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Calderón’s inverse problem:
imaging and invisibility

KARI ASTALA, MATTI LASSAS AND LASSI PÄIVÄRINTA

We consider the determination of a conductivity function in a two-dimensional
domain from the Cauchy data of the solutions of the conductivity equation
on the boundary. In the first sections of the paper we consider this inverse
problem, posed by Calderón, for conductivities that are in L1 and are bounded
from below by a positive constant. After this we consider uniqueness results
and counterexamples for conductivities that are degenerate, that is, not neces-
sarily bounded from above or below. Elliptic equations with such coefficient
functions are essential for physical models used in transformation optics and
metamaterial constructions. The present counterexamples for the inverse
problem have been related to invisibility cloaking. This means that there are
conductivities for which a part of the domain is shielded from detection via
boundary measurements. Such conductivities are called invisibility cloaks. At
the end of the paper we consider the borderline of the smoothness required
for the visible conductivities and the borderline of smoothness needed for
invisibility cloaking conductivities.

1. Introduction

In electrical impedance tomography one aims to determine the internal structure
of a body from electrical measurements on its surface. To consider the precise
mathematical formulation of the electrical impedance tomography problem,
suppose that �� Rn is a bounded domain with connected complement and let
us start with the case when � W �! .0;1/ be a measurable function that is
bounded away from zero and infinity.

Then the Dirichlet problem

r � �ruD 0 in �; (1)

u
ˇ̌
@�
D � 2W 1=2;2.@�/ (2)
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admits a unique solution u in the Sobolev space W 1;2.�/. Here

W 1=2;2.@�/DH 1=2.@�/DW 1;2.�/=W
1;2

0
.�/

stands for the space of equivalence classes of functions W 1;2.�/ that are the
same up to a function in W

1;2
0
.�/ D clW 1;2.�/.C

1
0
.�//. This is the most

general space of functions that can possibly arise as Dirichlet boundary values
or traces of general W 1;2.�/-functions in a bounded domain �.

In terms of physics, if the electric potential of a body � at point x is u.x/,
having the boundary value � D uj@�, and there are no sources inside the body,
u satisfies the equations (1)–(2). The electric current J in the body is equal to

J D��ru:

In electrical impedance tomography, one measures only the normal component
of the current, � �J j@� D �� � �ru, where � is the unit outer normal to the
boundary. For smooth � this quantity is well defined pointwise, while for general
bounded measurable � we need to use the (equivalent) definition of � � �ruj@�,

h� � �ru;  iD

Z
�

�.x/ru.x/ �r .x/ dm.x/ for all  2W 1;2.�/.�/; (3)

as an element of H�1=2.@�/, the dual of space of H 1=2.@�/DW 1=2;2.@�/.
Here, m is the Lebesgue measure.

Calderón’s inverse problem is the question whether an unknown conductivity
distribution inside a domain can be determined from the voltage and current
measurements made on the boundary. The measurements correspond to the
knowledge of the Dirichlet-to-Neumann map ƒ� (or the equivalent quadratic
form) associated to � , i.e., the map taking the Dirichlet boundary values of the
solution of the conductivity equation

r � �.x/ru.x/D 0 (4)

to the corresponding Neumann boundary values,

ƒ� W uj@� 7! � � �ruj@�: (5)

For sufficiently regular conductivities the Dirichlet-to-Neumann map ƒ� can be
considered as an operator from W 1=2;2.@�/ to W �1=2;2.@�/. In the classical
theory of the problem, the conductivity � is bounded uniformly from above and
below. The problem was originally proposed by Calderón [1980]. Sylvester
and Uhlmann [1987] proved the unique identifiability of the conductivity in
dimensions three and higher for isotropic conductivities which are C1-smooth,
and Nachman [1988] gave a reconstruction method. In three dimensions or
higher unique identifiability of the conductivity is proven for conductivities
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with 3=2 derivatives [Päivärinta et al. 2003; Brown and Torres 2003] and C 1;˛-
smooth conductivities which are C1 smooth outside surfaces on which they
have conormal singularities [Greenleaf et al. 2003b]. Haberman and Tataru
[2011] have recently proven uniqueness for the C 1-smooth conductivities. The
problems has also been solved with measurements only on a part of the boundary
[Kenig et al. 2007].

In two dimensions the first global solution of the inverse conductivity problem
is due to Nachman [1996a] for conductivities with two derivatives. In this
seminal paper the @ technique was first time used in the study of Calderón’s
inverse problem. The smoothness requirements were reduced in [Brown and
Uhlmann 1997a] to Lipschitz conductivities. Finally, in [Astala and Päivärinta
2006] the uniqueness of the inverse problem was proven in the form that the
problem was originally formulated in [Calderón 1980], i.e., for general isotropic
conductivities in L1 which are bounded from below and above by positive
constants.

The Calderón problem with an anisotropic, i.e., matrix-valued, conductivity
that is uniformly bounded from above and below has been studied in two di-
mensions [Sylvester 1990; Nachman 1996a; Lassas and Uhlmann 2001; Astala
et al. 2005; Imanuvilov et al. 2010] and in dimensions n� 3 [Lee and Uhlmann
1989; Lassas and Uhlmann 2001; Ferreira et al. 2009]. For example, for the
anisotropic inverse conductivity problem in the two-dimensional case it is known
that the Dirichlet-to-Neumann map determines a regular conductivity tensor up
to a diffeomorphism F W�!�, i.e., one can obtain an image of the interior of
� in deformed coordinates. This implies that the inverse problem is not uniquely
solvable, but the nonuniqueness of the problem can be characterized. We note
that the problem in higher dimensions is presently solved only in special cases,
like when the conductivity is real analytic.

Electrical impedance tomography has a variety of different applications for
instance in engineering and medical diagnostics. For a general expository pre-
sentations see [Borcea 2002; Cheney et al. 1999], for medical applications see
[Dijkstra et al. 1993].

In the last section we will study the inverse conductivity problem in the two-
dimensional case with degenerate conductivities. Such conductivities appear in
physical models where the medium varies continuously from a perfect conductor
to a perfect insulator. As an example, we may consider a case where the con-
ductivity goes to zero or to infinity near @D where D �� is a smooth open set.
We ask what kind of degeneracy prevents solving the inverse problem, that is,
we study what is the border of visibility. We also ask what kind of degeneracy
makes it even possible to coat of an arbitrary object so that it appears the same
as a homogeneous body in all static measurements, that is, we study what is the



4 KARI ASTALA, MATTI LASSAS AND LASSI PÄIVÄRINTA

border of the invisibility cloaking. Surprisingly, these borders are not the same;
we identify these borderlines and show that between them there are the electric
holograms, that is, the conductivities creating an illusion of a nonexisting body
(see Figure 1 on page 43). These conductivities are the counterexamples for
the unique solvability of inverse problems for which even the topology of the
domain can not be determined using boundary measurements.

In this presentation we concentrate on solving Calderón’s inverse problem in
two dimensions. The presentation is based on the works [Astala and Päivärinta
2006; Astala et al. 2009; 2005; 2011a], where the problem is considered using
quasiconformal techniques. In higher dimensions the usual method is to reduce,
by substituting v D �1=2u, the conductivity equation (1) to the Schrödinger
equation and then to apply the methods of scattering theory. Indeed, after such a
substitution v satisfies

�v� qv D 0;

where qD ��1=2��1=2. This substitution is possible only if � has some smooth-
ness. In the case � 2 L1, relevant for practical applications the reduction to
the Schrödinger equation fails. In the two-dimensional case we can overcome
this by using methods of complex analysis. However, what we adopt from the
scattering theory type approaches is the use of exponentially growing solutions,
the so-called geometric optics solutions to the conductivity equation (1). These
are specified by the condition

u.z; �/D ei�z
�
1CO

�
1

jzj

��
as jzj !1; (6)

where �; z 2 C and �z denotes the usual product of these complex numbers.
Here we have set � � 1 outside � to get an equation defined globally. Studying
the �-dependence of these solutions then gives rise to the basic concept of this
presentation, the nonlinear Fourier transform �� .�/. The detailed definition will
be given in Section 2F.

Thus to start the study of �� .�/ we need first to establish the existence of
exponential solutions. Already here the quasiconformal techniques are essential.
We note that the study of the inverse problems is closely related to the nonlinear
Fourier transform: It is not difficult to show that the Dirichlet-to-Neumann
boundary operator ƒ� determines the nonlinear Fourier transforms �� .�/ for
all � 2 C. Therefore the main difficulty, and our main strategy, is to invert the
nonlinear Fourier transform, show that �� .�/ determines �.z/ almost everywhere.

The properties of the nonlinear Fourier transform depend on the underlying
differential equation. In one dimension the basic properties of the transform
are fairly well understood, while deeper results such as analogs of Carleson’s
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L2-convergence theorem remain open. The reader should consult the excellent
lecture notes by Tao and Thiele [2003] for an introduction to the one-dimensional
theory.

For (1) with nonsmooth � , many basic questions concerning the nonlinear
Fourier transform, even such as finding a right version of the Plancherel formula,
remain open. What we are able to show is that for �˙1 2L1, with � � 1 near
1, we have a Riemann–Lebesgue type result,

�� 2 C0.C/:

Indeed, this requires the asymptotic estimates of the solutions (6), and these
are the key point and main technical part of our argument. For results on
related equations, see [Brown 2001]. The nonlinear Fourier transform in the two-
dimensional case is also closely related to the Novikov–Veselov (NV) equation,
which is a (2+1)-dimensional nonlinear evolution equation that generalizes the
(1+1)-dimensional Korteweg-deVries(KdV) equation; see [Boiti et al. 1987;
Lassas et al. 2007; Tsai 1993; Veselov and Novikov 1984].

2. Calderón’s inverse for isotropic L1-conductivity

To avoid some of the technical complications, below we assume that the domain
�D DD D.1/, the unit disk. In fact the reduction of general � to this case is
not difficult; see [Astala and Päivärinta 2006]. Our main aim in this section is to
consider the following uniqueness result and its generalizations:

Theorem 2.1 [Astala and Päivärinta 2006]. Let �j 2L1.D/, j D 1; 2. Suppose
that there is a constant c > 0 such that c�1 � �j � c. If

ƒ�1
Dƒ�2

;

then �1 D �2 almost everywhere. Here ƒ�i
, i D 1; 2, are defined by (5).

For the first steps in numerical implementation of the solution of the inverse
problem based on quasiconformal methods see [Astala et al. 2011b].

Our approach will be based on quasiconformal methods, which also enables the
use of tools from complex analysis. These are not available in higher dimensions,
at least to the same extent, and this is one of the reasons why the problem is
still open for L1-coefficients in dimensions three and higher. The complex
analytic connection comes as follows: From Theorem 2.3 below we see that if
u2W 1;2.D/ is a real-valued solution of (1), then it has the � -harmonic conjugate
v 2W 1;2.D/ such that

@xv D��@y u; @yv D �@x u: (7)
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Equivalently (see (26)), the function f D uC iv satisfies the R-linear Beltrami
equation

@f

@Nz
D �.z/

@f

@z
; (8)

where @f
@Nz
D @Nzf D

1
2
.@xf C i@yf /,

@f

@z
D @Nzf D

1
2
.@xf � i@yf /, and

�D
1� �

1C �
:

In particular, note that � is real-valued and that the assumptions on � in
Theorem 2.1 imply k�kL1 � k < 1. This reduction to the Beltrami equation and
the complex analytic methods it provides will be the main tools in our analysis
of the Dirichlet-to-Neumann map and the solutions to (1).

2A. Linear and nonlinear Beltrami equations. A powerful tool for finding the
exponential growing solutions to the conductivity equation (including degenerate
conductivities) are given by the nonlinear Beltrami equation. We therefore first
review a few of the basic facts here. For more details and results see [Astala
et al. 2009].

We start with general facts on the linear divergence-type equation

div A.z/ruD 0; z 2�� R2 (9)

where we assume that u 2W
1;2

loc .�/ and that the coefficient matrix

ADA.z/D

�
˛11 ˛12

˛21 ˛22

�
; ˛21 D ˛12; (10)

is symmetric and elliptic:

1

K.z/
j�j2 � hA.z/�; �i �K.z/j�j2; � 2 R2; (11)

almost everywhere in �. Here, h�; �i D �1�1C �2�2 for �; � 2 R2. We denote
by KA.z/ the smallest number for which (11) is valid. We start with the case
when A.z/ is assumed to be isotropic, A.z/D �.z/I with �.z/ 2 RC. We also
assume that there is K 2 RC such that KA.z/�K almost everywhere.

For many purposes it is convenient to express the above ellipticity condition
(11) in terms of the single inequality

j�j2CjA.z/�j2 �

�
KA.z/C

1

KA.z/

�
hA.z/�; �i (12)
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valid for almost every z 2� and all � 2 R2. For the symmetric matrix A.z/ this
is seen by representing the matrix as a diagonal matrix in the coordinates given
by the eigenvectors.

Below we will study the divergence equation (9) by reducing it to the complex
Beltrami system. For solutions to (9) a conjugate structure, similar to harmonic
functions, is provided by the Hodge star operator �, which here really is nothing
more than the (counterclockwise) rotation by 90 degrees,

� D

�
0 � 1

1 0

�
W R2
! R2; �� D �I: (13)

There are two vector fields associated with each solution to the homogeneous
equation

div A.z/ruD 0; u 2W
1;2

loc .�/:

The first, E D ru, has zero curl (in the sense of distributions, the curl of any
gradient field is zero), while the second, B DA.z/ru, is divergence-free as a
solution to the equation.

