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Higher-dimensional analogues of K3 surfaces
KIERAN G. O’GRADY

A Kähler manifold X is hyperkähler if it is simply connected and carries a
holomorphic symplectic form whose cohomology class spans H 2,0(X). A
hyperkähler manifold of dimension 2 is a K3 surface. In many respects higher-
dimensional hyperkähler manifolds behave like K3 surfaces: they are the
higher dimensional analogues of K3 surfaces of the title. In each dimension
greater than 2 there is more than one deformation class of hyperkähler mani-
folds. One deformation class of dimension 2n is that of the Hilbert scheme
S[n] where S is a K3 surface. We will present a program which aims to prove
that a numerical K3[2] is a deformation of K3[2]— a numerical K3[2] is a
hyperkähler 4-fold 4 such that there is an isomorphism of abelian groups
H 2(X;Z)

∼
→ H 2(K3[2];Z) compatible with the polynomials given by 4-tuple

cup-product.
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0. Introduction

K3 surfaces were known classically as complex smooth projective surfaces
whose generic hyperplane section is a canonically embedded curve; an example
is provided by a smooth quartic surface in P3. One naturally encounters K3’s
in the Enriques–Kodaira classification of compact complex surfaces: they are
defined to be compact Kähler surfaces with trivial canonical bundle and vanishing
first Betti number. Here are a few among the wonderful properties of K3’s:

(1) [Kodaira 1964] Any two K3 surfaces are deformation equivalent — thus
they are all deformations of a quartic surface.
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(2) The Kähler cone of a K3 surface X is described as follows. Let ω∈ H 1,1
R (X)

be one Kähler class and NX be the set of nodal classes

NX :=
{
α ∈ H 1,1

Z (X) | α ·α =−2, α ·ω > 0
}
. (0.0.1)

The Kähler cone KX is given by

KX :=
{
α ∈ H 1,1

R (X) | α ·α > 0 and α ·β > 0 for all β ∈ NX
}
. (0.0.2)

(3) [Piatetski-Shapiro and Shafarevich 1971; Burns and Rapoport 1975; Looi-
jenga and Peters 1980/81] Weak and strong global Torelli hold. The weak
version states that two K3 surfaces X, Y are isomorphic if and only if there
exists an integral isomorphism of Hodge structures f : H 2(X) ∼−→ H 2(Y )
which is an isometry (with respect to the intersection forms), the strong
version states that f is induced by an isomorphism φ : Y ∼−→ X if and only
if it maps effective divisors to effective divisors.1

The higher-dimensional complex manifolds closest to K3 surfaces are hyper-
kähler manifolds (HK); they are defined to be simply connected Kähler manifolds
with H 2,0 spanned by the class of a holomorphic symplectic form. The terminol-
ogy originates from riemannian geometry: Yau’s solution of Calabi’s conjecture
gives that every Kähler class ω on a HK manifold contains a Kähler metric g
with holonomy the compact symplectic group. There is a sphere S2 (the pure
quaternions of norm 1) parametrizing complex structures for which g is a Kähler
metric — the twistor family associated to g; it plays a key role in the general
theory of HK manifolds.2 Notice that a HK manifold has trivial canonical bundle
and is of even dimension. An example of Beauville [1983] is the Douady space
S[n] parametrizing length-n analytic subsets of a K3 surface S — it has dimension
2n. (Of course S[n] is a Hilbert scheme if S is projective.) We mention right
away two results which suggest that HK manifolds might behave like K3’s. Let
X be HK:

(a) By a theorem of Bogomolov [1978] deformations of X are unobstructed;3

that is, the deformation space Def(X) is smooth of the expected dimension
H 1(TX ).

(b) Since the sheaf map TX → �1
X given by contraction with a holomorphic

symplectic form is an isomorphism it follows that the differential of the

1Effective divisors have a purely Hodge-theoretic description once we have located one Kähler
class.

2Hyperkähler manifolds are also known as irreducible symplectic.
3The obstruction space H2(TX )might be nonzero — for example, if X is a generalized Kummer.

See Section 1.1.
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weight-2 period map

H 1(TX )−→ Hom(H 2,0(X), H 1,1(X)) (0.0.3)

is injective, i.e., infinitesimal Torelli holds.

Assuming (a) we may prove that the generic deformation of X has h1,1
Z = 0

arguing as follows. A given α ∈ H 1(�1
X ) remains of type (1, 1) to first order in

the direction determined by κ ∈ H 1(TX ) if and only if Tr(κ ∪α)= 0 (Griffiths).
On the other hand if α 6= 0 the map

H 1(TX )→ H 2(OX ), κ 7→ Tr(κ ∪α) (0.0.4)

is surjective by Serre duality; it follows that α does not remain of type (1, 1) on
a generic deformation X t of X (of course what we denote by α is actually the
class αt ∈ H 2(X t) obtained from α by Gauss–Manin parallel transport). Item (b)
above suggests that the weight-2 Hodge structure of X might capture much of
the geometry of X . One is naturally led to ask whether analogues of properties
(1)–(3) above hold for higher-dimensional HK manifolds. Let us first discuss (1).

In each (even) dimension greater than 2 we know of two distinct deformation
classes of HK manifolds, with one extra deformation class in dimensions 6 and
10. The known examples are distinguished up to deformation by the isomorphism
class of their integral weight-2 cohomology group equipped with the top cup-
product form — we might name these, together with the dimension, the basic
discrete data of a HK manifold. Huybrechts [2003b] has shown that the set of
deformation classes of HK’s with assigned discrete data is finite. In this paper
we will present a program which aims to prove that a HK whose discrete data are
isomorphic to those of K3[2] is in fact a deformation of K3[2]. For the reader’s
convenience we spell out the meaning of the previous sentence. A numerical
(K3)[2] is a HK 4-fold X such that there exists an isomorphism of abelian groups
ψ : H 2(X;Z) ∼−→ H 2(S[2];Z) (here S is a K3) for which∫

X
α4
=

∫
S[2]
ψ(α)4 for all α ∈ H 2(X;Z). (0.0.5)

Our program aims to prove that a numerical K3[2] is a deformation of K3[2].
What about analogues of properties (2) and (3) above? We start with (3), global
Torelli. On the weight-2 cohomology of a HK there is a natural quadratic
form (named after Beauville and Bogomolov) and hence one may formulate a
statement — call it naive Torelli — analogous to the weak global Torelli statement.
The key claim in such a naive Torelli is that if two HK’s have Hodge-isometric
H 2’s then they are bimeromorphic (one cannot require that they be isomorphic;
see [Debarre 1984]). However it has been known for some time [Namikawa
2002; Markman 2010] that naive Torelli is false for HK’s belonging to certain
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deformation classes. Recently Verbitsky [2009] proposed a proof of a suitable
version of global Torelli valid for arbitrary HK’s (see also [Huybrechts 2011]);
that result together with Markman’s monodromy computations [2010] implies
that naive Torelli holds for deformations of K3[p

k
+1] where p is a prime. To

sum up: an appropriate version of global Torelli holds for any deformation class
of HK’s. Regarding item (2): Huybrechts [2003c] and Boucksom [2001] have
given a description of the Kähler cone in terms of intersections with rational
curves (meaning curves with vanishing geometric genus), but that is not a purely
Hodge-theoretic description. Hassett and Tschinkel [2001] have formulated a
conjectural Hodge-theoretic description of the ample cone of a deformation of
K3[2] and they have proved that the divisors satisfying their criterion are indeed
ample.

The paper is organized as follows. Following a brief section devoted to the
known examples of HK’s we introduce basic results on topology and the Kähler
cone of a HK in Section 2. After that we will present examples of explicit locally
complete families of projective higher-dimensional HK’s. These are analogues
of the explicit families of projective K3’s such as double covers of P2 branched
over a sextic curve, quartic surfaces in P3 etc. (The list goes on for quite a few
values of the degree, thanks to Mukai, but there are theoretical reasons [Gritsenko
et al. 2007] why it should stop before degree 80, more or less.) In particular
we will introduce double EPW-sextics, these are double covers of special sextic
hypersurfaces in P5; they play a key rôle in our program for proving that a
numerical K3[2] is a deformation of K3[2]. The last section is devoted to that
program: we discuss what has been proved and what is left to be proved.

1. Examples

The surprising topological properties of HK manifolds (see Section 2.1) led
Bogomolov [1978] to state erroneously that no higher-dimensional (dim> 2) HK
exists. Some time later Fujiki [1983] realized that K3[2] is a higher-dimensional
HK manifold.4 Beauville [1983] then showed that K3[n] is a HK manifold;
moreover by constructing generalized Kummers he exhibited another deformation
class of HK manifolds in each even dimension greater that 2. In [O’Grady 1999;
2003] we exhibited two “sporadic” deformation classes, one in dimension 6 the
other in dimension 10. No other deformation classes are known other than those
mentioned above.

1.1. Beauville. Beauville discovered another class of 2n-dimensional HK man-
ifolds besides (K3)[n]: generalized Kummers associated to a 2-dimensional

4Fujiki described K3[2] not as a Douady space but as the blow-up of the diagonal in the
symmetric square of a K3 surface.
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compact complex torus. Before defining generalized Kummers we recall that the
Douady space W [n] comes with a cycle (Hilbert–Chow) map

W [n]
κn
−→W (n), [Z ] 7→

∑
p∈W

`(OZ ,p)p, (1.1.1)

where W (n) is the symmetric product of W . Now suppose that T is a 2-
dimensional compact complex torus. We have the summation map σn :W (n)

→W .
Composing the two maps above (with n+1 replacing n) we get a locally (in
the classical topology) trivial fibration σn+1 ◦ κn+1 : W [n+1]

→ W . The 2n-
dimensional generalized Kummer associated to T is

K [n]T := (σn+1 ◦ κn+1)
−1(0). (1.1.2)

The name is justified by the observation that if n=1 then K [1]T is the Kummer
surface associated to T (and hence a K3). Beauville [1983] proved that K [n](T )
is a HK manifold. Moreover if n ≥ 2 then

b2((K3)[n])= 23, b2(K [n]T )= 7. (1.1.3)

In particular (K3)[n] and K [n]T are not deformation equivalent as soon as n ≥ 2.
The second cohomology of these manifolds is described as follows. Let W be a
compact complex surface. There is a “symmetrization map”

µn : H 2(W ;Z)−→ H 2(W (n)
;Z) (1.1.4)

characterized by the following property. Let ρn : W n
→ W (n) be the quotient

map and πi :W n
→W be the i-th projection: then

ρ∗n ◦µn(α)=

n∑
i=1

π∗i α, α ∈ H 2(W ;Z). (1.1.5)

Composing with κ∗n and extending scalars one gets an injection of integral Hodge
structures

µ̃n := κ
∗

n ◦µn : H 2(W ;C)−→ H 2(W [n];C). (1.1.6)

This map is not surjective unless n = 1; we are missing the Poincaré dual of the
exceptional set of κn , that is,

1n := {[Z ] ∈W [n] | Z is nonreduced}. (1.1.7)

It is known that 1n is a prime divisor and that it is divisible5 by 2 in Pic(W [n]):

OW [n](1n)∼= L⊗2
n , Ln ∈ Pic(W [n]). (1.1.8)

5If n = 2 Equation (1.1.8) follows from existence of the double cover Bldiag(S2)→ S[2]

ramified over 12.
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Let ξn := c1(Ln); one has

H 2(W [n];Z)= µ̃n H 2(W ;Z)⊕Zξn if H1(W )= 0. (1.1.9)

That describes H 2((K3)[n]). Beauville proved that an analogous result holds for
generalized Kummers, namely we have an isomorphism

H 2(T ;Z)⊕Z
∼
−→ H 2(K [n]T ;Z), (α, k) 7→ (µ̃n+1(α)+kξn+1)|K [n]T . (1.1.10)

This description of the H 2 gives the following interesting result: if n ≥ 2 the
generic deformation of S[n] where S is a K3 is not isomorphic to T [n] for some
other K3 surface T . In fact every deformation of S[n] obtained by deforming
S keeps ξn of type (1,1), while, as noticed previously, the generic deformation
of a HK manifold has no nontrivial integral (1,1)-classes. (Notice that if S is
a surface of general type then every deformation of S[n] is indeed obtained by
deforming S, see [Fantechi 1995].)

