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The Calderón inverse problem
in two dimensions

COLIN GUILLARMOU AND LEO TZOU

We review recent progress on the two-dimensional Calderón inverse problem,
that is, the uniqueness of coefficients of an elliptic equation on a domain of C

(or a surface with boundary) from Cauchy data at the boundary.

1. The Calderón problem

The global uniqueness for inverse boundary value problems of elliptic equations
at fixed frequency in dimension n D 2 is quite particular and remained open
for many years. Now these problems are well understood, with a variety of
results appearing in the last 10 or 15 years, essentially all using the complex
structure R2'C and N@-techniques. This is therefore a good time to write a short
survey on the subject. Although we tried to cover as much as we can, we do not
pretend to be exhaustive and we apologize in advance for any forgotten reference,
which is not a decision made on purpose but rather a sign of our ignorance. We
have decided to give more details about the proofs of recent results based on
Bukhgeim’s idea [2008], for there is already a survey by Uhlmann [2003] on
the subject about older results. The results of Astala, Lassas, and Päivärinta
using quasiconformal methods are the subject of a separate survey in this volume
[Astala et al. 2013]. Finally, we do not discuss questions about stability and
reconstruction, nor inverse scattering results.

1A. The inverse problem for the conductivity. Let��C be a bounded domain
with boundary (say smooth boundary) and let 
 2L1.�;S2

C.�// be a field of
positive definite symmetric matrices on �. The Dirichlet-to-Neumann map is
the operator
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where f1; f2 2H
1
2 .@�/, h�; �i is the pairing between H

1
2 .@�/ and H�

1
2 .@�/,

u2 is the H 1.�/ solution of the elliptic equation

div.
ru/D 0; uj@� D f2 (1)

and u1 is any H 1 function with trace f1 on @�. Equivalently, N
f2 D 
ru2:�,
where u is the solution of (1) and � is the normal outward pointing vector field
to the boundary. The operator N
 is a nonlocal operator, in fact it is an elliptic
pseudodifferential operator of order 1 on @�, at least when 
 is smooth. Its
dependence on 
 is nonlinear. The problem asked by Calderón [1980] is the
following:

Is the map 
 ! N
 injective? (Q1)

The conductivity is called isotropic when 
 D 
 .x/Id for some function 
 .x/. If
� is an inhomogeneous body with conductivity 
 , then N
f is the current flux
at the boundary corresponding to a voltage potential f on @�. The Dirichlet-to-
Neumann operator represents the information which can be obtained from static
voltage and current measurements at the boundary, and (Q1) is a question about
uniqueness of a media giving rise to a given (infinite) set of measurements. The
graph of N
 is called the Cauchy data space.

1B. The inverse problem for metrics. An alternative and quite similar problem
is as follows. Let M be a surface with boundary and g is a Riemannian metric
on M , one can define the Dirichlet-to-Neumann operator associated to .M;g/

by

N.M;g/ WH
1
2 .@�/!H�

1
2 .@�/; f 7! @�uj@M

where u is the unique solution of the elliptic equation

�guD 0; uj@M D f;

here �g D d�d where d is the exterior derivative and d� its adjoint for the
Riemannian L2 product hu; vi D

R
M uvdvg. Then we ask

Is the map .M;g/! N.M;g/ injective ? (Q2)

Here M runs over the set of Riemannian surfaces with a given fixed boundary
@M DN .

1C. Gauge invariance. The obvious answer one can give for both (Q1) and (Q2)
is “No”. Indeed, if  W�!� and ' WM ! '.M / are two diffeomorphisms
which satisfy  j@� D Id and 'j@M D Id, then

N �
 D N
 ; N.M;g/ D N.'.M /;'�g/
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where '�g is the pushforward of the metric g by ' and

 �
 .x/ WD

�
d t
d 

j det d j

�
. �1.x//:

In fact, for the metric case, there is another invariance, which comes from the
conformal covariance of the Laplacian in 2 dimensions: since �g D e2!�e2!g

for all smooth function !, one easily deduces that for all function ! which
satisfies !j@M D 0, then

N.M;g/ D N.'.M /;e2!'�g/:

The good questions to ask are then

Does N
1
DN
2

imply 9 W�!� (diffeo) s.t.  j@�D Id;  �
1D
2? (Q10)

and
Do N.M1;g1/DN.M2;g2/ and @M1D @M2 imply 9 M1!M2.diffeo/

and ! WM2! R s.t.  j@M1
D Id and  �g1 D e2!g2? (Q20)

1D. The inverse problem for potentials. We conclude by another similar prob-
lem for Schrödinger operators. If .M;g/ is a fixed compact Riemannian surface
with boundary, and V 2L1.M / is a potential such that �gCV has no element
in its kernel vanishing at @M , then the Dirichlet-to-Neumann operator associated
to V is defined as before by

NV WH
1
2 .@M /!H�

1
2 .@M /; f 7! @�uj@M

where u is the unique solution of the elliptic equation

.�gCV /uD 0; uj@M D f:

The uniqueness question in this case is

Does NV1
D NV2

imply V2 D V1? (Q3)

1E. Relation between isotropic conductivity and potentials. There is an easy
remark that one can do about the relation between the isotropic conductivity
problem and the potential problem: indeed, setting uD 
�1=2v shows that u is
a solution of div.
ru/D 0 if and only if v is a solution of .�CV
 /v D 0 with

V
 D�
�
 1=2


 1=2
:

Therefore, if 
 2W 2;1.�/ and if 
 is supposed to be known at the boundary, a
resolution of the problem (Q3) implies the resolution of (Q1) if the conductivity
is isotropic.
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1F. Other related problems. Another natural problem is to identify up to gauge a
magnetic field or a Hermitian connection rX DdCiX on a complex line bundle
E over a surface with boundary (or more simply a domain) from the Cauchy
data space of the connection Laplacian LX WD .r

X /�rX . More generally one
can add a potential V to LX and try to identify X up to gauge and V from
the Cauchy data space of LX ;V D LX C V . The question also makes sense
for connections on complex vector bundles, where one has to deal with elliptic
systems, and for Dirac type operators.

1G. Partial data problems. Practically, there are many situations where we have
measurements of the currents on only a small piece � � @M of the boundary, it is
therefore important to see what can be obtained from the Dirichlet-to-Neumann
operator acting on functions supported in � . For instance, a natural question is
to take two open sets �C; �� of the boundary, and see if the partial Cauchy data
set

f.uj�C ; @�uj��/I .�CV /uD 0; u 2H 1.M /; uj@Mn�C D 0g

determines the potential.

1H. Why these problems are not simple. Let Hh be a family of elliptic oper-
ators of order 2, depending on a small parameter h 2 .0; h0/, and of the form
Hh D h2H C Vh where Vh is a family of real potentials depending smoothly
in h 2 Œ0; h0/ and H an elliptic self-adjoint operator of order 2 with principal
symbol p. The semiclassical theory tells us that, when there is a characteristic set
f.m; �/2T �R2nf� D 0gIp.m; �/CV0.m/D 0g 6D∅, the solutions of HhuD 0

are microlocalized near this set and oscillating with frequency of order 1=h as
h! 0, moreover the microlocal concentration is characterized by the flow of the
Hamiltonian vector field associated to the Hamiltonian pCV0. In particular, if
one know something about this concentration on the boundary of the domain, one
can expect to propagate it through this flow to say something in the interior of
the domain. A typical example would be if we know the Dirichlet-to-Neumann
operators N.M;g/.�/ for the equation .�g � �

2/uD 0 for all � > 0, since one
could set � D 1=h. In the Calderón problem, we only know an information
at 0 (or fixed) frequency, which makes the problem much more complicated.
In a way, the solutions of this problem are often based on complexifying the
frequencies to see high frequencies phenomena.

Notation. We shall use the complex variable z D xC iy for C and the variable
w D .x;y/ for R2 in what follows.
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2. Local uniqueness

2A. Kohn–Vogelius local uniqueness. For all the problems above, the Dirichlet-
to-Neumann operator is a nonlocal operator with singular integral kernel and
the singularities of its kernel at the diagonal contain local information about the
coefficients of the elliptic equation in the interior. Actually, it is shown in all
the cases above that it determines the Taylor expansion of the coefficients at
the boundary, say when those coefficients are smooth. This was apparently first
observed by Kohn and Vogelius [1984]

Theorem 2.1 [Kohn and Vogelius 1984]. Let 
1; 
2 be two smooth isotropic
conductivities on a smooth domain �, and assume that N
1

DN
2
. Then for all

k � 0, we have @k
�
1 D @

k
�
2 everywhere on @�.

In fact, the proof is a local determination and the assumption that N
1
D N
2

can be replaced by

hN
1
f; f i D hN
2

f; f i for all f 2 C10 .�/

where � � @� is an open set, and this would show that @k
�
1 D @k

�
2 on � .
Notice that this allows to say that the Dirichlet-to-Neumann map determines real
analytic isotropic conductivities by analytic continuation from the boundary.

Idea of proof. The idea is to construct solutions uh depending on a small
parameter h > 0 such that their boundary values fh are supported in an h-
neighborhood of a point x0 2 @�, and that

kfhkH 1=2C`.@�/ DO.h�`/ for any ` > �M

for some M > 0 chosen arbitrarily large. Then one can show that if U �� is
an open set with d.@�; @U / > 0 and W is an open neighborhood of x0,

kruhkL2.U / DO.hM / and k�m
ruhkL2.W / DO.h�.1C�/m/ (2)

for some small � > 0 if �.x/D dist.x; @�/. Assuming that @m
� 
1 6D @

m
� 
2 near

x0 for some m 2N, then by writing the Taylor expansion in normal coordinates
to the boundary, this means that either 
1 � 
2 � C�m or 
2 � 
1 � C�m in a
neighborhood of x0, for some C > 0. Let us assume the first case. From the
estimates (2) above and taking M �m and h very small, this givesZ
�


1jruhj
2
�

Z
W


1jruhj
2
�

Z
W


2jruhj
2
CO.h�.1C�/m/�

Z
�


2jruhj
2

which contradicts hN
1
fh; fhi D hN
2

f; f i. �
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2B. Further results. The argument of Kohn–Vogelius can be extended easily
to recover k derivatives of 
1 � 
2 when 
1 � 
2 has 1C k derivatives (by
some L2-Sobolev embeddings). The identification of the boundary value of an
isotropic conductivity has been improved (in terms of regularity) for smooth
domains by Sylvester and Uhlmann [1988] to continuous conductivities with an
estimate

k
1� 
2kL1.@�/ � CkN
1
�N
2

k
H

1
2 .@�/!H

� 1
2 .@�/

:

The uniqueness is also local in the sense that one only needs to know the
Dirichlet-to-Neumann map in an open set to determine the conductivity at a
point of this set. Alessandrini [1990] proved that for Lipschitz domains, if 
j
are Lipschitz and 
1 � 
2 is C k in a neighborhood of @� then N
1

D N
2

implies @˛
.

1 � 
2/ D 0 on @� for all j˛j � k. Brown [2001] proved a result

for continuous conductivities on Lipschitz domains. For smooth metrics, Lee
and Uhlmann [1989] proved that the full symbol of the Dirichlet-to-Neumann
operator (as a classical pseudodifferential operator of order 1) determines the
Taylor expansion to all order of the metric at the boundary.

3. The method of complex geometric optic solutions

The first approach to recover a conductivity from boundary data was to reduce
the problem to the potential problem, as explained above and to use particular
solutions of the Schrödinger equation .�CV /uD0 where V is a real potential of
the form��


1
2 =


1
2 . The advantage of reducing the problem to�CV is that one

has to identify a term of order 0 in the equation while for the conductivity problem,

 is contained in the principal symbol of the operator. The first observation one
can make using this fact is the following: if u1 and u2 are solutions of

.�CVj /uj D 0; uj j@� D fj ; j D 1; 2

in a domain � 2 R2, then Green’s formula yields the integral identityZ
�

.V2�V1/u1u2 D

Z
�

�u1:u2�u1:�u2

D

Z
@�

@�u1:u2�u1:@�u2 D

Z
@�

NV1
f1:f2�f1NV2

f2I

that is, Z
�

.V2�V1/u1u2 D

Z
@�

.NV1
�NV2

/f1:f2; (3)

where we have used the symmetry of the Dirichlet-to-Neumann map when the
potential is real, which is a consequence of Green’s formula again: for any
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solutions w1; w2 of .�CV /w D 0 with boundary values f1; f2, we have

0D

Z
�

.�CV /w1:u2�w1:.�CV /w2 D

Z
@�

NV f1:f2�f1:NV f2 :

The integral identity (3) shows that if NV1
DNV2

, then V1�V2 is orthogonal in
L2.�/ to the product of solutions of .�CV1/uD0 with solutions of .�CV2/uD

0. The idea initiated by Calderón was then to construct certain families of
solutions with contain high oscillations to give enough information on V1�V2

when one integrates against those.