It is the Hodge star � operator that transforms curl-free fields into divergence-
free fields, and vice versa. In particular, if

E Drw D .wx; wy/; w 2W
1;1

loc .�/;

then �E D .�wy ; wx/ and hence

div.�E/D div.�rw/D 0;

at least in the distributional sense. We recall here a well-known fact from calculus
(the Poincaré lemma):

Lemma 2.2. Let E 2 Lp.�;R2/, p � 1, be a vector field defined on a simply
connected domain �. If Curl E D 0, then E is a gradient field; that is, there
exists a real-valued function u 2W 1;p.�/ such that ruDE.

When u is A-harmonic function in a simply connected domain �, that is, u

solves the equation div A.z/ruD 0, then the field �Aru is curl-free and may
be rewritten as

rv D �A.z/ru; (14)

where v 2W
1;2

loc .�/ is some Sobolev function unique up to an additive constant.
This function v we call the A-harmonic conjugate of u. Sometimes in the
literature one also finds the term stream function used for v.

The ellipticity conditions for A can be equivalently formulated for the induced
complex function f D uC iv. We arrive, after a lengthy but quite routine
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purely algebraic manipulation, at the equivalent complex first-order equation for
f D uC iv, which we record in the following theorem.

Theorem 2.3. Let � be a simply connected domain and let u 2W
1;1

loc .�/ be a
solution to

div AruD 0: (15)

If v 2 W 1;1.�/ is a solution to the conjugate A-harmonic equation (14), the
function f D uC iv satisfies the homogeneous Beltrami equation

@f

@Nz
��.z/

@f

@z
� �.z/

@f

@z
D 0: (16)

The coefficients are given by

�D
˛22�˛11� 2i˛12

1C trace AC det A
; � D

1� det A

1C trace AC det A
: (17)

Conversely, if f 2W
1;1

loc .�;C/ is a mapping satisfying (16), then uDRe .f / and
v D Im .f / satisfy (14) with A given by solving the complex equations in (17):

˛11.z/D
j1��j2� j�j2

j1C �j2� j�j2
; (18)

˛22.z/D
j1C�j2� j�j2

j1C �j2� j�j2
; (19)

˛12.z/D ˛21.z/D
�2 Im .�/

j1C �j2� j�j2
; (20)

The ellipticity of A can be explicitly measured in terms of � and �. The
optimal ellipticity bound in (11) is

KA.z/Dmaxf�1.z/; 1=�2.z/g; (21)

where 0< �2.z/� �1.z/ <1 are the eigenvalues of A.z/. With this choice we
have pointwise

j�.z/jC j�.z/j D
KA.z/� 1

KA.z/C 1
< 1: (22)

We also denote by Kf .z/ the smallest number for which the inequality

kDf .z/k2 �Kf .z/J.z; f / (23)

is valid. Here, Df .z/ 2 R2 is the Jacobian matrix (or the derivative) of f at z

and J.z; f /D det.Df .z// is the Jacobian determinant of f .
Below, let k 2 Œ0; 1� and K 2 Œ1;1� be constants satisfying

sup
z2�

.j�.z/jC j�.z/j/� k and K WD
1C k

1� k
: (24)
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Then (16) yields ˇ̌̌̌
@f

@Nz

ˇ̌̌̌
� k

ˇ̌̌̌
@f

@z

ˇ̌̌̌
:

The above ellipticity bounds have then the relation

Kf .z/�KA.z/�K for a.e. z 2�: (25)

A mapping f 2W
1;2

loc .�/ satisfying (23) with Kf .z/�K <1 is called a K-
quasiregular mappings. If f is a homeomorphism, we call it K-quasiconformal.
By Stoilow’s factorization (Theorem A.9), any K-quasiregular mapping is a
composition of holomorphic function and a K-quasiconformal mapping.

Remarks. 1. In this correspondence, � is real valued if and only if the matrix A

is symmetric.

2. A has determinant 1 if and only if �D 0 (this corresponds to the C-linear
Beltrami equation).

3. A is isotropic, that is, AD �.z/I with �.z/ 2 RC, if and only if �.z/D 0.
For such A, the Beltrami equation (16) then takes the form

@f

@Nz
�

1� �

1C �

@f

@z
D 0: (26)

2B. Existence and uniqueness for nonlinear Beltrami equations. Solutions to
the Beltrami equation conformal near infinity are particularly useful in solving
the equation.

When� and � as above have compact support and we have a W
1;2

loc .C/ solution
to the Beltrami equation fNz D �fzC �fNz in C, where fNz D @Nzf and fz D @zf ,
normalized by the condition

f .z/D zCO.1=z/

near1, we call f a principal solution. Indeed, with the Cauchy and Beurling
transform (see the Appendix) we have the identities

@f

@z
D 1CS

@f

@Nz
(27)

and

f .z/D zCC
�@f
@Nz

�
.z/; z 2 C: (28)

Principal solutions are necessarily homeomorphisms. In fact we have the
following fundamental measurable Riemann mapping theorem:
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Theorem 2.4. Let �.z/ be compactly supported measurable function defined in
C with k�kL1 � k < 1. Then there is a unique principal solution to the Beltrami
equation

@f

@Nz
D �.z/

@f

@z
for almost every z 2 C;

and the solution f 2W
1;2

loc .C/ is a K-quasiconformal homeomorphism of C.

The result holds also for the general Beltrami equation with coefficients �
and �; see Theorem 2.5 below.

In constructing the exponentially growing solutions to the divergence and Bel-
trami equations, the most powerful approach is by nonlinear Beltrami equations
which we next discuss.

When one is looking for solutions to the general nonlinear elliptic systems

@f

@Nz
DH

�
z; f;

@f

@z

�
; z 2 C;

there are necessarily some constraints to be placed on the function H that we
now discuss. We write

H W C�C�C! C:

We will not strive for full generality, but settle for the following special case.
For the most general existence results, with very weak assumptions on H , see
[Astala et al. 2009]. Here we assume

(1) the homogeneity condition, that fNz D 0 whenever fz D 0, equivalently,

H.z; w; 0/� 0; for almost every .z; w/ 2 C�CI

(2) the uniform ellipticity condition, that for almost every z; w 2 C and all
�; � 2 C,

jH.z; w; �/�H.z; w; �/j � kj� � �j; 0� k < 1I (29)

(3) the Lipschitz continuity in the function variable,

jH.z; w1; �/�H.z; w2; �/j � C j�j jw1�w2j

for some absolute constant C independent of z and �.

Theorem 2.5. Suppose H W C � C � C ! C satisfies the conditions (1)–(3)
above and is compactly supported in the z-variable. Then the uniformly elliptic
nonlinear differential equation

@f

@Nz
DH

�
z; f;

@f

@z

�
(30)

admits exactly one principal solution f 2W
1;2

loc .C/.
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Sketch of the proof. (For complete proof, see [Astala et al. 2009, Chapter 8])
Uniqueness is easy. Suppose that both f and g are principal solutions to (30).
Then

@f

@Nz
DH

�
z; f;

@f

@z

�
;

@g

@Nz
DH

�
z;g;

@f

@z

�
:

We set F D f �g and estimate

jFNzj D jH.z; f; fz/�H.z;g;gz/j

� jH.z; f; fz/�H.z; f;gz/jC jH.z; f;gz/�H.z;g;gz/j

� kjfz �gzjCC�Rjgzj jf �gj;

where �R denotes the characteristic function of the disk D.R/ of radius R and
center zero. It follows that F satisfies the differential inequality

jFNzj � kjFzjCC�Rjgzj jF j:

By assumption, the principal solutions f;g lie in W
1;2

loc .C/ with

lim
z!1

f .z/�g.z/D 0:

Once we observe that

� D C�R.z/jgzj 2L2.C/

has compact support, Liouville type results such as Theorem A.8 in the Appendix
shows us that F � 0, as desired.

The proof of existence we only sketch; for details, in the more general setup
of Lusin measurable H , see [Astala et al. 2009, Chapter 8].

We look for a solution f in the form

f .z/D zCC�; � 2Lp.C/ of compact support; (31)

where the exponent p > 2. Note that

fNz D �; fz D 1C S�:

Thus we need to solve only the integral equation

� DH
�
z; zCC�; 1CS�

�
: (32)

To solve this equation we first associate with every given � 2Lp.C/ an operator
R WLp.C/!Lp.C/ defined by

RˆDH
�
z; zCC�; 1CSˆ

�
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Through the ellipticity hypothesis we observe that R is a contractive operator
on Lp.C/. Indeed, from (29) we have the pointwise inequality

jRˆ1�Rˆ2j � k jSˆ1�Sˆ2j:

Hence
kRˆ1�Rˆ2kp � k Spkˆ1�ˆ2kp; kSp < 1;

for p sufficiently close to 2. By the Banach contraction principle, R has a unique
fixed point ˆ 2Lp.C/. In other words, with each � 2Lp.C/ we can associate
a unique function ˆ 2Lp.C/ such that

ˆDH
�
z; zCC�; 1CSˆ

�
(33)

In fact, the procedure (33), � 7!ˆ, gives a well-defined and nonlinear operator
T W Lp.C/! Lp.C/ by simply requiring that T � D ˆ. Further, solving the
original integral equation (32) means precisely that we have to find a fixed point
for the operator T . This, however, is more involved than in the case of the
contraction R, and one needs to invoke the celebrated Schauder fixed-point
theorem, see [Astala et al. 2009, Chapter 8] for details. �

2C. Complex geometric optics solutions. Below in this section, where we prove
Theorem 2.1, we will assume that A is isotropic,

A.z/D �.z/I; �.z/; �.z/ 2 RC and c1 � �.z/� c2 with c1; c2 > 0.

Moreover, we will set

� D
1� �.z/

1C �.z/
:

We will use the convenient notation

e�.z/D ei.z�CNz �/; z; � 2 C: (34)

The main emphasize in the analysis below is on isotropic conductivities, corre-
sponding to the Beltrami equations of type (26). However, for later purposes it
is useful to consider exponentially growing solutions to divergence equations
with matrix coefficients, hence we are led to general Beltrami equations.

We will extend the coefficient matrix A.z/ to the entire plane C by requiring
A.z/� I when jzj � 1. Clearly, this keeps all ellipticity bounds. Moreover, then

�.z/� �.z/� 0; jzj � 1:

As a first step toward Theorem 2.1, we establish the existence of a family of
special solutions to (16). These, called the complex geometric optics solutions,
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are specified by having the asymptotics

f�;�.z; �/D ei�zM�;�.z; �/; (35)

where
M�;�.z; �/� 1D O

�
1

z

�
as jzj !1: (36)

Theorem 2.6. Let � and � be functions supported in D that k in (24) satisfies
k < 1. Then for each parameter � 2 C and for each 2 � p < 1C 1=k, the
equation

@f

@Nz
D �.z/

@f

@z
C �.z/

@f

@z
(37)

admits a unique solution f D f�;� 2W
1;p

loc .C/ that has the form (35) with (36)
holding. In particular, f .z; 0/� 1.

Proof. Any solution to (37) is quasiregular. If � D 0, (35) and (36) imply that f
is bounded, hence constant by the Liouville theorem.

If � ¤ 0, we seek for a solution f D f�;�.z; �/ of the form

f .z; �/D ei� �.z/;  �.z/D zCO
�

1

z

�
as jzj !1 (38)

Substituting (38) into (37) indicates that  � is the principal solution to the
quasilinear equation

@

@Nz
 �.z/D �.z/

@

@z
 �.z/�

�

�
e��

�
 �.z/

�
�.z/

@

@z
 �.z/: (39)

The function H.z; w; �/D�.z/��.�=�/ �.z/ e�.w/ � satisfies requirements (1)–
(3) of Theorem 2.5. We thus obtain the existence and uniqueness of the principal
solution  � in W

1;2
loc .C/. Equation (39) and Theorem A.5 yield  � 2W

1;p
loc .C/

for all p < 1C 1=k since j�.z/j � k and e� is unimodular.
Finally, to see the uniqueness of the complex geometric optics solution f�;� ,

let f 2W
1;2

loc .C/ be a solution to (37) satisfying

f D ˛ei�z
�
1CO

�
1

z

��
as jzj !1: (40)

Denote then

�1.z/D �.z/
@zf .z/

@zf .z/

where @zf .z/ 6D 0 and set �1 D 0 elsewhere. Next, let ' be the unique principal
solution to

@'

@Nz
D �1

@'

@z
: (41)
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Then the Stoilow factorization, Theorem A.9, gives f D h ı ', where h WC!C

is an entire analytic function. But (40) shows that

h ı'.z/

exp.i�'.z//
D

f .z/

exp.i�'.z//

has the limit ˛ when the variable z!1. Thus

h.z/� ˛ei�z :

Therefore f .z/D ˛ exp.i�'.z//. In particular, if we have two solutions f1, f2

satisfying (35), (36), then the argument gives

f" WD f1� .1C "/f2 D "e
i�'.z/;

The principal solutions are homeomorphisms with �.z/D zCO.1=z/ as jzj !
1; where the error term O.1=z/ is uniformly bounded by Koebe distortion
(Lemma A.6). Letting now "! 0 gives f1 D f2. �

It is useful to note that if a function f satisfies (37), then if satisfies not the
same equation but the equation where � is replaced by ��. In terms of the real
and imaginary parts of f D uC iv, we see that

@f

@Nz
D �.z/

@f

@z
C �.z/

@f

@z
if and only if

r �A.z/ruD 0 and r �A�.z/rv D 0; (42)

where

A�.z/D �A.z/�1
� D

1

det A
A:

In case A.z/D �.z/I is isotropic .i:e:; �D 0/ and bounded by positive constants
from above and below, we see that

@f

@Nz
D

1 � �

1 C �

@f

@z
, r � � ruD 0 and r �

1

�
rv D 0:

From these identities we obtain the complex geometric optics solutions also for
the conductivity equation (1).