1.2. Mukai and beyond. Mukai [1984; 1987b; 1987a] and Tyurin [1987] an-
alyzed moduli spaces of semistable sheaves on projective K3’s and abelian
surfaces and obtained other examples of HK manifolds. Let S be a projective K3
and M the moduli space of OS(1)-semistable pure sheaves on S with assigned
Chern character — by results of Gieseker, Maruyama, and Simpson, M has a
natural structure of projective scheme. A nonzero canonical form on S induces
a holomorphic symplectic 2-form on the open Ms

⊂ M parametrizing stable
sheaves (notice that Ms is smooth; see [Mukai 1984]). If Ms

=M then M is a
HK variety;6 in general it is not isomorphic (nor birational) to (K3)[n], but it can
be deformed to (K3)[n] (here 2n = dim M). See [Göttsche and Huybrechts 1996;
O’Grady 1997; Yoshioka 1999]. Notice that S[n] may be viewed as a particular
case of Mukai’s construction by identifying it with the moduli space of rank-1
semistable sheaves on S with c1 = 0 and c2 = n. Notice also that these moduli
spaces give explicit deformations of (K3)[n] which are not (K3)[n]. Similarly
one may consider moduli spaces of semistable sheaves on an abelian surface
A: in the case when M=Ms one gets deformations of the generalized Kummer.
To be precise, it is not M which is a deformation of a generalized Kummer but
rather one of its Beauville–Bogomolov factors. Explicitly we consider the map

M(A)
a
−→ A× Â, [F] 7→

(
alb(c2(F)−c2(F0)), [det F⊗(det F0)

−1
]
)
, (1.2.1)

where [F0] ∈M is a “reference” point and alb : CH hom
0 (A)→ A is the Albanese

map. Then a is a locally (classical topology) trivial fibration; Yoshioka [2001]
proved that the fibers of a are deformations of a generalized Kummer. What can
we say about moduli spaces such that M 6=Ms? The locus (M\Ms) parametrizing

6A HK variety is a projective HK manifold.
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S-equivalence classes of semistable nonstable sheaves is the singular locus of M

except for pathological choices of Chern character which do not give anything
particularly interesting; thus we assume that (M \Ms) is the singular locus of M.
A natural question is the following: does there exist a crepant desingularization
M̃→ M? We constructed such a desingularization in [O’Grady 1999; 2003]
(see also [Lehn and Sorger 2006]) for the moduli space M4(S) of semistable
rank-2 sheaves on a K3 surface S with c1 = 0 and c2 = 4 and for the moduli
space M2(A) of semistable sheaves on an abelian surface A with c1 = 0 and
c2 = 2; the singularities of the moduli spaces are the same in both cases and
both moduli spaces have dimension 10. Let M10 be our desingularization of
M4(S) where S is a K3. Since the resolution is crepant Mukai’s holomorphic
symplectic form on (M(S) \M(S)s) extends to a holomorphic symplectic form
on M10. We proved in [O’Grady 1999] that M10 is HK; that is, it is simply
connected and h2,0(M10) = 1. Moreover M10 is not a deformation of one of
Beauville’s examples because b2(M10) = 24. (We proved that b2(M10) ≥ 24;
later Rapagnetta [2008] proved that equality holds.) Next let A be an abelian
surface and M̃2(A)→ M2(A) be our desingularization. Composing the map
(1.2.1) for M(A)=M2(A) with the desingularization map we get a locally (in
the classical topology) trivial fibration ã : M̃2(A)→ A× Â; let M6 be any fiber
of ã. We proved in [O’Grady 1999] that M6 is HK and that b2(M6) = 8; thus
M6 is not a deformation of one of Beauville’s examples. We point out that
while all Betti and Hodge numbers of Beauville’s examples are known [Göttsche
1994] the same is not true of our examples (Rapagnetta [2007] computed the
Euler characteristic of M6). Of course there are examples of moduli spaces
M with M 6=Ms in any even dimension; one would like to desingularize them
and produce many more deformation classes of HK manifolds. Kaledin, Lehn,
and Sorger [Kaledin et al. 2006] have determined exactly when the moduli
space has a crepant desingularization. Combining their results with those of
[Perego and Rapagnetta 2010] one gets that if there is a crepant desingularization
then it is a deformation of M10 if the surface is a K3, while in the case of an
abelian surface the fibers of map (1.2.1) composed with the desingularization
map are deformations of M6.7 In fact all known examples of HK manifolds are
deformations either of Beauville’s examples or of ours.

1.3. Mukai flops. Let X be a HK manifold of dimension 2n containing a sub-
manifold Z isomorphic to Pn . The Mukai flop of Z (introduced in [Mukai 1984])
is a bimeromorphic map X 99K X∨ which is an isomorphism away from Z and

7To be precise, their result holds if the polarization of the surface is “generic” relative to the
chosen Chern character; with this hypothesis the singular locus of M is, so to speak, as small as
possible
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replaces Z by the dual plane Z∨ := (Pn)∨. Explicitly let τ : X̃ → X be the
blow-up of Z and E ⊂ X̃ be the exceptional divisor. Since Z is Lagrangian the
symplectic form on X defines an isomorphism NZ/X ∼=�Z =�Pn . Thus

E ∼= P(NZ/X )= P(�Pn )⊂ Pn
× (Pn)∨. (1.3.1)

Hence E is a Pn−1-fibration in two different ways: we have π : E→Pn , i.e., the
restriction of τ to E and ρ : E→ (Pn)∨. A straightforward computation shows
that the restriction of NE/X̃ to a fiber of ρ is OPn−1(−1). By the Fujiki–Nakano
contractibility criterion there exists a proper map τ∨ : X̃ → X∨ to a complex
manifold X∨ which is an isomorphism outside E and which restricts to ρ on E .
Clearly τ∨(E) is naturally identified with Z∨ and we have a bimeromorphic map
X 99K X∨ which defines an isomorphism (X \ Z) ∼−→ (X∨ \ Z∨). Summarizing,
we have the commutative diagram

X̂
τ

}}
τ∨

""
X

c !!

99K X∨

c∨||
W

(1.3.2)

where c : X → W and c∨ : X∨→ W are the contractions of Z and Z∨ respec-
tively — see the Introduction of [Wierzba and Wiśniewski 2003]. It follows
that X∨ is simply connected and a holomorphic symplectic form on X gives a
holomorphic symplectic form on X∨ spanning H 0(�2

X∨); thus X∨ is HK if it
is Kähler. We give an example with X and X∨ projective. Let f : S→ P2 be a
double cover branched over a smooth sextic and OS(1) := f ∗OP2(1): thus S is a
K3 of degree 2. Let X := S[2] and M be the moduli space of pure 1-dimensional
OS(1)-semistable sheaves on S with typical member ι∗L where ι : C ↪→ S is the
inclusion of C ∈ |OS(1)| and L is a line bundle on C of degree 2. We have a
natural rational map

φ : S[2] 99KM (1.3.3)

which associates to [W ] ∈ S[2] the sheaf ι∗L where C is the unique curve
containing W (uniqueness requires W to be generic!) and L := OC(W ). If every
divisor in |OS(1)| is prime (i.e., the branch curve of f has no tritangents) then M

is smooth (projective) and the rational map φ is identified with the flop of

Z := { f −1(p) | p ∈ P2
}. (1.3.4)

Wierzba and Wiśniewsky [2003] have proved that any birational map between
HK four-folds is a composition of Mukai flops. In higher dimensions Mukai
[1984] defined more general flops in which the indeterminacy locus is a fibration
in projective spaces. Markman [2001] constructed stratified Mukai flops.
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2. General theory

It is fair to state that there are three main ingredients in the general theory of HK
manifolds developed by Bogomolov, Beauville, Fujiki, Huybrechts and others:

(1) Deformations are unobstructed (Bogomolov’s Theorem).

(2) The canonical Bogomolov–Beauville quadratic form on H 2 of a HK mani-
fold (see the next subsection).

(3) Existence of the twistor family on a HK manifold equipped with a Kähler
class: this is a consequence of Yau’s solution of Calabi’s conjecture.