3A. The linearized Calderón problem. Calderón [1980] considered the lin-
earized problem at the potential V D 0 as follows: if Vt is a one parameter
family of potentials (t 2 .��; �/) such that V0 D 0 and @t NVt

jtD0 D 0, then one
has, for all ut ; vt satisfying .�CVt /ut D .�CVt /vt D 0 with respective fixed
boundary value f;g,Z

�

rut :rvt CVtut :vt D

Z
@�

Ntf:g

therefore differentiating at t D 0 (which we denote by a dot)

0D

Z
�

ru0:r Pv0C
PV0u0:v0 D

Z
@�

@�f: Pv0j@�C

Z
�

PV0u0:v0 D

Z
�

PV0u0:v0:

The element PV0 in the kernel of the linearization of V !NV is orthogonal to the
product of harmonic functions. Calderón’s idea was to use particular solutions,
in fact exponentials of linear holomorphic functions (recall that z D xC iy 2 C

denotes the complex variable)

u0.z/D ez� ; v0.z/D ez� with � 2 C:

These are clearly harmonic, since holomorphic and antiholomorphic, and there-
fore one obtains (recall the notation w D .x;y/ 2 R2)Z

�

e2iIm.z�/ PV0.z/D 0D

Z
�

e2iw:�T
PV0.w/

where �T WD .Im �;Re �/2R2 which implies that the Fourier transform of 1� PV0

at �T is 0 for all � 2C, and thus that PV0D0. The linearized Dirichlet-to-Neumann
operator at 0 is injective, but Calderón [1980] observed that its range is not closed
and therefore we cannot use the local inverse theorem to consider the nonlinear
problem.
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3B. The nonlinear case. The construction of solutions uh of the Schrödinger
equation .�CV /uhD 0 which grow exponentially as h! 0 appeared first in the
work of Faddeev [1965; 1974] and were later used to solve the Calderón problem
in dimension 2 for isotropic conductivities by Sylvester and Uhlmann [1986],
under the assumption that the conductivity 
 is close to 1, and then by Nachman
[1996] to solve the problem unconditionally (except for regularity conditions on

 ). For the inverse scattering problem in dimension 2, this was used by Novikov
[1992] to solve the problem under smallness assumptions on the potential. These
solutions with complex phases depending on a parameter are called complex
geometric optic solutions (CGO in short) or Faddeev type solutions, the first
terminology obviously arising from the analogy with geometric optic solutions
with real phases used in the WKB approximation of solutions of hyperbolic
partial differential equations.

Definition 3.1. More precisely, we will say that a family of solutions uh (with
h 2 .0; h0/ small) of .�CV /uhD 0 are complex geometric optic solutions with
phase ˆ if there exists a complex-valued function ˆ and some functions a 2L2

independent of h and rh 2L2 such that

uh D eˆ=h.aC rh/; krhkL2 ! 0 as h! 0:

Practically, these solutions will have their maximum (of the modulus) localized
on the boundary @� and pairing with a function V will concentrate for small
h the value of V at the maximum, roughly speaking. However they will have
an oscillating phase (given by eiIm.ˆ/=h) and this term can provide us with
information on V in �, as in the linearized case. The construction of CGO as
defined above is in fact not a very complicated thing to do if one thinks in terms
of Carleman estimates (this will be developed below), but there is a complication:
indeed an observation of the integral identity (3) shows that if V1;V2 are bounded
potentials on �, say, and if NV1

D NV2
, thenZ

�

.V1�V2/u1u2 D 0

for all u1;u2 2H 2.�/ s.t. .�CV1/u1 D 0D .�CV2/u2: (4)

In particular, we see that if we expect to obtain information on V1�V2 in the
interior � from plugging CGO u1 D uh with phase ˆ1 and u2 D vh with phase
ˆ2 we should ask that Re.ˆ1/D�Re.ˆ2/, which turns out to be a much more
restrictive condition.

The phases which appeared in Sylvester and Uhlmann [1986] are linear and
the existence of CGO for the isotropic conductivity equation was proved under
the assumption that k1�
kW 3;1 � � where � > 0 is small depending only on �.
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Let us instead give the main technical result1of [Sylvester and Uhlmann 1987],
which consists in showing the existence of CGO with linear phases without
smallness assumptions on 
 or V .

Theorem 3.2 [Sylvester and Uhlmann 1987]. Let V 2 C1.�/ where � � C

is a domain with smooth boundary. For any s > 1, there exist constants C1;C2

such that if h> 0 and � 2C2, 1
2
� j�j � 2, possibly depending on h, are such that

�:� D 0; h�1
� C1kV kH s.�/

then there exists uh 2H s.�/ satisfying .�CV /uh D 0 of the form

uh.w/D e
w:�

h .1C rh.�; w//; with krhkH s.�/ � C2hkV kH s.�/:

We will give an idea of how to construct these CGO a bit later. First, let us
check what we can deduce from the existence of such solutions, in comparison
to the linearized case where we obtained the Fourier transform of the difference
of potential. If uh; vh are solutions of .�C V1/uh D 0 D .�C V2/vh of the
form

uh.w/D e
w:�

h .1C rh.�; w//

vh.w/D e
w:�

h .1C sh.�; w//

)
with krhkL2 CkshkL2 DO.h/;

� D ˛C i�; �D�˛C i�; ˛; �; �;2 R2; �:� D �:�D 0; j�j D j�j D 1;

given by Theorem 3.2, this implies that �D˙J˛ and ˛ D˙J�, where J is
the rotation of angle �=2 in R2. By (4) with u1 D uh and u2 D vh, we deduceZ

�

.V1�V2/e
2iw:�

h CO.h/D 0; if 0< h�1
� C max

iD1;2
kVikH 1 :

We see that from this identity, we cannot show that V1 D V2 since as h! 0 this
equality does not say anything if V1�V2 has a bit of regularity. It could however
say something about the singularity of V1 � V2, for instance if the potentials
have conormal singularities somewhere in the domain.

3C. Comparison with higher dimensions. In higher dimensions, n> 2, it turns
out that CGO with linear phases give enough information to identify a potential
and thus an isotropic conductivity. Indeed, applying Theorem 3.2 (recall that �
there can also depend on h) we obtain

uh.w/D e
w:�

h .1C rh.�; w//

vh.w/D e
w:�

h .1C sh.�; w//

)
with krhkL2 CkshkL2 DO.h/;

� D .˛C kh/C i.�C kh/; �D�.˛C kh/C i.��C kh/;

1The construction of the CGO in [Sylvester and Uhlmann 1987] holds in any dimension.
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where ˛;�; k 2 Rn are chosen such that ˛:k D ˛:�D k:�D 0, and 1
2
< j˛j D

j�j<2, in order that �:�D�:�D0; here h>0 is taken very small. Of course, here
we use that there are at least 3 orthogonal directions to define ˛; k; �. Plugging
those in the integral identity (4), this yields

0D

Z
�

eiw:k.V1�V2/CO.h/

and by letting h! 0, we see that V1 D V2 since its Fourier transform is 0. The
element which tells us information is somehow the leading term ew:.˙kCik/ in
the amplitudes of the CGO. This is summarized as follows:

Theorem 3.3 [Sylvester and Uhlmann 1986]. Let V1;V22C1.�/, where� is a
domain in Rn with smooth boundary, with n � 3. If the Dirichlet-to-Neumann for
the Schrödinger equations .�CVi/uD 0 agree, i.e., NV1

DNV2
, then V1 D V2.

It can be noticed from the proof of their paper that the smoothness assumption
on V1;V2 can be relaxed to W 2;1.�/ regularity.

On the other hand, in dimension nD 2, Sylvester and Uhlmann [1986] were
able to prove by using the CGO with linear phases that N
 determine locally a
conductivity close to 1. See Theorem 4.1.

3D. Constructing CGO in dimension 2.

3D.1. For linear phases, a direct approach using Fourier transform. Let us first
explain the method used in [Sylvester and Uhlmann 1987] to construct CGO
with linear phases for the Schrödinger equation .�C V /u D 0 on a domain
�� C. Of course, here the characteristic variety for the conjugated Laplacian
is much simpler than in higher dimension, which makes the proof easier, as we
shall now see. We search for solutions of the form

u.w/D e
w:�

h .1C rh.�; w//; � 2 C2; �:� D 0

where � may depend on h but 1
2
� j�j � 2. Then rh needs to solve

.h2�C h2V � 2h�r/rh D�h2V: (5)

If we think in terms of semiclassical calculus, one has an operator Ph D h2�C

h2V � 2h�r to invert on the right, and its semiclassical principal symbol is
ph.w; �/D �

2�2i�:� . Writing �D�Ci�, we have by an elementary calculation
(splitting self-adjoint and anti self-adjoint components)

kPhukL2 � k.h2�� 2h�:r/ukL2 � h2
kV ukL2

and

k.h2�� 2h�r/uk2
L2 D k.h

2�� 2hi�:r/uk2
L2 Ckh�:ruk2

L2 :
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Observe that j�j�1.�; �/ is an orthonormal basis of C if � D �C i� solves
�:� D 0. Fourier transforming, we obtain

k.h2�� 2h�r/uk2
L2 D

Z
R2

jh�j2jh� � 2�j2j Ou.�/j2d�

D h�2

Z
R2

j�j2j� � 2�j2j Ou.�=h/j2d�:

Let �2
1
C�2

2
C�2

3
D 1 be a partition of unity on .�1;1/, with �1 2C1

0
.�1; 1

2
/,

�2 2 C1
0
.1

4
; 3/ and �3 with support in .2;1�. We write

OuD
3P

iD1

Oui ;

where Oui.�/ WD �i.j�j/ Ou.�=h/. Since �3.j�j/D 0D �3.0/, we clearly have

h�2

Z
R2

j�j2j� � 2�j2j Ou3.�/j
2d� � C h�2

k Ou3k
2: (6)

Now, observe by integrating by parts, we have for any v 2 C1
0
.Rn/

2n

Z
Rn

jvj2 D�

Z
Rn

rjvj2:rj�j2d� D�

Z
Rn

rjvj2:rj�j2d�

D�4 Re
Z

Rn

Nvrv:�d�

�
4

�

Z
Rn

j�j2jvj2d�C 4�

Z
Rn

jrvj2 (7)

for any � > 0. We apply this with v D Ou1 after observing that u.w/ is supported
in jwj �R=h for some R> 0 and thus the H 1 norm of Ou1 is controlled by kuk
as follows:Z

R2

jr Ou1j
2
D h4

Z
R2

jwj2j O�1 ?u.hw/j2dw

� h2
kuk2

L2

� Z
j O�1.w/.jwjCR=hj/ dw

�2
� Ckuk2

L2 :

This implies, by taking � D ıh2 with ı small,

h�2

Z
R2

j�j2j� � 2�j2j Ou1.�/j
2d� �C h�2

Z
Rn

j�j2j Ou1j
2d�

�Cı.k Ou1k
2
L2 �Cıh2

kuk2
L2/: (8)
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For dealing with Ou2, we use the same argument after the change of variables
�! �C 2�:

h�2

Z
R2

j�j2j� � 2�j2j Ou2.�/j
2d�

D h�2

Z
R2

j�C 2�j2j�j2j Ou.�C 2�/j2�2.j�C 2�j/2d�

� C h�2

Z
R2

j�j2j Ou.�C 2�/j2�2.j�C 2�j/2d�

� Cı.k Ou2k
2
L2 �Cıh2

kuk2
L2/ (9)

for some small ı > 0. We conclude by taking ı small enough and combining (8),
(9) and (6) that

k.h2�� 2h�r/uk2
L2 � Cı.

Z
R2

ju.�=h/j2d� �Cıh2
kuk2

L2/� Cıh2
kuk2

L2

and thus (fixing ı)
kPhukL2 � C hkukL2 :

By the Riesz representation theorem (or Lax–Milgram), it is clear that P�
h

has a right bounded inverse mapping L2.�0/ to H 1
0
.�0/\H 2.�0/ with norm

OL2!L2.h�1/, but Ph has exactly the same form as Ph with V instead of V

and �N� instead of �, we can then apply the same argument to say that Ph has
a right inverse Gh D L2.�0/! H 1

0
.�0/\H 2.�0/ with norm OL2!L2.h�1/.

Equation (5) is solved by setting

rh D�h2GhV

which has norm krhkL2 D O.h/. The Sobolev norm krrhkL2 D O.1/ can also
be obtained easily from this proof above.

3D.2. For holomorphic phases. We will now give a more direct argument based
on Carleman estimates for general holomorphic phases without critical points.
This follows the method of Imanuvilov, Uhlmann, and Yamamoto [Imanuvilov
et al. 2010b]; see also [Guillarmou and Tzou 2009].

