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The Calderón problem on Riemannian
manifolds
MIKKO SALO

We discuss recent developments in Calderón’s inverse problem on Riemannian
manifolds (the anisotropic Calderón problem) in three and higher dimensions.
The topics considered include the relevant Riemannian geometry background,
limiting Carleman weights on manifolds, a Fourier analysis proof of Carle-
man estimates on product type manifolds, and uniqueness results for inverse
problems based on complex geometrical optics solutions and the geodesic ray
transform.
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Preface

This text is an introduction to Calderón’s inverse conductivity problem on Rie-
mannian manifolds. This problem arises as a model for electrical imaging in
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anisotropic media, and it is one of the most basic inverse problems in a geometric
setting. The problem is still largely open, but we will discuss recent developments
based on complex geometrical optics and the geodesic X-ray transform in the
case where one restricts to a fixed conformal class of conductivities.

This work is based on lectures for courses given at the University of Helsinki
in 2010 and at Universidad Autónoma de Madrid in 2011. It has therefore the
feeling of a set of lecture notes for a graduate course on the topic, together with
exercises and also some problems which are open at the time of writing this.
The main focus is on manifolds of dimension three and higher, where one has to
rely on real variable methods instead of using complex analysis. The text can
be considered as an introduction to geometric inverse problems, but also as an
introduction to the use of real analysis methods in the setting of Riemannian
manifolds.

Section 1 is an introduction to the Calderón problem on manifolds, stating
the main questions studied in this text. Section 2 reviews basic facts on smooth
and Riemannian manifolds, also discussing the Laplace–Beltrami operator and
geodesics. Limiting Carleman weights, which turn out to exist on manifolds
with a certain product structure, are treated in Section 3. Section 4 then proves
Carleman estimates on manifolds with product structure. The proof uses a
combination of the Fourier transform and eigenfunction expansions. Finally,
in Section 5 we prove a uniqueness result for the inverse problem in certain
geometries, based on inverting the geodesic X-ray transform.

As prerequisites for reading these notes, basic knowledge of real analysis,
Riemannian geometry, and elliptic partial differential equations would be helpful.
Familiarity with [Rudin 1986], [Lee 1997, Chapters 1-5], and [Evans 2010,
Chapters 5-6] should be sufficient.

References. For a more thorough discussion on Calderón’s inverse problem on
manifolds and for references to known results, we refer to the introduction in [Dos
Santos Ferreira et al. 2009]. In particular, that paper includes precise references
to results in two dimensions and on real-analytic manifolds that we have omitted
in this presentation. See also the survey by Guillarmou and Tzou in this same
volume for recent work on the Schrödinger equation in two dimensions.

General references for Section 2 include [Lee 2003] for smooth manifolds, [Lee
1997] for Riemannian manifolds, and [Taylor 1996] for the Laplace–Beltrami
operator. Section 3 on limiting Carleman weights mostly follows [Dos San-
tos Ferreira et al. 2009, Section 2].

To motivate the definition of limiting Carleman weights, we use a little bit of
semiclassical symbol calculus (for differential operators, not pseudodifferential
ones). This is not covered in these notes, but on the other hand it is only used in
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Section 3A for motivation. See the lecture notes [Zworski 2012] for details on
this topic.

The Fourier analysis proof of the Carleman estimates given in Section 4 is
taken from [Kenig et al. 2011]. Section 5, with the proof of the uniqueness result,
follows [Dos Santos Ferreira et al. 2009, Sections 5 and 6]. For more details on
the geodesic X-ray transform we refer the reader to [Sharafutdinov 1994] and
[Dos Santos Ferreira et al. 2009, Section 7].

1. Introduction

To motivate the problems studied in this text, we start with the classical inverse
conductivity problem of Calderón. This problem asks to determine the interior
properties of a medium by making electrical measurements on its boundary.

In mathematical terms, one considers a bounded open set��Rn with smooth
(C1) boundary, with electrical conductivity given by the matrix


 .x/D .
 jk.x//nj ;kD1:

We assume that the functions 
 jk are smooth in �, and for each x the matrix

 .x/ is positive definite and symmetric. If 
 .x/D�.x/I for some scalar function
� we say that the medium is isotropic, otherwise it is anisotropic. The electrical
properties of anisotropic materials depend on direction. This is common in many
applications such as in medical imaging (for instance cardiac muscle has a fiber
structure and is an anisotropic conductor).

We seek to find the conductivity 
 by prescribing different voltages on @�
and by measuring the resulting current fluxes. If there are no sources or sinks
of current in �, a boundary voltage f induces an electrical potential u which
satisfies the conductivity equation�

div.
ru/D 0 in �;
uD f on @�:

(1-1)

Since 
 is positive definite this equation is elliptic and has a unique weak
solution for any reasonable f (say in the L2-based Sobolev space H 1=2.@�/).
The current flux on the boundary is given by the conormal derivative (where � is
the outer unit normal vector on @�)

ƒ
f WD 
ru � �j@�:

The last expression is well defined also when 
 is a matrix, and a suitable weak
formulation shows that ƒ
 becomes a bounded map H 1=2.@�/!H�1=2.@�/.

The map ƒ
 is called the Dirichlet-to-Neumann map, DN map for short,
since it maps the Dirichlet boundary value of a solution to what is essentially
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the Neumann boundary value. The DN map encodes the electrical boundary
measurements (in the idealized case where we have infinite precision measure-
ments for all possible data). The inverse problem is to find information about
the conductivity matrix 
 from the knowledge of the map ƒ
 .

The first important observation is that if 
 is anisotropic, the full conductivity
matrix can not be determined from ƒ
 . This is due to a transformation law for
the conductivity equation under diffeomorphisms (that is, bijective maps F such
that both F and F�1 are smooth up to the boundary).

Lemma. If F W�!� is a diffeomorphism and if F j@� D Id, then

ƒF�
 Dƒ
 :

Here F�
 is the pushforward of 
 , defined by

F�
 . Qx/D
.DF /
 .DF /t

jdet.DF /j

ˇ̌̌̌
F�1. Qx/

where DF D .@kFj /
n
j ;kD1

is the Jacobian matrix.

Exercise 1.1. Prove the lemma. (Hint: if u solves div.
ru/ D 0, show that
u ıF�1 solves the analogous equation with conductivity F�
 .)

The following conjecture for n� 3 is one of the most important open questions
related to the inverse problem of Calderón. It has only been proved when nD 2.

Question 1.1 (anisotropic Calderón problem). Let 
1, 
2 be two smooth positive
definite symmetric matrices in �. If ƒ
1

Dƒ
2
, show that 
2 D F�
1 for some

diffeomorphism F W�!� with F j@� D Id.

In fact, the anisotropic Calderón problem is a question of geometric nature
and can be formulated more generally on any Riemannian manifold. To do this,
we replace the set��Rn by a compact n-dimensional manifold M with smooth
boundary @M , and the conductivity matrix 
 by a smooth Riemannian metric g

on M . On such a Riemannian manifold .M;g/ there is a canonical second-order
elliptic operator �g called the Laplace–Beltrami operator. In local coordinates

�guD jgj�1=2 @

@xj

�
jgj1=2gjk @u

@xk

�
:

We have written g D .gjk/ for the metric in local coordinates, g�1 D .gjk/ for
its inverse matrix, and jgj for det.gjk/.

The Dirichlet problem for �g analogous to (1-1) is�
�guD 0 in M;

uD f on @M:
(1-2)
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The boundary measurements are given by the DN map

ƒgf WD @�uj@M

where @�u is the Riemannian normal derivative, given in local coordinates by
gjk.@xj u/�k where � is the outer unit normal vector on @M . The inverse
problem is to determine information on g from the DN map ƒg.

There is a similar obstruction to uniqueness as for the conductivity equation,
which is given by diffeomorphisms.

Lemma. If F WM !M is a diffeomorphism and if F j@M D Id, then

ƒF�g Dƒg:

Here F�g is the pullback of g, defined in local coordinates by

F�g.x/DDF.x/tg.F.x//DF.x/:

Exercise 1.2. Prove the lemma.

The geometric formulation of the anisotropic Calderón problem is as follows.
We only state the question for n � 3, since again the two dimensional case is
known (also the formulation for nD 2 would look slightly different since �g

has an additional conformal invariance then).

Question 1.2 (anisotropic Calderón problem). Let .M;g1/ and .M;g2/ be two
compact Riemannian manifolds of dimension n � 3 with smooth boundary,
and assume that ƒg1

Dƒg2
. Show that g2 D F�g1 for some diffeomorphism

F WM !M with F j@M D Id.

A function u satisfying �gu D 0 is called a harmonic function in .M;g/.
Note that if M is a subset of Rn with Euclidean metric, then this just gives
the usual harmonic functions. Since .uj@M ; @�uj@M / is the Cauchy data of a
function u, and since metrics satisfying g2 D F�g1 are isometric in the sense of
Riemannian geometry, the anisotropic Calderón problem reduces to the question:
Do the Cauchy data of all harmonic functions in .M;g/ determine the manifold
up to isometry?

Exercise 1.3. Show that a positive answer to Question 1.2 would imply a positive
answer to Question 1.1 when n� 3. (Hint: assume the boundary determination
result that ƒ
1

Dƒ
2
implies det.
 jk

1
/D det.
 jk

2
/ on @� [Lee and Uhlmann

1989].)

Instead of the full anisotropic Calderón problem, we will consider the simpler
problem where the manifolds are assumed to be in the same conformal class.
This means that the metrics g1 and g2 in M satisfy g2 D cg1 for some smooth
positive function c on M . In this problem there is only one underlying metric
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g1, and one is looking to determine a scalar function c. This covers the case of
isotropic conductivities in Euclidean space, but if the metric is not Euclidean the
problem still requires substantial geometric arguments.

The relevant question is as follows. It is known that any diffeomorphism
F WM !M which satisfies F j@M D Id and F�g1 D cg1 must be the identity
[Lionheart 1997], so in this case there is no ambiguity arising from diffeomor-
phisms.

Question 1.3 (anisotropic Calderón problem in a conformal class). Let .M;g1/

and .M;g2/ be two compact Riemannian manifolds of dimension n � 3 with
smooth boundary which are in the same conformal class. If ƒg1

Dƒg2
, show

that g1 D g2.

Exercise 1.4. Using the fact on diffeomorphisms given above, show that a
positive answer to Question 1.2 implies a positive answer to Question 1.3.

Finally, let us formulate one more question which will imply Question 1.3 but
which is somewhat easier to study. This last question will be the one that the
rest of these notes is devoted to.

The main point is the observation that the Laplace–Beltrami operator trans-
forms under conformal scalings of the metric by

�cguD c�
nC2

4 .�gC q/.c
n�2

4 u/

where q D c
n�2

4 �cg.c
�n�2

4 /. It can be shown that for any smooth positive
function c with cj@M D 1 and @�cj@M D 0, one has

ƒcg Dƒg;�q

where ƒg;V W f 7! @�uj@M is the DN map for the Schrödinger equation�
.��gCV /uD 0 in M;

uD f on @M:
(1-3)

For general V this last Dirichlet problem may not be uniquely solvable, but for
V D�q it is and the DN map is well defined since the Dirichlet problem for�cg

is uniquely solvable. We will make the standing assumption that all potentials V

are such that (1-3) is uniquely solvable (this assumption could easily be removed
by using Cauchy data sets). Then the last question is as follows. It is also of
independent interest and a solution would have important consequences for the
anisotropic Calderón problem, inverse problems for Maxwell equations, and
inverse scattering theory.