2.1. Topology. Let X be a HK-manifold of dimension 2n. Beauville [1983] and
Fujiki [1987] proved that there exist an integral indivisible quadratic form

qX : H 2(X)→ C (2.1.1)

(cohomology is with complex coefficients) and cX ∈Q+ such that∫
X
α2n
= cX

(2n)!
n!2n qX (α)

n, α ∈ H 2(X). (2.1.2)

This equation determines cX and qX with no ambiguity unless n is even. If n is
even then qX is determined up to ±1: one singles out one of the two choices by
imposing the inequality qX (σ + σ) > 0 for σ a holomorphic symplectic form.
The Beauville–Bogomolov form and the Fujiki constant of X are qX and cX

respectively. We note that the equation in (2.1.2) is equivalent (by polarization) to∫
X
α1 ∧ · · · ∧α2n

= cX

∑
σ∈R2n

(ασ(1), ασ(2))X · (ασ(3), ασ(4))X · · · (ασ(2n−1), ασ(2n))X , (2.1.3)

where ( · , · )X is the symmetric bilinear form associated to qX and R2n is a set
of representatives for the left cosets of the subgroup G2n < S2n of permuta-
tions of {1, . . . , 2n} generated by transpositions (2i − 1, 2i) and by products of
transpositions (2i − 1, 2 j − 1)(2i, 2 j)— in other words in the right-hand side
of (2.1.3) we avoid repeating addends which are equal.8 The existence of qX , cX

is by no means trivial; we sketch a proof. Let f : X→ T be a deformation
of X representing Def(X); more precisely letting X t := f −1

{t} for t ∈ T , we
are given 0 ∈ T , an isomorphism X0

∼
−→ X and the induced map of germs

(T, 0)→ Def(X) is an isomorphism. In particular T is smooth in 0 and hence
we may assume that it is a polydisk. The Gauss–Manin connection defines an

8In defining cX we have introduced a normalization which is not standard in order to avoid a
combinatorial factor in (2.1.3).
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integral isomorphism φt : H 2(X) ∼−→ H 2(X t). The local period map of X is
given by

T
π
−→ P(H 2(X)), t 7→ φ−1

t H 2,0(X t). (2.1.4)

By infinitesimal Torelli — see (0.0.3) — Imπ is an analytic hypersurface in an
open (classical topology) neighborhood of π(0) and hence its Zariski closure
V = Imπ is either all of P(H 2(X)) or a hypersurface. One shows that the latter
holds by considering the (nonzero) degree-2n homogeneous polynomial

H 2(X)
G
−→ C, α 7→

∫
X
α2n. (2.1.5)

In fact if σt ∈ H 2,0(X t) then ∫
X t

σ 2n
t = 0 (2.1.6)

by type consideration and it follows by Gauss–Manin parallel transport that
G vanishes on V . Thus I (V ) = (F) where F is an irreducible homogeneous
polynomial. By considering the derivative of the period map (0.0.3) one checks
easily that V is not a hyperplane and hence deg F ≥ 2. On the other hand type
consideration gives something stronger than (2.1.6), namely∫

X t

σ n+1
t ∧α1 · · · ∧αn−1 = 0, α1, . . . , αn−1 ∈ H 2(X t). (2.1.7)

It follows that all the derivatives of G up to order (n− 1) included vanish on
V . Since deg G = 2n and deg F ≥ 2 it follows that G = c · Fn and deg F = 2.
By integrality of G there exists λ ∈ C∗ such that cX := λc is rational positive,
qX := λ · F is integral indivisible and (2.1.2) is satisfied.

Of course if X is a K3 then qX is the intersection form of X (and cX = 1). In
general qX gives H 2(X;Z) a structure of lattice just as in the well-known case
of K3 surfaces. Suppose that X and Y are deformation equivalent HK-manifolds:
it follows from (2.1.2) that cX = cY and the lattices H 2(X;Z), H 2(Y ;Z) are
isometric (see the comment following (2.1.2) if n is even). Consider the case
when X = (K3)[n]; then µ̃n is an isometry, ξn⊥ Im µ̃n and qX (ξn)=−2(n− 1),
i.e.,

H 2(S[n];Z)∼=U 3
⊕̂E8〈−1〉2⊕̂〈−2(n− 1)〉 (2.1.8)

where ⊕̂ denotes orthogonal direct sum, U is the hyperbolic plane and E8〈−1〉
is the unique rank-8 negative definite unimodular even lattice. Moreover the
Fujiki constant is

cS[n] = 1. (2.1.9)

In [Rapagnetta 2008] the reader will find the B-B quadratic form and Fujiki
constant of the other known deformation classes of HK manifolds.
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Remark 2.1. Let X be a HK manifold of dimension 2n and ω ∈ H 1,1
R (X) be a

Kähler class.

(1) Equation (2.1.2) gives that, with respect to ( · , · )X

H p,q(X)⊥H p′,q ′(X) unless (p′, q ′)= (2− p, 2− q). (2.1.10)

(2) qX (ω) > 0. In fact let σ be generator of H 2,0(X); by (2.1.3) and item (1)
above we have

0<
∫

X
σ n−1

∧ σ n−1
∧ω2
= cX (n− 1)! (σ, σ )X qX (ω). (2.1.11)

Since cX > 0 and (σ, σ )X > 0 we get qX (ω) > 0 as claimed.

(3) The index of qX is (3, b2(X)− 3) (i.e., that is the index of its restriction to
H 2(X;R)). In fact applying (2.1.3) to α1 = · · · = α2n−1 = ω and arbitrary
α2n we get that ω⊥ is equal to the primitive cohomology H 2

pr (X) (primitive
with respect to ω). On the other hand (2.1.3) with α1 = · · · = α2n−2 = ω

and α2n−1, α2n ∈ ω
⊥ gives that a positive multiple of qX |ω⊥ is equal to the

standard quadratic form on H 2
pr (X). By the Hodge index Theorem it follows

that the restriction of qX to ω⊥∩H 2(X;R) has index (2, b2(X)−3). Since
qX (ω) > 0 it follows that qX has index (3, b2(X)− 3).

(4) Let D be an effective divisor on X ; then (ω, D)X > 0. (Of course (ω, D)X

denotes (ω, c1(OX (D)))X .) In fact the inequality follows from the inequality∫
D ω

2n−1 > 0 together with (2.1.3) and item (2) above.

(5) Let f : X 99K Y be a birational map where Y is a HK manifold. Since X and
Y have trivial canonical bundle f defines an isomorphism U ∼

−→ V where
U ⊂ X and V ⊂ Y are open sets with complements of codimension at least
2. It follows that f induces an isomorphism f ∗ : H 2(Y ;Z) ∼−→ H 2(X;Z);
f ∗ is an isometry of lattices, see Lemma 2.6 of [Huybrechts 1999].

The proof of existence of qX and cX may be adapted to prove the following
useful generalization of (2.1.2).

Proposition 2.2. Let X be a HK manifold of dimension 2n. Let X→ T be a
representative of the deformation space of X. Suppose that

γ ∈ H p,p
R (X)

is a nonzero class which remains of type (p, p) under Gauss–Manin parallel
transport (such as the Chern class cp(X)). Then p is even and moreover there
exists cγ ∈ R such that ∫

X
γ ∧α2n−p

= cγ qX (α)
n−p/2. (2.1.12)
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Our next topic is Verbitsky’s theorem. Let X be a HK-manifold of dimension
2n. Our sketch proof of (2.1.2) shows that

α ∈ H 2(X) and qX (α)= 0 H⇒ αn+1
= 0 in H 2n+2(X). (2.1.13)

In fact, using the notation in the proof of (2.1.2), we have 0= σ n+1
t ∈ H 2n+2(X t);

hence, by Gauss–Manin transport we get 0= (ψ−1
t σt)

n+1
∈ H 2n+2(X). Since the

set {ψ−1
t σt | t ∈T } is Zariski dense in the zero-set V (qX )⊂H 2(X)we get (2.1.13).

Let I ⊂ Sym• H 2(X) be the ideal generated by αn+1 where α ∈ H 2(X) and
qX (α)= 0:

I := 〈{αn+1
| α ∈ H 2(X), qX (α)= 0}〉. (2.1.14)

By (2.1.13) we have a natural map of C-algebras

Sym• H 2(X)/I −→ H•(X). (2.1.15)

Theorem 2.3 [Verbitsky 1996] (see also [Bogomolov 1996]). The map (2.1.15)
is injective.

In particular we get that cup-product defines an injection
n⊕

q=0

Symq H 2(X) ↪→ H•(X). (2.1.16)

S. M. Salamon proved that there is a nontrivial linear constraint on the Betti
numbers of a compact Kähler manifold carrying a holomorphic symplectic form
(for example a HK manifold); the proof consists in a clever application of the
Hirzebruch–Riemann–Roch formula to the sheaves �p

X and the observation that
the symplectic form induces an isomorphism �

p
X
∼=�

2n−p
X where 2n = dim X .9

Theorem 2.4 [Salamon 1996]. Let X be a compact Kähler manifold of dimension
2n carrying a holomorphic symplectic form. Then

nb2n(X)= 2
2n∑

i=1

(−1)i (3i2
− n)b2n−i (X). (2.1.17)

The following corollary of Verbitsky’s and Salamon’s results was obtained by
Beauville (unpublished) and Guan [2001].

Corollary 2.5 (Beauville and Guan). Let X be a HK 4-fold. Then b2(X) ≤ 23.
If equality holds then b3(X)= 0 and moreover the map

Sym2 H 2(X;Q)−→ H 4(X;Q) (2.1.18)

9A nonzero section of the canonical bundle defines an isomorphism�
2n−p
X

∼= (�
p
X )
∨
=
∧p TX

and the symplectic form defines an isomorphism TX ∼=�X and hence
∧p TX ∼=�

p
X .
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induced by cup-product is an isomorphism.

Proof. Let bi := bi (X). Salamon’s equation (2.1.17) for X reads

b4 = 46+ 10b2− b3. (2.1.19)

By Verbitsky’s theorem — see (2.1.16) — we have(
b2+ 1

2

)
≤ b4. (2.1.20)

Replacing b4 by the right-hand side of (2.1.19) we get that

b2
2+ b2 ≤ 92+ 20b2− 2b3 ≤ 92+ 20b2. (2.1.21)

It follows that b2 ≤ 23 and that if equality holds then b3 = 0. Suppose that
b2 = 23: then b4 = 276 by (2.1.19) and hence (2.1.18) follows from Verbitsky’s
theorem (Theorem 2.3). �

Guan [2001] has obtained other restrictions on b2(X) for a HK four-fold X :
for example, 8< b2(X) < 23 is “forbidden”.

2.2. The Kähler cone. Let X be a HK manifold of dimension 2n. The convex
cone KX ⊂ H 1,1

R (X) of Kähler classes is the Kähler cone of X . The inequality
in (2.1.2) together with Remark 2.1(3) gives that the restriction of qX to H 1,1

R (X)
is nondegenerate of signature (1, b2(X)− 3); it follows that the cone

{α ∈ H 1,1
R (X) | qX (α) > 0} (2.2.1)

has two connected components. By Remark 2.1(2) KX is contained in (2.2.1).
Since KX is convex it is contained in a single connected component of (2.2.1);
that component is the positive cone CX .

Theorem 2.6 [Huybrechts 2003a]. Let X be a HK manifold. Let X→ T be a
representative of Def(X) with T irreducible. If t ∈ T is very general (i.e., outside
a countable union of proper analytic subsets of T ) then

KX t = CX t . (2.2.2)

Proof. Let 0 ∈ T be the point such that X0 ∼= X and the induced map of germs
(T, 0)→Def(X) is an isomorphism.10 By shrinking T around 0 if necessary we
may assume that T is simply connected and that X→ T represents Def(X t) for
every t ∈ T . In particular the Gauss–Manin connection gives an isomorphism
Pt : H•(X;Z)

∼
−→ H•(X t ;Z) for every t ∈ T . Given γ ∈ H 2p(X;Z) we let

Tγ := {t ∈ T | Pt(γ ) is of type (p, p)}. (2.2.3)

10The map (T, 0)→ Def(X) depends on the choice of an isomorphism f : X0
∼
−→ X but

whether it is an isomorphism or not is independent of f .
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Let
t ∈

(
T \

⋃
Tγ 6=T

Tγ
)

(2.2.4)

and Z ⊂ X t be a closed analytic subset of codimension p; we claim that∫
Z
α2n−p > 0 if qX t (α) > 0. (2.2.5)

In fact let γ ∈ H p,p
R (X t) be the Poincaré dual of Z . By (2.2.4) γ remains of type

(p, p) for every deformation of X t ; by Proposition 2.2 p is even and moreover
there exists cγ ∈ R such that∫

Z
α2n−p

= cγ qX (α)
n−p/2 for all α ∈ H 2(X t). (2.2.6)

Let ω be a Kähler class. Since 0<
∫

Z ω
2n−p and 0< qX (ω) we get that cγ > 0;

thus (2.2.5) follows from (2.2.6). Now apply Demailly and Paun’s version of
the Nakai–Moishezon ampleness criterion [Demailly and Paun 2004]: KX t is
a connected component of the set P(X t) ⊂ H 1,1

R (X t) of classes α such that∫
Z α

2n−p > 0 for all closed analytic subsets Z ⊂ X t (here p = cod(Z , X t)). Let
t be as in (2.2.4). By (2.2.5) P(X t)= CX t

∐
(−CX t ); since KX t ⊂ CX t we get

the proposition. �

Theorem 2.6 leads to this projectivity criterion:

Theorem 2.7 [Huybrechts 1999]. A HK manifold X is projective if and only if
there exists a (holomorphic) line bundle L on X such that qX (c1(L)) > 0.