Corollary 2.7. Suppose A.z/ is uniformly elliptic, so that (11) holds with K 2

L1.D/. Assume also that A.z/D I for jzj � 1.
Then the equation r �A.z/ru.z/D 0 admits a unique weak solution uD u� 2

W
1;2

loc .C/ such that

u.z; �/D ei�z
�
1CO

�
1

jzj

��
as jzj !1: (43)
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Proof. Let f�;� be the solution considered in Theorem 2.6. Using equivalence
(42) we see that the function

u.z; �/D Ref�;� C i Imf�;�� (44)

satisfies the requirements stated in the claim of the corollary.
To see the uniqueness, let u 2W

1;2
loc be any function satisfying the divergence

equation r �A.z/ru.z/D 0 with (43). Then using Theorem 2.3 for the real and
imaginary parts of u, we can write it as

uD RefCC i Imf� D
1
2
.fCCf�CfC�f�/;

where f˙ are quasiregular mappings with

@f˙

@Nz
D �.z/

@f˙

@z
˙ �.z/

@f˙

@z

and where �; � are given by (17). Given the asymptotics (43), it is not hard
to see that both fC and f� satisfy (35) with (36). Therefore fC D f�;� and
f� D f�;�� . �

The exponentially growing solutions of Corollary 2.7 can be considered �-
harmonic counterparts of the usual exponential functions ei�z . They are the
building blocks of the nonlinear Fourier transform to be discussed in more detail
in Section 2F.

2D. The Hilbert transform H� . Assume that u 2W 1;2.D/ is a weak solution
to r � �.z/ru.z/ D 0. Then, by Theorem 2.3, u admits a conjugate function
v 2W 1;2.D/ such that

@xv D��@yu; @yv D �@xu:

Let us now elaborate on the relationship between u and v. Since the function
v is defined only up to a constant, we will normalize it by assumingZ

@D

v ds D 0: (45)

This way we obtain a unique map H� WW
1=2;2.@D/!W 1=2;2.@D/ by setting

H� W u
ˇ̌
@D
7! v

ˇ̌
@D
: (46)

In other words, v D H�.u/ if and only if
R
@D
v ds D 0, and u C iv has a

W 1;2-extension f to the disk D satisfying fz D �fz . We call H� the Hilbert
transform corresponding to (37).
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Since the function g D�if D v� iu satisfies gNz D��gz , we have

H� ıH��uDH�� ıH�uD�uC
1

2�

Z
@D

u ds: (47)

So far we have defined H�.u/ only for real-valued functions u. By setting

H�.iu/D iH��.u/;

we extend the definition of H�. � / to all C-valued functions in W 1=2;2.@D/.
Note, however, that H� still remains only R-linear.

As in the case of analytic functions, the Hilbert transform defines a projection,
now on the “�-analytic” functions. That is, we define

Q� WW
1=2;2.@D/!W 1=2;2.@D/

by

Q�.g/D
1

2

�
g� iH�g

�
C

1

4�

Z
@D

g ds: (48)

Then Q� is a projector in the sense that Q2
� DQ�.

Lemma 2.8. If g 2W 1=2;2.@D/, the following conditions are equivalent:

(a) g D f
ˇ̌
@D

, where f 2W 1;2.D/ satisfies fz D �fz .

(b) Q�.g/ is a constant.

Proof. Condition (a) holds if and only if g D uC iH�uC ic for some real-
valued u 2W 1=2;2.@D/ and real constant c. If g has this representation, then
Q�.g/D

1
4�

R
@D

udsC ic. On the other hand, if Q�.g/ is a constant, then we
put g D uC iw into (48) and use (47) to show that w DH�uC constant. This
shows that (a) holds. �

The Dirichlet-to-Neumann map (5) and the Hilbert transform (46) are closely
related, as the next lemma shows.

Theorem 2.9. Choose the counterclockwise orientation for @D and denote by @T

the tangential (distributional) derivative on @D corresponding to this orientation.
We then have

@T H�.u/Dƒ� .u/: (49)

In particular, the Dirichlet-to-Neumann map ƒ� uniquely determines H�, H��
and ƒ1=� .

Proof. By the definition of ƒ� we haveZ
@D

'ƒ�u ds D

Z
D

r' � �ru dm.x/ ; ' 2 C1.D/:
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Thus, by (7) and integration by parts, we getZ
@D

'ƒ�u ds D

Z
D

�
@x' @yv� @y' @xv

�
dm.x/D�

Z
@D

v @T ' ds;

and (49) follows. Next,

��D .1� 1=�/=.1C 1=�/;

and so ƒ1=� .u/D @T H��.u/. Since by (47) H� uniquely determines H��, the
proof is complete. �

With these identities we can now show that, for the points z that lie outside
D, the values of the complex geometric optics solutions f�.z; �/ and f��.z; �/
are determined by the Dirichlet-to-Neumann operator ƒ� .

Theorem 2.10. Let � and z� be two conductivities satisfying the assumptions
of Theorem 2.1 and assume ƒ� Dƒz� . Then if � and z� are the corresponding
Beltrami coefficients, we have

f�.z; �/D fz�.z; �/ and f��.z; �/D f�z�.z; �/ (50)

for all z 2 C nD and � 2 C.

Proof. By Theorem 2.9 the condition ƒ� Dƒz� implies that H� DHz�. In the
same way ƒ� determines ƒ��1 , and so it is enough to prove the first claim of
(50).

Fix the value of the parameter � 2 C. From (48) we see that the projections
Q� DQz�, and thus by Lemma 2.8

Q�. zf /DQz�. zf / is constant:

Here we used the notation zf D fz�j@D. Using Lemma 2.8 again, we see that
there exists a function G 2W 1;2.D/ such that Gz D �Gz in D and

G
ˇ̌
@D
D zf :

We then define G.z/ D fz�.z; �/ for z outside D. Now G 2 W
1;2

loc .C/, and it
satisfies Gz D �Gz in the whole plane. Thus it is quasiregular, and so G 2

W
1;p

loc .C/ for all 2� p < 2C 1=k, k D k�k1. But now G is a solution to (35)
and (36). By the uniqueness part of Theorem 2.6, we obtain G.z/� f�.z; �/. �

Similarly, the Dirichlet-to-Neumann operator determines the complex geo-
metric optics solutions to the conductivity equation at every point z outside
the disk D.
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Corollary 2.11. Let � and z� be two conductivities satisfying the assumptions of
Theorem 2.1 and assume ƒ� Dƒz� . Then

u� .z; �/D uz� .z; �/ for all z 2 C nD and � 2 C:

Proof. The claim follows immediately from the previous theorem and the repre-
sentation u� .z; �/D Ref�.z; �/C i Imf��.z; �/. �

2E. Dependence on parameters. Our strategy will be to extend the identities
f�.z; �/D fz�.z; �/ and u� .z; �/D uz� .z; �/ from outside the disk to points z

inside D. Once we do that, Theorem 2.1 follows via the equation fz D �fz .
For this purpose we need to understand the �-dependence in f�.z; �/ and

the quantities controlling it. In particular, we will derive equations relating the
solutions and their derivatives with respect to the �-variable. For this purpose
we prove the following theorem.

Theorem 2.12. The complex geometric optics solutions u� .z; �/ and f�.z; �/
are (Hölder-)continuous in z and C1-smooth in the parameter � .

The continuity in the z-variable is clear since f� is a quasiregular function of
z. However, for analyzing the �-dependence we need to realize the solutions in
a different manner, by identities involving linear operators that depend smoothly
on the variable �.

Let
f�.z; �/D ei�zM�.z; �/; f��.z; �/D ei�zM��.z; �/

be the solutions of Theorem 2.6 corresponding to conductivities � and ��1,
respectively. We can write (8), (35) and (36) in the form

@

@Nz
M� D �.z/

@

@z
.e�M�/; M�� 1 2W 1;p.C/ (51)

when 2 < p < 1C 1=k. By taking the Cauchy transform and introducing an
R-linear operator L�,

L�g D C
�
�
@

@Nz
.e�� g/

�
; (52)

we see that (51) is equivalent to

.I�L�/M� D 1: (53)

Theorem 2.13. Assume that � 2C and � 2L1.C/ is compactly supported with
k�k1 � k < 1. Then for 2< p < 1C 1=k the operator

I�L� WW
1;p.C/˚C!W 1;p.C/˚C

is bounded and invertible.
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Here we denote by W 1;p.C/˚C the Banach space consisting of functions of
the form f D constantCf0, where f0 2W 1;p.C/.

Proof. We write L�.g/ as

L�.g/D C
�
� e�� gz � i � � e�� g

�
: (54)

Then Theorem A.2 shows that

L� WW
1;p.C/˚C!W 1;p.C/ (55)

is bounded. Thus we need only establish invertibility.
To this end let us assume h 2W 1;p.C/. Consider the equation

.I�L�/.gCC0/D hCC1; (56)

where g 2W 1;p.C/ and C0;C1 are constants. Then

C0�C1 D g� h�L�.gCC0/;

which by (55) gives C0 D C1. By differentiating and rearranging we see that
(56) is equivalent to gz ��.e�� g/z D hzC�.C 0e��/z , or in other words, to

gz � .I��e��S/�1
�
�.e��/zg

�
D .I��e��S/�1

�
hzC�.C 0e��/z

�
: (57)

We analyze this by using the real linear operator R defined by

R.g/D C
�
I� �S

��1
.˛g/;

where �.z/D�e�� satisfies j�.z/j �k�D.z/ and ˛ is defined by ˛D�.e��/zD
�i� � e�� . According to Theorem A.4, I � �S is invertible in Lp.C/ when
1C k < p < 1C 1=k, while the boundedness of the Cauchy transform requires
p > 2. Therefore R is a well-defined and bounded operator on Lp.C/ for
2< p < 1C 1=k.

Moreover, the right hand side of (57) belongs to Lp.C/ for each h2W 1;p.C/.
Hence this equation admits a unique solution g 2W 1;p.C/ if and only if the
operator I�R is invertible in Lp.C/, 2< p < 1C 1=k.

To get this we will use Fredholm theory. First, Theorem A.3 shows that R is
a compact operator on Lp.C/ when 2< p < 1C 1=k. Therefore it suffices to
show that I�R is injective. Suppose now that g 2Lp.C/ satisfies

g DRg D C
�
I� �S

��1
.˛g/:

Then g 2W 1;p.C/ by Theorem A.2 and gz D
�
I� �S

��1
.˛g/. Equivalently,

gz � �gz D ˛g (58)
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Thus the assumptions of Theorem A.8 are fulfilled, and we must have g � 0.
Therefore I � R is indeed injective on Lp.C/. By the Fredholm alternative, it
therefore is invertible in Lp.C/. Therefore the operator I�L� is invertible in
W 1;p.C/, 2< p < 1C 1=k. �

A glance at (52) shows that �!L� is an infinitely differentiable family of
operators. Therefore, with Theorem 2.13, we see that M� D .I�L�/

�11 is
C1-smooth in the parameter � . Thus we have obtained Theorem 2.12.

2F. Nonlinear Fourier transform. The idea of studying the �-dependence of
operators associated with complex geometric optics solutions was used by Beals
and Coifman [1988] in connection with the inverse scattering approach to KdV-
equations. Here we will apply this method to the solutions u� to the conductivity
equation (1) and show that they satisfy a simple @-equation with respect to the
parameter � .

We start with the representation u� .z; �/ D Ref�.z; �/ C i Imf��.z; �/,
where f˙� are the solutions to the corresponding Beltrami equations; in particular,
they are analytic outside the unit disk. Hence with the asymptotics (36) they
admit the following power series development,

f˙�.z; �/D ei�z

�
1C

1X
nD1

b˙n .�/z
�n

�
; jzj> 1; (59)

where bCn .�/ and b�n .�/ are the coefficients of the series, depending on the
parameter � . For the solutions to the conductivity equation, this gives

u� .z; �/D ei�z
C

a.�/

z
ei�z
C

b.�/

Nz
e�i N� Nz

C ei�z O

�
1

jzj2

�
as z!1, where

a.�/D
bC

1
.�/C b�

1
.�/

2
; b.�/D

bC
1
.�/� b�

1
.�/

2 Nz
: (60)

Fixing the z-variable, we take the @
�
-derivative of u� .z; �/ and get

@
�

u� .z; �/D�i�� .�/ e�i N� Nz
�
1CO

�
1

jzj

� �
; (61)

with the coefficient
�� .�/ WD b.�/: (62)

However, the derivative @
�

u� .z; �/ is another solution to the conductivity equa-
tion! From the uniqueness of the complex geometric optics solutions under the
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given exponential asymptotics, Corollary 2.7, we therefore have the simple but
important relation

@
�

u� .z; �/ D �i �� .�/u� .z; �/ for all �; z 2 C: (63)

The remarkable feature of this relation is that the coefficient �� .�/ does not
depend on the space variable z. Later, this phenomenon will become of crucial
importance in solving the inverse problem.

