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Quotients by finite equivalence relations
JÁNOS KOLLÁR

APPENDIX BY CLAUDIU RAICU

We study the existence of geometric quotients by finite set-theoretic equiva-
lence relations. We show that such geometric quotients always exist in positive
characteristic but not in characteristic 0. The appendix gives some examples
of unexpected behavior for scheme-theoretic equivalence relations.

Let f : X → Y be a finite morphism of schemes. Given Y , one can easily
describe X by the coherent sheaf of algebras f∗OX . Here our main interest is
the converse. Given X , what kind of data do we need to construct Y ? For this
question, the surjectivity of f is indispensable.

The fiber product X ×Y X ⊂ X × X defines an equivalence relation on X ,
and one might hope to reconstruct Y as the quotient of X by this equivalence
relation. Our main interest is in the cases when f is not flat. A typical example
we have in mind is when Y is not normal and X is its normalization. In these
cases, the fiber product X ×Y X can be rather complicated. Even if Y and X are
pure-dimensional and CM, X×Y X can have irreducible components of different
dimension and its connected components need not be pure-dimensional. None
of these difficulties appear if f is flat [Raynaud 1967; SGA 3 1970] or if Y is
normal (Lemma 21).

Finite equivalence relations appear in moduli problems in two ways. First,
it is frequently easier to construct or to understand the normalization M̄ of
a moduli space M . Then one needs to construct M as a quotient of M̄ by a
finite equivalence relation. This method was used in [Kollár 1997] and finite
equivalence relations led to some unsolved problems in [Viehweg 1995, Section
9.5]; see also [Kollár 2011].

Second, in order to compactify moduli spaces of varieties, one usually needs
nonnormal objects. The methods of the minimal model program seem to apply
naturally to their normalizations. It is quite subtle to descend information from
the normalization to the nonnormal variety, see [Kollár 2012, Chapter 5].

In Sections 1, 2, 3 and 6 of this article we give many examples, review (and
correct) known results and pose some questions. New results concerning finite
equivalence relations are in Sections 4 and 5 and in the Appendix.
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1. Definition of equivalence relations

Definition 1 (equivalence relations). Let X be an S-scheme and σ : R→ X×S X
a morphism (or σ1, σ2 : R ⇒ X a pair of morphisms). We say that R is an
equivalence relation on X if, for every scheme T → S, we get a (set-theoretic)
equivalence relation

σ(T ) :MorS(T, R) ↪→MorS(T, X)×MorS(T, X).

Equivalently, the following conditions hold:

(1) σ is a monomorphism (Definition 31).

(2) (reflexive) R contains the diagonal 1X .

(3) (symmetric) There is an involution τR on R such that τX×X ◦ σ ◦ τR = σ ,
where τX×X denotes the involution which interchanges the two factors of
X ×S X .

(4) (transitive) For 1 ≤ i < j ≤ 3 set X i := X and let Ri j := R when it maps
to X i ×S X j . Then the coordinate projection of R12×X2 R23 to X1×S X3

factors through R13:

R12×X2 R23→ R13
π13
−→ X1×S X3.

We say that σ1, σ2 : R ⇒ X is a finite equivalence relation if the maps σ1, σ2

are finite. In this case, σ : R→ X ×S X is also finite, hence a closed embedding
(Definition 31).

Definition 2 (set-theoretic equivalence relations). Let X and R be reduced S-
schemes. We say that a morphism σ : R→ X×S X is a set-theoretic equivalence
relation on X if, for every geometric point Spec K → S, we get an equivalence
relation on K -points

σ(K ) :MorS(Spec K , R) ↪→MorS(Spec K , X)×MorS(Spec K , X).

Equivalently:

(1) σ is geometrically injective.

(2) (reflexive) R contains the diagonal 1X .

(3) (symmetric) There is an involution τR on R such that τX×X ◦ σ ◦ τR = σ ,
where τX×X denotes the involution which interchanges the two factors of
X ×S X .

(4) (transitive) For 1≤ i < j ≤ 3 set X i := X and let Ri j := R when it maps to
X i ×S X j . Then the coordinate projection of red(R12×X2 R23) to X1×S X3

factors through R13:

red(R12×X2 R23)→ R13
π13
−→ X1×S X3.
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Note that the fiber product need not be reduced, and taking the reduced structure
above is essential, as shown by Example 3.

It is sometimes convenient to consider finite morphisms p : R → X ×S X
such that the injection i : p(R) ↪→ X ×S X is a set-theoretic equivalence relation.
Such a p : R→ X ×S X is called a set-theoretic pre-equivalence relation.

Example 3. On X := C2 consider the Z/2-action (x, y) 7→ (−x,−y). This can
be given by a set-theoretic equivalence relation R ⊂ Xx1,y1 × Xx2,y2 defined by
the ideal

(x1−x2, y1−y2)∩(x1+x2, y1+y2)= (x2
1−x2

2 , y2
1−y2

2 , x1 y1−x2 y2, x1 y2−x2 y1)

in C[x1, y1, x2, y2]. We claim that this is not an equivalence relation. The problem
is transitivity. The defining ideal of R12×X2 R23 in C[x1, y1, x2, y2, x3, y3] is(

x2
1 − x2

2 , y2
1 − y2

2 , x1 y1− x2 y2, x1 y2− x2 y1,

x2
2 − x2

3 , y2
2 − y2

3 , x2 y2− x3 y3, x2 y3− x3 y2
)
.

This contains (x2
1− x2

3 , y2
1− y2

3 , x1 y1− x3 y3) but it does not contain x1 y3− x3 y1.
Thus there is no map R12×X2 R23→ R13. Note, however, that the problem is
easy to remedy. Let R∗ ⊂ X × X be defined by the ideal

(x2
1 − x2

2 , y2
1 − y2

2 , x1 y1− x2 y2)⊂ C[x1, y1, x2, y2].

We see that R∗ defines an equivalence relation. The difference between R and
R∗ is one embedded point at the origin.

Definition 4 (categorical and geometric quotients). Given two morphisms

σ1, σ2 : R ⇒ X,

there is at most one scheme q : X→ (X/R)cat such that q ◦ σ1 = q ◦ σ2 and q
is universal with this property. We call (X/R)cat the categorical quotient (or
coequalizer) of σ1, σ2 : R ⇒ X .

The categorical quotient is easy to construct in the affine case. Given σ1, σ2 :

R ⇒ X , the categorical quotient (X/R)cat is the spectrum of the S-algebra

ker
[
OX

σ ∗1−σ
∗

2
−→ OR

]
.

Let σ1, σ2 : R ⇒ X be a finite equivalence relation. We say that q : X→ Y is
a geometric quotient of X by R if

(1) q : X→ Y is the categorical quotient q : X→ (X/R)cat ,

(2) q : X→ Y is finite, and

(3) for every geometric point Spec K→ S, the fibers of qK : X K (K )→ YK (K )
are the σ

(
RK (K )

)
-equivalence classes of X K (K ).
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The geometric quotient is denoted by X/R.

The main example to keep in mind is the following, which easily follows from
Lemma 17 and the construction of (X/R)cat for affine schemes.

Example 5. Let f : X → Y be a finite and surjective morphism. Set R :=
red(X ×Y X) ⊂ X × X and let σi : R→ X denote the coordinate projections.
Then the geometric quotient X/R exists and X/R→ Y is a finite and universal
homeomorphism (Definition 32). Therefore, if X is the normalization of Y , then
X/R is the weak normalization of Y . (See [Kollár 1996, Section 7.2] for basic
results on seminormal and weakly normal schemes.)

By taking the reduced structure of X ×Y X above, we chose to focus on the
set-theoretic properties of Y . However, as Example 16 shows, even if X, Y and
X ×Y X are all reduced, X/R→ Y need not be an isomorphism. Thus X and
X ×Y X do not determine Y uniquely.

In Section 2 we give examples of finite, set-theoretic equivalence relations
R ⇒ X such that the categorical quotient (X/R)cat is non-Noetherian and there is
no geometric quotient. This can happen even when X is very nice, for instance a
smooth variety over C. Some elementary results about the existence of geometric
quotients are discussed in Section 3.

An inductive plan to construct geometric quotients is outlined in Section 4.
As an application, we prove in Section 5 the following:

Theorem 6. Let S be a Noetherian Fp-scheme and X an algebraic space which
is essentially of finite type over S. Let R ⇒ X be a finite, set-theoretic equivalence
relation. Then the geometric quotient X/R exists.

