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Compactifications of moduli of abelian
varieties: an introduction

MARTIN OLSSON

We survey the various approaches to compactifying moduli stacks of polarized
abelian varieties. To motivate the different approaches to compactifying, we
first discuss three different points of view of the moduli stacks themselves.
Then we explain how each point of view leads to a different compactification.
Throughout we emphasize maximal degenerations which capture much of the
essence of the theory without many of the technicalities.

1. Introduction

A central theme in modern algebraic geometry is to study the degenerations of
algebraic varieties, and its relationship with compactifications of moduli stacks.
The standard example considered in this context is the moduli stack Mg of genus
g curves (where g ≥ 2) and the Deligne–Mumford compactification Mg ⊂Mg

[Deligne and Mumford 1969]. The stack Mg has many wonderful properties:
(1) It has a moduli interpretation as the moduli stack of stable genus g curves.
(2) The stack Mg is smooth.
(3) The inclusion Mg ↪→Mg is a dense open immersion and Mg\Mg is a divisor

with normal crossings in Mg.
Unfortunately the story of the compactification Mg ⊂Mg is not reflective of the
general situation. There are very few known instances where one has a moduli
stack M classifying some kind of algebraic varieties and a compactification
M⊂M with the three properties above.

After studying moduli of curves, perhaps to next natural example to consider is
the moduli stack Ag of principally polarized abelian varieties of a fixed dimension
g. Already here the story becomes much more complicated, though work of
several people has led to a compactification Ag ⊂Ag which enjoys the following
properties:
(1) The stack Ag is the solution to a natural moduli problem.
(2′) The stack Ag has only toric singularities.
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(3′) The inclusion Ag ↪→Ag is a dense open immersion, and the complement
Ag\Ag defines an fs-log structure MAg

(in the sense of Fontaine and Illusie
[Kato 1989]) on Ag such that (Ag,MAg

) is log smooth over Spec(Z).

Our aim in this paper is to give an overview of the various approaches to
compactifying Ag, and to outline the story of the canonical compactification
Ag ↪→Ag. In addition, we also consider higher degree polarizations.

What one considers a ‘natural’ compactification of Ag depends to a large
extent on one’s view of Ag itself. There are three basic points of view of this
moduli stack (which of course are all closely related):

(The standard approach). Here one views Ag as classifying pairs (A, λ), where
A is an abelian variety of dimension g and λ : A→ At is an isomorphism between
A and its dual (a principal polarization), such that λ is equal to the map defined
by an ample line bundle, but one does not fix such a line bundle. This point of
view is the algebraic approach most closely tied to Hodge theory.

(Moduli of pairs approach). This is the point of view taken in Alexeev’s work
[2002]. Here one encodes the ambiguity of the choice of line bundle defining
λ into a torsor under A. So Ag is viewed as classifying collections of data
(A, P, L , θ), where A is an abelian variety of dimension g, P is an A-torsor, L
is an ample line bundle on P defining a principal polarization on A (see 2.2.3),
and θ ∈ 0(P, L) is a nonzero global section.

(Theta group approach). This point of view comes out of Mumford’s theory
[1966; 1967] of the theta group, combined with Alexeev’s approach via torsors.
Here one considers triples (A, P, L), where A is an abelian variety of dimension
g, P is an A-torsor, and L is an ample line bundle on P defining a principal
polarization on A (but one does not fix a section of L). This gives a stack
Tg which is a gerbe over Ag bound by Gm . Using a standard stack-theoretic
construction called rigidification one can then construct Ag from Tg, but in the
theta group approach the stack Tg is the more basic object.

In Section 2 we discuss each of these three points of view of the moduli of
principally polarized abelian varieties (and moduli of abelian varieties with higher
degree polarization). Then in sections 3 and 4 we discuss how each of these
three approaches leads to different compactifications (toroidal, Alexeev, and Ag

respectively). We discuss in some detail in the maximally degenerate case the
relationship between degenerating abelian varieties and quadratic forms. This re-
lationship is at the heart of all of the different approaches to compactification. We
do not discuss the case of partial degenerations where one has to introduce the the-
ory of biextensions (for this the reader should consult [Faltings and Chai 1990]),
since most of the main ideas can already be seen in the maximally degenerate case.
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Finally in Section 5 we give an overview of how the canonical compactification
can be used to compactify moduli stacks for abelian varieties with level structure
and higher degree polarizations, using the theta group approach.

Our aim here is not to give a complete treatment, but rather to give the reader
an indication of some of the basic ideas involved. Much of our focus is on the
local structure of these moduli stacks at points of maximal degeneration in the
boundary of the various compactifications (i.e., points where the degeneration of
the abelian scheme is a torus). This is because the local structure of the moduli
stacks can be seen more clearly here, and because the case of partial degeneration
introduces many more technicalities (in particular, in this paper we do not discuss
the theory of biextensions). We hardly touch upon the issues involved in going
from the local study to the global. The interested reader should consult the
original sources [Alexeev 2002; Faltings and Chai 1990; Olsson 2008].

Perhaps preceding the entire discussion of this paper is the theory of the
Sataka/Baily–Borel/minimal compactification of Ag, and the connection with
modular forms. We should also remark that a beautiful modular interpretation
of the toroidal compactifications using log abelian varieties has been developed
by Kajiwara, Kato, and Nakayama [Kajiwara et al. 2008a; 2008b]. We do not,
however, discuss either of these topics here.

Acknowledgements. The aim of this article is to give a survey of known results,
and there are no new theorems. The results discuss here are the fruits of work of
many people. We won’t try to make an exhaustive list, but let us at least mention
two basic sources: [Faltings and Chai 1990] and [Alexeev 2002], from which
we learned the bulk of the material on toroidal compactifications and Alexeev’s
compactification, respectively. We thank the referee for helpful comments on
the first version of the paper.

Prerequisites and conventions. We assume that the reader is familiar with the
basic theory of abelian varieties as developed for example in [Mumford 1970].
We also assume the reader is familiar with stacks at the level of [Laumon and
Moret-Bailly 2000]. Finally knowledge of logarithmic geometry in the sense of
Fontaine and Illusie [Kato 1989] will be assumed for sections 4.5 and 5.

Our conventions about algebraic stacks are those of [Laumon and Moret-Bailly
2000].

2. Three perspectives on Ag

2.1. The standard definition.

2.1.1. Let k be an algebraically closed field, and let A/k be an abelian variety.
Let At denote the dual abelian variety of A (see [Mumford 1970, Chapter III,
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§13]). Recall that At is the connected component of the identity in the Picard
variety PicA/k of A. If L is a line bundle on A, then we obtain a map

λL : A→ At , x 7→ [t∗x L ⊗ L−1
],

where tx : A→ A denotes translation by the point x . If L is ample then λL is finite
and the kernel is a finite group scheme over k (by [Mumford 1970, Application 1
on p. 60]) whose rank is a square by [Mumford 1970, Riemann–Roch theorem,
p. 150]. The degree of an ample line bundle L is defined to be the positive integer
d for which the rank of Ker(λL) is d2. The degree d can also be characterized
as the dimension of the k-space 0(A, L) (loc. cit.).

Definition 2.1.2. Let d ≥ 1 be an integer. A polarization of degree d on an
abelian variety A/k is a morphism λ : A→ At of degree d2, which is equal to
λL for some ample line bundle L on A. A principal polarization is a polarization
of degree 1.

Remark 2.1.3. If L and L ′ are two ample line bundles on an abelian variety
A/k, then λL = λL ′ if and only if L ′ ' t∗x L for some point x ∈ A(k). Indeed
λL = λL ′ if and only if

λL ′⊗L−1 = {e} (constant map),

which by the definition of the dual abelian variety (see for example [Mumford
1970, p. 125]) is equivalent to the statement that the line bundle L ′⊗ L−1 defines
a point of At . Since λL is surjective, this in turn is equivalent to the statement
that there exists a point x ∈ A(k) such that

t∗x L ⊗ L−1
' L ′⊗ L−1,

or equivalently that t∗x L ' L ′. The same argument shows that if L and L ′ are
line bundles such that λL = λL ′ then L is ample if and only if L ′ is ample.

2.1.4. These definitions extend naturally to families. Recall [Mumford 1965,
Definition 6.1] that if S is a scheme then an abelian scheme over S is a smooth
proper group scheme A/S with geometrically connected fibers. As in the case
of abelian varieties, the group scheme structure on A is determined by the zero
section [Mumford 1965, Corollary 6.6].

For an abelian scheme A/S, one can define the dual abelian scheme At/S as
a certain subgroup scheme of the relative Picard scheme PicA/S (see [Mumford
1965, Corollary 6.8] for more details). As in the case of a field, any line bundle
L on A defines a homomorphism

λL : A→ At .
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If L is relatively ample then λL is finite and flat, and the kernel Ker(λL) has
rank d2 for some locally constant positive integer-valued function d on S. If
π : A→ S denotes the structure morphism, then we have

Riπ∗L = 0, i > 0,

and π∗L is a locally free sheaf of rank d on S whose formation commutes with
arbitrary base change S′→ S (this follows from the vanishing theorem for higher
cohomology over fields [Mumford 1970, p. 150] and cohomology and base
change).

Definition 2.1.5. Let d≥1 be an integer. A polarization of degree d on an abelian
scheme A/S is a homomorphism λ : A→ At such that for every geometric point
s̄→ S the map on geometric fibers As̄→ At

s̄ is a polarization of degree d in the
sense of 2.1.2.

Remark 2.1.6. By a similar argument as in 2.1.3, if A/S is an abelian scheme
over a base S, and if L and L ′ are two relatively ample line bundles on A, then
λL = λL ′ if and only if there exists a point x ∈ A(S) such that L ′ and t∗x L differ
by the pullback of a line bundle on S.

2.1.7. If (A, λ) and (A′, λ′) are two abelian schemes over a scheme S with polar-
izations of degree d , then an isomorphism (A, λ)→ (A′, λ′) is an isomorphism
of abelian schemes

f : A→ A′

such that the diagram

A
f //

λ

��

A′

λ′

��
At A′t

f t
oo

commutes, where f t denotes the isomorphism of dual abelian schemes induced
by f .

Lemma 2.1.8. Let A/S be an abelian scheme and λ : A→ At a homomorphism.
Suppose s ∈ S is a point such that the restriction λs : As→ At

s of λ to the fiber at
s is equal to λLs for some ample line bundle Ls on As . Then after replacing S by
an étale neighborhood of s, there exists a relatively ample line bundle L on A
such that λ= λL .

Proof. By a standard limit argument, it suffices to consider the case when S is of
finite type over an excellent Dedekind ring. By the Artin approximation theorem
[1969, 2.2] applied to the functor

F : (S-schemes)op
→ Sets
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sending an S-scheme T to the set of isomorphism classes of line bundles L on
AT such that λ= λL , it suffices to consider the case when S = Spec(R) is the
spectrum of a complete noetherian local ring. In this case it follows from [Oort
1971, 2.3.2 and its proof] that there exists a line bundle L on A whose fiber over
the closed point s is isomorphic to Ls . Now note that the two maps

λL , λ : A→ At

are equal by [Mumford 1965, Chapter 6, Corollary 6.2]. �

Lemma 2.1.9. Let A/S be an abelian scheme over a scheme S, and let λ : A→ At

be a polarization. Then fppf-locally on S there exists a relatively ample line
bundle L on A such that λ= λL . If 2 is invertible on S, then there exists such a
line bundle étale locally on S.

Proof. Consider first the case when S = Spec(k), for some field k. In this case,
there exists by [Mumford 1965, Chapter 6, Proposition 6.10] a line bundle M on
A such that λM = 2λ. Let Z denote the fiber product of the diagram

Spec(k)

[M]
��

PicA/k
·2 // PicA/k .

The scheme Z represents the fppf-sheaf associated to the presheaf which to any
k-scheme T associates the set of isomorphism classes of line bundles L for which
L⊗2
' M .

By assumption, there exists a field extension k→ K and a line bundle L on
AK such that λ|AK = λL . Then

λL⊗2 = 2λ= λM ,

so by 2.1.3 there exists, after possibly replacing K by an even bigger field
extension, a point x ∈ A(K ) such that t∗x (L

⊗2)' M . It follows that t∗x L defines
a point of Z(K ). Note also that if L is a line bundle on A such that L⊗2

' M
then for any other line bundle R on A the product L ⊗ R defines a point of Z
if and only if the class of the line bundle R is a point of At

[2]. From this we
conclude that Z is a torsor under At

[2]. In particular, Z is étale if 2 is invertible
in k, whence in this case there exists étale locally a section of Z .