Lemma 3.4. Let ' be a harmonic function on � and V 2 L1. The following
estimate holds for all u 2 C1

0
.�/ and h> 0:

ke�'=h�e'=hukL2 � C
�

1

h



jr'ju


L2CkrukL2

�
:

In particular, if ' has no critical points, then for small h> 0

ke�'=h.�CV /e'=hukL2 � C
�

1

h
kukL2 CkrukL2

�
:
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Proof. It suffices to prove this for real-valued u. We use that �D�@Nz@z where
zD xC iy is the complex coordinate, and assume � is simply connected so that
there exists  harmonic with ˆD 'C i holomorphic,

e�'=h�e'=h
D�ei =h@Nze�i =hei =h@zei =h

and computing explicitly and integrating by parts (u 2 C1
0
.�/)

ke�i =h@zei =huk2
L2

D





@zuC iu
@z 

h





2

L2

D

Z
�

�
@xuCu

@y 

h

�2

C

�
@yu�u

@x 

h

�2

D kruk2C
1

h2
kur k2C

1

h

Z
�

@x.u
2/@y � @y.u

2/@x 

D kruk2C
1

h2
kur k2: (10)

We can now use the Poincaré inequality: if v 2 C1
0
.�/,

ke�i =h@Nz.e
i =hv/kL2Dk@Nz.e

i =hv/kL2DCkr.ei =hv/k�Ckvk2
L2 ; (11)

where the second equality uses integration by parts and the fact that v is compactly
supported. Combining (11) and (10), this proves the Lemma. If the domain
is not simply connected, the proof works the same for harmonic functions
with a harmonic conjugate, but in fact by using local Carleman estimates and
convexification arguments (see [Guillarmou and Tzou 2009]) this even works
for all harmonic functions without critical points. �

Again, using Riesz representation theorem, this construct a right inverse G˙
h

on L2.�/ for e�ˆ=h.�C V /e˙ˆ=h with L2! L2 norm O.h/ and allows to
construct complex geometric optic solutions of .�CV /uD 0 by setting

uh D eˆ=h.aC rh/; @zaD 0; rh D�GC
h
.Va/D OL2.h/

since aeˆ=h is a solution of �.aeˆ=h/D 0. The same obviously holds if we take
antiholomorphic phases ˆ instead of ˆ. The proof we just described is simpler
than the Fourier transform approach above, but it is very particular to dimension
2 while the other one can be adapted to higher dimensions (for linear phases).

As for linear phases in 2 dimensions, it seems difficult to get enough informa-
tion from these CGO. Indeed, if uhD eˆ=h.aCrh/ is a solution of .�CV1/uD0

and vh D e�ˆ=h.bC sh/ a solutions of .�CV2/v D 0 with a; b holomorphic
and krhkL2CkshkL2 D O.h/, we deduce from the integral identity (3) by letting
h! 0 that Z

�

.V1�V2/ab D 0;
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which means that V1�V2 is orthogonal to antiholomorphic functions. Similarly,
we can show it is orthogonal to holomorphic functions, but that does not show that
V1 D V2. If instead we take vh D e�

N̂ =h. NbC sh/, we obtain (with  D Im.ˆ/)Z
�

.V1�V2/e
2i =ha Nb D O.h/;

but the oscillating term is decaying in h by nonstationary phase (we know
V1 D V2 on the boundary, by boundary uniqueness); thus we do not obtain
anything interesting.

Remark. Carleman estimates have been used extensively to prove unique contin-
uation for solutions of PDE (or differential inequalities), they turn out to be very
powerful. In control theory, they are also a strong tool. We refer the interested
reader to [Lebeau and Le Rousseau 2011]. In inverse problems, they have been
apparently first used for the Calderón problem in [Bukhgeim and Uhlmann 2002],
and then developed in [Kenig et al. 2007; Dos Santos Ferreira et al. 2009]. The
property of holomorphic phases (without critical points) to be good weights
for Carleman estimates was observed in [Dos Santos Ferreira et al. 2009] and
[Bukhgeim 2008]. The first of these two papers studied in general what the
authors call limiting Carleman weights: weights ' such that a Carleman estimate
holds for both ' and �' with d' never vanishing. In dimension 2, they showed
that harmonic functions with no critical points verify this. In [Bukhgeim 2008],
the author used holomorphic phases with critical points to solve the inverse
problem for a potential (this will be explained further down.)

4. The inverse problem for conductivities

4A. Local uniqueness near constant conductivities. We start with the first re-
sult obtained for conductivities in dimension 2:

Theorem 4.1 [Sylvester and Uhlmann 1986]. Let � � R2 be a domain with
smooth boundary. There exists � > 0 depending on � such that if N
1

D N
2

and k1� 
jkW 3;1 � � for j D 1; 2, then 
1 D 
2.

The method is based on the construction of CGO with linear phases; we refer
the reader to the original paper for details.

4B. Global uniqueness in a particular case.

Theorem 4.2 [Sun 1990]. If 
1; 
2 2 C 4.�/ with � simply connected and
� log.
1/D 0 or �
m

1
D 0 for some m 6D 0, then N
1

D N
2
implies 
1 D 
2.
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4C. The theorem of Nachman: global uniqueness. Here is the first definitive
result for conductivity in 2 dimensions:

Theorem 4.3 [Nachman 1996]. Let �� C be a Lipschitz bounded domain and

1; 
2 2W 2;p.�/ for p > 1 be two positive functions inf� 
i > 0. If N
1

DN
2
,

then 
1 D 
2.

Idea of proof. Nachman’s approach is based on some sort of scattering theory
for complex frequencies. This uses Faddeev Green’s functions [Faddeev 1974]
and some N@ methods, which appeared first for one-dimensional inverse scattering
in the work of Beals and Coifman [1981; 1988] and later in 2 dimensions in
[Ablowitz et al. 1983; Grinevich and Manakov 1986; Grinevich and Novikov
1988b; Novikov 1986; 1992]. We have seen in Theorem 3.2 that linear CGO for
�CV can be constructed for large complex frequencies � (i.e., hD j�j�1 small);
this is one of the difficulties to recover 
 and somehow this is what Nachman
achieves.

By boundary uniqueness, we can always extend the conductivities outside
�, so that they agree outside � and are equal to 1 outside a large ball of C.
The problem of solving the equation .�CV /uD 0 can then be considered in
the whole complex plane C. Nachman actually proves that if V comes from
a conductivity, that is V
 D��


1
2 =


1
2 , then it possible to construct CGO for

all complex frequencies, not only for large ones, and with uniqueness if one
assumes some decay at infinity. More precisely he shows that if V
 2 Lp for
1 < p < 2 for any � 2 f� 2 C2 n f0gI �:� D 0g, there is a unique solution u� of
.�CV
 /uD 0 which satisfies as a function of w 2 R2

r�.w/ WD e�i�:wu�.w/� 1 2Lq.R2/\L1.R2/; 1
p
�

1
q
D

1
2
:

Essentially, to solve this problem for large � we have seen that it amounts to
invert on the right the operator��2�:r acting on functions compactly supported
(or decaying at infinity), with a decay estimate O.j�j�1/ in L2 for the operator
norm when j�j ! 1. This can be done when j�j is large enough. Nachman
manages to show that the solution is unique under the decay condition at infinity,
and using Fredholm theory, he manages to deal with small j�j. The estimate he
obtains on the CGO is

kr�kLq � C j�j�1
kV kLp for large j�j:

Nachman shows that N
 determines r� j@� by using a sort of scattering operator
Sk : he shows that u� j@� is the solution of the integral equation (we use zDxCiy

and w D .x;y/ to identify C with R2)

u�.z/D eikz
� .Sk.N
 �N1/u�/.z/ on @�; if � D .k; ik/ with k 2 C
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where Sk is the operator with integral kernel given by the trace at the boundary
of the Faddeev Green’s function:

Skf .w/ WD

Z
@�

Gk.w�w
0/f .w0/ dw0;

Gk.w/ WD
eizk

4�2

Z
R2

eiw:�

j�j2C 2k.�1C i�2/
d�;

and N1 is the Dirichlet-to-Neumann operator for the conductivity 
0 D 1. Defin-
ing the scattering transform t.k/ 2 C to be

t.k/ WD

Z
@�

eizk.N
 �N1/u� j@�; � D .k; ik/

one sees that t.k/ is determined by N
 . The crucial observation of Nachman
is that �k.z/ WD e�ikzu�.z/ solves a N@ equation in the frequency k parameter
involving t.k/

@ Nk�k.z/D
1

4� Nk
t.k/e�2iRe.kz/�k.z/:

in a certain weighted Sobolev space in z. Notice that this N@-type equation
in the frequency was also previously in the works [Grinevich and Manakov
1986; Grinevich and Novikov 1988b; Novikov 1992; Beals and Coifman 1988].
Nachman then shows that such equation have unique solutions by using a sort of
Liouville theorem for pseudo-analytic functions, at least if we know that �k is
bounded for k near 0 and t.k/= Nk is not too singular at k D 0. The boundedness
in k! 0 is shown in [Nachman 1996], using in particular the fact that Faddeev
Green’s function does not degenerate too much as k! 0 (essentially by a log k).
The function �k turns out to be the solution of the integral equation

�k.z/D 1C
1

8�2i

Z
C

t.k 0/

.k 0� k/ Nk 0
e�2iRe.kz/�k0.z/ dk 0 ^ d Nk 0

in the weighted Sobolev space and it also satisfies �k.z/! 
 1=2 as k! 0. In
particular �k is determined by the scattering transform t.k/ and thus by N
 .
Letting k! 0 in �k.z/ determines 
 . �

4D. The Brown–Uhlmann and Beals–Coifman results. The regularity assump-
tion was weakened to 
 2 W 1;p.�/ by Brown and Uhlmann [1997], who
modified and simplified Nachman’s proof using the N@-method of [Beals and
Coifman 1988]. It turns out that the result of Beals and Coifman for the Davey–
Stewartson equation, when interpreted in the right way, proves Nachman’s result
if one assumes smooth conductivities. (Amusingly, it seems almost a decade
elapsed before someone made this observation.)
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Theorem 4.4 [Brown and Uhlmann 1997]. Let �� C be a Lipschitz bounded
domain and 
1; 
2 2W 1;p.�/ for p > 2 be two positive functions inf� 
i > 0.
If N
1

D N
2
, then 
1 D 
2.

Idea of proof. As mentioned, the idea is to use the N@-method of [Beals and
Coifman 1988]: u is a solution of div.
ru/D 0 if and only if��

N@ 0

0 @

�
�

�
0 V

V 0

��
:

�
v

v0

�
D 0; with v WD 


1
2 @u; v0 D 


1
2 N@u

and the potential is V .z/ WD �1
2
@z log 
 involves only one derivative of the

conductivity. The operator above also acts on 2�2 matrices and the CGO in this
setting is given by a

uk.z/Dmk.z/

�
eizk 0

0 e�i Nzk

�
; k 2 C n f0g

where mk.z/ is a matrix-valued function such that mk.z/! Id as jzj ! 1,
and mk�! Id 2 Lq for some q > 2. It can be also be shown that kmk.z/�

IdkLq.k2C/ � C uniformly in z for qD p=.p�2/. The argument is then similar
to what we explained above in Nachman’s result: one uses the fact (proved in
[Beals and Coifman 1988]) that mk.z/ satisfies a N@ equation in k:

@ Nkmk.z/Dm Nk.z/EkSk ; with Ek WD

 
e2iRe.z Nk/ 0

0 e�2iRe.zk/

!
where Sk is the scattering data (which we do not define but is analogous to the
Nachman scattering transform), shown to be determined by N
 . Then certain
linear combinations !k.z/ of the coefficients of mk.z/ satisfy a pseudo-analytic
equation of the form @ Nk!k.z/D r.k/!k.z/with r 2L2 and Brown and Uhlmann
showed the following Liouville-type result: if ! 2 Lp \L2

loc.C/ is a solution
of @ Nk! D a! C b! with a; b 2 L2, then u D 0. This implies that mk.z/ is
determined by N
 as in Nachman’s paper. Now to recover the potential V , it
suffices to notice that Dkmk D Vmk where

Dk WDDC
k

2

�
�i 0

0 i

�
and the potential V can be recovered by the expression

V .z/Vol BR.0/D� lim
k0!1

Z
jk�k0j�R

Dkmk.z/
dk ^ d Nk

2i
; R> 0 fixed;

since mk.z/! 1 as k!1 in a sufficiently uniform way. �
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4E. The theorem of Astala–Päivärinta. Astala and Päivärinta found a new ap-
proach related to quasiconformal techniques to show the uniqueness of an L1

conductivity from the Dirichlet-to-Neumann operator.

Theorem 4.5 [Astala and Päivärinta 2006]. Let � � C be a simply connected
bounded domain and 
1; 
2 2L1.�/ be two positive functions inf� 
i > 0. If
N
1
D N
2

, then 
1 D 
2.