In analogy with the one-dimensional scattering theory of integrable systems
and associated inverse problems (see [Beals and Coifman 1988; Brown and
Uhlmann 1997b; Nachman 1996b]), we call �� the nonlinear Fourier transform
of � .

To understand the basic properties of the nonlinear Fourier transform, we
need to return to the Beltrami equation. We will first show that the Dirichlet-to-
Neumann data determines �� . This is straightforward. Then the later sections
are devoted to showing that the nonlinear Fourier transform �� determines the
coefficient � almost everywhere. There does not seem to be any direct method for
this, rather we will have to show that from �� we can determine the exponentially
growing solutions f˙� defined in the entire plane. From this information the
coefficient �, and hence � , can be found.

The nonlinear Fourier transform �� has many properties which are valid for the
linear Fourier transform. We have the usual transformation rules under scaling
and translation:

�1.z/D �.Rz/ ) ��1
.�/D

1

R
�� .�=R/;

�2.z/D �.zCp/ ) ��2
.�/D ei.p�C Np N�/�� .�/:

However not much is known concerning questions such as the possibility of
a Plancherel formula. However, some simple mapping properties of it can be
proven. We will show that for � as above, �� 2 L1. For this we need the
following result, which is useful also elsewhere.

Here let f�.z; �/ D ei�zM�.z; �/ and f��.z; �/ D ei�zM��.z; �/ be the
solutions of Theorem 2.6 corresponding to conductivities � and ��1, respectively,
which are holomorphic outside D.

Theorem 2.14. For every �; z 2 C we have M˙�.z; �/ 6D 0. Moreover,

Re
�

M�.z; �/

M��.z; �/

�
> 0 : (64)

Proof. First, note that (8) implies, for M˙�,

@

@Nz
M˙���e��

@

@z
M˙� D�i��e��M˙�: (65)
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Thus we may apply Theorem A.8 to get

M˙�.z/D exp.�˙.z//¤ 0; (66)

and consequently M�=M�� is well defined. Second, if (64) is not true, the
continuity of M˙� and the fact limz!1M˙�.z; �/D 1 imply the existence of
z0 2 C such that

M�.z0; �/D i t M��.z0; �/

for some t 2 R n f0g and � 2 C. But then g DM�� i tM�� satisfies

@

@Nz
g D �.z/

@

@z
.e�g/ and g.z/D 1� i t CO

�
1

z

�
as z!1:

According to Theorem A.8, this implies

g.z/D .1� i t/ exp.�.z//¤ 0;

contradicting the assumption g.z0/D 0. �
The boundedness of the nonlinear Fourier transform is now a simple corollary

of Schwarz’s lemma.

Theorem 2.15. The functions f˙�.z; �/ D ei�zM˙�.z; �/ satisfy, for jzj > 1

and for all � 2 C,

jm.z/j �
1

jzj
; where m.z/D

M�.z; �/�M��.z; �/

M�.z; �/CM��.z; �/
: (67)

Moreover, for the nonlinear Fourier transform �� , we have

j�� .�/j � 1 for all � 2 C: (68)

Proof. Fix the parameter � 2C. Then, by Theorem 2.14, jm.z/j< 1 for all z 2C.
Moreover, m is holomorphic for z 2 C nD, m.1/D 0, and thus by Schwarz’s
lemma we have jm.z/j � 1=jzj for all z 2 C nD.

On the other hand, from the development (59),

M�.z; �/D 1C

1X
nD1

bn.�/z
�n for jzj> 1;

and similarly for M��.z; �/. We see that

�� .�/D
1

2

�
bC

1
.�/� b�

1
.�/
�
D lim

z!1
z m.z/:

Therefore the second claim also follows. �
With these results the Calderón problem reduces to the question whether we

can invert the nonlinear Fourier transform.
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Theorem 2.16. The operator ƒ� uniquely determines the nonlinear Fourier
transform �� .

Proof. The claim follows immediately from Theorem 2.10, from the development
(59) and from the definition (62) of �� . �

From the relation ��D 1�1=�

1C1=�
we see the symmetry

�� .�/D��1=� .�/:

It follows that the functions

u1 D Ref�C i Imf�� D u� and u2 D i Ref��� Imf� D iu1=� (69)

form a “primary pair” of complex geometric optics solutions:

Corollary 2.17. The functions u1 D u� and u2 D iu1=� are complex-valued
W

1;2
loc .C/-solutions to the conductivity equations

r � �ru1 D 0 and r �
1

�
ru2 D 0; (70)

respectively. In the �-variable they are solutions to the same @ N� -equation,

@

@�
uj .z; �/D�i �� .�/uj .z; �/; j D 1; 2; (71)

and their asymptotics, as jzj !1, are

u� .z; �/D ei�z
�
1CO

�
1

jzj

��
; u1=� .z; �/D ei�z

�
i CO

�
1

jzj

��
:

2G. Subexponential growth. A basic difficulty in the solution to Calderón’s
problem is to find methods to control the asymptotic behavior in the parameter
� for complex geometric optics solutions. If we knew that the assumptions of
the Liouville type Theorem A.8 were valid in (71), then the equation, hence the
Dirichlet-to-Neumann map, would uniquely determine u� .z; �/ with u1=� .z; �/,
and the inverse problem could easily be solved. However, we only know from
Theorem 2.15 that �� .�/ is bounded in �. It takes considerably more effort to
prove the counterpart of the Riemann–Lebesgue lemma, that is,

�� .�/! 0; as �!1:

Indeed, this will be one of the consequences of the results in the present section.
It is clear that some control of the parameter � is needed for u� .z; �/. Within

the category of conductivity equations with L1-coefficients � , the complex
analytic and quasiconformal methods provide by most powerful tools. Therefore
we return to the Beltrami equation. The purpose of this section is to study the
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�-behavior in the functions f�.z; �/D ei�zM�.z; �/ and to show that for a fixed
z, M�.z; �/ grows at most subexponentially in � as �!1. Subsequently, the
result will be applied to uj .z; �/.

For some later purposes we will also need to generalize the situation a bit by
considering complex Beltrami coefficients �� of the form �� D ��, where the
constant � 2 @D and � is as before. Exactly as in Theorem 2.6, we can show the
existence and uniqueness of f�� 2W

1;p
loc .C/ satisfying

@

@Nz
f�� D ��

@

@z
f�� in C; (72)

f��.z; �/D ei�z
�
1CO

�
1

z

� �
as jzj !1: (73)

In fact, we have that the function f�� admits a representation of the form

f��.z; �/D ei � '�.z;�/; (74)

where for each fixed � 2 C n f0g and � 2 @D, '�.z; �/D zCO.1=z/ for z!1.
The principal solution ' D '�.z; �/ satisfies the nonlinear equation

@

@Nz
'.z/D ��;� e��

�
'.z/

�
�.z/

@

@z
'.z/ (75)

where � D ��;� D�� �
2
j�j�2 is constant in z with j��;� j D 1.

The main goal of this section is to show the following theorem.

Theorem 2.18. If ' D '� and f�� are as in (72)–(75), then

lim
�!1

'�.z; �/D z

uniformly in z 2 C and � 2 @D.

From the theorem we have this immediate consequence:

Corollary 2.19. If �; ��1 2L1.C/ with �.z/D 1 outside a compact set, then
lim�!1 �� .�/D 0:

Proof of Corollary 2.19. Let � D 1. The principal solutions in (74) have the
development

'.z; �/D zC

1X
nD1

cn.�/

zn
; jzj> 1:

By Cauchy integral formula and Theorem 2.18 we have lim�!1 cn.�/D 0 for
all n 2 N: Comparing now with (59)–(62) proves the claim. �

It remains to prove Theorem 2.18, which will take up the rest of this section.
We shall split the proof up into several lemmas.
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Lemma 2.20. Suppose " > 0 is given. Suppose also that for ��.z/D ��.z/, we
have

fn D ��Sn��Sn�1�� � � ���S1��; (76)

where Sj W L
2.C/! L2.C/ are Fourier multiplier operators, each with a uni-

modular symbol. Then there is a number Rn D Rn.k; "/ depending only on
k D k�k1, n and " such that

jbfn.�/j< " for j�j>Rn: (77)

Proof. It is enough to prove the claim for �D 1. By assumption,

bSj g.�/Dmj .�/bg.�/;
where jmj .�/j D 1 for � 2 C. We have by (76),

kfnkL2 � k�knL1k�kL2 �
p
�knC1 (78)

since supp.�/� D. Choose �n so thatZ
j�j>�n

jb�.�/j2 dm.�/ < "2: (79)

After this, choose �n�1; �n�2; : : : ; �1 inductively so that for l D n� 1; : : : ; 1,

�

Z
j�j>�l

jb�.�/j2 dm.�/� "2

� nY
jDlC1

��j

��2

: (80)

Finally, choose �0 so that

jb�.�/j< "��n

� nY
jD1

�j

��1

when j�j> �0: (81)

All these choices are possible since � 2L1.C/\L2.C/.
Now, we set Rn D

Pn
jD0 �j and claim that (77) holds for this choice of Rn.

Hence assume that j�j>
Pn

jD0 �j . We have

jbfn.�/j �

�Z
j���j��n

C

Z
j���j��n

�
jb�.�� �/j j bf n�1.�/j dm.�/: (82)

But if j�� �j � �n, then j�j>
Pn�1

jD0 �j . Thus, if we set

�n D sup
�
j bf n.�/j W j�j>

nX
jD0

�j

�
;
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it follows from (82) and (78) that

�n ��n�1.��
2
n/

1=2
k�kL2 C

�Z
j�j��n

jb�.�/j2 dm.�/

�1=2

k bf n�1kL2

� ��nk�n�1C kn

�
�

Z
j�j��n

jb�.�/j2 dm.�/

�1=2

for n� 2. Moreover, the same argument shows that

�1 � ��1 k supfjb�.�/j W j�j> �0gC k

�
�

Z
j�j>�1

jb�.�/j2 dm.�/

�1=2

:

In conclusion, after iteration we will have

�n � .k�/
n

� nY
jD1

�j

�
supfjb�.�/j W j�j> �0g

C kn
nX

lD1

� nY
jDlC1

��j

��
�

Z
j�j>�l

jb�.�/j2 dm.�/

�1=2

:

With the choices (79)–(81), this leads to

�n � .nC 1/kn"�
"

1� k
;

which proves the claim. �
Our next goal is to use Lemma 2.20 to prove the asymptotic result required in

Theorem 2.18 for the solution of a closely related linear equation.

Theorem 2.21. Suppose  2W
1;2

loc .C/ satisfies

@ 

@Nz
D � �.z/ e��.z/

@ 

@z
in C; (83)

 .z/D zCO
�

1

z

�
as z!1; (84)

where � is a constant with j�j D 1.
Then  .z; �/! z, uniformly in z 2 C and � 2 @D, as �!1.

To prove Theorem 2.21 we need some preparation. First, since the Lp-norm
of the Beurling transform, denoted as Sp , tends to 1 when p! 2, we can choose
a ık > 0 so that kSp < 1 whenever 2� ık � p � 2C ık .

Lemma 2.22. Let  D  . � ; �/ be the solution of (83) and let " > 0. Then  Nz
can be decomposed as  Nz D gC h, where

(1) kh. � ; �/kLp < " for 2� ık � p � 2C ık uniformly in �,

(2) kg. � ; �/kLp � C0 D C0.k/ uniformly in � ,

(3) bg.�; �/! 0 as �!1.
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In (3) convergence is uniform on compact subsets of the �-plane and also uniform
in � 2 @D. Here, the Fourier transform is taken with respect to the first variable
only.