To conclude the proof in the case of a field, note that if L is a line bundle on
A with L⊗2

' M , then
λL − λ : A→ At

has image in At
[2] since 2λL = 2λ, and since At

[2] is affine the map λL − λ

must be the trivial homomorphism.
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For the general case, let s ∈ S be a point. Then we can find a finite field
extension k(s)→ K and a line bundle L on AK such that λL = λ|AK . By the
above we can further assume k(s)→ K is separable if 2 is invertible in S. Now
by [EGA 1961, chapitre 0, proposition 10.3.1, p. 20] there exists a quasifinite
flat morphism S′→ S and a point s ′ ∈ S′ such that the induced extension

k(s)→ k(s ′)

is isomorphic to k(s)→ K . If k(s)→ K is separable then we can even choose
S′→ S to be étale. Now we obtain the result from 2.1.8 applied to s ′ ∈ S′. �

2.1.10. For integers d, g ≥ 1, let Ag,d denote the fibered category over the
category of schemes, whose fiber over a scheme S is the groupoid of pairs
(A/S, λ), where A is an abelian scheme of dimension g and λ : A→ At is a
polarization of degree d . We denote Ag,1 simply by Ag.

The basic result on the fibered category Ag,d is the following:

Theorem 2.1.11. The fibered category Ag,d is a Deligne–Mumford stack over Z,
with quasiprojective coarse moduli space Ag,d . Over Z[1/d] the stack Ag,d is
smooth.

Proof. For the convenience of the reader we indicate how to obtain this theorem
from the results of [Mumford 1965], which does not use the language of stacks.

Recall that if S is a scheme and A/S is an abelian scheme, then for any integer
n invertible on S the kernel of multiplication by n on A

A[n] := Ker(·n : A→ A)

is a finite étale group scheme over S of rank n2g, étale locally isomorphic to
(Z/(n))2g. Define a full level-n-structure on A/S to be an isomorphism

σ : (Z/(n))2g
' A[n],

and let Ag,d,n be the fibered category over Z[1/n] whose fiber over a Z[1/n]-
scheme S is the groupoid of triples (A, λ, σ ), where (A, λ) ∈Ag,d(S) and σ is
a full level-n-structure on A. Here an isomorphism between two objects

(A, λ, σ ), (A′, λ′, σ ′) ∈Ag,d,n(S)

is an isomorphism f : (A, λ)→ (A′, λ′) in Ag,d(S) such that the diagram

(Z/(n))2g

σ

zz

σ ′

%%
A[n]

f // A′[n]



302 MARTIN OLSSON

commutes. By [Mumford 1965, Chapter 7, Theorem 7.9 and remark following
its proof], if n ≥ 3 then Ag,d,n is equivalent to the functor represented by a
quasiprojective Z[1/n]-scheme. Let us also write Ag,d,n for this scheme. There
is a natural action of GL2g(Z/(n)) on Ag,d,n for which g ∈ GL2g(Z/(n)) sends
(A, λ, σ ) to (A, λ, σ ◦ g). Furthermore, we have an isomorphism

Ag,d |Z[1/n] ' [Ag,d,n/GL2g(Z/(n))].

Now choose two integer n, n′ ≥ 3 such that n and n′ are relatively prime. We
then get a covering

Ag,d ' [Ag,d,n/GL2g(Z/(n))] ∪ [Ag,d,n′/GL2g(Z/(n′))]

of Ag,d by open substacks which are Deligne–Mumford stacks, whence Ag,d is
also a Deligne–Mumford stack.

By [Keel and Mori 1997, 1.3] the stack Ag,d has a coarse moduli space, which
we denote by Ag,d . A priori Ag,d is an algebraic space, but we show that Ag,d is
a quasiprojective scheme as follows.

Recall from [Mumford 1965, Chapter 6, Propositon 6.10], that to any object
(A, λ)∈Ag,d(S) over some scheme S, there is a canonically associated relatively
ample line bundle M on A which is rigidified at the zero section of A and such
that λM = 2λ. By [Mumford 1970, theorem on p. 163] and cohomology and
base change, the sheaf M⊗3 is relatively very ample on A/S, and if f : A→ S
denotes the structure morphism then f∗(M⊗3) is a locally free sheaf on S whose
formation commutes with arbitrary base change S′→ S and whose rank N is
independent of (A, λ).

Let
f : X→Ag,d

denote the universal abelian scheme, and let M denote the invertible sheaf on X

given by the association
(A, λ, σ ) 7→ M.

For r ≥ 1, let Er denote the vector bundle on Ag,d given by f∗(M⊗3r ), and let
Lr denote the top exterior power of Er . We claim that for suitable choices of r
and s the line bundle L⊗ms

mr descends to an ample line bundle on Ag,d for any
m ≥ 1. Note that if this is the case, then the descended line bundle is unique up
to unique isomorphism, for if R is any line bundle on Ag,d then the adjunction
map

R→ π∗π
∗R

is an isomorphism, where π :Ag,d→ Ag,d is the projection. To verify this claim
it suffices to verify it after restricting to Z[1/p], where p is a prime. In this case
the claim follows from the proof of [Mumford 1965, Chapter 7, Theorem 7.10].
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Finally the statement that Ag,d is smooth over Z[1/d] follows from [Oort
1971, 2.4.1]. �

2.2. Moduli of pairs.

2.2.1. In [Alexeev 2002], Alexeev introduced a different perspective on Ag . The
key point is to encode into a torsor the ambiguity in the choice of line bundle
for a given polarization. To make this precise let us first introduce some basic
results about torsors under abelian varieties.

2.2.2. Let S be a scheme and A/S an abelian scheme. An A-torsor is a smooth
scheme f : P→ S with an action of A on P over S such that the graph of the
action map

A×S P→ P ×S P, (a, p) 7→ (p, a ∗ p)

is an isomorphism. This implies that if we have a section s : S→ P of f then
the induced map

A→ P, a 7→ a ∗ s

is an isomorphism of schemes compatible with the A-action, where A acts on
itself by left translation. In particular, f is a proper morphism.

2.2.3. If A/S is an abelian scheme, and P/S is an A-torsor, then any line bundle
L on P defines a homomorphism

λL : A→ At .

Namely, since P→ S is smooth, there exists étale locally a section s : S→ P
which defines an isomorphism ιs : A→ P . In this situation we define λL to be
the map

λι∗s L : A→ At , a 7→ t∗a (ι
∗

s L)⊗ ι∗s L−1.

We claim that this is independent of the choice of section s. To see this let
s ′ : S→ P be another section. Since P is an A-torsor there exists a unique point
b ∈ A(S) such that s ′ = b ∗ s. It follows that ι∗s′L ' t∗b ι

∗
s L , so the claim follows

from [Alexeev 2002, 4.1.12]. It follows that even when there is no section of
P/S, we can define the map λL by descent theory using local sections.

2.2.4. With notation as in the preceding paragraph, suppose L is an ample line
bundle on P , and let f : P→ S be the structure morphism. Then:

(1) f∗L is a locally free sheaf of finite rank on S whose formation commutes
with arbitrary base change on S.

(2) If d denotes the rank of f∗L , then the kernel of λL : A→ At is a finite flat
group scheme over S of rank d2.
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Indeed both these assertions are local on S in the étale topology, so to prove
them it suffices to consider the case when P admits a section, in which case
they follow from the corresponding statements for ample line bundles on abelian
schemes.

2.2.5. The most important example of torsors for this paper is the following. Let
S be a scheme and let A/S be an abelian scheme with a principal polarization
λ : A→ At . Consider the functor

P : (S-schemes)→ Sets

which to any S-scheme T associates the set of isomorphism classes of pairs
(L , ε), where L is a line bundle on AT such that λL = λ|AT and ε : OT → e∗L
is an isomorphism of OT -modules. Note that two objects (L , ε) and (L ′, ε′) are
isomorphic if and only if the line bundles L and L ′ are isomorphic, in which case
there exists a unique isomorphism σ : L→ L ′ such that the induced diagram

e∗L

e∗σ

��

OT

ε
<<

ε ""
e∗L ′

commutes.
There is an action of A on P defined as follows. Given an S-scheme T , a

T -valued point x ∈ A(T ), and an element (L , ε) ∈ P(T ), define x ∗ (L , ε) to be
the line bundle

t∗x L ⊗OS x∗L−1
⊗OS e∗L

on AT , where tx : AT → AT is the translation, and let x ∗ ε be the isomorphism
obtained from ε and the canonical isomorphism

e∗(t∗x L ⊗OS x∗L−1
⊗OS e∗L)' x∗L ⊗ x∗L−1

⊗ e∗L ' e∗L .

Then the functor P is representable, and the action of A makes P an A-torsor.
Note that we can also think of P is the sheaf (with respect to the étale topol-
ogy) associated to the presheaf which to any S-scheme T associates the set of
isomorphism classes of line bundles L on AT such that λL = λ|T .

On P there is a tautological line bundle L together with a global section
θ ∈0(P,L). Indeed giving such a line bundle and section is equivalent to giving
for every scheme-valued point p ∈ P(T ) a line bundle Lp on T together with a
section θp ∈ 0(T,Lp). We obtain such a pair by noting that since P is a torsor,
the point p corresponds to a pair (L p, εp) on AT , and we define Lp to be e∗L p
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with the section θp being the image of 1 under the map

εp : OT → e∗L p.

2.2.6. Define AAlex
g to be the fibered category over the category of schemes,

whose fiber over a scheme S is the groupoid of quadruples (A, P, L , θ) as
follows:

(1) A/S is an abelian scheme of relative dimension g.

(2) P is an A-torsor. Let f : P→ S denote the structure morphism.

(3) L is an ample line bundle on P such that λL : A→ At is an isomorphism.

(4) θ : OS→ f∗L is an isomorphism of line bundles on S.

Note that for any (A, P, L , θ) ∈ AAlex
g (S) the pair (A, λL) is an object of

Ag(S). We therefore get a morphism of fibered categories

F :AAlex
g →Ag (1)

Proposition 2.2.7. The morphism (1) is an equivalence.

Proof. The construction in 2.2.5 defines another functor

G :Ag→AAlex
g

which we claim is a quasi-inverse to F .
For this note that given a quadruple (A, P, L , θ)∈AAlex

g (S) over some scheme
S, and if (A, P ′, L ′, θ ′) denote the object obtained by applying G ◦ F , then there
is a natural map of A-torsors

ρ : P→ P ′

obtained by associating to any S-scheme-valued point p ∈ P(T ) the class of the
line bundle ι∗p L , where

ιp : A→ P

is the A-equivariant isomorphism obtained by sending e ∈ A to p (here we think
of P ′ as the sheaf associated to the presheaf of isomorphism classes of line
bundles on A defining λ). By construction the isomorphism ρ has the property
that ρ∗L ′ and L are locally on S isomorphic. Since the automorphism group
scheme of any line bundle on P is isomorphic to Gm , we see that there exists a
unique isomorphism

ρ̃ : ρ∗L ′→ L

sending θ ′ to θ . We therefore obtain a natural isomorphism

(A, P, L , θ)' (A, P ′, L ′, θ ′)

in AAlex
g . This construction defines an isomorphism of functors id→ G ◦ F.
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To construct an isomorphism id→ F ◦G, it suffices to show that if (A, λ)
belongs to Ag(S) for some scheme S, and if (A, P, L , θ) denotes G(A, P, L , θ),
then λL = λ, which is immediate from the construction in 2.2.5. �

Remark 2.2.8. In what follows we will usually not use the notation AAlex
g .

Remark 2.2.9. While we find the language of line bundles with sections most
convenient, note that giving the pair (L , θ) is equivalent to giving the correspond-
ing Cartier divisor D ↪→ P .

2.3. Approach via theta group. The third approach to the moduli stacks Ag,d

is through a study of theta groups of line bundles. Before explaining this we first
need a general stack theoretic construction that will be needed. The notion of
rigidification we describe below has been discussed in various level of generality
in many papers (see for example [Abramovich et al. 2003, Theorem 5.1.5]).

2.3.1. Let X be an algebraic stack, and let IX → X be its inertia stack. By
definition, the stack IX has fiber over a scheme S the groupoid of pairs (x, α),
where x ∈ X(S) and α : x → x is an automorphism of x . In particular, IX is
a relative group space over X. The stack IX can also be described as the fiber
product of the diagram

X

1

��
X

1 // X×X.

Suppose further given a closed substack G⊂ IX such that the following hold:

(i) For every x : S→X with S a scheme, the base change GS ↪→IS is a normal
subgroup space of the group space GS .

(ii) The structure map G→ X is flat.

Then one can construct a new stack X, called the rigidification of X with respect
to G, together with a map

π : X→ X

such that the following hold:

(i) The morphism on inertia stacks

IX→ IX

sends G to the identity in IX.