Idea of proof. To avoid using regularity on the conductivity, the idea is to
transform the equation div.
ru/D 0 into a Beltrami equation. They show that
if u 2H 1.�/ is a solution of div.
ru/D 0, then there exists a unique function
v 2H 1.�/ such that f D uC iv solves the Beltrami equation

@Nzf D �@zf ; where � WD
1� 


1C 

: (12)

Conversely, if f D uC iv is a solution of the Beltrami equation with k�kL1 <
1� � for some � > 0, then

div.
ru/D 0 and div.
�1
rv/D 0;

where 
 D .1 � �/=.1C �/. The map H� W uj@� ! vj@� is the �-Hilbert
transform, and Astala and Päivärinta show that the N
 determine the H� and
conversely (they also determine the H�� and the N
�1). Similarly to the results
discussed in Sections 4C and 4D, the authors show the existence of mk.z/ such
that fk.z/D eizkmk.z/ solves (12) and mk.z/� 1D O.1=jzj/ as jzj !1. If
gk D eizkm0

k
.z/ denotes a solution for the Beltrami coefficient �� instead of

�, then hC WD .fk C f
0

k
/=2 and h� WD i. Nfk �

Nf 0
k
/=2 solves pseudo-analytic

equations in the frequency parameter

@ NkhC.k/D �.k/h�.k/; @ Nkh�.k/D �.k/hC.k/

where �.k/ is the scattering coefficient

�.k/ WD
i

4�

Z
C

@Nz.mk.z/�m0k.z// dz ^ d Nz:

Like their predecessors, Astala and Päivärinta show that N
 determines the
coefficient �.k/. The main difficulty in their proof is to study the behavior of
mk.z/� 1 as k!1, and the decay of this function was a fundamental tool in
[Nachman 1996; Brown and Uhlmann 1997] to prove that once we know the
scattering coefficient, mk.z/ is determined uniquely. The decay was mk.z/� 1

was of order O.1=jkj/ when the conductivity was regular enough, but in the L1

case Astala–Päivärinta show that fk.z/ D eik'k.z/ with 'k.z/� z D o.1/ as
jkj ! 1 uniformly in z 2 C, which implies that mk.z/� 1! 0 as jkj ! 1
uniformly in z. �
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Remark. Astala, Lassas and Päivärinta [2011] posted recently a paper where
they describe in a way the classes of conductivities which can be determined by
the Dirichlet-to-Neumann map and find examples which are invisible (related to
“cloaking”). The sharp class for isotropic conductivities that can be identified are
those 
 with values in Œ0;1� such thatZ

�

exp.exp.q
 .w/C q=
 .w/// dw <1 for some q > 0:

They also have sharp criteria for anisotropic cases in terms of the regularity of
Tr.
 /;Tr.
�1/ and det.
 /; det.
�1/.

4F. From isotropic to anisotropic conductivity. When the conductivity is aniso-
tropic, there is a way in dimension 2 (for domains of C) to reduce the problem
to the isotropic case by using isothermal coordinates. For a metric


 DE dx2
CG dy2

C 2F dx dy D �jdzC� d Nzj2

on a domain �� C, where

� WD 1
4

�
ECGC 2

p
EG �F2

�
and � WD

E �GC 2iF

�
;

there is a diffeomorphism ˆ W�!�0 such that ˆ�
 D e! jdzj2 is conformal to
the Euclidean metric (! is some function), and ˆ is a complex-valued function
solving the Beltrami equation

@NzˆD �@zˆ:

An anisotropic conductivity 
 is a positive definite symmetric (with respect
to the Euclidean metric) endomorphism acting on 1-forms and the anisotropic
conductivity equation is d
duD 0. The push forward by a diffeomorphism ˆ

is defined in that setting by .ˆ�
 /˛ WDˆ�.
 .ˆ�˛// if ˛ is any 1-form. Using
those isothermal coordinates, we have:

Theorem 4.6 [Sylvester 1990]. Let 
1; 
2 be two anisotropic C 3 conductivities,
viewed as endomorphisms acting on 1-forms, where � � C is a domain with
C 3 boundary. Then if there exists a C 3 diffeomorphism � W @�! @� such that
��N
1

D N
2
, then there exists a conformal diffeomorphism ˆ W�!� which

satisfies

ˆ�
1 D

�
det.
1 ıˆ

�1/

det 
2

�1
2


2:

Idea of proof. The method is to extend the conductivities 
j outside � so that
it is the identity outside a compact set of C and they agree outside � (which is
possible by Kohn–Vogelius boundary uniqueness) and then use the isothermal
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coordinates on C, with the condition that the diffeomorphism ĵ pushing the
conductivity 
j to an isotropic one is asymptotically equal to Id near infinity
and is the unique solution of a Beltrami equation with this asymptotic condition.
Then the final step is to show that ˆ1 D ˆ2 in C n � by using equality of
Dirichlet-to-Neumann operators. To that end, Sylvester [1990] uses CGO of the
form

uj .zI k/D eik ĵ .z/ det.
j /�1=4.1C rj .zI k//; rj .zI k/! 0 as k!1;

which are uniquely determined by their asymptotics

uj .zI k/� eik ĵ .z/ det.
j /�1=4

as jzj !1. Then he uses that limjkj!1 log.u.zI k//=k D ĵ .z/ and the fact
that N
1

DN
2
implies that u1.zI k/Du2.zI k/ in Cn� (by unique continuation

in that set) to conclude that ˆ1.z/Dˆ2.z/ in C n�. �

Remarks. Now, since 
2 in the theorem can be pushed forward into an isotropic
conductivity e!Id for some function ! using isothermal coordinates, we can use
Nachman’s theorem to deduce directly that N
1

DN
2
implies 
1 Dˆ�
2 for

some diffeomorphism ˆ which is the identity on the boundary. The regularity
was improved to 
j 2W 1;p with p > 2 in [Sun and Uhlmann 2003] and then to

j 2L1 (with the condition that C Id� 
j � C�1Id on � for some C > 0) in
[Astala et al. 2005].

5. The inverse problem for potentials and magnetic field in domains of C

5A. The case with a potential. As we have seen before, the CGO with linear
phase do not provide enough information to be able to recover a general potential
in 2 dimensions. But we have the following result for generic potentials:

Theorem 5.1 [Sun and Uhlmann 1991]. Let � � R2 be domain with smooth
boundary. There exists an open dense set O�W 1;1.�/�W 1;1.�/ such that
if NV1

D NV2
and .V1;V2/ 2 O, then V1 D V2.

The proof is based on construction of CGO with linear phases, combined with
analytic Fredholm theory. We do not discuss it further and refer the interested
reader to the original paper.

Grinevich and Novikov also showed local uniqueness for potentials close to
positive constants, and later Novikov extended this to potentials close to nonzero
constants:2

2The proofs dealt with the scattering problem, but the result for the bounded domain setting
follows directly by using boundary uniqueness and extending the potentials to R2.
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Theorem 5.2 [Grinevich and Novikov 1988a; Novikov 1992]. Let �� R2 be
domain with smooth boundary and E 2 R n f0g. Then there exists CE > 0

depending on jEj such that for V1;V2 satisfying kVj � EkL1 � CE , then
NV1
DNV2

implies V1 D V2. The constant CE tend to 0 as jEj ! 0 and toC1
as jEj !1.

The general case has been recently tackled by Bukhgeim. His new idea is to
use Morse holomorphic phases with a critical point where one wants to identify
the potential:3

Theorem 5.3 [Bukhgeim 2008]. Let� be a domain in C and V1;V2 2W 1;p.�/

for p > 2. If NV1
D NV2

, then V1 D V2.

Proof. As we have seen in Lemma 3.4, holomorphic and antiholomorphic
functions are Carleman weights in dimension 2. Before we start the proof,
let us recall that if for a holomorphic function ˆ, one can construct u1 D

eˆ=h.1C rh/ and u2D e�
N̂ =h.1C sh/ some CGO which solve .�CVj /uj D 0

with kshkL2CkrhkL2 D o.1/ as h! 0, the integral identity (4) tells us as h! 0

that Z
�

.V1�V2/e
2iIm.ˆ/

CO.krhkL2 CkshkL2/D 0: (13)

Of course, the oscillating term will be decreasing very fast as h! 0 if the phase
is nonstationary, and therefore we won’t get any good information; we are instead
tempted to takeˆ with a nondegenerate critical point z0 2� and apply stationary
phase to deduce the value of V1�V2 at z0. This is essentially the main idea of
the proof. However, by inspecting Lemma 3.4, the remainder terms rh; sh cannot
reasonably be smaller than OL2.h/ and the terms obtained by stationary phase in
(13) is also of order h, which makes the recovery of .V1�V2/.z0/ quite tricky.

For constructing CGO, Bukhgeim makes a reduction of the problem to a
(@; N@)-system. Let ˆD �C i be a holomorphic function on � with a unique
critical point at z0, which is nondegenerate in the sense @2

zˆ.z0/ 6D 0. Although
here 1-forms and functions are easily identified on a domain�, we prefer to keep
in mind that the operator N@D @Nz D 1

2
.@xC i@y/ maps functions f .z/ to .0; 1/-

forms .@Nzf / d Nz, since we will later discuss the same problems for Riemann
surfaces. We denote by ƒk.�/ the bundle of k-forms and by ƒ0;1.�/ (resp.
ƒ1;0.�/) the bundle whose sections are of the form f .z/ d Nz, or equivalently in
.T ��/0;1 (resp. of the form f .z/ dz, or equivalently in .T ��/1;0). The operator
N@� is the adjoint of N@ and is given by N@� D �2i � @ where � is the Hodge star
operator mapping ƒ1;1.�/ to ƒ0.�/ by �.dz ^ d Nz/D�2i , @ maps ƒ.0;1/.�/

3In [Bukhgeim 2008], it is claimed that a potential in Lp.�/ with p > 2 can be identified with
this method, but the argument of the paper does not seem to imply directly that such regularity can
be dealt with.
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to ƒ.1;1/.�/ by @.f .z/ d Nz/ D .@zf .z// dz ^ d Nz if @z D
1
2
.@x � i@y/. Recall

that the Laplace operator is �D N@� N@, therefore setting N@uD w, we can reduce
the equation .�CV /uD 0 to the equivalent first order system�

V N@�

N@ �1

��
u

w

�
D 0:

and NV determine the boundary values of this system. In fact, as we shall see,
the Cauchy data at the boundary

CQ WD fF j@�I .DCQ/F D 0g

for first order systems of the form .D CQ/F D 0 (with the notation (14))
determine any matrix potential Q 2W 1;p.�/ with p > 2, where

D D

�
0 N@�

N@ 0

�
and QD

�
q 0

0 q0

�
(14)

are the Dirac type operator and the matrix potential, q; q0 2W 1;p.M0/ (with
p> 2) being complex-valued (both acting on sections of† WDƒ0.�/˚ƒ0;1.�/

over �).

(i) Construction of CGO. The goal is to construct complex geometrical optics
F 2W 1;p.�/ that solve the equation

.DCQ/F D 0

on �. It is clear that

D D

 
e�
N̂ =h 0

0 e�ˆ=h

!
D

 
eˆ=h 0

0 e
N̂ =h

!
and thus  

e�
N̂ =h 0

0 e�ˆ=h

!
.DCQ/

 
eˆ=h 0

0 e
N̂ =h

!
DDCQh ;

where

Qh D

�
e2i =hq 0

0 e�2i =hq0

�
:

We want to construct solutions Fh of .DCQh/Fh D 0 having the form

Fh D

�
aC rh

bC sh

�
DWACRh; (15)

where a is some holomorphic function on �, b some antiholomorphic 1-form,
and Rh D .rh; sh/ an element of W 1;p.�/ that decays appropriately as h! 0.
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In particular, we need to solve the system

.DCVh/Rh D�QhAD�

�
e2i =hqa

e�2i =hq0b

�
:

One can now use a right inverse for the operator D, by taking the Cauchy integral
kernel:

N@�1
Wf .z/ dz 7!

�
z!

1

�

Z
�

f .z0/

z� z0
dx0 dy0

�
; z0 D x0C iy0;

@�1
Wf .z/ dz ^ d Nz 7!