Boucksom, elaborating on ideas of Huybrechts, gave the following characteri-
zation of KX for arbitrary X :

Theorem 2.8 [Boucksom 2001]. Let X be a HK manifold. A class α ∈ H 1,1
R (X)

is Kähler if and only if it belongs to the positive cone CX and moreover
∫

C α > 0
for every rational curve C.11

One would like to have a numerical description of the Kähler (or ample) cone
as in the 2-dimensional case. There is this result:

Theorem 2.9 [Hassett and Tschinkel 2009b]. Let X be a HK variety deformation
equivalent to K3[2] and L0 an ample line bundle on X. Let L be a line bundle on
X such that c1(L) ∈ CX . Suppose that (c1(L), α)X > 0 for all α ∈ H 1,1

Z (X) such
that (c1(L0), α)X > 0 and

(a) qX (α)=−2 or
(b) qX (α)=−10 and (α, H 2(X;Z))X = 2Z.

Then L is ample.

11A curve is rational if it is irreducible and its normalization is rational.
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Hassett and Tschinkel [2001] conjectured that the converse of this theorem
holds, in the sense that its conditions are also necessary for L to be ample. We
explain the appearance of the conditions in the theorem and why one expects
that the converse holds. We start with (a). Let X be a HK manifold deformation
equivalent to K3[2] and L a line bundle on X : Hirzebruch–Riemann–Roch for X
reads

χ(L)= 1
8(q(L)+ 4)(q(L)+ 6). (2.2.7)

(We let q = qX .) It follows that χ(L)= 1 if and only if q(L)=−2 or q(L)=−8.

Conjecture 2.10 (Folk). Let X be a HK manifold deformation equivalent to
K3[2]. Let L be a line bundle on X such that qX (L)=−2.

(1) If (c1(L), H 2(X;Z))X = Z then either L or L−1 has a nonzero section.

(2) If (c1(L), H 2(X;Z))X = 2Z then either L2 or L−2 has a nonzero section.
(Notice that qX (L±2)=−8.)

If this conjecture holds then given α ∈ H 1,1
Z (X) with qX (α) = −2 we have

that either (α, · )X is strictly positive or strictly negative on KX ; in particular the
condition corresponding to Theorem 2.9(a) is necessary for a line bundle to be
ample. Below are examples of line bundles satisfying the items (1) and (2) in
the conjecture.

Example. Let S be a K3 containing a smooth rational curve C and X = S[2].
Let

D := {[Z ] ∈ S[2] | Z ∩C 6=∅}. (2.2.8)

Let L :=OX (D); then c1(L)=µ̃2(c1(OS(C))), where µ̃2 is given by (1.1.6). Since
µ̃2 is an isometry we have qX (L)=C ·C=−2; moreover (c1(L), H 2(X;Z))X =

Z. For another example see Remark 3.3(5).

Example. Let S be a K3 and X = S[2]. Let L2 be the square root of OX (12)

where 12 ⊂ S[2] is the divisor parametrizing nonreduced subschemes — thus
c1(L2)= ξ2. Then q(L2)=−2 and L2

2 has “the” nonzero section vanishing on
12. Notice that neither L2 nor L−1

2 has a nonzero section.

Summarizing: line bundles of square−2 on a HK deformation of K3[2] should
be similar to (−2)-classes on a K3. (Recall that if L is a line bundle on a K3 with
c1(L)2 =−2 then by Hirzebruch–Riemann–Roch and Serre duality either L or
L−1 has a nonzero section.) Next we explain Theorem 2.9(b). Suppose that X is
a HK deformation of K3[2] and that Z ⊂ X is a closed submanifold isomorphic
to P2 — see Section 1.3. Let C ⊂ Z be a line. Since ( · , · )X is nondegenerate
(but not unimodular!) there exists β ∈ H 2(X;Q) such that∫

C
γ = (β, γ )X for all γ ∈ H 2(X). (2.2.9)
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One proves that
qX (β)=−

5
2 . (2.2.10)

This follows from the isomorphism (2.1.18) and the good properties of defor-
mations of HK manifolds; see [Hassett and Tschinkel 2009b, Section 4]. Since
(β, H 2(X;Z))X =Z and the discriminant of ( · , · )X is 2 we have 2β ∈H 2(X;Z);
thus α := 2β is as in Theorem 2.9(b) and if L is ample then 0 <

∫
C c1(L) =

1
2(c1(L), α)X .

Remark 2.11. Hassett and Tschinkel [2009a] stated conjectures that extend
Theorem 2.9 and its converse to general HK varieties; in particular they have
given a conjectural numerical description of the effective cone of a HK variety.
The papers [Boucksom 2004; Druel 2011] contain key results in this circle of
ideas. Markman [2009, Section 1.4] formulated a conjecture on HK manifolds de-
formation equivalent to (K3)[n] which generalizes Conjecture 2.10 and provided
a proof relying on Verbitsky’s global Torelli.

We close the section by stating a beautiful result of Huybrechts [2003c] — the
proof is based on results on the Kähler cone and uses in an essential way the
existence of the twistor family.

Theorem 2.12. Let X and Y be bimeromorphic HK manifolds. Then X and Y
are deformation equivalent.

3. Complete families of HK varieties

A pair (X, L), where X is a HK variety and L is a primitive12 ample line
bundle on X with qX (L) = d, is a HK variety of degree d; an isomorphism
(X, L) ∼−→ (X ′, L ′) between HK’s of degree d consists of an isomorphism
f : X ∼−→ X ′ such that f ∗L ′∼= L . A family of HK varieties of degree d is a pair

( f : X→ T, L) (3.0.1)

where X→ T is a family of HK varieties deformation equivalent to a fixed HK
manifold X and L is a line bundle such that (X t , L t) is a HK variety of degree d
for every t ∈ T (here X t := f −1(t) and L t := L|X t ) — we say that it is a family
of HK varieties if we are not interested in the value of qX (L t). The deformation
space of (X, L) is a codimension-1 smooth subgerm Def(X, L)⊂ Def(X) with
tangent space the kernel of the map (0.0.4) with α = c1(L). The family (3.0.1) is
locally complete if given any t0 ∈ T the map of germs (T, t0)→Def(X t0, L t0) is
surjective, it is globally complete if given any HK variety (Y, L) of degree d with
Y deformation equivalent to X there exists t0 ∈ T such that (Y, L)∼= (X t0, L t0).
In dimension 2 — that is, for K3 surfaces — one has explicit globally complete

12That is, c1(L) is indivisible in H2(X;Z).
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families of low degree: If d = 2 the family of double covers S→ P2 branched
over a smooth sextic will do,13 if d = 4 we may consider the family of smooth
quartic surfaces S ⊂ P3 with the addition of certain “limit” surfaces (double
covers of smooth quadrics and certain elliptic K3’s) corresponding to degenerate
quartics (double quadrics and the surface swept out by tangents to a rational
normal cubic curve respectively). The list goes on for quite a few values of d,
see [Mukai 1988; 2006] and then it necessarily stops — at least in this form —
because moduli spaces of high-degree K3’s are not unirational [Gritsenko et al.
2007]. We remark that in low degree one shows “by hand” that there exists a
globally complete family which is irreducible; the same is true in arbitrary degree
but I know of no elementary proof, the most direct argument is via global Torelli.
What is the picture in dimensions higher than two? Four distinct (modulo obvious
equivalence) locally complete families of higher-dimensional HK varieties have
been constructed — they are all deformations of K3[2]. The families are the
following:

(1) In [O’Grady 2006] we constructed the family of double covers of certain
special sextic hypersurfaces in P5 that we named EPW-sextics (they had
been introduced by Eisenbud, Popescu, and Walter [2001]). The polarization
is the pull-back of OP5(1); its degree is 2.

(2) Let Z ⊂ P5 be a smooth cubic hypersurface; Beauville and Donagi [1985]
proved that the variety parametrizing lines on Z is a deformation of K3[2].
The polarization is given by the Plücker embedding: it has degree 6.

(3) Let σ be a generic 3-form on C10; Debarre and Voisin [Debarre and Voisin
2010] proved that the set Yσ ⊂ Gr(6,C10) parametrizing subspaces on
which σ vanishes is a deformation of K3[2]. The polarization is given by
the Plücker embedding: it has degree 22.

(4) Let Z ⊂ P5 be a generic cubic hypersurface; Iliev and Ranestad [2001;
2007] have proved that the variety of sums of powers VSP(Z , 10)14 is a
deformation of K3[2]. For the polarization we refer to [Iliev and Ranestad
2007]; the degree is 38 (unpublished computation by Iliev, Ranestad and
van Geemen).

For each of these families — more precisely for the family obtained by adding
“limits” — one might ask whether it is globally complete for HK varieties of
the given degree which are deformations of K3[2]. As formulated the answer is
negative with the possible exception of our family, for a trivial reason: in the

13In order to get a global family we must go to a suitable double cover of the parameter space
of sextic curves.

14VSP(Z , 10) parametrizes 9-dimensional linear spaces of |OP5(3)| which contain Z and are
10-secant to the Veronese {[L3

] | L ∈ (H0(OP5(1)) \ {0})}.
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lattice L := H 2(K3[2];Z) the orbit of a primitive vector v under the action of
O(L) is determined by the value of the B-B form q(v) plus the extra information
on whether

(v, L)=
{

Z or
2Z

(3.0.2)

In the first case one says that the divisibility of v is 1, in the second case that
it is 2; if the latter occurs then q(v) ≡ 6 (mod 8). Thus the divisibility of the
polarization in family (1) above equals 1; on the other hand it equals 2 for families
(2)–(4). The correct question regarding global completeness is the following. Let
X be a HK deformation of K3[2] with an ample line bundle L such that either
q(L)= 2 or q(L) ∈ {6, 22, 38} and the divisibility of c1(L) is equal to 2: does
there exist a variety Y parametrized by one of the families above — or a limit
of such — and an isomorphism (X, L)∼= (Y,OY (1))? Yes, by Verbitsky’s global
Torelli and Markmans’ monodromy computations.

