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The geography of irregular surfaces
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We give an overview of irregular complex surfaces of general type, discussing
in particular the distribution of the numerical invariants K 2 and χ for minimal
ones.
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1. Introduction

Let S be a minimal surface of general type and let K 2, χ be its main numerical
invariants (Section 2.3). For every pair of positive integers a, b the surfaces with
K 2
= a, χ = b belong to finitely many irreducible families, so that in principle

their classification is possible. In practice, the much weaker geographical prob-
lem, i.e., determining the pairs a, b for which there exists a minimal surface of
general type with K 2

= a and χ = b, is quite hard.
In the past, the main focus in the study of both the geographical problem and

the fine classification of surfaces of general type has been on regular surfaces,
namely surfaces that have no global 1-forms, or, equivalently, whose first Betti
number is 0. The reason for this is twofold: on the one hand, the canonical map
of regular surfaces is easier to understand, on the other hand complex surfaces
are the main source of examples of differentiable 4-manifolds, hence the simply
connected ones are considered especially interesting from that point of view.

So, while, for instance, the geographical problem is by now almost settled
and the fine classification of some families of regular surfaces is accomplished
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[Barth et al. 1984, §9–11, Chapter VII], little is known about irregular surfaces of
general type. In recent years, however, the use of new methods and the revisiting
of old ones have produced several new results.

Here we give an overview of these results, with special emphasis on the geo-
graphical problem. In addition, we give several examples and discuss some open
questions and possible generalizations to higher dimensions (e.g., Theorem 5.2.2).

Notation and conventions. We work over the complex numbers. All varieties
are projective algebraic and, unless otherwise specified, smooth. We denote by
J (C) the Jacobian of a curve C .

Given varieties X i and sheaves Fi on X i , i = 1, 2, we denote by F1 � F2 the
sheaf p∗1F1⊗ p∗2F2 on X1× X2, where pi : X1× X2→ X i is the projection.

2. Irregular surfaces of general type

Unless otherwise specified, a surface is a smooth projective complex surface.
A surface S is of general type if the canonical divisor KS is big. Every surface

of general type has a birational morphism onto a unique minimal model, which
is characterized by the fact that KS is nef. A surface (or more generally a variety)
S is called irregular if the irregularity q(S) := h0(�1

S)= h1(OS) is > 0.

2.1. Irrational pencils. A pencil on a surface S is a morphism with connected
fibers f : S→ B, where B is a smooth curve. A map ψ : S→ X , X a variety, is
composed with a pencil if there exists a pencil f : S→ B and a map ψ : B→ X
such that ψ =ψ ◦ f . The genus of the pencil f is by definition the genus b of B.
The pencil f is irrational if b > 0. Since pullback of forms induces an injective
map H 0(�1

B)→ H 0(�1
S), a surface with an irrational pencil is irregular. Clearly,

the converse is not true (Remark 2.2.1).
In addition, if the pencil f has genus ≥ 2, by pulling back two independent

1-forms of B one gets independent 1-forms α and β on S such that α∧β = 0.
The following classical result (see [Beauville 1996] for a proof) states that this
condition is equivalent to the existence of an irrational pencil of genus ≥ 2:

Theorem 2.1.1 (Castelnuovo and de Franchis). Let α, β ∈ H 0(�1
S) be linearly

independent forms such that α∧β = 0. Then there exists a pencil f : S→ B of
genus ≥ 2 and α0, β0 ∈ H 0(ωB) such that α = f ∗α0, β = f ∗β0.

Let α1, . . . , αk,β∈H 0(�1
S) be linearly independent forms such that α1, . . . , αk

are pullbacks from a curve via a pencil f : S→ B and β∧α j = 0 (notice that
it is the same to require this for one index j or for all j = 1, . . . , k). By
Theorem 2.1.1, there exists a pencil h : S→ D such that, say, α1 and β are pull
backs of independent 1-forms of D. Let ψ := f × h : S→ B × D. Then the
forms α j ∧β are pullbacks of nonzero 2-forms of B× D. Since α j ∧β = 0, it
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follows that the image of ψ is a curve C and that α1, . . . , αk, β are pullbacks of
1-forms of C . This shows that for every b≥ 2 there is one-to-one correspondence
between pencils of S of genus b and subspaces W ⊂ H 0(�1

S) of dimension b
such that

∧2W = 0 and W is maximal with this property.
The existence of a subspace W as above can be interpreted in terms of the

cohomology of S with complex coefficients, thus showing that the existence of a
pencil of genus ≥ 2 is a topological property [Catanese 1991, Theorem 1.10]. On
the contrary, the existence of pencils of genus 1 is not detected by the topology
(Remark 2.2.1).

A classical result of Severi (see [Severi 1932; Samuel 1966]) states that a
surface of general type has finitely many pencils of genus≥ 2. However a surface
of general type can have infinitely many pencils of genus 1, as it is shown by the
following example:

Example 2.1.2. Let E be a curve of genus 1, O ∈ E a point, A := E × E and
L := OA({O} × E + E × {O}). For every n ≥ 1, the map hn : A→ E defined
by (x, y) 7→ x + ny is a pencil of genus 1. Let now S→ A be a double cover
branched on a smooth ample curve D ∈ |2d L| (see Section 2.4(d) for a quick
review of double covers). The surface S is minimal of general type, and for every
n the map hn induces a pencil fn : S→ E . The general fiber of fn is a double
cover of an elliptic curve isomorphic to E , branched on 2d(n2

+1) points, hence
it has genus dn2

+ d + 1. It follows that the pencils fn are all distinct.

2.2. The Albanese map. The Albanese variety of S is defined as Alb(S) :=
H 0(�1

S)
∨/H1(S,Z). By Hodge theory, Alb(S) is a compact complex torus and,

in addition, it can be embedded in projective space, namely it is an abelian
variety. For a fixed base point x0 ∈ S one defines the Albanese morphism
ax0 : S→ Alb(S) by x 7→

∫ x
x0
−; see [Beauville 1996, Chapter V]. Choosing a

different base point in S, the Albanese morphism just changes by a translation
of Alb(S), so we often ignore the base point and just write a. By construction,
the map a∗ : H1(S,Z)→ H1(Alb(S),Z) is surjective, with kernel equal to the
torsion subgroup of H1(S,Z), and the map a∗ : H 0(�1

Alb(S))→ H 0(�1
S) is an

isomorphism, so if q(S) > 0 it follows immediately that a is nonconstant. The
dimension of a(S) is called the Albanese dimension of S and it is denoted by
Albdim(S). S is of Albanese general type if Albdim(S)= 2 and q(S) > 2.

The morphism a : S→ Alb(S) is characterized up to unique isomorphism by
the following universal property: for every morphism S→ T , with T a complex
torus, there exists a unique factorization S

a
−→Alb(S)→T . It follows immediately

that the image of a generates Alb(S), namely that a(S) is not contained in any
proper subtorus of Alb(S). Using the Stein factorization and the fact that for
a smooth curve B the Abel–Jacobi map B→ J (B) is an embedding, one can
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show that if Albdim(S) = 1, then B := a(S) is a smooth curve of genus q(S)
and the map a : S→ B has connected fibers. In this case, the map a : S→ B is
called the Albanese pencil of S. By the analysis of Section 2.1, Albdim(S)= 1
(“a is composed with a pencil”) if and only if α∧β = 0 for every pair of 1-forms
α, β ∈ H 0(�1

S) if and only if there exists a surjective map f : S→ B where B
is a smooth curve of genus q(S). In this case, if q(S) > 1 then f coincides with
the Albanese pencil.

Since, as we recalled in Section 2.1, the existence of a pencil of given genus
≥ 2 is a topological property of S, the Albanese dimension of a surface is a
topological property.

Remark 2.2.1. Let f : S→ B be an irrational pencil. By the universal property
of the Albanese variety, there is a morphism of tori Alb(S) → J (B). The
differential of this morphism at 0 is dual to f ∗ : H 0(ωB)→ H 0(�1

S), hence it
is surjective and Alb(S)→ J (B) is surjective, too. So if Albdim(S) = 2 and
Alb(S) is simple, S has no irrational pencil. It is easy to produce examples of
this situation, for instance by considering surfaces that are complete intersections
inside a simple abelian variety; see Section 2.4(c).