Question 1.4. Let .M;g/ be a compact Riemannian manifold with smooth
boundary, and let V1 and V2 be two smooth functions on M . If ƒg;V1

Dƒg;V2
,

show that V1 D V2.
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Exercise 1.5. Prove the above identities for �cg and ƒcg. Show that a positive
answer to Question 1.4 implies a positive answer to Question 1.3. (You may
assume the boundary determination result that ƒcg Dƒg implies cj@M D 1 and
@�cj@M D 0 [Lee and Uhlmann 1989].)

2. Riemannian geometry

2A. Smooth manifolds.

Manifolds. We recall some basic definitions from the theory of smooth manifolds.
We will consistently also consider manifolds with boundary.

Definition. A smooth n-dimensional manifold is a second countable Hausdorff
topological space together with an open cover fU˛g and homeomorphisms '˛ W
U˛! QU˛ such that each QU˛ is an open set in Rn, and 'ˇ ı'�1

˛ W '˛.U˛\Uˇ/!

'ˇ.U˛ \Uˇ/ is a smooth map whenever U˛ \Uˇ is nonempty.

Any family f.U˛; '˛/g as above is called an atlas. Any atlas gives rise to a
maximal atlas, called a smooth structure, which is not strictly contained in any
other atlas. We assume that we are always dealing with the maximal atlas. The
pairs .U˛; '˛/ are called charts, and the maps '˛ are called local coordinate
systems (one usually writes xD '˛ and thus identifies points p 2U˛ with points
x.p/ 2 QU˛ in Rn).

Definition. A smooth n-dimensional manifold with boundary is a second count-
able Hausdorff topological space together with an open cover fU˛g and homeo-
morphisms

'˛ W U˛! QU˛

such that each QU˛ is an open set in Rn
C WD fx 2 Rn I xn � 0g, and

'ˇ ı'
�1
˛ W '˛.U˛ \Uˇ/! 'ˇ.U˛ \Uˇ/

is a smooth map whenever U˛ \Uˇ is nonempty.

Here, if A� Rn we say that a map F W A! Rn is smooth if it extends to a
smooth map QA! Rn where QA is an open set in Rn containing A.

If M is a manifold with boundary we say that p is a boundary point if
'.p/ 2 @Rn

C for some chart ', and an interior point if '.p/ 2 int.Rn
C/ for some

'. We write @M for the set of boundary points and M int for the set of interior
points. Since M is not assumed to be embedded in any larger space, these
definitions may differ from the usual ones in point set topology.

Exercise 2.1. If M is a manifold with boundary, show that the sets M int and
@M are always disjoint.
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To clarify the relations between the definitions, note that a manifold is always
a manifold with boundary (the boundary being empty), but a manifold with
boundary is a manifold if and only if the boundary is empty (by the above
exercise). However, we will loosely refer to manifolds both with and without
boundary as manifolds.

We have the following classes of manifolds:

� A closed manifold is compact, connected, and has no boundary.

– Examples: the sphere Sn, the torus T n D Rn=Zn

� An open manifold has no boundary and no component is compact.

– Examples: open subsets of Rn, strict open subsets of a closed manifold

� A compact manifold with boundary is a manifold with boundary which is
compact as a topological space.

– Examples: the closures of bounded open sets in Rn with smooth bound-
ary, the closures of open sets with smooth boundary in closed manifolds

Smooth maps.

Definition. Let f WM !N be a map between two manifolds. We say that f is
smooth near a point p if  ıf ı'�1 W '.U /! .V / is smooth for some charts
.U; '/ of M and .V;  / of N such that p 2U and f .U /� V . We say that f is
smooth in a set A�M if it is smooth near any point of A. The set of all maps
f WM ! N which are smooth in A is denoted by C1.A;N /. If N D R we
write C1.A;N /D C1.A/.

Summation convention. Below and throughout these notes we will apply the
Einstein summation convention: repeated indices in lower and upper position are
summed. For instance, the expression

ajklb
j ck

is shorthand for X
j ;k

ajklb
j ck :

The summation indices run typically from 1 to n, where n is the dimension of
the manifold.

Tangent bundle.

Definition. Let p 2M . A derivation at p is a linear map v W C1.M /! R

which satisfies v.fg/D .vf /g.p/Cf .p/.vg/. The tangent space TpM is the
vector space consisting of all derivations at p. Its elements are called tangent
vectors.
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The tangent space TpM is an n-dimensional vector space when dim.M /D n.
If x is a local coordinate system in a neighborhood U of p, the coordinate vector
fields @j are defined for any q 2 U to be the derivations

@j jqf WD
@

@xj
.f ıx�1/.x.q//; j D 1; : : : ; n:

Then f@j jqg is a basis of TqM , and any v 2 TqM may be written as v D vj@j .
The tangent bundle is the disjoint union

TM WD
W

p2M TpM:

The tangent bundle has the structure of a 2n-dimensional manifold defined as fol-
lows. For any chart .U;x/ of M we represent elements of TqM for q 2U as vD
vj .q/@j jq , and define a map Q' WT U !R2n; Q'.q; v/D .x.q/; v1.q/; : : : ; vn.q//.
The charts .T U; Q'/ are called the standard charts of TM and they define a
smooth structure on TM .

Exercise 2.2. Prove that TpM is an n-dimensional vector space spanned by
f@j g also when M is a manifold with boundary.

Cotangent bundle. The dual space of a vector space V is

V � WD fu W V ! R I u linearg:

The dual space of TpM is denoted by T �p M and is called the cotangent space
of M at p. Let x be local coordinates in U , and let @j be the coordinate vector
fields that span TqM for q 2 U . We denote by dxj the elements of the dual
basis of T �q M , so that any � 2 T �q M can be written as � D �j dxj . The dual
basis is characterized by

dxj .@k/D ıjk :

The cotangent bundle is the disjoint union

T �M D
W

p2M T �p M:

This becomes a 2n-dimensional manifold by defining for any chart .U; '/ of M

a chart .T �U; Q'/ of T �M by Q'.q; �j dxj /D .'.q/; �1; : : : ; �n/.

Tensor bundles. If V is a finite dimensional vector space, the space of (covariant)
k-tensors on V is

T k.V / WD fu W V � : : :�V„ ƒ‚ …
k copies

! R I u linear in each variableg:

The k-tensor bundle on M is the disjoint union

T kM D
W

p2M T k.TpM /:
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If x are local coordinates in U and dxj is the basis for T �q M , then each u 2

T k.TqM / for q 2 U can be written as

uD uj1���jk
dxj1 ˝ : : :˝ dxjk

Here ˝ is the tensor product

T k.V /�T k0.V /! T kCk0.V /; .u;u0/ 7! u˝u0;

where for v 2 V k ; v0 2 V k0 we have

.u˝u0/.v; v0/ WD u.v/u0.v0/:

It follows that the elements dxj1 ˝ : : :˝ dxjk span T k.TqM /. Similarly as
above, T kM has the structure of a smooth manifold (of dimension nC nk).

Exterior powers. The space of alternating k-tensors is

Ak.V / WD fu 2 T k.V / I u.v1; : : : ; vk/D 0 if vi D vj for some i ¤ j g:

This gives rise to the bundle

ƒk.M / WD
W

p2M Ak.TpM /:

To describe a basis for Ak.TpM /, we introduce the wedge product

Ak.V /�Ak0.V /!AkCk0.V /; .!; !0/ 7! ! ^!0 WD
.kC k 0/!

k! .k 0/!
Alt.!˝!0/;

where Alt W T k.V /!Ak.V / is the projection to alternating tensors:

Alt.T /.v1; : : : ; vk/D
1

k!

X
�2Sk

sgn.�/T .v�.1/; : : : ; v�.k//:

We have written Sk for the group of permutations of f1; : : : ; kg, and sgn.�/ for
the signature of � 2 Sk .

If x is a local coordinate system in U , then a basis of Ak.TpM / is given by

fdxj1 ^ : : : dxjk g1�j1<j2<���<jk�n:

Again, ƒk.M / is a smooth manifold (of dimension nC
�

n
k

�
).

Exercise 2.3. Show that Alt maps T k.V / into Ak.V / and that .Alt/2 D Alt.



THE CALDERÓN PROBLEM ON RIEMANNIAN MANIFOLDS 177

Smooth sections. The above constructions of the tangent bundle, cotangent bun-
dle, tensor bundles, and exterior powers are all examples of vector bundles with
base manifold M . We will not need a precise definition here, but just note that
in each case there is a natural vector space over any point p 2M (called the
fiber over p). A smooth section of a vector bundle E over M is a smooth map
s WM ! E such that for each p 2M , s.p/ belongs to the fiber over p. The
space of smooth sections of E is denoted by C1.M;E/.

We have the following terminology:

� C1.M;TM / is the set of vector fields on M ,

� C1.M;T �M / is the set of 1-forms on M ,

� C1.M;T kM / is the set of k-tensor fields on M ,

� C1.M; ƒkM / is the set of (differential) k-forms on M .

Let x be local coordinates in a set U , and let @j and dxj be the coordinate vector
fields and 1-forms in U which span TqM and T �q M , respectively, for q 2 U .
In these local coordinates,

� a vector field X has the expression X DX j@j ,

� a 1-form ˛ has expression ˛ D j̨ dxj ,

� a k-tensor field u can be written as

uD uj1���jk
dxj1 ˝ : : :˝ dxjk ;

� a k-form ! has the form

! D !I dxI

where I D .i1; : : : ; ik/ and dxI D dxi1 ^ : : :^ dxik , with the sum being
over all I such that 1� i1 < i2 < : : : < ik � n.

Here, the component functions X j ; j̨ ;uj1���jk
; !I are all smooth real-valued

functions in U .
Note that a vector field X 2 C1.M;TM / gives rise to a linear map X W

C1.M /! C1.M / via Xf .p/DX.p/f .

Example. Some examples of the smooth sections that will be encountered in
this text are:

� Vector fields: the gradient vector field grad.f / for f 2C1.M /, coordinate
vector fields @j in a chart U

� One-forms: the exterior derivative df for f 2 C1.M /

� 2-tensor fields: Riemannian metrics g, Hessians Hess.f / for f 2 C1.M /
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� k-forms: the volume form dV in Riemannian manifold .M;g/, the volume
form dS of the boundary @M

Changes of coordinates. We consider the transformation law for k-tensor fields
under changes of coordinates, or more generally under pullbacks by smooth
maps. If F W M ! N is a smooth map, the pullback by F is the map F� W

C1.N;T kN /! C1.M;T kM /,

.F�u/p.v1; : : : ; vk/D uF.p/.F�v1; : : : ;F�vk/

where v1; : : : ; vk 2 Tp
QM . Here F� W TpM ! TF.p/N is the pushforward,

defined by .F�v/f D v.f ı F / for v 2 TpM and f 2 C1.N /. Clearly F�

pulls back k-forms on N to k-forms on M .
The pullback satisfies

� F�.f u/D .f ıF /F�u

� F�.u˝u0/D F�u˝F�u0

� F�.! ^!0/D F�! ^F�!0

In terms of local coordinates, the pullback acts by

� F�f D f ıF if f is a smooth function (0-form)

� F�. j̨ dxj /D . j̨ ıF / d.xj ıF / if ˛ is a 1-form

and it has similar expressions for higher order tensors.

Exterior derivative. The exterior derivative d is a first-order differential operator
mapping differential k-forms to kC 1-forms. It can be defined first on 0-forms
(that is, smooth functions f ) by the local coordinate expression

df WD
@f

@xj
dxj :

In general, if ! D !I dxI is a k-form we define

d! WD d!I ^ dxI :

It turns out that this definition is independent of the choice of coordinates, and one
obtains a linear map d W C1.M; ƒk/! C1.M; ƒkC1/. It has the properties

� d2 D 0

� d D 0 on n-forms

� d.! ^!0/D d! ^!0C .�1/k! ^ d!0 for a k-form !, k 0-form !0

� F�d! D dF�!
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Exercise 2.4. If f is a smooth function and V D .V1;V2;V3/ is a smooth vector
field on R3, show that the exterior derivative is related to the gradient, curl, and
divergence by

df D .rf /j dxj ;

d.Vj dxj /D .r �V /j dx
yj ;

d.Vj dx
yj /D .r �V / dx1

^ dx2
^ dx3;

d.f dx1
^ dx2

^ dx3/D 0:

Here dx
y1 WD dx2 ^ dx3; dx

y2 WD dx3 ^ dx1; dx
y3 WD dx1 ^ dx2.

