along a leaf of F C Ch(3$).

Proposition 4.13 gives a necessary condition for a polarized family to admit a
precone structure with characteristic connection.
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One reason the characteristic connection is important is its uniqueness under
a mild assumption. The following is in [Hwang and Mok 2004, Proposition 3].

Proposition 4.14. Let € C PT (U) be a cone structure associated to a precone
structure (M, $) such that a general fiber €, C PT(U) has generically finite
Gauss map. If (M, $) has a characteristic connection F, then F = Ch(0$) on
an open subset in M. In particular, a characteristic connection is unique if it
exists.

The condition that ‘€, C [PT, (U) has generically finite Gauss map holds as long
as %, is smooth and its components are not linear subspaces. The smoothness
of €, holds in most natural examples, as discussed below. The non-linearity
condition will be discussed in Section 7. One can say that the uniqueness of
characteristic connection holds in all essential cases.

Regarding the smoothness of VMRT, the following has been one of the most
tantalizing questions.

Problem 4.15. In Definition 4.4, is the tangent morphism t, at a general point
x an immersion? Is it an embedding?

The immersiveness of 7, at a point & € AU can be interpreted as a geometric
property of the rational curve p ().

Definition 4.16. A free rational curve C C X is standard if under the normal-
ization v : P; — C,

U*T(X) Z0R)e0()? @ odim X—p—1
where p is the nonnegative integer satisfying (—Kx)-C = p +2.

The following is a consequence of Mori’s bend-and-break argument and basic
deformation theory of rational curves (cf. [Hwang 2001, Proposition 1.4]).

Proposition 4.17. Given a minimal component ¥, a general member of X is a
standard rational curve. For such a standard rational curve, the integer p in
Definition 4.16 is the dimension of X, and is equal to the projective rank of the
VMRT. For a point x € X,, the tangent morphism t, is immersive at & € ¥, if
and only if p(a) € K corresponds to a standard rational curve.

Thus checking the immersiveness of t, is equivalent to showing that all
members of J{, are standard. Although many people believe that this is true for
a general point x, no plausible approach has been suggested up to now.

Toward the injectivity of 7, the best result so far is the following result of
[Hwang and Mok 2004].

Theorem 4.18. The tangent morphism t : =" (X,) — € is birational. Conse-
quently, T, is birational for a general point x.
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Another result on the injectivity is Proposition 7.7 discussed below, in the
particular case when the components of 6, are linear subspaces. There is also a
study of the injectivity of 7, in [Kebekus and Kovacs 2004], relating the problem
to the existence of certain singular rational curves.

As these discussions show, Problem 4.15 is quite difficult and its solution
will be very important in this subject. On the other hand, since it holds in all
concrete examples, sometimes it is OK to work under the assumption that it is
true. More precisely, it is meaningful to work with projective manifolds and
minimal components whose VMRT is smooth.

The uniqueness of the characteristic connection in Proposition 4.14 suggests
the following stronger uniqueness question.

Problem 4.19. Can a polarized family (f : € — U, L) have two distinct precone
structures inducing non-equivalent VMRT structures on U ?

We will see below an example where this is not unique, i.e., two VMRT’s with
the same underlying polarized family (Example 5.9). However, this example
is very special. It is likely that there are many examples of polarized families
for which uniqueness holds. Some cases will be discussed in Theorem 5.11 and
Theorem 5.12. One can also ask the following weaker question.

Problem 4.20. For a polarized family (f : ¢ — U, L), can there exist a positive
dimensional family of precone structures inducing locally non-equivalent VMRT
structures on U?

Problem 4.20 is closely related to the deformation of Fano manifolds of Picard
number 1 via Theorem 4.5.

5. Isotrivial VMRT

In this section, we will discuss a special class of cone structures, for which there
exists a good differential geometric tool to study the equivalence problem. Let
us start by recalling the relevant notion in differential geometry. Chapter VII of
[Sternberg 1983] is a good reference.

Definition 5.1. Fix a vector space V. For a complex manifold U of dimension
equal to dim V, its frame bundle Fr(U) is a GL(V)-principal fiber bundle with
the fiber at x € U defined by

Fr,(U) :=1Isom(V, T, (U))

the set of isomorphisms from V to 7y (U). Given an algebraic subgroup G C
GL(V), a G-structure on U means a G-principal subbundle ¢ C Fr(U). Two G-
structures 4 C Fr(U) and 9 C Fr(U’) are equivalent if there is a biholomorphic
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map ¢ : U — U’ whose differential ¢, : Fr(U) — Fr(U’) sends % to ¢'. The
local equivalence of G-structures is defined similarly.

As a trivial example:

Example 5.2. The tangent bundle 7' (V) of a vector space V is naturally isomor-
phic to V x V. The frame bundle Fr(V) is naturally isomorphic to GL(V) x V.
For any G C GL(V), we have a natural G-structure

GxVCGL(V)xV =Fr(V)

on the manifold V. This is called the flar G-structure on V. A G-structure % on a
manifold is said to be locally flat if it is locally equivalent to the flat G-structure.

Many classical geometric structures in differential geometry are G-structures
for various choices of G. For this reason, the equivalence problem for G-
structures has been studied extensively. For the following special class of cone
structures, the equivalence problem can be reduced to that of certain G-structures.

Definition 5.3. Let Z C PV be a projective subvariety. A cone structure 6 C
PT (U) is Z-isotrivial if the fiber €, C PT,(U) at each x € U is isomorphic to
ZCPv.

The simplest example is the following analog of Example 5.2.

