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Algebraic surfaces and hyperbolic geometry

BURT TOTARO

We describe the Kawamata—Morrison cone conjecture on the structure of
Calabi—Yau varieties and more generally kit Calabi—Yau pairs. The conjecture
is true in dimension 2. We also show that the automorphism group of a K3
surface need not be commensurable with an arithmetic group, which answers
a question by Mazur.

1. Introduction

Many properties of a projective algebraic variety can be encoded by convex
cones, such as the ample cone and the cone of curves. This is especially useful
when these cones have only finitely many edges, as happens for Fano varieties.
For a broader class of varieties which includes Calabi—Yau varieties and many
rationally connected varieties, the Kawamata—Morrison cone conjecture predicts
the structure of these cones. I like to think of this conjecture as what comes
after the abundance conjecture. Roughly speaking, the cone theorem of Mori,
Kawamata, Shokurov, Kollar, and Reid describes the structure of the curves on a
projective variety X on which the canonical bundle Ky has negative degree; the
abundance conjecture would give strong information about the curves on which
K x has degree zero; and the cone conjecture fully describes the structure of the
curves on which Ky has degree zero.

We give a gentle summary of the proof of the cone conjecture for algebraic
surfaces, with plenty of examples [Totaro 2010]. For algebraic surfaces, these
cones are naturally described using hyperbolic geometry, and the proof can also
be formulated in those terms.

Example 7.3 shows that the automorphism group of a K3 surface need not
be commensurable with an arithmetic group. This answers a question by Barry
Mazur [1993, Section 7].

Thanks to John Christian Ottem, Artie Prendergast-Smith, and Marcus Zi-
browius for their comments.
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2. The main trichotomy

Let X be a smooth complex projective variety. There are three main types of
varieties. (Not every variety is of one of these three types, but minimal model
theory relates every variety to one of these extreme types.)

Fano. This means that — Ky is ample. (We recall the definition of ampleness
in Section 3.)

Calabi—Yau. We define this to mean that Ky is numerically trivial.

ample canonical bundle. This means that Ky is ample; it implies that X is of
“general type.”

Here, for X of complex dimension n, the canonical bundle K x is the line bun-
dle Q% of n-forms. We write —K x for the dual line bundle K%, the determinant
of the tangent bundle.

Example 2.1. Let X be a curve, meaning that X has complex dimension 1.
Then X is Fano if it has genus zero, or equivalently if X is isomorphic to the
complex projective line P'; as a topological space, this is the 2-sphere. Next, X
is Calabi—Yau if X is an elliptic curve, meaning that X has genus 1. Finally, X
has ample canonical bundle if it has genus at least 2.

Example 2.2. Let X be a smooth surface in [P3. Then X is Fano if it has degree
at most 3. Next, X is Calabi—Yau if it has degree 4; this is one class of K3
surfaces. Finally, X has ample canonical bundle if it has degree at least 5.

Belonging to one of these three classes of varieties is equivalent to the existence
of a Kihler metric with Ricci curvature of a given sign [Yau 1978]. Precisely,
a smooth projective variety is Fano if and only if it has a Kidhler metric with
positive Ricci curvature; it is Calabi—Yau if and only if it has a Ricci-flat Kdhler
metric; and it has ample canonical bundle if and only if it has a K&hler metric
with negative Ricci curvature.

We think of Fano varieties as the most special class of varieties, with projective
space as a basic example. Strong support for this idea is provided by Kolldr,
Miyaoka, and Mori’s theorem that smooth Fano varieties of dimension »n form a
bounded family [Kollar et al. 1992]. In particular, there are only finitely many
diffeomorphism types of smooth Fano varieties of a given dimension.

Example 2.3. Every smooth Fano surface is isomorphic to P! x P! or to a
blow-up of P2 at at most 8 points. The classification of smooth Fano 3-folds is
also known, by Iskovskikh, Mori, and Mukai; there are 104 deformation classes
[Iskovkikh and Prokhorov 1999].

By contrast, varieties with ample canonical bundle form a vast and uncontrol-
lable class. Even in dimension 1, there are infinitely many topological types of
varieties with ample canonical bundle (curves of genus at least 2). Calabi—Yau
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varieties are on the border in terms of complexity. It is a notorious open question
whether there are only finitely many topological types of smooth Calabi—Yau
varieties of a given dimension. This is true in dimension at most 2. In particular,
a smooth Calabi—Yau surface is either an abelian surface, a K3 surface, or a
quotient of one of these surfaces by a free action of a finite group (and only
finitely many finite groups occur this way).

3. Ample line bundles and the cone theorem

After a quick review of ample line bundles, this section states the cone theorem
and its application to Fano varieties. Lazarsfeld’s book [2004] is an excellent
reference on ample line bundles.

Definition 3.1. A line bundle L on a projective variety X is ample if some
positive multiple nL (meaning the line bundle L®") has enough global sections
to give a projective embedding

X — PV,
(Here N = dim¢ H%(X,nL) —1.)

One reason to investigate which line bundles are ample is in order to classify
algebraic varieties. For classification, it is essential to know how to describe a
variety with given properties as a subvariety of a certain projective space defined
by equations of certain degrees.

Example 3.2. For X a curve, L is ample on X if and only if it has positive
degree. We write L - X = deg(L|x) € Z.

An R-divisor on a smooth projective variety X is a finite sum

D= ZaiD,-

with @¢; € R and each D; an irreducible divisor (codimension-one subvariety) in
X. Write N!(X) for the “Néron—Severi” real vector space of R-divisors modulo
numerical equivalence: D) = D, if Dy -C = D, - C for all curves C in X. (For
me, a curve is irreducible.)

We can also define N!(X) as the subspace of the cohomology H 2(X,R)
spanned by divisors. In particular, it is a finite-dimensional real vector space.
The dual vector space N;(X) is the space of 1-cycles ) a; C; modulo numerical
equivalence, where C; are curves on X. We can identify N (X) with the subspace
of the homology H;(X, R) spanned by algebraic curves.