�
z!

d Nz

�

Z
�

f .z0/

Nz� Nz0
dx0 dy0

�
; z0 D x0C iy0:

We next define the operators D�1

D�1
WD

�
0 N@�1

N@��1 0

�
; with N@��1

D�.2i/�1@�1
�

which satisfy DD�1 D Id on Lq.�/ for all q 2 .1;1/. Similarly,

D�1
h WD

�
0 N@�1

h
N@��1
h

0

�
; with N@�1

h D
N@�1e�2i =h; N@��1

h D N@��1e2i =h:

To construct Rh solving .DCVh/Rh D�QhA in �, it then suffices to solve

.IdCD�1
h Q/Rh D�D�1

h QA:

Writing the components of this system explicitly we get

rhC
N@�1
h .q0sh/D�N@

�1
h .q0b/;

shC
N@��1
h .qrh/D�N@

��1
h .qa/

(16)

Since we are allowed to choose any holomorphic function a and antiholomorphic
1-form b, we may set aD 0 in (16) and solve for rh to get

.I �Sh/rh D�
N@�1
h .q0b/ with Sh WD

N@�1
h q0 N@��1

h q: (17)

where q; q0 are viewed as multiplication operators. Now we want to estimate the
norm of Sh, and in that aim we can use the following crucial operator bound
whose proof we give in detail since it is the main technical point of Bukhgeim’s
paper.4

Lemma 5.4 (The key estimate). There exist � > 0, h0 > 0 and C > 0 such that
for all h 2 .0; h0/ and all u 2W 1;p.�;ƒ1.�// and v 2W 1;p.�/

kN@�1
h ukL2.�/ � C h

1
2
C�
kukW 1;p.�/; k

N@��1
h vkL2.�/ � C h

1
2
C�
kvkW 1;p.�/:

4The proof presented here is not exactly Bukhgeim’s proof but the idea essentially the same;
we took it from [Guillarmou and Tzou 2011b].
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Proof of the lemma. We only give a proof for N@�1
h

, the other case is exactly the
same. The L2 estimate will be obtained by interpolation between Lq; q < 2

estimates and Lq; q > 2 estimates. By standard Calderón–Zygmund theory for
singular integral kernels, the operators N@�1 and N@��1 map Lq.�/!W 1;q.�/

for all q 2 .1;1/.

(i) Case q < 2. Let ' 2C1.�/ be a function which is equal to 1 for jz�z0j> 2ı

and to 0 in jz � z0j � ı, where ı > 0 is a parameter that will be chosen later
(it will depend on h). Using the Minkowski inequality, one can write (with
z0 D x0C iy0)

N@�1..1�'/e�2i =hf /




Lq.�/

�

Z
�





 1

j � �z0j






Lq.�/

j.1�'.z0//f .z0/j dx 0dy0

� Ckf kL1

Z
�

j.1�'.z0//j dx0 dy0 � Cı2
kf kL1 (18)

and we know by Sobolev embedding that kf kL1 �Ckf kW 1;p . On the support
of ', we observe that since ' D 0 near z0, we can use

N@�1.e�2i =h'f /D
1

2
ih

�
e�2i =h 'f

N@ 
� N@�1

�
e�2i =h N@

�
'f

N@ 

���

and the boundedness of N@�1 on Lq to deduce that for any q < 2

kN@�1.'e�2i =hf /kLq.�/

� C h

�
k
'f

N@ 
kLq Ck

f N@'

N@ 
kLq Ck

' N@f

N@ 
kLq Ck

f '

.N@ /2
kLq

�
: (19)

The first term is clearly bounded by ı�1kf kL1 due to the fact that  is Morse.
For the last term, observe that since  is Morse, we have 1=j@ j � c=jz� z0j

near z0; therefore



 f '

.N@ /2






Lq

� Ckf kL1

�Z 1

ı

r1�2qdr

�1=q

� Cı
2
q
�2
kf kL1 :

The second term can be bounded by



f N@'N@ 






Lq

� kf kL1





 N@'N@ 






Lq

:
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Observe that while kN@'=N@ kL1 grows as ı�2, N@' is only supported in a neigh-
borhood of radius 2ı. Therefore we obtain



f N@'N@ 






Lq

� ı2=q�2
kf kL1 :

The third term can be estimated by



' N@fN@ 






Lq

� CkN@f kLp





 'N@ 






L1
� Cı�1

kN@f kLp :

Combining these four estimates with (19) we obtain

N@�1.'e�2i =hf /




Lq.�/
� hkf kW 1;p .ı�1

C ı2=q�2/:

Combining this and (18) and optimizing by taking ı D h1=3, we deduce that

kN@�1.e�2i =hf /kLq.�/ � h2=3
kf kW 1;p (20)

(ii) Case q � 2. One can use the boundedness of N@�1 on Lq to obtain

kN@�1..1�'/e�2i =hf /kLq.�/ � k.1�'/e
�2i =hf kLq.�/

� Cı
2
q kf kL1 : (21)

Now since ' D 0 near z0, we can use the identity

N@�1.e�2i =h'f /D 1
2
ih

�
e�2i =h 'f

@Nz 
� N@�1

�
e�2i =h@Nz

�
'f

@Nz 

���
and the boundedness of N@�1 on Lq to deduce that for any q � p, (19) holds
again with all the terms satisfying the same estimates as before, so that

N@�1.e�2i =h'f /




Lq � C hkf kW 1;p .ı2=q�2

C ı�1/� C hı2=q�2
kf kW 1;p

since now q � 2. Now combine the above estimate with (21) and take ı D h
1
2

we get 

N@�1.e�2i =hf /




Lq � h1=q
kf kW 1;p

for 2� q � p. The estimate claimed in the lemma is obtained by interpolating
the case q < 2 with q > 2. �

From this lemma, we see directly that

kShkL2!L2 � C h1=2C�
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for some � > 0 when the potential Q is W 1;p.�/ with p > 2. Therefore (17)
can be solved by using Neumann series by setting (for small h> 0)

rh WD �

1X
jD0

S
j

h
N@�1
h .q0b/ (22)

as an element of any L2.�/. Substituting this expression for r into (16) when
aD 0, we get

sh D�
N@��1
h .qrh/: (23)

(ii) Identification of the potential. Using boundary identification as in Section 2,
one can assume that Q1 � Q2 D 0 at @� if the Cauchy data at @� agree.
Let F1

h
;F2

h
be some CGO solutions of the form (15) constructed as above for

respectively the operators .D CQ1/ and .D CQ�
2
/, where Qj are diagonal

matrices defined as in(14) for some qj ; q
0
j 2W 1;p.�/. Assume that the boundary

values of solutions of the equations .DCQ1/FD0 and .DCQ2/FD0 coincide.
Then there exists a solution Fh of .DCV2/F D 0 such that Fhj@� D F1

h
j@�;

therefore .DCV2/.F
1
h
�Fh/D .Q2�Q1/F

1
h

, and using Green’s formula and
the vanishing of F1

h
�Fh on the boundary,

0D

Z
�

˝
.DCQ2/.F

1
h �Fh/;F

2
h

˛
D

Z
�

˝
.Q2�Q1/F

1
h ;F

2
h

˛
: (24)

This gives

0D

Z
�

.q02�q01/e
�2i =h

�
jbj2Chb; s2

hiChs
1
h; bi

�
C.q2�q1/e

2i =hr1
h r2

h
: (25)

The last term is O.h1C2�/ by Lemma 5.4. Using boundary identification as in
Section 2, one has Q1 �Q2 D 0 at @� if the Cauchy data at @� agree. The
stationary phase gives an asymptotic expansion as h! 0Z

�

.q02� q01/e
�2i =h

jbj2 D Cz0
jb.z0/j

2.q02.z0/� q01.z0//hC o.h/

for some Cz0
6D 0. Now for the remainder, we use (23) so thatZ

�

.q02� q01/e
�2i =h

hb; s2
hi D�

Z
�

e2i =h N@�1
h .b.q02� q01//q2r2

h

and by Lemma 5.4, this is a O.h1C2�/. The same argument applies for the last
term and this shows that q0

1
D q0

2
since z0 can be chosen arbitrarily in �. One

can prove the same thing for q1 D q2 with the same argument but taking b D 0

and a.z0/ 6D 0 in the CGO. �



THE CALDERÓN INVERSE PROBLEM IN TWO DIMENSIONS 145

5B. The case with a magnetic field. A natural problem to consider is the inverse
problem for the magnetic Schrödinger Laplacian on a smooth domain �� C:

LX ;V D .d C iX /�.d C iX /CV;

where V 2 L1.�/ is a potential and X 2W 1;1.�Iƒ1.�// is a real-valued
1-form, called the magnetic potential, and � denotes the adjoint with respect to
the Euclidean L2 product. The natural Cauchy data space associated to .X;V /
in this case is

CX ;V WD
˚
.u; @�uC iX.�/u/j@�ILX ;V uD 0;u 2H 1.�/

	
:

The magnetic field is the exact 2-form dX and it is easily seen that there is a
gauge invariance since

CX ;V D CXCd';V (26)

for any function ' 2 W 2;1.�/ such that ' D 0 on @�, simply by observing
that d C i.X C d'/ D e�i'.d C iX /ei' . In fact, if ' is function in R=2�Z

with ei' j@� D 1, then (26) holds true as well and one can therefore identify at
best X CF�1dF where F is any S1-valued functions which are equal to 1 on
the boundary. When � is simply connected, this is the same as identifying the
magnetic field dX (or equivalently the curvature of the connection d C iX ).

Theorem 5.5 [Sun 1993]. Let �� C be a smooth domain, then there exists an
open dense set O�W 1;1.�/ such that for any V 2 O, there is a neighborhood
OV of V in O and a constant C > 0 such that if X1;X2 2W 3;1.�;ƒ1.�// are
two magnetic potentials satisfying kdXjkW 2;1 � C and if V1;V2 2 OV , then

CX1;V1
D CX2;V2

D) d.X1�X2/D 0 and V1 D V2:

Another result in this direction, given for smooth data, is the following:

Theorem 5.6 [Kang and Uhlmann 2004]. Let �� C be a smooth domain, and
let X1;X2, and V1;V2 be smooth 1-forms and potentials. Let p > 2, then there
exists � such that if kV1kW 1;p � � and CX1;V1

D CX2;V2
, then d.X1�X2/D 0

and V1 D V2.

In particular, when V1DV2D 0, this allows one to identify a smooth magnetic
potential up to gauge in a simply connected domain.

Further results. For partial data measurement, Imanuvilov, Uhlmann and Ya-
mamoto [Imanuvilov et al. 2010a] obtain identification of magnetic field (up
to gauge) and potential in a domain. Guillarmou and Tzou [2011b] recover a
connection (i.e., a magnetic potential) up to gauge and the potential on a Riemann
surface from full Cauchy data. See below for those results.
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6. Inverse problems on Riemann surfaces

6A. The metric problem. As we mentioned in Section 1B, the Dirichlet-to-
Neumann operator NM;g associated to a Riemannian metric g on a surface M

does not determine the isometry class, but can at best determine the conformal
class of g (and g on the boundary). Recall that a conformal class on an oriented
surface M is equivalent to a complex structure, that is a atlas with biholomorphic
changes of charts in C.

This problem has been solved by Lassas and Uhlmann [2001], with a simpler
proof by Lassas, Taylor and Uhlmann, who were also able to determine the
topology of M from Ng:

Theorem 6.1 [Lassas et al. 2003]. Let .M1;g1/; .M2;g1/ be two Riemannian
surfaces with the same boundaries Z. If N.M1;g1/ D N.M2;g2/. There exists a
diffeomorphism ˆ WM1!M2 such that ˆ�g2 is conformal to g1 and ˆjZ D Id.

Sketch of proof. The idea is to use the Green’s function and show that for analytic
manifolds, the Green’s function determines the manifold and the conformal
class in dimension 2. Near a point p 2 Z of the boundary, there exists a
neighborhood Ui in Mi and some diffeomorphisms  i W B ! Ui where B

are half balls in the upper half plane B D B.0; 1/ \ fIm.z/ > 0g, such that
 i.0/Dp and  �i gi D e2fi jdzj2 for some functions fi (isothermal coordinates).
The associated Laplacians in these coordinates are given by e�2fi� where
�D�@z@Nz is the flat Laplacian in R2. The Green’s functions Gi.m;m

0/ with
Dirichlet conditions on Mi are the L1 functions such that in the distribution
sense �gi

Gi.m;m
0/D ı.m�m0/ is the distribution kernel of the Identity with

Gi.m;m
0/D 0 if m or m0 (but m 6Dm0) is on the boundary Z. In general, we

have following property as an application of Green’s formula (this is standard,
see for instance [Guillarmou and Sá Barreto 2009, Lemma 3.1]):

Lemma 6.2. For a metric g on a manifold M , the Schwartz kernel of N.M;g/ is
a singular integral kernel given for y 6D y0 2 @M by

N.M;g/.y;y
0/D @�@�0G.m;m

0/j.m;m0/D.y;y0/

where G is the Green kernel with Dirichlet conditions and @� ; @�0 denote the
normal derivative to the boundary in the left and right variable.