If Albdim(S)= q(S)= 2, S has an irrational pencil if and only if there exists
a surjective map Alb(S)→ E , where E is an elliptic curve. So, by taking double
covers of principally polarized abelian surfaces branched on a smooth ample
curve — see Section 2.4(d) — one can construct a family of minimal surfaces of
general type such that the general surface in the family has no irrational pencil
but some special ones have.

If Albdim(S) = 2, then a contracts finitely many irreducible curves. By
Grauert’s criterion ([Barth et al. 1984, Theorem III.2.1]), the intersection matrix
of the set of curves contracted by a is negative definite. An irreducible curve C
of S is contracted by a if and only if the restriction map H 0(�1

S)→ H 0(ωCν )

is trivial, where Cν
→ C is the normalization. So, every rational curve of S is

contracted by a. More generally, by the universal property the map Cν
→Alb(S)

factorizes through J (Cν)=Alb(Cν), hence a(C) spans an abelian subvariety of
Alb(C) of dimension at most g(Cν). So, for instance, if Alb(S) is simple every
curve of S of geometric genus < q(S) is contracted by a.

An irreducible curve C of S such that a(C) spans a proper abelian subvariety
T ⊂ Alb(S) has C2

≤ 0. In particular, if C has geometric genus < q(S) then
C2
≤ 0. Indeed, consider the nonconstant map ā : S→ A/T induced by a. If

the image of ā is a surface, then C is contracted to a point, hence C2 < 0. If the
image of ā is a curve, then C is contained in a fiber, hence by Zariski’s lemma
([Barth et al. 1984, Lem.III.8.9]) C2

≤ 0 and C2
= 0 if and only if C moves in

an irrational pencil. In view of the fact that S has finitely many irrational pencils
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of genus ≥ 2, the irreducible curves of S whose image via a spans an abelian
subvariety of Alb(S) of codimension > 1 belong to finitely many numerical
equivalence classes.

We close this section by giving an example that shows that the degree of the
Albanese map of a surface with Albdim= 2 is not a topological invariant.

Example 2.2.2. We describe an irreducible family of smooth minimal surfaces
of general type such that the Albanese map of the general element of the family is
generically injective but for some special elements the Albanese map has degree
2 onto its image. The examples are constructed as divisors in a double cover
p : V → A of an abelian threefold A.

Let A be an abelian threefold and let L be an ample line bundle of A such that
|2L| contains a smooth divisor D. There is a double cover p : V → A branched
on D and such that p∗OV = OA ⊕ L−1; see Section 2.4(d). The variety V is
smooth and, arguing as in Section 2.4(d), one shows that the Albanese map of V
coincides with p. Notice that this implies that the map p∗ :H1(V,Z)→H1(A,Z)

is an isomorphism up to torsion (see Section 2.2).
Let now Y ⊂ A be a very ample divisor such that h0(OA(Y )⊗ L−1) > 0

and set X := p∗Y . If Y is general, then both X and Y are smooth. Let now
X ′∈ |X | be a smooth element. By the adjunction formula, X ′ is smooth of general
type. By the Lefschetz theorem on hyperplane sections, the inclusion X ′→ V
induces an isomorphism π1(X ′)' π1(V ), which in turn gives an isomorphism
H1(X ′,Z)' H1(V,Z). Composing with p∗ : H1(V,Z)→ H1(A,Z) we get an
isomorphism (up to torsion) H1(X ′,Z)→ H1(A,Z), which is induced by the
map p|X ′ : X ′ → A. Hence p|X ′ : X ′ → A is the Albanese map of X ′. Now
the map p|X ′ has degree 2 onto its image if X ′ is invariant under the involution
σ associated to p, and it is generically injective otherwise. By the projection
formula for double covers, the general element of |X | is not invariant under σ if
and only if h0(OA(Y )⊗ L−1) > 0, hence we have the required example.

2.3. Numerical invariants and geography. To a minimal complex surface S of
general type, one can attach several integer invariants, besides the irregularity
q(S)= h0(�1

S) > 0:

• the self intersection K 2
S of the canonical class,

• the geometric genus pg(S) := h0(KS)= h2(OS),

• the holomorphic Euler–Poincaré characteristic, χ(S) := h0(OS)−h1(OS)+

h2(OS)= 1− q(S)+ pg(S),

• the second Chern class c2(S) of the tangent bundle, which coincides with
the topological Euler characteristic of S.
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All these invariants are determined by the topology of S plus the orientation
induced by the complex structure. Indeed (see [Barth et al. 1984, I.1.5]), by
Noether’s formula we have:

K 2
S + c2(S)= 12χ(S), (2.3.1)

and by the Thom–Hirzebruch index theorem:

τ(S)= 2(K 2
S − 8χ(S)), (2.3.2)

where τ(S) denotes the index of the intersection form on H 2(S,C), namely the
difference between the number of positive and negative eigenvalues. So K 2

S and
χ(S) are determined by the (oriented) topological invariants c2(S) and τ(S). By
Hodge theory the irregularity q(S) is equal to 1

2 b1(S), where b1(S) is the first
Betti number. So q(S) is also determined by the topology of S and the same is
true for pg(S)= χ(S)+ q(S)− 1.

It is apparent from the definition that these invariants are not independent. So
it is usual to take K 2

S , χ(S) (or, equivalently, K 2
S , c2(S)) as the main numerical

invariants. These determine the Hilbert polynomial of the n-canonical image
of S for n ≥ 2, and by a classical result [Gieseker 1977] the coarse moduli
space Ma,b of surfaces of general type with K 2

= a, χ = b is a quasiprojective
variety. Roughly speaking, this means that surfaces with fixed K 2 and χ are
parametrized by a finite number of irreducible varieties, hence in principle they
can be classified. In practice, however, the much more basic geographical
question, i.e., “for what values of a, b is Ma,b nonempty?” is already nontrivial.

The invariants K 2, χ are subject to the following restrictions:
• K 2, χ > 0,
• K 2

≥ 2χ − 6 (Noether’s inequality),
• K 2

≤ 9χ (Bogomolov–Miyaoka–Yau inequality).

All these inequalities are sharp and it is known that for “almost all” a, b in the
admissible range the space Ma,b is nonempty. (The possible exceptions seem
to be due to the method of proof and not to the existence of special areas in the
admissible region for the invariants of surfaces of general type).

In this note we focus on the geographical question for irregular surfaces. More
precisely, we address the following questions:

“for what values of a, b does there exist a minimal surface of general type S
with K 2

= a, χ = b such that:
• q(S) > 0?”
• S has an irrational pencil?”
• Albdim(S)= 2?”
• q(S) > 0 and S has no irrational pencil?”
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Remark 2.3.1. If S′ → S is an étale cover of degree d and S is minimal of
general type, S′ is also minimal of general type with invariants K 2

S′ = d K 2
S and

χ(S′) = dχ(S). The first three properties listed above are stable under étale
covers. Since the first Betti number of a surface is equal to 2q, an irregular
surface has étale covers of degree d for any d > 0. Hence, if for some a, b the
answer to one of these three questions is affirmative, the same is true for all the
pairs da, db, with d a positive integer.

The main known inequalities for the invariants of irregular surfaces of general
type are illustrated in the following sections. Here we only point out the following
simple consequence of Noether’s inequality:

Proposition 2.3.2. Let S be a minimal irregular surface of general type. Then:

K 2
S ≥ 2χ(S).

Proof. Assume for contradiction that K 2
S < 2χ(S). Then an étale cover S′ of

degree d ≥ 7 has K 2
S′ < 2χ(S′)− 6, violating Noether’s inequality. �

More generally, the following inequality holds for minimal irregular surfaces
of general type [Debarre 1982]:

K 2
≥max{2pg, 2pg + 2(q − 4)}. (2.3.3)

The inequality (2.3.3) implies that irregular surfaces with K 2
= 2χ have q = 1.

These surfaces are described in Section 2.5(b).

2.4. Basic constructions. Some constructions of irregular surfaces of general
type have already been presented in the previous sections. We list and describe
briefly the most standard ones:

(a) Products of curves. Take S := C1×C2, with Ci a curve of genus gi ≥ 2.
S has invariants

K 2
= 8(g1− 1)(g2− 1), χ = (g1− 1)(g2− 1), q = g1+ g2, pg = g1g2.

In particular these surfaces satisfy K 2
= 8χ . The Albanese variety is the product

J (C1)× J (C2) and the Albanese map induces an isomorphism onto its image.
The two projections S→ Ci are pencils of genus gi ≥ 2.