Example 5.4. The projectivized tangent bundle P7 (V) of a vector space V is
naturally isomorphic to PV x V. For a given subvariety Z C PV, we have a
natural cone structure

ZxV CPV xV=PT(V)

on the manifold V. This will be called the Z-isotrivial flat cone structure on V.

The equivalence problem for isotrivial cone structures can be reduced to that
of G-structures.

Definition 5.5. When € C PT (U) is a Z-isotrivial cone structure, the subbundle
%9 C Fr(U) with the fiber at x defined by

G, = {h e Isom(V, T, (U)), h(Z) =%,)

is a G-structure with G = Aut(Z) C GL(V), the group of linear automorphisms
of Z C V. This is called the G-structure induced by the isotrivial cone structure.

For example, Example 5.2 is the G-structure induced by Example 5.4. It is
easy to see that two Z-isotrivial cone structures are locally equivalent as cone
structures if and only if the G-structures induced by them are locally equivalent.
Thus we can use the the theory of G-structures to study isotrivial cone structures.
However, this does not mean that the theory of isotrivial cone structures can
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be completely reduced to the theory of G-structures: it is a highly non-trivial
problem to translate conditions on an isotrivial cone structure into the language
of G-structures. The problem gets more serious when we consider isotrivial
VMRT structures.

Let us say that a VMRT for a uniruled manifold is Z-isotrivial if it is a Z-
isotrivial cone structure at a general point. The first question one can ask is
whether there is any restriction on the subvariety Z C PV for the existence of a
Z-isotrivial VMRT on a uniruled projective manifold. Problem 4.15 suggests
that Z C PV should be nonsingular. The next example shows that this is the
only necessary condition, if Z is irreducible.

Example 5.6. Let Z C P,_; C P, be a nonsingular irreducible projective variety
contained in a hyperplane. Let Xz — [P, be the blow-up of P, with center Z.
Let ¥z be the family of curves on Xz which are proper transforms of lines
in P" intersecting Z. Then ¥, determines a minimal component of Xz with
Z-isotrivial VMRT. In fact, the VMRT at a general point is locally equivalent to
Example 5.4.

The situation is quite different when Z is reducible. The construction of
Example 5.6 does not work, because J{z there would be reducible. In fact, the
following problem has not been studied.

Problem 5.7. Given a nonsingular variety Z C PV with more than one irre-
ducible component, does there exist a uniruled projective manifold X with
Z-isotrivial VMRT?

Going back to the irreducible case, the most basic question one can ask about
isotrivial VMRT is the following.

Problem 5.8. Let Z C PV be an irreducible nonsingular variety. Let X be
an n-dimensional uniruled projective manifold with Z-isotrivial VMRT. Is the
VMRT at a general point of X locally equivalent to that of Example 5.6?

Recall that Z C PV is degenerate if it is contained in a hyperplane of PV
and nondegenerate otherwise. When Z C PV is degenerate, there are many
examples where the answer is negative, as will be seen in Section 6. Even for a
nondegenerate Z C PV, the answer to Problem 5.8 is not always affirmative.

Example 5.9. Let W be a 2¢-dimensional complex vector space with a symplec-
tic form. Fix an integer k, 1 < k < £ and let S be the variety of all k-dimensional
isotropic subspaces of W. § is a uniruled homogeneous projective manifold.
There is a unique minimal component consisting of all lines on S under the
Pliicker embedding. The VMRT is Z-isotrivial where Z is the projectivization of
the vector bundle O(—1)*~2@0(—2) on P;_; embedded by the dual tautological
bundle of the projective bundle (cf. Proposition 3.2.1 of [Hwang and Mok 2005]).
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Let us denote it by Z C PV. There is a distinguished hypersurface R C Z
corresponding to PO(—1)2=2%, Let D be the linear span of R in V. This D
defines a distribution on $ which is not integrable (cf. Section 4 of [Hwang and
Mok 2005]). However, the corresponding distribution on Xz of Example 5.6 is
integrable. Thus VMRT of § cannot be locally equivalent to that of Example 5.6.

For Z in Example 5.9 or degenerate Z C P(V), the group Aut(z) Cgl(V)is
not reductive. Thus it is reasonable to refine Problem 5.8 to

Problem 5.10. Let Z C PV be an irreducible nonsingular subvariety such that
Aut(Z) C GL(V) is reductive. Let X be an n-dimensional projective manifold
with Z-isotrivial VMRT. Is the VMRT locally equivalent to that of Example 5.6?

What is nice about Problem 5.10 is that we have a classical differential
geometric tool to check local flatness. In fact, given a Z-isotrivial cone structure
€ C PT(U), we get an induced G-structure where G = Aut(Z ). The flatness of
a G-structure for a reductive group G can be checked by the vanishing of certain
curvature tensors (cf. [Hwang and Mok 1997]). Thus Problem 5.10 is reduced
to checking the vanishing of the curvature tensors using properties of VMRT
structures.

There are two classes of examples for which Problem 5.10 has been answered
in the affirmative. The first one are those covered by the next theorem of Mok
[2008Db].

Theorem 5.11. Let S be an n-dimensional irreducible Hermitian symmetric
space of compact type with a base point o € S. There exists a unique minimal
component on S. Let €, C PT,(S) be the VMRT at o. If the projective variety
Z C PV is isomorphic to €, C PT,(S), then Problem 5.10 has an affirmative
answer.

For example when S is the n-dimensional quadric hypersurface, Z C PV is just
an (n — 2)-dimensional non-singular quadric hypersurface. Then 6, C PT,(X)
in Problem 5.10 defines a conformal structure at the general point of X. In this
case, Theorem 5.11 says that this conformal structure is locally flat.