(ii) The morphism π is universal with respect to this property: If Y is any
algebraic stack, then

π∗ : HOM(X,Y)→ HOM(X,Y)
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identifies the category HOM(X,Y)with the full subcategory of HOM(X,Y)

of morphisms f : X→Y for which the induced morphism of inertia stacks

IX→ IY

sends G to the identity.

(iii) The map π is faithfully flat, and X is a gerbe over X.

2.3.2. The stack X is obtained as the stack associated to the prestack Xps whose
objects are the same as those of X but whose morphisms between two objects
x, x ′ ∈ X(S) over a scheme S is given by the quotient of HomX(S)(x, x ′) by the
natural action of G(S, x) (a subgroup scheme of the scheme of automorphisms
of x). One checks (see for example [Olsson 2008, §1.5]) that the composition
law for morphisms in X descends to a composition law for morphisms modulo
the action of G.

Remark 2.3.3. The faithful flatness of the map π implies that one can frequently
descend objects from X to X. Let us explain this in the case of quasicoherent
sheaves, but the same argument applies in many other contexts (in particular to
finite flat group schemes and logarithmic structures, which will be considered
later). For an object x ∈ X(S) over a scheme S, let Gx denote the pullback of
G, so Gx is a flat group scheme over S. If F is a quasicoherent sheaf on X then
pullback by x also defines a quasicoherent sheaf Fx on S, and there is an action
of the group Gx(S) on Fx . It is immediate that if F is of the form π∗F for some
quasicoherent sheaf F on X, then these actions of Gx(S) on the Fx are trivial.
An exercise in descent theory, which we leave to the reader, shows that in fact
π∗ induces an equivalence of categories between quasicoherent sheaves on X

and the category of quasicoherent sheaves F on X such that for every object
x ∈ X(S) the action of Gx(S) on Fx is trivial.

2.3.4. We will apply this rigidification construction to get another view on Ag,d .
Consider first the case of Ag. Let Tg denote the fibered category over the

category of schemes whose fiber over a scheme S is the groupoid of triples
(A, P, L), where A/S is an abelian scheme of relative dimension g, P is an
A-torsor, and L is a relatively ample line bundle on P such that the induced map

λL : A→ At

is an isomorphism.
Note that for any such triple, there is a natural inclusion

Gm ↪→ AutTg
(A, P, L) (2)

given by sending u ∈ Gm to the automorphism which is the identity on A and P
and multiplication by u on L .
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Proposition 2.3.5. The stack Tg is algebraic, and the map

Tg→Ag, (A, P, L) 7→ (A, λL) (3)

identifies Ag with the rigidification of Tg with respect to the subgroup space
G ↪→ ITg defined by the inclusions (2).

Proof. Since any object of Ag is locally in the image of (3), it suffices to show
that for any scheme S and two objects (A, P, L) and (A′, P ′, L ′) in Tg(S), the
map sheaves on S-schemes (with the étale topology)

HomTg
((A, P, L), (A′, P ′, L ′))→ HomAg

((A, λL), (A′, λL ′))

provides an identification between HomAg
((A, λL), (A′, λL ′)) and the sheaf

quotient of HomTg
((A, P, L), (A′, P ′, L ′)) by the natural action of Gm . To

verify this we may work étale locally on S, and hence may assume that P and
P ′ are trivial torsors. Fix trivializations of these torsors, and view L and L ′ as
line bundles on A and A′ respectively.

In this case we need to show that for any isomorphism σ : A→ A′ such that
the diagram

A
σ //

λL

��

A′

λL′

��
At A′t

σ ∗oo

commutes, there exists a unique point a ∈ A(S) such that the two line bundles

L , t∗aσ
∗L ′

are locally on S isomorphic. This follows from 2.1.6 applied to the two line
bundles L and σ ∗L ′ which define the same principal polarization on A. �

2.3.6. For any object (A, P, L) ∈Tg(S) over a scheme S, we have a line bundle
W(A,P,L) on S given by f∗L , where f : P→ S is the structure morphisms, and
the formation of this line bundle commutes with arbitrary base change S′→ S.
It follows that we get a line bundle W on the stack Tg. Let

V→ Tg

denote the Gm-torsor corresponding to W. As a stack, V classifies quadruples
(A, P, L , θ), where (A, P, L) ∈ Tg and θ ∈W(A,P,L) is a nowhere vanishing
section. From this and 2.2.7 we conclude that the composite map

V→ Tg→Ag
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is an isomorphism, and therefore defines a section

s :Ag→ Tg.

Since Tg is a Gm-gerbe over Ag, we conclude that in fact

Tg 'Ag × BGm .

2.3.7. The description of Ag in 2.3.5 can be generalized to higher degree polar-
izations as follows.

Let S be a scheme and consider a triple (A, P, L), where A/S is an abelian
scheme, P is an A-torsor, and L is a line bundle on P . Define the theta group
of (A, P, L), denoted G(A,P,L) to be the functor on S-schemes which to any
S′/S associates the group of pairs (α, ι), where α : PS′→ PS′ is a morphism of
AS′-torsors, and ι : α∗L S′→ L S′ is an isomorphism of line bundles. Here PS′ ,
AS′ , and L S′ denote the base changes to S′. Note that α is equal to translation
by a, for a unique point a ∈ A(S′).

It follows that there is a natural map

G(A,P,L)→ A. (4)

Its image consists of scheme-valued points b ∈ A for which t∗b L and L are locally
isomorphic. This is precisely the kernel of λL . Note also that there is a natural
central inclusion

Gm ↪→ G(A,P,L)

given by sending a unit u to (idP , u). This is in fact the kernel of (4) so we have
an exact sequence of functors

1→ Gm→ G(A,P,L)→ K(A,P,L)→ 1,

where
K(A,P,L) := Ker(λL).

In particular, if L is ample then K(A,P,L) is a finite flat group scheme over S,
which also implies that G(A,P,L) is a group scheme flat over S.

2.3.8. Suppose now that L is relatively ample on P , so that K(A,P,L) is a finite
flat group scheme over S. We then get a skew-symmetric pairing

e : K(A,P,L)× K(A,P,L)→ Gm,

defined by sending sections x, y ∈ K(A,P,L) to the commutator

e(x, y) := x̃ ỹ x̃−1 ỹ−1,

where x̃, ỹ ∈ G(A,P,L) are local liftings of x and y respectively. Note that this
is well-defined (in particular independent of the choices of liftings) since Gm is
central in G(A,P,L).
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The pairing e is called the Weil pairing and is nondegenerate. Indeed, this
can be verified étale locally on S, so it suffices to consider the case when P is a
trivial torsor in which case the result is [Mumford 1970, Corollary 2, p. 234].

2.3.9. Fix integers g, d ≥ 1, and let Tg,d be the stack over the category of
schemes whose fiber over a scheme S is the groupoid of triples (A, P, L), where
A is an abelian scheme of relative dimension g over S, P is an A-torsor, and L
is a relatively ample line bundle on P of degree d .

Proposition 2.3.10. The stack Tg,d is an algebraic stack. If G⊂ ITg,d denotes
the subgroup of the inertia stack defined by the theta groups, then G is flat over
Tg,d and the rigidification of Tg,d with respect to G is canonically isomorphic to
Ag,d .

Proof. This follows from an argument similar to the proof of 2.3.5, which we
leave to the reader. �

2.3.11. The stacks Ag,d arise naturally when considering level structures, even if
one is only interested in principally polarized abelian varieties. Namely, suppose
d ′ = d · k is a second integer. Then there is a natural map

Ag,d →Ag,d ′, (A, λ) 7→ (A, k · λ). (5)

This map is obtained by passing to rigidifications from the map

Tg,d → Tg,d ′, (A, P, L) 7→ (A, P, L⊗k).

Proposition 2.3.12. Over Z[1/d], the map (5) is an open and closed immersion.

Proof. See [Olsson 2008, 6.2.3]. �

2.3.13. As we discuss in Section 5 below, this result can be used to study moduli
of principally polarized abelian varieties with level structure using moduli stacks
for abelian varieties with higher degree polarizations.

3. Degenerations

3.1. Semiabelian schemes.

3.1.1. By a torus over a scheme S, we mean a commutative group scheme T/S
which étale locally on S is isomorphic to Gr

m , for some integer r ≥ 0. For such a
group scheme T , let

XT := Hom(T,Gm)

be the sheaf on the big étale site of S classifying homomorphisms T → Gm .
Then XT is a locally constant sheaf of free finitely generated abelian groups
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(indeed this can be verified étale locally where it follows from the fact that
Hom(Gr

m,Gm)' Zr ), and the natural map

T → Hom(XT ,Gm), u 7→ (χ 7→ χ(u))

is an isomorphism of group schemes (again to verify this it suffices to consider
the case when T = Gr

m). The sheaf XT is called the sheaf of characters of T .
One can also consider the sheaf of cocharacters of T defined to be the sheaf

YT := Hom(Gm, T )

of homomorphisms Gm→ T . Again this is a locally constant sheaf of finitely
generated free abelian groups and the natural map

XT × YT → Hom(Gm,Gm)' Z, (χ, ρ) 7→ χ ◦ ρ

identifies YT with Hom(XT ,Z). Furthermore, the natural map

YT ⊗Z Gm→ T, ρ⊗ u 7→ ρ(u)

is an isomorphism (where both sides are viewed as sheaves on the big étale site
of S).

3.1.2. A semiabelian variety over a field k is a commutative group scheme G/k
which fits into an exact sequence

1→ T → G→ A→ 1,

where T is a torus and A is an abelian variety over k.

Lemma 3.1.3. For any scheme S and abelian scheme A/S there are no noncon-
stant homomorphisms

Gm,S→ A

over S.

Proof. Consider first the case when S = Spec(k) is the spectrum of a field k.
If f : Gm → A is a homomorphism, then since A is proper f extends to a
Gm-equivariant morphism

P1
→ A,

where Gm acts on A through f . Since 0,∞ ∈ P1(k) are fixed points for the
Gm-action, their images in A must also be fixed points of the Gm-action, which
implies that f is constant.

For the general case, note first that by a standard limit argument it suffices to
consider the case when S is noetherian. Furthermore, to verify that a morphism
f :Gm,S→ A is constant we may pass to the local rings of S at geometric points,
and may therefore assume that S is strictly henselian local. Reducing modulo
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powers of the maximal ideal, we are then reduced to the case when S is the
spectrum of an artinian local ring R with algebraically closed residue field k. Let

f : Gm,R→ A

be a morphism. Then the reduction of f modulo the maximal ideal of R is
a constant morphism by the case of a field. It follows that for each integer n
invertible in k the restriction of f to µn,R ⊂ Gm,R is constant, as µn,R is étale
over R and must have image in the étale group scheme A[n] of n-torsion points of
A (and a map of étale schemes over R is determined by its reduction modulo the
maximal ideal). It follows that the preimage of the identity f −1(e)⊂ Gm,R is a
closed subscheme which contains all the subgroup schemes µn,R for n invertible
in k. From this it follows that f −1(e)= Gm,R . �

3.1.4. In particular, in the setting of 3.1.2 any homomorphism Gm→ G factors
through the subtorus T ⊂G. This implies that the subtorus T ⊂G is canonically
defined. Indeed if Y denotes the sheaf

Hom(Gm,G),

then from above we conclude that Y is a locally constant sheaf of finitely gener-
ated abelian groups, and the natural map

Y ⊗Z Gm→ G, ρ⊗ u 7→ ρ(u)

is a closed immersion with image T .
Note that this implies in particular that if G/k is a smooth group scheme such

that the base change G k̄ to an algebraic closure is a semiabelian variety, then G
is also a semiabelian variety as the subtorus Tk̄ ⊂ G k̄ descends to G.

3.1.5. For a general base scheme S, we define a semiabelian scheme over S to
be a smooth commutative group scheme G/S all of whose fibers are semiabelian
varieties. Semiabelian schemes arise as degenerations of abelian varieties. The
basic theorem in this regard is the following:

Theorem 3.1.6 (Semistable reduction theorem [SGA 1972, IX.3.6]). Let V be
a regular noetherian local ring of dimension 1, with field of fractions K , and
let AK be an abelian scheme over K . Then there exists a finite extension K ′/K
such that the base change AK ′ of K ′ extends to a semiabelian scheme G over the
integral closure V ′ of V in K ′.

3.2. Fourier expansions and quadratic forms. The key to understanding de-
generations of abelian varieties and how it relates to moduli, is the connection
with quadratic forms. This connection was originally established in the algebraic
context by Mumford in [Mumford 1972], and then developed more fully for
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partial degenerations in [Faltings and Chai 1990]. In this section we explain from
the algebraic point of view the basic idea of why quadratic forms are related to
degenerations.

3.2.1. First we need some facts about line bundles on tori. Let R be a complete
noetherian local ring with maximal ideal m⊂ R and reside field k. Let G/R be a
smooth commutative group scheme such that the reduction Gk is a torus. Assume
further that the character group sheaf X of Gk is constant (so Gk is isomorphic
to G

g
m for some g), and write also X for the free abelian group 0(Spec(k), X).