Partition of unity. A major reason for including the condition of second count-
ability in the definition of manifolds is to ensure the existence of partitions of
unity. These make it possible to make constructions in local coordinates and
then glue them together to obtain a global construction.

Theorem 2.1. Let M be a manifold and let fU˛g be an open cover. There exists
a family of C1 functions f�˛g on M such that 0� �˛ � 1, supp.�˛/�U˛ , any
point of M has a neighborhood which intersects only finitely many of the sets
supp.�˛/, and further X

˛

�˛ D 1 in M:

Integration on manifolds. The natural objects that can be integrated on an n-
dimensional manifold are the differential n-forms. This is due to the transforma-
tion law for n-forms in Rn under smooth diffeomorphisms F in Rn,

F�.dx1
^ � � � ^ dxn/D .det DF /dx1

^ � � � ^ dxn:

This is almost the same as the transformation law for integrals in Rn under changes
of variables, the only difference being that in the latter the factor jdet DF j instead
det DF appears. To define an invariant integral, we therefore need to make sure
that all changes of coordinates have positive Jacobian.

Definition. If M admits a smooth nonvanishing n-form we say that M is ori-
entable. An oriented manifold is a manifold together with a given nonvanishing
n-form.

If M is oriented with a given n-form�, a basis fv1; : : : ; vng of TpM is called
positive if �.v1; : : : ; vn/ > 0. There are many n-forms on an oriented manifold
which give the same positive bases; we call any such n-form an orientation form.
If .U; '/ is a connected coordinate chart, we say that this chart is positive if
the coordinate vector fields f@1; : : : ; @ng form a positive basis of TqM for all
q 2M .
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A map F WM !N between two oriented manifolds is said to be orientation
preserving if it pulls back an orientation form on N to an orientation form of M .
In terms of local coordinates given by positive charts, one can see that a map is
orientation preserving if and only if its Jacobian determinant is positive.

Example. The standard orientation of Rn is given by the n-form dx1^� � �^dxn,
where x are the Cartesian coordinates.

If ! is a compactly supported n-form in Rn, we may write

! D f dx1
^ � � � ^ dxn

for some smooth compactly supported function f . Then the integral of ! is
defined by Z

Rn

! WD

Z
Rn

f .x/ dx1
� � � dxn:

If ! is a smooth 1-form in a manifold M whose support is compactly contained
in U for some positive chart .U; '/, then the integral of ! over M is defined byZ

M

! WD

Z
'.U /

..'/�1/�!:

Finally, if ! is a compactly supported n-form in a manifold M , the integral of
! over M is defined by Z

M

! WD
X

j

Z
Uj

�j!:

where fUj g is some open cover of supp.!/ by positive charts, and f�j g is a
partition of unity subordinate to the cover fUj g.

Exercise 2.5. Prove that the definition of the integral is independent of the choice
of positive charts and the partition of unity.

The following result is a basic integration by parts formula which implies the
usual theorems of Gauss and Green.

Theorem 2.2 (Stokes’ theorem). If M is an oriented manifold with boundary
and if ! is a compactly supported .n� 1/-form on M , thenZ

M

d! D

Z
@M

i�!

where i W @M !M is the natural inclusion.

Here, if M is an oriented manifold with boundary, then @M has a natural
orientation defined as follows: for any point p 2 @M , a basis fE1; : : : ;En�1g

of Tp.@M / is defined to be positive if fNp;E1; : : : ;En�1g is a positive basis of
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TpM where N is some outward pointing vector field near @M (that is, there is
a smooth curve 
 W Œ0; "/!M with 
 .0/D p and P
 .0/D�Np).

Exercise 2.6. Prove that any manifold with boundary has an outward pointing
vector field, and show that the above definition gives a valid orientation on @M .

2B. Riemannian manifolds.

Riemannian metrics. If u is a 2-tensor field on M , we say that u is symmetric if
u.v; w/D u.w; v/ for any tangent vectors v;w, and that u is positive definite if
u.v; v/ > 0 unless v D 0.

Definition. Let M be a manifold. A Riemannian metric is a symmetric positive
definite 2-tensor field g on M . The pair .M;g/ is called a Riemannian manifold.

If g is a Riemannian metric on M , then gp W TpM �TpM is an inner product
on TpM for any p 2M . We will write

hv;wi WD g.v; w/; jvj WD hv; vi1=2:

In local coordinates, a Riemannian metric is just a positive definite symmetric
matrix. To see this, let .U;x/ be a chart of M , and write v;w 2 TqM for q 2U

in terms of the coordinate vector fields @j as v D vj@j , w D wj@j . Then

g.v; w/D g.@j ; @k/v
jwk :

This shows that g has the local coordinate expression

g D gjkdxj
˝ dxk

where gjk WD g.@j ; @k/ and the matrix .gjk/
n
j ;kD1

is symmetric and positive

definite. We will also write .gjk/n
j ;kD1

for the inverse matrix of .gjk/, and
jgj WD det.gjk/ for the determinant.

Example. Some examples of Riemannian manifolds:

1. (Euclidean space) If � is a bounded open set in Rn, then .�; e/ is a Riemann-
ian manifold if e is the Euclidean metric for which e.v; w/ D v �w is the
Euclidean inner product of v;w 2 Tp�� Rn. In Cartesian coordinates, e is
just the identity matrix.

2. If � is as above, then more generally .�;g/ is a Riemannian manifold if
g.x/D .gjk.x//

n
j ;kD1

is any family of positive definite symmetric matrices
whose elements depend smoothly on x 2�.

3. If � is a bounded open set in Rn with smooth boundary, then .�;g/ is a
compact Riemannian manifold with boundary if g.x/ is a family of positive
definite symmetric matrices depending smoothly on x 2�.
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4. (hypersurfaces) Let S be a smooth hypersurface in Rn such that S D f �1.0/

for some smooth function f W Rn! R which satisfies rf ¤ 0 when f D 0.
Then S is a smooth manifold of dimension n� 1, and the tangent space TpS

for any p 2 S can be identified with fv 2 Rn I v � rf .p/ D 0g. Using this
identification, we define an inner product gp.v; w/ on TpS by taking the
Euclidean inner product of v and w interpreted as vectors in Rn. Then .S;g/
is a Riemannian manifold, and g is called the induced Riemannian metric on
S (this metric being induced by the Euclidean metric in Rn).

5. (model spaces) The model spaces of Riemannian geometry are the Euclidean
space .Rn; e/, the sphere .Sn;g/ where Sn is the unit sphere in RnC1 and g

is the induced Riemannian metric, and the hyperbolic space .H n;g/ which
may be realized by taking H n to be the unit ball in Rn with metric

gjk.x/D
4

.1� jxj2/2
ıjk :

The Riemannian metric allows to measure lengths and angles of tangent
vectors on a manifold, the length of a vector v 2 TpM being jvj and the angle
between two vectors v;w 2 TpM being the number �.v; w/ 2 Œ0; �� which
satisfies

cos �.v; w/ WD
hv;wi

jvjjwj
: (2-1)

Physically, one may think of a Riemannian metric g as the resistivity of a
conducting medium (in the introduction, the conductivity matrix .
 jk/ corre-
sponded formally to .jgj1=2gjk/), or as the inverse of sound speed squared in a
medium where acoustic waves propagate (if a medium �� Rn has scalar sound
speed c.x/ then a natural Riemannian metric is gjk.x/ D c.x/�2ıjk). In the
latter case, regions where g is large (resp. small) correspond to low velocity
regions (resp. high velocity regions). We will later define geodesics, which are
length-minimizing curves on a Riemannian manifold, and these tend to avoid
low velocity regions as one would expect.

Exercise 2.7. Use a partition of unity to prove that any smooth manifold M

admits a Riemannian metric.

Raising and lowering of indices. On a Riemannian manifold .M;g/ there is
a canonical way of converting tangent vectors into cotangent vectors and vice
versa. We define a map

TpM ! T �p M; v 7! v[
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by requiring that v[.w/ D hv;wi. This map (called the flat operator) is an
isomorphism, which is given in local coordinates by

.vj@j /
[
D vj dxj ; where vj WD gjkv

k :

We say that v[ is the cotangent vector obtained from v by lowering indices. The
inverse of this map is the sharp operator

T �p M ! TpM; � 7! �]

given in local coordinates by

.�j dxj /] D �j@j ; where �j
WD gjk�k :

We say that �] is obtained from � by raising indices with respect to the metric g.
A standard example of this construction is the metric gradient. If f 2C1.M /,

the metric gradient of f is the vector field

grad.f / WD .df /]:

In local coordinates, grad.f /D gjk.@jf /@k .

Inner products of tensors. If .M;g/ is a Riemannian manifold, we can use the
Riemannian metric g to define inner products of differential forms and other
tensors in a canonical way. We will mostly use the inner product of 1-forms,
defined via the sharp operator by

h˛; ˇi WD h˛]; ˇ]i:

In local coordinates one has h˛; ˇi D gjk
j̨ˇk and gjk D hdxj ; dxki.

More generally, if u and v are k-tensor fields with local coordinate represen-
tations uD ui1���ik

dxi1 ˝ � � �˝ dxik , v D vi1���ik
dxi1 ˝ � � �˝ dxik , we define

hu; vi WD gi1j1 � � �gikjk ui1���ik
vj1���jk

: (2-2)

This definition turns out to be independent of the choice of coordinates, and it
gives a valid inner product on k-tensor fields.

Orthonormal frames. If U is an open subset of M , we say that a set fE1; : : : ;Eng

of vector fields in U is a local orthonormal frame if fE1.q/; : : : ;En.q/g forms
an orthonormal basis of TqM for any q 2 U .

Lemma 2.3 (local orthonormal frame). If .M;g/ is a Riemannian manifold, then
for any point p 2M there is a local orthonormal frame in some neighborhood
of p.
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If fEj g is a local orthonormal frame, the dual frame f"j gwhich is characterized
by "j .Ek/ D ıjk gives an orthonormal basis of T �q M for any q near p. The
inner product in (2-2) is the unique inner product on k-tensor fields such that
f"i1˝� � �˝"ik g gives an orthonormal basis of T k.TqM / for q near p whenever
f"j g is a local orthonormal frame of 1-forms near p.

Exercise 2.8. Prove the lemma by applying the Gram-Schmidt orthonormaliza-
tion procedure to a basis f@j g of coordinate vector fields, and prove the statements
after the lemma.

Volume form, integration, and L2 Sobolev spaces. From this point on, all Rie-
mannian manifolds will be assumed to be oriented. Clearly near any point p in
.M;g/ there is a positive local orthonormal frame (that is, a local orthonormal
frame fEj g which gives a positive orthonormal basis of TqM for q near p).

Lemma 2.4 (volume form). Let .M;g/ be a Riemannian manifold. There is a
unique n-form on M , denoted by dV and called the volume form, such that
dV .E1; : : : ;En/D 1 for any positive local orthonormal frame fEj g. In local
coordinates

dV D jgj1=2 dx1
^ : : :^ dxn:

Exercise 2.9. Prove this lemma.

If f is a function on .M;g/, we can use the volume form to obtain an n-form
f dV . The integral of f over M is then defined to be the integral of the n-form
f dV . Thus, on a Riemannian manifold there is a canonical way to integrate
functions (instead of just n-forms).