Proof. We may solve (83) using a Neumann series, which will converge in Lp:

@ 

@Nz
D

1X
nD0

�
� � e�� S

�n �
� � e��

�
:

Let

hD

1X
nDn0

�
� �e�� S

�n �
� � e��

�
:

Then

khkLp � �1=p kn0C1S
n0

p

1� kSp

and we obtain the first statement by choosing n0 large enough.
The remaining part clearly satisfies the second statement with a constant C0

that is independent of � and �. To prove (3) we first note that

S.e�� �/D e�� S� �;

where 1.S��/.�/Dm.�� �/b�.�/ and m.�/D �=�. Consequently,

.�e�� S/n� e�� D e�.nC1/� �Sn� �S.n�1/� � � ��S� �;

and so

g D

n0X
jD1

�j e�j� �S.j�1/� � � � ��S��:

Therefore,

g D

n0X
jD1

e�j�Gj ;

where by Lemma 2.20, jbGj .�/j < z" whenever j�j > R D maxj�n0
Rj . As

2.ej�Gj /.�/D bGj .�C j �/, for any fixed compact set K0, we can take � so large
that j �CK0 � C nD.0;R/ for each 1� j � n0. Then

sup
�2K0

jbg.�; �/j � n0z":

This proves the lemma. �

Proof of Theorem 2.21. We show first that when � !1,  Nz ! 0 weakly in
Lp.C/, 2�ık �p� 2Cık . For this suppose that f0 2Lq.C/, qDp=.p�1/, is
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fixed and choose ">0. Then there exists f 2C1
0
.C/ such that kf0�f kLq.C/<",

and so by Lemma 2.22,

jhf0;  Nzij � "C1C
ˇ̌ Z

C

bf .�/bg.�; �/ dm.�/
ˇ̌
:

First choose R so large thatZ
CnD.0;R/

j bf .�/j2 dm.�/� "2

and then j�j so large that jbg.�; �/j � "=.p�R/ for all � 2 D.R/. Now,ˇ̌̌̌Z
C

bf .�/bg.�; �/ d�

ˇ̌̌̌
�

Z
D.R/

bf .�/bg.�; �/ d�C

Z
CnD.R/

bf .�/bg.�; �/ d�

� ".kf kL2.C/CkgkL2.C//� C2.f /": (85)

The bound is the same for all �, hence

lim
j�j!1

sup
�2@D

jhf0;  Nzij D 0: (86)

To prove the uniform convergence of  itself, we write

 .z; �/D z�
1

�

Z
D

1

� � z

@

@�
 .�; �/ dm.�/: (87)

Here note that supp. Nz/�D and �D.�/=.�� z/ 2Lq.C/ for all q < 2. Thus by
the weak convergence we have for each fixed z 2 C

lim
�!1

 .z; �/D z; uniformly in � 2 @D: (88)

On the other hand, as

sup
�





@ @Nz






Lp.C/

� C0 D C0.p; k�k1/ <1

for all z sufficiently large, we have j .z; �/� zj < " uniformly in � 2 C and
� 2 @D. Moreover, (87) shows also that the family f . � ; �/ W � 2 C; � 2 @Dg is
equicontinuous. Combining all these observations shows that the convergence in
(88) is uniform in z 2 C and � 2 @D. �

Finally, we proceed to the nonlinear case: Assume that '� satisfies (72) and
(74). Since ' is a (quasiconformal) homeomorphism, we may consider its inverse
 � W C! C,

 � ı'�.z/D z; (89)
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which also is quasiconformal. By differentiating (89) with respect to z and Nz we
find that  satisfies

@

@Nz
 �.z; �/D�

�

�
� .�. �.z; �/// e��.z/

@

@z
 �.z; �/ and (90)

 �.z; �/D zCO
�

1

z

�
as z!1: (91)

Proof of Theorem 2.18. It is enough to show that

lim
�!1

 �.z; �/D z: (92)

uniformly in z and �. For this we introduce the notation

†k D

n
g 2W

1;2
loc .C/ W gNz D � gz; j�j � k�D; gD zCO

�
1

z

�
as z!1

o
: (93)

Note that all mappings g 2†k are principal solutions of Beltrami equations and
hence homeomorphisms g W C! C.

The support of the coefficient � ı  � in (90) need no longer be contained in
D. However, by the Koebe distortion theorem (see Lemma A.6 in the Appendix)
'�.D/� D and thus supp.� ı �/� D. Accordingly,  � 2†k .

Since normalized quasiconformal mappings form a normal family, we see
that the family †k is compact in the topology of uniform convergence. Given
sequences �n!1 and �n 2 @D, we may pass to a subsequence and assume that

��n;�n
D��n �n

2
j�nj
�2
! � 2 @D

as n!1 and that the corresponding mappings satisfy limn!1  �n
. � ; �n/D 1

uniformly, where the limit satisfies 12†k . To prove Theorem 2.18 it is enough
to show that for any such sequence  1.z/� z.

Let  1 be an arbitrary above obtained limit function. We consider the W
1;2

loc -
solution ˆ.z/Dˆ�.z; �/ of

@ˆ

@Nz
D � .� ı 1/ e��

@ˆ

@Nz
;

ˆ.z/D zCO
�

1

z

�
as z!1:

Observe that this equation is a linear Beltrami equation which by Theorem 2.5 has
a unique solutionˆ2†k for each � 2C and j�jD 1. According to Theorem 2.21,

ˆ�.z; �/! z as �!1: (94)
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Further, when 2< p < 1C 1=k, by Lemma A.7,

j �n
.z; �n/�ˆ�.z; �n/j

D
1

�

ˇ̌̌̌ Z
D

1

� � z

@

@Nz

�
 �n

.�; �n/�ˆ�.�; �n/
�

dm.�/

ˇ̌̌̌
� C1





 @@Nz � �n
.�; �n/�ˆ�.�; �n/

�




Lp.D.2//

� C2

ˇ̌
��n;�n

� �j

C C2

�Z
D.2/

ˇ̌
�
�
 �n

.�; �n/
�
��

�
 1.�/

�ˇ̌p.1C"/
" dm.�/

� "
p.1C"/

: (95)

Finally, we apply the higher-integrability results for quasiconformal mappings,
such as Theorem A.5: For all 2< p < 1C 1=k and gD  �1,  2†k , we have
the estimate for the Jacobian J.z;g/,Z

D

J.z;g/p=2 dm.z/�

Z
D

ˇ̌̌̌
@g

@z

ˇ̌̌̌p
dm.z/� C.k/ <1; (96)

where C.k/ depends only on k. We use this estimate in the cases  .z/ is equal
to  �n

.z; �n/ or  1. Then, we see for any 
 2 C1
0
.D/ thatZ

D.2/

j�. .y//� 
 . .y//j
p.1C"/
" dy D

Z
D

j�.z/� 
 .z/j
p.1C"/
" J.z;g/ dm.z/

�

�Z
D

j�.z/� 
 .z/j
p2.1C"/
".p�2/ dm.z/

�.p�2/=p �Z
D

J.z;g/p=2 dm.z/

�2=p

:

Since � can be approximated in the mean by 
 2 C1
0
.D/, the last term can be

made arbitrarily small. By uniform convergence  �n
.z; �n/!  1.z/ we see

that 
 . �n
.z; �n//! 
 . 1.z// uniformly in z as n!1. Also, ��n;�n

! �.
Using these we see that right hand side of (95) converges to zero. In view of (94)
and (95), we have established that

lim
n!1

 �n
.z; �n/D z

and thus  1.z/� z. The theorem is proved. �

2H. Completion of the proof of Theorem 2.1. The Jacobian J.z; f / of a quasi-
regular map can vanish only on a set of Lebesgue measure zero. Since J.z; f /D

jfzj
2 � jfNzj

2 � jfzj
2, this implies that once we know the values f�.z; �/ for

every z 2C, then we can recover from f� the values �.z/ and hence �.z/ almost
everywhere, by the formulas

@f�

@Nz
D �.z/

@f�

@z
and � D

1��

1C�
: (97)
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On the other hand, considering the functions

u1 WD u� D Ref�C i Imf�� and u2 WD iu1=� D i Ref��� Imf�

that were described in Corollary 2.17, it is clear that the pair fu1.z; �/;u2.z; �/g

determines the pair ff�.z; �/; f��.z; �/g, and vice versa. Therefore to prove
Theorem 2.1 it will suffice to establish the following result.

Theorem 2.23. Assume that ƒ� Dƒz� for two scalar conductivities � and z� for
which �; z�; 1=�; 1=z� 2L1.D/. Then for all z; � 2 C,

u� .z; �/D uz� .z; �/ and u1=� .z; �/D u1=z� .z; �/:

For the proof of the theorem, our first task it to determine the asymptotic
behavior of u� .z; �/. We state this as a separate result.

Lemma 2.24. We have u� .z; �/ 6D 0 for every .z; �/ 2 C�C. Furthermore, for
each fixed � ¤ 0, we have with respect to z

u� .z; �/D exp.i�zC v.z//;

where vD v� 2L1.C/. On the other hand, for each fixed z we have with respect
to �

u� .z; �/D exp.i�zC �".�//; (98)

where ".�/! 0 as �!1.

Proof. For the first claim we write

u� D
1
2

�
f�Cf��Cf��f��

�
D f�

�
1C

f��f��

f�Cf��

��1�
1C

f��f��

f�Cf��

�
:

Each factor in the product is continuous and nonvanishing in z by Theorem 2.14.
Taking the logarithm and using f˙�.z; �/D ei�z.1CO�.1=z// we obtain

u� .z; �/D exp
�
i�zCO�

�
1

z

��
:

Here, O�.1=z// denotes a function g.z; �/ satisfying for each � an estimate
jg.z; �/j �C�1=jzj with some C� > 0. For the �-asymptotics we apply Theorem
2.18, which governs the growth of the functions f� for �!1. We see that for
(98) it is enough to show that

inf
t

ˇ̌̌̌
f��f��

f�Cf��
C eit

ˇ̌̌̌
� e�j�j".�/: (99)

For this, define

ˆt D e�it=2.f� cos t=2C if�� sin t=2/:
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Then for each fixed � ,

ˆt .z; �/D ei�z
�
1CO�

�
1

z

��
as z!1;

and
@

@Nz
ˆt D �e�it @

@z
ˆt :

Thus for �D e�it , the mapping ˆt D f�� is precisely the exponentially growing
solution satisfying the equations (72) and (73). A simple computation shows
that

f��f��

f�Cf��
C eit

D
2eit ˆt

f�Cf��
D
f��

f�

2eit

1CM��=M�
: (100)

By Theorem 2.18,

e�j�j"1.�/ � jM˙�.z; �/j � ej�j"1.�/ (101)

and

e�j�j"2.�/ � inf
�2@D

ˇ̌̌̌
f��.z; �/

f�.z; �/

ˇ̌̌̌
� sup
�2@D

ˇ̌̌̌
f��.z; �/

f�.z; �/

ˇ̌̌̌
� ej�j"2.�/; (102)

where "j .�/ ! 0 as � ! 1. Since Re .M��=M�/ > 0, the inequality (99)
follows. Thus the lemma is proven. �

As discussed earlier, the functions u1 D u� and u2 D iu1=� satisfy a @ N�-
equation as a function of the parameter �, but unfortunately, for a fixed z the
asymptotics in (98) are not strong enough to determine the individual solution
uj .z; �/. However, if we consider the entire family fuj .z; �/ W z 2 Cg, then,
somewhat surprisingly, uniqueness properties do arise.

To consider the uniqueness properties, assume that the Dirichlet-to-Neumann
operators are equal for the conductivities � and z� . By Lemma 2.24, we have that
u� .z; �/ 6D 0 and uz� .z; �/ 6D 0 at every point .z; �/. Therefore their logarithms,
denoted by ı� and ız� , respectively, are well defined. For each fixed z 2 C,

ı� .z; �/D log u� .z; �/D i�zC �"1.�/; (103)

ız� .z; �/D log uz� .z; �/D i�zC �"2.�/; (104)

where "j .�/! 0 as for j�j !1. Moreover, by Theorem 2.6,

ı� .z; 0/� ız� .z; 0/� 0

for all z 2 C.
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In addition, for each fixed � ¤ 0 the function z 7! ı� .z; �/ is continuous. By
Lemma 2.24, we can write

ı� .z; �/D i�z

�
1C

v�.z/

i�z

�
; (105)

where v� 2L1.C/ for each fixed � 2 C. This means that ı� .z; �/ is close to a
multiple of the identity for large jzj. Using an elementary homotopy argument,
(105) yields that for any fixed � ¤ 0 the map z 7! ı� .z; �/ is surjective C! C.

To prove the theorem it suffices to show that, if ƒ� Dƒz� , then

ız� .z; �/¤ ı� .w; �/ for z ¤ w and � ¤ 0: (106)

Indeed, if the claim (106) is established, then (106) and the surjectivity of
z 7! ı� .z; �/ show that we necessarily have ı� .z; �/D ız� .z; �/ for all �; z 2 C.
Hence uz� .z; �/D u� .z; �/.

We are now at a point where the @ N� -method and (71) can be applied. Substi-
tuting u� D exp .ı� / in this identity shows that � 7! ı� .z; �/ and � 7! ız� .w; �/

both satisfy the @ N� -equation

@ı

@�
D�i�.�/ e.ı�ı/; � 2 C; (107)

where by Theorem 2.10 and the assumption ƒ� D ƒz� , the coefficient �.�/ is
the same for both functions ı� and ız� . A simple computations shows then that
the difference

g.�/ WD ız� .w; �/� ı� .z; �/

thus satisfies the identity

@g

@�
D�i�.�/ e.ı�ı/

�
e.g�g/

� 1
�
:

In particular, ˇ̌̌̌
@g

@�

ˇ̌̌̌
� jg�gj � 2jgj: (108)

Using (103) we see that g.�/D i.w� z/� C �".�/ where ".�/! 0 as �!1.
Applying Theorem .9 (with respect to �) we see that for w ¤ z the function g

vanishes only at � D 0. This proves (106).
According to Theorem 2.9 (or by the identity �� D ��1=� ), if ƒ� D ƒz� ,

the same argument works to show that u1=z� .z; �/ D u1=� .z; �/ as well. Thus
Theorem 2.23 is proved. As the pair fu1.z; �/;u2.z; �/g pointwise determines
the pair ff�.z; �/; f��.z; �/g, we find via (97) that � � z� . Therefore the proof
of Theorem 2.1 is complete. �
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3. Invisibility cloaking and the borderlines of visibility and invisibility

Next we consider the anisotropic conductivity equation in �� R2,

r � �ruD

2X
j ;kD1

@

@xj

�
�jk.x/

@

@xk
u.x/

�
D 0 in �; (109)

where the conductivity � D Œ�jk.x/�2
j ;kD1

is a measurable function whose values
are symmetric, positive definite matrices. We say that a conductivity � is regular
if there are c1; c2 > 0 such that

c1I� �.x/� c2I; for a.e. x 2�:

If conductivity is not regular, it is said to be degenerate. We will consider unique-
ness results for the inverse problem in classes of degenerate conductivities both in
the isotropic and the anisotropic case. We will also construct counterexamples for
the uniqueness of the inverse problem having a close connection to the invisibility
cloaking, a very topical subject in recent studies in mathematics, physics, and
material science [Alu and Engheta 2005; Greenleaf et al. 2007; 2003c; Milton
and Nicorovici 2006; Leonhardt 2006; Milton et al. 2009; Pendry et al. 2006;
Weder 2008]. By invisibility cloaking we mean the possibility, both theoretical
and practical, of shielding a region or object from detection via electromagnetic
fields.