For every integer n, let Gn denote the reduction of G modulo mn+1, and let Tn

denote the torus over Rn := R/mn+1 defined by the group X . By [SGA 1970,
chapitre IX, théorème 3.6] there exists for every n ≥ 0 a unique isomorphism of
group schemes

σn : Tn→ Gn

restricting to the identity over k.
Suppose now that Ln is a line bundle on Tn . Then Ln is a trivial line bundle.

Indeed since T0 has trivial Picard group and Tn is affine, there exists a global
section s ∈ 0(Tn, Ln) whose pullback to T0 is a basis. By Nakayama’s lemma
this implies that s defines an isomorphism OTn ' Ln .

In particular, the line bundle Ln admits a Tn-linearization. Recall that such a
linearization is given by an isomorphism

α : m∗Ln→ pr∗1 Ln

over Tn ×Spec(Rn) Tn , where

m : Tn ×Spec(Rn) Tn→ Tn

is the group law, and such that over

Tn ×Spec(Rn) Tn ×Spec(Rn) Tn

the diagram

(m× 1)∗m∗L

α

��

(1×m)∗m∗L

α

��
(m× 1)∗pr∗2 L (1×m)∗pr∗2 L

pr∗3 L pr∗23m∗L
α

ww
pr∗23pr∗2 L
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commutes, where we write

pr23 : Tn ×Spec(Rn) Tn ×Spec(Rn) Tn→ Tn ×Spec(Rn) Tn

for the projection onto the second two components etc.
Since Tn is affine a Tn-linearization can also be described as follows. Let Mn

denote 0(Tn, Ln) which is a module over An := 0(Tn,OTn )' Rn[X ] (the group
ring on X ). Note that since An is canonically identified with the group ring on
X we have a grading

An =
⊕

χ∈X An,χ .

Then giving a Tn-linearization on Ln is equivalent to giving a decomposition

M =
⊕

χ∈X Mχ

of M into submodules indexed by X which is compatible with the X -grading on
An in the sense that for every χ, η ∈ X the map

An,χ ⊗Mη→ M

has image in Mχ+η.
Note that if χ0 ∈ X is a fixed element, then we obtain a new Tn-linearization

M =
⊕

χ∈X (M
(χ0))χ ,

by setting
(M (χ0))χ := Mχ+χ0 .

We call this new Tn-linearization the χ0-translate of the original one.

Lemma 3.2.2. (i) Translation by elements of X gives the set of Tn-linearizations
on Ln the structure of an X-torsor.

(ii) For any Tn-linearization of Ln corresponding to a decomposition M =⊕
χ Mχ each of the modules Mχ is a free module over Rn of rank 1. More-

over, if I ⊂ An denotes the ideal of the identity section of Tn , then for every
χ ∈ X the composite map

Mχ ↪→ M→ M/I M

is an isomorphism.

(iii) Any Tn−1-linearization on the reduction Ln−1 of Ln to Tn−1 lifts uniquely to
a Tn-linearization on Ln .

Proof. Suppose
α, α′ : m∗Ln→ pr∗1 Ln

are two Tn-linearizations of Ln .
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For any Rn-scheme S let Tn,S denote the base change of Tn to S, and let Ln,S

denote the pullback of Ln to Tn,S . For any point u ∈ Tn(S), let

tu : Tn,S→ Tn,S

denote translation by u, and let

αu, α
′

u : t
∗

u Ln,S→ Ln,S

be the two isomorphisms obtained by pulling back α and α′ along the map

Tn,S = Tn ×Spec(Rn) S id×u // Tn ×Spec(Rn) Tn.

The map α′u ◦ α
−1
u is then an automorphism of Ln,S over Tn,S , and hence is

specified by a global section

su ∈ 0(Tn,S,O∗Tn,S
)= Gm(S)× X.

By sending u∈T (S) to su we therefore obtain a natural transformation of functors

s : Tn→ Gm × X,

or equivalently by Yoneda’s lemma a morphism of schemes. Since Tn is connected
this map has connected image, and since the identity in Tn goes to the identity
in Gm × X , the map s in fact has image in

Gm ↪→ Gm × X, u 7→ (u, 0).

Now the fact that α and α′ are compatible with composition implies that the map

s : Tn→ Gm

is a homomorphism, whence given by a character χ0 ∈ X . From this and the
correspondence between Tn-linearizations and gradings on M , we get that α′ is
obtained from α by translation by χ0.

This shows that the translation action of X on the set of Tn-linearizations of Ln

is transitive. In particular, to verify (ii) it suffices to verify it for a single choice
of Tn-linearization, as the validity of (ii) is clearly invariant under translation by
elements of X . To verify (ii) it therefore suffices to consider Ln = OTn with the
standard linearization, where the result is immediate.

Now once we know that each Mχ has rank 1, then it also follows that the
action in (i) is simply transitive, as the character χ0 is determined by the image
of M0.

Finally (iii) follows immediately from (i). �
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3.2.3. Consider again the setting of 3.2.1, and let L be a line bundle on G. For
every n≥ 0 we then get by reduction (and using the isomorphisms σn) compatible
line bundles Ln on Tn . Fix the following data:

A. A trivialization t : R ' e∗L , where e : Spec(R)→ G is the identity section.

B. A T0-linearization α0 of L0.

By 3.2.2 (iii) the T0-linearization α0 lifts uniquely to a compatible system of
Tn-linearizations {αn}. For every n ≥ 0 and χ ∈ X , we then get by 3.2.2 (ii) an
isomorphism

0(Tn, Ln)χ ' e∗Ln ' Rn

where the second isomorphism is given by t . We therefore obtain a compatible
system of basis elements fn,χ ∈ 0(Tn, Ln)χ defining an isomorphism

0(Tn, Ln)'
⊕

χ∈X Rn · fn,χ .

Passing to the inverse limit we get an isomorphism

lim
←−

n
0(Tn, Ln)'

∏
′

χ∈X R · fχ ,

where ∏
′

χ∈X R · fχ ⊂
∏
χ∈X R · fχ

denotes the submodule of elements (gχ · fχ )χ∈X such that for every n ≥ 0 almost
all gχ ∈mn+1.

For anyµ∈ X , we get by composing the natural map0(G, L)→ lim
←−

n
0(Tn, Ln)

with the projection ∏
′

χ∈X R · fχ → R · fµ

a map
σµ : 0(G, L)→ R.

If m ∈ 0(G, L) then we write

m =
∑
χ

σχ (m) · fχ

for the resulting expression in
∏
′

χ R · fχ . We call this the Fourier expansion of m.
If R is an integral domain with field of fractions K , then we can tensor the

maps σµ with K to get maps

0(G K , L K )→ K ,

which we again denote by σµ. Note that for any m ∈ 0(G K , L K ) the elements
σµ(m) have bounded denominators in the sense that for any n ≥ 0 we have
σµ(m) ∈mn+1 for all but finitely many µ.
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3.2.4. Suppose
t ′ : R ' e∗L

is a second choice of trivialization, and α′0 is a second T0-linearization of L0. Let

σ ′µ : 0(G, L)→ R

be the maps obtained using this second choice. Suppose

t ′(−)= vt (−),

for some unit v ∈ R∗ and that α′0 is the χ0-translate of α0 for some χ0 ∈ X . Then
the collections {σµ} and {σ ′µ} are related by the formula

σ ′µ(−)= vσµ+χ0(−).

3.2.5. Suppose now that our complete noetherian local ring R is also normal,
and let K be the field of fractions. Let G/R be a semiabelian scheme whose
generic fiber G K is an abelian variety, and assume as above that the closed fiber
Gk is a split torus. As before let X denote the character group of Gk .

Assume given an ample line bundle L K on G K , and let

λK : G K → G t
K

be the induced polarization, where G t
K denotes the dual abelian variety of G K .

As explained in [Faltings and Chai 1990, Chapter II, §2], the abelian scheme
G t

K extends uniquely to a semiabelian scheme G t/R, and the map λK extends
uniquely to a homomorphism

λ : G→ G t .

Moreover, the closed fiber G t
k is also a split torus, say Y is the character group

of G t
k . The map λ defines an inclusion

φ : Y ↪→ X.

Since G/R is smooth, the line bundle L K extends to a line bundle L on G,
unique up to isomorphism. Fix a trivialization

t : R ' e∗L

and a T0-linearization α0 on L0, so we get maps

σµ(−) : 0(G K , L K )→ K .

Theorem 3.2.6 [Faltings and Chai 1990, Chapter II, 4.1]. There exist unique
functions

a : Y → K ∗, b : Y × X→ K ∗

such that the following hold:
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(i) The map b is bilinear.

(ii) For any µ ∈ X and y ∈ Y we have

σµ+φ(y)(−)= a(y)b(y, µ)σµ(−).

(iii) For any y, y′ ∈ Y we have

b(y, φ(y′))= b(y′, φ(y)).

(iv) For y, y′ ∈ Y we have

a(y+ y′)= b(y, φ(y′))a(y)a(y′).

(v) For every nonzero y ∈ Y we have b(y, φ(y)) ∈ m, and for every n ≥ 0 we
have a(y) ∈mn for all but finitely many y ∈ Y .

Remark 3.2.7. If we choose a different trivialization t ′ of e∗L and a different
T0-linearization α′0, then we get new functions a′ and b′, which differ from a
and b as follows. By 3.2.4 there exists a unit v ∈ R∗ and an element χ0 such that

σ ′µ(−)= vσµ+χ0(−)

for all µ ∈ X . From this we get that for any µ ∈ X and y ∈ Y we have

σ ′µ+φ(y)(−)= a(y)b(y, µ+χ0)σ
′

µ(−).

Since b is bilinear we have

b(y, µ+χ0)= b(y, µ)b(y, χ0).

It follows that

a′(y)= a(y)b(y, χ0), b′(y, x)= b(y, x).

3.2.8. In particular, if R is a discrete valuation ring, then we also have a valuation
map

ν : K ∗→ Z.

Let A (resp. B) denote the composite of a (resp. b) with ν, so we have functions

A : Y → Z, B : Y × X→ Z.

If we fix a uniformizer π ∈ R then we also get functions

α : Y → R∗, β : Y × X→ R∗

such that
a(y)= α(y)π A(y), b(y, x)= β(y, x)π B(y,x).
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Now observe that since G and G t have the same dimension, the map φ induces
an isomorphism upon tensoring with Q, so B induces a map

BQ : XQ× XQ→Q

which is a positive definite quadratic form by 3.2.6(v). Note also that the
difference

L : Y →Q, y 7→ A(y)− 1
2 B(y, φ(y))

is a linear form on Y , and that B can be recovered from A by the formula

B(y, φ(y′))= A(y+ y′)− A(y)− A(y′).

Note that by 3.2.7 the functions B is independent of the choice of (t, α0), and
for different choices of (t, α0) the corresponding A-functions differ by a linear
form.

3.2.9. The situation when G is not totally degenerate (i.e., the closed fiber Gk

has an abelian part) is more complicated, and the functions a and b in the above
get replaced with data involving the theory of biextensions. We will not go
through that here (the interested reader should consult [Faltings and Chai 1990,
Chapter II, §5] and [Olsson 2008, proof of 4.7.2]). One important thing to know
about this, however, is that even in this case one obtains a positive semidefinite
quadratic form

B : XQ× XQ→Q

on the character group X of the maximal torus in Gk . We will use this in what
follows.

4. Compactifications

4.1. Toroidal. The toroidal compactifications of Ag defined in [Faltings and
Chai 1990] depend on some auxiliary choice of data, which we now explain.

4.1.1. Let X be a free finitely generated abelian group of rank g. For A = Z,Q

or R, let B(X A) denote the space of A-valued quadratic forms on X

B(X A) := Hom(S2 X, A).

For a bilinear form b ∈ B(XR) the radical of b, denoted rad(b), is defined to
be the kernel of the map

XR→ Hom(XR,R), y 7→ b(y,−).

Let C(X) ⊂ B(XR) denote the subset of positive semidefinite bilinear forms
b such that rad(b) is defined over Q. Then C(X) is a convex cone in the real
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vector space B(XR), and its interior C(X)◦ ⊂C(X) is the set of positive definite
forms b.

Note also that there is an action of GL(X) on B(XR) induced by the action
on X , and C(X) and C(X)◦ are invariant under this action.