Remark 7. There are many algebraic spaces which are not of finite type and
such that the Frobenius map Fq

: X→ X (q) is finite. By a result of Kunz (see
[Matsumura 1980, p. 302]) such algebraic spaces are excellent. As the proof
shows, Theorem 6 remains valid for algebraic spaces satisfying this property.

In the Appendix, C. Raicu constructs finite scheme-theoretic equivalence
relations R on X = A2 (in any characteristic) such that the geometric quotient
X/R exists yet R is strictly smaller than the fiber product X ×X/R X . Closely
related examples are in [Venken 1971; Philippe 1973].

In characteristic zero, this leaves open the following:

Question 8. Let R ⊂ X × X be a scheme-theoretic equivalence relation such
that the coordinate projections R ⇒ X are finite.

Is there a geometric quotient X/R?

A special case of the quotient problem, called gluing or pinching, is discussed
in Section 6. This follows [Artin 1970], [Ferrand 2003] (which is based on an
unpublished manuscript from 1970) and [Raoult 1974].
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2. First examples

The next examples show that in many cases, the categorical quotient of a very
nice scheme X can be non-Noetherian. We start with a nonreduced example and
then we build it up to smooth ones.

Example 9. Let k be a field and consider k[x, ε], where ε2
= 0. Set

g1
(
a(x)+εb(x)

)
=a(x)+εb(x) and g2

(
a(x)+εb(x)

)
=a(x)+ε

(
b(x)+a′(x)

)
.

If char k = 0, the coequalizer is the spectrum of

ker
[
k[x, ε]

g1−g2
−→ k[x, ε]

]
= k+ εk[x].

Note that k+ εk[x] is not Noetherian and its only prime ideal is εk[x].
If char k = p then the coequalizer is the spectrum of the finitely generated

k-algebra

ker
[
k[x, ε]

g1−g2
−→ k[x, ε]

]
= k[x p

] + εk[x].

It is not surprising that set-theoretic equivalence relations behave badly on
nonreduced schemes. However, the above example is easy to realize on reduced
and even on smooth schemes.

Example 10. (Compare [Holmann 1963, p. 342].) Let pi : Z → Yi be finite
morphisms for i = 1, 2. We can construct out of them an equivalence relation
on Y1q Y2, where R is the union of the diagonal with two copies of Z , one of
which maps as

(p1, p2) : Z→ Y1× Y2 ⊂ (Y1q Y2)× (Y1q Y2),

the other its symmetric pair. The categorical quotient
(
(Y1q Y2)/R

)
cat is also

the universal push-out of Y1
p1
← Z

p2
→ Y2. If Z and the Yi are affine over S, then

it is the spectrum of the S-algebra

ker
[
OY1 +OY2

p∗1−p∗2
−→ OZ

]
.

For the first example let Y1 ∼= Y2 := Spec k[x, y2, y3
] and Z := Spec k[u, v]

with pi given by

p∗1 : (x, y2, y3) 7→ (u, v2, v3) and p∗2 : (x, y2, y3) 7→ (u+ v, v2, v3).

Since the p∗i are injective, the categorical quotient is the spectrum of the k-algebra
k[u, v2, v3

] ∩ k[u+ v, v2, v3
]. Note that

k[u, v2, v3
] =

{
f0(u)+

∑
i≥2 v

i fi (u) : fi ∈ k[u]
}
,

k[u+ v, v2, v3
] =

{
f0(u)+ v f ′0(u)+

∑
i≥2 v

i fi (u) : fi ∈ k[u]
}
.
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As in Example 9, if char k = 0 then the categorical quotient is the spectrum of
the non-Noetherian algebra k+

∑
n≥2 v

nk[u]. If char k = p then the geometric
quotient is given by the finitely generated k-algebra

k[u p
] +

∑
n≥2

vnk[u].

This example can be embedded into a set-theoretic equivalence relation on a
smooth variety.

Example 11. Let Y1 ∼= Y2 := A3
xyz , Z := A2

uv and

p∗1 : (x1, y1, z1) 7→ (u, v2, v3) and p∗2 : (x2, y2, z2) 7→ (u+ v, v2, v3).

By the previous computations, in characteristic zero the categorical quotient is
given by

k+ (y1, z1)+ (y2, z2)⊂ k[x1, y1, z1] + k[x2, y2, z2],

where (yi , zi ) denotes the ideal (yi , zi )⊂ k[xi , yi , zi ]. A minimal generating set
is given by

y1xm
1 , z1xm

1 , y2xm
2 , z2xm

2 : m = 0, 1, 2, . . .

In positive characteristic the categorical quotient is given by

k[x p
1 , x p

2 ] + (y1, z1)+ (y2, z2)⊂ k[x1, y1, z1] + k[x2, y2, z2].

A minimal generating set is given by

x p
1 , x p

2 , y1xm
1 , z1xm

1 , y2xm
2 , z2xm

2 : m = 0, 1, . . . , p− 1.

Example 12. The following example, based on [Nagata 1969], shows that even
for rings of invariants of finite group actions some finiteness assumption on X is
necessary in order to obtain geometric quotients.

Let k be a field of characteristic p > 0 and K := k(x1, x2, . . . ), where the xi

are algebraically independent over k. Let

D :=
∑

i

xi+1
∂

∂xi
be a derivation of K .

Let F := { f ∈ K | D( f )= 0} be the subfield of “constants”. Set

R = K + εK where ε2
= 0 and σ : f + εg 7→ f + ε(g+ D( f )).

R is a local Artin ring. It is easy to check that σ is an automorphism of R of
order p. The fixed ring is Rσ = F + εK . Its maximal ideal is m := (εK ) and
generating sets of m correspond to F-vector space bases of K . Next we show
the xi are linearly independent over F , which implies that Rσ is not Noetherian.
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Assume that we have a relation∑
i≤n

fi xi = 0.

We may assume that fn = 1 and fi ∈ F ∩ k(x1, . . . , xr ) for some r . Apply D to
get that

0=
∑
i≤n

fi D(xi )=
∑
i≤n

fi xi+1.

Repeating s times gives that
∑
i≤n

fi xi+s = 0 or, equivalently,

xn+s =−
∑

i≤n−1

fi xi+s .

This is impossible if n+ s > r ; a contradiction.
It is easy to see that R is not a submodule of any finitely generated Rσ -module.

Example 13. This example of [Nagarajan 1968] gives a 2-dimensional regular
local ring R and an automorphism of order 2 such that the ring of invariants is
not Noetherian.

Let k be a field of characteristic 2 and K := k(x1, y1, x2, y2, . . . ), where the
xi , yi are algebraically independent over k. Let R := K [[u, v]] be the power
series ring in 2 variables. Note that R is a 2-dimensional regular local ring, but
it is not essentially of finite type over k. Define a derivation of K to R by

DK :=
∑

i

v(xi+1u+ yi+1v)
∂

∂xi
+ u(xi+1u+ yi+1v)

∂

∂yi
.

This extends to a derivation of R to R by setting

DR|K = DK and DR(u)= DR(v)= 0.

Note that DR ◦ DR = 0, thus σ : r 7→ r + DR(r) is an order 2 automorphism of
R. We claim that the ring of invariants Rσ is not Noetherian.

To see this, note first that xi u+ yiv ∈ Rσ for every i .

Claim. For every n, xn+1u+ yn+1v 6∈
(
x1u+ y1v, . . . , xnu+ ynv

)
Rσ .

Proof. Assume the contrary and write

xn+1u+ yn+1v =
∑
i≤n

ri (xi u+ yiv), where ri ∈ Rσ .

Working modulo (u, v)2 and gathering the terms involving u, we get an equality

xn+1 ≡
∑
i≤n

ri xi mod Rσ ∩ (u, v)R.
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Applying DR and again gathering the terms involving u we obtain

xn+2 ≡
∑
i≤n

ri xi+1 modulo Rσ ∩ (u, v)R.

Repeating this s times gives

xn+s+1 =
∑
i≤n

r̄i xi+s, where r̄i ∈ K .

Since the r̄i involve only finitely many variables, we get a contradiction for
large s. Thus

(x1u+ y1v)⊂ (x1u+ y1v, x2u+ y2v)

⊂ (x1u+ y1v, x2u+ y2v, x3u+ y3v)⊂ · · ·

is an infinite increasing sequence of ideals in Rσ . �

The next examples show that, if S is a smooth projective surface, then a
geometric quotient S/R can be nonprojective (but proper) and if X is a smooth
proper 3-fold, X/R can be an algebraic space which is not a scheme.