(b) Symmetric products. Take S := S2C , where C is a smooth curve of genus
g ≥ 3. Consider the natural map p : C ×C→ S, which is the quotient map by
the involution ι that exchanges the two factors of C×C . The ramification divisor
of p is the diagonal 1⊂ C ×C , hence we have:

KC×C = p∗KS +1.
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Computing intersections on C ×C we get

K 2
S = (g− 1)(4g− 9).

Global 1 and 2-forms on S2C correspond to forms on C ×C that are invariant
under ι. Writing down the action of ι on H 0(�i

C×C), one obtains canonical
identifications:

H 0(ωS)=
∧2 H 0(ωC), H 0(�1

S)= H 0(ωC). (2.4.1)

Thus we have:

pg = g(g− 1)/2, q = g, χ = g(g− 3)/2+ 1.

Since pg(S) > 0 and K 2
S > 0, it follows that S is of general type. Notice that

by Theorem 2.1.1 S has no irrational pencil of genus ≥ 2, since by (2.4.1) the
natural map

∧2 H 0(�1
S)→ H 0(ωS) is injective.

The points of S can be identified with the effective divisors of degree 2 of C .
If C is hyperelliptic, then the g1

2 of C gives a smooth rational curve 0 of S such
that 02

= 1−g. Let (P0, Q0)∈C×C be a point: the map C×C→ J (C)× J (C)
defined by (P, Q) 7→ (P − P0, Q − Q0) is the Albanese map of C ×C with
base point (P0, Q0). Composing with the addition map, one obtains a map
C ×C→ J (C) that is invariant for the action of ι and therefore induces a map
a : S→ J (C), which can be written explicitly as P + Q 7→ P + Q− P0− Q0.
Using the universal property, one shows that a is the Albanese map of S. By
the Riemann–Roch theorem, if C is not hyperelliptic a is injective, while if C is
hyperelliptic a contracts 0 to a point and is injective on S \0. Since H 0(ωS) is
the pullback of H 0(�2

J (C))=
∧2 H 0(ωC) via the Albanese map a, the points of

S where the differential of a fails to be injective are precisely the base points of
|KS|. So, if C is not hyperelliptic then a is an isomorphism of S with its image
and if C is hyperelliptic, then a gives an isomorphism of S \0 with its image.

Notice that as g goes to infinity, the ratio K 2
S/χ(S) approaches 8 from below.

(c) Complete intersections. Let V be an irregular variety of dimension k+2≥3.
For instance, one can take as V an abelian variety or a product of curves not
all rational. Given |D1|, . . . , |Dk | free and ample linear systems on V such that
KV + D1+ · · ·+ Dk is nef and big, we take

S = D1 ∩ · · · ∩ Dk,

with Di ∈ |Di | general, so that S is smooth. By the adjunction formula, KS is
the restriction to S of KV + D1+ · · ·+ Dk , hence S is minimal of general type.
Since the Di are ample, the Lefschetz Theorem for hyperplane sections gives
an isomorphism H1(S,Z)∼= H1(V,Z). Hence the Albanese map of S is just the
restriction of the Albanese map of V .
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The numerical invariants of S can be computed by means of standard exact
sequences on V . If k = 1 and D1 ∈ |r H |, where H is a fixed ample divisor, one
has:

K 2
S = r3 H 3

+ O(r2), χ(S)= r3 H 3/6+ O(r2),

so the ratio K 2
S/χ(S) tends to 6 as r goes to infinity. Similarly, for k = 2 and

D1, D2 ∈ |r H |, one has:

K 2
S = 4r4 H 4

+ O(r3), χ(S)= 7r4 H 4/12+ O(r3),

and K 2
S/χ(S) tends to 48/7 as r goes to infinity.

(d) Double covers. If Y is an irregular surface, any surface S that dominates
Y is irregular, too, and Albdim(S)≥ Albdim(Y ). The simplest instance of this
situation in which the map S→ Y is not birational is that of a double cover. A
smooth double cover of a variety Y is determined uniquely by a line bundle L
on Y and a smooth divisor D ∈ |2L|. Set E := OY ⊕ L−1 and let Z2 act on E

as multiplication by 1 on OY and multiplication by −1 on L−1. To define on E

an OY -algebra structure compatible with this Z2-action it suffices to give a map
µ : L−2

→ OY : we take µ to be a section whose zero locus is D, set S := Spec E

and let π : S→ Y be the natural map. S is easily seen to be smooth if and only
if D is. By construction, one has:

H i (OS)= H i (OY )⊕ H i (L−1).

In particular, if L is nef and big then by Kawamata–Viehweg vanishing H 1(OS)=

H 1(OY ), hence the induced map Alb(S)→ Alb(Y ) is an isogeny. It is actually
an isomorphism: since H 0(�1

S)= H 0(�1
Y ), the induced Z2 action on Alb(S) is

trivial. Since D = 2L is nef and big and effective, it is nonempty and therefore
we may choose a base point x0 ∈ S that is fixed by Z2. The Albanese map with
base point x0 is Z2-equivariant, hence it descends to a map Y → Alb(S). So
by the universal property there is a morphism Alb(Y )→ Alb(S) which is the
inverse of the morphism Alb(S)→ Alb(Y ) induced by π .

A local computation gives the following pullback formula for the canonical
divisor:

KS = π
∗(KY + L).

By this formula, if KY + L is nef and big the surface S is minimal of general
type. The numerical invariants of S are:

K 2
S = 2(KY + L)2, χ(S)= 2χ(Y )+ L(KY + L)/2.

Hence for “large” L , the ratio K 2
S/χ(S) tends to 4.

If Y is an abelian surface and L is ample, one has Albdim(S)= 2 and K 2
S =

4χ(S).
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2.5. Examples. The constructions of irregular surfaces of Section 2.4 can be
combined to produce more sophisticated examples; see Example 2.2.2, for
instance. However the computations of the numerical invariants suggest that
in infinite families of examples the ratio K 2/χ converges, so that it does not
seem easy to fill by these methods large areas of the admissible region for the
invariants K 2, χ .

Here we collect some existence results for irregular surfaces.

(a) χ = 1. As explained in Section 2.3, χ = 1 is the smallest possible value
for a surface of general type. Since K 2

≤ 9χ (Section 2.3), in this case we
have K 2

≤ 9, hence by (2.3.3) q = pg ≤ 4. To our knowledge, the only known
example of an irregular surface of general type with K 2

= 9, χ = 1 was recently
constructed by Donald Cartwright and Tim Steiger (unpublished). It has q = 1.

We recall briefly what is known about the classification of these surfaces for
the possible values of q .

q = 4 : S is the product of two curves of genus 2 by Theorem 3.0.4, due to
Beauville. So K 2

= 8 in this case.

q = 3 : By [Hacon and Pardini 2002] and [Pirola 2002] (see also [Catanese et al.
1998]) these surfaces belong to two families. They are either the symmetric
product S2C of a curve C of genus 3 (K 2

= 6) or free Z2-quotients of a product
of curves C1×C2 where g(C1)= 2, g(C2)= 3 (K 2

= 8).

q = 2 : Surfaces with pg = q = 2 having an irrational pencil (hence in particular
those with Albdim(S)= 1) are classified in [Zucconi 2003]. They have either
K 2
= 4 or K 2

= 8.
Let (A,2) be a principally polarized abelian surface A. A double cover

S→ A branched on a smooth curve of |22| is a minimal surface of general
type with K 2

= 4, pg = q = 2 and it has no irrational pencil if and only if A is
simple; see Section 2.4(d). In [Ciliberto and Mendes Lopes 2002] it is proven
that this is the only surface with pg = q = 2 and nonbirational bicanonical
map that has no pencil of curves of genus 2. An example with pg = q = 2,
K 2
= 5 and no irrational pencil is constructed in [Chen and Hacon 2006].

q = 1 : For S a minimal surface of general type with pg = q = 1, we denote
by E the Albanese curve of S and by g the genus of the general fiber of the
Albanese pencil a : S→ E .

The case K 2
= 2 is classified in [Catanese 1981]. These surfaces are

constructed as follows. Let E be an elliptic curve with origin O . The map
E× E→ E defined by (P, Q) 7→ P+Q descends to a map S2 E→ E whose
fibers are smooth rational curves. We denote by F the algebraic equivalence
class of a fiber of S2 E→ E . The curves {P}× E and E ×{P} map to curves
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DP ⊂ S2 E such that DP F = D2
P = 1. The curves DP , P ∈ A, are algebraically

equivalent and h0(DP)= 1. We denote by D the algebraic equivalence class
of DP . Clearly D and F generate the Néron–Severi group of S2 E . All the
surfaces S are (minimal desingularizations of) double covers of S2 E branched
on a divisor B numerically equivalent to 6D− 2F and with at most simple
singularities. The composite map S→ S2 E→ E is the Albanese pencil of X
and its general fiber has genus 2.