4.1.2. Degenerations of abelian varieties give subsets of C(X) as follows.
Let S be an irreducible normal scheme with generic point η. Let G/S be a

semiabelian scheme, and assume that the generic fiber Gη of G is an abelian
scheme of dimension g. Suppose further given a principal polarization λη on
Gη. Then for any complete discrete valuation ring V with algebraically closed
residue field and morphism

ρ : Spec(V )→ S (6)

sending the generic point of Spec(V ) to η, we can pull back G to get a semiabelian
scheme Gρ/V whose generic fiber is a principally polarized abelian variety. As
mentioned in 3.2.9, we therefore get a quadratic form

Bρ ∈ C(Xs,Q),

where Xs denotes the character group of the torus part of the closed fiber Gs

of Gρ . Choosing any surjection X → Xs we get an element B ′ρ ∈ C(XQ),
well-defined up to the natural GL(X)-action on C(XQ).

4.1.3. An admissible cone decomposition of C(X) is a collection 6 = {σα}α∈J

(where J is some indexing set) as follows:

(1) Each σα is a subcone of C(X) of the form

σα = R>0 · v1+ · · ·+R>0 · vr

for some elements v1, . . . , vr ∈ B(XQ), and such that σα does not contain
any line.

(2) C(X) is equal to the disjoint union of the σα , and the closure of each σα is
a disjoint union of σβ’s.

(3) For any g ∈GL(X) and α ∈ J we have g(σα)= σβ for some β ∈ J , and the
quotient J/GL(X) of the set of cones J by the induced action of GL(X) is
finite.

4.1.4. An admissible cone decomposition 6 of C(X) is called smooth if for
every σα ∈6 we can write

σα = R>0 · v1+ · · ·+R>0 · vr

where v1, . . . , vr ∈ B(XZ) can be extended to a Z-basis for B(XZ).
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4.1.5. Let6 be an admissible cone decomposition of C(X) and let B be a regular
scheme (the case of interest is when B is the spectrum of a field or Z). A toroidal
compactification of Ag with respect to 6 over B is a Deligne–Mumford stack
Ag,6 over B together with a dense open immersion j : Ag,B ↪→ Ag,6 over B
such that the following hold:

(1) Ag,6 is an irreducible normal algebraic stack, which is smooth over B if 6
is smooth.

(2) The universal abelian scheme X→Ag,B extends to a semiabelian scheme
X6→Ag,6 .

(3) Let S be an irreducible normal B-scheme and let G/S be a semiabelian
scheme of relative dimension g whose generic fiber Gη is abelian with
a principal polarization λη. Let U ⊂ S be a dense open subset such that
(Gη, λη) defines a morphism

fU :U →Ag.

Then fU extends to a (necessarily unique) morphism f : S→Ag,6 if and
only if the following condition holds: For any point s ∈ S there exists α ∈ J
and a surjection X→ X s̄ such that for any morphism (6) sending the closed
point of Spec(V ) to s the element B ′ρ ∈ C(XQ) lies in σα.

Remark 4.1.6. The extension X6 of X in (2) is unique up to unique isomorphism
by [Faltings and Chai 1990, I.2.7].

Remark 4.1.7. Properties (1), (2), and (3) characterize the stack Ag,6 up to
unique isomorphism. Indeed suppose we have another irreducible normal alge-
braic stack A′g over B (this stack could be just an Artin stack, and doesn’t have to
be Deligne–Mumford) together with a dense open immersion j ′ :Ag,B ↪→A′g and
an extension X ′→A′g of the universal abelian scheme X/Ag,B to a semiabelian
scheme over A′g. Suppose further that for any smooth morphism g :W →A′g
the pullback XW →W of X ′ to W satisfies the condition in (3). We then get a
unique extension

f̃ :W →Ag,6

of the map induced by XW over the preimage of Ag,B . Moreover, the two arrows

W ×A′g W →Ag,6

obtained by composing the two projections with f̃ are canonically isomorphic
by the uniqueness part of (3). In addition, the usual cocycle condition over
W ×A′g W ×A′g W holds again by the uniqueness. The map f̃ therefore descends
to a unique morphism

f :A′g→Ag,6
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compatible with the inclusions of Ag,B . In particular, if A′g is also a Deligne–
Mumford stack satisfying (1), (2), and (3) then we also get a map

g :Ag,6→A′g

such that f ◦ g = idAg,6 and g ◦ f = idA′g .

One of the main results of [Faltings and Chai 1990] is then the following:

Theorem 4.1.8 [Faltings and Chai 1990, IV.5.7]. For any smooth admissible
cone decomposition 6 of C(X), there exists a toroidal compactification of Ag

with respect to 6 over Spec(Z). Moreover, for any regular scheme B, the base
change Ag,6,B of Ag,6 to B is a toroidal compactification of Ag with respect to
6 over B.

Over C, the smoothness assumption on the cone 6 can be omitted. This
follows from Mumford’s theory of toroidal embeddings [Ash et al. 1975]. A
more accessible discussion in the case of Ag can be found in [Namikawa 1980].

Theorem 4.1.9. For any admissible cone decomposition 6 of C(X), there exists
a toroidal compactification of Ag with respect to 6 over Spec(C).

Remark 4.1.10. It seems widely believed that for any admissible cone decom-
position 6 of C(X) there exists a toroidal compactification of Ag with respect to
6 over Spec(Z), and it should have the property that for any regular scheme B
the base change Ag,6,B is again a toroidal compactification of Ag,B with respect
to 6 over B. However, no proof seems to be available in the literature.

4.2. Alexeev’s compactification AAlex
g .

4.2.1. Alexeev’s compactification of Ag arises from considering Ag as the moduli
stack of quadruples (A, P, L , θ), where A is an abelian variety, P is an A-torsor,
L is an ample line bundle on P defining a principal polarization, and θ is a
nonzero global section of L (see 2.2.7).

4.2.2. To get a sense for Alexeev’s compactification let us consider a 1-parameter
degeneration, and explain how the quadratic form obtained in 3.2.8 defines a
degeneration of the whole quadruple (A, P, L , θ). So let V be a complete
discrete valuation ring, let S denote Spec(V ), and let η (resp. s) denote the
generic (resp. closed) point of S. Let G/S be a semiabelian scheme with Gη an
abelian variety and Gs a split torus. Assume further given a line bundle L on G
whose restriction Lη to Gη is ample and defines a principal polarization. Let X
denote the character group of Gs and let T denote the torus over V defined by
X . Fix a trivialization t : V ' e∗L (where e ∈ G(V ) is the identity section) and
a T -linearization of Ls (the pullback of L to Gs). Finally let θη ∈ 0(Gη, Lη) be
a global section.
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Let Pη denote Gη viewed as a trivial Gη-torsor. We can then construct a
degeneration of the quadruple (Gη, Pη, Lη, θη) as follows.

4.2.3. Let
A : X→ Z

be the quadratic function defined as in 3.2.8 (and using the identification Y ' X
defined by φ, which is an isomorphism since Lη is a principal polarization). Let

S := {(x, A(x))|x ∈ X} ⊂ XR⊕R

be the graph of A, and let SR⊂ XR⊕R denote the convex hull of the set S. Then
the projection

SR→ XR

is a bijection, and therefore SR is the graph of a unique function

g : XR→ R.

This function is piece-wise linear in the sense that there exists a unique
collection 6 = {ω} of polytopes ω ⊂ XR such that the following hold:

(1) For any two elements ω, η ∈6 the intersection ω∩ η is also in 6.

(2) Any face of a polytope ω ∈6 is also in 6.

(3) XR = ∪ω∈6ω and for any two distinct elements ω, η ∈6 the interiors of ω
and η are disjoint.

(4) For any bounded subset W ⊂ XR there are only finitely many ω ∈6 with
ω∩W 6=∅.

(5) The top-dimensional polytopes ω ∈6 are precisely the domains of linearity
of the function g.

A decomposition 6 of XR into polytopes which arises from a quadratic
function A : X → Z by the construction above is called an integral regular
paving of XR.

Note that the paving 6 is invariant under the action of elements of X acting
by translation on XR. Indeed for x, y ∈ X we have

A(x + y)= A(x)+ A(y)+ B(x, y) (7)

so if ty : XR→ XR denotes translation by y, then the composite function

XR

ty // XR

g // R

is equal to
x 7→ g(x)+ B(x, y)+ A(y),

which differs from g by the linear function B(−, y)+ A(y).
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Remark 4.2.4. Note that any positive definite quadratic form

B : S2 X→Q

defines an X -invariant paving of XR by the construction above. If more generally
we allow also infinite polytopes in the definition of paving then we can also
consider the pavings associated to positive semidefinite quadratic forms.

4.2.5. We use the function g to define a graded V -subalgebra

R⊂ K [X ⊕N].

For ω∈6 let Cω⊂ X⊕N be the integral points of the cone over ω×{1}⊂ XR⊕R,
so Cω is the set of elements (x, d) ∈ X⊕N such that the element (1/d) · x ∈ XQ

lies in ω. Since g is a linear function on ω it extends uniquely to an additive
function

gω : Cω→Q, (x, d) 7→ d · g((1/d) · x).

These functions define a function

g̃ : X ⊕N>0→Q

by sending (x, d) to gω(x, d) for any ω ∈6 such that (x, d) ∈Cω (note that this
is independent of the choice of ω).

Let C ′ω ⊂ Cω be the submonoid generated by degree 1 elements. Then
C ′gp
ω ⊂ Cgp

ω has finite index, say Nω. Now using property (4) and the translation
invariance of the paving, we see that there exists an integer N such that for every
ω ∈ 6 the index of C ′gp

ω in Cgp
ω divides N . In particular, the function gω has

image in (1/N ) ·Z for all ω.
Also observe that making a base change V → V ′ with ramification e in the

construction above has the effect of multiplying the function g by e. Therefore,
after possibly replacing V by a ramified extension, we may assume that all the
gω’s, and hence also g̃, are integer valued.

Let
R⊂ K [X ⊕N]

be the graded V -subalgebra generated by the elements

ξ (x,d) := π g̃(x,d)e(x,d),

where we write e(x,d)∈K [X⊕N] for the element corresponding to (x, d)∈ X⊕N.
Then R is a graded V -algebra and we can consider the V -scheme

P̃ := Proj(R).

This scheme comes equipped with a line bundle L P̃ , and we usually consider
the pair (P̃, L P̃).
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4.2.6. There is a natural action of T on (P̃, L P̃) induced by the X -grading on
R.

4.2.7. There is an action of X on (P̃, L P̃) defined as follows. Let

α : X→ V ∗, β : X × X→ V ∗

be the maps defined in 3.2.8. Recall that for x, y ∈ X we have

α(x + y)= β(x, y)α(x)α(y).

The action of y ∈ X is then given by

ξ (x,d) 7→ α(y)dβ(y, x)ξ (x+dy,d).

Note that the actions of T and X on P̃ commute, but that if χ ∈ T (a scheme-
valued point) and y ∈ X then the induced automorphism of L P̃

(Ty ◦ Sχ )−1
◦ (Sχ ◦ Ty)

is equal to multiplication by χ(y).

4.2.8. The generic fiber of P̃ is isomorphic to TK with the standard action of
TK and trivial action of X .

4.2.9. The closed fiber P̃0 of P̃ has the following description. Note first of all
that for any (x, d), (y, e) ∈ X ⊕N>0 we have

g̃(x + y, d + e)− g̃(x, d)− g̃(y, e) < 0

unless (x, d) and (y, e) lie in the same Cω for some ω ∈6. Therefore

ξ (x,d) · ξ (y,e) ≡ 0 (mod π)

if (x, d) and (y, e) lie in different cones. We therefore get a map

R⊗V k→ k[Cω]

by sending ξ (d,e) to 0 unless (d, e) ∈ Cω in which case we send ξ (d,e) to the
element e(d,e). In this case we get a closed immersion

Pω := Proj(k[Cω]) ↪→ P̃0,

and it follows from the construction that P̃0 is equal to the union of the Pω’s glued
along the natural inclusions Pη ↪→ Pω, whenever η is a face of ω. Moreover, the
T -action on Pω is given by the natural T -action on each Pω, and the translation
action of y ∈ X is given by the isomorphisms

Pω→ Pω+y
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given by the natural identification of Cω and Cω+y given by the translation
invariance of the paving.

Remark 4.2.10. Similarly, for every integer s and ω ∈ 6, there exists only
finitely many cones η ∈ 6 such that there exists (x, d) ∈ Cω and (y, e) ∈ Cη
with the property

ξ (x,d) · ξ (η,e) 6= 0 (mod π s).

4.2.11. This description of the closed fiber P̃0 implies in particular that the
action of X on P̃0, and hence also the action on P̃n := P̃⊗(V/πn+1), is properly
discontinuous. We can therefore take the quotient

Pn := P̃n/X,

which is a finite type V/(πn+1)-scheme. The X -action on L P̃ gives descent data
for the line bundles L P̃n

:= L P̃ |P̃n
, so we get a compatible collection of line

bundles L Pn on the schemes Pn . One can show that the line bundles L Pn are in
fact ample, so by the Grothendieck existence theorem [EGA 1961, chapitre III,
corollaire 5.1.8, p. 151] the projective schemes {Pn} are induced by a unique
projective scheme P/V with a line bundle L P inducing the L Pn .