Let us recall Mok’s strategy for the proof of Theorem 5.11. The main point
is to show that the G-structure which is defined at the general point of X can
be extended to a G-structure in a neighborhood of a standard rational curve,
by exploiting Proposition 4.13 and the fact that Z C PV in Theorem 5.11 is
determined by the second fundamental form. Once this extension is obtained,
one can deduce the flatness by applying [Hwang and Mok 1997], which shows
the vanishing of the curvature tensor from global information of the tangent
bundle of X on the standard rational curve.
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It is very difficult to apply Mok’s approach to other Z C PV. Since the
projective variety Z C PV treated in Theorem 5.11 is the highest weight vari-
ety associated to an irreducible representation, one would hope that a similar
approach holds for the highest weight variety Z C PV associated to other
irreducible representation. However, this is not possible. In fact, [Hwang and
Mok 1997] shows that the only irreducible G-structure which can be extended to
a neighborhood of a standard rational curve is the one covered by Theorem 5.11.

The other class of examples for which an affirmative answer to Problem 5.10
is known belong to the opposite case when the projective automorphism group
of Z C PV is O-dimensional, i.e. when Aut(,(z) = C*. In this case, we cannot
use Mok’s approach, i.e., the G-structure with G = C* cannot be extended
to a neighborhood of a standard rational curve. One can see this as follows.
Suppose it is possible to extend the G-structure to a neighborhood U of a standard
rational curve. For simplicity, let us assume that the automorphism group of
Z C PV istrivial. In PT (U) we have a submanifold € C PT (U) with each fiber
€, C PT,(U) isomorphic to Z C PP,_; and since the automorphism group is
trivial, we get a unique trivialization of the projective bundle P7 (U). But on a
standard rational curve, T (U) splits into O(2) ® O(1)” @ 0"~ 1=7 for some p > 0,
a contradiction.

In this case, the flatness of the G-structure, or the vanishing of the correspond-
ing curvature tensors, must be proved only at general points. In other words,
it must come from the flatness of cone structures satisfying certain differential
geometric condition. In this direction, we have the following result from [Hwang
2010, Theorem 1.11].

Theorem 5.12. Assume that Z C PV satisfies the following conditions.

(1) Z is nonsingular and linearly normal, i.e., H*(Z,0(1)) = V*.

(2) The variety of tangent lines to Z, defined as a subvariety of Gr(2, V) C
P(A*V), is nondegenerate in P(A*V).

(3) HY(Z,T(Z) @ 0(1)) = H*(Z, ad(T(Z)) ® 0(1)) = 0 where ad(T(Z))
denotes the bundle of traceless endomorphisms of the tangent bundle of Z.

Then a Z-isotrivial cone structure with characteristic connection is locally
equivalent to that of Example 5.6.

Note that nondegeneracy and H(Z, T (Z)®0(1)) =0 imply that the projective
automorphism group of Z C PV is 0-dimensional.

Let us recall the strategy of the proof of Theorem 5.12 in [Hwang 2010]. Given
a Z-isotrivial cone structure 6 C P7T (U) with Aut[,(f ) = C*, we have a uniquely
determined trivialization 6 : PT(U) & PV x U with 6(€) = Z x U. Up to
multiplication by a scalar function, this means a trivialization 6 : T(U) =V x U,
9(%) = Z x U. Such a trivialization 6 determines an affine connection on U
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and consequently a projective connection on P7 (U). This projective connection
is tangent to € C PT(U) from the way 0 is chosen. In particular, it induces
a natural connection on the cone structure €. One difficulty is that there is no
reason why this natural connection on € agrees with the characteristic connection
on ¢ whose existence is assumed in Theorem 5.12. This difficulty is avoided
by the first condition in Theorem 5.12 (3) via Proposition 4.8. In particular, the
connection on 6 induced by 6 is a characteristic connection. This enables us to
relate the projective geometry of €, to the curvature tensors of the G-structure.
The rest of the conditions in Theorem 5.12 are used to derive the vanishing of
the curvature tensors via this relation.

The conditions of Theorem 5.12 are rather restrictive, although some examples
of Z C PV satisfying them are given in [Hwang 2010]. The main remaining
problem is how to weaken these conditions, by using more properties of VMRT-
structures, other than the existence of a characteristic connection.

Another interesting problem, in view of Theorem 5.12, is to prove a local
version of Theorem 5.11, namely, the local flatness of a Z-isotrivial cone structure,
for the same Z as in Theorem 5.11, with some additional differential geometric
conditions on the cone structure, which always holds for VMRT structures.

6. Distribution spanned by VMRT

When the fibers of a cone structure are degenerate, the cone structure defines a
non-trivial distribution as follows.

Definition 6.1. Let € C PT (U) be a cone structure. For each x € U, let D, C
T, (U) be the vector space spanned by the cone @,. Let U, C U be the open
subset where the dimension of D is constant. Then {D,, x € U,} determine a
distribution on U,, denoted by Dist(‘6) and called the distribution spanned by €.

When %6 admits a characteristic connection or a VMRT structure, Dist(‘€) has
a special feature. There is an intricate relation between the projective geometry
of the fibers €, C PT,(U) and the Frobenius tensor of Dist(‘€). The following
was first proved in [Hwang and Mok 1998, Proposition 10], when € is a VMRT
structure, by a more geometric argument using a family of standard rational
curves.