Definition 3.3. The closed cone of curves Curv(X) is the closed convex cone in
N1(X) spanned by curves on X.
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Definition 3.4. An R-divisor D is nefif D-C >0 for all curves C in X. Likewise,
a line bundle L on X is nef if the class [L] of L (also called the first Chern class
c1(L)) in N'(X) is nef. That is, L has nonnegative degree on all curves in X.

Thus Nef(X) ¢ N'(X) is a closed convex cone, the dual cone to Curv(X) C
Ni(X).

Theorem 3.5 (Kleiman). A line bundle L is ample if and only if [L] is in the
interior of the nef cone in N'(X).

This is a numerical characterization of ampleness. It shows that we know the
ample cone Amp(X) C N'(X) if we know the cone of curves Curv(X) C N (X).
The following theorem gives a good understanding of the “K -negative” half of
the cone of curves [Kollar and Mori 1998, Theorem 3.7]. A rational curve means
a curve that is birational to P!,

Theorem 3.6. (Cone theorem: Mori, Shokurov, Kawamata, Reid, Kolldr). Let
X be a smooth projective variety. Write K;O ={ueNi(X):Kx-u<Q0}. Then
every extremal ray of Curv(X) N K ;0 is isolated, spanned by a rational curve,
and can be contracted.

In particular, every extremal ray of Curv(X) N K is rational (meaning
that it is spanned by a (D-linear combination of curves, not just an R-linear
combination), since it is spanned by a single curve. A contraction of a normal
projective variety X means a surjection from X onto a normal projective variety ¥
with connected fibers. A contraction is determined by a face of the cone of curves
Curv(X), the set of elements of Curv(X) whose image under the pushforward
map N1 (X) — N (Y) is zero. The last statement in the cone theorem means that
every extremal ray in the K -negative half-space corresponds to a contraction of
X.

Corollary 3.7. For a Fano variety X, the cone of curves Curv(X) (and therefore
the dual cone Nef(X)) is rational polyhedral.

A rational polyhedral cone means the closed convex cone spanned by finitely
many rational points.

Proof. Since —Kyx is ample, K is negative on all of Curv(X) — {0}. So the
cone theorem applies to all the extremal rays of Curv(X). Since they are isolated
and live in a compact space (the unit sphere), Curv(X) has only finitely many
extremal rays. The cone theorem also gives that these rays are rational. U

It follows, in particular, that a Fano variety has only finitely many different
contractions. A simple example is the blow-up X of P2 at one point, which
is Fano. In this case, Curv(X) is a closed strongly convex cone in the two-
dimensional real vector space N;(X), and so it has exactly two 1-dimensional
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faces. We can write down two contractions of X, X — [P? (contracting a
(—1)-curve) and X — P! (expressing X as a P'-bundle over P!). Each of
these morphisms must contract one of the two 1-dimensional faces of Curv(X).
Because the cone has no other nontrivial faces, these are the only nontrivial
contractions of X.

4. Beyond Fano varieties

“Just beyond” Fano varieties, the cone of curves and the nef cone need not be
rational polyhedral. Lazarsfeld’s book [2004] gives many examples of this type,
as do other books on minimal model theory [Debarre 2001; Kolldr and Mori
1998].

Example 4.1. Let X be the blow-up of P? at n very general points. For n < 8,
X is Fano, and so W(X ) is rational polyhedral. In more detail, for 2 <n <8,
Curv(X) is the convex cone spanned by the finitely many (—1)-curves in X.
(A (—1)-curve on a surface X means a curve C isomorphic to P! with self-
intersection number C? = — 1.) For example, when n = 6, X can be identified
with a cubic surface, and the (—1)-curves are the famous 27 lines on X.

But for n>9, X is not Fano, since (— K x)*> =9—n (whereas a projective variety
has positive degree with respect to any ample line bundle). For py, ..., p, very
general points in P2, X contains infinitely many (—1)-curves; see [Hartshorne
1977, Exercise V.4.15]. Every curve C with C? < 0 on a surface spans an isolated
extremal ray of Curv(X), and so Curv(X) is not rational polyhedral.

Notice that a (—1)-curve C has Kx - C = —1, and so these infinitely many
isolated extremal rays are on the “good” (K -negative) side of the cone of curves,
in the sense of the cone theorem. The K-positive side is a mystery. It is
conjectured (Harbourne—Hirschowitz) that the closed cone of curves of a very
general blow-up of P2 at n > 10 points is the closed convex cone spanned by the
(—1)-curves and the “round” positive cone {x € N(X) : x2>0and H - x >0},
where H is a fixed ample line bundle. This includes the famous Nagata conjecture
[Lazarsfeld 2004, Remark 5.1.14] as a special case. By de Fernex, even if the
Harbourne—Hirschowitz conjecture is correct, the intersection of Curv(X) with
the K -positive half-space, for X a very general blow-up of P? at n > 11 points,
is bigger than the intersection of the positive cone with the K -positive half-space,
because the (—1)-curves stick out a lot from the positive cone [de Fernex 2010].

Example 4.2. Calabi—Yau varieties (varieties with K x =0) are also “just beyond”
Fano varieties (—Kx ample). Again, the cone of curves of a Calabi—Yau variety
need not be rational polyhedral.

For example, let X be an abelian surface, so X = C? /A for some lattice
A = 7% such that X is projective. Then Curv(X) = Nef(X) is a round cone, the
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positive cone
{(xe N'(X):x>>0and H - x >0},

where H is a fixed ample line bundle. (Divisors and 1-cycles are the same thing
on a surface, and so the cones Curv(X) and Nef(X) lie in the same vector space
N'(X).) Thus the nef cone is not rational polyhedral if X has Picard number
p(X) :=dimg N'(X) at least 3 (and sometimes when p = 2).