The counterexamples for inverse problems and the proposals for invisibility
cloaking are closely related. In 2003, before the appearance of practical possibil-
ities for cloaking, it was shown in [Greenleaf et al. 2003a; 2003c] that passive
objects can be coated with a layer of material with a degenerate conductivity
which makes the object undetectable by the electrostatic boundary measurements.
These constructions were based on the blow up maps and gave counterexamples
for the uniqueness of inverse conductivity problem in the three and higher-
dimensional cases. In the two-dimensional case, the mathematical theory of the
cloaking examples for conductivity equation have been studied in [Kohn et al.
2008; 2010; Lassas and Zhou 2011; Nguyen 2012].

Interest in cloaking was raised in particular in 2006 when it was realized
that practical cloaking constructions are possible using so-called metamaterials
which allow fairly arbitrary specification of electromagnetic material parameters.
The construction of Leonhardt [2006] was based on conformal mapping on a
nontrivial Riemannian surface. At the same time, Pendry et al. [2006] proposed
a cloaking construction for Maxwell’s equations using a blow up map and the
idea was demonstrated in laboratory experiments [Schurig et al. 2006]. There are
also other suggestions for cloaking based on active sources [Milton et al. 2009]
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or negative material parameters [Alu and Engheta 2005; Milton and Nicorovici
2006].

Let†D†.�/ be the class of measurable matrix valued functions � W�!M ,
where M is the set of symmetric nonnegative definite matrices. Instead of
defining the Dirichlet-to-Neumann operator which may not be well defined for
these conductivities, we consider the corresponding quadratic forms.

Definition 3.1. Let h 2H 1=2.@�/. The Dirichlet-to-Neumann quadratic form
corresponding to the conductivity � 2†.�/ is given by

Q� Œh�D inf A� Œu�; where A� Œu�D

Z
�

�.z/ru.z/ � ru.z/ dm.z/; (110)

and the infimum is taken over real valued u 2 L1.�/ such that ru 2 L1.�/3

and uj@� D h. In the case where Q� Œh� <1 and A� Œu� reaches its minimum at
some u, we say that u is a W 1;1.�/ solution of the conductivity problem.

When � is smooth and bounded from below and above by positive constants,
Q� Œh� is the quadratic form corresponding to the Dirichlet-to-Neumann map (5),

Q� Œh�D

Z
@�

hƒ�h ds; (111)

where ds is the length measure on @�. Physically, Q� Œh� corresponds to the
power needed to keep voltage h at the boundary. As discussed above, for
smooth conductivities bounded from below, for every h 2H 1=2.@�/ the integral
A� Œu� always has a unique minimizer u 2 H 1.�/ with uj@� D h. It is also a
distributional solution to (4). Conversely, for functions u 2H 1.�/ the traces lie
in H 1=2.@�/. As we mostly consider conductivities which are bounded from
below and above near the boundary we chose to consider the H 1=2-boundary
values also in the general case. We interpret that the Dirichlet-to-Neumann form
corresponds to the idealization of the boundary measurements for � 2†.�/.

Next we present a few examples where the solutions u turn out to be nonsmooth
or do not exist.

Example 1. Let us consider the one-dimensional conductivity equation on
interval I D Œ0; 1�. Let .qj /

1
jD1

be a sequence containing all rational numbers
Q\ .0; 1/ so that each number appears only once in the sequence. Let aj D

2�1j�4, Kj D .qj � 2�j�2; qj C 2�j�2/\ I , and define the conductivity

�.x/D 1C

1X
jD1

�j .x/; �j .x/D
aj

jx� qj j
�Kj .x/: (112)

Note that the set Kj has the measure jKj j� 2�j�1. As
ˇ̌S

j�l Kj

ˇ̌
� 2�l , we see

that the series (112) has only finitely many nonzero terms for x 2
T

l�1

S
j�l Kj
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and in particular, the sum �.x/ is finite and positive function a.e. Now, assume
that u 2 C 1.I/ is a function for whichZ

I

�.x/ju0.x/j2dm.x/ <1:

If u0.qj / 6D 0, we see that there is an open nonempty interval Ij � I containing
qj such that ju0.x/j � t > 0 for all x 2 Ij , andZ

I

�.x/ju0.x/j2dm.x/�

Z
Ij

�j .x/ju
0.x/j2dm.x/D1:

This implies that u0.qj /D 0 for all qj , and as fqj g is dense in I , we see that u

vanishes identically. Thus if the minimization (110) is taken only over u2C 1.I/

with u.0/D f0 and u.1/D f1, the Dirichlet-to-Neumann form is infinite for all
nonconstant boundary values f0 6D f1. However, if the infimum is taken over all
u 2W 1;1.I/, we see that the function

u0.x/D
jŒ0;x� nKj

jI nKj
; K D

1[
jD1

Kj ; 0< jKj< 1
2

satisfies u0.x/D 0 for x 2K andZ
I

�.x/ju00.x/j
2dm.x/D 1; u0.0/D 0; u0.1/D 1:

Using functions f0 C .f1 � f0/u0.x/ we see that the Dirichlet-to-Neumann
form for � defined as a minimization over all W 1;1-functions is finite for all
boundary values. Later we will show also examples of conductivities encountered
in cloaking where the solution of the conductivity problem will be in W 1;p for
all p< 2 but not in W 1;2. This is another reason why W 1;1 is a convenient class
to consider the minimization.

Example 2. Consider in the disc D.2/ a strongly twisting map,

G.rei� /D rei.�Ct.r//; 0< r � 2;

where t.r/D exp.r�1�2�1/. When 
 D 1 is the homogeneous conductivity, let
� be the conductivity in D.2/ such that � DG�
 in the set D.2/ n f0g. We see
that if the problem (110) has a minimizer u 2W 1;1.D/ with the boundary value
f for which A� .u/ <1, then it has to satisfy r � �ruD 0 in the set D.2/nf0g.
Then v D u ı G is harmonic function in D.2/ n f0g having boundary value
f 2H 1=2.@D.2// and finite norm in H 1.D.2/nf0g/. This implies that v can be
extended to a harmonic function in the whole disc D.2/; see, e.g., [Kilpeläinen
et al. 2000]. Thus, if the problem (110) has a minimizer u 2W 1;1.D.2// for
f .x1;x2/ D x1 we see that v.x1;x2/ D x1 and u D v ıF , where F WD G�1.
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Then, by the chain rule we have ru.x/DDF.x/t .Dv/.F.x// 62L1.D.2/nf0g/.
This shows that the minimizer u does not exists in the space W 1;1.D.2//. Thus
for a general degenerate conductivity it is reasonable to define the boundary
measurements using the infimum of a quadratic form instead of a distributional
solution of the differential equation r � �ruD 0.

Existence results for solutions with degenerate conductivities. As seen in the
examples above, if � is unbounded it is possible that Q� Œh� D1. Moreover,
even if Q� Œh� is finite, the minimization problem in (110) may generally have
no minimizer and even if they exist the minimizers need not be distributional
solutions to (4). However, if the singularities of � are not too strong, minimizers
satisfying (4) do always exist. Below we will consider singular conductivity
of exponentially integrable ellipticity function K� .z/ and show that for such
conductivities solutions exists. To study of these solutions, we consider the
regularity gauge

Q.t/D
t2

log.eC t/
; t � 0: (113)

We say accordingly that f belongs to the Orlicz space W 1;Q.�/ if f and its
first distributional derivatives are in L1.�/ andZ

�

jrf .z/j2

log.eCjrf .z/j/
dm.z/ <1:

In [Astala et al. 2011a] the following existence result for solutions correspond-
ing to singular conductivity of exponentially integrable ellipticity is proven:

Theorem 3.2. Let �.z/ be a measurable symmetric matrix valued function.
Suppose further that for some p > 0,Z

�

exp.p Œtrace.�.z//C trace.�.z/�1/�/ dm.z/D C1 <1: (114)

Then, if h2H 1=2.@�/ is such that Q� Œh� <1 and X Dfv 2W 1;1.�/I vj@�D

hg, there is a unique w 2X such that

A� Œw�D inffA� Œv� I v 2X g: (115)

Moreover, w satisfies the conductivity equation

r � �rw D 0 in � (116)

in sense of distributions, and it has the regularity w 2W 1;Q.�/\C.�/.

Let F W�1!�2, y D F.x/, be an orientation-preserving homeomorphism
between domains �1; �2 � C for which F and its inverse F�1 are at least
W 1;1-smooth and let �.x/D Œ�jk.x/�2

j ;kD1
2†.�1/ be a conductivity on �1.
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Then the map F pushes � forward to a conductivity .F��/.y/, defined on �2

and given by

.F��/.y/D
1

det DF.x/
DF.x/ �.x/DF.x/t ; x D F�1.y/:(117)

The main methods for constructing counterexamples to Calderón’s problem are
based on the following principle.

Proposition 3.3. Assume that �; z� 2†.�/ satisfy (114), and let F W�!� be
a homeomorphism so that F and F�1 are W 1;Q-smooth and C 1-smooth near
the boundary, and F j@� D id . Suppose that z� D F�� . Then Q� DQz� .

This proposition generalizes the results from [Kohn and Vogelius 1984] to
less smooth diffeomorphisms and conductivities.

Sketch of the proof. Two implications of the assumptions for F are essential in
the proof. First one is that as F is a homeomorphism satisfying F 2W 1;Q.�/,
it satisfies the condition N, that is, for any measurable set E � � we have
jEj D 0) jF.E/j D 0; see, e.g., [Astala et al. 2009, Theorem 19.3.2]. Also
F�1 satisfies this condition. These imply that we have the area formulaZ

�

H.y/ dm.y/D

Z
�

H.F.x// det.DF.x// dm.x/ (118)

for H 2L1.�/.
The second implication is that, by the Gehring–Lehto theorem (see [Astala

et al. 2009, Corollary 3.3.3]), a homeomorphism F 2W
1;1

loc .�/ is differentiable
almost everywhere in �, say in the set � nA, where A has Lebesgue measure
zero. This pointwise differentiability at almost every point is essential in using
the chain rule.

Let h 2 H 1=2.@�/ and assume that Qz� Œh� <1. By Theorem 3.2 there is
zu 2W 1;1.�/ solving

r � z�rzuD 0; zuj@� D h: (119)

We define uD zu ıF W�! C. As F is C 1-smooth near the boundary we see
that uj@� D h.

By the Stoilow factorization theorem (Theorem A.9), zu can be written in the
form zuD zw ı zG where zw is harmonic and zG 2W

1;1
loc .C/ is a homeomorphism

zG W C! C. By Gehring–Lehto theorem zG and the solution zu are differentiable
almost everywhere, say in the set � nA0, where A0 has Lebesgue measure zero.

Since F�1 has the property N, we see that A00 D A0 [ F�1.A0/ � � has
measure zero, and for x 2� nA00 the chain rule gives

ru.x/DDF.x/t .rzu/.F.x//: (120)
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Using this, the area formula and the definition (117) of F�� one can show that

Q� Œh�

D

Z
�

ru.x/ � �.x/ru.x/ dm.x/

D

Z
�

DF.x/trzu.F.x// �
�.x/

det.DF.x//
DF.x/trzu.F.x// det.DF.x// dm.x/

D

Z
�

rzu.y/ � z�.y/rzu.y/ dy DQz� Œh�: �

Let us next consider various counterexamples for the solvability of inverse
conductivity problem with degenerate conductivities.

Counterexample 1: invisibility cloaking. We consider here invisibility cloaking
in general background � , that is, we aim to coat an arbitrary body with a layer
of exotic material so that the coated body appears in measurements the same as
the background conductivity � . Usually one is interested in the case when the
background conductivity � is equal to the constant 
 D 1. However, we consider
here a more general case and assume that � is a L1-smooth conductivity in
D.2/, �.z/� c0I , c0> 0. Here, D.�/ is an open two-dimensional disc of radius
� and center zero and D.�/ is its closure. Consider a homeomorphism

F W D.2/ n f0g ! D.2/ nK; (121)

where K � D.2/ is a compact set which is the closure of a smooth open set
and suppose F W D.2/ n f0g ! D.2/ nK and its inverse F�1 are C 1-smooth
in D.2/ n f0g and D.2/ nK, correspondingly. We also require that F.z/ D z

for z 2 @D.2/. The standard example of invisibility cloaking is the case when
KD D.1/ and the map

F0.z/D .
jzj

2
C 1/

z

jzj
: (122)

Using the map (121), we define a singular conductivity

z�.z/D

�
.F��/.z/ for z 2 D.2/ nK;

�.z/ for z 2 K;
(123)

where �.z/ D Œ�jk.x/� is any symmetric measurable matrix satisfying c1I �

�.z/� c2I with c1; c2>0. The conductivity z� is called the cloaking conductivity
obtained from the transformation map F and background conductivity � and
�.z/ is the conductivity of the cloaked (i.e. hidden) object.