Theorem 6.2. Let M — U be a precone structure with a characteristic con-
nection and t : M — PT (U) be the tangent morphism in Proposition 3.7. Let
D :=Dist(6), 6=1(M), and let B : /\2D — T'(U)/ D be the Frobenius tensor of
D. For a general point x € U, any point « € M, and a tangent vector v € T, (M),
let a € D, be a vector belonging to t(x) C PT(U) and b € D, be a vector
proportional to the image of dt(v) € T (6,) in Ty (U). Then the Frobenius tensor
satisfies B(a Ab) = 0.
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Proof. Let m : M — U be the natural projection and $ be the distribution of the
precone structure. The distribution 7 ~!D on M contains the distribution 3§ by
Proposition 4.12. The vertical distribution Kerdx is in Ch(z~Y(D)). Let

§: N(x'D)— T(M)/n~'D
be the Frobenius tensor of 7 ~! D. Then for any wi, wp € (7~'D), C T, (M),
Bdr(w), dmr(w2)) = dm (§(wi, w2))
where dzr on the right-hand side refers to the natural map
T(M)/n~'D— T(U)/D

inducedby dn : T(M)— T(U). Foranyaca €T, (U)andb € f"a(céx) cT,(U),
we have their lifts w;, wy € (7' D), with dmw(w;) = a, dw(wy) = b such
that w; € F, where F is the characteristic connection and w, € (%), by
Proposition 4.12. By the definition of a characteristic connection, if A : /\2(8 $)—
T(€)/(0%) is the Frobenius tensor of ¢, then A(w;, wy) = 0. Since 9% is a
sub-distribution of 7! D, we have §| A2(ag) = A mod 7~'D. Tt follows that
8(wi, wy) = 0 and consequently, B(a, b) = 0. O

In other words, at a general point x € X, if H C /\sz denotes the linear span
of the points in P ND . corresponding to the bivectors given by the tangent lines
of 6, C PT,(U), then H is in the kernel of the Frobenius tensor of D = Dist(6).
This gives non-trivial information about the Frobenius tensor of the distribution
spanned by a VMRT structure. Are there more restrictions on the Frobenius
tensor enforced by a VMRT structure? This is a very interesting question to
study. More specifically, one can ask the following.

Problem 6.3. Given a nondegenerate nonsingular projective variety Z C PV,
let H C /\*V be the linear span of the variety of tangent lines to Z. Then does
there exist a uniruled manifold X with VMRT % C PT (X,) such that for a
general x € X, €, C PDist(), is isomorphic to Z C PV and the kernel of the
Frobenius tensor of Dist(6) is precisely H?

Problem 6.3 is trivial if H = /\2V. As was noticed in [Hwang and Mok 1999,
Proposition 1.3.2], this is the case if dim Z > % dim V — 1. Thus we may assume
that dim Z < % dim V — 1 in Problem 6.3. A special case of Problem 6.3 is when
Z C PV is the highest weight variety associated to an irreducible representation.
Even in this case, the answer is unknown in general. A known example is when
Z comes from the VMRT of the rational homogenous space G/ P associated
with a long simple root, as explained in [Hwang and Mok 2002, Proposition 5].
In this case, the condition that the Frobenius tensor is determined by H has to
do with the finiteness condition in Serre’s presentation of simple Lie algebras.
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Now let us turn our attention from Dist(‘€) to the foliation it generates, in the
sense explained in Section 2. When the cone structure is a VMRT on a uniruled
projective manifold, the leaves of this foliation have a strong algebraic property.
To explain this, we will give a general construction of a foliation of a uniruled
projective manifold by members of a component of FRC(X), the space of free
rational curves on X. Firstly, recall the following basic fact.

Proposition 6.4. Let X° be an irreducible quasi-projective variety. Suppose
that for each irreducible subvariety W C X°, we have associated a subvariety
Cw C X° with finitely many components such that each irreducible component
of Cw contains W and if W C W', then Cy C Cy. We say that an irreducible
subvariety W is saturated if Cyy = W. For each x € X°, define

Z, = the intersection of all saturated subvarieties through x.

Then the followings hold.

(1) Z, is irreducible and saturated.

(ii) Let Z° = {x} and let Z'T" be a component of Ci fori > 0. Then Z" = Z,
where n = dim X.

(iii) There exists a Zariski open subset X* C X° and a foliation on X* whose
leaves are algebraic such that the leaf through a very general point x € X*
is Zy N X*

Proof. For (i), it suffices to show that each component Y of Z, containing x is
saturated. Suppose that W is a saturated subvariety through x. Then ¥ C W,
hence Cy C Cw = W. It follows that Cy is contained in any saturated variety
through x, implying that ¥ C Cy C Z,. But each component of Cy contains
Y. Consequently, Cy =Y and Y is saturated, implying Z, = Y. For (ii), note
that if W is not saturated, then every component of Cy has dimension strictly
bigger than dim W. Thus Z" must be a saturated variety containing x, implying
Z, C Z"™. On the other hand, if W is any saturated variety through x, then
Z! ¢ C, C Cy = W. Thus we get inductively Z' € C, C Cy = W. It follows
that Z" C W for any saturated subvariety W through x, showing Z" C Z,. For
(iii), since the collection of subvarieties Z, cover X°, there must be a flat family
of subvarieties whose very general member is of the form Z, for some x € X°
and the members of the family cover a Zariski dense open subset in X°. To
show (iii), it suffices to see that for two Z, and Zy in this family, if y € Z, then
Z, = Z,. From the definition of Z,, we get Z, C Z,. Then we get equality by
flatness of the family. (I

Definition 6.5. Let I be a component of FRC(X). Let X° C X be a Zariski
open subset in the union of members of J. Given an irreducible subvariety
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W C X with WN X? # &, define

Cyw = closure of U C.
CeX,CNW £

Since the evaluation morphism for J{ is smooth, each component of Cy contains
W. If W’ is another irreducible subvariety of X with W C W', then Cy C Cy.
Thus we can apply Proposition 6.4 to get a foliation & on a Zariski open subset
X* C X such that for a very general x € X*, the leaf through x is Z, N X*. In
fact, we can choose X™* such that codim(X \ X*) > 2. This foliation F is called
the foliation generated by K.