For a K3 surface, the closed cone of curves may be round, or may be the
closed cone spanned by the (—2)-curves in X. (One of those two properties must
hold, by [Kovéacs 1994].) There may be finitely or infinitely many (—2)-curves.
See Section 5.1 for an example.

5. The cone conjecture

But there is a good substitute for the cone theorem for Calabi—Yau varieties, the
Morrison—Kawamata cone conjecture. In dimension 2, this is a theorem of Sterk,
Looijenga, and Namikawa [Sterk 1985; Namikawa 1985; Kawamata 1997]. We
call this Sterk’s theorem for convenience:

Theorem 5.1. Let X be a smooth complex projective Calabi—Yau surface (mean-
ing that K x is numerically trivial). Then the action of the automorphism group
Aut(X) on the nef cone Nef(X) C N'(X) has a rational polyhedral fundamental
domain.

Remark 5.2. For any variety X, if Nef(X) is rational polyhedral, then the group
Aut*(X) :=im(Aut(X) — GL(N!(X))) is finite. This is easy: the group Aut*(X)
must permute the set consisting of the smallest integral point on each extremal ray
of Nef(X). Sterk’s theorem implies the remarkable statement that the converse
is also true for Calabi—Yau surfaces. That is, if the cone Nef(X) is not rational
polyhedral, then Aut*(X) must be infinite. Note that Aut*(X) coincides with
the discrete part of the automorphism group of X up to finite groups, because
ker(Aut(X) — GL(N'(X))) is an algebraic group and hence has only finitely
many connected components.

Sterk’s theorem should generalize to Calabi—Yau varieties of any dimension
(the Morrison—Kawamata cone conjecture). But in dimension 2, we can visualize
it better, using hyperbolic geometry.

Indeed, let X be any smooth projective surface. The intersection form on
N'(X) always has signature (1, n) for some n (the Hodge index theorem). So
{x € N'(X) : x> > 0} has two connected components, and the positive cone
{x e N'(X):x?>>0and H - x > 0} is the standard round cone. As a result, we
can identify the quotient of the positive cone by R>? with hyperbolic n-space.
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One way to see this is that the negative of the Lorentzian metric on N (X) =R!"
restricted to the quadric {x% = 1} is a Riemannian metric with curvature —1.

For any projective surface X, Aut(X) preserves the intersection form on
NY(X). So Aut*(X) is always a group of isometries of hyperbolic n-space,
where n = p(X) — 1.

By definition, two groups G| and G, are commensurable, written G| = Go,
if some finite-index subgroup of G is isomorphic to a finite-index subgroup of
G,. A group virtually has a given property if some subgroup of finite index has
the property. Since the groups we consider are all virtually torsion-free, we are
free to replace a group G by G/N for a finite normal subgroup N (that is, G
and G/N are commensurable).

5.1. Examples. For an abelian surface X with Picard number at least 3, the
cone Nef(X) is round, and so Aut*(X) must be infinite by Sterk’s theorem. (For
abelian surfaces, the possible automorphism groups were known long before;
see [Mumford 1970, Section 21].)

For example, let X = E x E with E an ellip-
tic curve (not having complex multiplication).
Then p(X) = 3, with N'(X) spanned by the
curves £ x 0, 0 x E, and the diagonal Ag in
E x E. So Aut*(X) must be infinite. In fact,

Aut*(X) = PGL(2, 7).

Here GL(2, Z) acts on E x E as on the direct sum of any abelian group with
itself. This agrees with Sterk’s theorem, which says that Aut*(X) acts on the
hyperbolic plane with a rational polyhedral fundamental domain; a fundamental
domain for PGL(2, Z) acting on the hyperbolic plane (not preserving orientation)
is given by any of the triangles in the figure.

For a K3 surface, the cone Nef(X) may or may not be the whole positive cone.
For any projective surface, the nef cone modulo scalars is a convex subset of
hyperbolic space. A finite polytope in hyperbolic space (even if some vertices are
at infinity) has finite volume. So Sterk’s theorem implies that, for a Calabi—Yau
surface, Aut*(X) acts with finite covolume on the convex set Nef(X)/ R>% in
hyperbolic space.

For example, let X be a K3 surface such that Pic(X)
is isomorphic to Z* with intersection form

0 1 1
1 -2 0
1 0 -2
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Such a surface exists, since Nikulin showed that every even lattice of rank at
most 10 with signature (1, *) is the Picard lattice of some complex projective K3
surface [Nikulin 1979, Section 1.12]. Using the ideas of Section 6, one computes
that the nef cone of X modulo scalars is the convex subset of the hyperbolic
plane shown in the figure. The surface X has a unique elliptic fibration X — P!,
given by a nef line bundle P with (P, P) = 0. The line bundle P appears in
the figure as the point where Nef(X)/R>° meets the circle at infinity. And X
contains infinitely many (—2)-curves, whose orthogonal complements are the
codimension-1 faces of the nef cone. Sterk’s theorem says that Aut(X) must act
on the nef cone with rational polyhedral fundamental domain. In this example,
one computes that Aut(X) is commensurable with the Mordell-Weil group of
the elliptic fibration (Pic’ of the generic fiber of X — P!), which is isomorphic
to Z. One also finds that all the (—2)-curves in X are sections of the elliptic
fibration. The Mordell-Weil group moves one section to any other section, and
so it divides the nef cone into rational polyhedral cones as in the figure.

6. Outline of the proof of Sterk’s theorem

We discuss the proof of Sterk’s theorem for K3 surfaces. The proof for abelian
surfaces is the same, but simpler (since an abelian surface contains no (—2)-
curves), and these cases imply the case of quotients of K3 surfaces or abelian
surfaces by a finite group. For details, see [Kawamata 1997], based on the earlier
[Sterk 1985; Namikawa 1985].