4.2.12. Since the action of T on P̃n commutes with the action of X , there is
an action of T on each of the Pn which is compatible with the reduction maps.
One can show that there is a unique action of G on P inducing these compatible
actions of T on the Pn’s (recall that there is a canonical identification Gn ' T ).
This is one of the most subtle aspects of the construction. A detailed discussion
in this special case can be found in [Mumford 1972, §3].

4.2.13. There is a compatible set of global sections θn ∈ 0(Pn, L Pn ) defined as
follows. First of all note that since the map

πn : P̃n→ Pn

is an X -torsor, we have a canonical isomorphism

0(Pn, L Pn )' 0(P̃n, L P̃n
)X .

It therefore suffices to construct an X -invariant section

θ̃n ∈ 0(P̃n, L P̃n
).

For x ∈ X let D(x)n ⊂ P̃n denote the open subset defined by ξ (x,1), so

D(x)n = Spec(Rn,ξ (x,1))0,

where (Rn,ξ (x,1))0 denotes the degree 0 elements in Rn,ξ (x,1) . Then the D(x)n
cover P̃n . Now for every x , all but finitely many ξ (1,y) map to zero in Rn,ξ (x,1)
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by 4.2.10. Therefore the sum in Rn,ξ (x,1)∑
y∈Y

α(y)ξ (y,1)

is finite and defines a section θ̃n ∈ 0(D(x), L P̃n
). These sections clearly glue to

define the section θ̃n ∈ 0(P̃n, L P̃n
). The relation

α(x + y)= α(x)α(y)β(y, x), x, y ∈ X

and the definition of the X -action on (P̃, L P̃) implies that the section θ̃n is
X -invariant and therefore defines the section θn ∈ 0(Pn, L Pn ).

Finally since
0(P, L P)= lim

←−
n
0(Pn, L Pn )

the sections {θn} are induced by a unique section θ ∈ 0(P, L).

4.2.14. Summarizing the preceding discussion, we started with the quadruple
(Gη, Pη, Lη, θη) over the fraction field K of V , and ended up with a quadruple
(G, P, L , θ) as follows:

(1) G is a semiabelian scheme over V ;

(2) P is a proper V -scheme with action of G;

(3) L is an ample line bundle on P;

(4) θ ∈ 0(P, L) is a global section.

It follows from [Faltings and Chai 1990, Chapter III, 6.4] that the restriction of
this quadruple to Spec(K ) is canonically isomorphic to the original quadruple
(Gη, Pη, Lη, θη). The collection (G, P, L , θ) should be viewed as the degenera-
tion of (Gη, Pη, Lη, θη).

4.2.15. A careful investigation of this construction, as well as its generalization
to the case when G is not totally degenerate, is the starting point for the definition
of Alexeev’s moduli problem which gives his compactification AAlex

g of Ag. The
end result of this investigation is the following.

4.2.16. Following [Alexeev 2002, 1.1.3.2], define a stable semiabelic variety
over an algebraically closed field k to be a proper scheme P/k with an action of
a semiabelian variety G/k such that the following hold:

(1) The dimension of each irreducible component of P is equal to the dimension
of G.

(2) There are only finitely many orbits for the G-action.

(3) The stabilizer group scheme of every point of P is connected, reduced, and
lies in the toric part of G.
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(4) The scheme P is seminormal (recall that this means that the following
property holds: If f : P ′ → P is a proper bijective morphism with P ′

reduced and with the property that for any p′ ∈ P ′ the map on residue fields
k( f (p′))→ k(k) is an isomorphism, then f is an isomorphism).

A stable semiabelic pair is a stable semiabelic variety P and a pair (L , θ), where
L is an ample line bundle on P and θ ∈ H 0(P, L) is a global section whose zero
locus does not contain any G-orbits.

Remark 4.2.17. If G is an abelian variety, then condition (3) implies that P is
a disjoint union of G-torsors. If, moreover, we have a stable semiabelic pair
(G, P, L , θ) with G abelian and H 0(P, L) of dimension 1, then P must be
connected so P is a G-torsor.

4.2.18. If S is a general base scheme, we define a stable semiabelic pair over S
to be a quadruple (G, P, L , θ), where

(1) G/S is a semiabelian scheme.

(2) f : P→ S is a projective flat morphism and G acts on P over S.

(3) L is a relatively ample invertible sheaf on P .

(4) θ ∈ H 0(P, L) is a global section.

(5) For every geometric point s̄→ S, the geometric fiber (G s̄, Ps̄, L s̄, θs̄) of
this data is a stable semiabelic pair over the field k(s̄).

Remark 4.2.19. It follows from cohomology and base change and [Alexeev
2002, 5.2.6] that if (G, P, L , θ) is a stable semiabelic pair over a scheme S
as above, then f∗L is a locally free sheaf of finite rank on S whose formation
commutes with arbitrary base change S′→ S. We define the degree of L to be
the the rank of f∗L (a locally constant function on S).

Definition 4.2.20. Let AAlex
g be the stack over the category of schemes, whose

fiber over a scheme S is the groupoid of semiabelic pairs (G, P, L , θ) over S
with G of dimension g and L of degree 1.

4.2.21. By 2.2.7, there is a morphism of stacks

j :Ag→AAlex
g

identifying Ag with the substack of semiabelic pairs (G, P, L , θ) with G an
abelian scheme.

Theorem 4.2.22 [Alexeev 2002, 5.10.1]. The stack AAlex
g is an Artin stack of

finite type over Z with finite diagonal, and the map j is an open immersion.
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Example 4.3. The quadruple (G, P, L , θ) constructed starting in 4.2.2 is a
semiabelic pair of degree 1 over Spec(V ) (i.e., a V -point of AAlex

g ). Indeed note
that the closed fiber P0 of P can be described as follows.

Let
P̃0→ P0

be the X -torsor which is the reduction of the scheme P̃ , so as in 4.2.9 the scheme
P̃0 is equal to a union of the toric varieties Pω (ω ∈ 6). Since P̃0 is reduced
so is P0, and the irreducible components of P̃0 are the subschemes Pω with ω
top dimensional. From this it follows that each irreducible component of P has
dimension equal to the dimension of G0 = T . Also note that the orbits for the
T -action on P are in bijection with 6/X , and hence is finite. To compute the
stabilizer group schemes, note that if x̃ ∈ P̃0 is a point in P̃0 with image x ∈ P0,
then the stabilizer group scheme of x̃ is equal to the stabilizer group scheme of
x . Since each Pω is a toric variety it follows that the stabilizer of any point of
P0 is a subtorus of T .

That the scheme P0 is seminormal can be seen as follows. Let f : Q→ P0 be
a proper bijective morphism with Q reduced and the property that for any q ∈ Q
the map on residue fields k( f (q))→ k(q) is an isomorphism, and let A be the
coherent sheaf of OP0-algebras corresponding to Q. Since P0 is reduced the map

OP0 →A

is injective, and we must show that it is also surjective. Let Ã be the pullback of
A to P̃0. Then Ã is a coherent sheaf of OP̃0

-algebras with an X -action lifting the
X -action on P̃0. For each ω ∈6, let

jω : Pω ↪→ P̃0

be the inclusion. We construct an X -invariant morphism s : Ã→ OP̃0
such that

the composite map

OP̃0
// Ã

s // OP̃0

is the identity. This will prove the seminormality of P0, for by the X -invariance
the map s descends to a morphism of algebras

s̄ :A→ OP0 .

The kernel of this homomorphism is an ideal I⊂A which is nilpotent since the
map Q→ P0 is bijective. Since Q is assumed reduced this implies that I is the
zero ideal.

To construct the map s, proceed as follows. For each ω ∈6 let

iω : Pω ↪→ P̃0



330 MARTIN OLSSON

be the inclusion. Let S ⊂ 6 be the subset of top-dimensional simplices, and
choose an ordering of S. We then have a map

∂ :
∏
ω∈S

iω∗OPω→
∏
ω<ω′

ω,ω′∈S

iω∩ω′∗OPω∩ω′ ,

defined by sending a local section (ξω)ω∈S to the section of the product whose
image in the factor corresponding to ω < ω′ is

ξω′ |Pω∩ω′ − ξω|Pω∩ω′ .

Then a straightforward verification, using the grading on the ring R, shows that
the natural map

OP̃0
→ Ker(∂)

is an isomorphism of rings. To construct the map s it therefore suffices to
construct compatible maps from Ã to the iω∗OPω . To construct these maps, note
that since Pω is normal the composite map

Spec(i∗ωÃ)red ↪→ Spec(i∗ωÃ)→ Pω

is an isomorphism, and hence we get maps

i∗ωÃ→ OPω

which define maps
Ã→ iω∗OPω

which are clearly compatible.
Finally we need to verify that the zero locus of the section θ0 ∈ 0(P0, L0)

does not contain any T -orbit. For this let Lω be the pullback of L0 to Pω and
let θω ∈ 0(Pω, Lω) be the pullback of θ . Then it suffices to show that the zero
locus of θω in Pω does not contain any T -orbits. For this recall that we have

Pω = Proj(k[Cω]),

and Lω is equal to OPω(1). It follows that

0(Pω, Lω)

is isomorphic to the k-vector space with basis ξ (x,1), with x ∈ ω. In terms of
this basis the section θω is by construction given by the sum of the elements
α(x)ξ (x,1). From this it follows immediately that the restriction of θω to any
T -invariant subset of Pω is nonzero.

Remark 4.3.1. The stack AAlex
g is not irreducible. Explicit examples illustrating

this is given in [Alexeev 2001]. In [Olsson 2008] we gave a modular interpretation
of the closure of Ag in AAlex

g which we will describe in Section 4.5.
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4.4. Canonical compactification Ag ⊂ Ag and the second Voronoi compacti-
fication.

4.4.1. Let Ag denote the normalization of the closure of Ag in AAlex
g . We call

Ag the canonical compactification of Ag (in Section 4.5 below we discuss a
modular interpretation of Ag)).

4.4.2. Consider again the lattice X of rank g, and the integral regular paving 6
defined in 4.2.3. View 6 as a category whose objects are the polytopes ω ∈6
and in which the set of morphisms ω→ η is the unital set if ω⊂ η and the empty
set otherwise. We have a functor

P· :6→Monoids

sending ω to the monoid Cω. Taking the associated group we also obtain a
functor

Pgp
·
:6→ Abelian groups

by sending ω to Cgp
ω . Consider the inductive limit

lim
−→

Pgp
·
.

For every ω ∈6 define
ρω : Cω→ lim

−→
Pgp
·

to be the composite map

Cω ↪→ Cgp
ω → lim

−→
Pgp
·
.

Note that if η ⊂ ω then the diagram

Cη � � //

ρη ""

Cω

ρω

��
lim
−→

Pgp
·

commutes. In particular, the {ρω} define a set map

ρ : P→ lim
−→

Pgp
·
,

where P denotes the integral points of the cone

Cone(1, XR)⊂ R⊕ XR.

Define
H̃6 ⊂ lim

−→
Pgp
·
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to be the submonoid generated by elements of the form

ρ(p)+ ρ(q)− ρ(p+ q), p, q ∈ P.

4.4.3. There is a natural action of X on R⊕ XR given by

y ∗ (a, x) := (a, ay+ x).

Since the paving 6 is X -invariant, this action induces actions of X on lim
−→

Pgp
· ,

P , and H̃6 .
Let H6 denote the quotient (in the category of integral monoids)

H6 := H̃6/X,

and let
π : H̃6→ H6

be the projection. For elements p, q ∈ P define

p ∗ q := π(ρ(p)+ ρ(q)− ρ(p+ q)).

By [Olsson 2008, 4.1.6] the monoid H6 is finitely generated.

4.4.4. We have a monoid
P o H6

defined as follows. As a set, P o H6 is equal to the product P × H6 , but the
monoid law is given by

(p, α)+ (q, β) := (p+ q, α+β + p ∗ q).

With this definition we get a commutative integral monoid P o H6 .
There is a natural projection

P o H6→ P, (p, α) 7→ p,

and therefore we get a grading on P o H6 from the N-grading on P . The scheme

P̃ := Proj(Z[P o H6])

over Spec(Z[H6]) generalizes the scheme P̃ in 4.2.5.

Lemma 4.4.5. There exists a morphism of monoids

h : H6→ N

sending all nonzero elements of H6 to strictly positive numbers. In particular,
the monoid H6 is unit-free.
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Proof. Let
g̃ : N>0⊕ X→Q

be the function defined in 4.2.5. The function g̃ is linear on each Cω, and
therefore induces a function

h̃ : lim
−→

Pgp
·
→Q.