The construction of the foliation generated by a minimal component X is purely
algebro-geometric. We want to relate it to a differential geometric construction.

Proposition 6.6. Let X be a uniruled projective manifold and ‘6 C PT (X) the
VMRT associated to a minimal component H. Then the foliation generated by
Dist(6) in the sense of Section 2 coincides, on a dense open subset of X, with
the foliation generated by ¥ in the sense of Definition 6.5. In particular, for the
normalization of a member v : P — X of I through a very general point x € X,
if f*T(X)= P & N is the decomposition into an ample vector bundle P and a
trivial vector bundle N on Py, then the fiber P, lies in the tangent space Ty (Zy).

Proof. Let F be the foliation generated by J{ and let %' be the foliation generated
by Dist(6). For a very general point x € X, the leaf of & corresponds to an open
subset in Z,. Let & be the leaf of ¥ through x. From the construction of Z,
in Proposition 6.4 (iii), the germ of Z, must be contained in &£. Thus & is a
foliation contained in %'. On the other hand, the tangent space to Z, at a general
point must contain all vectors tangent to members of J{,. This implies that ¥’ is
a foliation contained in %. We conclude that the two foliations coincide. The
second statement follows because P, must lie in Dist(6),. Il

To my knowledge, the next theorem has not appeared in print.

Theorem 6.7. Let & be the foliation defined in Proposition 6.6, extended to a
foliation on a maximal open subset of X and let & be a general leaf of F. Then
for a general point x € ¥, all members of X, lie in &. In particular, lffB is a
desingularization of &, then P is a uniruled projective manifold and there exists
a minimal component % with a natural identification ¥, = T for a general point
x € &. Consequently, the VMRT-structure € of X restricted £, i.e., € NPT (¥)
is equivalent to a VMRT-structure of the manifold &.

Proof. From the construction of the foliation generated by J{ in Definition 6.5,
there exists a rational map n : X — B surjective over a projective manifold B
such that the fiber of 5 through a very general point x € X corresponds to Z,.
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Let X C X x B be the graph of 5 with the birational morphism p; : X — X and
the morphism p; : X — B which is an elimination of the indeterminacy locus of
n.

We claim that the proper transforms of members of % to X, which intersect the
exceptional divisors of p; do not cover X. Suppose not. An exceptional divisor
E of p; is covered by curves which are contracted by p; but not contracted by p;.
Thus we get a 1-dimensional family {C; C X, t € A} of members of ¥ passing
through general points x; € C; with a common point y € NC; such that C; C Zj,
with Z,, # Z, fort #s e A. Let f; :[P; — C; be the normalization with f;(0) =y
and f;(00) = x, for two fixed points 0, 0o € Py. If o, € HO(Py, T (X)) is the
infinitesimal deformation of f;, then o,(0) = 0. By Proposition 6.6, we see that
o(o0) € Ty, (Zy,) for all t € A. But this is contradiction, because the deformation
C; moves out of Z, . This verifies the claim.

Since a general fiber of p; is smooth, the complement of the exceptional
divisors of p; in the general fiber of p; is sent into a general leaf & in X. By
the claim, all members of ¥, for a general point x € X lie on the leaf & through
x, completing the proof. U

The following is essentially [Hwang and Mok 1998, Proposition 13].

Proposition 6.8. Let X be a uniruled projective manifold of Picard number 1.
Then the distribution spanned by the VMRT of a minimal component is bracket-
generating.

Proof. Suppose it is not bracket-generating. Then in the proof of Theorem 6.7,
dim B > 0. Choose a hypersurface H C B to get the hypersurface pi(p, Y(H))
X. Let C be a general member of % whose proper transform in X is disjoint from
123 Y(H). By the proof of Theorem 6.7, the proper transform of C is disjoint
from the exceptional divisors of p;. It follows that C is disjoint from the divisor
12102% ! (H)) in X, a contradiction to the fact that all effective divisors on X are
ample. ([

Even when the Picard number of X is bigger than 1, Theorem 6.7 implies that
to study the VMRT-structure, it is necessary to study the VMRT-structure of the
desingularized leaf closure . This justifies that when studying VMRT, it makes
sense to assume that the distribution spanned by the cone is bracket-generating.

7. Linear VMRT

In this section, we will look at the case when the fiber 6, of a cone structure € C
PT (U) is a union of linear subspaces. To start with, we need some differential
geometric concepts.
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Definition 7.1. Recall that a connection on the full cone structure € = PT (U) is
called a projective connection on U . It is automatically a characteristic connection.
We say that a projective connection is locally flat if it is locally equivalent to the
one on P, induced by the family J of lines in P,, where n =dim U.

Definition 7.2. A web (of rank m) on a complex manifold U is a finite collection
{F1, ..., Fy} of foliations (of rank m) on U. A cone structure ¢ C PT (U) is
a linear cone structure if each fiber 6, is a union of linear subspaces. A web
defines a linear cone structure € :=PF;U--- UPF,.

Proposition 7.3. Let € C PT(U) be a linear cone structure. Shrinking U,
assume that € = € U --- UG, such that each 6; is just a distribution. If €
has a characteristic connection, then each 6; is integrable and 6 defines a web
structure. Moreover, each leaf of the web has a projective connection. Conversely,
a web with a projective connection on each leaf gives rise to a cone structure
with characteristic connection whose fibers are union of linear subspaces.