Therefore we can deduce that if N.M1;g1/ D N.M2;g2/ then G1.m;m
0/ D

G2.m;m
0/when viewed in the chart B, since they solve the same elliptic problem

with the same local Cauchy data (Dirichlet and Neumann), this is by unique
continuation for a scalar elliptic PDE. The idea of [Lassas et al. 2003] is to define
an analytic embedding of M to a Hilbert space through the Green’s function:
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they define

Gi WMi!L2.B/; Gi.m/ WDGi.m;  i. � //:

Notice by the remark above that G1 ı 1 D G2 ı 2. Now, the crucial fact is
that each Mi has a real analytic atlas (induced by the complex local coordinates
z), the metric in these charts is conformal to the Euclidean metric jdzj2, and
since the Green’s function solves @z@NzGi.z; z

0/D 0 when z 6D z0, the functions
Gi are analytic outside the diagonal (with respect to the analytic structure on
Mi). This implies that Gi are analytic maps and in fact it can be shown that
they are embeddings. Indeed, assume that rGi.m/D 0 at some m 2Mi , then
rmGi.mIm

0/D 0 for all m0 2Ui , which by analyticity gives rmGi.mIm
0/D 0

for all m0 6Dm, but that contradicts the asymptotic behavior of Gi at the diagonal
(in local complex coordinates z)

Gi.z; z
0/D

1

2�
log.jz� z0j/CC.z/C o.1/ as jz� z0j ! 0

for some function C.z/, and thus Gi is a local analytic diffeomorphism; it is also
injective since Gi.m1;m

0/DGi.m2;m
0/ for all m0 2Ui implies the same for all

m0 2Mi and the asymptotic at the diagonal implies m1Dm2. It remains to show
that G1.M1/DG2.M2/ and G�1

2
ıG1 is a conformal map. We already know that

G1.U1/D G2.U2/ and it can be proved by analytic continuation and the implicit
function theorem that the set fm 2M1IG1.m/ 2 G2.M2/g is the whole of M1.
Essentially, this amounts to say that two submanifolds with boundary of L2.B/

obtained by analytic embeddings are the same if they are equal on an open set. The
map J WD G�1

2
ıG1 is analytic and is such that G1.m;m

0/DG2.J.m/;J.m
0//

for m;m0 2U1 and m 6Dm0 since G1 ı 1DG2 ı 2. But this identity extends to
M1�M1nfmDm0g by analytic continuation. Then by looking at the asymptotic
of the Green’s kernels near a diagonal point .m;m/ 2M1 �M1, this implies
that there exist functions C1.m/;C2.m/ such that

log.dg1
.m;mt //CC1.m/D log.dg2

.J.m/;J.mt ///CC2.J.m//C o.1/

as t ! 0, if t 7!mt is a smooth curve such that m0 Dm and dgi
denotes the

Riemannian distance. Writing this equation in terms of the metric (here we use
the notation Pms D @sm.s/) we get

log.j Pm0jg1.m//CC1.m/D log.j Pm0jJ �g2.m//CC2.J.m//C o.1/ as t ! 0;

and since Pm0 can be chosen arbitrarily, one deduces g1 D e!J�g2 for some
function ! 2 C1.M1/. �
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Remarks and further results. In fact, the agreement of the Dirichlet-to-Neumann
operators on only a open set � � Z D @Mi is sufficient to run this argument,
as was shown in [Lassas and Uhlmann 2001]. The identification for Riemann
surfaces was later shown using a different approach by Belishev [2003]. Then
Henkin and Michel [2007] gave another proof of this result by using embedding
of the surface into Cn, and we should point out moreover that the method in
[Henkin and Michel 2007] gives a reconstruction procedure for the Riemann
surface, which is not quite the case with the previous results. In fact, Henkin
and Michel [2007] show that the action of the Dirichlet-to-Neumann map Ng on
3 generic functions .u0;u1;u2/ on @M is sufficient to determine the Riemann
surface .M;g/ (as a surface with complex structure). More precisely:

Theorem 6.3 [Henkin and Michel 2007]. Let .M1;g1/, .M2;g2/ be two Rie-
mann surfaces with the same boundary Z, such that there exist some real-valued
smooth function uD .u0;u1;u2/ WZ

3! R with Ng1
uD Ng2

u and such that

ˆ WZ! C2; ˆ Wm 7!

�
.Ng1

� i@� /u1

.Ng1
� i@� /u0

;
.Ng1

� i@� /u2

.Ng1
� i@� /u0

�
is an embedding, where @� is an positively oriented length one tangent vector
field to the boundary Z. Then .M1;g1/ is isomorphic to .M2;g2/ as a Riemann
surface.

The condition about the embedding is claimed to be generic, in a way, by the
authors. The proof of this theorem is based on complex geometric arguments.

Finally, we refer to [Salo 2013] in this volume for a survey on the inverse
problem on manifolds in dimension n> 2.

6B. Identification of a conductivity or a potential on a fixed Riemann surface.
The same type of problem can be considered when the background setting
is not a domain of C but a Riemann surface with boundary. Thus, we fix a
Riemann surface with boundary .M;g/, a conductivity is a positive symmetric
endomorphism 
 of TM and we consider the elliptic equation

divg.
r
gu/D 0

where rgu is the gradient of u defined by g.rgu;X /DX.u/ for all vector field
X , and LX .dvolg/D divg.X /dvolg if LX is the Lie derivative with respect to
X . The Dirichlet-to-Neumann operator associated to 
 is still denoted N
 and
defined by N
f WD g.
rgu; �/ where � is the normal outward pointing vector
field at the boundary, and we want to see if 
 !N
 is injective up to gauge. An
equivalent question is to consider the elliptic equation

d.
du/D 0; uj@M D f
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where 
 WM ! End.T �M / is a section of positive symmetric (with respect to a
given metric g) endomorphisms on 1-forms and the Dirichlet-to-Neumann map
is N
f WD .
 .du/.�//j@M 2ƒ

1.M /j@M .

Viewing M0 as a subset of a closed Riemann surface M of genus g, Henkin
and Michel [2008] consider gC 2 points AD fA1; : : : ;AgC2g in M nM0 and
use an immersion j D .f1; f2/ WM �A!C2 of M into C2 using 2 independent
meromorphic functions f1; f2 on M with poles at A and they assume the complex
curve j .M / can be written under the form j .M /Df.z1; z2/2C2IP .z1; z2/D0g

with P a homogeneous holomorphic polynomial such that rP 6D 0 on j .M /,
i.e., M can be viewed as a regular complex algebraic curve. They proved:

Theorem 6.4 [Henkin and Michel 2008]. If 
 2C 3.M0/ is an isotropic conduc-
tivity on a fixed Riemann surface M0 with boundary, which can be embedded in
C2 as a subset of a regular complex algebraic curve as described above, then the
Dirichlet-to-Neumann map N
 determines 
 and 
 can be reconstructed by an
explicit procedure.

This result has been extended to anisotropic conductivities:

Theorem 6.5 [Henkin and Santacesaria 2010]. Let M be a C 3 surface with
boundary, and let 
1; 
2 be two C 3 positive definite symmetric endomorphisms
of TM (i.e., two anisotropic conductivities on M ). If the Dirichlet-to-Neumann
operators agree, N
1

DN
2
, then there exists a C 3 diffeomorphism F WM !M

such that F j@M D Id and F�
1 D 
2.

As for the flat case, the case where 
 is isotropic (i.e., when it is of the form

 Id for some function 
 ) can be reduced to the case of the equation �g C V

with V D��g

1=2=
 1=2. We have:

Theorem 6.6 [Guillarmou and Tzou 2009]. If V1;V2 are two potentials5 in
W 1;p.M / with p > 2 on a Riemann surface .M;g/ with boundary, and the map
NV1
D NV2

agree, then V1 D V2.

In particular this allows to identify isotropic conductivities in W 3;p.M0/ on
the Riemann surface and to identify a metric in its conformal class.

Arguments in the proof. The proof is based on the Bukhgeim method, as de-
scribed above, but in this geometric setting one needs to find holomorphic Morse
functions with prescribed critical points (the function .z� z0/

2 does not quite
make sense anymore). Let us discuss the construction of the phase in this setting.

5The regularity of the potential is stated to be C1 in [Guillarmou and Tzou 2009] for
convenience of exposition, but the W 1;p.M / regularity result follows from [Guillarmou and
Tzou 2011b].
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Riemann surfaces and complex structure. A conformal class Œg� on an oriented
closed surface M makes M into a closed Riemann surface, i.e., a closed surface
equipped with a complex structure via holomorphic charts z˛ W U˛ ! C. The
Hodge star operator � acts on the cotangent bundle T �M , its eigenvalues are˙i

and the respective eigenspace T �
1;0

M WD ker.�Ci Id/ and T �
0;1

M WD ker.��i Id/
are subbundles of the complexified cotangent bundle CT �M , and we have a
splitting CT �M D T �

1;0
M ˚ T �

0;1
M . The Hodge � operator is conformally

invariant on 1-forms on M , the complex structure depends only on the conformal
class of g (and orientation). In holomorphic coordinates z D xC iy in a chart
U˛, one has ?.u dxC v dy/D�v dxCu dy and

T �1;0M jU˛ ' C dz; T �0;1M jU˛ ' C d Nz

where dz D dxC i dy and d Nz D dx � i dy. We define the natural projections
induced by the splitting of CT �M

�1;0 W CT �M ! T �1;0M; �0;1 W CT �M ! T �0;1M:

The exterior derivative d defines the De Rham complex 0!ƒ0!ƒ1!ƒ2!0

where ƒk WDƒkT �M denotes the real bundle of k-forms on M . Let us denote
Cƒk the complexification of ƒk , then the @ and N@ operators can be defined as
differential operators @ W Cƒ0! T �

1;0
M and N@ W Cƒ0! T �

0;1
M by

@f WD �1;0df; N@ WD �0;1df;

they satisfy d D @C N@ and are expressed in holomorphic coordinates by

@f D @zf dz; N@f D @Nzf d Nz:

with @z WD
1
2
.@x � i@y/ and @Nz WD 1

2
.@xC i@y/. Similarly, one can define the @

and N@ operators from Cƒ1 to Cƒ2 by setting

@.!1;0C!0;1/ WD d!0;1; N@.!1;0C!0;1/ WD d!1;0

if !0;1 2 T �
0;1

M and !1;0 2 T �
1;0

M . In coordinates this is simply

@.u dzC v d Nz/D @v^ d Nz; N@.u dzC v d Nz/D N@u^ dz:

The Laplacian acting on functions is defined by

�f WD �2i � N@@f D d�d

where d� is the adjoint of d through the metric g and � is the Hodge star operator
mapping ƒ2 to ƒ0 and induced by g.
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The holomorphic phase. To construct holomorphic functions with prescribed
critical points, we use the Riemann–Roch theorem: a divisor D on M is an
element

D D
�
.p1; n1/; : : : ; .pk ; nk/

�
2 .M �Z/k ; where k 2 N

which will also be denoted D D
Qk

iD1 p
ni

i or D D
Q

p2M p˛.p/ where ˛.p/D
0 for all p except ˛.pi/ D ni . The inverse divisor of D is defined to be
D�1 WD

Q
p2M p�˛.p/ and the degree of the divisor D is defined by deg.D/ WDPk

iD1 ni D
P

p2M ˛.p/. A meromorphic function on M is said to have divisor
D if .f / WD

Q
p2M pord.p/ is equal to D, where ord.p/ denotes the order of

p as a pole or zero of f (with positive sign convention for zeros). Notice
that in this case we have deg.f / D 0. For divisors D0 D

Q
p2M p˛

0.p/ and
D D

Q
p2M p˛.p/, we say that D0 � D if ˛0.p/ � ˛.p/ for all p 2M . The

same exact notions apply for meromorphic 1-forms on M . Then we define for a
divisor D

r.D/ WD dim.ff meromorphic function on M I .f /�Dg[ f0g/;

i.D/ WD dim.fu meromorphic 1 form on M I .u/�Dg[ f0g/:

The Riemann–Roch theorem states the following identity: for any divisor D on
the closed Riemann surface M of genus g,

r.D�1/D i.D/C deg.D/�gC 1: (27)

Notice also that for any divisor D with deg.D/ > 0, one has r.D/ D 0 since
deg.f /D 0 for all f meromorphic. By [Farkas and Kra 1992, p. 70, Theorem],
let D be a divisor, then for any nonzero meromorphic 1-form ! on M , one has

i.D/D r.D.!/�1/ (28)

which is thus independent of !. For instance, if D D 1, we know that the only
holomorphic function on M is 1 and one has 1D r.1/D r..!/�1/�gC 1 and
thus r..!/�1/D g if ! is a nonzero meromorphic 1 form. Now if D D .!/, we
obtain again from (27)

g D r..!/�1/D 2�gC deg..!//

which gives deg..!// D 2.g � 1/ for any nonzero meromorphic 1-form !.
In particular, if D is a divisor such that deg.D/ > 2.g � 1/, then we get
deg.D.!/�1/ D deg.D/ � 2.g � 1/ > 0 and thus i.D/ D r.D.!/�1/ D 0,
which implies by (27)

deg.D/ > 2.g� 1/H) r.D�1/D deg.D/�gC 1� g: (29)
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In particular, taking M0 as a subset of a closed Riemann surface M with genus
g (for instance by doubling the surface along the boundary and extending the
conformal class smoothly), we know that by assigning a pole at p 2M nM0 of
large order N >2.g�1/, there exists a vector space V of dimension N �2.g�1/

of functions holomorphic on M0 meromorphic in M with a unique pole of order
at most N at p (take the divisor D D pN ). This implies by dimension count
that for all z0 2M0

(i) there exists a vector subspace V .z0/� of dimension�N�2 of holomorphic
functions with a zero of order 2 at z0.