The case K 2
= 3 is studied in [Catanese and Ciliberto 1991; 1993]. One

has either g = 2 or g = 3. If g = 2, then S is birationally a double cover
of S2 E , while if g = 3 S is birational to a divisor in S3 E . For K 2

= 4,
several components of the moduli space are constructed in [Pignatelli 2009]
(all these examples have g = 2). Rito [2007; 2010b; 2010a] gave examples
with K 2

= 2, . . . , 8. The case in which S is birational to a quotient (C×F)/G,
where C and F are curves and G is a finite group is considered in [Carnovale
and Polizzi 2009; Mistretta and Polizzi 2010; Polizzi 2008; 2009]: when
(C × F)/G has at most canonical singularities the surface S has K 2

= 8, but
there are also examples with K 2

= 2, 3, 5.

(b) The line K 2
= 2χ . As pointed out in Proposition 2.3.2, for irregular sur-

faces the lower bound for the ratio K 2/χ is 2. Irregular surfaces attaining this
lower bound were studied in [Horikawa 1977; 1981]. Their structure is fairly
simple: they have q = 1, the fibers of the Albanese pencil a : S→ E have genus
2 (compare Proposition 4.1.4) and the quotient of the canonical model of S by
the hyperelliptic involution is a P1-bundle over E . The moduli space of these
surfaces is studied in [Horikawa 1981].

We just show here that for every integer d > 0 there exists a minimal irregular
surface of general type with K 2

= 2χ and χ = d . In (a) above we have sketched
the construction of such a surface S with K 2

S = 2, χ(S)= 1. Let a : S→ E be
the Albanese pencil and let E ′→ E be an unramified cover of degree d. Then
the map S′→ S obtained from E ′→ E by taking base change with S→ E is a
connected étale cover and S′ is minimal of general type with K 2

= 2d, χ = d.
By construction S′ maps onto E ′, hence q(S′) > 0. By Proposition 4.1.4 we have
q(S′)= 1, hence S′→ E ′, having connected fibers, is the Albanese pencil of S′.

Alternatively, here is a direct construction for χ even. Let Y = P1
× E , with

E an elliptic curve and let L := OP1(3)� OE(kO), where k ≥ 1 is an integer
and O ∈ E is a point. Let D ∈ |2L| be a smooth curve and let π : S → Y
be the double cover given by the relation 2L ≡ D; see Section 2.4(d). The
surface is smooth, since D is smooth, and it is minimal of general type since
KS = π

∗(KY + L)= π∗(OP1(1)� OE(kO)) is ample. The invariants are

K 2
= 4k, χ = 2k.
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One shows as above that q(S)= 1 and S→ E is the Albanese pencil.

(c) Surfaces with an irrational pencil with general fiber of genus g. We use
the same construction as in the previous case. Let g ≥ 2. Take Y = P1

× E
with E an elliptic curve, 1 a divisor of positive degree of E and set L :=
OP1(g+ 1)� OE(1). Let D ∈ |2L| be a smooth curve and π : S→ Y the double
cover given by the relation 2L ≡ D. S is smooth minimal of general type, with
invariants

K 2
S = 4(g− 1) deg1, χ(S)= g deg1.

The projection Y → E lifts to a pencil S→ E of hyperelliptic curves of genus
g. Here K 2

S/χ(S) is equal to 4(g− 1)/g, which is the lowest possible value by
Theorem 4.1.3.

(d) The line K 2
= 9χ . By [Miyaoka 1984, Theorem 2.1] minimal surfaces of

general type with K 2
= 9χ have ample canonical class. By Yau’s results [1977],

surfaces with K 2
= 9χ and ample canonical class are quotients of the unit ball

in C2 by a discrete subgroup. The existence of several examples has been shown
using this description [Barth et al. 1984, §9, Chapter VII].

Three examples have been constructed in [Hirzebruch 1983] as Galois covers
of the plane branched on an arrangement of lines.

For later use, we sketch here one of these constructions. Let P1, . . . , P4 ∈ P2

be points in general positions and let L1, . . . , L6 be equations for the lines
through P1, . . . , P4. Let X → P2 be the normal finite cover corresponding to
the field inclusion

C(P2)⊂ C(P2)((L1/L6)
1
5 , . . . , (L5/L6)

1
5 ).

The cover X→P2 is abelian with Galois group Z5
5 and one can show, for instance

by the methods of [Pardini 1991], that X is singular over P1, . . . , P4 and that
the cover S→ P̂2 obtained by blowing up P1, . . . , P4 and taking base change
and normalization is smooth. The cover S → P̂2 is branched of order 5 on
the union B of the exceptional curves and of the strict transforms of the lines
L j . Hence the canonical class KS is numerically equivalent to the pull back of
1
5(9L − 3(E1+ · · ·+ E4)), where L is the pullback on P̂2 class of a line in P2

and the Ei are the exceptional curves of P̂2
→ P2. It follows that KS is ample

and K 2
S = 32

· 54. The divisor B has 15 singular points, that are precisely the
points of P̂2 whose preimage consists of 53 points. Hence, denoting by e the
topological Euler characteristic of a variety, we have

c2(S)= e(S)= 55
[e(P̂2)− e(B)] + 54

[e(B)− 15] + 53
· 15= 3 · 54.
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Thus S satisfies K 2
= 3c2 or, equivalently, K 2

= 9χ . In [Ishida 1983] it is shown
that the irregularity q(S) is equal to 30. To prove that Albdim S = 2, by the
discussion in Section 2.1 it is enough to show that S has more than one irrational
pencil. The surface P̂2 has 5 pencils of smooth rational curves, induced by the
systems hi of lines through each of the Pi , i = 1, . . . , 4, and by the system h5 of
conics through P1, . . . , P4. For i = 1, . . . , 5, denote by fi : S→ Bi the pencil
induced by hi and denote by Fi the general fiber of fi . For i = 1, . . . , 5, the
subgroup Hi < Z5

5 that maps Fi to itself has order 53 and the restricted cover
Fi → P1 is branched at 4 points. So Fi has genus 76 by the Hurwitz formula.
There is a commutative diagram

S - P̂2

Bi

fi ?
- P1

?
(2.5.1)

where the map Bi →P1 is an abelian cover with Galois group Z5
5/Hi ∼= Z2

5. The
branch points of Bi→P1 correspond to the multiple fibers of fi , hence there are
3 of them and Bi has genus 6 by the Hurwitz formula. One computes Fi F j = 5
for i 6= j , hence the pencils Fi are all distinct.

Since the group Hi ∩ H j acts faithfully on the set Fi ∩ F j for Fi , F j general,
it follows that Hi ∩ H j has order 5 and Hi + H j = Z5

5. We use this remark
to show that H 0(�1

S) = ⊕
5
i=1Vi , where Vi := f ∗i H 0(ωBi ), and therefore that

Alb(S) is isogenous to J (B1)× · · · × J (B5). Since q(S)= 30 and dim Vi = 6,
it is enough to show that the Vi are in direct sum in H 0(�1

S). Each subspace
Vi decomposes under the action of Z5

5 as a direct sum of eigenspaces relative
to some subset of the group of characters Hom(Z5

5,C∗). Notice that the trivial
character never occurs in the decomposition since Bi/Z

5
5 = P1. The diagram

(2.5.1) shows that the characters occurring in the decomposition of Vi belong
to H⊥i . Since Hi + H j = Z5

5 for i 6= j , it follows that each character occurs in
the decompositions of at most one the Vi , and therefore that there is no linear
relation among the Vi .

(e) The ratio K 2/χ . Sommese [1984] showed that the ratios K 2(S)/χ(S), for
S a minimal surface of general type, form a dense set in the admissible interval
[2, 9]. His construction can be used to prove:

Proposition 2.5.1. (i) The ratios K 2
S/χ(S), as S ranges among surfaces with

Albdim(S)= 1, are dense in the interval [2, 8].