In particular, choosing � to be the constant conductivity � D 1, K D D.1/,
and F to be the map F0 given in (122), we obtain the standard example of the
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invisibility cloaking. In dimensions n� 3 it shown in 2003 in [Greenleaf et al.
2003a; Greenleaf et al. 2003c] that the Dirichlet-to-Neumann map corresponding
to H 1.�/ solutions for the conductivity (123) coincide with the Dirichlet-to-
Neumann map for � D 1. In 2008, the analogous result was proven in the two-
dimensional case in [Kohn et al. 2008]. For cloaking results for the Helmholtz
equation with frequency k 6D 0 and for Maxwell’s system in dimensions n� 3,
see results in [Greenleaf et al. 2007]. We note also that John Ball [1982] has used
the push forward by the analogous radial blow-up maps to study the discontinuity
of the solutions of partial differential equations, in particular the appearance of
cavitation in the nonlinear elasticity.

In [Astala et al. 2011a] the following generalization of [Greenleaf et al. 2003a;
2003c; Kohn et al. 2008] is proven for cloaking in the context where measure-
ments given in Definition 3.1.

Theorem 3.4. (i) Let � 2L1.D.2// be a scalar conductivity, �.x/� c0 > 0,
K � D.2/ be a relatively compact open set with smooth boundary and
F WD.2/nf0g!D.2/nK be a homeomorphism. Assume that F and F�1 are
C 1-smooth in D.2/ n f0g and D.2/ nK, correspondingly and F j@D.2/ D id .
Moreover, assume there is C0 > 0 such that kDF�1.x/k � C0 for all
x 2D.2/nK. Let z� be the conductivity defined in (123). Then the boundary
measurements for z� and � coincide in the sense that Qz� DQ� :

(ii) Let z� be a cloaking conductivity of the form (123) obtained from the trans-
formation map F and the background conductivity � where F and � satisfy
the conditions in (i). Then

trace.z�/ 62L1.D.2/ nK/: (124)

Sketch of the proof. We consider the case when F D F0 is given by (122) and
� D 1 is constant function.

(i) For 0 � r � 2 and a conductivity � we define the quadratic form Ar
� W

W 1;1.D.2//! RC[f0;1g by

Ar
�Œu�D

Z
D.2/nD.r/

�.x/ru � ru dm.x/:

Considering F0 as a change of variables similarly to Proposition 3.3, we see that

Ar
z� Œu�DA�
 Œv�; uD v ıF0; �D 2.r � 1/; r > 1:

Now for the conductivity 
 D 1 the minimization problem (110) is solved by the
unique minimizer u satisfying

�uD 0 in D.2/; uj@D.2/ D f:
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The solution u is C1-smooth in D.2/ and we see that v D u ıF0 is a W 1;1-
function on D.2/ nD.1/ which trace on @D.1/ is equal to the constant function
h.x/D u.0/ on @D.1/. Let zv be a function that is equal to v in D.2/ nD.1/ and
has the constant value u.0/ in D.1/. Then zv 2W 1;1.D.2// and

Qz� Œf ��A1
z� Œv�D lim

r!1
Ar
z� Œv�D lim

�!0
A�
 Œu�DQ
 Œf �: (125)

To construct an inequality opposite to (125), let �� be a conductivity which
coincides with z� in D.2/ n D.�/ and is 0 in D.�/. For this conductivity the
minimization problem (110) has a minimizer that in D.2/ nD.�/ coincides with
the solution of the boundary value problem

�uD 0 in D.2/ nD.�/; uj@D.2/ D f; @�uj@D.�/ D 0

and is arbitrary W 1;1-smooth extension of u to D.�/. Then ��.x/ � z�.x/ for
all x 2 D.2/ and thus Q�� Œf ��Qz� Œf �: It is not difficult to see that

lim
�!0

Q�� Œf �DQ
 Œf �;

that is, the effect of an insulating disc of radius � in the boundary measurements
vanishes as �! 0. These and (125) yield Qz� Œf �DQ
 Œf �. This proves (i).

(ii) Assume that (124) is not valid, i.e., trace.z�/ 2L1.D.2/ nD.1//. As � D 1

and det.z�/D 1, simple linear algebra yields that Kz� 2L1.D.2/ nD.1// and

kz�.y/k D
kDF.x/ � �.x/ �DF.x/tk

J.x;F /
�
kDF.x/k2

J.x;F /
DKF .x/; x D F�1.y/:

Then G D F�1 satisfies KG DKF ıF�1 2L1.D.2/nD.1//, which yields that
F 2W 1;2.D.2/ n f0g/ and

kDFkL2.D.2/nf0g/ � 2kKGkL1.D.2/nD.1//I

see, e.g., [Astala et al. 2009, Theorem 21.1.4]. By the removability of singularities
in Sobolev spaces — see [Kilpeläinen et al. 2000] — this implies that the function
F W D.2/ n f0g ! D.2/ nD.1/ can be extended to a function F ext W D.2/! C in
W 1;2.D.2//. It follows from this and the continuity theorem of finite distortion
maps [Astala et al. 2009, Theorem 20.1.1] that F ext W D.2/! C is continuous,
which is not possible. Thus (124) has to be valid. �

The result (124) is optimal in the following sense. When F is the map F0 in
(122) and � D 1, the eigenvalues of the cloaking conductivity z� in D.2/ nD.1/

behaves asymptotically as .jzj � 1/ and .jzj � 1/�1 as jzj ! 1. This cloaking
conductivity has so strong degeneracy that (124) holds. On the other hand,

trace.z�/ 2L1
weak.D.2//: (126)
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where L1
weak is the weak-L1 space. We note that in the case when � D 1, det.z�/

is identically 1 in D.2/ nD.1/.
The formula (126) for the blow up map F0 in (122) and Theorem 3.4 identify

the borderline of the invisibility for the trace of the conductivity: Any cloaking
conductivity z� satisfies trace.z�/ 62L1.D.2// and there is an example of a cloaking
conductivity for which trace.z�/2L1

weak.D.2//. Thus the borderline of invisibility
is the same as the border between the space L1 and the weak-L1 space.

Counterexample 2: Illusion of a nonexistent obstacle. Next we consider new
counterexamples for the inverse problem which could be considered as creating
an illusion of a nonexisting obstacle. The example is based on a radial shrinking
map, that is, a mapping D.2/ nD.1/! D.2/ n f0g. The suitable maps are the
inverse maps of the blow-up maps F1 W D.2/ n f0g ! D.2/ nD.1/ which are
constructed in [Iwaniec and Martin 2001] and have the optimal smoothness.
Using the properties of these maps and defining a conductivity �1 D .F

�1
1
/�1

on D.2/ n f0g we will later prove the following result.

Theorem 3.5. Let 
1 be a conductivity in D.2/ which is identically 1 in D.2/ n

D.1/ and zero in D.1/ and A W Œ1;1�! Œ0;1� be any strictly increasing positive
smooth function with A.1/D 0 which is sublinear in the sense thatZ 1

1

A.t/

t2
dt <1: (127)

Then there is a conductivity �1 2†.B2/ satisfying det.�1/D 1 andZ
D.2/

exp.A.trace.�1/C trace.��1
1 /// dm.z/ <1; (128)

such that Q�1
DQ
1

, i.e., the boundary measurements corresponding to �1 and

1 coincide.

Sketch of the proof. Following [Iwaniec and Martin 2001, Sect. 11.2.1], there is
k.s/ satisfies the relation

k.s/eA.k.s//
D

e

s2
; 0< s < 1

that is strictly decreasing function and satisfies k.s/� s�1 and k.1/D 1. Then

�.t/D exp
�Z t

0

ds

sk.s/

�
is a function for which �.0/D1. Then, by defining the maps h.t/D2�.t=2/=�.1/

and
Fh W D.2/ n f0g ! D.2/ nD.1/; Fh.x/D h.t/

x

jxj
(129)
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Figure 1. Left: trace.�/ of three radial and singular conduc-
tivities on the positive x axis. The curves correspond to the
invisibility cloaking conductivity (red), with the singularity
�22.x; 0/ � .jxj � 1/�1 for jxj > 1, a visible conductivity
(blue) with a log log type singularity at jxj D 1, and an electric
hologram (black) with the conductivity having the singularity
�11.x; 0/� jxj�1. Top two discs: All measurements on the
boundary of the invisibility cloak (left) coincide with the mea-
surements for the homogeneous disc (right). The color shows the
value of the solution u with the boundary value u.x;y/j@D.2/Dx

and the black curves are the integral curves of the current ��ru.
Bottom disc and annulus: All measurements on the boundary
of the electric hologram (left) coincide with the measurements
for an isolating disc covered with the homogeneous medium
(right). The solutions and the current lines corresponding to the
boundary value uj@D.2/ D x are shown.

and �1 D .Fh/�
1, we obtain a conductivity that satisfies conditions of the
statement.

Finally, the identity Q�1
D Q
1

follows considering Fh as a change of
variables similarly to the proof of Proposition 3.3. �

We observe that for instance the function A0.t/D t=.1C log t/1C" satisfies
(127) and for such weight function �1 2L1.B2/.

Note that 
1 corresponds to the case when D.2/ is a perfect insulator which is
surrounded with constant conductivity 1. Thus Theorem 3.5 can be interpreted
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by saying that there is a relatively weakly degenerated conductivity satisfying
integrability condition (128) that creates in the boundary observations an illusion
of an obstacle that does not exists. Thus the conductivity can be considered as
“electric hologram”. As the obstacle can be considered as a “hole” in the domain,
we can say also that even the topology of the domain can not be detected. In
other words, Calderón’s program to image the conductivity inside a domain
using the boundary measurements can not work within the class of degenerate
conductivities satisfying (127) and (128).

3A. Positive results for Calderón’s inverse problem. In this section we formu-
late positive results for uniqueness of the inverse problems. Proofs of the results
can be found in [Astala et al. 2011a].

For inverse problems for anisotropic conductivities where both the trace and
the determinant of the conductivity are degenerate the following result holds.

Theorem 3.6. Let �� C be a bounded simply connected domain with smooth
boundary. Let �1; �2 2†.�/ be matrix valued conductivities in � which satisfy
the integrability conditionZ

�

exp.p.trace.�.z//C trace.�.z/�1/// dm.z/ <1

for some p > 1. Moreover, assume thatZ
�

E.q det �j .z// dm.z/ <1; for some q > 0; (130)

where E.t/ D exp.exp.exp.t1=2 C t�1=2/// and Q�1
D Q�2

: Then there is a
W

1;1
loc -homeomorphism F W�!� satisfying F j@� D id such that

�1 D F� �2: (131)

Equation (131) can be stated as saying that �1 and �2 are the same up to a
change of coordinates, that is, the invariant manifold structures corresponding
to these conductivities are the same. See [Lee and Uhlmann 1989; Lassas and
Uhlmann 2001].

In the case when the conductivities are isotropic one can improve the result of
Theorem 3.6 as follows.

Theorem 3.7. Let �� C be a bounded simply connected domain with smooth
boundary. If �1; �2 2 †.�/ are isotropic conductivities, i.e., �j .z/ D 
j .z/I ,

j .z/ 2 Œ0;1� satisfying for some q > 0Z

�

exp
�
exp

�
q.
j .z/C

1


j .z/
/
��

dm.z/ <1 (132)

and Q�1
DQ�2

, then �1 D �2.
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Let us next consider anisotropic conductivities with bounded determinant but
more degenerate ellipticity function K� .z/ and ask how far can we then generalize
Theorem 3.6. Motivated by the counterexample given in Theorem 3.5 we consider
the following class: We say that � 2 †.�/ has an exponentially degenerated
anisotropy with a weight A and denote � 2†AD†A.�/ if �.z/ 2R2�2 for a.e.
z 2� and Z

�

exp.A.trace.�/C trace.��1/// dm.z/ <1: (133)

In view of Theorem 3.5, for obtaining uniqueness for the inverse problem we
need to consider weights that are strictly increasing positive smooth functions
A W Œ1;1�! Œ0;1�, A.1/D 0, withZ 1

1

A.t/

t2
dt D1 and tA0.t/!1; as t !1. (134)

We say that A has almost linear growth if (134) holds.
Note in particular that affine weights A.t/ D pt � p, p > 0 satisfy the

condition (134). To develop uniqueness results for inverse problems within the
class †A, one needs to find the right Sobolev–Orlicz regularity for the solutions
u of finite energy, i.e., for solutions satisfying A� Œu� <1. For this, we use the
counterpart of the gauge Q.t/ defined at (113). In the case of a general weight
A we define

P .t/D

(
t2; for 0� t < 1;

t2

A�1.log.t2//
; for t � 1

(135)

where A�1 is the inverse function of A. We note that the condition
R1

1
A.t/
t2 dt D

1 is equivalent toZ 1
1

P .t/

t3
dt D

1

2

Z 1
1

A0.t/

t
dt D

1

2

Z 1
1

A.t/

t2
dt D1 (136)

where we have used the substitution A.s/D log.t2/. A function u 2W
1;1

loc .�/

is in the Orlicz space W 1;P .�/ ifZ
�

P
�
jru.z/j

�
dm.z/ <1:

When A satisfies the almost linear growth condition (134) and P is as above
one can show for � 2†A.�/ and u 2W

1;1
loc .�/ an inequalityZ

�

P
�
jruj

�
dm.z/� 2

Z
�

eA.tr�Ctr .��1// dm.z/C 2

Z
�

ru � �ru dm.z/:

This implies that any solution u of the conductivity equation (4) with � 2†A.�/

satisfies u 2W 1;P .�/.
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The Sobolev–Orlicz gauge P .t/ is essential also in the study of the counterex-
amples for solvability of the inverse problem and the optimal smoothness of con-
ductivities corresponding to electric holograms: Assume that G WD.2/nD.1/!