Example 14. 1. Let C, D be smooth projective curves and S the blow up of
C × D at a point (c, d). Let C1 ⊂ S be the birational transform of C × {d},
C2 := C ×{d ′} for some d ′ 6= d and P1 ∼= E ⊂ S the exceptional curve.

Fix an isomorphism σ : C1 ∼= C2. This generates an equivalence relation
R which is the identity on S \ (C1 ∪C2). As we will see in Proposition 33,
S/R is a surface of finite type. Note however that the image of E in S/R
is numerically equivalent to 0, thus S/R is not quasiprojective. Indeed, let
M be any line bundle on S/R. Then π∗M is a line bundle on S such that
(C1 ·π

∗M)= (C2 ·π
∗M). Since C2 is numerically equivalent to C1+ E , this

implies that (E ·π∗M)= 0.

2. Take S ∼= P2 and Z := (x(y2
− xz) = 0). Fix an isomorphism of the line

(x = 0) and the conic (y2
− xz = 0) which is the identity on their intersection.

As before, this generates an equivalence relation R which is the identity on
their complement. By Proposition 33, P2/R exists as a scheme but it is not
projective.

Indeed, if M is a line bundle on P2/R then π∗M is a line bundle on P2

whose degree on a line is the same as its degree on a conic. Thus π∗M ∼= OP2

and so M is not ample.

3. Let S = S1 q S2 ∼= P2
× {1, 2} be 2 copies of P2. Let E ⊂ P2 be a smooth

cubic. For a point p ∈ E , let σp : E×{1}→ E×{2} be the identity composed
with translation by p ∈ E . As before, this generates an equivalence relation R
which is the identity on their complement.
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Let M be a line bundle on S/R. Then π∗M |Si
∼= OP2(mi ) for some mi > 0,

and we conclude that

OP2(m1)|E ∼= τ ∗p
(
OP2(m2)|E

)
.

This holds if and only if m1 =m2 and p ∈ E is a 3m1-torsion point. Thus the
projectivity of S/R depends very subtly on the gluing map σp.

Example 15. Hironaka’s example in [Hartshorne 1977, B.3.4.1] gives a smooth,
proper threefold X and two curves P1 ∼= C1 ∼= C2 ⊂ X such that C1 + C2 is
homologous to 0. Let g : C1 ∼= C2 be an isomorphism and R the corresponding
equivalence relation.

We claim that there is no quasiprojective open subset U ⊂ X which intersects
both C1 and C2. Assume to the contrary that U is such. Then there is an ample
divisor HU ⊂ U which intersects both curves but does not contain either. Its
closure H ⊂ X is a Cartier divisor which intersects both curves but does not
contain either. Thus H · (C1+C2) > 0, a contradiction.

This shows that if p ∈ X/R is on the image of Ci then p does not have any
affine open neighborhood since the preimage of an affine set by a finite morphism
is again affine. Thus X/R is not a scheme.

Example 16. [Lipman 1975] Fix a field k and let a1, . . . , an ∈ k be different
elements. Set

A := k[x, y]/
∏
i
(x − ai y).

Then Y := Spec A is n lines through the origin. Let f : X→ Y its normalization.
Thus X =qi Spec k[x, y]/(x − ai y). Note that

k[x, y]/(x − ai y)⊗A k[x, y]/(x − a j y)=
{

k[x, y]/(x − ai y) if ai = a j ,
k if ai 6= a j .

Thus X ×Y X is reduced. It is the union of the diagonal 1X and of f −1(0, 0)×
f −1(0, 0). Thus X/

(
X ×Y X

)
is a seminormal scheme which is isomorphic to

the n coordinate axes in An . For n ≥ 3, it is not isomorphic to Y .
One can also get similar examples where Y is integral. Indeed, let Y ⊂ A2

be any plane curve whose only singularities are ordinary multiple points and let
f : X→ Y be its normalization. By the above computations, X ×Y X is reduced
and X/

(
X ×Y X

)
is the seminormalization of Y .

If Y is a reduced scheme with normalization Ȳ → Y , then, as we see in
Lemma 17, the geometric quotient Ȳ/

(
Ȳ ×Y Ȳ

)
exists. It coincides with the

strict closure considered in [Lipman 1971]. The curve case was introduced in
[Arf 1948].

The related Lipschitz closure is studied in [Pham 1971] and [Lipman 1975].
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3. Basic results

In this section we prove some basic existence results for geometric quotients.

Lemma 17. Let S be a Noetherian scheme. Assume that X is finite over S and
let p1, p2 : R ⇒ X be a finite, set-theoretic equivalence relation over S. Then
the geometric quotient X/R exists.

Proof. Since X → S is affine, the categorical quotient is the spectrum of the
OS-algebra

ker
[
OX

p∗1−p∗2
−→ OR

]
.

This kernel is a submodule of the finite OS-algebra OX , hence itself a finite OS-
algebra. The only question is about the geometric fibers of X→ (X/R)cat . Pick
any s ∈ S. Taking the kernel commutes with flat base scheme extensions. Thus we
may assume that S is complete, local with closed point s and algebraically closed
residue field k(s). We need to show that the reduced fiber of (X/R)cat

→ S over
s is naturally isomorphic to red Xs/ red Rs .

If U → S is any finite map then Ored Us is a sum of m(U ) copies of k(s) for
some m(U ) <∞. U has m(U ) connected components {Ui : i = 1, . . . ,m(U )}
and each Ui → S is finite. Thus U → S uniquely factors as

U
g
→qm(U )S→ S such that gs : red Us

∼=
−→qm(U ) Spec k(s)

is an isomorphism, where qm S denotes the disjoint union of m copies of S.
Applying this to X→ S and R→ S, we obtain a commutative diagram

R
p1,p2

⇒ X
↓ ↓

qm(R)S
p1(s),p2(s)

⇒ qm(X)S.

Passing to global sections we get

OX
p∗1−p∗2
−→ OR

↑ ↑

Om(X)
S

p∗1(s)−p∗2(s)
−→ Om(R)

S .

The kernel of p∗1(s)− p∗2(s) is m := |Xs/Rs | copies of OS , hence we obtain a
factorization

(X/R)cat
→qm S→ S such that red(X/R)cat

s →qm Spec k(s)

is an isomorphism. �

For later reference, we record the following straightforward consequence.
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Corollary 18. Let R ⇒ X be a finite, set-theoretic equivalence relation such that
X/R exists. Let Z ⊂ X be a closed R-invariant subscheme. Then Z/R|Z exists
and Z/R|Z → X/R is a finite and universal homeomorphism (Definition 32)
onto its image. �

Example 19. Even in nice situations, Z/R|Z → X/R need not be a closed
embedding, as shown by the following examples.

(19.1) Set X :=A2
xyqA2

uv and let R be the equivalence relation that identifies
the x-axis with the u-axis.

Let Z = (y = x2)q (v = u2). In Z/R|Z the two components intersect at a
node, but the image of Z in X/R has a tacnode.

In this example the problem is clearly caused by ignoring the scheme structure
of R|Z . As the next example shows, similar phenomena happen even if R|Z is
reduced.

(19.2) Set Y := (xyz = 0) ⊂ A3. Let X be the normalization of Y and
R := X ×Y X . Set W := (x + y + z = 0) ⊂ Y and let Z ⊂ X be the preimage
of W . As computed in Example 16, R and R|Z are both reduced, Z/R|Z is the
seminormalization of W and Z/R|Z →W is not an isomorphism.

Remark 20. The following putative counterexample to Lemma 17 is proposed
in [Białynicki-Birula 2004, 6.2]. Consider the diagram

Spec k[x, y]
p1
−→ Spec k[x, y2, y3

]

p2 ↓ ↓ q2

Spec k[x + y, x + x2, y2, y3
]

q1
−→ Spec k[x + x2, xy2, xy3, y2, y3

]

(20.1)

It is easy to see that the pi are homeomorphisms but q2 p1 = q1 p2 maps (0, 0)
and (−1, 0) to the same point. If (20.1) were a universal push-out, one would get
a counterexample to Lemma 17. However, it is not a universal push-out. Indeed,

1
3(x + y)3+ 1

2(x + y)2 =
( 1

3 x3
+

1
2 x2)
+ (x2

+ x)y + xy2
+

1
2 y2
+

1
3 y3

=−
( 2

3 x3
+

1
2 x2)
+ (x2

+ x)(x + y)+ xy2
+

1
2 y2
+

1
3 y3

shows that 2
3 x3
+

1
2 x2 is also in the intersection

k[x, y2, y3
] ∩ k[x + y, x + x2, y2, y3

].