If u; v 2 C1.M / are complex-valued functions, we define the L2 inner
product by

.u; v/D .u; v/L2.M / WD

Z
M

u Nv dV:

The completion of C1.M / with respect to this inner product is a Hilbert space
denoted by L2.M / or L2.M; dV /. It consists of square integrable functions
defined almost everywhere on M with respect to the measure dV . The L2 norm
is defined by

kuk D kukL2.M / WD .u;u/
1=2

L2.M /
:

Similarly, we may define the spaces of square integrable k-forms or k-tensor
fields, denoted by L2.M; ƒkM / or L2.M;T kM /, by using the inner product

.u; v/ WD

Z
M

hu; Nvi dV; u; v 2 C1.M;T kM / complex-valued.

We may use the above inner products to give a definition of low order Sobolev
spaces on Riemannian manifolds which does not involve local coordinates. We



THE CALDERÓN PROBLEM ON RIEMANNIAN MANIFOLDS 185

define the H 1.M / inner product

.u; v/H 1.M / WD .u; v/C .du; dv/; u; v 2 C1.M / complex-valued.

The space H 1.M / (resp. H 1
0
.M /) is defined to be the completion of C1.M /

(resp. C1c .M int/) with respect to this inner product. These are subspaces of
L2.M / which have first-order weak derivatives in L2.M /, and they coincide
with the spaces defined in the usual way by using local coordinates. Also, we
define H�1.M / to be the dual space of H 1

0
.M /.

Codifferential. Using the inner product on k-forms, we can define the codiffer-
ential operator ı as the adjoint of the exterior derivative via the relation

.ıu; v/D .u; dv/

where u 2 C1.M; ƒk/ and v 2 C1c .M int; ƒk�1/. It can be shown that ı gives
a well-defined map

ı W C1.M; ƒk/! C1.M; ƒk�1/:

We will only use ı for 1-forms, and in this case the operator can be easily defined
by a local coordinate expression. Let ˛ be a 1-form in M , let .U;x/ be a chart
and let ' 2 C1c .U /. One computes in local coordinates

.˛; dv/D

Z
U

h˛; d Nvi dV D

Z
U

gjk
j̨@kv jgj

1=2 dx

D�

Z
U

jgj�1=2@k.jgj
1=2gjk

j̨ / Nv dV:

This computation shows that the function ı˛, defined in local coordinates by

ı˛ WD �jgj�1=2@j .jgj
1=2gjk˛k/;

is a smooth function in M and satisfies .ı˛; v/D .˛; dv/.
It follows that ı˛ is related to the divergence of vector fields by ı˛D�div.˛]/,

where the divergence is defined by

div.X / WD jgj�1=2@j .jgj
1=2X j /:

Exercise 2.10 (Hodge star operator). Let .M;g/ be a Riemannian manifold of
dimension n. If ! and � are k-forms on M , show that the identity

! ^��D h!; �i dV

determines uniquely a linear operator (called the Hodge star operator)

� W C1.M; ƒk/! C1.M; ƒn�k/:

Prove the following properties:
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� �� D .�1/k.n�k/ on k-forms

� �1D dV

� �."1^ : : :^"k/D "kC1^ : : :^"n whenever ."1; : : : ; "n/ is a positive local
orthonormal frame on T �M

� h�!; �i D �h!;��i when !; � are 1-forms and dim.M / D 2 (that is, on
2D manifolds the Hodge star on 1-forms corresponds to rotation by 90ı)

Prove that the operator

ı WD .�1/.k�1/.n�k/�1
� d � on k-forms

gives a map ı W C1.M; ƒk/! C1.M; ƒk�1/ satisfying .ıu; v/D .u; dv/ for
compactly supported v, and thus gives a valid definition of the codifferential on
forms of any order.

Conformality. As the last topic in this section, we discuss the notion of confor-
mality of manifolds.

Definition. Two metrics g1 and g2 on a manifold M are called conformal
if g2 D cg1 for a smooth positive function c on M . A diffeomorphism f W

.M;g/! .M 0;g0/ is called a conformal transformation if f �g0 is conformal
to g, that is,

f �g0 D cg:

Two Riemannian manifolds are called conformal if there is a conformal transfor-
mation between them.

We relate this definition of conformality to the standard one in complex
analysis via the concept of angle �.v; w/D �g.v; w/ 2 Œ0; �� defined in (2-1).

Lemma 2.5 (conformal = angle-preserving). Let f W .M;g/! .M 0;g0/ be a
diffeomorphism. The following are equivalent.

(1) f is a conformal transformation.

(2) f preserves angles in the sense that �g.v; w/D �g0.f�v; f�w/.

Exercise 2.11. Prove the lemma.

It follows that f is a conformal transformation if and only if for any point
p and tangent vectors v and w, and for any curves 
v and 
w with P
v.0/D v,
P
w.0/D w, the curves f ı 
v and f ı 
w intersect in the same angle as 
v and

w. This corresponds to the standard interpretation of conformality.

The two dimensional case is special because of the classical fact that orientation
preserving conformal maps are holomorphic. The proof is given for completeness.
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Lemma 2.6 (conformal = holomorphic). Let � and Q� be open sets in R2. An
orientation preserving map f W .�; e/! . Q�; e/ is conformal if and only if it is
holomorphic and bijective.

Proof. We use complex notation and write z D x C iy, f D uC iv. If f is
conformal then it is bijective and f �e D ce. The last condition means that for
all z 2� and for v;w 2 R2,

c.z/v �w D .f�v/ � .f�w/DDf .z/v �Df .z/w DDf .z/tDf .z/v �w:

Since Df .z/D
� ux uy
vx vy

�
, this implies�

u2
xC v

2
x uxuy C vxvy

uxuy C vxvy u2
y C v

2
y

�
D

�
c 0

0 c

�
:

Thus the vectors .ux vx/
t and .uy vy/

t are orthogonal and have the same length.
Since f is orientation preserving so det Df > 0, we must have

ux D vy ; uy D�vx :

This shows that f is holomorphic. The converse follows by running the argument
backwards. �

It follows from the existence of isothermal coordinates that any 2D Riemannian
manifold is locally conformal to a set in Euclidean space. The conformal structure
of manifolds with dimension n � 3 is much more complicated. However, the
model spaces are locally conformally Euclidean.

Lemma 2.7. (1) Let .Sn;g/ be the unit sphere in RnC1 with its induced metric,
and let N D enC1 be the north pole. Then the stereographic projection

f W .Sn
X fN g;g/! .Rn; e/; f .y;ynC1/ WD

y

1�ynC1

is a conformal transformation.

(2) Hyperbolic space .H n;g/, where H n is the unit ball B in Rn and gjk.x/D
4

.1�jxj2/2
ıjk , is conformal to .B; e/.

Exercise 2.12. Prove the lemma.

Finally, we mention Liouville’s theorem which characterizes all conformal
transformations in Rn for n� 3. This result shows that up to translation, scaling,
and rotation, the only conformal transformations are the identity map and Kelvin
transform (this is in contrast to the 2D case where there is a rich family of
conformal transformations, the holomorphic bijective maps). See [Iwaniec and
Martin 2001] for a proof.
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Theorem (Liouville). If �; Q�� Rn with n� 3, then an orientation preserving
diffeomorphism f W .�; e/! . Q�; e/ is conformal if and only if

f .x/D ˛Ah.x�x0/C b

where ˛ 2 R, A is an n � n orthogonal matrix, h.x/ D x or h.x/ D
x

jxj2
,

x0 2 Rn X�, and b 2 Rn.

2C. Laplace–Beltrami operator.

Definition. In this section we will see that on any Riemannian manifold there is
a canonical second-order elliptic operator, called the Laplace–Beltrami operator,
which is an analog of the usual Laplacian in Rn.

Motivation. Let first � be a bounded domain in Rn with smooth boundary, and
consider the Laplace operator

�D

nX
jD1

@2

@x2
j

:

Solutions of the equation �uD 0 are called harmonic functions, and by standard
results for elliptic PDE [Evans 2010, Section 6], for any f 2H 1.�/ there is a
unique solution u 2H 1.�/ of the Dirichlet problem�

��uD 0 in �;
uD f on @�:

(2-3)

The last line means that u�f 2H 1
0
.�/.

One way to produce the solution of (2-3) is based on variational methods and
Dirichlet’s principle [Evans 2010, Section 2]. We define the Dirichlet energy

E.v/ WD
1

2

Z
�

jrvj2 dx; v 2H 1.�/:

If we define the admissible class

Af WD fv 2H 1.�/ I v D f on @�g;

then the solution of (2-3) is the unique function u 2 Af which minimizes the
Dirichlet energy:

E.u/�E.v/ for all v 2Af :

The heuristic idea is that the solution of (2-3) represents a physical system in
equilibrium, and therefore should minimize a suitable energy functional. The
point is that one can start from the energy functional E. � / and conclude that
any minimizer u must satisfy �uD 0, which gives another way to define the
Laplace operator.
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From this point on, let .M;g/ be a compact Riemannian manifold with smooth
boundary. Although there is no obvious analog of the coordinate definition of �
in Rn, there is a natural analog of the Dirichlet energy. It is given by

E.v/ WD
1

2

Z
M

jdvj2 dV; v 2H 1.M /:

Here jdvj is the Riemannian length of the 1-form dv, and dV is the volume
form.

We wish to find a differential equation which is satisfied by minimizers of
E. � /. Suppose u 2H 1.M / is a minimizer which satisfies E.u/�E.uC t'/

for all t 2 R and all ' 2 C1c .M int/. We have

E.uC t'/D
1

2

Z
M

hd.uC t'/; d.uC t'/i dV

DE.u/C t

Z
M

hdu; d'i dV C t2E.'/:

Since I'.t/ WD E.u C t'/ is a smooth function of t for fixed ', and since
I'.0/ � I'.t/ for jt j small, we must have I 0'.0/D 0. This shows that if u is a
minimizer, then Z

M

hdu; d'i dV D 0

for any choice of ' 2 C1c .M int/. By the properties of the codifferential ı, this
implies that Z

M

.ıdu/' dV D 0

for all ' 2 C1c .M int/. Thus any minimizer u has to satisfy the equation

ıduD 0 in M:

We have arrived at the definition of the Laplace–Beltrami operator.

Definition. If .M;g/ is a compact Riemannian manifold (with or without bound-
ary), the Laplace–Beltrami operator is defined by

�gu WD �ıdu:

The next result implies, in particular, that in Euclidean space �g is just the
usual Laplacian.

Lemma 2.8. In local coordinates

�guD jgj�1=2@j .jgj
1=2gjk@ku/

where, as before, jgj D det.gjk/ is the determinant of g.
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Proof. Follows from the coordinate expression for ı. �

Weak solutions. We move on to the question of finding weak solutions to the
Dirichlet problem �

��guD F in M;

uD 0 on @M:
(2-4)

Here F 2 H�1.M / (thus F is a bounded linear functional on H 1
0
.M /). By

definition, a weak solution is a function u 2H 1
0
.M / which satisfiesZ

M

hdu; d'i dV D F.'/ for all ' 2H 1
0 .M /:

We will have use of the following compactness result also later.

Theorem (Rellich–Kondrachov compact embedding theorem). Let .M;g/ be a
compact Riemannian manifold with smooth boundary. Then the natural inclusion
i WH 1.M /!L2.M / is a compact operator.

Proof. See [Evans 2010, Chapter 5] for the Euclidean case and [Taylor 1996] for
the Riemannian case. �

The solvability of (2-4) will be a consequence of the following inequality.