(ii) The ratios K 2
S/χ(S), as S ranges among surfaces with Albdim(S)= 2, are

dense in the interval [4, 9].
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Proof. Let X be a minimal surface of general type and let f : X → B be an
irrational pencil. Denote by g ≥ 2 the genus of a general fiber of f and write
K 2, χ for K 2

X , χ(X). Given positive integers d, k, we construct a surface Sd,k

as follows:
(1) We take an unramified degree d cover B ′→ B and let Yd → X be the

cover obtained by taking base change with f : X→ B.
(2) We take a double cover B ′′→ B ′ branched on 2k > 0 general points and

let Sd,k→ Yd be the cover obtained from B ′′→ B ′ by base change.
The étale cover Yd→ X is connected, hence Yd is a minimal surface of general

type with K 2
Yd
= d K 2 and χ(Yd) = dχ . By Section 2.4(d), the surface Sd,k is

smooth, since the branch points of B ′′→ B ′ are general, and it is minimal of
general type since KSd,k is numerically the pullback of KYd + k F , where F is a
fiber of Yd→ B ′ (F is the same as the general fiber of X→ B). By the formulae
for double covers we have

K 2
Sd,k

χ(Sd,k)
=

2d K 2
+ 8k(g− 1)

2dχ + k(g− 1)
=

K 2

χ
+

(
8−

K 2

χ

)
k(g− 1)

2dχ + k(g− 1)
. (2.5.2)

This formula shows that the ratio K 2
Sd,k
/χ(Sd,k) is in the interval [8, K 2/χ ] if

K 2
≥ 8χ and it is in [K 2/χ, 8] otherwise. It is not difficult to show that as d, k

vary one obtains a dense set in the appropriate interval [Sommese 1984].
Now to prove the statement it is enough to apply the construction to suitable

surfaces. If one takes X to be the surface with K 2
= 9χ described in (c) and

f : X → B one of the 5 irrational pencils of X , then the surfaces Sd,k have
Albanese dimension 2 and the ratios of their numerical invariants are dense in
[8, 9].

If one takes X to be a double cover of E × E branched on a smooth ample
curve as in Section 2.4(d) and f : X → E one of the induced pencil, then
the surfaces Sd,k have Albanese dimension 2 and the ratio of their numerical
invariants are dense in [4, 8].

Finally, we take X an irregular surface with K 2
= 2χ . Since q(X)= 1 (see (c)

above), we can take f : X→ B to be the Albanese pencil. In this case the ratios
of the numerical invariants of the surfaces Sd,k are dense in the interval [2, 8]. To
complete the proof we show that the surfaces Sd,k have Albanese dimension 1.
The surfaces Yd satisfy K 2

= 2χ , hence they also have q = 1. The induced pencil
Sd,k→ B ′′ has genus k+ 1, so we need to show that the irregularity of Sd,k is
equal to k+ 1. Denote by L the line bundle of Yd associated to the double cover
Sd,k→ Yd . By construction L = OYd (F1+ · · ·+ Fk), where the Fi are fibers of
the Albanese pencil, and if k > 1 we can take the Fi smooth and distinct. We
have q(Sd,k) = q(Yd)+ h1(L−1) = 1+ h1(L−1). Finally, h1(L−1) = k can be
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proven using the restriction sequence

0→ L−1
→ OYd → OF1+···+Fk → 0.

(Notice that the map H 1(OYd )→ H 1(OF1+···+Fk ) is 0, since the curves Fi are
contracted by the Albanese map). �

Remark 2.5.2. Due to the method of proof, all the surfaces constructed in the
proof of Proposition 2.5.1 have an irrational pencil. The examples in Section 2.4
show that, for instance, 4, 6, 48

7 , 8 are accumulation points for the ratio K 2/χ of
irregular surfaces without irrational pencils. We have no further information on
the distribution of the ratios K 2/χ for these surfaces.

3. The Castelnuovo–de Franchis inequality

Let S be an irregular minimal surface of general type. Set V := H 0(�1
S) and

denote by w :
∧2V → H 0(ωS) the natural map. If f : S→ B is a pencil of genus

b ≥ 2, then f ∗H 0(�1
B) is a subspace of V such that

∧2 f ∗H 0(�1
B) is contained

in kerw (Section 2.1). Conversely if pg = h0(ωS) < 2q − 3, the intersection of
kerw with the cone of decomposable elements is nonzero and by 2.1.1, S has a
pencil of genus b ≥ 2. Thus:

Theorem 3.0.3 (Castelnuovo–de Franchis inequality). Let S be an irregular
surface of general type having no irrational pencil of genus b ≥ 2. Then pg ≥

2q − 3.

In fact, using this theorem and positivity properties of the relative canonical
bundle of a fibration (Theorem 4.1.1), Beauville showed:

Theorem 3.0.4 [Beauville 1982]. Let S be a minimal surface of general type.
Then pg ≥ 2q − 4 and if equality holds then S is the product of a curve of genus
2 and a curve of genus q − 2≥ 2.

So surfaces satisfying pg = 2q − 4 have a particularly simple structure and it
is natural to ask what are the irregular surfaces satisfying pg = 2q − 3. Those
having an irrational pencil have again a simple structure, as explained in the
following theorem, which was proven in [Catanese et al. 1998] for q = 3, in
[Barja et al. 2007] for q = 4 and for q ≥ 5 in [Mendes Lopes and Pardini 2010].

Theorem 3.0.5. Let S be a minimal surface of general type satisfying pg =

2q − 3. If S has an irrational pencil of genus b ≥ 2, then there are the following
possibilities for S:

(i) S = (C × F)/Z2, where C and F are genus 3 curves with a free involution
(q = 4).

(ii) S is the product of two curves of genus 3 (q = 6).
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(iii) S = (C × F)/Z2, where C is a curve of genus 2q − 3 with a free action of
Z2, F is a curve of genus 2 with a Z2-action such that F/Z2 has genus 1
and Z2 acts diagonally on C × F (q ≥ 3).

In particular, K 2
S = 8χ .

So the main issue is to study the case when S has no irrational pencil. Various
numerical restrictions on the invariants have been obtained. For instance if q ≥ 5,
we have (see [Mendes Lopes and Pardini 2010]):
• K 2

S ≥ 7χ(S)− 1.
• If K 2

S < 8χ(S), then |KS| has fixed components and the degree of the
canonical map is 1 or 3.

• If q(S)≥ 7 and K 2 < 8χ(S)− 6, then the canonical map is birational.

However, it is hard to say whether these results are sharp, since the only
known example of a surface with pg = 2q − 3 and no irrational pencil is the
symmetric product of a general curve of genus 3. For low values of q we have:
• if q = 3, then S is the symmetric product of a curve of genus 3 — see

Section 2.5(a);
• if q = 4, then K 2

= 16, 17 [Barja et al. 2007; Causin and Pirola 2006];
• if q = 5, there exists no such surface [Lopes et al. 2012].

Theorem 3.0.3 has been generalized to the case of Kähler manifolds of arbitrary
dimension:

Theorem 3.0.6 [Pareschi and Popa 2009]. Let X be a compact Kähler manifold
with dim X =Albdim X = n. If there is no surjective morphism X→ Z with Z a
normal analytic variety such that 0< dim Z = Albdim Z <min{n, q(Z)}, then

χ(ωX )≥ q(X)− n.

4. The slope inequality

4.1. Relative canonical class and slope of a fibration. In this section we con-
sider a fibration (“pencil”) f : S→ B with S a smooth projective surface and B
a smooth curve of genus b≥ 0. Recall that a fibration is smooth if and only if all
its fibers are smooth, and it is isotrivial if and only if all the smooth fibers of f
are isomorphic, or, equivalently, if the fibers over a nonempty open set of B are
isomorphic. Isotrivial fibrations are also said to have “constant moduli”.

We assume that the general fiber F of f has genus g ≥ 2 and that f is
relatively minimal, namely that there is no −1-curve contained in the fibers of
f . Notice that these assumptions are always satisfied if S is minimal of general
type. Notice also that given a nonminimal fibration f it is always possible to
pass to a minimal one by blowing down the −1-curves in the fibers.



THE GEOGRAPHY OF IRREGULAR SURFACES 365

The relative canonical class is defined by K f := KS − f ∗K B . We also write
ω f for the corresponding line bundle OS(K f )= ωS ⊗ f ∗ω−1

B .
K f has the following positivity properties:

Theorem 4.1.1 (Arakelov; cf. [Beauville 1982]). Let f a relatively minimal
fibration of genus g ≥ 2.

(i) K f is nef. Hence, K 2
f = K 2

S − 8(g− 1)(b− 1)≥ 0.