The proof of Sterk’s theorem for K3 surfaces relies on the Torelli theorem of
Piatetski-Shapiro and Shafarevich. That is, any isomorphism of Hodge structures
between two K3s is realized by an isomorphism of K3s if it maps the nef cone
into the nef cone. In particular, this lets us construct automorphisms of a K3
surface X: up to finite index, every element of the integral orthogonal group
O (Pic(X)) that preserves the cone Nef(X) is realized by an automorphism of
X. (Here Pic(X) = Z*, and the intersection form has signature (1, p(X) — 1) on
Pic(X).)

Moreover, Nef(X)/R>? is a very special convex set in hyperbolic space H, o—1:
it is the closure of a Weyl chamber for a discrete reflection group W acting on
H,_1. We can define W as the group generated by all reflections in vectors
x € Pic(X) with x> = —2, or (what turns out to be the same) the group generated
by reflections in all (—2)-curves in X. By the first description, W is a normal
subgroup of O (Pic(X)). In fact, up to finite groups, O (Pic(X)) is the semidirect
product group

O (Pic(X)) = Aut(X) x W.
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By general results on arithmetic groups going back to Minkowski, O (Pic(X))
acts on the positive cone in N'(X) with a rational polyhedral fundamental
domain D. (This fundamental domain is not at all unique.) And the reflection
group W acts on the positive cone with fundamental domain the nef cone of X.
Therefore, after we arrange for D to be contained in the nef cone, Aut(X) must
act on the nef cone with the same rational polyhedral fundamental domain D,
up to finite index. Sterk’s theorem is proved.

7. Nonarithmetic automorphism groups

In this section, we show for the first time that the discrete part of the automor-
phism group of a smooth projective variety need not be commensurable with an
arithmetic group. (Section 5 defines commensurability.) This answers a question
raised by Mazur [1993, Section 7]. Corollary 7.2 applies to a large class of K3
surfaces.

An arithmetic group is a subgroup of the group of Q-points of some (-
algebraic group Hg which is commensurable with H(Z) for some integral
structure on Hg; this condition is independent of the integral structure [Serre
1979]. We view arithmetic groups as abstract groups, not as subgroups of a fixed
Lie group.

Borcherds gave an example of a K3 surface whose automorphism group is
not isomorphic to an arithmetic group [Borcherds 1998, Example 5.8]. But, as
he says, the automorphism group in his example has a nonabelian free subgroup
of finite index, and so it is commensurable with the arithmetic group SL(2, Z).
Examples of K3 surfaces with explicit generators of the automorphism group
have been given by Keum, Kondo, Vinberg, and others; see [Dolgachev 2008,
Section 5] for a survey.

Although they need not be commensurable with arithmetic groups, the auto-
morphism groups G of K3 surfaces are very well-behaved in terms of geometric
group theory. More generally this is true for the discrete part G of the automor-
phism group of a surface X which can be given the structure of a kIt Calabi—Yau
pair, as defined in Section 8. Namely, G acts cocompactly on a CAT(0) space
(a precise notion of a metric space with nonpositive curvature). Indeed, the nef
cone modulo scalars is a closed convex subset of hyperbolic space, and thus
a CAT(—1) space [Bridson and Haefliger 1999, Example II.1.15]. Removing
a G-invariant set of disjoint open horoballs gives a CAT(0) space on which G
acts properly and cocompactly, by the proof of [Bridson and Haefliger 1999,
Theorem I1.11.27]. This implies all the finiteness properties one could want,
even though G need not be arithmetic. In particular: G is finitely presented, a
finite-index subgroup of G has a finite CW complex as classifying space, and
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G has only finitely many conjugacy classes of finite subgroups [Bridson and
Haefliger 1999, Theorem IIL.I".1.1].

For smooth projective varieties in general, very little is known. For example,
is the discrete part G of the automorphism group always finitely generated? The
question is open even for smooth projective rational surfaces. About the only
thing one can say for an arbitrary smooth projective variety X is that G modulo
a finite group injects into GL(p(X), Z), by the comments in Section 5.

In Theorem 7.1, a lattice means a finitely generated free abelian group with a
symmetric bilinear form that is nondegenerate ®(D.

Theorem 7.1. Let M be a lattice of signature (1,n) for n > 3. Let G be a
subgroup of infinite index in O(M). Suppose that G contains 7"~" as a subgroup
of infinite index. Then G is not commensurable with an arithmetic group.

Corollary 7.2. Let X be a K3 surface over any field, with Picard number at
least 4. Suppose that X has an elliptic fibration with no reducible fibers and a
second elliptic fibration with Mordell-Weil rank positive. (For example, the latter
property holds if the second fibration also has no reducible fibers.) Suppose also
that X contains a (—2)-curve. Then the automorphism group of X is a discrete
group that is not commensurable with an arithmetic group.

Example 7.3. Let X be the double cover of P! x P! = {([x, v], [u, v])} ramified
along the following curve of degree (4, 4):

0= 16x*u* + xy3u* + y*udv — 40x*uv? — 3 yuv? — x*y*u’
+33x*0* — 10x%y%0* + y*ot.

Then X is a K3 surface whose automorphism group (over @, or over Q) is not
commensurable with an arithmetic group.

Proof of Theorem 7.1. We can view O(M) as a discrete group of isometries
of hyperbolic n-space. Every solvable subgroup of O (M) is virtually abelian
[Bridson and Haefliger 1999, Corollary 11.11.28 and Theorem IIL.I".1.1]. By the
classification of isometries of hyperbolic space as elliptic, parabolic, or hyperbolic
[Alekseevskij et al. 1993], the centralizer of any subgroup Z C O (M) is either
commensurable with Z (if a generator g of Z is hyperbolic) or commensurable
with Z¢ for some a < n — 1 (if g is parabolic). These properties pass to the
subgroup G of O(M). Also, G is not virtually abelian, because it contains Z”~!
as a subgroup of infinite index, and Z"~! is the largest abelian subgroup of O (M)
up to finite index. Finally, G acts properly and not cocompactly on hyperbolic
n-space, and so G has virtual cohomological dimension at most n — 1 [Brown
1982, Proposition VIIL.8.1].