Theorem (Poincaré inequality). There is C > 0 such that

kukL2.M / � CkdukL2.M /; u 2H 1
0 .M /:

Proof. Suppose the claim is false. Then there is a sequence .uk/
1
kD1

with
uk 2H 1

0
.M / and

kukkL2.M / > kkdukkL2.M /:

Letting vk D uk=kukkL2.M /, we have kvkkL2.M / D 1 and

kdvkkL2.M / <
1

k
:

Thus .vk/ is a bounded sequence in H 1
0
.M /, and therefore it has a subsequence

(also denoted by .vk/) which converges weakly to some v 2 H 1
0
.M /. The

compact embedding H 1.M / ,!L2.M / implies that

vk ! v in L2.M /:

It follows that dvk ! dv in H�1.M /. But also dvk ! 0 in L2.M /, and
uniqueness of limits shows that dv D 0. Now any function v 2 H 1.M / with
dv D 0 must be constant on each connected component of M (this follows from
the corresponding result in Rn), and since v 2H 1

0
.M / we get that v D 0. This

contradicts the fact that kvkkL2.M / D 1. �
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It follows from the Poincaré inequality that for u 2H 1
0
.M /,

kduk2
L2.M /

� kuk2
H 1.M /

D kuk2
L2.M /

Ckduk2
L2.M /

� Ckduk2
L2.M /

:

Consequently the norms k � kH 1.M / and kd � kL2.M / are equivalent norms on
H 1

0
.M / (they induce the same topology). We can now prove the solvability of

the Dirichlet problem.

Proposition 2.9 (existence of weak solutions). The problem (2-4) has a unique
weak solution u 2H 1

0
.M / for any F 2H�1.M /. The solution operator

G WH�1.M /!H 1
0 .M /; F 7! u;

is a bounded linear operator.

Proof. Consider the bilinear form

BŒu; v� WD

Z
M

hdu; dvi dV; u; v 2H 1
0 .M /:

This satisfies BŒu; v�D BŒv;u�, jBŒu;u�j � kukH 1
0
.M /kvkH 1

0
.M /, and

BŒu;u�D

Z
M

jduj2 dV D kduk2
L2.M /

� Ckuk2
H 1.M /

by using the equivalent norms on H 1
0
.M /. Thus H 1

0
.M / equipped with the

inner product BŒ � ; � � is the same Hilbert space as H 1
0
.M / equipped with the

usual inner product . � ; � /H 1.M /. Since F is an element of the dual of H 1
0
.M /,

the Riesz representation theorem shows that there is a unique u 2H 1
0
.M / with

BŒu; '�D F.'/; ' 2H 1
0 .M /:

This is the required unique weak solution. Writing uDGF , the boundedness of
G follows from the estimate kukH 1.M / � kFkH�1.M / also given by the Riesz
representation theorem. �
Corollary 2.10 (existence of weak solutions). The problem�

��guD 0 in M;

uD f on @M:
(2-5)

has a unique weak solution u 2H 1.M / for any f 2H 1.M /, and the solution
satisfies kukH 1.M / � Ckf kH 1.M /.

Proof. Let F D�gf 2H�1.M / (one defines F.'/ WD �.df; d'/). Then (2-5)
is equivalent with �

��g.u�f /D F in M;

u�f D 0 on @M:
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This has a unique solution u0 DGF with ku0kH 1.M / � Ckf kH 1.M /, and one
can take uD u0Cf . �
Spectral theory. Combined with the spectral theorem for compact operators, the
previous results show that the spectrum of ��g consists of a discrete set of eigen-
values and there is an orthonormal basis of L2.M / consisting of eigenfunctions
of ��g.

Proposition 2.11 (spectral theory for ��g). Let .M;g/ be a compact Riemann-
ian manifold with smooth boundary. There exist numbers 0< �1 � �2 � � � � and
an orthonormal basis f�lg

1
lD1

of L2.M / such that�
��g�l D �l�l in M;

�l 2H 1
0
.M /:

We write Spec.��g/ D f�1; �2; : : : g. If � 62 Spec.��g/, then ��g � � is an
isomorphism from H 1

0
.M / onto H�1.M /.

Before giving the proof, we note that by standard Hilbert space theory any
function f 2L2.M / can be written as an L2-convergent Fourier series

f D

1X
lD1

.f; �l/L2.M /�l

where .f; �l/ is the l th Fourier coefficient. These eigenfunction (or Fourier)
expansions can sometimes be used as a substitute in M for the Fourier transform
in Euclidean space, as we will see in Section 4.

Proof of Proposition 2.11. Let G WH�1.M /!H 1
0
.M / be the solution operator

from Proposition 2.9. By compact embedding, we have that G W L2.M /!

L2.M / is compact. It is also self-adjoint and positive semidefinite, since for
f; h 2L2.M / (with uDGf )

.Gf; h/D .u;��gGh/D .du; dGh/D .��gu;Gh/D .f;Gh/;

.Gf; f /D .Gf;��gGf /D .dGf; dGf /� 0:

By the spectral theorem for compact operators, there exist �1 � �2 � � � � with
�j ! 0 and �l 2L2.M / with G�l D�l�l such that f�lg

1
lD1

is an orthonormal
basis of L2.M /. Note that 0 is not in the spectrum of G, since Gf D 0 implies
f D 0. Taking �l D 1=�l gives ��g�l D �l�l . If � ¤ �l for all l then for
F 2H�1.M /,

.��g ��/uD F , uDG.F C�u/ ,
�

1

�
Id�G

�
uD

1

�
GF:

Since 1
�
¤�l for all l , 1

�
Id�G is invertible and we see that ��g�� is bijective

and bounded, therefore an isomorphism. �
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We conclude the section with an analog of Proposition 2.11 where the Laplace–
Beltrami operator is replaced by the Schrödinger operator ��gCV . The proof
is the same except for minor modifications and is left as an exercise. The main
point is that for � outside the discrete set Spec.��gCV /, this result implies
unique solvability for the Dirichlet problem�

.��gCV ��/uD 0 in M;

uD f on @M

with the norm estimate kukH 1.M / � Ckf kH 1.M /.

Proposition 2.12 (spectral theory for ��g C V ). Let .M;g/ be a compact
Riemannian manifold with smooth boundary, and assume that V 2 L1.M /

is real-valued. There exist numbers �1 � �2 � � � � and an orthonormal basis
f lg

1
lD1

of L2.M / such that�
.��gCV / l D �l l in M;

 l 2H 1
0
.M /:

We write
Spec.��gCV /D f�1; �2; : : : g:

If � 62 Spec.��gCV /, then ��gCV �� is an isomorphism from H 1
0
.M / onto

H�1.M /.

Exercise 2.13. Prove this result by first showing an analog of Proposition 2.9
where ��g is replaced by ��g C V C k0 for k0 sufficiently large, and then
by following the proof of Proposition 2.11 where G is replaced by the inverse
operator for ��gCV C k0.

2D. DN map.

Definition. We now rigorously define the Dirichlet-to-Neumann map, or DN
map for short, discussed in the introduction. Let .M;g/ be a compact manifold
with smooth boundary, and let V 2 L1.M /. Proposition 2.12 shows that the
Dirichlet problem �

.��gCV /uD 0 in M;

uD f on @M
(2-6)

has a unique solution u 2H 1.M / for any f 2H 1.M /, provided that 0 is not a
Dirichlet eigenvalue (meaning that 0 62 Spec.��gCV /). We make the standing
assumption that all Schrödinger operators are such that

0 is not a Dirichlet eigenvalue of ��gCV .
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As mentioned in the introduction, it would be easy to remove this assumption by
using so-called Cauchy data sets instead of the DN map.

If 0 is not a Dirichlet eigenvalue, then (2-6) is uniquely solvable for any
f 2H 1.M /. If f 2H 1

0
.M / then uD0 is a solution (since then u�f 2H 1

0
.M /),

which means that the solution with boundary value f coincides with the solution
with boundary value f C ' where ' 2H 1

0
.M /. Motivated by this, we define

the quotient space

H 1=2.@M / WDH 1.M /=H 1
0 .M /:

This is a Hilbert space which can be identified with a space of functions on @M
which have 1=2 derivatives in L2.@M /, but the abstract setup will be enough
for us. We also define H�1=2.@M / as the dual space of H 1=2.@M /.

By the above discussion, the Dirichlet problem (2-6) is well posed for boundary
values f 2 H 1=2.M /. Denoting the solution by uf , the DN map is formally
defined as the map

ƒg;V W f 7! @�uf j@M :

Here, for sufficiently smooth u, the normal derivative is defined by

@�uj@M WD hru; �ij@M :

To find a rigorous definition of ƒg we will use an integration by parts formula.

Theorem (Green’s formula). If u; v 2 C 2.M / thenZ
@M

.@�u/v dS D

Z
M

.�gu/v dV C

Z
M

hdu; dvi dV:

Exercise 2.14. Prove this formula by using Stokes’ theorem.

Let now f; h 2H 1=2.@M /, let uf be the solution of (2-6), and let eh be any
function in H 1.M / with ehj@M D h (with natural interpretations). Then, again
purely formally,

hƒg;V f; hi D

Z
@M

.@�uf /eh dS D

Z
M

.�guf /eh dV C

Z
M

hduf ; dehi dV

D

Z
M

�
hduf ; dehiCV uf eh

�
dV:

We have finally arrived at the precise definition of ƒg;V .

Definition. ƒg;V is the linear map from H 1=2.@�/ to H�1=2.@�/ defined via
the bilinear form

hƒg;V f; hi D

Z
M

�
hduf ; dehiCV uf eh

�
dV; f; h 2H 1=2.@M /;

where uf and eh are as above.
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Exercise 2.15. Prove that the bilinear form indeed gives a well defined map
H 1=2.@�/!H�1=2.@�/.

The DN map is also self-adjoint:

Lemma 2.13. If V is real-valued, then

hƒg;V f; hi D hf;ƒg;V hi; f; h 2H 1=2.@M /:

Exercise 2.16. Prove the lemma.

Integral identity. The main point in this section is an integral identity which
relates the difference of two DN maps to an integral over M involving the
difference of two potentials. This identity is the starting point for recovering
interior information (the potentials in M ) from boundary measurements (the DN
maps on @M ).

Proposition 2.14 (integral identity). Let .M;g/ be a compact Riemannian man-
ifold with smooth boundary, and let V1;V2 2L1.M / be real-valued. Then

h.ƒg;V1
�ƒg;V2

/f1; f2i D

Z
M

.V1�V2/u1u2 dV; f1; f2 2H 1=2.@M /;

where uj 2H 1.M / are the solutions of .��gCVj /uj D 0 in M with uj j@M D

fj .

Proof. By definition and by self-adjointness of ƒg;V2
,

hƒg;V1
f1; f2i D

Z
M

�
hdu1; du2iCV1u1u2

�
dV;

hƒg;V2
f1; f2i D hf1; ƒg;V2

f2i D

Z
M

�
hdu1; du2iCV2u1u2

�
dV:

The result follows by subtracting the two identities. �

In this text we are interested in uniqueness results, where one would like
to show that ƒg;V1

Dƒg;V2
implies V1 D V2. For this purpose, the following

corollary is appropriate. It shows that if two DN maps coincide, then the integral
of the difference of potentials against the product of any two solutions (with no
requirements for their boundary values) vanishes.

Corollary 2.15 (integral identity). Let .M;g/ be a compact Riemannian man-
ifold with smooth boundary, and let V1;V2 2 L1.M / be real-valued. If
ƒg;V1

Dƒg;V2
, then Z

M

.V1�V2/u1u2 dV D 0

for any uj 2H 1.M / which satisfy .��gCVj /uj D 0 in M .
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2E. Geodesics and covariant derivative. In this section we let .M;g/ be a
connected Riemannian manifold without boundary (for our purposes, geodesics
and the Levi-Civita connection on manifolds with boundary can be defined by
embedding into a compact manifold without boundary).