Another case where X/R is easy to obtain is the following.

Lemma 21. Let p1, p2 : R ⇒ X be a finite, set-theoretic equivalence relation
where X is normal, Noetherian and X, R are both pure-dimensional. Assume

(1) X is defined over a field of characteristic 0, or

(2) X is essentially of finite type over S, or
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(3) X is defined over a field of characteristic p > 0 and the Frobenius map
F p
: X→ X (p) of §34 is finite.

Then the geometric quotient X/R exists as an algebraic space. X/R is normal,
Noetherian and essentially of finite type over S in case (2).

Proof. Thus Ux/Gx exists and it is easy to see that the Ux/Gx give étale charts
for X/G.

In the general case, it is enough to construct the quotient when X is irreducible.
Let m be the separable degree of the projections σi : R→ X .

Consider the m-fold product X × · · ·× X with coordinate projections πi . Let
Ri j (resp. 1i j ) denote the preimage of R (resp. of the diagonal) under (πi , π j ).
A geometric point of

⋂
i j Ri j is a sequence of geometric points (x1, . . . , xm)

such that any 2 are R-equivalent and a geometric point of
⋂

i j Ri j \ ∪i j1i j

is a sequence (x1, . . . , xm) that constitutes a whole R-equivalence class. Let
X ′ be the normalization of the closure of

⋂
i j Ri j \ ∪i j1i j . Note that every

π` :
⋂

i j Ri j → X is finite, hence the projections π ′` : X
′
→ X are finite.

The symmetric group Sm acts on X × · · ·× X by permuting the factors and
this lifts to an Sm-action on X ′. Over a dense open subset of X , the Sm-orbits on
the geometric points of X ′ are exactly the R-equivalence classes.

Let X∗ ⊂ X ′/Sm × X be the image of X ′ under the diagonal map.
By construction, X∗→ X is finite and one-to-one on geometric points over an

open set. Since X is normal, X∗ ∼= X in characteristic 0 and X∗→ X is purely
inseparable in positive characteristic.

In characteristic 0, we thus have a morphism X→ X ′/Sm whose geometric
fibers are exactly the R-equivalence classes. Thus X ′/Sm = X/R.

Essentially the same works in positive characteristic, see Section 5 for details.
�

Lemma 22. Let p1, p2 : R ⇒ X be a finite, set-theoretic equivalence relation
such that (X/R)cat exists.

(1) If X is normal and X, R are pure-dimensional then (X/R)cat is also normal.

(2) If X is seminormal then (X/R)cat is also seminormal.

Proof. In the first case, let Z → (X/R)cat be a finite morphism which is an
isomorphism at all generic points of (X/R)cat . Since X is normal, π : X →
(X/R)cat lifts to πZ : X → Z . By assumption, πZ ◦ p1 equals πZ ◦ p2 at all
generic points of R and R is reduced. Thus πZ ◦ p1 = πZ ◦ p2. The universal
property of categorical quotients gives (X/R)cat

→ Z , hence Z = (X/R)cat and
(X/R)cat is normal.

In the second case, let Z→ (X/R)cat be a finite morphism which is a universal
homeomorphism; see 32. As before, we get liftings πZ ◦ p1, πZ ◦ p2 : R ⇒
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X → Z which agree on closed points. Since R is reduced, we conclude that
πZ ◦ p1 = πZ ◦ p2, thus (X/R)cat is seminormal. �

The following result goes back at least to E. Noether.

Proposition 23. Let A be a Noetherian ring, R a Noetherian A-algebra and G
a finite group of A-automorphisms of R. Let RG

⊂ R denote the subalgebra of
G-invariant elements. Assume that

(1) |G| is invertible in A, or

(2) R is essentially of finite type over A, or

(3) R is finite over A[R p
] for every prime p that divides |G|.

Then RG is Noetherian and R is finite over RG .

Proof. Assume first that R is a localization of a finitely generated A algebra
A[r1, . . . , rm] ⊂ R. We may assume that G permutes the r j . Let σi j denote the
j th elementary symmetric polynomial of the {g(ri ) : g ∈ G}. Then

A[σi j ] ⊂ A[r1, . . . , rm]
G
⊂ RG

and, with n := |G|, each ri satisfies the equation

rn
i − σi1rn−1

i + σi2rn−2
i −+ · · · = 0.

Thus A[r1, . . . , rm] is integral over A[σi j ], and therefore also over the larger ring
A[r1, . . . , rm]

G .
By assumption R = U−1 A[r1, . . . , rm], where U is a subgroup of units in

A[r1, . . . , rm]. We may assume that U is G-invariant. If r/u ∈ R, where r ∈
A[r1, . . . , rm] and u a unit in A[r1, . . . , rm], then

r
u
=

r
∏

g 6=1 g(u)

u
∏

g 6=1 g(u)
,

where the product is over the nonidentity elements of G. Thus r/u= r ′/u′, where
r ′ ∈ A[r1, . . . , rm] and u′ is a G-invariant unit in A[r1, . . . , rm]. Therefore,

R = (U G)−1 A[r1, . . . , rm] is finite over (U G)−1 A[σi j ].

Since RG is an (U G)−1A[σi j]-submodule of R, it is also finite over (U G)−1A[σi j],
hence the localization of a finitely generated algebra.

Assume next that |G| is invertible in A. We claim that J R ∩ RG
= J for any

ideal J ⊂ RG . Indeed, if ai ∈ RG , ri ∈ R and
∑

ri ai ∈ RG then

|G| ·
∑

i

ri ai =
∑
g∈G

∑
i

g(ri )g(ai )=
∑

i

ai

∑
g∈G

g(ri ) ∈
∑

i

ai RG .
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If |G| is invertible, this gives

RG
∩

∑
ai R =

∑
ai RG .

Thus the map J 7→ J R from the ideals of RG to the ideals of R is an injection
which preserves inclusions. Therefore RG is Noetherian if R is.

If R is an integral domain, then R is finite over RG by Lemma 24. The general
case, which we do not use, is left to the reader.

The arguments in case (3) are quite involved; see [Fogarty 1980]. �

Lemma 24. Let R be an integral domain and G a finite group of automorphisms
of R. Then R is contained in a finite RG-module. Thus, if RG is Noetherian, then
R is finite over RG .

Proof. Let K ⊃ R and K G
⊃ RG denote the quotient fields. K/K G is a Galois

extension with group G. Pick r1, . . . , rn ∈ R that form a K G-basis of K . Then
any r ∈ R can be written as

r =
∑

i

airi , where ai ∈ K G .

Applying any g ∈ G to it, we get a system of equations∑
i

g(ri )ai = g(r) for g ∈ G.

We can view these as linear equations with unknowns ai . The system determinant
is D := deti,g

(
g(ri )

)
, which is nonzero since its square is the discriminant of

K/K G . The value of D is G-invariant up to sign; thus D2 is G-invariant hence
in RG . By Kramer’s rule, ai ∈ D−2 RG , hence R ⊂ D−2∑

i ri RG . �

In the opposite case, when the equivalence relation is nontrivial only on a
proper subscheme, we have the following general result.

Proposition 25. Let X be a reduced scheme, Z ⊂ X a closed, reduced subscheme
and R ⇒ X a finite, set-theoretic equivalence relation. Assume that R is the
identity on R \ Z and that the geometric quotient Z/R|Z exists. Then X/R exists
and is given by the universal push-out diagram

Z ↪→ X
↓ ↓

Z/R|Z ↪→ X/R.

Proof. Let Y denote the universal push-out (Theorem 38). Then X→ Y is finite
and so X/R exists and we have a natural map X/R→ Y by Lemma 17. On the
other hand, there is a natural map Z/R|Z → X/R by Corollary 18, hence the
universal property of the push-out gives the inverse Y → X/R. �
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4. Inductive plan for constructing quotients

Definition 26. Let R ⇒ X be a finite, set-theoretic equivalence relation and
g : Y → X a finite morphism. Then

g∗R := R×(X×X) (Y × Y )⇒ Y

defines a finite, set-theoretic equivalence relation on Y . It is called the pull-back
of R ⇒ X . (Strictly speaking, it should be denoted by (g× g)∗R.)

Note that the g∗R-equivalence classes on the geometric points of Y map
injectively to the R-equivalence classes on the geometric points of X .