None of the families above is as easy to construct as are the families of low-
degree K3 surfaces. There is the following Hodge-theoretic explanation. In order
to get a locally complete family of varieties one usually constructs complete
intersections (or sections of ample vector bundles) in homogeneous varieties: by
Lefschetz’s hyperplane theorem such a construction will never produce a higher-
dimensional HK. On the other hand the families (1), (2), and (3) are related to
complete intersections as follows (I do not know whether one may view the
Iliev–Ranestad family from a similar perspective). First if f : X→ Y is a double
EPW-sextic (family (1) above) then f is the quotient map of an involution X→ X
which has one-dimensional (+1)-eigenspace on H 2(X)— in particular it kills
H 2,0 — and “allows” the quotient to be a hypersurface. Regarding family (2):
let Z ⊂ P5 be a smooth cubic hypersurface and X the variety of lines on Z , the
incidence correspondence in Z × X induces an isomorphism of the primitive
Hodge structures H 4(Z)pr

∼
→ H 2(X)pr . Thus a Tate twist of H 2(X)pr has

become the primitive intermediate cohomology of a hypersurface. A similar
comment applies to the Debarre–Voisin family (and there is a similar incidence-
type construction of double EPW-sextics given in [Iliev and Manivel 2009]).

In this section we will describe in some detail the family of double EPW-
sextics and we will say a few words about analogies with the Beauville–Donagi
family.

3.1. Double EPW-sextics, I. We start by giving the definition of EPW-sextic
[Eisenbud et al. 2001]. Let V be a 6-dimensional complex vector space. We
choose a volume form vol :

∧6V ∼−→ C and we equip
∧3V with the symplectic

form
(α, β)V := vol(α∧β). (3.1.1)
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Let LG(
∧3V ) be the symplectic Grassmannian parametrizing Lagrangian sub-

spaces of
∧3V — notice that LG(

∧3V ) is independent of the chosen volume
form vol. Given a nonzero v ∈ V we let

Fv :=
{
α ∈

∧3V | v∧α = 0
}
. (3.1.2)

Notice that ( · , · )V is zero on Fv and dim(Fv)= 10, i.e., Fv ∈ LG(
∧3V ). Let

F ⊂
∧3V ⊗OP(V ) (3.1.3)

be the vector subbundle with fiber Fv over [v] ∈ P(V ). Given A ∈ LG(
∧3V ) we

let
YA =

{
[v] ∈ P(V ) | Fv ∩ A 6= {0}

}
. (3.1.4)

Thus YA is the degeneracy locus of the map

F
λA
−→ (

∧3V/A)⊗OP(V ) (3.1.5)

where λA is given by Inclusion (3.1.3) followed by the quotient map
∧3V ⊗

OP(V )→ (
∧3V/A)⊗OP(V ). Since the vector bundles appearing in (3.1.5) have

equal rank YA is the zero-locus of det λA ∈ H 0(det F∨)— in particular it has a
natural structure of closed subscheme of P(V ). A straightforward computation
gives that det F ∼= OP(V )(−6) and hence YA is a sextic hypersurface unless it
equals P(V );15 if the former holds we say that YA is an EPW-sextic. What do
EPW-sextics look like? The main point is that locally they are the degeneracy
locus of a symmetric map of vector bundles (they were introduced by Eisenbud,
Popescu and Walter to give examples of a “quadratic sheaf”, namely coker(λA),
which can not be expressed globally as the cokernel of a symmetric map of
vector bundles on P5). More precisely given B ∈ LG(

∧3V ) we let UB ⊂ P(V )
be the open subset defined by

UB := {[v] ∈ P(V ) | Fv ∩ B = {0}} . (3.1.6)

Now choose B transversal to A. We have a direct-sum decomposition
∧3V =

A⊕B; since A is lagrangian the symplectic form ( · , · )V defines an isomorphism
B ∼= A∨. Let [v] ∈UB : since Fv is transversal to B it is the graph of a map

τ B
A ([v]) : A→ B ∼= A∨, [v] ∈UB . (3.1.7)

The map τ B
A ([v]) is symmetric because A, B and Fv are lagrangians.

15Given [v] ∈ P(V ) there exists A ∈ LG(
∧3V ) such that A ∩ Fv = {0} and hence [v] /∈ YA;

thus YA is a sextic hypersurface for generic A ∈ LG(
∧3V ). On the other hand if A= Fw for some

[w] ∈ P(V ) then YA = P(V ).
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Remark 3.1. There is one choice of B which produces a “classical” description
of YA, namely B =

∧3V0 where V0 ⊂ V is a codimension-1 subspace.16 With
such a choice of B we have UB = (P(V ) \P(V0)); we identify it with V0 by
choosing v0 ∈ (V \ V0) and mapping

V0
∼
−→ P(V ) \P(V0), v 7→ [v0+ v]. (3.1.8)

The direct-sum decomposition
∧3V = Fv0⊕

∧3V0 and transversality At
∧3V0

allows us to view A as the graph of a (symmetric) map q̃A : Fv0 →
∧3V0.

Identifying
∧2V0 with Fv0 via the isomorphism∧2V0

∼
−→ Fv0, α 7→ v0 ∧α, (3.1.9)

we may view q̃A as a symmetric map∧2V0 −→
∧3V0 =

∧2V∨0 . (3.1.10)

We let qA ∈ Sym2(
∧2V∨0 ) be the quadratic form corresponding to q̃A. Given

v ∈ V0 let qv ∈ Sym2(
∧2V∨0 ) be the Plücker quadratic form qv(α) := vol(v0 ∧

v∧α∧α). Modulo the identification (3.1.8) we have

YA ∩ (P(V ) \P(V0))= V (det(qA+ qv)). (3.1.11)

Equivalently let

Z A := V (qA)∩Gr(2, V0)⊂ P(
∧2V0)∼= P9. (3.1.12)

Then we have an isomorphism

P(V ) ∼−→ |IZ A(2)|, [λv0+µv] 7→ V (λqA+µqv). (3.1.13)

(Here λ,µ ∈ C and v ∈ V0.) Let DA ⊂ |IZ A(2)| be the discriminant locus;
modulo the identification above we have

YA ∩ (P(V ) \P(V0))= DA ∩ (|IZ A(2)| \ |IGr(2,V0)(2)|). (3.1.14)

Notice that |IGr(2,V0)(2)| is a hyperplane contained in DA with multiplicity 4;
that explains why deg YA = 6 while deg DA = 10.

We go back to general considerations regarding YA. The symmetric map τ B
A

of (3.1.7) allows us to give a structure of scheme to the degeneracy locus

YA[k] = {[v] ∈ P(V ) | dim(A∩ Fv)≥ k} (3.1.15)

by declaring that YA[k] ∩UB = V (
∧(11−k)

τ B
A ). By a standard dimension count

we expect that the following holds for generic A ∈ LG(
∧3V ): YA[3] = ∅,

16It might happen that there is no V0 such that
∧3 V0 is transversal to A: in that case A is

unstable for the natural PGL(V )-action on LG(
∧3

V ) and hence we may forget about it.
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YA[2] = sing YA and YA[2] is a smooth surface (of degree 40 by (6.7) of [Fulton
and Pragacz 1998]), in particular YA should be a very special sextic hypersurface.
This is indeed the case; in order to be less “generic” let

1 :=
{

A ∈ LG(
∧3V ) | YA[3] 6=∅

}
, (3.1.16)

6 :=
{

A ∈ LG(
∧3V ) | ∃W ∈ Gr(3, V ) s.t.

∧3W ⊂ A
}
. (3.1.17)

A straightforward computation shows that6 and1 are distinct closed irreducible
codimension-1 subsets of LG(

∧3V ). Let

LG(
∧3V )0 := LG(

∧3V ) \6 \1 . (3.1.18)

Then YA has the generic behavior described above if and only if A belongs to
LG(

∧3V )0. Next let A∈ LG(
∧3V ) and suppose that YA 6=P(V ): then YA comes

equipped with a natural double cover f A : X A → YA defined as follows. Let
i : YA ↪→ P(V ) be the inclusion map: since coker(λA) is annihilated by a local
generator of det λA we have coker(λA) = i∗ζA for a sheaf ζA on YA. Choose
B ∈ LG(

∧3V ) transversal to A; the direct-sum decomposition
∧3V = A⊕ B

defines a projection map
∧3V → A; thus we get a map µA,B : F→ A⊗OP(V ).

We claim that there is a commutative diagram with exact rows

0 → F
λA
−→ A∨⊗OP(V ) −→ i∗ζA → 0yµA,B

yµt
A,B

yβA

0 → A⊗OP(V )
λt

A
−→ F∨ −→ Ext1(i∗ζA,OP(V )) → 0

(3.1.19)

(Since A is Lagrangian the symplectic form defines a canonical isomorphism(∧3V/A
)
∼= A∨; that is why we may write λA as above.) In fact the second

row is obtained by applying the Hom( · ,OP(V ))-functor to the first row and the
equality µt

A,B ◦ λA = λ
t
A ◦µA,B holds because F is a Lagrangian subbundle of∧3V ⊗ OP(V ). Lastly βA is defined to be the unique map making the diagram

commutative; as suggested by notation it is independent of B. Next by applying
the Hom(i∗ζA, · )-functor to the exact sequence

0−→ OP(V ) −→ OP(V )(6)−→ OYA(6)−→ 0 (3.1.20)

we get the exact sequence

0−→ i∗Hom(ζA,OYA(6))
∂
−→ Ext1(i∗ζA,OP(V ))

n
−→ Ext1(i∗ζA,OP(V )(6))

(3.1.21)
where n is locally equal to multiplication by det λA. Since the second row
of (3.1.19) is exact a local generator of det λA annihilates Ext1(i∗ζA,OP(V )); thus
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n = 0 and hence we get a canonical isomorphism

∂−1
: Ext1(i∗ζA,OP(V ))

∼
−→ i∗Hom(ζA,OYA(6)). (3.1.22)

Let

ζA× ζA
m̃ A
−→ OYA(6), (σ1, σ2) 7→ (∂−1

◦βA(σ1))(σ2). (3.1.23)

Let ξA := ζA(−3); tensoring both sides of (3.1.23) by OYA(−6) we get a multi-
plication map

m A : ξA× ξA→ OYA . (3.1.24)

This multiplication map equips OYA ⊕ ξA with the structure of a commutative
and associative OYA -algebra. We let

X A := Spec(OYA ⊕ ξA), f A : X A→ YA. (3.1.25)

Then X A is a double EPW-sextic. Let UB be as in (3.1.6): we may describe
f −1

A (YA ∩UB) as follows. Let M be the symmetric matrix associated to (3.1.7)
by a choice of basis of A and Mc be the matrix of cofactors of M . Let
Z = (z1, . . . , z10)

t be the coordinates on A associated to the given basis; then
f −1

A (YA∩UB)⊂UB×A10
Z and its ideal is generated by the entries of the matrices

M · Z , Z · Z t
−Mc . (3.1.26)