Lengths of curves. For the analysis of the Calderón problem on manifolds we
will need to introduce some basic properties of geodesics. These are locally
length-minimizing curves on .M;g/, so we begin by discussing lengths of curves.

Definition. A smooth map 
 W Œa; b�!M whose tangent vector P
 .t/ is always
nonzero is called a regular curve. The length of 
 is defined by

L.
 / WD

Z b

a

j P
 .t/j dt:

The length of a piecewise regular curve is defined as the sum of lengths of the
regular parts. The Riemannian distance between two points p; q 2M is defined
by

d.p; q/ WD inffL.
 / I 
 W Œa; b�!M is a piecewise regular curve with

 .a/D p and 
 .b/D qg:

Exercise 2.17. Show that L.
 / is independent of the way the curve 
 is param-
etrized, and that we may always parametrize 
 by arc length so that j P
 .t/j D 1

for all t .

Exercise 2.18. Show that d is a metric distance function on M , and that .M; d/

is a metric space whose topology is the same as the original topology on M .

Geodesic equation. We now wish to show that any length-minimizing curve
satisfies a certain ordinary differential equation. Suppose that 
 W Œa; b�!M is a
length-minimizing curve between two points p and q parametrized by arc length,
and let 
s W Œa; b�!M be a family of curves from p to q such that 
0.t/D 
 .t/

and �.s; t/ WD
s.t/ depends smoothly on s2 .�"; "/ and on t 2 Œa; b�. We assume
for simplicity that each 
s is regular and contained in a coordinate neighborhood
of M , and write xs.t/D .x

1
s .t/; : : : ;x

n
s .t// and x.t/D x0.t/ instead of 
s.t/

and 
 .t/ in local coordinates.

Lemma 2.16. The length-minimizing curve x.t/ satisfies the so-called geodesic
equation

Rxl.t/C� l
jk.x.t// Px

j .t/ Pxk.t/D 0; 1� l � n;

where � l
jk

is the Christoffel symbol

� l
jk D

1
2
glm.@j gkmC @kgjm� @mgjk/:
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Proof. Since 
 minimizes length from p to q, we have

L.
0/�L.
s/; s 2 .�"; "/:

Define

I.s/ WDL.
s/D

Z b

a

.gpq.xs.t// Px
p
s .t/ Px

q
s .t//

1=2 dt:

Since I is smooth and I.0/ � I.s/ for jsj < ", we must have I 0.0/ D 0. To
prepare for computing the derivative, define two vector fields

T .t/ WD @txs.t/jsD0; V .t/ WD @sxs.t/jsD0:

Using that j P
0.t/j D 1 and .gjk/ is symmetric, we have

I 0.0/D
1

2

Z b

a

�
@r gpq.x.t//V

r .t/T p.t/T q.t/C 2gpq.x.t// PV
p.t/T q.t/

�
dt:

Integrating by parts in the last term, this shows that

I 0.0/D

Z b

a

�
1
2
@r gpq.x/T

pT q
� @mgrq.x/T

mT q
�grq.x/ PT

q
�
V r dt:

The last expression vanishes for all possible vector fields V .t/ obtained as
@sxs.t/jsD0. It can be seen that any vector field with V .a/D V .b/D 0 arises as
V .t/ for some family of curves 
s.t/. This implies that

1
2
@r gpq.x/T

pT q
� @mgrq.x/T

mT q
�grq.x/ PT

q
D 0; t 2 Œa; b�; 1� r � n:

Multiplying this by glr and summing over r , and using that

@mgrq.x/T
mT q

D
1
2
.@mgrq.x/C @qgrm.x//T

mT q;

gives the geodesic equation upon relabeling indices. �

Covariant derivative. It would be possible to develop the theory of geodesics
based on the ODE derived in Lemma 2.16. However, it will be very useful to
be able to do computations such as those in Lemma 2.16 in an invariant way,
without resorting to local coordinates. For this purpose we want to be able to take
derivatives of vector fields in a way which is compatible with the Riemannian
inner product h � ; � i.

We first recall the commutator of vector fields. Any smooth vector field on
M gives rise to a first-order differential operator X W C1.M /! C1.M / by

Xf .p/DX.p/f:
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If X and Y are vector fields, their commutator ŒX;Y � is the differential operator
acting on smooth functions by

ŒX;Y �f WDX.Yf /�Y .Xf /:

The commutator of two vector fields is itself a vector field.
The next result is sometimes called the fundamental lemma of Riemannian

geometry.

Theorem (Levi-Civita connection). On any Riemannian manifold .M;g/ there
is a unique R-bilinear map

D W C1.M;TM /�C1.M;TM /! C1.M;TM /; .X;Y / 7!DX Y;

which satisfies

.1/ DfX Y D fDX Y (linearity);

.2/ DX .f Y /D fDX Y C .Xf /Y (Leibniz rule);

.3/ DX Y �DY X D ŒX;Y � (symmetry);

.4/ X hY;Zi D hDX Y;ZiC hY;DX Zi (metric connection):

Here X;Y;Z are vector fields and f is a smooth function on M .

Proof. See [Lee 1997]. �

The map D is called the Levi-Civita connection of .M;g/. The expression
DX Y is called the covariant derivative of the vector field Y in direction X .

Example. In .Rn; e/ the Levi-Civita connection is given by

DX Y DX j .@j Y k/@k :

This is just the natural derivative of Y in direction X .

Example. On a general manifold .M;g/, one has

DX Y DX j .@j Y k/@k CX j Y k� l
jk@l

where � l
jk

are the Christoffel symbols from Lemma 2.16, and they also satisfy

D@j @k D �
l
jk@l :

Covariant derivative of tensors. At this point we will define the connection and
covariant derivatives also for other tensor fields. Let X be a vector field on M .
The covariant derivative of 0-tensor fields is given by

DX f WDXf:
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For k-tensor fields u, the covariant derivative is defined by

DX u.Y1; : : : ;Yk/ WDX.u.Y1; : : : ;Yk//�

kX
jD1

u.Y1; : : : ;DX Yj ; : : : ;Yk/:

Exercise 2.19. Show that these formulas give a well defined covariant derivative

DX W C
1.M;T kM /! C1.M;T kM /:

Example. The main example of the above construction is the covariant derivative
of 1-forms, which is uniquely specified by the identity

D@j dxk
D��k

jldxl :

By using DX on tensors, it is possible to define the total covariant derivative
as the map

D W C1.M;T kM /! C1.M;T kC1M /;

Du.X;Y1; : : : ;Yk/ WDDX u.Y1; : : : ;Yk/:

Example. On 0-forms Df D df .

Example. The most important use for the total covariant derivative in these
notes is the covariant Hessian. If f is a smooth function, then the covariant
Hessian of f is

Hess.f / WDD2f:

In local coordinates it is given by

D2f D .@j@kf ��
l
jk@lf / dxj

˝ dxk :

Finally, we mention that the total covariant derivative can be used to define
higher order Sobolev spaces invariantly on a Riemannian manifold.

Definition. If k � 0, consider the inner product on C1.M / given by

.u; v/H k.M / WD

kX
jD0

.Dj u;Djv/L2.M /:

Here the L2 norm is the natural one using the inner product on tensors. The
Sobolev space H k.M / is defined to be the completion of C1.M / with respect
to this inner product.
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Geodesics. Let us return to length-minimizing curves. If 
 W Œa; b�!M is a
curve and X W Œa; b� ! TM is a smooth vector field along 
 (meaning that
X.t/ 2 T
.t/M ), we define the derivative of X along 
 by

D P
X WDD P
 QX

where QX is any vector field defined in a neighborhood of 
 .Œa; b�/ such that
QX
.t/ D X
.t/. It is easy to see that this does not depend on the choice of QX .

The relation to geodesics now comes from the fact that in local coordinates, if

 .t/ corresponds to x.t/,

D P
 P
 DD Pxj @j . Px
k@k/

D . Rxl
C� l

jk.x/ Px
j
Pxk/@l :

Thus the geodesic equation is satisfied if and only if D P
 P
 D 0. We now give the
precise definition of a geodesic.

Definition. A regular curve 
 is called a geodesic if D P
 P
 D 0.

The arguments above give evidence to the following result, which is proved
for instance in [Lee 1997].

Theorem (geodesics minimize length). If 
 is a piecewise regular length-mini-
mizing curve from p to q, then 
 is regular and D P
 P
 D 0. Conversely, if 
 is a
regular curve and D P
 P
 D 0, then 
 minimizes length at least locally.

We next list some basic properties of geodesics.

Theorem (properties of geodesics). Let .M;g/ be a Riemannian manifold with-
out boundary. Then

(1) for any p 2M and v 2 TpM , there is an open interval I containing 0 and
a geodesic 
v W I !M with 
v.0/D p and P
v.0/D v,

(2) any two geodesics with 
1.0/ D 
2.0/ and P
1.0/ D P
2.0/ agree in their
common domain,

(3) any geodesic satisfies j P
 .t/j D const,

(4) if M is compact then any geodesic 
 can be uniquely extended as a geodesic
defined on all of R.

Exercise 2.20. Prove this theorem by using the existence and uniqueness of
solutions to ordinary differential equations.

By (3) in the theorem, we may (and will) always assume that geodesics are
parametrized by arc length and satisfy j P
 j D 1. Part (4) says that the maximal
domain of any geodesic on a closed manifold is R, where the maximal domain
is the largest interval to which the geodesic can be extended. We will always
assume that the geodesics are defined on their maximal domain.



THE CALDERÓN PROBLEM ON RIEMANNIAN MANIFOLDS 201

Normal coordinates. The following important concept enables us to parametrize
a manifold locally by its tangent space.

Definition. If p 2M let Ep WD fv 2 TpM I 
v is defined on Œ0; 1�g, and define
the exponential map

expp W Ep!M; expp.v/D 
v.1/:

This is a smooth map and satisfies expp.tv/D 
v.t/. Thus, the exponential
map is obtained by following radial geodesics starting from the point p. This
parametrization also gives rise to a very important system of coordinates on
Riemannian manifolds.

Theorem (normal coordinates). For any p 2 M , expp is a diffeomorphism
from some neighborhood V of 0 in TpM onto a neighborhood of p in M .
If fe1; : : : ; eng is an orthonormal basis of TpM and we identify TpM with
Rn via vj ej $ .v1; : : : ; vn/, then there is a coordinate chart .U; '/ such that
' D exp�1

p W U ! Rn and

(1) '.p/D 0,

(2) if v 2 TpM then '.
v.t//D .tv1; : : : ; tvn/,

(3) one has

gjk.0/D ıjk ; @lgjk.0/D 0; � l
jk.0/D 0:

Proof. See [Lee 1997]. �
The local coordinates in the theorem are called normal coordinates at p. In

these coordinates geodesics through p correspond to rays through the origin.
Further, by (3) the metric and its first derivatives have a simple form at 0. This
fact is often exploited when proving an identity where both sides are invariantly
defined, and thus it is enough to verify the identity in some suitable coordinate
system. The properties given in (3) sometimes simplify these local coordinate
computations dramatically.

Finally, we will need the fact that when switching to polar coordinates in a
normal coordinate system, the metric has special form in a full neighborhood of
0 instead of just at the origin.

Theorem (polar normal coordinates). Let .U; '/ be normal coordinates at p. If
.r; �/ are the corresponding polar coordinates (thus r.q/D j'.q/j> 0 and �.q/
is the corresponding direction in Sn�1), then the metric has the form

.gjk.r; �//D

�
1 0

0 g˛ˇ.r; �/

�
:

This means that j@=@r j D 1, h@=@r; @=@�i D 0, and r.q/D d.p; q/.
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3. Limiting Carleman weights

In this section we will establish a starting point for solving some of the problems
mentioned in the introduction. The approach taken here is to construct special
solutions to the Schrödinger equation (or special harmonic functions if there is
no potential) in .M;g/, in such a way that the products of these special solutions
are dense in L1.M /.