(ii) If f is not isotrivial, then:

(a) K 2
f > 0

(b) K f C = 0 for an irreducible curve C of S if and only if C is a −2-curve
contained in a fiber of f .

Let f : S→ B be relatively minimal and let S be the surface obtained by
contracting the −2 curves contained in the fibers of f . There is an induced
fibration f̄ : S→ B and, since S has canonical singularities, K f is the pullback
of K f̄ := KS − f̄ ∗K B . By the Nakai criterion for ampleness, Theorem 4.1.1(ii)
can be restated by saying that if f̄ (equivalently, f ) is not isotrivial then K f̄ is
ample on S.

Given a pencil f with general fiber of genus g, the push forward f∗ω f is a
rank g vector bundle on B of degree χ f = χ(S)− (b− 1)(g− 1). Recall that a
vector bundle E on a variety X is said to be nef if the tautological line bundle
P(E) is nef.

Theorem 4.1.2 [Fujita 1978] (see also [Beauville 1982]). Let f : S→ B be a
relatively minimal fibration with general fiber of genus g ≥ 2. Then:

(i) f∗ω f is nef. In particular, OP( f∗ω f )(1)
g
= χ f ≥ 0;

(ii) χ f = 0 if and only if f is smooth and isotrivial.

From now one we assume that the relatively minimal fibration f : S→ B is
not isotrivial. The slope of f is defined as

λ( f ) :=
K 2

f

χ f
=

K 2
S − 8(b− 1)(g− 1)

χ(S)− (b− 1)(g− 1)
. (4.1.1)

By Theorems 4.1.1 and 4.1.2, λ( f ) is well defined and > 0.

Theorem 4.1.3 (Slope inequality). Let f : S → B be a relatively minimal
fibration with fibers of genus g ≥ 2. If f is not smooth and isotrivial, then

4(g−1)
g
≤ λ( f )≤ 12.
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The inequality λ( f )≤12 follows from Noether’s formula 12χ(S)=K 2
S+c2(S)

and from the well-known formula for the Euler characteristic of a fibered surface
[Barth et al. 1984, Proposition II.11.24]:

c2(S)= 4(b− 1)(g− 1)+
∑
P∈T

e(FP)− e(F), (4.1.2)

where e denotes the topological Euler characteristic, T is the set of critical
values of f , Fp is the fiber of f over the point P and F is a general fiber. For
any point P ∈ B one has e(FP) ≥ e(F), with equality holding only if FP is
smooth (loc. cit.). Hence, the main content of Theorem 4.1.3 is the lower bound
λ( f )≥ 4(g− 1)/g.

We have seen (Proposition 2.5.1 and Remark 2.5.2) that the ratios K 2/χ for
surfaces with an irrational pencil are dense in the interval [2, 9]. The slope
inequality gives a lower bound for this ratio in terms of the genus g of the general
fiber of the pencil.

Proposition 4.1.4. Let S be a minimal surface of general type that has an irra-
tional pencil f : S→ B with general fiber of genus g. Then

K 2
S ≥

4(g− 1)
g

χ(S)≥ 2χ(S).

In particular, if K 2
S = 2χ(S), then g = 2 and B has genus 1.

Proof. Assume that the pencil S is not smooth and isotrivial. If K 2
S ≥ 8χ(S)

then of course the statement holds. If K 2 < 8χ , then K 2
S/χ(S)≥ λ( f ) and the

statement follows by the slope inequality.
If f is smooth and isotrivial, then by [Serrano 1996, §1], S is a quotient

(C × D)/G where C and D are curves of genus ≥ 2 and G is a finite group that
acts freely. In particular, K 2

S = 8χ(S) and the inequality is satisfied also in this
case.

If K 2
S = 2χ(S), then by the previous remarks f is not smooth and isotrivial.

We have

2=
K 2

S

χ(S)
≥ λ( f )≥

4(g− 1)
g

.

It follows immediately that g = 2 and B has genus 1. �

Further applications of the slope inequality are given in Section 5.

4.2. History and proofs. Theorem 4.1.3 was stated and proved first in the case
of hyperelliptic fibrations [Persson 1981; Horikawa 1981].

The general statement was proved in [Xiao 1987a] and, independently, in
[Cornalba and Harris 1988] under the extra assumption that the fibers of f are
semistable curves, i.e., nodal curves. The proof by Cornalba and Harris has been
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recently generalized in [Stoppino 2008] to cover the general case. Yet another
proof was given in [Moriwaki 1996]. One can also find in [Ashikaga and Konno
2002] a nice account of Xiao’s proof and of Moriwaki’s proof. Hence it seems
superfluous to include the various proofs here.

We just wish to point out that the three methods of proof are different. Xiao’s
proof uses the Harder–Narasimhan filtration of the vector bundle f∗ω f and
Clifford’s Lemma.

The Cornalba–Harris proof uses GIT and relies on the fact that a canonically
embedded curve of genus g ≥ 3 is stable (fibrations whose general fiber is
hyperelliptic are treated separately).

Moriwaki’s proof is based on Bogomolov’s instability theorem for vector
bundles on surfaces.

4.3. Refinements and generalizations.

(a) Fibrations attaining the lower or the upper bound for the slope. The exam-
ples constructed in Section 2.5(c) show that the lower bound for λ( f ) given in
Theorem 4.1.3 is sharp. By construction, the general fiber in all these examples
is hyperelliptic. This is not a coincidence: in [Konno 1993] it is proven that the
general fiber of a fibration attaining the minimum possible value of the slope is
hyperelliptic. On the other hand, if λ( f )= 12, then by Noether’s formula one
has c2(S)= 4(g−1)(b−1). Hence by (4.1.2), this happens if and only if all the
fibers of f are smooth.

(b) Nonhyperelliptic fibrations. Since, as explained in (a), the minimum value
of the slope is attained only by hyperelliptic fibrations, it is natural to look for
a better bound for nonhyperelliptic fibrations. In [Konno 1993], such a lower
bound is established for g ≤ 5. In [Konno 1999], it is shown that the inequality

λ( f )≥
6(g− 1)

g+ 1

holds if: (1) g is odd, (2) the general fiber of f has maximal Clifford index, (3)
Green’s conjecture is true for curves of genus g.

Konno’s result actually holds under assumption (1) and (2), since Green’s
conjecture has been proved for curves of odd genus and maximal Clifford index
[Voisin 2005; Hirschowitz and Ramanan 1998].

The influence of the Clifford index and of the relative irregularity q f :=

q(S)− b has been studied also in [Barja and Stoppino 2008].

(c) Fibrations with general fiber of special type. Refinements of the slope in-
equality have been obtained also under the assumption that the general fiber has
some special geometrical property.
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Konno [1996b] showed that if the general fiber of f is trigonal and g ≥ 6,
then λ( f ) ≥ 14(g− 1)/(3g+ 1). Barja and Stoppino [2009] showed that the
better bound λ( f )≥ (5g− 6)/g holds if g ≥ 6 is even and the general fiber F
of f has Maroni invariant 0. (This means that the intersection of all the quadrics
containing the canonical image of F is a surface of minimal degree isomorphic
to P1

×P1. For the definition of the Maroni invariant see [Barja and Stoppino
2009, Remark 3.1], for instance).

The case in which the general fiber of f has an involution with quotient a
curve of genus γ has been considered in [Barja 2001; Barja and Zucconi 2001;
Cornalba and Stoppino 2008]: the most general result in this direction, proved
in the last of these papers, is the inequality

λ( f )≥
4(g− 1)

g− γ
for g > 4γ + 1.

(d) Generalizations to higher dimensions. Let f : X→ B be a fibration, where
X is an n-dimensional Q-Gorenstein variety and B is a smooth curve. As in the
case of surfaces, one can consider the relative canonical divisor K f :=K X− f ∗K B

and define the slope of f as

λ( f ) :=
K f

n

deg f∗(OX (K f ))
.

This situation is studied in [Barja and Stoppino 2009], where some lower bounds
are obtained under quite restrictive assumptions on the fibers.

The relative numerical invariants of threefolds fibered over a curve have also
been studied in [Ohno 1992] and [Barja 2000].

5. The Severi inequality

5.1. History and proofs. Severi [1932] stated the inequality that bears his name:

Theorem 5.1.1 (Severi’s inequality). If S is a minimal surface of general type
with Albdim(S)= 2, then

K 2
S ≥ 4χ(S).