If X/R exists then, by Lemma 17, Y/g∗R also exists and the natural morphism
Y/g∗R→ X/R is injective on geometric points. If, in addition, g is surjective
then Y/g∗R→ X/R is a finite and universal homeomorphism; see Definition 32.
Thus, if X is seminormal and the characteristic is 0, then Y/g∗R ∼= X/R.

Let h : X→ Z be a finite morphism. If the geometric fibers of h are subsets
of R-equivalence classes, then the composite R ⇒ X → Z defines a finite,
set-theoretic pre-equivalence relation

h∗R := (h× h)(R)⊂ Z × Z ,

called the push forward of R ⇒ X . If Z/R exists, then, by Lemma 17, X/R
also exists and the natural morphism X/R → Z/R is a finite and universal
homeomorphism.

Lemma 27. Let X be weakly normal, excellent and R ⇒ X a finite, set-theoretic
equivalence relation. Let π : Xn

→ X be the normalization and Rn ⇒ Xn the
pull back of R to Xn . If Xn/Rn exists then X/R also exists and X/R = Xn/Rn .

Proof. Let X∗⊂ (Xn/Rn)×S X be the image of Xn under the diagonal morphism.
Since Xn

→ X is a finite surjection, X∗ is a closed subscheme of (Xn/Rn)×S X
and X∗→ X is a finite surjection. Moreover, for any geometric point x̄→ X ,
its preimages x̄i → Xn are Rn-equivalent, hence they map to the same point in
(Xn/Rn)×S X . Thus X∗→ X is finite and one-to-one on geometric points, so it
is a finite and universal homeomorphism; see Definition 32. Xn

→ X is a local
isomorphism at the generic point of every irreducible component of X , hence
X∗→ X is also a local isomorphism at the generic point of every irreducible
component of X . Since X is weakly normal, X∗ ∼= X and we have a morphism
X→ Xn/Rn and thus X/R = Xn/Rn . �

Lemma 28. Let X be normal and of pure dimension d. Let σ : R ⇒ X be a finite,
set-theoretic equivalence relation and Rd

⊂ R its d-dimensional part. Then
σ d
: Rd ⇒ X is also an equivalence relation.
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Proof. The only question is transitivity. Since X is normal, the maps σ d
:

Rd ⇒ X are both universally open by Chevalley’s criterion; see [EGA IV-3 1966,
IV.14.4.4]. Thus the fiber product Rd

×X Rd
→ X is also universally open and

hence its irreducible components have pure dimension d. �

Example 29. Let C be a curve with an involution τ . Pick p, q ∈ C with q
different from p and τ(p). Let C ′ be the nodal curve obtained from C by
identifying p and q. The equivalence relation generated by τ on C ′ consists
of the diagonal, the graph of τ plus the pairs

(
τ(p), τ (q)

)
and

(
τ(q), τ (p)

)
.

The 1-dimensional parts of the equivalence relation do not form an equivalence
relation.

§30 (Inductive plan). Let X be an excellent scheme that satisfies one of the
conditions of Lemma 21. and R ⇒ X a finite, set-theoretic equivalence relation.
We aim to construct the geometric quotient X/R in two steps. First we construct
a space that, roughly speaking, should be the normalization of X/R and then we
try to go from the normalization to the geometric quotient itself.

Step 1. Let Xn
→ X be the normalization of X and Rn ⇒ Xn the pull back

of R to Xn . Set d = dim X and let Xnd
⊂ Xn (resp. Rnd

⊂ Rn) denote the union
of the d-dimensional irreducible components. By Lemma 28, Rnd ⇒ Xnd is a
pure-dimensional, finite, set-theoretic equivalence relation and the geometric
quotient Xnd/Rnd exists by Lemma 21.

There is a closed, reduced subscheme Z ⊂ Xn of dimension < d such that Z
is closed under Rn and the two equivalence relations

Rn
|Xn\Z and Rnd

|Xn\Z coincide.

Let Z1 ⊂ Xnd/Rnd denote the image of Z . Rn
|Z ⇒ Z gives a finite set-theoretic

equivalence relation on Z . Since the geometric fibers of Z→ Z1 are subsets of
Rn-equivalence classes, by Definition 26, the composite maps Rn

|Z ⇒ Z→ Z1

define a finite set-theoretic pre-equivalence relation on Z1.

Step 2. In order to go from Xnd/Rnd to X/R, we make the following

Inductive assumption (30.2.1). The geometric quotient Z1/
(
Rn
|Z
)

exists.

Then, by Proposition 25, Xn/Rn exists and is given as the universal push-out
of the following diagram:

Z1 ↪→ Xn/Rnd

↓ ↓

Z1/
(
Rn
|Z
)
↪→ Xn/Rn.
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As in Lemma 27, let X∗ ⊂
(
Xn/Rn

)
×S X be the image of Xn under the

diagonal morphism. We have established that X∗→ X is a finite and universal
homeomorphism (Definition 32) sitting in the following diagram:

Z1 ↪→ Xn/Rnd
← Xn

↓ ↓ ↙ ↓ ↘

Z1/
(
Rn
|Z
)
→ Xn/Rn

← X∗ → X
(30.2.2)

There are now two ways to proceed.

Positive characteristic (30.2.3). Most finite and universal homeomorphisms
can be inverted, up to a power of the Frobenius (Proposition 35), and so we
obtain a morphism

X→
(
X∗
)(q)
→
(
Xn/Rn)(q)

for some q = pm . X/R is then obtained using Lemma 17. This is discussed in
Section 5.

In this case the inductive assumption (30.2.1) poses no extra problems.

Zero characteristic (30.2.4). As the examples of Section 2 show, finite and
universal homeomorphisms cause a substantial problem. The easiest way to
overcome these difficulties is to assume to start with that X is seminormal. In
this case, by Lemma 27, we obtain X/R = Xn/Rn .

Unfortunately, the inductive assumption (30.2.1) becomes quite restrictive.
By construction Z1 is reduced, but it need not be seminormal in general. Thus
we get the induction going only if we can guarantee that Z1 is seminormal. Note
that, because of the inductive set-up, seminormality needs to hold not only for X
and Z1, but on further schemes that one obtains in applying the inductive proof
to Rn

|Z ⇒ Z1, and so on.
It turns out, however, that the above inductive plan works when gluing semi-

log-canonical schemes. See [Kollár 2012, Chapters 5 and 8].

Definition 31. A morphism of schemes f : X → Y is a monomorphism if for
every scheme Z the induced map of sets Mor(Z , X)→Mor(Z , Y ) is an injection.

By [EGA IV-4 1967, IV.17.2.6] this is equivalent to assuming that f is univer-
sally injective and unramified.

A proper monomorphism f : Y → X is a closed embedding. Indeed, a proper
monomorphism is injective on geometric points, hence finite. Thus it is a closed
embedding if and only if OX → f∗OY is onto. By the Nakayama lemma this is
equivalent to fx : f −1(x)→ x being an isomorphism for every x ∈ f (Y ). By
passing to geometric points, we are down to the case when X = Spec k, k is
algebraically closed and Y = Spec A, where A is an Artin k-algebra.
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If A 6= k, there are at least 2 different k maps A→ k[ε]; thus Spec A→Spec k
is not a monomorphism.

Definition 32. We say that a morphism of schemes g : U → V is a universal
homeomorphism if it is a homeomorphism and for every W → V the induced
morphism U ×V W →W is again a homeomorphism. The definition extends to
morphisms of algebraic spaces the usual way [Knutson 1971, II.3].

A simple example of a homeomorphism which is not a universal homeomor-
phism is Spec K → Spec L , where L/K is a finite field extension and L 6= K .
A more interesting example is given by the normalization of the nodal curve(

y2
= x2(x + 1)

)
with one of the preimages of the node removed:

A1
\ {−1} →

(
y2
= x2(x + 1)

)
given by t 7→

(
t2
− 1, t (t2

− 1)
)
.

When g is finite, the notion is pretty much set-theoretic since a continuous proper
map of topological spaces which is injective and surjective is a homeomorphism.
Thus we see that for a finite and surjective morphism of algebraic spaces g :
U → V the following are equivalent (see [Grothendieck 1971, I.3.7–8]):

(1) g is a universal homeomorphism.

(2) g is surjective and universally injective.

(3) For every v ∈ V the fiber g−1(v) has a single point v′ and k(v′) is a purely
inseparable field extension of k(v).

(4) g is surjective and injective on geometric points.

One of the most important properties of these morphisms is that taking the
fiber product induces an equivalence between the categories

(étale morphisms: ∗→ V )
∗7→∗×V U
−→ (étale morphisms: ∗→U ).