Suppose that G is commensurable with some arithmetic group I'. Thus I" is
a subgroup of the group of Q-points of some Q-algebraic group Hg, and I is
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commensurable with H (Z) for some integral structure on Hg. We freely change
I" by finite groups in what follows. So we can assume that Hg is connected. After
replacing Hg by the kernel of some homomorphism to a product of copies of
the multiplicative group G, over Q, we can assume that I" is a /attice in the real
group H (R) (meaning that vol(H (R)/ ') < 00), by Borel and Harish-Chandra
[Borel and Harish-Chandra 1962, Theorem 9.4].

Every connected Q-algebraic group Hg is a semidirect product Rg x Ug
where Rg is reductive and Ug is unipotent [Borel and Serre 1964, Theorem
5.1]. By the independence of the choice of integral structure, we can assume
that I' = R(Z) x U(Z) for some arithmetic subgroups R(Z) of Rg and U (Z) of
Ug. Since every solvable subgroup of G is virtually abelian, Ug is abelian, and
U(Z) = 7° for some a. The conjugation action of Rg on Ug must be trivial;
otherwise I would contain a solvable group of the form Z x Z¢ which is not
virtually abelian. Thus I' = R(Z) x Z°. But the properties of centralizers in G
imply that any product group of the form W x Z contained in G must be virtually
abelian. Therefore, a = 0 and Hg is reductive.

Modulo finite groups, the reductive group Hg is a product of Q-simple groups
and tori, and I" is a corresponding product modulo finite groups. Since any
product group of the form W x Z contained in G is virtually abelian, Hg must be
Q-simple. Since the lattice I' in H (R) is isomorphic to the discrete subgroup G
of O(M) C O(n, 1) (after passing to finite-index subgroups), Prasad showed that
dim(H (R)/Kg) <dim(O(n, 1)/0(n)) = n, where K is a maximal compact
subgroup of H(R). Moreover, since G has infinite index in O(M) and hence
infinite covolume in O (n, 1), Prasad showed that either dim(H (R)/Kg) <n—1
or else dim(H (R)/Ky) = n and there is a homomorphism from H (R) onto
PSL(2, R) [Prasad 1976, Theorem B].

Suppose that dim(H(R)/Ky) < n — 1. We know that I" acts properly on
H(R)/K y and that T" contains Z"~!. The quotient 7"~ '\ H (R) /K y is a manifold
of dimension n — 1 with the homotopy type of the (n — 1)-torus (in particular,
with nonzero cohomology in dimension n — 1), and so it must be compact. So
7"~ has finite index in I, contradicting our assumption.

Sodim(H (R)/Ky)=n and H (R) maps onto PSL(2, R). We can assume that
Hg is simply connected. Since H is Q-simple, H is equal to the restriction of
scalars Rg, gL for some number field K and some absolutely simple and simply
connected group L over K [Tits 1966, Section 3.1]. Since H(R) maps onto
PSL(2, R), L must be a form of SL(2). We showed that G = I" has virtual coho-
mological dimension at most 7 —1, and so I" must be a noncocompact subgroup of
H (R). Equivalently, H has Q-rank greater than zero [Borel and Harish-Chandra
1962, Lemma 11.4, Theorem 11.6], and so rankg (L) =rankg(H) is greater than
zero. Therefore, L is isomorphic to SL(2) over K.
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It follows that I' is commensurable with SL(2, ok ), where ok is the ring of
integers of K. So we can assume that I" contains the semidirect product

ok X 0g = { (:)Z ll;a) } C SL(2, ok).

If the group of units 0% has positive rank, then o} x ok is a solvable group which
is not virtually abelian. So the group of units is finite, which means that K is either
Q or an imaginary quadratic field, by Dirichlet. If K is imaginary quadratic, then
Hg = Rk SL(2) and H (R) = SL(2, C), which does not map onto PSL(2, R).
Therefore K = @ and Hg = SL(2). It follows that I" is commensurable with
SL(2, Z). So I' is commensurable with a free group. This contradicts that G =TI
contains 7"~ ! with n > 3. O

Proof of Corollary 7.2. Let M be the Picard lattice of X, that is, M = Pic(X)
with the intersection form. Then M has signature (1, n) by the Hodge index
theorem, where n > 3 since X has Picard number at least 4.

For an elliptic fibration X — P! with no reducible fibers, the Mordell-Weil
group of the fibration has rank p(X) —2 =n — 1 by the Shioda—Tate formula
[Shioda 1972, Corollary 1.5], which is easy to check in this case. So the first
elliptic fibration of X gives an inclusion of Z"~! into G = Aut*(X). The second
elliptic fibration gives an inclusion of Z¢ into G for some a > 0. In the action of
G on hyperbolic n-space, the Mordell-Weil group of each elliptic fibration is a
group of parabolic transformations fixing the point at infinity that corresponds to
the class e € M of a fiber (which has (e, e) =0). Since a parabolic transformation
fixes only one point of the sphere at infinity, the subgroups Z"~! and Z¢ in G
intersect only in the identity. It follows that the subgroup Z”~! has infinite index
in G.