Unfortunately, Severi’s proof contained a fatal gap, as pointed out by Catanese
[1983], who posed the inequality as a conjecture. More or less at the same time,
Reid [1979] made the following conjecture, which for irregular surfaces is a
consequence of Theorem 5.1.1 (compare Proposition 5.3.3):

Conjecture 5.1.2 (Reid). If S is a minimal surface of general type such that
K 2

S < 4χ(S) then either π alg
1 (S) is finite or there exists a finite étale cover S′→ S

and a pencil f : S′→ B such that the induced surjective map on the algebraic
fundamental groups has finite kernel.
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(Recall that for a complex variety X the algebraic fundamental group π alg
1 (X)

is the profinite completion of the topological fundamental group π1(X)).
Motivated by this conjecture, Xiao wrote the foundational paper [Xiao 1987a]

on surfaces fibred over a curve, in which he proved both Severi’s inequality in
the special case of a surface with an irrational pencil and the slope inequality
(Section 4).

Building on the results of [Xiao 1987a], Severi’s conjecture was proven
by Konno ([Konno 1996a]) for even surfaces, namely surfaces such that the
canonical class is divisible by 2 in the Picard group. At the end of the 1990’s,
the conjecture was almost solved by Manetti ([Manetti 2003]), who proved it
under the additional assumption that the surface have ample canonical bundle.
Finally, the inequality was proven in [Pardini 2005].

The proof given in [Pardini 2005] and the proof given in [Manetti 2003] for
K ample are completely different. We sketch briefly both proofs:

(a) Proof for K ample [Manetti 2003]: Let π : P(�1
S)→ S be the projection

and let L be the hyperplane class of P(�1
S). Assume for simplicity that H 0(�1

S)

has no base curve. Then two general elements L1, L2 ∈ |L| intersect properly,
hence L2 is represented by the effective 1-cycle L1 ∩ L2. One has

L2(L +π∗KS)= 3(K 2
S − 4χ(S)). (5.1.1)

If L+π∗KS is nef, then Theorem 5.1.1 follows immediately by (5.1.1). However,
this is not the case in general, and one is forced to analyze the cycle L1 ∩ L2

more closely. One can write

L1 ∩ L2 = V +00+01+02,

where V is a sum of fibers of π , and the 0i are sums of sections of π . More
precisely, the support of π(00) is the union of the curves contracted by the
Albanese map a, the support of π(01) consists of the curves not contracted by a
but on which the differential of a has rank 1 and π(02) is supported on curves on
which the differential of a is generically nonsingular. The term 00(L +π∗KS)

can be < 0, but by means of a very careful analysis of the components of 00 and
of the multiplicities in the vertical cycle V one can show that

L2(L +π∗KS)= (L1 ∩ L2)(L +π∗KS)≥ 0.

Unfortunately this kind of analysis does not work when π(00) contains −2-
curves, hence one has to assume KS ample.

(a) Proof [Pardini 2005]: Set A := Alb(S) and fix a very ample divisor D on
A. For every integer d one constructs a fibered surface fd : Yd→P1 as follows:
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(1) Consider the cartesian diagram

Sd
pd- S

A

ad
? µd- A

a
?

(5.1.2)

where µd denotes multiplication by d , and let Hd := a∗d D. The map pd is a finite
connected étale cover, in particular Sd is minimal of general type.

(2) Choose a general pencil 3d ⊂ |Hd | and let fd : Yd → P1 be the relatively
minimal fibration obtained by resolving the indeterminacy of the rational map
Sd → P1 defined by 3d .

The key observation of this proof is that as d goes to infinity, the intersection
numbers H 2

d and KSd Hd grow slower than K 2
Sd

and χ(Sd). As a consequence,
the slope of fd converges to the ratio K 2

S/χ(S) as d goes to infinity. Since gd

goes to infinity with d, the Severi inequality can be obtained by applying the
slope inequality (Theorem 4.1.3) to the fibrations fd and taking the limit for
d→∞.

5.2. Remarks, refinements and open questions.

(a) Chern numbers of surfaces with Albdim= 2. Severi’s inequality is sharp,
since double covers of an abelian surface branched on a smooth ample curve
satisfy K 2

= 4χ ; see Section 2.5(d). Actually, in [Manetti 2003] it is proven that
these are the only surfaces with K ample, Albdim= 2 and K 2

= 4χ . Hence it is
natural to conjecture that the canonical models of surfaces with Albdim= 2 and
K 2
= 4χ are double covers of abelian surfaces branched on an ample curve with

at most simple singularities.
In addition, by Proposition 2.5.1, the ratios K 2

S/χ(S) for S a minimal surface
with Albdim S = 2 are dense in all the admissible interval [4, 9].

(b) Refinements of the inequality. Assume that the differential of the Albanese
map a : S→ A is nonsingular outside a finite set. Then the cotangent bundle �1

S
is nef and L3

= 2(K 2
S − 6χ(S))≥ 0. This remark suggests that one may expect

an inequality stronger than Theorem 5.1.1 to hold under some assumption on a,
e.g., that a is birational. A possible way of obtaining a result of this type would
be to apply in the proof of [Pardini 2005] one of the refined versions of the slope
inequality; see Section 4.3(b,c). Unfortunately, one has very little control on the
general fiber of the fibrations fd : Yd → P1 constructed in the proof.

Analogously, by the result of Manetti mentioned in (a), it is natural to expect
that a better bound holds for surfaces with q > 2 [Manetti 2003, §7] for a series
of conjectures. A step in this direction is the following:
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Theorem 5.2.1 [Mendes Lopes and Pardini 2011]. Let S be a smooth surface of
maximal Albanese dimension and irregularity q ≥ 5 with KS ample. Then

K 2
S ≥ 4χ(S)+ 10

3 q − 8.

Furthermore, if S has no irrational pencil and the Albanese map a : S→ A is
unramified in codimension 1, then

K 2
S ≥ 6χ(S)+ 2q − 8.

Theorem 5.2.1 is proven by using geometrical arguments to give a lower
bound for the term L02 in the proof of Severi’s inequality for K ample given
in [Manetti 2003]; see Section 5.1(a). This is why one needs to assume K
ample. In [Mendes Lopes and Pardini 2011], it is also shown that the bounds of
Theorem 5.2.1 can be sharpened if one assumes that the Albanese map or the
canonical map of S is not birational.

(c) Generalizations to higher dimensions. The proof of Theorem 5.1.1 given
in [Pardini 2005] (see Section 5.1) would work in arbitrary dimension n if one
had a slope inequality for varieties of dimension n− 1. For instance, using the
results of [Barja 2000], one can prove:

Theorem 5.2.2. Let X be a smooth projective threefold such that K X is nef and
big and Albdim X = 3. Then:

(i) K 3
X ≥ 4χ(ωX ).

(ii) If Alb(X) is simple, then K 3
X ≥ 9χ(ωX ).

Proof. We may assume χ(ωX ) > 0. (Recall χ(ωX )≥ 0 by [Green and Lazarsfeld
1987, Corollary to Theorem 1]). Consider a fibered threefold f : Y → B,
where B is a smooth curve, denote by F a general fiber and assume χ f :=

χ(ωX )−χ(ωB)χ(ωF ) 6= 0. Following [Barja 2000] we define

λ2( f ) :=
(K X − f ∗K B)

3

χ f
.

We apply the same construction as in Section 5.1(b) to get for every positive
integer d a smooth fibered threefold fd : Yd → P1 such that λ2( fd) is defined

for d � 0 and converges to K 3
X

χ(ωX )
for d →∞. Statement (i) now follows by

applying [Barja 2000, Theorem 3.1(i)] to fd and taking the limit for d→∞.
Statement (ii) requires a little more care. The threefold Yd is the blow up

along a smooth curve of an étale cover Zd → X . Since A := Alb(X) is simple,
V 1(X) := {P ∈ Pic0(X)|h1(−P) > 0} is a finite set by the Generic Vanishing
theorem of [Green and Lazarsfeld 1987]. Then there are infinitely many values
of d such that d P 6= 0 for every P ∈ V 1(X) \ {0}. For those values q(Yd) =
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q(Zd) = q(X) and A := Alb(X) and Alb(Yd) = Alb(Zd) are isogenous; in
particular Alb(Zd) is simple. By construction, the general fiber Fd of fd is a
surface of maximal Albanese dimension. In addition, since Fd is isomorphic to
an element of the nef and big linear system |Hd | (notation as in Section 5.1(b)),
it follows that q(Fd) = q(X) and Alb(Fd) is isogenous to the simple abelian
variety Alb(Yd). Hence Fd has no irrational pencil and we get statement (ii) by
applying [Barja 2000, Theorem 3.1(ii)] and taking the limit for d→∞. �

Remark 5.2.3. In order to keep the proof of Theorem 5.2.2 simple, we have
made stronger assumptions than necessary: for instance one can assume that
X has terminal singularities and, with some more work, one can eliminate the
assumption that Alb(X) is simple in (ii).