This creates critical points everywhere we want, but unfortunately the functions
will not a priori be Morse. Similarly, taking the divisors D1 D z�1

0
pN and

D2 D z�2
0

pN and since their degree is larger than 2.g� 1/, one has r.D�1
1
/�

r.D�1
2
/D 1 and thus

(ii) 9f 2 V , holomorphic on M0 with a zero of order exactly 1 at z0.

Using (i) and (ii), we show:

Lemma 6.7. There exists a dense set of points z0 in M0 for which there exists a
Morse holomorphic function with a critical point at z0.

By Cauchy–Riemann equations, a holomorphic function is Morse if and only
if its real part is Morse. To prove this, one can use some transversality arguments
of Uhlenbeck [1976]. Take the real vector space H DRe.V / and define the map

F WH �M0! T �M0; F W .u;m/ 7! .m; du.m//:

A real function u is Morse if Fu WD F.u; � / is transverse to the zero section
T �

0
M0 D f.m; 0/ 2 T �M0g in T �M0 in the sense that

Im.dFu.m//CTFu.m/T
�
0 M0 D T �Fu.p/

M0

for all m such that F.u;m/D 0. Now an application of Sard’s theorem gives that
if F is transverse to T �

0
M0 (in the sense above but with Im.dF /.u;m/ instead

of Im.dFu.m//) then

fu 2H IFu is transverse to T �0 M0g

has Lebesgue measure 0 in H . A little inspection shows that the transversality
of F with respect to T �

0
M0 can be proved if we can show that at any z0 then

there exist a function f 2 V such that @z0
f 6D 0. But this is insured by (ii), and

we conclude that the set of Morse functions in V has a complement in V of 0

measure (thus is dense in V ). Taking z0 2M0 and a function f in V .z0/ of (i),
then for any � > 0 there exists a function ˆ in V (thus Morse) with jˆ�f j � �
with respect to any norm on the finite dimensional space V , and thus in particular



THE CALDERÓN INVERSE PROBLEM IN TWO DIMENSIONS 153

by Rouché theorem its critical point is going to be in a neighborhood of size
o.1/ of z0 as �! 0. This concludes the proof of the lemma and gives us a phase
for constructing CGO.

The rest of the proof. This goes similarly to what we explained about the
Bukhgeim theorem. The main technical differences here are that we need to
construct a global right inverse for N@ and its adjoint and since ˆ may have
several critical points, we choose the amplitudes (which are holomorphic or
antiholomorphic functions and 1-forms) to vanish at all critical points except the
point z0 where we want to identify the potential, so that those other points do
not contribute to the stationary phase. We refer to [Guillarmou and Tzou 2009;
2011b] for more details. �

Remark. The regularity W 1;p with p>2 on surfaces was proved in [Guillarmou
and Tzou 2011b] for the potential using Bukhgeim method and was improved
later to C ˛ for all ˛ > 0 for domains of C by Imanuvilov and Yamamoto [2011].
See also [Blasten 2011] for the W 1;p regularity for domains.

6C. Inverse problems for systems and magnetic Schrödinger operators. Let
� WE!M be a Hermitian complex vector bundle on a Riemann surface with
boundary and r be a Hermitian connection on E. Such a bundle is trivializable
and the connection in a trivialization is of the form r D d C iX for self-adjoint
matrix-valued 1-form X . We can define the magnetic Schrödinger operator Lr;V
(or connection Laplacian) by

Lr;V WD r
�
r CV

where V is a section of the endomorphism on E (i.e., a potential). This elliptic
operator has Cauchy data defined by

Cr;V WD f.uj@M ;r�uj@M /ILr;V uD 0;u 2H 1.M;E/g:

It is then natural to ask whether Cr;V uniquely determines the connection r
and the endomorphism V . The answer is no since there is a gauge invariance.
Indeed, consider a section F of End.E/ satisfying F� D F�1 and F j@M D Id .
Then it is easy to see that Cr;V D CF�rF;F�VF . Therefore we can at best hope
to identify r and V up to gauge. The following result is proved:

Theorem 6.8 [Albin et al. 2011]. Let r1 and r2 be two Hermitian connections
on a smooth Hermitian bundle E, of complex dimension n and let V1, V2 be two
sections of the bundle End.E/. We assume that the connection forms of rj have
the regularity C r \W s;p.M / with 0< r < s, p 2 .1;1/ satisfy rCs> 1, r 2N,
sp > 2nC 2 and that Vj 2W 1;q.M / with q > 2. Let Lj WD .r

j /�rj CVj and
assume that the Cauchy data spaces agree Cr1;V1

D Cr2;V2
, then there exists a
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unitary endomorphism F 2 C 1.M IEnd.E//, satisfying F j@M D Id , such that
r1 D F�r2F and V1 D F�V2F .

Sketch of proof. One uses reduction to a @-system and the Bukhgeim method
[2008]. Indeed, if we denote by Aj D �0;1Xj and A�j D �1;0Xj the .T 0;1M /�

and .T 1;0M /� component of the connection 1-form Xj of rj , (in a fixed
trivialization), we have

r
j
D d C iXj D .@C iAj /C .@C iA�j /:

Thus, if uj is a solution to Lrj ;Vj uj D 0 we have�
0 .N@CiAj /

�

.N@CiAj / 0

��
uj

!j

�
C

�
�.dXjCXj^Xj /CVj 0

0 �1

��
uj

!j

�
D 0: (30)

if we set !j WD .N@C iAj /uj It is clear that knowledge of the Cauchy data for
the second order equation is equivalent to knowledge of the Cauchy data for
(30). We would like to transform this problem, via conjugation, to the type of
system considered by Bukhgeim (and explained above for Riemann surfaces)
where only the N@ and N@� operator appear on the off diagonal.

As shown in [Kobayashi 1987, Chapter 1, Proposition 3.7], the operator
@ C iA�j induces a holomorphic structure on E and this structure is holo-
morphically trivializable since M has nonempty boundary; see [Forster 1991,
Theorems 30.1 and 30.4]. This means that there exists an invertible section
Fj of End.E/ that is annihilated by the operator @ C iA�j . More precisely,

@Fj D �iA�j Fj . Taking adjoint of both sides we get that .F�j /
�1@F�j D iAj .

Therefore, .F�j /
�1 N@F�j uD .N@CiAj /u for all smooth sections u of E. We would

like to remark that such endomorphisms are by no means unique.
We are now in a position to transform system (30) into a simplified N@ system.

Set . Quj ; Q!j / WD .F
�
j uj ;F

�1
j !j / then system (30) is equivalent to�

0 N@�

N@ 0

��
Quj

Q!j

�
C

 
F�1

j .�.dXjCXj^Xj /CVj /.F
�
j /
�1 0

0 �F�j Fj

!�
Quj

Q!j

�
D 0: (31)

However, the fact that the systems (30) have identical Cauchy data does not
a priori ensure that the systems (31) have the same Cauchy data for j D 1; 2

since the conjugation factors Fj may not necessarily agree on the boundary. An
important part of the resolution of the problem is to show that the Fj can be
chosen to agree on the boundary if the Cauchy data agree.
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Lemma 6.9. If the Cauchy data for the systems (30) agree for j D 1; 2, then
there exist invertible sections Fj of End.E/ satisfying .F�j /

�1@F�j D iAj and
F1j@M D F2j@M

Idea of proof in the case of a line bundle. (Things are similar for higher-rank
bundles.) The idea is to use CGO for the system (30) of the form

U 1
h D

 
eˆ=h.F�

1
/�1.aC r1

h
/

eˆ=hF1s1
h

!
; U 2

h D

 
e�ˆ=h.F�

2
/�1r2

h

e�ˆ=hF2.bC s2
h
/

!

with @aD 0; @
�
b D 0, and writing this system as

.DCQj /U D 0; with D D

�
0 N@�

N@ 0

�
;

the following integral identity follows from the equality of Cauchy data spaces:

0D

Z
M

˝
.Q2�Q1/U

1
h ;U

2
h

˛
D i

Z
M

˝
.A2�A1/.F

�
1 /
�1.aC r1

h /;F2.bC s2
h/
˛
C o.1/

D i

Z
M

˝
F�2 .A2�A1/.F

�
1 /
�1a; b

˛
C o.1/D

Z
M

˝
@.F�2 .F

�
1 /
�1a/; b

˛
C o.1/

as h!0. Letting h!0, and applying Stokes one gets 0D
R
@M F�

2
.F�

1
/�1ai�

@M
Nb,

for all b antiholomorphic 1-form, but by Hodge theory [Guillarmou and Tzou
2011b, Lemma 4.1], this means exactly that F�

2
.F�

1
/�1aj@M is the boundary

value of a holomorphic function. Taking a D 1, we set F the holomorphic
function with restriction F�

2
.F�

1
/�1 at @M , this is invertible since one can apply

the same argument by switching the role of j D 1; 2 and this gives a holomorphic
function which multiplied by F is equal to 1 on @M , thus is equal to 1 on M .
Now modify F�

1
by multiplying it by F so that .F1F�/� and F�

2
agree at @M

and F1F� and F2 play the role of F1 and F2 in the statement of the lemma. �

This lemma allows us to choose the conjugation factors for j D 1; 2 such that
the conjugated systems (31) for j D 1 and j D 2 has the same Cauchy data.
We have now reduced the problem to one or the type considered in [Bukhgeim
2008], but with higher rank. The same techniques used in that paper and adapted
to Riemann surfaces in [Guillarmou and Tzou 2011b] can then be applied to
deduce that

F�1
1 .�.dX1CX1^X1/CV1/.F

�
1 /
�1
DF�1

2 .�.dX2CX2^X2/CV2/.F
�
2 /
�1

(32)
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and
F�1 F1 D F�2 F2

with the boundary condition F1 D F2 on @M . We then set F D .F�
1
/�1F�

2
2

End.E/ which by using F D F1F�1
2

satisfies F� D F�1 and moreover F D Id
on @M . Then it is easy to see that F solves the homogeneous elliptic equation

@F C iA1F � iFA2 D 0;

and by taking adjoint and using F� D F�1 this implies the equality of the
connections F�1.d C iX1/F D d C iX2, and thus F�1V1F D V2 by (32). �

Remark. The proof just described also allows one to identify zeroth-order terms
up to gauge in a first order system�

0 N@�

N@ 0

�
C

�
QC A0

A Q�

�
:

See [Albin et al. 2011, Proposition 3] for details and precise statements.

7. Inverse problems with partial data measurements

7A. Identification of a potential from partial measurements. An important
question related to Calderón’s problem is to identify a conductivity or a potential
from measurements on an open subset of the boundary instead of the whole
boundary. The first partial data result seems to be in dimension n > 2 by
[Bukhgeim and Uhlmann 2002], where Carleman estimates were fundamental
to approach this problem. In dimension n D 2, Imanuvilov, Uhlmann and
Yamamoto gave a proof by combining the method of [Bukhgeim 2008] with
Carleman estimates:

Theorem 7.1 [Imanuvilov et al. 2010b]. Let��C be a domain and let V1;V2 2

C 2;˛.�/ be two potentials. Let � � @�, and consider the partial Cauchy data
on � ,

C�
Vi
WD f.u; @�u/j� I .�CVi/uD 0; u 2H 1.�/; uD 0 in @� n�g: (33)

If C�
V1
D C�

V2
then V1 D V2.

We later extended this result to Riemann surfaces:

Theorem 7.2 [Guillarmou and Tzou 2011a]. Let .M;g/ be a Riemann surface
with smooth boundary and let � � @M be any open subset of the boundary.
Suppose V1 and V2 are C 1;˛.M / potentials, for some ˛>0, such that C�

V1
DC�

V2

with the notation similar to (33), then V1 D V2.
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Sketch of proof. We follow the method of [Imanuvilov et al. 2010b], but use
geometric arguments to construct the phases of the CGO and we make adaptations
for constructing appropriate CGO on Riemann surfaces.

To motivate the proof, we observe that since CV1;� D CV2;� , for any two
solutions of .�gCVj /uj D 0 such that u1j@M ;u2j@M 2 C1

0
.�/, we have the

boundary integral identity Z
M

u1.V1�V2/u2 D 0: (34)

We wish to extend Bukhgeim’s idea of using stationary phase expansion discussed
in Section 5. To this end, we look to construct solutions of the type discussed
in Section 3 having the additional property that when restricted to the boundary
they are compactly supported in � .