We are given that X contains a (—2)-curve C. I claim that C has infinitely
many translates under the Mordell-Weil group Z"~!. Indeed, any curve with
finitely many orbits under Z”~! must be contained in a fiber of X — P'. Since
all fibers are irreducible, the fibers have self-intersection 0, not —2. Thus X
contains infinitely many (—2)-curves. Therefore the group

W C OM)

generated by reflections in (—2)-vectors is infinite. Here W acts simply transi-
tively on the Weyl chambers of the positive cone (separated by hyperplanes v+
with v a (—=2)-vector), whereas G = Aut*(X) preserves one Weyl chamber, the
ample cone of X. So G and W intersect only in the identity. Since W is infinite,
G has infinite index in O(M). By Theorem 7.1, G is not commensurable with
an arithmetic group. O
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Proof of Example 7.3. The given curve C in the linear system |O(4,4)| =
| —2Kpiypi| is smooth. One can check this with Macaulay 2, for example.
Therefore the double cover X of P! x P! ramified along C is a smooth K3
surface. The two projections from X to P! are elliptic fibrations. Typically,
such a double cover 7 : X — P! x P! would have Picard number 2, but the
curve C has been chosen to be tangent at 4 points to each of two curves of
degree (1,1), D; = {xv = yu} and D, = {xv = —yu}. (These points are
[x, y]=[u, v]equalto [1, 1], [1, 2], [1, —1], [1, —2] on D; and [x, y] = [u, —v]
equal to [1, 1], [1, 2], [1, —1], [1, —2] on Dy.) It follows that the double covering
is trivial over D and D», outside the ramification curve C: the inverse image
in X of each curve D; is a union of two curves, 7~ (D;) = E; U F;, meeting
transversely at 4 points. The smooth rational curves Ey, Fy, E», F> on X are
(—2)-curves, since X is a K3 surface.

The curves D; and D, meet transversely at the two points [x, y] = [u, v]
equal to [1, 0] or [0, 1]. Let us compute that the double covering

7:X—P' xP!

is trivial over the union of D and D, (outside the ramification curve C). Indeed,
if we write X as w? = f(x, y, z, w) where f is the given polynomial of degree
(4, 4), then a section of 7w over D; U D; is given by

w = 4x%u® — 5x%0% + y*v2.

We can name the curves E;, F; so that the image of this section is £1U E; and the
image of the section w = —(4x%u? —5x2v2+y2v2) is F{UF;. Then E| and F> are
disjoint. So the intersection form among the divisors 7* 0 (1,0),7*0(0,1), E1, F>
on X is given by

DN = =

0
2
1
1

—_— O N

1

1

0

0 -2
Since this matrix has determinant —32, not zero, X has Picard number at least 4.
Finally, we compute that the two projections from C C P! x P! to P! are each
ramified over 24 distinct points in P!. It follows that all fibers of our two elliptic
fibrations X — P! are irreducible. By Corollary 7.2, the automorphism group
of X (over C, or equivalently over Q) is not commensurable with an arithmetic

group. Our calculations have all worked over Q, and so Corollary 7.2 also gives
that Aut(Xg) is not commensurable with an arithmetic group. (]
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8. KIt pairs

We will see that the previous results can be generalized from Calabi—Yau varieties
to a broader class of varieties using the language of pairs. For the rest of the
paper, we work over the complex numbers.

A normal variety X is Q-factorial if for every point p and every codimension-
one subvariety S through p, there is a regular function on some neighborhood of
p that vanishes exactly on S (to some positive order).

Definition 8.1. A pair (X, A) is a Q-factorial projective variety X with an
effective R-divisor A on X.

Notice that A is an actual R-divisor A =) a; A;, not a numerical equivalence
class of divisors. We think of Ky 4+ A as the canonical bundle of the pair (X, A).
The following definition picks out an important class of “mildly singular” pairs.

Definition 8.2. A pair (X, A) is klt (Kawamata log terminal) if the following
holds. Let 7 : X — X be a resolution of singularities Suppose that the union of
the exceptional set of 7 (the subset of X where 7 is not an 1s0m0rph1sm) with

7~ 1(A) is a divisor with simple normal crossings. Define a divisor Aon X by

Ki+A=1%Kx+A).

We say that (X, A) is kit if all coefficients of A are less than 1. This property is
independent of the choice of resolution.

Example 8.3. A surface X = (X, 0) is kit if and only if X has only quotient
singularities [Kollar and Mori 1998, Proposition 4.18].

Example 8.4. For a smooth variety X and A a divisor with simple normal
crossings (and some coefficients), the pair (X, A) is kit if and only if A has
coefficients less than 1.

All the main results of minimal model theory, such as the cone theorem,
generalize from smooth varieties to klt pairs. For example, the Fano case of the
cone theorem becomes [Kollar and Mori 1998, Theorem 3.7]:

Theorem 8.5. Let (X, A) be a kit Fano pair, meaning that —(Kx + A) is ample.
Then Curv(X) (and hence the dual cone Nef(X)) is rational polyhedral.

Notice that the conclusion does not involve the divisor A. This shows the
power of the language of pairs. A variety X may not be Fano, but if we can
find an R-divisor A that makes (X, A) a klt Fano pair, then we get the same
conclusion (that the cone of curves and the nef cone are rational polyhedral) as
if X were Fano.
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Example 8.6. Let X be the blow-up of P? at any number of points on a smooth
conic. As an exercise, the reader can write down an R-divisor A such that (X, A)
is a kit Fano pair. This proves that the nef cone of X is rational polyhedral, as
proved by other methods in [Galindo and Monserrat 2005, Corollary 3.3; Mukai
2005; Castravet and Tevelev 2006]. These surfaces are definitely not Fano if we
blow up 6 or more points. Their Betti numbers are unbounded, in contrast to the
smooth Fano surfaces.

More generally, Testa, Vdrilly-Alvarado, and Velasco proved that every smooth
projective rational surface X with — Ky big has finitely generated Cox ring [Testa
et al. 2009]. Finite generation of the Cox ring (the ring of all sections of all line
bundles) is stronger than the nef cone being rational polyhedral, by the analysis
of [Hu and Keel 2000]. Chenyang Xu showed that a rational surface with —Kx
big need not have any divisor A with (X, A) a kit Fano pair [Testa et al. 2009].
I do not know whether the blow-ups of higher-dimensional projective spaces
considered by in [Mukai 2005] and [Castravet and Tevelev 2006] have a divisor
A with (X, A) a kit Fano pair.