5.3. Applications. We use the following result due to Xiao Gang:

Proposition 5.3.1 [Xiao 1987a]. Let f : S→ B be a relatively minimal fibration
with fibers of genus g ≥ 2. If λ( f ) < 4 and f has no multiple fibers, then there is
an exact sequence

1→ N → π
alg
1 (S)→ π

alg
1 (B)→ 1,

where |N | ≤ 2.

We also need the following consequence of Severi’s inequality and of the
slope inequality.

Lemma 5.3.2. Let S be a minimal regular surface of general type S with K 2
S <

4χ(S) that has an irregular étale cover S′→ S. Then S has a pencil f : S→ P1

such that

(i) f has multiple fibers m1 F1, . . . ,mk Fk with
∑

j

m j−1
m j

≥ 2;

(ii) the general fiber of f has genus g ≤ 1+
K 2

S
4χ(S)−K 2

S
.

Proof. Up to passing to the Galois closure, we may assume that S′→ S is a
Galois cover with Galois group G. By Severi’s inequality (Theorem 5.1.1) the
Albanese map of S′ is a pencil a′ : S′→ B, where B has genus b> 0. Clearly G
acts on f and on B, inducing a pencil f : S→ B/G. Since S is regular, B/G
is isomorphic to P1. Denote by G the quotient of G that acts effectively on B.
Let y ∈ B be a ramification point of order ν of the map B→ B/G = P1 and
let H < G be the stabilizer of y. The group H is cyclic of order ν and it acts
freely on the fiber Fy of a′ over y. It follows that the fiber of f over the image
x of y is a multiple fiber of multiplicity divisible by ν. Let x1, . . . , xr ∈ P1 be
the critical values of B → B/G, let νi be the ramification order of xi and let
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m1 F1, . . . ,mk Fk be the multiple fibers of f . Then by the Hurwitz formula we
have ∑

j

m j − 1
m j

≥

∑
i

νi − 1
νi
=

2b− 2

|G|
+ 2≥ 2,

hence (i) is proven.
To prove (ii), we observe that the fibers of f are quotients (possibly by a

trivial action) of the fibers of a, hence g ≤ γ , where γ is the genus of a general
fiber of a. In turn, by the slope inequality one has

K 2
S

χ(S)
≥ λ(a)≥

4(γ − 1)
γ

,

which gives the required bound

g ≤ γ ≤ 1+
K 2

S

4χ(S)− K 2
S
. �

(a) Reid’s conjecture for irregular surfaces. Severi’s inequality implies Reid’s
Conjecture 5.1.2 for irregular surfaces and, more generally, surfaces that have an
irregular étale cover:

Proposition 5.3.3. Let S be a minimal surface of general type with K 2
S < 4χ(S).

If S has an irregular étale cover, then there exists a finite étale cover S′→ S and
a pencil f : S′→ B that induces an exact sequence

0→ N → π
alg
1 (S′)→ π

alg
1 (B)→ 0,

where |N | ≤ 2.

Proof. Let X→ S be an irregular étale cover. By Theorem 5.1.1 the Albanese
map of X is a pencil a : X→C and, if S′→ X is étale, then the Albanese pencil
of S′ is obtained by pulling back the Albanese pencil of X and taking the Stein
factorization. So, up to taking a suitable base change B→ C and normalizing,
we can pass to an étale cover S′→ S such that the Albanese pencil a′ : S′→ B
has no multiple fiber. The statement now follows by applying Proposition 5.3.1
to a′. �

Remark 5.3.4. By Proposition 5.3.3, to prove Reid’s conjecture it is enough to
show:

If S is a surface with K 2
S < 4χ(S) that has no irregular étale cover, then

π
alg
1 (S) is finite.

This is known to be true for K 2 < 3χ ; see [Mendes Lopes and Pardini 2007]
and references therein. In the same reference and in [Ciliberto et al. 2007] the
following sharp bound on the order of π alg

1 (S) is given:
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If K 2
S < 3χ(S) and S has no irregular étale cover, then |π alg

1 (S)| ≤ 9. Further-
more, if |π alg

1 (S)| = 8 or 9 then K 2
S = 2 and pg(S)= 0 (namely, S is a Campedelli

surface).
Surfaces with K 2

=2, pg=0 and |π alg
1 |=8 or 9 are classified in [Mendes Lopes

et al. 2009] and [Lopes and Pardini 2008], respectively.
However, all the above mentioned results make essential use of Castelnuovo’s

inequality K 2
≥ 3χ−10 for surfaces whose canonical map is not two-to-on onto

a ruled surface. Hence, different methods are needed to deal with surfaces with
3χ ≤ K 2 < 4χ .

(b) Surfaces with “small” K 2. By Proposition 2.3.2, a minimal irregular sur-
face of general type satisfies K 2

≥ 2χ . Irregular surfaces on or near the line
K 2
= 2χ have been studied in [Bombieri 1973; Horikawa 1981; Reid 1979;

Xiao 1987a; 1987b]. As an application of Severi’s inequality and of the slope
inequality, we give quick proofs of some of these results.

Proposition 5.3.5. Let S be a minimal irregular surface of general type. Then

(i) If K 2
S = 2χ(S), then q(S)=1 and the fibers of the Albanese pencil a : S→ B

have genus 2 (Proposition 4.1.4);

(ii) if K 2
S <

8
3χ(S), then the Albanese map is a pencil of curves of genus 2;

(iii) if K 2
S < 3χ(S), then the Albanese map is a pencil of hyperelliptic curves of

genus ≤ 3.

Proof. By Severi’s inequality, the Albanese map of S is a pencil a : S → B,
where B has genus b. By the slope inequality we have

K 2
S

χ(S)
≥ λ(a)≥

4(g− 1)
g

≥ 2, (5.3.1)

where, as usual, g denotes the genus of a general fiber of a. If K 2
S = 2χ(S), then

all the inequalities in (5.3.1) are equalities, hence g = 2 and b = 1.
If K 2

S <
8
3χ(S), then (5.3.1) gives g = 2.

If K 2
S < 3χ(S), then (5.3.1) gives g≤ 3. The general fiber of a is hyperelliptic,

since otherwise λ(a)≥ 3 by [Konno 1996b, Lem. 3.1]. �

Next we consider regular surfaces that have an irregular étale cover.

Proposition 5.3.6. Let S be a minimal regular surface of general type. Then:

(i) if K 2
S <

8
3χ(S), then S has no irregular étale cover;

(ii) if K 2
S < 3χ(S), S has an irregular étale cover if and only if it has a pencil

of hyperelliptic curves of genus 3 with at least 4 double fibers.
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Proof. Assume that S′→ S is an irregular étale cover. Then by Lemma 5.3.2,
there is a pencil f : S→ P1 such that the general fiber of f has genus at most

1+
K 2

S

4χ(S)− K 2
S

and there are multiple fibers m1 F1, . . . ,mk Fk such that
∑

i (mi − 1)/mi ≥ 2.
Since by the adjunction formula a pencil of curves of genus 2 has no multiple
fibers, it follows g ≥ 3 and K 2

S ≥
8
3χ(S). This proves (i).

If K 2
S < 3χ(S), then g= 3 and the general fiber of f is hyperelliptic (compare

the proof of Proposition 5.3.5). By the adjunction formula, the multiple fibers of
f are double fibers, hence there are at least 4 double fibers.

Conversely, assume that f : S→ P1 is a pencil and that y1, . . . , y4 ∈ P1 are
points such that the fiber of f over yi is double. Let B→P1 be the double cover
branched on y1, . . . , y4 and let S′→ S be obtained from B→P1 by taking base
change with f and normalizing. The map S′→ S is an étale double cover and
by construction S′ maps onto the genus 1 curve B, hence q(S′)≥ 1. �

Remark 5.3.7. With some more work, it can be shown that Proposition 5.3.6(ii)
also holds for K 2

S = 3χ(S) [Mendes Lopes and Pardini 2007, Theorem 1.1].
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