(The “missing” equation det M = 0 follows by Cramer’s rule.) One may reduce
the size of M in a neighborhood of [v0] ∈ UB as follows. The kernel of the
symmetric map τ B

A ([v0]) equals A∩Fv0 ; let J ⊂ A be complementary to A∩Fv0 .
Diagonalizing the restriction of τ B

A to J we may assume that

M([v])=
(

M0([v]) 0
0 110−k

)
(3.1.27)

where k := dim(A∩ Fv0) and M0 is a symmetric k× k matrix. It follows at once
that f A is étale over (YA\YA[2]). We also get the following description of f A over
a point [v0]∈ (YA[2]\YA[3]) under the hypothesis that there is no 0 6=v0∧v1∧v2∈

A. First f −1
A ([v0]) is a single point p0, secondly X A is smooth at p0 and there

exists an involution φ on (X A, p0)with 2-dimensional fixed-point set such that f A

is identified with the quotient map (X A, p0)→ (X A, p0)/〈φ〉. It follows that X A

is smooth if A ∈ LG(
∧3V )0. We may fit together all smooth double EPW-sextics

by going to a suitable double cover ρ : LG(
∧3V )?→ LG(

∧3V )0; there exist a
family of HK four-folds X→ LG(

∧3V )? and a relatively ample line bundle L

over X such that for all t ∈ LG(
∧3V )? we have (X t , L t) ∼= (X At , f ∗At

OYAt
(1))

where
X t := ρ

−1(t), L t = L|X t , At := ρ(t). (3.1.28)
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Theorem 3.2 [O’Grady 2006]. Let A ∈ LG(
∧3V )0. Then X A is a HK four-fold

deformation equivalent to K3[2]. Moreover X→ LG(
∧3V )? is a locally complete

family of HK varieties of degree 2.

Sketch of proof. The main issue is to prove that X A is a HK deformation of K3[2].
In fact once this is known the equality∫

X A

f ∗Ac1(OYA(1))
4
= 2 · 6= 12 (3.1.29)

together with (2.1.2) gives that q( f ∗Ac1(OYA(1)))= 2 and moreover the family
X→ LG(

∧3V )? is locally complete by the following argument. First Kodaira
vanishing and Formula (2.2.7) give that

h0( f ∗AOYA(1))= χ( f ∗AOYA(1))= 6 (3.1.30)

and hence the map

X A
f A
−→ YA ↪→ P(V ) (3.1.31)

may be identified with the map X A→ | f ∗AOYA(1)|
∨. From this one gets that the

natural map (LG(
∧3V )0//PGL(V ), [A]) → Def(X A, f ∗AOYA(1)) is injective.

One concludes that X→ LG(
∧3V )? is locally complete by a dimension count:

dim(LG(
∧3V )0//PGL(V ))= 20= dim Def(X A, f ∗AOYA(1)). (3.1.32)

Thus we are left with the task of proving that X A is a HK deformation of K3[2]

if A ∈ LG(
∧3V )0. We do this by analyzing X A for

A ∈ (1 \6). (3.1.33)

By definition YA[3] is nonempty; one shows that it is finite, that sing X A =

f −1
A YA[3] and that f −1

A [vi ] is a single point for each [vi ] ∈ YA[3]. There exists
a small resolution

πA : X̂ A −→ X A, ( f A ◦πA)
−1([vi ])∼= P2

∀[vi ] ∈ YA. (3.1.34)

In fact one gets that locally over the points of sing X A the above resolution is
identified with the contraction c (or c∨) appearing in (1.3.2) — in particular X̂ A

is not unique, in fact there are 2|YA[3]| choices involved in the construction of X̂ A.
The resolution X̂ A fits into a simultaneous resolution; i.e., given a sufficiently
small open (in the classical topology) A ∈U ⊂ (LG(

∧3V ) \6) we have proper
maps π,ψ

X̂U
π
−→ XU

ψ
−→U (3.1.35)

where ψ is a tautological family of double EPW-sextics over U , i.e., ψ−1 A∼= X A

and (ψ ◦π)−1 A→ψ−1 A= X A is a small resolution as above if A∈U∩1 while
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π−1 A∼= X A if A ∈ (U \1). Thus it suffices to prove that there exist A ∈ (1\6)
such that X̂ A is a HK deformation of K3[2]. Let [vi ] ∈ YA[3]; we define a K3
surface SA(vi ) as follows. There exists a codimension-1 subspace V0 ⊂ V not
containing vi and such that

∧3V0 is transversal to A. Thus YA can be described as
in Remark 3.1: we adopt notation introduced in that remark, in particular we have
the quadric Q A := V (qA)⊂P(

∧2V0). The singular locus of Q A is P(A∩Fvi )—
we recall the identification (3.1.9). By hypothesis P(A∩ Fvi )∩Gr(2, V0)=∅;
it follows that dim P(A∩ Fvi )= 2 (by hypothesis dim P(A∩ Fvi )≥ 2). Let

SA(vi ) := Q∨A ∩Gr(2, V∨0 )⊂ P(
∧2V∨0 ). (3.1.36)

Then SA(vi )⊂P(Ann (A∩ Fvi ))
∼=P6 is the transverse intersection of a smooth

quadric and the Fano 3-fold of index 2 and degree 5, i.e., the generic K3 of
genus 6. There is a natural degree-2 rational map

gi : SA(vi )
[2] 99K |ISA(vi )(2)|

∨ (3.1.37)

which associates to [Z ] the set of quadrics in |ISA(vi )(2)| which contain the line
spanned by Z — thus gi is regular if SA(vi ) contains no lines. One proves that
Im(gi ) may be identified with YA; it follows that there exists a birational map

hi : SA(vi )
[2] 99K X̂ A (3.1.38)

Moreover if SA(vi ) contains no lines (that is true for generic A ∈ (1 \ 6))
there is a choice of small resolution X̂ A such that hi is regular and hence an
isomorphism — in particular X̂ A is projective.17 This proves that X A is a HK
deformation of K3[2] for A ∈ LG(

∧3V )0. �

Remark 3.3. This proof of Theorem 3.2 provides a description of X A for A ∈
(1 \6); what about X A for A ∈ 6? One proves that if A ∈ 6 is generic —
in particular there is a unique W ∈ Gr(3, V ) such that

∧3W ⊂ A — then the
following hold:

(1) CW,A := {[v] ∈ P(W ) | dim(A∩ Fv)≥ 2} is a smooth sextic curve.

(2) sing X A = f −1
A P(W ) and the restriction of f A to sing X A is the double

cover of P(W ) branched over CW,A, i.e., a K3 surface of degree 2.

(3) If p ∈ sing X A the germ (X A, p) (in the classical topology) is isomorphic
to the product of a smooth 2-dimensional germ and an A1 singularity; thus
the blow-up X̃ A→ X A resolves the singularities of X A.

(4) Let U ⊂ LG(
∧3V ) be a small open (classical topology) subset containing

A. After a base change Ũ →U of order 2 branched over U ∩6 there is a

17There is no reason a priori why X̂ A should be Kähler, in fact one should expect it to be
non-Kähler for some A and some choice of small resolution.



HIGHER-DIMENSIONAL ANALOGUES OF K3 SURFACES 281

simultaneous resolution of singularities of the tautological family of double
EPW’s parametrized by Ũ . It follows that X̃ A is a HK deformation of K3[2].

(5) Let E A be the exceptional divisor of the blow-up X̃ A → X A and eA ∈

H 2(X̃ A;Z) be its Poincaré dual; then q(eA)=−2 and (eA, H 2(X̃ A;Z))=Z.

3.2. The Beauville–Donagi family. Let D,P⊂ |OP5(3)| be the prime divisors
parametrizing singular cubics and cubics containing a plane respectively. We
recall that if Z ∈ (|OP5(3)| \D) then

X = F(Z) := {L ∈ Gr(1,P5) | L ⊂ X} (3.2.1)

is a HK four-fold deformation equivalent to K3[2]. Let H be the Plücker ample
divisor on X and h = c1(OX (H)); then

q(h)= 6, (h, H 2(X;Z))X = 2Z. (3.2.2)

These results are proved in [Beauville and Donagi 1985] by considering the
codimension-1 locus of Pfaffian cubics; they show that if Z is a generic such
Pfaffian cubic then X is isomorphic to S[2] where S is a K3 of genus 8 that one
associates to Z , moreover the class h is identified with 2µ̃(D)− 5ξ2 where D is
the class of the (genus 8) hyperplane class of S. Here we will stress the similarities
between the HK four-folds parametrized by D,P and those parametrized by
the loci 1,6 ⊂ LG(

∧3V ) described in the previous subsection. Let Z ∈ D

be generic. Then Z has a unique singular point p and it is ordinary quadratic,
moreover the set of lines in Z containing p is a K3 surface S of genus 4. The
variety X = F(Z) parametrizing lines in Z is birational to S[2]; the birational
map is given by

S[2] 99K F(Z), {L1, L2} 7→ R, (3.2.3)

where L1+L2+R=〈L1, L2〉·Z . Moreover F(Z) is singular with singular locus
equal to S. Thus from this point of view D is similar to 1. On the other hand
let Z0 ∈ (|OP5(3)| \D) be “close” to Z ; the monodromy action on H 2(F(Z0))

of a loop in (|OP5(3)| \D) which goes once around D has order 2 and hence
as far as monodromy is concerned D is similar to 6. (Let U ⊂ |OP5(3)| be a
small open (classical topology) set containing Z ; it is natural to expect that after
a base change π : Ũ → U of order 2 ramified over D the family of F(Zu) for
u ∈ (Ũ \ π−1D) can be completed over points of π−1D with HK four-folds
birational (isomorphic?) to S[2].) Now let Z ∈ P be generic, in particular
it contains a unique plane P . Let T ∼= P2 parametrize 3-dimensional linear
subspaces of P5 containing P ; given t ∈ T and L t the corresponding 3-space the
intersection L t · Z decomposes as P + Qt where Qt is a quadric surface. Let
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E ⊂ X = F(Z) be the set defined by

E := {L ∈ F(Z) | ∃t ∈ T such that L ⊂ Qt }. (3.2.4)

For Z generic we have a well-defined map E→ T obtained by associating to L
the unique t such that L ⊂ Qt ; the Stein factorization of E→ T is E→ S→ T
where S→ T is the double cover ramified over the curve B ⊂ T parametrizing
singular quadrics. The locus B is a smooth sextic curve and hence S is a K3
surface of genus 2. The picture is: E is a conic bundle over the K3 surface S
and we have

q(E)=−2, (e, H 2(X;Z))= Z, e := c1(OX (E)). (3.2.5)

Thus from this point of view P is similar to 6— of course if we look at mon-
odromy the analogy fails.