It is therefore natural to extend the Morrison—Kawamata cone conjecture from
Calabi—Yau varieties to Calabi—Yau pairs (X, A), meaning that Ky + A = 0.
The conjecture is reasonable, since we can prove it in dimension 2 [Totaro 2010].

Theorem 8.7. Let (X, A) be a kit Calabi-Yau pair of dimension 2. Then
Aut(X, A) (and also Aut(X)) acts with a rational polyhedral fundamental do-
main on the cone Nef(X) c N'(X).

Here is a more concrete consequence of Theorem 8.7:

Corollary 8.8 [Totaro 2010]. Let (X, A) be a kit Calabi—Yau pair of dimension
2. Then there are only finitely many contractions of X up to automorphisms of X.
Related to that: Aut(X) has finitely many orbits on the set of curves in X with
negative self-intersection.

This was shown in one class of examples [Dolgachev and Zhang 2001]. These
results are false for surfaces in general, even for some smooth rational surfaces:

Example 8.9. Let X be the blow-up of P2 at 9 very general points. Then Nef(X)
is not rational polyhedral, since X contains infinitely many (—1)-curves. But
Aut(X) = 1 [Gizatullin 1980, Proposition 8], and so the conclusion fails for X.
Moreover, let A be the unique smooth cubic curve in P? through the 9 points,
with coefficient 1. Then —Kx = A, and so (X, A) is a log-canonical (and even
canonical) Calabi—Yau pair. The theorem therefore fails for such pairs.

We now give a classical example (besides the case A = 0 of Calabi—Yau
surfaces) where Theorem 8.7 applies.
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Example 8.10. Let X be the blow-up of P? at 9 points py, ..., po which are
the intersection of two cubic curves. Then taking linear combinations of the two
cubics gives a P!-family of elliptic curves through the 9 points. These curves
become disjoint on the blow-up X, and so we have an elliptic fibration X — P'.
This morphism is given by the linear system | — Kx|. Using that, we see that the
(—1)-curves on X are exactly the sections of the elliptic fibration X — P!.

In most cases, the Mordell-Weil group of X — P! is = 7%, So X contains
infinitely many (—1)-curves, and so the cone Nef(X) is not rational polyhedral.
But Aut(X) acts transitively on the set of (—1)-curves, by translations using the
group structure on the fibers of X — P!, That leads to the proof of Theorem 8.7
in this example. (The theorem applies, in the sense that there is an R-divisor A
with (X, A) kit Calabi—Yau: let A be the sum of two smooth fibers of X — P!
with coefficients %, for example.)

9. The cone conjecture in dimension greater than 2

In higher dimensions, the cone conjecture also predicts that a klt Calabi—Yau
pair (X, A) has only finitely many small QQ-factorial modifications X --» X up
to pseudo-automorphisms of X. (See [Kawamata 1997; Totaro 2010] for the full
statement of the cone conjecture in higher dimensions.) A pseudo-automorphism
means a birational automorphism which is an isomorphism in codimension 1.

More generally, the conjecture implies that X has only finitely many birational
contractions X --+ Y modulo pseudo-automorphisms of X, where a birational
contraction means a dominant rational map that extracts no divisors. There can
be infinitely many small modifications if we do not divide out by the group
PsAut(X) of pseudo-automorphisms of X.

Kawamata proved a relative version of the cone conjecture for a 3-fold X with
a K3 fibration or elliptic fibration X — § [Kawamata 1997]. Here X can have
infinitely many minimal models (or small modifications) over S, but it has only
finitely many modulo PsAut(X/S).

This is related to other finiteness problems in minimal model theory. We
know that a kit pair (X, A) has only finitely many minimal models if A is big
[Birkar et al. 2010, Corollary 1.1.5]. It follows that a variety of general type
has a finite set of minimal models. A variety of nonmaximal Kodaira dimension
can have infinitely many minimal models [Reid 1983, Section 6.8; 1997]. But
it is conjectured that every variety X has only finitely many minimal models
up to isomorphism, meaning that we ignore the birational identification with
X. Kawamata’s results on Calabi—Yau fiber spaces imply at least that 3-folds
of positive Kodaira dimension have only finitely many minimal models up to
isomorphism [Kawamata 1997, Theorem 4.5]. If the abundance conjecture
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[Kollar and Mori 1998, Corollary 3.12] holds (as it does in dimension 3), then
every nonuniruled variety has an litaka fibration where the fibers are Calabi—
Yau. The cone conjecture for Calabi—Yau fiber spaces (plus abundance) implies
finiteness of minimal models up to isomorphism for arbitrary varieties.

The cone conjecture is wide open for Calabi—Yau 3-folds, despite significant
results by Oguiso and Peternell [1998], Szendrdi [1999], Uehara [2004], and
Wilson [1994]. Hassett and Tschinkel recently [2010] checked the conjecture
for a class of holomorphic symplectic 4-folds.

10. Outline of the proof of Theorem 8.7

The proof of Theorem 8.7 gives a good picture of the Calabi—Yau pairs of
dimension 2. We summarize the proof from [Totaro 2010]. In most cases, if
(X, A) is a Calabi—Yau pair, then X turns out to be rational. It is striking that the
most interesting case of the theorem is proved by reducing properties of certain
rational surfaces to the Torelli theorem for K3 surfaces.

Let (X, A) be a kit Calabi—Yau pair of dimension 2. That is, Kx + A =0, or
equivalently

—K X = A .

where A is effective. We can reduce to the case where X is smooth by taking a
suitable resolution of (X, A).

If A =0, then X is a smooth Calabi—Yau surface, and the result is known by
Sterk, using the Torelli theorem for K3 surfaces. So assume that A #~ 0. Then X
has Kodaira dimension

k(X):=«k(X, Kx)

equal to —oo. With one easy exception, Nikulin showed that our assumptions
imply that X is rational [Alexeev and Mori 2004, Lemma 1.4]. So assume that
X is rational from now on.