See [SGA 1 1971, IX.4.10] for a proof. We do not use this in the sequel.

In low dimensions one can start the method of §30 and it gives the following.
These results are sufficient to deal with the moduli problem for surfaces.

Proposition 33. Let S be a Noetherian scheme over a field of characteristic 0
and X an algebraic space of finite type over S. Let R ⇒ X be a finite, set-theoretic
equivalence relation. Assume that

(1) X is 1-dimensional and reduced, or

(2) X is 2-dimensional and seminormal, or

(3) X is 3-dimensional, normal and there is a closed, seminormal Z ⊂ X such
that R is the identity on X \ Z.

Then the geometric quotient X/R exists.
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Proof. Consider first the case when dim X = 1. Let π : Xn
→ X be the

normalization. We construct Xn/Rnd as in §30. Note that since Z is zero-
dimensional, it is finite over S. Let V ⊂ S be its image. Next we make a different
choice for Z1. Instead, we take a subscheme Z2 ⊂ Xn/Rnd whose support is Z1

such that the pull back of its ideal sheaf I (Z2) to Xn is a subsheaf of the inverse
image sheaf π−1OX ⊂ OXn .

Then we consider the push-out diagram

V ← Z2 ↪→ Xn/Rnd

with universal push-out Y . Then X→ Y is a finite morphism and X/R exists by
Lemma 17.

The case when dim X = 2 and X is seminormal is a direct consequence of
(30.2.4) since the inductive assumption (30.2.1) is guaranteed by item (1) of
Proposition 33.

If dim X = 3, then X is already normal and Z is seminormal by assumption.
Thus Z/

(
R|Z

)
exists by Proposition 33(2). Therefore X/R is given by the push-

out of Z/
(
R|Z

)
← Z ↪→ X . �

5. Quotients in positive characteristic

The main result of this section is the proof of Theorem 6.

§34 (Geometric Frobenius morphism [SGA 5 1977, XIV]). Let S be an Fp-
scheme. Fix q = pr for some natural number r . Then a 7→ aq defines an
Fp-morphism Fq

: S→ S. This can be extended to polynomials by the formula

f =
∑

aI x I
7→ f (q) :=

∑
aq

I x I .

Let U = Spec R be an affine scheme over S. Write

R = OS[x1, . . . , xm]/( f1, . . . , fn)

and set

R(q) := OS[x
(q)
1 , . . . , x (q)m ]/( f (q)1 , . . . , f (q)n ) and U (q)

:= Spec R(q),

where the x (q)i are new variables. Thus we have a surjection R(q) � Rq
⊂ R,

where Rq denotes the S-algebra generated by the q-th powers of all elements.
R(q) � Rq is an isomorphism if and only if R has no nilpotents.

There are natural morphisms

Fq
:U →U (q) and (Fq)∗ : R(q)→ R given by (Fq)∗(x (q)i )= xq

i .

It is easy to see that these are independent of the choices made. Thus Fq

gives a natural transformation from algebraic spaces over S to algebraic spaces



246 JÁNOS KOLLÁR

over S. One can define X (q) intrinsically as

X (q)
= X ×S,Fq S.

If X is an algebraic space which is essentially of finite type over Fp then
Fq
: X→ X (q) is a finite and universal homeomorphism.

For us the most important feature of the Frobenius morphism is the following
universal property:

Proposition 35. Let S be a scheme essentially of finite type over Fp and X, Y
algebraic spaces which are essentially of finite type over S. Let g : X→ Y be a
finite and universal homeomorphism. Then for q = pr

� 1 the map Fq can be
factored as

Fq
: X

g
→ Y

ḡ
→ X (q).

Moreover, for large enough q (depending on g : X→ Y ), there is a functorial
choice of the factorization in the sense that if

X1
g1
→ Y1

↓ ↓

X2
g2
→ Y2

is a commutative diagram where the gi are finite and universal homeomorphisms,
then, for q � 1 (depending on the gi : X i → Yi ) the factorization gives a
commutative diagram

X1
g1
→ Y1

ḡ1
→ X (q)

1
↓ ↓ ↓

X2
g2
→ Y2

ḡ2
→ X (q)

2 .

Proof. It is sufficient to construct the functorial choice of the factorization in case
X and Y are affine schemes over an affine scheme Spec C . Thus we have a ring
homomorphism g∗ : A→ B, where A and B are finitely generated C-algebras.
We can decompose g∗ into A � B1 and B1 ↪→ B. We deal with them separately.

First consider B1 ⊂ B. In this case there is no choice involved and we need
to show that there is a q such that Bq

⊂ B1, where Bq denotes the C-algebra
generated by the q-th powers of all elements. The proof is by Noetherian
induction.

First consider the case when B is Artinian. The residue field of B is finite and
purely inseparable over the residue field of B1. For large enough q, taking qth
powers kills all the nilpotents, thus Bq is contained in a field of representatives
of B1.

In the general, we can use the Artinian case over the generic points to obtain
that B1 ⊂ B1 Bq is an isomorphism at all generic points for q � 1. Let I ⊂ B1
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denote the conductor of this extension. That is, I B1 Bq
= I . By induction we

know that there is a q ′ such that (B1 Bq/I )q
′

⊂ B1/I . Thus we get that

B(qq ′)
→ Bqq ′

⊂ (B1 Bq)q
′

⊂ B1+ I B1 Bq
= B1.

Next consider A � B1. Here we have to make a good choice. The kernel is a
nilpotent ideal I ⊂ A, say I m

= 0. Choose q ′ such that q ′ ≥ m. For b1 ∈ B1 let
b′1 ∈ A be any preimage. Then (b′1)

q ′ depends only on b1. The map

b1 7→ (b′1)
q ′ defines a factorization B(q

′)

1 → A→ B1.

Combining the map B(q)→ B1 with B(q
′)

1 → A we obtain B(qq ′)
→ A. �

§36 (Proof of Theorem 6). The question is local on S, hence we may assume
that S is affine. X and R are defined over a finitely generated subring of OS ,
hence we may assume that S is of finite type over Fp.

The proof is by induction on dim X . We follow the inductive plan in §30 and
use its notation.

If dim X = 0 then X is finite over S and the assertion follows from Lemma 17.
In going from dimension d−1 to d , the assumption (30.2.1) holds by induction.

Thus (30.2.3) shows that Xn/Rn exists.
Let X∗ ⊂ (Xn/Rn)×S X be the image of Xn under the diagonal morphism.

As we noted in §30, X∗→ X is a finite and universal homeomorphism. Thus,
by Proposition 35, there is a factorization

X∗→ X→ X∗(q)→
(
Xn/Rn)(q).

Here X→
(
Xn/Rn

)(q) is finite and R is an equivalence relation on X over the

base scheme
(
Xn/Rn

)(q). Hence, by Lemma 17, the geometric quotient X/R
exists. �

Remark 37. Some of the scheme-theoretic aspects of the purely inseparable
case are treated in [Ekedahl 1987] and [SGA 3 1970, Exposé V].

6. Gluing or pinching

The aim of this section is to give an elementary proof of the following.

Theorem 38 [Artin 1970, Theorem 3.1]. Let X be a Noetherian algebraic space
over a Noetherian base scheme A. Let Z⊂ X be a closed subspace. Let g : Z→V
be a finite surjection. Then there is a universal push-out diagram of algebraic
spaces

Z ↪→ X
g ↓ ↓ π

V ↪→ Y := X/(Z→ V )
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Furthermore:

(1) Y is a Noetherian algebraic space over A.

(2) V → Y is a closed embedding and Z = π−1(V ).

(3) The natural map ker
[
OY → OV

]
→ π∗ ker

[
OX → OZ

]
is an isomorphism.

(4) if X is of finite type over A then so is Y .

Remark 39. If X is of finite type over A and A itself is of finite type over a
field or an excellent Dedekind ring, then this is an easy consequence of the
contraction results [Artin 1970, Theorem 3.1]. The more general case above
follows using the later approximation results [Popescu 1986]. The main point of
[Artin 1970] is to understand the case when Z→ V is proper but not finite. This
is much harder than the finite case we are dealing with. An elementary approach
following [Ferrand 2003] and [Raoult 1974] is discussed below.

§40. The affine case of Theorem 38 is simple algebra. Indeed, let q :OX→OZ be
the restriction. By Theorem 41, q−1(OV ) is Noetherian; set Y := Spec q−1(OV ).