This function has the property that whenever p, q ∈ P lies in different cones of
6 then we have

h̃(ρ(p)+ ρ(q)− ρ(p+ q)) > 0.

In particular, we get a morphism of monoids

h̃ : H̃6→Q≥0

sending all nonzero generators, and hence also all nonzero elements, to Q>0.
Now observe that if p = (d, x) and q = (e, y) are two elements of P , and if
z ∈ X is an element, then an exercise using (7), which we leave to the reader,
shows that

h̃(ρ(d, x + dz)+ ρ(e, y+ ez)− ρ(d + e, x + y− (d + e)z))

= h̃(ρ(d, x)+ ρ(e, y)− ρ(d + e, x + y)).

The map h̃ therefore descends to a homomorphism

h : H6→Q≥0.

Now since H6 is finitely generated, we can by replacing h with Nh for suitable N
assume that this has image in N, which gives the desired morphism of monoids.

�

4.4.6. In particular, there is a closed immersion

Spec(Z)→ Spec(Z[H6]) (8)

induced by the map
Z[H6] → Z

sending all nonzero elements of H6 to 0. Let Z[[H6]] be the completion of
Z[[H6]] with respect to the ideal J ⊂ Z[H6] defining this closed immersion.
Let V denote the spectrum of Z[[H6]], and for n ≥ 0 let Vn denote the closed
subscheme of V defined by J n+1.

As before let T denote the torus associated to X . We define a compatible
family of projective schemes with T -action

(Pn, LPn )
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over the schemes Vn as follows. Let P̃n denote the pullback of P̃ to Vn , and
let L P̃n

denote the pullback of OP̃(1). Note that the scheme P̃0 over Spec(Z)
can be described as in 4.2.9 as the union of the toric varieties Spec(Z[Cω]) for
ω ∈6, glued along the natural closed immersions

Spec(Z[Cη]) ↪→ Spec(Z[Cω])

for η ⊂ ω. This implies in particular that the natural X -action on P̃n is free,
and hence we can form the quotient of (P̃n, LP̃n

) to get a compatible system of
projective schemes {(Pn, LPn )} over the Vn .

There is a T -action on P̃ defined as follows. For this note that the inclusion

P ↪→ Z⊕ X

induces an isomorphism Pgp
' Z ⊕ X , so the projection P → N defines a

morphism of monoids
P o H6→ Z⊕ X.

This defines an action of Gm × T on the affine scheme

Spec(Z[P o H6]).

Since
P̃= (Spec(Z[P o H6])−{zero section})/Gm

we therefore get an action of T on P̃. By construction this action commutes with
the X -action, and hence we get also compatible actions of T on the Pn .

Each of the line bundles LPn is ample on Pn , so by the Grothendieck existence
theorem the compatible system {(Pn, LPn )} is induced by a unique projective
scheme P/V with ample line bundle LP.

If f : P→ V is the structure morphism, then f∗LP is a locally free sheaf of
rank 1 on V whose formation commutes with arbitrary base change (this follows
from cohomology and base change and [Alexeev and Nakamura 1999, 4.4]). If
we choose a nonzero global section θ ∈ f∗LP, we then get a compatible family
of objects

(TVn ,Pn, LPn , θn) ∈AAlex
g (Vn),

which induce a morphism

Spec(V)→AAlex
g . (9)

We conclude that there exists a semiabelian scheme G/V with abelian generic
fiber and closed fiber T which acts on P such that

(G,P, LP, θ)

defines a point of AAlex
g (V).
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Remark 4.4.7. The discussion above is a bit circular, and it would be better to
construct G using the theory of degenerations discussed in [Faltings and Chai
1990, Chapters II and III]. In fact, this theory enters into the construction of
AAlex

g .

4.4.8. Let H sat
6 denote the saturation of the monoid H6 , and let Vsat denote the

fiber product
Vsat
:= V×Spec(Z[H6 ]) Spec(Z[H sat

6 ]).

Note that the map
Z[H6] → Z[H sat

6 ]

is finite so the coordinate ring of the affine scheme Vsat is J -adically complete.
Let Ag denote the normalization of the scheme-theoretic closure of Ag in

AAlex
g (below we shall give a modular interpretation of this stack). Then the map

(9) induces a map
Vsat
→Ag, (10)

since Vsat is normal and the restriction of (G,P, LP, θ) to the generic fiber of
Vsat defines a point of Ag.

This map (10) is étale (a more general result is given in [Olsson 2008, 4.5.20]).

4.4.9. The relationship between H6 and quadratic forms is the following. Con-
sider the exact sequence

0→ H̃ gp
6 → (P o H̃6)gp

→ Pgp
→ 0. (11)

Now by the universal property of the group associated to a monoid, we have

H gp
6 = (H̃6/X)gp

= (H̃ gp
6 )/X.

In particular, the long exact sequence of group homology arising from (11)
defines a morphism

H1(X, Pgp)→ H0(X, H̃ gp
6 )= H gp

6 . (12)

Now we have a short exact sequence of groups with X -action

0→ X→ Pgp
→ Z→ 0,

where the inclusion X ↪→ Pgp is the identification of X with the degree 0 elements
of Pgp, and the X -action on X and Z is trivial. We therefore obtain a map

H1(X,Z)⊗ X→ H1(X, Pgp),

and hence by composing with (12) a map

H1(X,Z)⊗ X→ H gp
6 .
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Now as explained in [Olsson 2008, 5.8.4] there is a natural identification of
H1(X,Z) with X , and hence we get a map

X ⊗ X→ H gp
6 .

As explained in [Olsson 2008, 5.8.8] this map is equal to the map sending
x ⊗ y ∈ X ⊗ X to

(1, x + y) ∗ (1, 0)− (1, x) ∗ (1, y).

In particular, the map is symmetric and therefore defines a map

τ : S2 X→ H gp
6 .

By [Olsson 2008, 5.8.15] this map induces an isomorphism after tensoring with
Q.

4.4.10. In particular we get an inclusion

Hom(H6,Q≥0) ↪→ Hom(S2 X,Q)

of the rational dual of H6 into the space of quadratic forms on X . By [Olsson
2008, 5.8.16] this identifies the cone Hom(H6,Q≥0) with the cone

U (6)⊂ Hom(S2 X,Q)

of positive semidefinite quadratic forms whose associated paving is coarser than
the paving 6.

4.4.11. As we now discuss, this description of H6 leads naturally to the sec-
ond Voronoi decomposition of the space of quadratic forms. As explained in
[Namikawa 1976, 2.3] there exists a unique admissible cone decomposition 6Vor

of C(X) (notation as in 4.1.1), called the second Voronoi decomposition, such
that two quadratic forms B, B ′ ∈C(X) lie in the same σ ∈6Vor if and only if the
pavings of XR defined by B and B ′ as in 4.2.3 are equal. This paving is known
to be smooth if g ≤ 4, but for g > 4 is not smooth (see [Alexeev and Nakamura
1999, 1.14]). Let

AVor
g

denote the corresponding toroidal compactification over C.

4.4.12. If V is a complete discrete valuation ring and

ρ : Spec(V )→ V

is a morphism sending the closed point of Spec(V ) to a point in V0 and the
generic point to the open subset of V over which G is an abelian scheme, then
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the pullback of G to V defines by the discussion in 3.2.8 a quadratic form

Bρ : S2 X→Q.

It follows the construction that this quadratic form is equal to the composite map

S2 X
τ // H gp

6

ρ∗ // K ∗
val // Z.

In particular, it follows from 4.1.7 that the inclusion

Ag,C ↪→AVor
g

extends to some neighborhood of the image of Vsat
C

in Ag,C.
A similar description of the versal deformation space of partial degenerations

(as discussed in [Olsson 2008, §4.5]), and again using 4.1.7, shows that in fact
the inclusion Ag,C ⊂AVor

g extends to a morphism of stacks

π :Ag,C→AVor
g . (13)

4.4.13. The local description of the map π is the following.
Let VC denote the spectrum of the completion of C[H6] with respect to the

morphism to C defined by (8), and let Vsat
C

denote the base change

VC×Spec(C[H6 ]) Spec(C[H sat
6 ]).

Consider the composite map

Vsat
C

// Ag,C
// AVor

g .

Let Q ⊂ S2 X be the cone of elements q ∈ S2 X such that for every B ∈ U (6)
we have

B(q)≥ 0.

Note that by 4.4.10 we have a natural inclusion

Q ↪→ H sat
6 .

Let W denote the spectrum of the completion of C[Q] with respect to the kernel
of the composite map

C[Q] → C[H sat
6 ] → C[H sat

6 ]/J sat,

where J sat
⊂C[H sat

6 ] is the ideal induced by J ⊂C[H6]. The inclusion Q ↪→H sat
6

induces a map
λ : Vsat

C →W.
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4.4.14. By construction of the toroidal compactification AVor
g we then have a

formally étale map
W→AVor

g ,

and it follows from the construction of the toroidal compactification (see [Faltings
and Chai 1990, Chapter IV, §3]) that the resulting diagram

Vsat
C

λ //

��

W

��

Ag,C
// AVor

g

commutes.

4.4.15. This implies in particular that in a neighborhood of any totally degenerate
point of Ag,C the map (13) is étale locally quasifinite, whence quasifinite. A
suitable generalization of the preceding discussion to the partially degenerate
case, gives that in fact that map (13) is a quasifinite morphism. This together with
the fact that AVor

g is normal implies that the map (13) identifies AVor
g with the

relative coarse moduli space of the morphism (13), in the sense of [Abramovich
et al. 2011, §3].

This implies in particular that the map (13) induces an isomorphism on coarse
moduli spaces.

The map (13) is not, however, in general an isomorphism. This can be seen
from the fact that the map Q ↪→ H sat

6 is not in general an isomorphism. The
stack Ag has some additional “stacky structure” at the boundary.

4.4.16. Granting that one has also a toroidal compactification of Ag over Z with
respect to the second Voronoi decomposition over Z (this is known if g ≤ 4),
the preceding discussion applies verbatim over Z as well. Here one can see the
difference between Ag and AVor

g even more clearly, for while AVor
g is a Deligne–

Mumford stack, the stack Ag is only an Artin stack with finite diagonal, as the
stabilizer group schemes in positive characteristic may have a diagonalizable
local component.

4.5. Modular interpretation of Ag .

4.5.1. The key to giving Ag a modular interpretation is to systematically use
the toric nature of the construction in 4.4.6 using logarithmic geometry. We
will assume in this section that the reader is familiar with the basic language of
logarithmic geometry (the basic reference is [Kato 1989]).

4.5.2. Consider again the family

f̃ : P̃→ V
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constructed in 4.4.6. The natural map

H6→ OV

defines a fine log structure MV on M . Moreover, there is a fine log structure MP̃

on P̃ and a morphism
f b
: f ∗MV→ MP̃

such that the induced morphism of fine log schemes

( f, f b) : (P̃,MP̃)→ (V,MV)

is log smooth. Moreover, the T -action on P̃ extends naturally to a T -action on
the log scheme (P̃,MP̃) over (V,MV).

This log structure MP̃ can be constructed as follows. The scheme P̃ is equal
to the quotient of

Spec(Z[P o H6])−{zero section}

by the action of Gm defined by the N-grading on P o H6 . The action of Gm

extends naturally to an action on the log scheme

(Spec(Z[P o H6]), log structure associated to P o H6→ Z[P o H6])

over the log scheme

(Spec(Z[H6]), log structure associated to H6→ Z[H6]).

Passing to the quotient by this Gm-action and base changing to V, we therefore
get the map

( f, f b) : (P̃,MP̃)→ (V,MV).

Note that the X -action on P̃ extends naturally to an action of X on the log scheme
(P̃,MP̃) over (V,MV). In particular, base changing to Vn and passing to the
quotient by the X -action we get the log structure MPn on Pn and a morphism of
log schemes

(Pn,MPn )→ (Vn,MVn ). (14)

4.5.3. Let H sat
6 be the saturation of H6 , and let Vsat be as in 4.4.8. Define MVsat

to be the log structure on Vsat defined by the natural map

H sat
6 → OVsat

so we have a morphism of log schemes

(Vsat,MVsat)→ (V,MV).
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If Vsat
n denotes Vsat

×V Vn , then we get by base change a compatible collection
of morphisms

(Psat
n ,MPsat

n
)→ (Vsat

n ,MVsat
n
)

from the collection (14).

4.5.4. If k is a field, define a totally degenerate standard family over k to be a
collection of data(

Mk, T, f : (P,MP)→ (Spec(k),Mk), L P
)

as follows:

(1) Mk is a fine saturated log structure on Spec(k);

(2) T is a torus over k of dimension g;

(3) f : (P,MP)→ (Spec(k),Mk) is a log smooth morphism with P/k proper,
together with a T -action on (P,MP) over (Spec(k),Mk).