4. Numerical Hilbert squares

A numerical Hilbert square is a HK four-fold X such that cX is equal to the
Fujiki constant of K3[2] and the lattice H 2(X;Z) is isometric to H 2(K3[2];Z);
by (2.1.8), (2.1.9) this holds if and only if

H 2(X;Z)∼=U 3
⊕̂E8(−1)⊕̂〈−2〉, cX = 1. (4.0.1)

We will present a program which aims to prove that a numerical Hilbert square
is a deformation of K3[2], i.e., an analogue of Kodaira’s theorem that any two
K3’s are deformation equivalent. First we recall how Kodaira [1964] proved that
K3 surfaces form a single deformation class. Let X0 be a K3. Let X→ T be a
representative of the deformation space Def(X0). The image of the local period
map π : T → P(H 2(X0)) contains an open (classical topology) subset of the
quadric Q := V (qX0). The set Q(Q) of rational points of Q is dense (classical
topology) in the set of real points Q(R); it follows that the image π(T ) contains
a point [σ ] such that σ⊥ ∩ H 2(X0;Q) is generated by a nonzero α such that
qX (α) = 0. Let t ∈ T such that π(t) = [σ ] and set X := X t ; by the Lefschetz
(1, 1) theorem we have

H 1,1
Z (X)= Zc1(L), qX (c1(L))= 0, (4.0.2)

where L is a holomorphic line bundle on X . By Hirzebruch–Riemann–Roch
and Serre duality we get that h0(L) + h0(L−1) ≥ 2. Thus we may assume
that h0(L) ≥ 2. It follows that L is globally generated, h0(L) = 2 and the
map φL : X → |L| ∼= P1 is an elliptic fibration. Kodaira then proved that any
two elliptic K3’s are deformation equivalent. J. Sawon [2003] has launched
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a similar program with the goal of classifying deformation classes of higher-
dimensional HK manifolds18 by deforming them to Lagrangian fibrations — we
notice that Matsushita [1999; 2001; 2005] has proved quite a few results on HK
manifolds which have nontrivial fibrations. The program is quite ambitious; it
runs immediately into the problem of proving that if L is a nontrivial line bundle
on a HK manifold X with qX (c1(L))= 0 then h0(L)+ h0(L−1) > 0.19 On the
other hand Kodaira’s theorem on K3’s can be proved (see [Le Potier 1985])
by deforming X0 to a K3 surface X such that H 1,1

Z (X)= Zc1(L) where L is a
holomorphic line bundle such that qX (L) is a small positive integer, say 2. By
Hirzebruch–Riemann–Roch and Serre duality h0(L)+ h0(L−1)≥ 3 and hence
we may assume that h0(L) ≥ 3; it follows easily that L is globally generated,
h0(L)= 3 and the map φL : X→ |L|∨ ∼= P2 is a double cover ramified over a
smooth sextic curve. Thus every K3 is deformation equivalent to a double cover
of P2 ramified over a sextic; since the parameter space for smooth sextics is
connected it follows that any two K3 surfaces are deformation equivalent. Our
idea is to adapt this proof to the case of numerical Hilbert squares. In short the
plan is as follows. Let X0 be a numerical Hilbert square. First we deform X0 to
a HK four-fold X such that

H 1,1
Z (X)= Zc1(L), qX (c1(L))= 2 (4.0.3)

and the Hodge structure of X is very generic given the constraint (4.0.3), see
Section 4.1 for the precise conditions. By Huybrechts’ Projectivity Criterion
(Theorem 2.7) we may assume that L is ample and then Hirzebruch–Riemann–
Roch together with Kodaira vanishing gives that h0(L)= 6. Thus we must study
the map f : X 99K |L|∨ ∼=P5. We prove that either f is the natural double cover
of an EPW-sextic or else it is birational onto its image (a hypersurface of degree
at most 12). We conjecture that the latter never holds; if the conjecture is true
then any numerical Hilbert square is a deformation of a double EPW-sextic and
hence is a deformation of K3[2].

4.1. The deformation. We recall Huybrechts’ theorem on surjectivity of the
global period map for HK manifolds. Let X0 be a HK manifold. Let L be a
lattice isomorphic to the lattice H 2(X0;Z); we denote by ( · , · )L the extension to
L⊗C of the bilinear symmetric form on L . The period domain �L ⊂ P(L⊗C)

is given by

�L := {[σ ] ∈ P(L ⊗C) | (σ, σ )L = 0, (σ, σ )L > 0}. (4.1.1)

18One should assume that b2 ≥ 5 in order to ensure that the set of rational points in V (qX ) is
nonempty (and hence dense in the set of real points).

19Let dim X = 2n. Hirzebruch–Riemann–Roch gives that χ(L) = n + 1, one would like to
show that hq (L)= 0 for 0< q < 2n.
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A HK manifold X deformation equivalent to X0 is marked if it is equipped with
an isometry of lattices ψ : L ∼−→ H 2(X;Z). Two pairs (X, ψ) and (X ′, ψ ′) are
equivalent if there exists an isomorphism f : X→ X ′ such that H 2( f )◦ψ ′=±ψ .
The moduli space MX0 of marked HK manifolds deformation equivalent to X0

is the set of equivalence classes of pairs as above. If t ∈ MX0 we let (X t , ψt)

be a representative of t . Choosing a representative X→ T of the deformation
space of X t with T contractible we may put a natural structure of (nonseparated)
complex analytic manifold on MX0 ; see for example Theorem (2.4) of [Looijenga
and Peters 1980/81]. The period map is given by

MX0

P
−→�L , (X, ψ) 7→ ψ−1 H 2,0(X). (4.1.2)

(We denote by the same symbol both the isometry L ∼−→ H 2(X;Z) and its
linear extension L ⊗C→ H 2(X;C).) The map P is locally an isomorphism
by infinitesimal Torelli and local surjectivity of the period map. The following
result is proved in [Huybrechts 1999]; the proof is an adaptation of Todorov’s
proof of surjectivity for K3 surfaces [Todorov 1980].

Theorem 4.1 (Todorov, Huybrechts). Keep notation as above and let M0
X0

be a
connected component of MX0 . The restriction of P to M0

X0
is surjective.

Let
3 :=U 3

⊕̂E8〈−1〉2⊕̂〈−2〉 (4.1.3)

be the Hilbert square lattice; see (2.1.8). Thus �3 is the period space for
numerical Hilbert squares. A straightforward computation gives the following
result; see Lemma 3.5 of [O’Grady 2008].

Lemma 4.2. Suppose that α1, α2 ∈3 satisfy

(α1, α1)3 = (α2, α2)3 = 2, (α1, α2)3 ≡ 1 mod 2. (4.1.4)

Let X0 be a numerical Hilbert square. Let M0
X0

be a connected component of the
moduli space of marked HK four-folds deformation equivalent to X0. There exists
1≤ i ≤ 2 such that for every t ∈M0

X0
the class of ψt(αi )

2 in H 4(X t ;Z)/Tors is
indivisible.

Notice that 3 contains (many) pairs α1, α2 which satisfy (4.1.4); it follows
that there exists α ∈ 3 such that for every t ∈ M0

X0
the class of ψt(α)

2 in
H 4(X t ;Z)/Tors is indivisible. There exists [σ ] ∈�3 such that

σ⊥ ∩3= Zα. (4.1.5)

By Theorem 4.1 there exists t ∈MX0 such that P(t)= [σ ]. Equality (4.1.5) gives

H 1,1
Z (X t)= Zα. (4.1.6)
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Since q(ψt(α)) = 2 > 0 the HK manifold X t is projective by Theorem 2.7;
by (4.1.6) either ψt(α) or ψt(−α) is ample and hence we may assume that ψt(α)

is ample. Let X ′ := X t and H ′ be the divisor class such that c1(OX ′(H ′))=ψt(α);
X ′ is a first approximation to the deformation of X0 that we will consider. The
reason for requiring that ψt(α)

2 be indivisible in H 4(X t ;Z)/Tors will become
apparent in the sketch of the proof of Theorem 4.5.

Remark 4.3. If X is a deformation of K3[2] and α ∈ H 2(X;Z) is an arbitrary
class such that q(α)= 2 then the class of α2 in H 4(X;Z)/Tors is not divisible;
see Proposition 3.6 of [O’Grady 2008].

Let π :X→ S be a representative of the deformation space Def(X ′, H ′). Thus
letting Xs := π

−1(s) there exist 0 ∈ S and a given isomorphism X0
∼
−→ X ′ and

moreover there is a divisor-class H on X which restricts to H ′ on X0; we let
Hs := H|Xs . We will replace (X ′, H ′) by (Xs, Hs) for s very general in S in
order to ensure that H 4(Xs) has the simplest possible Hodge structure. First we
describe the Hodge substructures of H 4(Xs) that are forced by the Beauville–
Bogomolov quadratic form and the integral (1, 1) class ψt(α). Let X be a HK
manifold. The Beauville–Bogomolov quadratic form qX provides us with a
nontrivial class q∨X ∈ H 2,2

Q
(X). In fact since qX is nondegenerate it defines an

isomorphism
L X : H 2(X) ∼−→ H 2(X)∨. (4.1.7)

Viewing qX as a symmetric tensor in H 2(X)∨⊗ H 2(X)∨ and applying L−1
X we

get a class
(L−1

X ⊗ L−1
X )(qX ) ∈ H 2(X)⊗ H 2(X);

applying the cup-product map H 2(X)⊗ H 2(X)→ H 4(X) to (L−1
X ⊗ L−1

X )(qX )

we get an element q∨X ∈ H 4(X;Q) which is of type (2, 2) by (2.1.10). Now we
assume that X is a numerical Hilbert square and that H is a divisor class such
that q(H)= 2. Let h := c1(OX (H)). We have an orthogonal (with respect to qX )
direct sum decomposition

H 2(X)= Ch⊕̂h⊥ (4.1.8)

into Hodge substructures of levels 0 and 2 respectively. Since b2(X)= 23 we
get by Corollary 2.5 that cup-product defines an isomorphism

Sym2 H 2(X) ∼−→ H 4(X). (4.1.9)

Because of (4.1.9) we will identify H 4(X) with Sym2 H 2(X). Thus (4.1.8) gives
a direct sum decomposition

H 4(X)= Ch2
⊕ (Ch⊗ h⊥)⊕Sym2(h⊥) (4.1.10)
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into Hodge substructures of levels 0, 2 and 4 respectively. As is easily checked
q∨X ∈ (Ch2

⊕Sym2(h⊥). Let

W (h) := (q∨)⊥ ∩Sym2(h⊥). (4.1.11)

(To avoid misunderstandings: the first orthogonality is with respect to the inter-
section form on H 4(X), the second one is with respect to qX .) One proves easily
(see Claim 3.1 of [O’Grady 2008]) that W (h) is a codimension-1 rational sub
Hodge structure of Sym2(h⊥), and that we have a direct sum decomposition

Ch2
⊕Sym2(h⊥)= Ch2

⊕Cq∨⊕W (h). (4.1.12)

Thus we have the decomposition

H 4(X;C)= (Ch2
⊕Cq∨)⊕ (Ch⊗ h⊥)⊕W (h) (4.1.13)

into sub Hodge structures of levels 0, 2 and 4 respectively.