We have three main cases for the proof, depending on whether the litaka
dimension « (X, —Kyx) is 0, 1, or 2. (It is nonnegative because —Ky ~g A >
0.) By definition, the litaka dimension « (X, L) of a line bundle L is —oo if
ho(X, mL) = 0 for all positive integers m. Otherwise, x (X, L) is the natural
number r such that there are positive integers a, b and a positive integer mg with
am” < hO(X, mL) < bm” for all positive multiples m of mg [Lazarsfeld 2004,
Corollary 2.1.38].

10.1. Case where k(X, —Kx)=2. Thatis, —Ky is big. In this case, there is an
R-divisor I' such that (X, I') is klt Fano. Therefore Nef(X) is rational polyhedral
by the cone theorem, and hence the group Aut*(X) is finite. So Theorem 8.7 is
true in a simple way. More generally, for (X, I") kIt Fano of any dimension, the
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Cox ring of X is finitely generated, by Birkar, Cascini, Hacon, and M®Kernan
[2010].

This proof illustrates an interesting aspect of working with pairs: rather than
Fano being a different case from Calabi—Yau, Fano becomes a special case of
Calabi—Yau. That is, if (X, I') is a kit Fano pair, then there is another effective
R-divisor A with (X, A) a klt Calabi—Yau pair.

10.2. Case where k (X, —Kx)=1. In this case, some positive multiple of —Kx
gives an elliptic fibration X — P!, not necessarily minimal. Here Aut*(X) equals
the Mordell-Weil group of X — P! up to finite index, and so Aut*(X) = Z" for
some 7. This generalizes the example of P?> blown up at the intersection of two
cubic curves.

The (—1)-curves in X are multisections of X — P! of a certain fixed degree.
One shows that Aut(X) has only finitely many orbits on the set of (—1)-curves
in X. This leads to the statement of Theorem 8.7 in terms of cones.

10.3. Case where k(X, —Kx) =0. This is the hardest case. Here Aut*(X) can
be a fairly general group acting on hyperbolic space; in particular, it can be
highly nonabelian.

Here — Kx = A where the intersection pairing on the curves in A is negative
definite. We can contract all the curves in A, yielding a singular surface Y with
—Ky = 0. Note that Y is kit and hence has quotient singularities, but it must
have worse than ADE singularities, because it is a singular Calabi—Yau surface
that is rational.

Let I be the “global index” of Y, the least positive integer with I Ky Cartier
and linearly equivalent to zero. Then

Y =M/Z/1)

for some Calabi—Yau surface M with ADE singularities. The minimal resolution
of M is a smooth Calabi—Yau surface. Using the Torelli theorem for K3 surfaces,
this leads to the proof of the theorem for M and then for Y, by Oguiso and
Sakurai [2001, Corollary 1.9].

Finally, we have to go from Y to its resolution of singularities, the smooth
rational surface X. Here Nef(X) is more complex than Nef(Y): X typically
contains infinitely many (—1)-curves, whereas Y has none (because Ky = 0).
Nonetheless, since we know “how big” Aut(Y) is (up to finite index), we can
show that the group

Aut(X, A) = Aut(Y)

has finitely many orbits on the set of (—1)-curves. This leads to the proof of
Theorem 8.7 for (X, A). QED
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11. Example

Here is an example of a smooth rational surface with a highly nonabelian (discrete)
automorphism group, considered by Zhang [1991, Theorem 4.1, p. 438], Blache
[1995, Theorem C(b)(2)], and [2010, Section 2]. This is an example of the last
case in the proof of Theorem 8.7, where (X, —Kx) = 0. We will also see a
singular rational surface whose nef cone is round, of dimension 4.

Let X be the blow-up of P2 at the 12 points: [1, ;", {j] fori, jeZ/3,[1,0,0],
[0, 1,0], [0, O, 1]. Here ¢ is a cube root of 1. (This is the dual of the “Hesse
configuration” [Dolgachev 2004, Section 4.6]. There are 9 lines Lq, ..., Lo
through quadruples of the 12 points in P2.)

On P2, we have

9
—Kp=3H=) 1L,
i=1

On the blow-up X, we have

where L1, ..., Lg are the proper transforms of the 9 lines, which are now disjoint
and have self-intersection number —3. Thus (X , Z?: | %Li) is a klt Calabi—Yau
pair.

Section 10.3 shows how to analyze X: contract the 9 (—3)-curves L; on
X. This gives a rational surface Y with 9 singular points (of type %(1, 1)) and
p(Y)=4. We have —Ky =0, so Y is a kit Calabi—Yau surface which is rational.
We have 3Ky ~ 0, and so Y = M/(Z/3) with M a Calabi—Yau surface with
ADE singularities. It turns out that M is smooth, M = E x E where E is the
Fermat cubic curve

EZC/Z[0) =[x, y, 21 € P2 : X3+ =23,

and Z/3 acts on E x E as multiplication by (¢, ¢) [Totaro 2010, Section 2].

Since E has endomorphism ring Z[¢], the group GL(2, Z[{]) acts on the
abelian surface M = E x E. This passes to an action on the quotient variety
Y = M/(Z/3) and hence on its minimal resolution X (which is the blow-up of
P2 at 12 points we started with). Thus the infinite, highly nonabelian discrete
group GL(2, Z[¢]) acts on the smooth rational surface X. This is the whole
automorphism group of X up to finite groups (loc. cit.).

Here Nef(Y) = Nef(M) is a round cone in R*, and so Theorem 8.7 says
that PGL(2, Z[¢]) acts with finite covolume on hyperbolic 3-space. In fact, the
quotient of hyperbolic 3-space by an index-24 subgroup of PGL(2, Z[¢]) is
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familiar to topologists as the complement of the figure-eight knot [Maclachlan
and Reid 2003, 1.4.3, 4.7.1].
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