The only non-trivial part in Proposition 7.3 is the integrability of each distri-
bution ‘6; when there is a characteristic connection. This is a direct consequence
of Theorem 6.2.

Now when the cone structure is a VMRT structure, something special happens,
namely, the projective connection becomes locally flat. In fact, the following
general structure theorem is proved in [Araujo 2006, Theorem 3.1] and [Hwang
2007, Proposition 1].

Proposition 7.4. Let X be a uniruled manifold and € C PT (X,) be the VMRT
of a minimal component K. Assume that € is a linear cone structure. Then there
exists a normal variety X with a finite holomorphic map n: X — X and a dense
open subset X, of X equipped with a proper holomorphic map ¢ : X, — T
such that each fiber of ¢ is biregular to Py where k is the rank of the VMRT and
each member of ¥ for a general x € X is the image of a line in some fibers of
@. Moreover, for eacht € T, let P, := (¢~ '(t)) be a subvariety in X. Then
P, is an immersed submanifold with trivial normal bundle in X, p|y-1) is its
normalization, and for two distinct points t| # ty € T, the two subvarieties Py,
and Py, are distinct.

One may say that a linear VMRT defines a web structure whose “leaves” are
immersed projective spaces with trivial normal bundles. Proposition 6.8 has the
following consequence.

Proposition 7.5. In the situation of Proposition 7.4, assume that X has Picard
number 1. Then the morphism n has degree > 1.

The most interesting case of a linear VMRT is one with projective rank 0, i.e.,
when the VMRT at a general point is finite. In all known examples of linear
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VMRT on uniruled manifolds of Picard number 1, the VMRT turns out to be of
projective rank 0. This leads to the following question.

Problem 7.6. In the situation of Proposition 7.4, suppose the degree of w is
bigger than 1. Is dim €, = 0 at a general point x?

Regarding Problem 7.6, there is at least a restriction on dim 6. The following
was in [Hwang 2007, Proposition 2].

Proposition 7.7. In the case of Proposition 7.4, €, is smooth. In other words,
components of €, are disjoint from each other. In particular, if the degree of 1
is bigger than 1, then 2dim 6, <dim X — 2.

The geometric idea behind this result is as follows. From Proposition 7.4, in
an unramified cover of a neighborhood of PP;, we have a foliation with leaves
isomorphic to Py. If two different components of 6, intersect, then one of the
foliations defines in the leaf PP, of the other foliation a positive-dimensional
subvariety with trivial normal bundle, a contradiction to the ampleness of the
tangent bundle of Py.

When X is embedded in projective space such that members of K are lines,
one can go one step further from Proposition 7.7: Theorem 1.1 of [Novelli
and Occhetta 2011] excludes the case when 2 dim %, = dim X — 2 under this
assumption. Their argument seems difficult to generalize to arbitrary uniruled
projective manifolds.

In Theorem 4.5, the case of linear VMRT was excluded. When VMRT is
linear, a counterexample can be constructed.

Example 7.8. Note that when f : X — Y is a finite morphism between two
Fano manifolds and Y has a minimal component 3y with VMRT of projective
rank 0, i.e., the VMRT at a general point is finite, then the inverse images of
members of Hy under f form a minimal component Xx on X with VMRT of
projective rank 0. See, for example, [Hwang and Mok 2003, Proposition 6] for a
proof. Thus to get a counterexample to an analogue of Theorem 4.5 for VMRT
of projective rank 0, it suffices to provide a finite morphism f : X — Y between
two non-isomorphic Fano manifolds such that ¥ has VMRT of projective rank 0.
Such an example is given by [Schuhmann 1999, Example 1.1]. More precisely,
let Y C P4 be a cubic threefold. Let X| C [P5 be the cone over Y and X, C Ps5
be a quadric hypersurface such that the intersection X = X| N X, is a smooth
threefold in Ps. Then X is a Fano threefold of index 1 and projection from the
vertex of the cone X onto Y induces a finite morphism from X to Y.

It is natural to ask what partial result toward Theorem 4.5 holds when VMRT
is linear. We hope that the following has an affirmative answer.
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Problem 7.9. Let X be a uniruled projective manifold of Picard number 1 with
linear VMRT. Let ¢ : U — U’ be a biholomorphic map between two connected
open subsets in X such that dg sends €|y to €|y,. Does ¢ extend to a biregular
automorphism ¢ : X — X?

We point out that U and U’ in Problem 7.9 are open subsets in the classical
topology. In fact, if U and U’ are Zariski open and ¢ is birational, it is easy to
show that ¢ extends to a biregular morphism ¢, as explained in [Hwang and
Mok 2001, Proposition 4.4].

Problem 7.9 can be viewed as a generalization of the Liouville theorem in
conformal geometry (e.g., [Dubrovin et al. 1984, 15.2]) which says that for the
flat conformal model of dimension > 3 a local conformal transformation comes
from a global conformal transformation. There are only a few examples where
the answer to Problem 7.9 is known.

When X C P, is a smooth hypersurface of degree n and X is a family of
lines covering X, the VMRT has projective rank O (cf. [Hwang 2001, 1.4.2]). In
fact, the ideal defining these finite points in P7 (X) is given by the complete
intersection of homogeneous polynomials of degree 2, 3, ..., n. The quadric
polynomial corresponds to the second fundamental form of the hypersurface
X at x and the cubic polynomial corresponds to the Fubini cubic form in the
language of [Jensen and Musso 1994]. In particular, the second fundamental
form and the Fubini cubic form are determined by VMRT. Thus by the result of
[Jensen and Musso 1994] or [Sasaki 1988], we have an affirmative answer for
Problem 7.9 when X C P, is a hypersurface of degree n.