The idea of [Imanuvilov et al. 2010b] is to first construct harmonic functions
of exponential type which vanish on @M n� , and correct them using a Carleman
estimate. As such, suppose we have a holomorphic and Morse function ˆ D
�C i with prescribed critical points which is purely real on @M n� , and let a

be a holomorphic function purely real on � . Then the harmonic function defined
by u0 WD eˆ=ha�eˆ=ha is a harmonic function which vanishes outside of � and
we will search for solutions of .�CV /uD 0 of the form uDu0Ce�=hrh where
rh will be small in L2 as h! 0. Therefore, the first key step in constructing
CGO which vanish on @M n� is to construct such a holomorphic function ˆ
on a general Riemann surface. Observe that since the potentials Vj are assumed
to be continuous, it suffices to prove that V1.p/D V2.p/ for a dense subset of
p 2M . In [Guillarmou and Tzou 2011a], we proved:

Lemma 7.3. Let .M;g/ be a Riemann surface with boundaries with � � @M be
an open subset. Then there exists a dense subset A�M such that for all p 2A

there exists a holomorphic Morse function ˆ which is purely real on @M n� such
that @ˆ.p/D 0.

The existence of ˆ is also proved in [Imanuvilov et al. 2010b] for all points
when M D� is a domain of C, using variational methods.

Outline of proof of Lemma 7.3. We discuss briefly the procedure for constructing
such holomorphic phase functions. For a detailed outline, we refer to [Guillarmou
and Tzou 2011a] for the geometric approach which works for general surfaces
and [Imanuvilov et al. 2010b] for the variational approach which works for planar
domains. In this survey we will describe the geometric approach. To this end,
we view holomorphic functions as sections of the trivial line bundle E WDC�M

which is annihilated by the linear elliptic operator N@. And the fact thatˆ is purely
real on @M n� will be interpreted as ˆj@M being a section of the totally real
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rank 1 subbundle6 F �Ej@M over @M such that

F j@Mn� D R� @M n�: (35)

Note that while F needs to be R� @M n� on @M n� , we have the freedom to
choose it as we wish on � as long as F remains a smooth bundle of real rank
one. The question is, what choices of F satisfying condition (35) makes the @
operator acting on

H k.M;F /D fu 2H k.M /Iuj@M 2 Fg

a Fredholm operator? And how does the winding number (half of Maslov index)
of F affect the Fredholm index of N@? This type of problem is well known in Floer
homology and J -holomorphic curves. The following Riemann–Roch theorem is
shown in [McDuff and Salamon 2004]:

Theorem 7.4 (Riemann–Roch with boundary). The operator @ acting on H k.F /,
denoted @F , is Fredholm and its index is the sum of the Euler characteristic and
twice the winding number of F . Furthermore, if the sum of the winding number
of F and the Euler characteristic of M is larger than zero, then the operator @F

is surjective and consequently the dimension of ker @F is the sum of the Euler
characteristic of M plus twice the winding number of F .

With this theorem we are now ready to construct F so that it satisfies condition
(35) and at the same time having @F possess the desirable Fredholm properties.
Assume for simplicity that M has only a single boundary component, so @M '
S1, which we parametrize by � 2 Œ0; 2�/ so that � D .0; �0/. Let �N be a
smooth function in Œ0; 2�/ such that �N .0/D 0, �N .�/D 2�N for � > �0. We
then define the boundary real rank 1 subbundle FN fiberwise by

FN .�/ WD ei�N .�/R:

By construction, the winding number of FN is N and taking this parameter large
enough we can apply Theorem 7.4 to conclude that

dim ker @FN
D 2N C�.M / (36)

where �.M / is the Euler characteristic of the surface.
It remains now to prescribe critical points to these holomorphic functions. Indeed,
if p 2M is an interior point we consider the map

ˆ 2 ker @FN
7! @ˆ.p/:

6We mean a subbundle of real rank 1 of the real rank 2 bundle C�@M where C'R2 is viewed
as a real vector space.



THE CALDERÓN INVERSE PROBLEM IN TWO DIMENSIONS 159

By (36) this is a linear map from an 2NC�.M / dimensional subspace to a real 2

dimensional subspace and therefore has a nontrivial kernel. Consequently, there
exists an N � 2 dimensional subspace of holomorphic functions in H k.M;FN /

with a critical point at p. The holomorphic functions with prescribed critical point
and the desirable boundary conditions is however, not a priori Morse. To remedy
this fact we use the same type of arguments as those of the proof of Theorem 6.6,
based on a transversality property: this shows that Morse holomorphic functions
are dense within the space of holomorphic functions. More precisely:

Lemma 7.5 [Guillarmou and Tzou 2011a]. Let ˆ be a holomorphic function
on M which is purely real on @M n� . Then there exists a sequence of Morse
holomorphic functions ĵ which are purely real on @M n� such that ĵ !ˆ in
C k.M / for all k 2 N.

Starting with a holomorphic function ˆ, purely real on � , with a critical point
at p, one finds a Morse sequence ĵ approaching ˆ, and by Cauchy’s argument
principle we deduce easily that the critical points of ĵ approach p. This proves
Lemma 7.3. �

Carleman estimate and construction of remainder terms. We have so far con-
structed harmonic functions u0 WD eˆ=ha�eˆ=ha of exponential type that vanish
on @M n� . It remains to show that we can construct the suitable remainder term
rh so that uD u0C e�=hrh is a family of solutions to .�gCV /uD 0 such that
u vanishes on @M n� with rh satisfying suitable decaying properties as h! 0.

The method here was developed [Imanuvilov et al. 2010b]; it is a combination
of ideas from earlier works on partial data [Bukhgeim and Uhlmann 2002; Kenig
et al. 2007] (e.g., Carleman estimates) with the idea of Bukhgeim [2008] of
using phases with critical points. We present a sketch of proof which adapts to
Riemann surface (details are in [Guillarmou and Tzou 2011a]), but the original
proof for domains can be found in [Imanuvilov et al. 2010b].

We will split rh into two parts, rh D r1 C r2. The first term r1 will be
constructed using a Cauchy–Riemann operator @�1 (a right inverse for @) to
solve the approximate equation

e�ˆ=h.�gCV /eˆ=h.aC r1/D OL2.hj log hj/

with the boundary condition eˆ=hr1 2R on @M n� . We then subtract its complex
conjugate to obtain

e��=h.�gCV /.eˆ=h.aC r1/� eˆ=h.aC r1//D OL2.h jlog hj/ (37)

with .eˆ=h.aC r1/� eˆ=h.aC r1//D 0 on @M n� .
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To go from an approximate solution to a full solution, we can use a Carleman
estimate with boundary terms. This first appeared in [Imanuvilov et al. 2010b]
on domains.

Proposition 7.6. Let .M;g/ be a smooth Riemann surface with boundary, and
let � WM0! R be a C k.M / harmonic Morse function for k large. Then for all
V 2L1.M / there exists an h0> 0 such that for all h2 .0; h0/ and u2C1.M /

with uj@M D 0, we have

1

h
kuk2

L2.M /
Ckuk2

H 1.M /
Ck@�uk

2
L2.�/

� C
�
ke��=h.�gCV /e�=huk2

L2.M /
C

1

h
k@�uk

2
L2.@Mn�/

�
; (38)

where @� is the inward pointing normal along the boundary.

The Carleman estimate of Lemma 3.4 is a simpler version of this estimate.
Let us simply indicate why the exponent h�1kuk2

L2 is coming in (38), instead
of the term h�2kjr�juk2

L2 of Lemma 3.4: for u 2 C1
0

supported in a small
neighborhood of a critical point (given by z D 0 in local coordinates), we have
jr�.z/j2 � C jzj2 for some C and using (7) with � D ˛h for some small ˛
independent of h, we obtain

1

h2



jr�ju

2

L2 Ckruk2
L2 �

C

h
kuk2

L2 CCkruk2
L2

for some C > 0. Gluing local estimates with convexified weight methods, one
obtain something of the form (38) for u 2 C1

0
.M /, and for functions supported

near the boundary, an estimate like this is also available but with boundary terms
coming from integrating by parts.

A direct application of the Riesz theorem and Proposition 7.6 gives the fol-
lowing solvability result:

Proposition 7.7. Let f 2L2.M /, then for all h< h0 there exists a solution r to

e��=h.�gCV /e�=hr D f

with r j@Mn� D 0 satisfying the estimate krkL2 �
p

hkf kL2 .

With this proposition we can solve for the OL2.h log h/ remainder in (37) and
obtain a solution to .�gCV /uD 0 of the form

uD .eˆ=h.aC r1/� eˆ=h.aC r1//C e�=hr2

satisfying u j@Mn�D 0
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Identification of the potential. Once we have constructed CGO uj for the equa-
tion .�CVj /uj D 0, having the form

u1 D eˆ=h.aC r1/C eˆ=h.aC r1/C e'=hr2;

u2 D e�ˆ=h.aC s1/C e�ˆ=h.aC s1/C e�'=hs2;

with u1j@Mn� D u2j@Mn� D 0, we plug this into the integral identity (34) and
obtain (with some work to deal with the crossed terms involving r1 and s1)

0D

Z
M

.V1�V2/.a
2
C a2/C 2Re

Z
M

e2iIm.ˆ/=h.V1�V2/jaj
2
C o.h/:

and applying stationary phase (knowing that .V1 � V2/j@M D 0 by boundary
local uniqueness) we deduce that V1.p/D V2.p/ at the critical point p of ˆ as
h! 0. Notice that ˆ can have several critical points, in which case we choose
the amplitude a to vanish at all critical points except the point p where one wants
to recover the potential. This ends the proof of Theorem 7.1. �

7B. Identification of first-order terms. Imanuvilov, Uhlmann and Yamamoto
[2010a] studied the partial data problem for general second order elliptic operators
on a domain �� C, i.e., operators of the form

LD�gCA@zCB@NzCV (39)

where A;B;V are complex-valued functions and g is a metric. They have a
general result we shall only state the case of g D Id since the general statement
is quite complicated (see their paper for the general case).

Theorem 7.8 [Imanuvilov et al. 2010a]. Let

.Aj ;Bj ;Vj / 2 C 5;˛.�/�C 5;˛.�/�C 4;˛.�/

for j D 1; 2 and ˛ > 0. Assume there exists an open set � � @� such that

f.u; @�u/j� IL1uD 0;u 2H 1;uj@�n� D 0g

D f.u; @�u/j� IL1uD 0;u 2H 1;uj@�n� D 0g;

where Lj is defined as in (39) with .A;B;V /D .Aj ;Bj ;Vj / and g D Id. Then
there exists a function � 2 C 6;˛.�/ such that �j
 D @��j� D 0 and

L1 D e��L2e�:

The multiplication by e� is the gauge invariance in this setting (here there is
no “topology” so the gauge is exactly conjugation by exponential of a function �
with value in C, while in theorem [Albin et al. 2011] it is not always the case).
The proof is long and technical, and builds on previous work [Imanuvilov et al.
2010b]. The results are summarized and announced in [Imanuvilov et al. 2011a].
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7C. Disjoint measurements. We conclude with a recent result.

Theorem 7.9 [Imanuvilov et al. 2011b]. Let �� C be a connected and simply
connected domain with smooth boundary. Assume that @� D �C[��[�0

where �˙; �0 are open disjoint subsets of @� such that �C\�� D∅, �˙ have
two connected components �1

˙
; �2
˙

and each of the 4 connected components of
�0 has its closure intersecting both �C and ��. If V1;V2 2 C 2C˛.�/ for some
˛ > 0 and if the partial Cauchy data

C�Vj WD f.uj�C ; @�uj��/I .�CVj /uD 0;u 2H 1.�/;uj@�n�C D 0g

agree, i.e., C�
V1
D C�

V2
, then V1 D V2.

8. Open problems in 2 dimensions

(1) Prove the L1 conductivity result of Astala–Päivärinta in the context of
Riemann surfaces.

(2) Find a better regularity assumption for the potential in Bukhgeim’s result.

(3) Recover a metric g on a Riemann surface M up to isometry equal to Id on
the boundary from the Cauchy data space for the equation �g ��, where
� 6D 0.

(4) More generally, see what can be recovered from the Cauchy data space for
the equation �gCV where V is a potential and g a metric. On the region
where V D 0, only the conformal class can be obtained.

(5) Find a “good” partial data measurement for d-bar type elliptic systems
Pu D 0 which allows one to recover the coefficients inside the surface.
That is, we search for natural subspaces of the full Cauchy data space
which determine the coefficients inside the surface, for instance in terms
of measurements on pieces of the boundary of certain components of the
vector-valued u (as in [Salo and Tzou 2010], for instance).

(6) Solve the general disjoint partial data measurements for �g C V , that
is, when the Dirichlet data is measured on �1 and the Neumann data is
measured on �2, with �1\�2 D∅.

(7) Find a reconstruction method for partial data measurement, as in [Nachman
and Street 2010], for higher dimensions.

(8) Solve the inverse problem for the elasticity system of [Nakamura and Uhl-
mann 1993].

(9) Solve the Calderón problem for L1 complex-valued conductivities.
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