If r̄i ∈ OX/I (Z) generate OX/I (Z) as an OV -module then ri ∈ OX and I (Z)
generate OX as a q−1(OV )-module. Since I (Z)⊂q−1(OV ), we obtain that ri ∈OX

and 1∈OX generate OX as a q−1(OV )-module. Applying Theorem 41 to R1=OX

and R2 = q−1(OV ) gives the rest. �

For the proof of the following result, see [Matsumura 1986, Theorem 3.7] and
the proof of Proposition 23.

Theorem 41 (Eakin and Nagata). Let R1⊃ R2 be A-algebras with A Noetherian.
Assume that R1 is finite over R2.

(1) If R1 is Noetherian then so is R2.

(2) If R1 is a finitely generated A-algebra then so is R2. �

Gluing for algebraic spaces, following [Raoult 1974], is easier than the quasi-
projective case.

§42 (Proof of Theorem 38). For every p∈V we construct a commutative diagram

Vp
gp
← Z p → X p

τV↓ ↓τZ ↓τX

V
g
← Z → X

where

(1) Vp, Z p, X p are affine,

(2) gp is finite and Z p→ X p is a closed embedding,

(3) Vp (resp. Z p, X p) is an étale neighborhood of p (resp. g−1(p)) and
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(4) both squares are fiber products.

Affine gluing (§40) then gives Yp := X p/(Z p→ Vp) and Lemma 44 shows that
the Yp are étale charts on Y = X/(Z→ V ).

Start with affine, étale neighborhoods V1→V of p and X1→ X of g−1(p). Set
Z1 := Z×X X1⊂ X1. By §43 we may assume that there is a connected component
(Z ×V V1)

◦
⊂ Z ×V V1 and a (necessarily étale) morphism (Z ×V V1)

◦
→ Z1.

In general there is no étale neighborhood X ′→ X1 extending (Z ×V V1)
◦
→ Z1,

but there is an affine, étale neighborhood X2→ X1 extending (Z ×V V1)
◦
→ Z1

over a Zariski neighborhood of g−1(p) (§43).
Thus we have affine, étale neighborhoods V2→ V of p, X2→ X of g−1(p)

and an open embedding Z ×X X2 ↪→ Z2 := Z ×V V2. Our only remaining
problem is that Z2 6= Z ×X X2, hence Z2 is not a subscheme of X2. We achieve
this by further shrinking V2 and X2.

The complement B2 := Z2 \ Z ×X X2 is closed, thus g(B2)⊂ V2 is a closed
subset not containing p. Pick φ ∈ 0(OV2) that vanishes on g(B2) such that
φ(p) 6= 0. Then φ ◦ g is a function on Z2 that vanishes on B2 but is nowhere
zero on g−1(p). We can thus extend φ ◦ g to a function 8 on X2. Thus VP :=

V2 \ (φ = 0), Z P := Z2 \ (φ ◦ g = 0) and X P := X2 \ (8= 0) have the required
properties. �

§43. During the proof we have used two basic properties of étale neighborhoods.
First, if π : X→Y is finite then for every étale neighborhood (u∈U )→ (x ∈ X)

there is an étale neighborhood (v ∈ V )→ (π(x)∈Y ) and a connected component
(v′ ∈ V ′)⊂ X ×Y V such that there is a lifting (v′ ∈ V ′)→ (u ∈U ).

Second, if π : X→ Y is a closed embedding, U→ X is étale and P ⊂U is a
finite set of points then we can find an étale V → Y such that P ⊂ V and there
is an open embedding (P ⊂ X ×Y V )→ (P ⊂U ).

For proofs see [Milne 1980, 3.14 and 4.2–3].

The next result shows that gluing commutes with flat morphisms.

Lemma 44. For i = 1, 2, let X i be Noetherian affine A-schemes, Zi ⊂ X i closed
subschemes and gi : Zi → Vi finite surjections with universal push-outs Yi .
Assume that in the diagram below both squares are fiber products.

V1
g1
← Z1 → X1

↓ ↓ ↓

V2
g2
← Z2 → X2

(1) If the vertical maps are flat then Y1→ Y2 is also flat.

(2) If the vertical maps are smooth then Y1→ Y2 is also smooth.
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Proof. We may assume that all occurring schemes are affine. Set Ri := OX i , Ii :=

I (Zi ) and Si := OVi . Thus we have Ii ⊂ Ri and Si ⊂ Ri/Ii . Furthermore, R1 is
flat over R2, I1 = I2 R1 and S1 is flat over S2. We may also assume that R2 is
local. The key point is the isomorphism

(R1/I1)∼= (R2/I2)⊗R2 R1 ∼= (R2/I2)⊗S2 S1. (44.3)

This isomorphism is not naturally given; see Remark 45.
We check the local criterion of flatness in [Matsumura 1986, Theorem 22.3].

The first condition we need is that q−1
1 (S1)/I1∼= S1 be flat over q−1

2 (S2)/I2∼= S2.
This holds by assumption. Second, we need that the maps(

I n
2 /I n+1

2

)
⊗S2 S1→ I n

2 R1/I n+1
2 R1

be isomorphisms. Since R1 is flat over R2, the right hand side is isomorphic to(
I n
2 /I n+1

2

)
⊗R2/I2 (R1/I1).

Using (44.3), we get that(
I n
2 /I n+1

2

)
⊗R2/I2 (R1/I1)∼=

(
I n
2 /I n+1

2

)
⊗R2/I2 (R2/I2)⊗S2 S1∼=

(
I n
2 /I n+1

2

)
⊗S2 S1.

This settles flatness. In order to prove the smooth case, we just need to check
that the fibers of Y1→ Y2 are smooth. Outside V1→ V2 we have the same fibers
as before and V1→ V2 is smooth by assumption. �

Remark 45. There is some subtlety in Lemma 44. Consider the simple case when
X2 is a smooth curve over a field k, Z2 = {p, q} two k-points and V2 = Spec k.
Then Y2 is a nodal curve where p and q are identified.

Let now X1 = X2×{0, 1} as 2 disjoint copies. Then Z1 consists of 4 points
p0, q0, p1, q1 and V1 is 2 copies of Spec k. There are two distinct way to arrange
g1. Namely,

– either g′1(p0)= g′1(q0) and g′1(p1)= g′1(q1) and then Y ′1 consists of 2 disjoint
nodal curves,

– or g′′1 (p0)= g′′1 (q1) and g′′1 (p1)= g′′1 (q0) and then Y ′′1 consists of a connected
curve with 2 nodes and 2 irreducible components.

Both of these are étale double covers of Y2.

As in §42, the next lemma will be used to reduce quasiprojective gluing to
the affine case.

Lemma 46. Let X be an A-scheme, Z ⊂ X a closed subscheme and g : Z→ V
a finite surjection.

Let P ⊂ V be a finite subset and assume that there are open affine subsets
P ⊂ V1 ⊂ V and g−1(P)⊂ X1 ⊂ X.
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Then there are open affine subsets P ⊂ VP ⊂ V1 and g−1(P)⊂ X P ⊂ X1 such
that g restricts to a finite morphism g : Z ∩ X P → VP .

Proof. There is an affine subset g−1(P) ⊂ X2 ⊂ X1 such that g−1(V \ V1) is
disjoint from X2. Thus g maps Z ∩X2 to V1. The problem is that (Z ∩X2)→ V1

is only quasi finite in general. The set Z \ X2 is closed in X and so g(Z \ X2) is
closed in V . Since V1 is affine, there is a function fP on V1 which vanishes on
g(Z \ X2)∩ V1 but does not vanish on P . Then fP ◦ g is a function on g−1(V1)

which vanishes on (Z \X2)∩g−1(V1) but does not vanish at any point of g−1(P).
Since Z ∩ X1 is affine, fP ◦ g can be extended to a regular function FP on X2.

Set VP := V1\( fP = 0) and X P := X2\(FP = 0). The restriction (Z∩X P)→

VP is finite since, by construction, X P ∩ Z is the preimage of VP . �

Definition 47. We say that an algebraic space X has the Chevalley–Kleiman
property if X is separated and every finite subscheme is contained in an open
affine subscheme. In particular, X is necessarily a scheme.

These methods give the following interesting corollary.

Corollary 48. Let π : X→ Y be a finite and surjective morphism of separated,
excellent algebraic spaces. Then X has the Chevalley–Kleiman property if and
only if Y has.