One can also ask the same question for the hypersurface X C P, of degree
n + 1. For ¥ consisting of conics covering X, then the VMRT has projective
rank 0. However, for this example, it is still unknown whether Problem 7.9 has
an affirmative answer.

Another example of Problem 7.9 is Mukai—-Umemura threefolds in [Mukai and
Umemura 1983]. Recall that these are Fano threefolds of Picard number 1, which
are quasi-homogeneous under the three-dimensional Lie group SL(3, C). In fact,
they are equivariant compactifications of SL(3, C)/O and SL(3, C)/I where O
and I denote the octahedral and icosahedral groups, respectively. The choice of
a Cartan subgroup of SL(3, C) determines a rational curve on X, whose orbits
under SL(3, C) give a minimal component X. The VMRT at a base point x € X
in the open orbit is given by the orbit of the Cartan subalgebra by the action of O
or I. Using this one can explicitly describe the web structure in a neighborhood
of x, from which one can check that Problem 7.9 has an affirmative answer.

There are many examples with VMRT of projective rank 0; see [Hwang and
Mok 2003]. For example, all Fano threefolds of Picard number 1, other than
P53 and the quadric threefold in P4, provide such examples. For most of these
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examples, Problem 7.9 is still open.

On the other hand, one may wonder whether a counterexample to Problem 7.9
can be constructed in a way analogous to Example 7.8. This is not the case. It is
related to the following well-known problem.

Problem 7.10. Let X be a Fano manifold of Picard number 1 different from
projective space. If f: X — X is a finite self-morphism, should f be bijective?

An affirmative answer is known for Problem 7.10 when X has linear VMRT.
This was proved when the projective rank is 0, by [Hwang and Mok 2003,
Corollary 3]. The proof for any projective rank, which also gives a simpler and
different proof for projective rank O case, is given in [Hwang and Nakayama
2011, Theorem 1.3].

8. Symmetries of cone structures

An important component of any equivalence problem is its symmetries, i.e., the
self-equivalence, or the automorphisms, of the geometric structure. In the study
of continuous symmetries, the investigation of the Lie algebra of the symmetry
group is an efficient method. In this section, we present the theory of the local
symmetries of the cone structure. More precisely, for a given cone structure
€ C PT(U), we want to understand the Lie algebra of germs of holomorphic
vector fields at a point x € U which preserve the cone structure in the following
sense.

Definition 8.1. Given a G-structure 4 C Fr(U) (resp. a cone structure € C
PT (U)), a holomorphic vector field o on U preserves the G-structure (resp.
cone structure) if the induced vector field 6 on Fr(U) (resp. on PT (U)) is
tangent to the subvariety 4 (resp. 6).

A convenient notion in studying symmetries of G-structures is the following.

Definition 8.2. Let V be a vector space. Let gl(V) be the Lie algebra of endo-
morphisms of V. Given a Lie subalgebra g C gl(V), its m-th prolongation is the
subspace g™ c Hom(S” 'V, V) consisting of multi-linear homomorphisms
o : "V — V such that for any fixed vy, ..., v, €V, the endomorphism

veViol,v,...,ou)€V

belongs to g.
Lemma 8.3. The following properties are immediate.
@ g” =g.
(i) If g™ = 0 for some m > 0, then g""+1 = 0.
(iii) Ifh C g C gl(V) is a Lie subalgebra, then h™ C g™ for each m > 0.
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This is related to the symmetries of G-structures as follows, which is explained
well in [ Yamaguchi 1993, Section 2.1].

Proposition 8.4. Let G C GL(V) be a connected algebraic subgroup and g C
gl(V) be its Lie algebra. Let § C ¥r(U) be a G-structure. For a point x € U, let
f be the Lie algebra of all germs of holomorphic vector fields at x which preserve
4. Let f* be the Lie subalgebra of f consisting of vector fields which vanish at x to
order > k+ 1 for some integer k > —1. For each k > 0, regard the quotient space
f/1*+1 as a subspace of Hom(S**'V, V) by taking the leading coefficients of
the Taylor expansion of the vector fields at x. Then

fk/fk+1 - g(k)
and equality holds for a locally flat G-structure.

In other words, the prolongations of g are the graded pieces of the Lie algebra
of infinitesimal symmetries of the G-structure. The prolongations of subalgebras
of gl(V) have been much studied in differential geometry. When g is reductive,
the theory of Lie algebras and their representations is particularly powerful and
one can use it to get a good understanding of the prolongations. A fundamental
result is the following result stated by E. Cartan [1909], with modern proofs in
[Kobayashi and Nagano 1965] and [Singer and Sternberg 1965].

Theorem 8.5. Let g C gl(V) be an irreducible representation of a Lie algebra g.
Then g» = 0 unless g = gl(V), sl(V), csp(V), or sp(V), where in the last two
cases V is an even-dimensional vector space provided with a symplectic form.

Now we want to modify these notions on G-structures to cone structures.

Definition 8.6. Let Z C PV be a projective subvariety and let aut(Z ) C gl(V)
be the Lie algebra of Aut(Z). In other words,

aut(Z) ={A € gl(V), for each smooth point z € Z, A(Z) C fZ(Z).}.