The exact form of the special solutions is motivated by developments in Rn,
where harmonic exponential functions e��x with � 2 Cn and � � �D 0 have been
successful in the solution of inverse problems. On a Riemannian manifold there is
no immediate analog for the linear phase function � �x (one can always find such
a function in local coordinates, but not globally in general). We will instead look
for general phase functions ' which are expected to have desirable properties
for the purposes of constructing special solutions. Such phase functions will be
called limiting Carleman weights (LCWs).

The main result is a geometric characterization of those manifolds which
admit LCWs. It makes use of the crucial fact that the existence of LCWs only
depends on the conformal class of the manifold. The result is stated in terms of
the existence of a parallel vector field in some conformal manifold.

Theorem 3.1 (manifolds that admit LCWs). Let .M;g/ be a simply connected
open Riemannian manifold. Then .M;g/ admits an LCW if and only if some
conformal multiple of g admits a parallel unit vector field.

Intuitively, the geometric condition means that up to a conformal factor there
has to be a Euclidean direction on the manifold.

At this point we also mention a few open questions related to the theorem.
The notation will be explained below. The first question asks to show that in
dimensions n� 3 most metrics do not admit LCWs even locally (in fact, it would
be interesting to prove the existence of even one metric which does not admit
LCWs).

Question 3.1 (counterexamples). If M is a smooth manifold of dimension n� 3

and if p 2M , show that a generic metric near p does not admit an LCW. 1

We will show later that if ' is an LCW, then one has a suitable Carleman
estimate for the conjugated Laplace–Beltrami operators P˙' . The next question
is asking for a converse.

Question 3.2 (Carleman estimates imply LCW). If .M;g/ is an open manifold
and ' is such that for any M1 bM there are C0; h0 > 0 for which

hkukL2.M1/
� CkP˙'ukL2.M1/

; u 2 C1c .M int
1 /; 0< h< h0;

1A positive answer to this question was recently given in [Liimatainen and Salo 2012].
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then ' is an LCW. 2

The last question asks to find an analog in dimensions n� 3 of the Carleman
weights with critical points which have recently been very successful in 2D
inverse problems.

Question 3.3. Find an analog in dimensions n� 3 of Bukhgeim-type weights '
in 2D manifolds which satisfy a Carleman estimate of the type

h3=2
kuk � CkP˙'uk

for u 2 C1c .M int/ and 0< h< h0.

In this section we mostly follow [Dos Santos Ferreira et al. 2009, Section 2].

3A. Motivation and definition. Let .M;g/ be a compact Riemannian manifold
with boundary, and let V1;V22C1.M /. As always, we assume that the Dirichlet
problems for ��gCVj in M are uniquely solvable, so that the DN maps ƒg;Vj

are well defined. Assume that ƒg;V1
Dƒg;V2

, that is, the two potentials V1 and
V2 result in identical boundary measurements. Then we know thatZ

M

.V1�V2/u1u2 dV D 0

for any solutions uj 2H 1.M / which satisfy .��gCVj /uj D 0 in M . To solve
the inverse problem of proving that V1 D V2, it is therefore enough to show that
the set of products of solutions

fu1u2 I uj 2H 1.M / and .��gCVj /uj D 0 in M g

is dense in L1.M /.
In Euclidean space in dimensions n� 3, the density of solutions can be proved

based on harmonic complex exponentials. The following argument is from
[Sylvester and Uhlmann 1987] and is explained in detail in [Salo 2008, Chapter
3].

Motivation. Let .M;g/D .�; e/ where � is a bounded open subset of Rn with
C1 boundary. In this setting we have special harmonic functions

u0.x/D e��x; � 2 Cn; � � �D 0: (3-1)

Clearly �u0 D .� � �/u0 D 0. By [Sylvester and Uhlmann 1987], if j�j is large
there exist solutions to Schrödinger equations which look like these harmonic

2A positive answer was outlined in lectures of Dos Santos Ferreira [Ferreira 2011].
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exponentials and have the form

u1 D e��x.a1C r1/;

u2 D e���x.a2C r2/;

where aj are certain explicit functions and rj are correction terms which are
small when j�j is large, in the sense that krjkL2.�/ � C=j�j. We have chosen
one solution with e��x and the other solution with e���x so that the exponential
factors will cancel in the product u1u2, thus making it possible to take the limit
as j�j !1 which will get rid of the correction terms rj .

The density of products of solutions in this case can be proved as follows. We
fix � 2 Rn and choose a1 D eix�� , a2 D 1. If n� 3 then there exists a family of
complex vectors � with � ��D 0 and j�j!1 such that solutions with the above
properties can be constructed. To show density of the set fu1u2g for solutions
of this type, we take V 2L1.�/ and assume thatZ

�

V u1u2 dx D 0

for all u1 and u2 as above. ThenZ
�

V .eix��
C r1C eix��r2C r1r2/ dx D 0:

By the L2 estimates for rj we may take the limit as j�j !1, which will imply
that

R
� Veix�� dx D 0. Since this is true for any fixed � 2 Rn, it follows from

the uniqueness of the Fourier transform that V D 0 as required.

After having discussed the proof in the Euclidean case, we move on to the
setting on Riemannian manifolds and try to see if a similar argument could be
achieved. If .M;g/ is a compact Riemannian manifold with boundary, we first
seek approximate solutions satisfying�gu0� 0 (in some sense) having the form

u0 D e�'=hm:

Here ' is assumed to be a smooth real-valued function on M , h> 0 will be a
small parameter, and m 2 C1.M / is some complex function. In the Euclidean
case this corresponds to (3-1) by taking

hD 1=j�j; '.x/D�Re.�=j�j/ �x; m.x/D eIm.�/�x :

Loosely speaking, ' will be a limiting Carleman weight if such approximate
solutions with weight˙' can always be converted into exact solutions of�guD

0 (we can forget the potential V at this point). More precisely, we would like
the following condition to be satisfied:
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(�) For any function u0 D e�'=hm 2 C1.M / there is a solution

uD e�'=h.mC r/

of �guD 0 in M such that krkL2.M / � C hke˙'=h�gu0kL2.M / for h small.

To find conditions on ' which would guarantee that this is possible, we
introduce the conjugated Laplace–Beltrami operator

P' WD e'=h.�h2�g/e
�'=h: (3-2)

Note that if uD e�'=h.mC r/, then

�guD 0 , e˙'=h.�h2�g/e
�'=h.mC r/D 0

, P˙'r D�P˙'m:

Thus (�) would follow if for any f 2L2.M / there is a function v satisfying for
h small

P˙'v D f in M ;

hkvkL2.M / � Ckf kL2.M /:

One approach for proving existence of solutions to the last equation, or more
generally an inhomogeneous equation T vDf , is to prove uniqueness of solutions
to the homogeneous adjoint equation T �vD 0. This follows the general principle�

T � injective
range of T � closed

D) T surjective:

Exercise 3.1. Find out why this principle holds for m�n matrices, for operators
T D IdCK where K is a compact operator on a Hilbert space, or for bounded
operators T between two Hilbert spaces.

Since P�
˙' DP�' , injectivity and closed range for the adjoint operator would

be a consequence of the a priori estimate

hkukL2.M / � CkP˙'ukL2.M /; u 2 C1c .M int/; h small: (3-3)

This is called a Carleman estimate (that is, a norm estimate with exponential
weights depending on a parameter). Estimates of this type have turned out to be
very useful in unique continuation for solutions of partial differential equations,
control theory, and inverse problems.

We will look for conditions on ' which would imply the Carleman estimate
(3-3). The following decomposition of P' into its self-adjoint part A and skew-
adjoint part iB will be useful.
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Lemma 3.2. P'DACiB where A and B are the formally self-adjoint operators
(in the L2.M / inner product)

AW D �h2�g � jd'j
2;

BW D
h

i

�
2hd'; d � iC�g'

�
:

Proof. The quickest way to see this is a computation in local coordinates. We
write Dj D�i@xj , and note that

e'=hhDj e�'=h
D hDj C i'xj :

Then

P'uD e'=h.�h2�g/e
�'=hu

D jgj�1=2e'=hhDj .e
�'=h
jgj1=2gjke'=hhDk.e

�'=hu//

D jgj�1=2.hDj C i'xj /jgj
1=2gjk.hDk C i'xk

/u/

D�h2�guC hgjk'xj uxk
C hjgj�1=2@j .jgj

1=2gjk'xk
u/�gjk'xj 'xk

u

D�h2�guC h
�
2hd'; duiC .�g'/u

�
� jd'j2u:

The result follows immediately upon checking that A and B are formally self-
adjoint. �

Exercise 3.2. Check that A and B are formally self-adjoint.

Next we give a basic computation in the proof of a Carleman estimate such as
(3-3), evaluating the square of the right hand side.

Lemma 3.3. If u 2 C1c .M int/ then

kP'uk2 D kAuk2CkBuk2C .i ŒA;B�u;u/:

Proof. Since P' DAC iB,

kP'uk2 D .P'u;P'u/D ..AC iB/u; .AC iB/u/

D .Au;Au/C i.Bu;Au/� i.Au;Bu/C .Bu;Bu/

D kAuk2CkBuk2C .i ŒA;B�u;u/:

We used that A and B are formally self-adjoint. �

Thus kP'uk2 can be written as the sum of two nonnegative terms kAuk2 and
kBuk2 and a third term which involves the commutator ŒA;B� WD AB �BA.
The only negative contribution may come from the commutator term. Therefore,
a positivity condition for i ŒA;B� would be helpful for proving the Carleman
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estimate (3-3) for P' . We will state such a positivity condition on the level of
principal symbols.

Lemma 3.4. The principal symbols of A and B are

a.x; �/W D j�j2� jd'j2;

b.x; �/W D 2hd'; �i:

The principal symbol of i ŒA;B� is the Poisson bracket hfa; bg.

Proof. The principal symbol of A is obtained by writing A in some local
coordinates and by looking at the symbol of the corresponding operator in Rn.
But in local coordinates

AD gjkhDj hDk �gjk'xj 'xk
C h

�
jgj�1=2Dj .jgj

1=2gjk/Dk

�
:

The last term is lower order, hence does not affect the principal symbol. The
symbol of gjkhDj hDk�gjk'xj 'xk

is gjk�j�k�gjk'xj 'xk
, so we may take

the invariantly defined function a.x; �/ WD j�j2�jd'j2 on T �M as the principal
symbol. A similar argument works for B, and the claim for i ŒA;B� is a general
fact. �

Given this information, the positivity condition that we will require of i ŒA;B�

is the following condition for the principal symbol:

fa; bg � 0 when aD b D 0:

More precisely, we ask that fa; bg.x; �/ � 0 for any .x; �/ 2 T �M for which
a.x; �/D b.x; �/D 0. The idea is that in Lemma 3.3 one has the nonnegative
terms kAuk2 and kBuk2, and if either of these is large then it may cancel a
negative contribution from the commutator term. On the level of symbols, one
therefore only needs positivity of fa; bg when the principal symbols of A and B

vanish.
Recall that one wants the estimate (3-3) also for P�' . Changing ' to �'

in Lemma 3.2, we see that P�' D A� iB. As in Lemma 3.3 one then asks a
positivity condition for i ŒA;�B�, which has principal symbol �fa; bg. Thus, we
also require that

fa; bg � 0 when aD b D 0:

Combining the above conditions for fa; bg, we have finally arrived at the
definition of limiting Carleman weights. The definition is most naturally stated
on open manifolds, and it includes the useful additional condition that ' should
have nonvanishing gradient.
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Definition. Let .M;g/ be an open Riemannian manifold. We say that a smooth
real-valued function ' in M is a limiting Carleman weight (LCW) if d' ¤ 0 in
M and

fa; bg D 0 when aD b D 0:

Example. Let .M;g/D .�; e/ where � is an open set in Rn. We will verify
that the linear function '.x/ D ˛ � x, where ˛ 2 Rn is a nonzero vector, is an
LCW. Indeed, one has r' D ˛ and the principal symbols are

a.x; �/D j�j2� j˛j2;

b.x; �/D 2˛ � �:

Since a and b are independent of x, the Poisson bracket is

fa; bg D r�a � rxb�rxa � r�b � 0:

Thus ' is an LCW.