Claim 4.4 [O’Grady 2008, Proposition 3.2]. Keep notation as above. Let s ∈ S
be very general, i.e., outside a countable union of proper analytic subsets of S.
Then:

(1) H 1,1
Z (Xs)= Zhs where hs = c1(OXs (Hs)).

(2) Let 6 ∈ Z1(Xs) be an integral algebraic 1-cycle on Xs and cl(6) ∈
H 3,3

Q
(X3) be its Poincaré dual. Then cl(6)= mh3

s/6 for some m ∈ Z.

(3) If V ⊂ H 4(Xs) is a rational sub Hodge structure then V = V1⊕ V2⊕ V3

where V1 ⊂
(
Ch2

s ⊕Cq∨Xs

)
, V2 is either 0 or equal to Chs ⊗ h⊥s , and V3 is

either 0 or equal to W (hs).

(4) The image of h2
s in H 4(Xs;Z)/Tors is indivisible.

(5) H 2,2
Z (Xs)/Tors⊂ Z(h2

s/2)⊕Z(q∨Xs
/5).

Let s ∈ S be such that the five conclusions of Claim 4.4 hold. Let X := Xs ,
H := Hs and h := c1(OX (H)). Since H is in the positive cone and h generates
H 1,1

Z (X) we get that H is ample. By construction X is a deformation of our given
numerical Hilbert square. The goal is to analyze the linear system |H |. First we
compute its dimension. A computation (see pp. 564-565 of [O’Grady 2008])
gives that c2(X) = 6q∨X/5; it follows that (2.2.7) holds for numerical Hilbert
squares. Thus χ(OX (H)) = 6. By Kodaira vanishing we get h0(OX (H)) = 6.
Thus we have the map

f : X 99K |H |∨ ∼= P5. (4.1.14)
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Theorem 4.5 [O’Grady 2008]. Let (X, H) be as above. One of the following
holds:

(a) The line bundle OX (H) is globally generated and there exist an antisymplec-
tic involution φ : X → X and an inclusion X/〈φ〉 ↪→ |H |∨ such that the
map f of (4.1.14) is identified with the composition

X
ρ
−→ X/〈φ〉 ↪→ |H |∨ (4.1.15)

where ρ is the quotient map.

(b) The map f of (4.1.14) is birational onto its image (a hypersurface of degree
between 6 and 12).

Sketch of proof. We use the following result, which follows from conclusions (4)
and (5) of Claim 4.4 plus a straightforward computation; see Proposition 4.1 of
[O’Grady 2008].

Claim 4.6. If D1, D2 ∈ |H | are distinct then D1 ∩ D2 is a reduced irreducible
surface.

In fact we chose h such that h2 is not divisible in H 4(X;Z)/Tors precisely
to ensure that this claim holds. Let Y ⊂ P5 be the image of f (to be precise
the closure of the image by f of its regular points). Thus (abusing notation)
we have f : X 99K Y . Of course dim Y ≤ 4. Suppose that dim Y = 4 and
that deg f = 2. Then there exists a nontrivial rational involution φ : X 99K X
commuting with f . Since Pic(X)= Z[H ] we get that φ∗H ∼ H ; since K X ∼ 0
it follows that φ is regular; it follows easily that (a) holds. Thus it suffices to
reach a contradiction assuming that dim Y < 4 or dim Y = 4 and deg f > 2. One
goes through a (painful) case-by-case analysis. In each case, with the exception
of Y a quartic 4-fold, one invokes either Claim 4.6 or Claim 4.4(3). We give
two “baby” cases. First suppose that Y is a quadric 4-fold. Let Y0 be an open
dense subset containing the image by f of its regular points. There exists a
3-dimensional linear space L ⊂ P5 such that L ∩ Y0 is a reducible surface. Now
L corresponds to the intersection of two distinct D1, D2 ∈ |H | and since L ∩ Y0

is reducible so is D1 ∩ D2; this contradicts Claim 4.6. As a second example we
suppose that Y is a smooth cubic 4-fold and f is regular. Notice that

H · H · H · H = 12 (4.1.16)

by (2.1.3) and hence deg f = 4. Let H 4(Y )pr ⊂ H 4(Y ) be the primitive coho-
mology. By Claim 4.4(3) we must have f ∗H 4(Y )pr ⊂ Ch⊗ h⊥. The restriction
to f ∗H 4(Y ;Q)pr of the intersection form on H 4(X) equals the intersection form
on H 4(Y ;Q)pr multiplied by 4 because deg f = 4; one gets a contradiction by
comparing discriminants. �
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Conjecture 4.7. Item (b) of Theorem 4.5 does not occur.

As we will explain in the next subsection, Conjecture 4.7 implies that a
numerical Hilbert square is in fact a deformation of K3[2]. The following question
arose in connection with the proof of Theorem 4.5.

Question 4.8. Let X be a HK 4-fold and H an ample divisor on X . Is OX (2H)
globally generated?

The analogous question in dimension 2 has a positive answer; see for example
[Mayer 1972]. We notice that if X is a 4-fold with trivial canonical bundle and
H is ample on X then OX (5H) is globally generated, by [Kawamata 1997]. The
relation between Question 4.8 and Theorem 4.5 is the following.

Claim 4.9. Suppose that the answer to Question 4.8 is positive. Let X be a
numerical Hilbert square equipped with an ample divisor H such that qX (H)= 2.
Let Y ⊂|H |∨ be the closure of the image of the set of regular points of the rational
map X 99K |H |∨. Then one of the following holds:

(1) OX (H) is globally generated.

(2) Y is contained in a quadric.

Proof. Suppose that alternative (2) does not hold. Then multiplication of sections
defines an injection Sym2 H 0(OX (H)) ↪→ H 0(OX (2H)); on the other hand we
have

dim Sym2 H 0(OX (H))= 21= dim H 0(OX (2H)). (4.1.17)

(The last equation holds by (2.2.7), which is valid for numerical Hilbert squares
as noticed above.) Since OX (2H) is globally generated it follows that OX (H) is
globally generated as well, and alternative (1) holds. �

We remark that alternatives (1) and (2) of the claim are not mutually exclusive.
In fact let S ⊂ P3 be a smooth quartic surface (a K3) not containing lines. We
have a finite map

S[2]
f
−→ Gr(1,P3)⊂ P5, [Z ] 7→ 〈Z〉 (4.1.18)

with image the Plücker quadric in P5. Let H := f ∗OP5(1); since f is finite H is
ample. Moreover q(H)= 2 because H · H · H · H = 12; thus (4.1.18) may be
identified with the map associated to the complete linear system |H |.

4.2. Double EPW-sextics, II. Let (X, H) be as in Theorem 4.5(a). In [O’Grady
2006] we proved that there exists A ∈ LG(

∧3
C6)0 such that YA = f (X) and

the double cover X→ f (X) may be identified with the canonical double cover
X A→ YA. Since X A is a deformation of K3[2] it follows that if Conjecture 4.7
holds then numerical Hilbert squares are deformations of K3[2]. The precise
result is this:



HIGHER-DIMENSIONAL ANALOGUES OF K3 SURFACES 289

Theorem 4.10 [O’Grady 2006]. Let X be a numerical Hilbert square. Suppose
that H is an ample divisor class on X such that the following hold:

(1) qX (H)= 2 (and hence dim |H | = 5).

(2) OX (H) is globally generated.

(3) There exist an antisymplectic involution φ : X → X and an inclusion
X/〈φ〉 ↪→|H |∨ such that the map X→|H |∨ is identified with the composi-
tion

X
ρ
−→ X/〈φ〉 ↪→ |H |∨ (4.2.1)

where ρ is the quotient map.

Then there exists A ∈ LG(
∧3

C6)0 such that YA = Y and the double cover
X→ f (X) may be identified with the canonical double cover X A→ YA.

Proof. Step I. Let Y := f (X); abusing notation we let f : X→ Y be the double
cover which is identified with the quotient map for the action of 〈φ〉. We have the
decomposition f∗OX =OY⊕η where η is the (−1)-eigensheaf for the action of φ
on OX . One proves that ζ := η⊗OY (3) is globally generated — an intermediate
step is the proof that 3H is very ample. Thus we have an exact sequence

0→ G −→ H 0(ζ )⊗O|H |∨−→i∗ζ → 0. (4.2.2)

where i : Y ↪→ |H |∨ is inclusion.

Step II. One computes h0(ζ ) as follows. First H 0(ζ ) is equal to H 0(OX (3H))−,
the space of φ-anti-invariant sections of OX (3H). Using Equation (2.2.7) one gets
that h0(ζ )= 10. A local computation shows that G is locally free. By invoking
Beilinson’s spectral sequence for vector bundles on projective spaces one gets
that G ∼=�3

|H |∨(3). On the other hand one checks easily (Euler sequence) that
the vector bundle F of (3.1.3) is isomorphic to �3

P(V )(3). Hence if we identify
P(V ) with |H |∨ then F is isomorphic to the sheaf G appearing in (4.2.2). In
other words (4.2.2) starts looking like the top horizontal sequence of (3.1.19).

Step III. The multiplication map η⊗η→ OY defines an isomorphism β : i∗ζ
∼
−→

Ext1(i∗ζ,O|H |∨). Applying general results of Eisenbud, Popescu, and Walter
[Eisenbud et al. 2001] (alternatively see the proof of Claim (2.1) of [Casnati and
Catanese 1997]) one gets that β fits into a commutative diagram

0 −→ �3
|H |∨(3)

κ
−→ H 0(θ)⊗O|H |∨ −→ i∗ζ → 0yst

ys
yβ

0 −→ H 0(θ)∨⊗O|H |∨
κ t

−→ 23
|H |∨(−3)

∂
−→ Ext1(i∗ζ,O|H |∨) −→ 0

(4.2.3)
where the second row is obtained from the first one by applying Hom( · ,O|H |∨).
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Step IV. One checks that

�3
|H |∨(3)

(κ,st )
−→

(
H 0(ζ )⊕ H 0(ζ )∨

)
⊗O|H |∨ (4.2.4)

is an injection of vector bundles. The transpose of the map above induces an iso-
morphism

(
H 0(ζ )∨⊕ H 0(ζ )

) ∼
−→ H 0(�3

|H |∨(3)
∨). The same argument shows

that the transpose of (3.1.3) induces an isomorphism
∧3V∨ ∼−→ H 0(F∨). Since

F is isomorphic to�3
|H |∨(3)we get an isomorphism ρ :H 0(ζ )⊕H 0(ζ )∨

∼
−→

∧3V
such that (abusing notation) ρ(�3

|H |∨(3))= F . Lastly one checks that the standard
symplectic form on (H 0(ζ )⊕H 0(ζ )∨) is identified (up to a multiple) via ρ with
the symplectic form ( · , · )V of (3.1.1). Now let A = ρ(H 0(ζ )∨); then (4.2.3) is
identified with (3.1.19). This ends the proof of Theorem 4.10. �
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