Let 6 be a Z-isotrivial cone structure. It is easy to see that a germ of a vector
field at a point of U preserves the cone structure if and only if it preserves
the induced G-structure. Thus to understand the infinitesimal symmetries of a
Z-isotrivial cone structure it suffices to understand the prolongations of aut(2).
This is true even for non-isotrivial cone structures:

Proposition 8.7. Let € C PT (U) be a smooth cone structure. For a point x € U,
let | be the Lie algebra of all germs of holomorphic vector fields at x which
preserve €. Let §* be the Lie subalgebra of  consisting of vector fields which
vanish at x to order > k + 1 for some integer k > —1. Let V = T, (U) and
Z C PV be the fiber of € at x. For each k > 0, regard the quotient space ¥ /{+1
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as a subspace of Hom(S*T1V, V) by taking the leading coefficients of the Taylor
expansion of the vector fields at x. Then

/41 c aut(Z)®.

This is checked in [Hwang and Mok 2005, Proposition 1.2.1]. The argument
is analogous to the case of G-structures, i.e., Proposition 8.4.

This gives the hope that the theory of G-structures provides an effective tool
to study the symmetries of cone structures. However, the classical theory of
G-structures is not very powerful in dealing with non-reductive groups and it is
more efficient to work with the cone structure directly in many cases. Technically,
one has to replace the use of Lie theory by projective geometry of the fibers of
the cone structure to investigate the symmetry. One example of this approach is
in [HMO5] Section 1. In particular, the following generalization of Theorem 8.5
is proved there.

Theorem 8.8. Let Z C PV be an irreducible nonsingular nondegenerate subva-
riety. Then aut(Z)® = 0 unless Z = PV.

The assumption of irreducibility and nondegeneracy in Theorem 8.8 is nec-
essary: just consider a linear subspace Z C PV. It is easy to check that
aut(2)™ = 0 for all m > 0. Since nonsingularity is also a reasonable condition
in view of Problem 4.15, Theorem 8.8 is a fairly satisfactory result.

Theorem 8.8 implies Theorem 8.5. In fact, let Z C PV be the highest weight
variety of g C gl(V) in Theorem 8.5 so that g C aut(Z). If g@ # 0, then
aut(2)® # 0 by Lemma 8.3. Since Z is nonsingular and nondegenerate, Z =PV
But it is well-known that an irreducible Lie subalgebra of gl(V') whose highest
weight variety is PV is one of the four listed in Theorem 8.5.

The proof of Theorem 8.8 is quite different from the old proofs of Theorem 8.5.
Since aut(Z) is a priori not reductive, Lie theory is not so helpful in the proof.
One has to replace Lie theory by projective geometry of Z C PV. The proof in
[Hwang and Mok 2005] involves a complicated induction, using the theory of
VMRT.

Theorem 8.8 implies, by Proposition 8.4, that the symmetry group of a cone
structure is finite dimensional if a fiber of € — U is irreducible, nonsingular and
nondegenerate with rank < dim U. In fact, the dimension of the group must be
bounded by

dim V 4 dim gl(V) 4+ dim gl(V)D.
It is natural to ask for the following extension of Theorem 8.8.

Problem 8.9. Classify all nonsingular linearly normal subvarieties Z C PV with
aut(Z)\M £ 0.
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The additional assumption of linear normality, i.e., H 0(z,0(1)) = V*, is
added to simplify the problem. Under this condition, Theorem 1.1.3 of [Hwang
and Mok 2005] says that

dimaut(Z2)"Y < dim V

and Z must be a quasi-homogeneous variety. When Z is a homogeneous variety,
we have the following classification result of [Kobayashi and Nagano 1964].

Theorem 8.10. Let Z C PV be the highest weight variety of an irreducible
representation. Then aut(2 YD £ 0 if and only if Z is the highest weight variety
of the isotropy representation of an irreducible Hermitian symmetric space of
compact type, i.e., Z C PV in Theorem 5.11.

There are non-homogeneous examples of Z C PV with aut(Z)™M # 0. See,
e.g., [Hwang and Mok 2005, Propositions 4.2.3 and 7.2.3]. Their automorphism
groups are not reductive, making it hard to approach Problem 8.9 by Lie theory.
It seems to require a good amount of classical projective algebraic geometry.

By Proposition 8.7, we can reformulate Theorem 8.8 in terms of symmetries
of cone structures:

Theorem 8.11. Let € C PT (U) be a cone structure with irreducible nonsingular
and nondegenerate fibers. Suppose there exists a nonzero element of % in the
notation of Proposition 8.7 which preserves the cone structure. Then € =PT (U).

When stated this way, further questions arise. It is very natural to replace
the nondegeneracy assumption of Theorem 8.11 by a bracket-generating condi-
tion. For example one can raise the following question, as a generalization of
Theorem 8.11.

Problem 8.12. Let € C PT (U) be a cone structure with irreducible nonsingular
fibers such that the distribution Dist(¢) spanned by € is bracket-generating.
Suppose there exists a nonzero element of § in the notation of Proposition 8.7.
What are the possible fibers of €?

There are serious difficulties in generalizing the method of the proof of Theo-
rem 8.11 in the direction of Problem 8.12. The differential geometric problem
of Theorem 8.11 has been reduced to purely projective geometric problem of
Theorem 8.8 by Proposition 8.7. So far, the differential geometric theory needed
to make such a reduction for Problem 8.12 has not been fully developed.

One may wonder why in this section we consider a general cone structure.
Maybe by restricting to the more special case of cone structures with characteristic
connection or VMRT-structures we can get better results? It is likely that such a
restriction gives a non-trivial improvement. This direction has not been pursued
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so far. I hope that a more refined theory can be developed by such an approach,
leading to a better formulation of Problems 8.9 and 8.12.
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