(4) L P is an ample line bundle on P such that H 0(P, L P) has dimension 1.

(5) The data is isomorphic to the collection obtained from the closed fiber of
the family constructed in 4.5.3.

More generally, as explained in [Olsson 2008, §4.1] given a semiabelian
scheme G/k with toric part X , a paving of X corresponding to a quadratic form
etc., there is a generalization of the preceding construction which gives a fine
saturated log structure Mk on Spec(k) and a log smooth morphism

f : (P,MP)→ (Spec(k),Mk),

where P/k is proper, and G acts on (P,MP) over (Spec(k),Mk). Moreover,
the construction gives a line bundle L P on P which is ample and such that
H 0(P, L P) has dimension 1. We define a standard family over k to be a collection
of data

(Mk,G, f : (P,MP)→ (Spec(k),Mk), L P)

obtained in this way (so the G-action on (P,MP) is part of the data of a standard
family).

For an arbitrary scheme S define Tg(S) as the groupoid of collections of data(
MS,G, f : (P,MP)→ (S,MS), L P

)
(15)

as follows:

(1) MS is a fine saturated log structure on S.

(2) G/S is a semiabelian scheme of dimension g.

(3) f : (P,MP)→ (S,MS) is a log smooth morphism with P/S proper.

(4) L P is a relatively ample invertible sheaf on P .
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(5) For every geometric point s̄→ S, the collection of data over s̄

(Ms̄,G s̄, fs̄ : (Ps̄,MPs̄ )→ (s̄,Ms̄), L Ps̄ )

obtained by pullback, is a standard family in the preceding sense.

By definition a morphism(
MS,G, f : (P,MP)→ (S,MS), L P

)
→
(
M ′S,G ′, f ′ : (P ′,MP ′)→ (S,M ′S), L P ′

)
between two objects of Tg consists of the following data:

(1) An isomorphism σ : M ′S→ MS of log structures on S.

(2) An isomorphism of fine log schemes

σ̃ : (P,MP)→ (P ′,MP ′)

such that the square

(P,MP)
σ̃ //

f
��

(P ′,MP ′)

f ′

��
(S,MS)

(id,σ ) // (S,M ′S)

commutes.

(3) An isomorphism τ : G→ G ′ of semiabelian group schemes over S such
that the diagram

G×S (P,MP)
action //

τ×σ̃

��

(P,MP)

σ̃

��
G ′×S (P ′,MP ′)

action // (P ′,MP ′)

commutes.

(4) λ : σ̃ ∗L P ′→ L P is an isomorphism of line bundles on P .

In particular, for any object (15) of Tg(S) and element u ∈ Gm(S) we get
an automorphism of (15) by taking σ = id, σ̃ = id, τ = id, and λ equal to
multiplication by u.

With the natural notion of pullback we then get a stack Tg over the category
of schemes, together with an inclusion

Gm ↪→ ITg

of Gm into the inertia stack of Tg.
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Theorem 4.5.5 [Olsson 2008, 4.6.2]. The stack Tg is algebraic and there is a
natural map Tg→Ag identifying Ag with the rigidification of Tg with respect
to the subgroup Gm of the inertia stack.

4.5.6. In fact the map Tg → Ag has a section. Consider the stack A′g whose
fiber over a scheme S is the groupoid of data

(MS,G, f : (P,MP)→ (S,MS), L P , θ),

where

(MS,G, f : (P,MP)→ (S,MS), L P) ∈ Tg(S)

is an object and θ ∈ f∗L P is a section which is nonzero in every fiber. So A′g is
the total space of the Gm-torsor over Tg corresponding to the line bundle defined
by the sheaves f∗L P (which are locally free of rank 1 and whose formation
commutes with arbitrary base change). Then it follows, by an argument similar
to the one proving 2.3.5, that the composite map

A′g→ Tg→Ag

is an isomorphism. So Ag can be viewed as the stack whose fiber over a scheme
S is the groupoid of collections of data

(MS,G, f : (P,MP)→ (S,MS), L P , θ)

as above. In particular, from the log structures MS in this collection, we get a
natural log structure MAg

on Ag, whose open locus of triviality is the stack Ag.

5. Higher degree polarizations

5.0.7. One advantage of the approach to Ag using Tg and rigidification is that it
generalizes well to higher degree polarizations and moduli spaces for abelian
varieties with level structure.

Fix an integer d ≥ 1, and let Ag,d be the stack of abelian schemes of dimension
g with polarization of degree d . Let Tg,d be the stack defined in 2.3.9, so that Ag,d

is the rigidification of Ag,d with respect to the universal theta group G over Tg,d .
To compactify Ag,d , we first construct a dense open immersion Tg,d ↪→ Tg,d

and an extension of the universal theta group over Tg,d to a subgroup G⊂ ITg,d
,

and then Ag,d will be obtained as the rigidification of Tg,d with respect to G.
Though the stack Tg,d is not separated, it should be viewed as a compactification
of Tg,d as it gives a proper stack Ag,d after rigidifying.
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5.1. Standard families.

5.1.1. To get a sense for the boundary points of Tg,d , let us again consider the
case of maximal degeneration. Let V be a complete discrete valuation ring,
S = Spec(V ), and let G/V be a semiabelian scheme over V whose generic fiber
Gη is an abelian variety and whose closed fiber is a split torus T . Let X denote
the character group of T . Assume further given a polarization

λ : Gη→ G t
η

of degree d. In this case we again get by 3.2.8 a quadratic form on XQ = YQ,
where Y is as in 3.2.5. Note that in this case we only get a quadratic function

A : X→Q,

but after making a suitable base change of V we may assume that this function
actually takes values in Z. We then get a paving 6 of XR by considering the
convex hull of the set of points

{(x, A(x))|x ∈ X} ⊂ XR⊕R.

Just as before we get a paving 6 of XR and we can consider the scheme

P̃→ Spec(V )

defined in the same way as in 4.2.5. The main difference is that now we get
an action of Y on P̃ as opposed to an action of X . Taking the quotient of the
reductions of Ỹ by this Y -action, and algebraizing as before we end up with a
projective V -scheme P/V with G-action and an ample line bundle L P on P ,
such that the generic fiber Pη is a torsor under Gη, and the map

Gη→ G t
η

defined by the line bundle L P is equal to λ.

5.1.2. The construction of the logarithmic structures in 4.5.2 also generalizes
to the case of higher degree polarization by the same construction. From the
construction in 4.5.2 we therefore obtain candidates for the boundary points of
Tg,d over an algebraically closed field k as collections of data

(Mk,G, f : (P,MP)→ (Spec(k),Mk), L P),

where

(1) Mk is a fine saturated log structure on Spec(k).

(2) f is a log smooth morphism of fine saturated log schemes such that P/k is
proper.
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(3) G is a semiabelian variety over k which acts on (P,MP) over (Spec(k),Mk).

(4) L P is an ample line bundle on P .

(5) This data is required to be isomorphic to the data arising from a paving 6
of XR coming from a quadratic form as above.

We call such a collection of data over k a standard family. More generally, there
is a notion of standard family in the case when G is not totally degenerate (see
[Olsson 2008, §5.2] for the precise definition).

Over a general base scheme S we define Tg,d(S) to be the groupoid of
collections of data

(MS,G, f : (P,MP)→ (S,MS), L P),

where

(1) MS is a fine saturated log structure on S.

(2) f is a log smooth morphism whose underlying morphism P→ S is proper.

(3) G/S is a semiabelian scheme which acts on (P,MP) over (S,MS).

(4) L P is a relatively ample invertible sheaf on P .

(5) For every geometric point s̄→ S the pullback

(Ms̄,G s̄, fs̄ : (Ps̄,MPs̄ )→ (s̄,Ms̄), L Ps̄ )

is a standard family over s̄.

With the natural notion of pullback we get a stack Tg,d over S.

Theorem 5.1.3 [Olsson 2008, 5.10.3]. The stack Tg,d is an algebraic stack of
finite type. If MTg,d

denotes the natural log structure on Tg,d , then the restriction

of (Tg,d ,MTg,d
) to Z[1/d] is log smooth.

5.2. The theta group.

5.2.1. The stack Tg,d is not separated, but it does have an extension of the theta
group. Namely, for any objects

S= (MS,G, f : (P,MP)→ (S,MS), L P) ∈ Tg,d(S)

over some scheme S, define

GS : (S-schemes)op
→ (Groups)

to be the functor which to any S′/S associates the group of pairs

(ρ, ι),
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where
ρ : (PS′,MPS′

)→ (PS′,MPS′
)

is an automorphism of log schemes over (S′,MS′) (where MS′ is the pullback of
MS to MS′), and

ι : ρ∗L PS′
→ L PS′

is an isomorphism of line bundles. We call GS the theta group of S.
Note that there is a natural inclusion

i : Gm ↪→ GS

sending a unit u to the automorphism with ρ = id and ι multiplication by u.

Theorem 5.2.2 [Olsson 2008, 5.4.2]. The functor GS is representable by a flat
group scheme over S, which we again denote by GS. The quotient of GS by Gm

is a finite flat commutative group scheme HS of rank d2.

5.2.3. So we have a central extension

1→ Gm→ GS→ HS→ 1,

with HS commutative. We can then define a skew symmetric pairing

e : HS× HS→ Gm

by setting
e(x, y) := x̃ ỹ x̃−1 ỹ−1

∈ Gm,

where x̃, ∈̃GS are local lifts of x and y respectively. We call this pairing on
HS the Weil pairing. It is shown in [Olsson 2008, 5.4.2] that this pairing is
nondegenerate.

5.3. The stack Ag,d .

5.3.1. The theta groups of objects of Tg,d define a flat subgroup scheme

G ↪→ ITg,d

of the inertia stack of Tg,d , and we define

Ag,d

to be the rigidification of Tg,d with respect to G.

Theorem 5.3.2 [Olsson 2008, §5.11]. (i) The stack Ag,d is a proper algebraic
stack over Z.

(ii) The log structure MTg,d
on Tg,d descends uniquely to a log structure MAg,d

on Ag,d . The restriction of (Ag,d ,MAg,d
) to Z[1/d] is log smooth.
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(iii) The natural inclusion Ag,d ↪→Ag,d is a dense open immersion and identifies
Ag,d with the open substack of Ag,d where MAg,d

is trivial.

(iv) The finite flat group scheme H := G/Gm with its Weil pairing e descends to
a finite flat group scheme with perfect pairing (still denoted (H, e)) on Ag,d .
The restriction of H to Ag,d is the kernel of the universal polarization

λ : X→ X t

on the universal abelian scheme X/Ag,d .

5.4. Moduli spaces for abelian varieties with level structure. Theorem 5.3.2
enables one to give compactifications for moduli spaces of abelian varieties with
level structure. We illustrate this with an example.

5.4.1. Let g ≥ 1 be an integer, let p be a prime, and let Ag(p) denote the stack
over Z[1/p] which to any scheme S associates the groupoid of pairs

(A, λ, x : S→ A),

where (A, λ) is a principally polarized abelian variety of dimension g, and
x ∈ A(S) is a point of exact order p.

Note that if
X [p] →Ag

denotes the p-torsion subgroup of the universal principally polarized abelian
scheme over Ag, then Ag(p) is equal to the restriction to Z[1/p] of the com-
plement of the zero section of X [p] (which is finite over Ag[1/p] since the
restriction of X [p] to Ag[1/p] is finite étale). So we can view the problem of
compactifying Ag(p) as a problem of compactifying the universal p-torsion
subgroup scheme over Ag.

5.4.2. For this note first that if (A, λ) is a principally polarized abelian scheme
over a scheme S, then the p-torsion subgroup A[p] is the kernel of

pλ : A→ At .

Let
j :Ag[1/p] →Ag,pg [1/p]

be the map sending (A, λ) to (A, pλ). By 2.3.12 this map is an open and closed
immersion, and if

η : X→ X t

denotes the universal polarization over Ag,pg [1/p] then the universal p-torsion
subgroup over Ag[1/p] is the restriction of the finite étale group scheme

Ker(η)→Ag,pg [1/p].
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5.4.3. Let
H→Ag,pg

be the finite flat group scheme discussed in 5.3.2(iii). The rank of H is p2g, so
its restriction H[1/p] to Ag,pg [1/p] is a finite étale group scheme of rank p2g,
whose restriction to Ag,pg [1/p] is Ker(η). We then get a compactification of
Ag(p) by taking the closure of Ag(p) in the complement of the identity section
in H[1/p]. Since H[1/p] is finite étale over Ag,pg the resulting space Ag(p) is
finite étale over Ag,pg [1/p], and in particular is proper over Z[1/p] with toric
singularities.
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