Proof. Assume that Y has the Chevalley–Kleiman property and let P ⊂ X be
a finite subset. Since π(P)⊂ Y is finite, there is an open affine subset YP ⊂ Y
containing π(P). Then g−1(YP)⊂ X is an open affine subset containing P .

Conversely, assume that X has the Chevalley–Kleiman property. By the
already established direction, we may assume that X is normal. Next let Y n be
the normalization of Y . Then X → Y n is finite and dominant. Fix irreducible
components X1 ⊂ X and Y1 ⊂ Y n such that the induced map X1→ Y1 is finite
and dominant. Let π ′1 : X ′1→ X1→ Y1 be the Galois closure of X1/Y1 with
Galois group G. We already know that X ′1 has the Chevalley–Kleiman property,
hence there is an open affine subset X ′P ⊂ X ′1 containing (π ′1)

−1(P). Then
U ′P :=

⋂
g∈G g(X ′P)⊂ X ′1 is affine, Galois invariant and (π ′1)

−1
(
π ′1(U

′

P)
)
=U ′P .

Thus U ′P → π ′1(U
′

P) is finite and, by Chevalley’s theorem [Hartshorne 1977,
Exercise III.4.2], π ′1(U

′

P)⊂ Y1 is an open affine subset containing P . Thus Y n

has the Chevalley–Kleiman property.
Next consider the normalization map g : Y n

→ red Y . There are lower-
dimensional closed subschemes P ⊂ V ⊂ red Y and Z := g−1(V ) ⊂ Y n such
that g : Y n

\ Z ∼= red Y \ V is an isomorphism. By induction on the dimension,
V has the Chevalley–Kleiman property.

By Lemma 46 there are open affine subsets P⊂VP⊂V and g−1(P)⊂Y n
P⊂Y n

such that g restricts to a finite morphism g : Z ∩ Y n
P → VP . Thus, by §40,
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g(Y n
P)⊂ red Y is open, affine and it contains P . Thus red Y has the Chevalley–

Kleiman property.
Finally, red Y → Y is a homeomorphism, thus if U ⊂ red Y is an affine

open subset and U ′ ⊂ Y the “same” open subset of Y then U ′ is also affine by
Chevalley’s theorem and so Y has the Chevalley–Kleiman property. �

Example 49. Let E be an elliptic curve and set S := E ×P1. Pick a general
p ∈ E and g : E ×{0, 1} → E be the identity on E0 := E ×{0} and translation
by −p on E1 := E ×{1}. Where are the affine charts on the quotient Y ?

If Pi ⊂ Ei are 0-cycles then there is an ample divisor H on S such that
(H · Ei )= Pi if and only if OE0(P0)= OE1(P1) under the identity map E0 ∼= E1.

Pick any a, b ∈ E0 and let a+ p, b+ p ∈ E1 be obtained by translation by p.
Assume next that 2a+ b = a+ p+ 2(b+ p), or, equivalently, that 3p = a− b.
Let H(a, b) be an ample divisor on S such that H(a, b) ∩ E0 = {a, b} and
H(a, b) ∩ E1 = {a + p, b+ p}. Then U (a, b) := S \ H(a, b) is affine and g
maps Ei ∩U (a, b) isomorphically onto E \ {a, b} for i = 0, 1. As we vary a, b
(subject to 3p = a− b) we get an affine covering of Y .

Note however that the curves H(a, b) do not give Cartier divisors on Y . In
fact, for nontorsion p ∈ E , every line bundle on Y pulls back from the nodal
curve obtained from the P1 factor by gluing the points 0 and 1 together.

Appendix by Claudiu Raicu

§50. Let A be a noetherian commutative ring and X = An
S the n-dimensional

affine space over S = Spec A. Then OX ' A[x], where x = (x1, . . . , xn). To
give a finite equivalence relation R ⊂ X ×S X is equivalent to giving an ideal
I (x, y)⊂ A[x, y] which satisfies the following properties:

(1) (reflexivity) I (x, y)⊂ (x1− y1, . . . , xn − yn).

(2) (symmetry) I (x, y)= I (y, x).
(3) (transitivity) I (x, z)⊂ I (x, y)+ I (y, z) in A[x, y, z].
(4) (finiteness) A[x, y]/I (x, y) is finite over A[x].

Suppose now that we have an ideal I (x, y) satisfying these four conditions
and let R be the equivalence relation it defines. If the geometric quotient exists,
then by Definition 4 it is of the form Spec A[ f1, . . . , fm] for some polynomials
f1, . . . , fm ∈ A[x]. It follows that

I (x, y)⊃ ( fi (x)− fi (y) : i = 1, 2, . . . ,m)

and R is said to be effective if and only if equality holds.
We are mainly interested in the case when A is Z or some field k and I is

homogeneous. Consider an ideal I (x, y) =
(
J (x, y), f (x, y)

)
, where J is an



QUOTIENTS BY FINITE EQUIVALENCE RELATIONS 253

ideal of the form

J (x, y)=
(

fi (x)− fi (y) : i = 1, 2, . . . ,m
)
,

with homogeneous fi ∈ A[x] such that A[x] is a finite module over A[ f1, . . . , fm]

and f ∈ A[x, y] a homogeneous polynomial that satisfies the cocycle condition

f (x, y)+ f (y, z)− f (x, z) ∈ J (x, y)+ J (y, z)⊂ A[x, y, z]. (50.1)

The reason we call (50.1) a cocycle condition is the following. If we let B =
A[ f1, . . . , fm], C = A[x] and consider the complex (starting in degree zero)

C→ C ⊗B C→ · · · → C⊗B m
→ · · · (50.2)

with differentials given by the formula

dm−1(c1⊗ c2⊗ · · ·⊗ cm)=

m+1∑
i=1

(−1)i c1⊗ · · ·⊗ ci−1⊗ 1⊗ ci ⊗ · · ·⊗ cm,

then C ⊗B C ' A[x, y]/J (x, y), C ⊗B C ⊗B C ' A[x, y, z]/(J (x, y)+ J (y, z)),
and if the polynomial f (x, y) satisfies (50.1), then its class in C ⊗B C is a
1-cocycle in the complex (50.2).

Any ideal I (x, y) defined as above is the ideal of a finite equivalence relation
(though the geometric quotient can be different from B). To show that the
equivalence relation it defines is noneffective it suffices to check that f (x, y) is
not congruent to a difference modulo J (x, y). This can be done using a computer
algebra system by computing the finite A-module U of homogeneous forms of
the same degree as f which are congruent to differences modulo J , and checking
that f is not contained in U . We used Macaulay 2 to check that the following
example gives a noneffective equivalence relation (we took A = Z and n = 2):

f1(x)= x2
1 , f2(x)= x1x2− x2

2 , f3(x)= x3
2 ,

f (x, y)= (x1 y2− x2 y1)y3
2 ,

I (x, y)= (x2
1 − y2

1 , x1x2− x2
2 − y1 y2+ y2

2 , x3
2 − y3

2 , (x1 y2− x2 y1)y3
2).

We also claim that this example remains noneffective after any base change.
Indeed, the A-module V generated by the forms of degree 5(= deg( f )) in I
and the differences g(x)− g(y) with g homogeneous of degree 5, is a direct
summand in U . Elements of V correspond to 0-coboundaries in (50.2). The
module W consisting of elements of k[x, y]5 whose classes in k[x, y]/J are
1-cocycles is also a direct summand in U . The quotient W/V is a free Z-module
H generated by the class of f (x, y). This shows that W = V ⊕H , hence for any
field k we have Wk = Vk⊕Hk , where for an abelian group G we let Gk =G⊗Z k.
If we denote by dk

i the differentials in the complex obtained from (50.2) by base
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changing from Z to k, then we get that im dk
0 = Vk and ker dk

1 ⊃Wk . It follows
that the nonzero elements of Hk will represent nonzero cohomology classes in
(50.2) for any field k, hence our example is indeed universal.

By [Raicu 2010, Lemma 4.3], all homogeneous noneffective equivalence
relations are contained in a homogeneous noneffective equivalence relation
constructed as above.

In the positive direction, we have the following result in the toric case, where
a toric equivalence relation (over a field k) is a scheme-theoretic equivalence
relation R on a (not necessarily normal) toric variety X/k that is invariant under
the diagonal action of the torus.

Theorem 51 [Raicu 2010, Theorem 4.1]. Let k be a field, X/k an affine toric
variety, and R a toric equivalence relation on X. Then there exists an affine toric
variety Y/k together with a toric map X→ Y such that R ' X ×Y X.

Notice that we do not require the equivalence relation to be finite.
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