D.2/ n f0g is a homeomorphic map which produces a hologram conductivity
z�DG�1 in D.2/nf0g. Assume also that G and its inverse map, denoted FDG�1,
are W

1;1
loc -smooth. By the definition of the push forward of a conductivity (117),

we see that

Kz� .z/DKF .z/; z 2 D.2/ n f0g:

This implies that F satisfies a Beltrami equation

@NzF.z/D z�.z/@zF.z/; z 2 D.2/ n f0g

where Kz�.z/DKz� .z/. By Theorem 2.3, the functions w1 D Re F and w2 D

Im F satisfy a conductivity equation with a conductivity A.z/ with KA.z/ D

Kz�.z/. Thus, if it happens that z� 2†A.D.2// where A satisfies the almost linear
growth condition (134), so that P satisfies condition (136), we see using (137)
that w1; w2 2W 1;P .D.2/ n f0g/. By using Stoilow factorization, Theorem A.9,
we see that F can be written in the form F.z/D �.f .z// where f W C! C is a
homeomorphism and � W f .D.2/ n f0g/! C is analytic. As F and thus � are
bounded, we see that � can be extended to an analytic function z� W f .D.2//!C

and thus also F can then be extended to a continuous function to zF W D.2/! C.
However, this is not possible as F WD.2/nf0g!D.2/nD.1/ is a homeomorphism.
This proves that no electric hologram conductivity z� can be in †A.D.2// where
A satisfies the almost linear growth condition (134).

The above nonexistence of electric hologram conductivities in †A.D.2//

motivates the following sharp result for the uniqueness of the inverse problem
for singular anisotropic conductivities with a determinant bounded from above
and below by positive constants.

Theorem 3.8. Let �� C be a bounded simply connected domain with smooth
boundary and A W Œ1;1/ ! Œ0;1/ be a strictly increasing smooth function
satisfying the almost linear growth condition (134). Let �1; �2 2†.�/ be matrix
valued conductivities in � which satisfy the integrability conditionZ

�

exp.A.trace.�.z//C trace.�.z/�1/// dm.z/ <1: (137)

Moreover, suppose that c1� det.�j .z//� c2, z 2�, j D 1; 2 for some c1; c2> 0

and Q�1
DQ�2

: Then there is a W
1;1

loc -homeomorphism F W�!� satisfying
F j@� D id such that

�1 D F� �2:
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We note that the determination of � from Q� in Theorems 3.6, 3.7, and 3.8
is constructive in the sense that one can write an algorithm which constructs
� from ƒ� . For example, for the nondegenerate scalar conductivities such a
construction has been numerically implemented in [Astala et al. 2011b].

Let us next discuss the borderline of the visibility somewhat formally. Below
we say that a conductivity is visible if there is an algorithm which reconstructs the
conductivity � from the boundary measurements Q� , possibly up to a change of
coordinates. In other words, for visible conductivities one can use the boundary
measurements to produce an image of the conductivity in the interior of� in some
deformed coordinates. For simplicity, let us consider conductivities with det �
bounded from above and below. Then, Theorems 3.5 and 3.8 can be interpreted
by saying that the almost linear growth condition (134) for the weight function
A gives the borderline of visibility for the trace of the conductivity matrix: If A

satisfies (134), the conductivities satisfying the integrability condition (137) are
visible. However, if A does not satisfy (134) we can construct a conductivity
in � satisfying the integrability condition (137) which appears as if an obstacle
(which does not exist in reality) would have included in the domain.

Thus the borderline of the visibility is between any spaces †A1
and †A2

where A1 satisfies condition (134) and A2 does not. An example of such gauge
functions is A1.t/D t.1C log t/�1 and A2.t/D t.1C log t/�1�" with " > 0.

Summarizing, in terms of the trace of the conductivity, the above results
identify the borderline of visible conductivities and the borderline of invisi-
bility cloaking conductivities. Moreover, these borderlines are not the same
and between the visible and the invisibility cloaking conductivities there are
conductivities creating electric holograms.

Finally, let us comment the techniques needed to prove the above uniqueness
results. The degeneracy of the conductivity causes that the exponentially growing
solutions, the standard tools used to study Calderón’s inverse problem, can not be
constructed using purely microlocal or functional analytic methods. Instead, one
needs to use the topological properties of the solutions: By Stoilow’s theorem
the solutions Beltrami equations are compositions of analytic functions and
homeomorphisms. Using this, the continuity properties of the weakly monotone
maps, and the Orlicz-estimates holding for homeomorphisms one can prove
the existence of the exponentially growing solutions for Beltrami equations.
Combining solutions of the appropriate Beltrami equations, see (44), one obtains
exponentially growing solutions for conductivity equation in the Sobolev–Orlicz
space W 1;Q for isotropic conductivity and in W 1;P for anisotropic conductivity.

Using these results one can obtain subexponential asymptotics for the families
of exponentially growing solutions needed to apply similar @ technique that were
used to solve the inverse problem for the nondegenerate conductivity.
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Appendix: The argument principle

The solution to the Calderón problem combines analysis with topological argu-
ments that are specific to two dimensions. For instance, we need a version of the
argument principle, which we here consider.

Theorem .9. Let F 2W
1;p

loc .C/ and 
 2L
p
loc.C/ for some p > 2. Suppose that,

for some constant 0� k < 1, the differential inequalityˇ̌̌̌
@F

@Nz

ˇ̌̌̌
� k

ˇ̌̌̌
@F

@z

ˇ̌̌̌
C 
 .z/

ˇ̌
F.z/

ˇ̌
(138)

holds for almost every z 2 C and assume that, for large z, F.z/D �zC ".z/z,
where the constant �¤ 0 and ".z/! 0 as jzj !1.

Then F.z/D 0 at exactly one point, z D z0 2 C.

Proof. The continuity of F.z/ D �z C ".z/z and an elementary topological
argument show that F is surjective, and consequently there exists at least one
point z0 2 C such that F.z0/D 0.

To show that F can not have more zeros, let z1 2 C and choose a large disk
BDD.R/ containing both z1 and z0. If R is so large that ".z/<�=2 for jzjDR,
then F

ˇ̌
fjzjDRg

is homotopic to the identity relative to C n f0g. Next, we express
(138) in the form

@F

@Nz
D �.z/

@F

@z
CA.z/F; (139)

where j�.z/j � k < 1 and jA.z/j � 
 .z/ for almost every z 2 C. Now A�B 2

Lr .C/ for all 2� r � p0 Dminfp; 1C 1=kg, and we obtain from Theorem A.4
that .I� �S/�1.A�B/ 2Lr .C/ for all p0=.p0� 1/ < r < p0.

Next, we define �D C
�
.I� �S/�1.A�B/

�
. Then by Theorem A.3 we have

� 2 C0.C/, and we also have

@�

@Nz
� �

@�

@z
DA.z/; z 2 B: (140)

Therefore simply by differentiation we see that the function

g D e��F (141)

satisfies
@g

@Nz
� �

@g

@z
D 0; z 2 B: (142)

Since � has derivatives in Lr .C/, we have g 2W
1;r

loc .C/. As r � 2, the mapping
g is quasiregular in B. The Stoilow factorization theorem gives gD hı , where
 W B! B is a quasiconformal homeomorphism and h is holomorphic, both
continuous up to the boundary.
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Since � is continuous, (141) shows that g
ˇ̌
jzjDR

is homotopic to the identity
relative to C n f0g, as is the holomorphic function h. Therefore the argument
principle shows that h has precisely one zero in BDD.R/. Already, h. .z0//D

e��.z0/F.z0/D 0, and there can be no further zeros for F either. This finishes
the proof. �

Appendix A. Some background in complex analysis and quasiconformal
mappings.

Here we collect, without proof, some basic facts related to quasiconformal
mappings. The proofs can be found in [Astala et al. 2009], for example.

We start with harmonic analysis, where we often need refine estimates of the
Cauchy transform.

Definition A.1. The Cauchy transform is defined by the rule

.C�/.z/ WD
1

�

Z
C

�.�/

z� �
d�: (143)

Theorem A.2. Let 1< p <1. If � 2Lp.C/ and �.�/D 0 for j� j �R, then

(1) kC�kLp
.D2R/

� 6R k�kp,

(2) kC�.z/� 1
�z

R
�kLp

.CnD2R/
�

2 R
.p�1/1=p k�kp.

Thus, in particular, for 1< p � 2,

kC�kLp.C/ �
8 R

.p� 1/1=p
k�kp provided

Z
C

�.z/dm.z/D 0:

For p > 2 the vanishing condition for the integral over C is not needed, and we
have

kC�kLp.C/ � .6C 3.p� 2/�1=p/R k�kp; p > 2:

Concerning compactness, we have

Theorem A.3. Let � be a bounded measurable subset of C. Then the following
operators are compact

(1) �� ıC WLp.C/! C ˛.�/, or 2< p �1 and 0� ˛ < 1� 2
p

(2) �� ıC WLp.C/!Ls.C/, for 1� p � 2, and 1� s < 2p
2�p

.

The fundamental operator in the theory of planar quasiconformal mappings is
the Beurling transform,

.S�/.z/ WD �
1

�

“
C

�.�/

.z� �/2
d�: (144)
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The importance of the Beurling transform in complex analysis is furnished by
the identity

S ı
@

@Nz
D

@

@z
; (145)

initially valid for functions contained in the space C1
0
.C/. Moreover, S extends

to abounded operator on Lp.C/, 1 < p <1; on L2.C/ it is an isometry. We
denote by

Sp WD kSkLp.C/!Lp.C/

the norm of this operator. By Riesz–Thorin interpolation, Sp! 1 as p! 2.

In other words, S intertwines the Cauchy–Riemann operators @
@ Nz

and @
@z

, a fact
that explains the importance of the operator in complex analysis. For instance
we have [Astala et al. 2009, p.363] the following result.

Theorem A.4. Let � be measurable with k�k1 � k < 1. Then the operator
I��S is invertible on Lp.C/ whenever k�k1�k < 1 and 1Ck <p< 1C1=k.

The result has important consequences on the regularity of elliptic systems. In
fact, it is equivalent to the improved Sobolev regularity of quasiregular mappings.

Theorem A.5. Let �; � 2 L1.C/ with j�j C j�j � k < 1 almost everywhere.
Then the equation

@f

@Nz
��.z/

@f

@z
� �.z/

@f

@z
D h.z/

has a solution f , locally integrable with gradient in Lp.C/, whenever 1C k <

p < 1C 1=k and h 2Lp.C/. Further, f is unique up to an additive constant.

We will also need a simple version of the Koebe distortion theorem.

Lemma A.6 [Astala et al. 2009, p. 44]. If f 2W
1;1

loc .C/ is a homeomorphism
analytic outside the disk D.r/ with jf .z/� zj D o.1/ at1, then

jf .z/j< jzjC 3r; for all z 2 C: (146)

Next, we have the continuous dependence of the quasiconformal mappings
on the complex dilatation.

Lemma A.7. Suppose j�j; j�j � k�D.r/, where 0� k < 1. Let f;g 2W
1;2

loc .C/

be the principal solutions to the equations

@f

@Nz
D �.z/

@f

@z
;

@g

@Nz
D �.z/

@g

@z
:

If for a number s we have 2� p < ps < P .k/, then

kfNz �gNzkLp.C/ � C.p; s; k/ r2=ps
k�� �kLps=.s�1/.C/:
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To prove uniqueness, Liouville type result are often valuable. Here we have
collected a number of such results.

Theorem A.8. Suppose that F 2W
1;q

loc .C/ satisfies the distortion inequality

jFNzj � kjFzjC �.z/jF j; 0� k < 1; (147)

where � 2L2.C/ and the Sobolev regularity exponent q lies in the critical interval
1C k < q < 1C 1=k. Then F D e�g, where g is quasiregular and � 2 VMO .
If � 2 L2˙.C/, then � is continuous, and if furthermore F is bounded, then
F D C1e� .

In addition F � 0 if one of the following additional hypotheses holds:

(1) � has compact support and limz!1 F.z/D 0; or

(2) F 2Lp.C/ for some p > 0 and lim supz!1 jF.z/j<1.

Here we used the notation

L2˙.C/D ff W f 2Ls.C/\Lt .C/ for some s < 2< tg:

Finally, we formulate a generalization of the Stoilow factorization theorem
for the solutions of Beltrami equation in the space W

1;P
loc .�/.

Theorem A.9. Let A satisfy the almost linear growth condition (134). Sup-
pose the Beltrami coefficient, with j�.z/j< 1 almost everywhere, is compactly
supported and the associated distortion function K�.z/D

1Cj�.z/j
1� j�.z/j

satisfies

eA.K�.z// 2L1
loc.C/ (148)

Then the Beltrami equation fNz.z/D�.z/fz.z/ admits a unique principal solution
f 2W

1;P
loc .C/ with P .t/ as in (135). Moreover, any solution h 2W

1;P
loc .�/ to

this Beltrami equation in a domain �� C admits a factorization

hD � ıf;

where � is holomorphic in f .�/.
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