Exercise 3.3. If .M;g/ D .�; e/ and 0 62 �, verify that '.x/ D log jxj and
'.x/D ˛ �x=jxj2 are LCWs. Here ˛ 2 Rn is a fixed vector.

3B. Characterization. In the previous section, after a long motivation we ended
up with a definition of LCWs involving a rather abstract vanishing condition for
a certain Poisson bracket. Here we give a geometric meaning to this condition,
and also prove Theorem 3.1 which characterizes all Riemannian manifolds which
admit LCWs. We recall the statement.

Theorem 3.1 (manifolds which admit LCWs). Let .M;g/ be a simply connected
open Riemannian manifold. Then .M;g/ admits an LCW if and only if some
conformal multiple of g admits a parallel unit vector field.

Recall that a vector field X is parallel if DV X D 0 for any vector field V .
Also recall that a manifold is simply connected if it is connected and if every
closed curve is homotopic to a point. An explanation of the geometric condition,
including examples of manifolds which satisfy it, is given in the next section.

We now begin the proof of Theorem 3.1. Let .M;g/ be an open manifold.
Recall that ' 2 C1.M I R/ is an LCW if d' ¤ 0 in M and

fa; bg D 0 when aD b D 0:

Here a.x; �/ D j�j2 � jr'j2 and b.x; �/ D 2hd'; �i are smooth functions in
T �M . The first step is to find an expression for the Poisson bracket fa; bg,
defined in local coordinates by fa; bg WD r�a � rxb�rxa � r�b.



THE CALDERÓN PROBLEM ON RIEMANNIAN MANIFOLDS 209

Motivation. We compute the Poisson bracket in Rn. Then a.x; �/Dj�j2�jr'j2

and b.x; �/D 2r' � �, and writing '00 for the Hessian matrix .'xjxk
/n
j ;kD1

we
have

fa; bg D r�a � rxb�rxa � r�b

D 2� � 2'00� � .�2'00r'/ � 2r'

D 4'00� � �C 4'00r' � r':

A computation in normal coordinates will show that a similar expression, now
involving the covariant Hessian, holds on a Riemannian manifold.

Lemma 3.5 (expression for Poisson bracket). The Poisson bracket is given by

fa; bg.x; �/D 4D2'.�]; �]/C 4D2'.r';r'/:

Proof. Both sides are invariantly defined functions on T �M , so it is enough
to check the identity in some local coordinates at a given point. Fix p 2M ,
let x be normal coordinates centered at p, and let .x; �/ be the associated local
coordinates in T �M near p. Then

a.x; �/D gjk�j�k �gjk'xj 'xk
;

b.x; �/D 2gjk'xj �k :

Using that gjk jp D ı
jk and @lg

jk jp D �
l
jk
jp D 0, we have

fa; bg.x; �/jp D

nX
lD1

�
@�l

a@xl
b� @xl

a@�l
b
�ˇ̌̌

p

D

nX
lD1

�
.2gjl�l/.2gjk'xjxl

�k/� .�2gjk'xjxl
'xk

/.2gjl'xj/
�ˇ̌̌

p

D

nX
j ;lD1

�
4'xjxl

�j�l C 4'xjxl
'xj 'xl

�ˇ̌̌
p

D .4D2'.�]; �]/C 4D2'.r';r'//jp;

since D2'jp D 'xjxl
dxj ˝ dxl jp. �

This immediately implies a condition for LCWs which is easier to work with
than the original one.

Corollary 3.6. ' is an LCW if and only if d' ¤ 0 in M and

D2'.X;X /CD2'.r';r'/D 0 when jX j D jr'j and hX;r'i D 0:
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We can now give a full characterization of LCWs in two dimensions. To do
this, recall that the trace of a 2-tensor S on an n-dimensional manifold .N;g/ is
(analogously to the trace of an n� n matrix) defined by

Tr.S/jp WD
nX

jD1

S.ej ; ej /

where fe1; : : : ; eng is any orthonormal basis of TpN . The trace of the Hessian is
just the Laplace–Beltrami operator, as may be seen by a computation in normal
coordinates at p:

Tr.D2'/jp D

nX
jD1

D2'.@j ; @j /jp D

nX
jD1

'xjxj jp D�g'jp:

Proposition 3.7 (LCWs in 2D). The LCWs in a 2D manifold .M;g/ are exactly
the harmonic functions with nonvanishing differential.

Proof. If jX j D jr'j and hX;r'iD 0, then fX=jr'j;r'=jr'jg is an orthonor-
mal basis of the tangent space. Then

D2'.X;X /CD2'.r';r'/D jr'j2Tr.D2'/D jr'j2�g':

By Corollary 3.6, ' is an LCW if and only if �g' D 0 and d' ¤ 0. �
After having characterized the situation in two dimensions, we move on to the

case n� 3. The crucial fact here is that the existence of LCWs is a conformally
invariant condition.

Proposition 3.8 (existence of LCWs only depends on conformal class). If ' is
an LCW in .M;g/, then ' is an LCW in .M; cg/ for any smooth positive function
c.

Proof. Suppose ' is an LCW in .M;g/, and let Qg D cg. Then the symbols Qa
and Qb for the metric Qg are

QaD Qgjk�j�k � Qg
jk'xj 'xk

D c�1.gjk�j�k �gjk'xj 'xk
/D c�1a;

Qb D 2 Qgjk'xj �k D 2c�1gjk'xj �k D c�1b:

Since c�1 does not depend on � , it follows that

f Qa; Qbg D fc�1a; c�1bg D c�1
r�a � rx.c

�1b/� c�1
rx.c

�1a/ � r�b

D c�2
fa; bgC c�1bfa; c�1

gC c�1afc�1; bg:

Suppose that QaD Qb D 0. Then aD b D 0, and using that ' is an LCW it follows
that fa; bg D 0. Consequently f Qa; Qbg D 0 when QaD Qb D 0, showing that ' is an
LCW in .M; Qg/. �
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At this point we record a lemma which expresses relations between the Hessian
and the covariant derivative.

Lemma 3.9. If ' 2 C1.M / then

D2'.X;Y /D hDXr';Y i;

D2'.X;r'/D hDXr';r'i D
1
2
X.jr'j2/;

D2'. P
 .t/; P
 .t//D
d2

dt2
'.
 .t//

for any X;Y and for any geodesic 
 .

Proof. The first identity follows from a computation in normal coordinates. The
second identity follows from the first one and the metric property of D. The
third identity holds since

d2

dt2
'.
 .t//D

d

dt
hr'.
 .t//; P
 .t/i D hD P
.t/r'.
 .t//; P
 .t/i

DD2'. P
 .t/; P
 .t//

by the first identity. Here we used that D P
.t/ P
 .t/D 0 since 
 is a geodesic. �
Using the second identity in the previous lemma, we now observe that if '

is an LCW and additionally jr'j D 1, then the second term in Corollary 3.6
vanishes:

D2'.r';r'/D 1
2
r'.jr'j2/D 0:

A smooth function which satisfies jr'j D 1 is called a distance function (since
any such function is locally given by the Riemannian distance to a point or
submanifold, but we will not need this fact). If one is given an LCW ' in .M;g/,
one can always reduce to the case where the LCW is a distance function by using
the following conformal transformation.

Lemma 3.10 (conformal normalization). If ' is a smooth function in .M;g/

and if Qg D jr'j2g, then jr Qg'j Qg D 1.

Proof. jr Qg'j2Qg D Qg
jk'xj 'xk

D jr'j�2gjk'xj 'xk
D 1. �

We have an important characterization of LCWs which are also distance
functions.

Lemma 3.11 (LCWs which are distance functions). Let '2C1.M / and jr'jD
1. The following conditions are equivalent:

(1) ' is an LCW.

(2) D2' � 0.

(3) r' is parallel.
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(4) If p 2M and if v is in the domain of expp, then

'.expp.v//D '.p/Chr'.p/; vi:

Proof. Since jr'j D 1 we have D2'.r';r'/D 0. Thus by Corollary 3.6, ' is
an LCW if and only if

D2'.X;X /D 0 when jX j D 1 and hX;r'i D 0:

Since D2' is bilinear we may drop the condition jX j D 1, and the condition for
LCW becomes

D2'.X;X /D 0 when hX;r'i D 0:

(1) D) (2): Suppose ' is an LCW. Fix p 2M and choose an orthonormal basis
fe1; : : : ; eng of TpM such that e1 Dr'. Then, by the above discussion,

D2'.e1; e1/D 0;

D2'.ej ; ek/D 0 for 2� j ; k � n:

By Lemma 3.9 we also have D2'.X;r'/D 1
2
X.jr'j2/D0 for any X , therefore

D2'.ej ; e1/D 0 for 2� j � n:

Since D2' is bilinear and symmetric, we obtain D2' � 0.

(2) D) (1): This is immediate.

(2)() (3): Follows from D2'.X;Y /D hDXr';Y i.

(2)() (4): Let 
v.t/D expp.tv/. Then

d

dt
'.
v.t//D hr'.
v.t//; P
v.t/i;

d2

dt2
'.
v.t//DD2'. P
v.t/; P
v.t//:

If D2'� 0 then the second derivative of '.
v.t// vanishes, therefore '.
v.t//D
a0C b0t for some real constants a0; b0. Evaluating '.
v.t// and its derivative
at t D 0 gives

'.expp.tv//D '.p/Chr'.p/; vit:

Conversely, if the last identity is valid then the second derivative of '.
v.t//
vanishes, which implies D2' � 0. �

Remarks. 1. Condition (4) indicates that LCWs which are also distance func-
tions (normalized so that '.p/D 0) are the analog on Riemannian manifolds
of the linear Carleman weights in Euclidean space.
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2. If ' is an LCW and a distance function, the above lemma shows that
the Poisson bracket fa; bg vanishes on all of T �M instead of just on the
submanifold where aD b D 0.

We have now established all the statements needed for the proof of Theorem 3.1,
except for the fact that any parallel vector field in a simply connected manifold
is a gradient field. Leaving this fact to the next section, we give the proof of the
main theorem.

Proof of Theorem 3.1. Let .M;g/ be simply connected and open.
For the forward implication, suppose ' is an LCW in .M;g/. By conformal

invariance (Proposition 3.8) we know that ' is an LCW in .M; Qg/ where Qg D
jr'j2g. Lemma 3.10 shows that ' is also a distance function in .M; Qg/. Then
Lemma 3.11 applies, and we see that r Qg' is a unit parallel vector field in .M; Qg/.

For the converse, assume that X is a unit parallel vector field in .M; cg/ where
c > 0. Since M is simply connected, the fact mentioned just before this proof
shows that X Drcg' for some smooth function '. Since rcg' is parallel and
jrcg'jcg D 1, Lemma 3.11 implies that ' is an LCW in .M; cg/. By conformal
invariance ' is then an LCW also in .M;g/. �

3C. Geometric interpretation. The geometric meaning of having a parallel unit
vector field is given in the following result.

Lemma 3.12 (parallel field, product structure). Let X be a unit parallel vector
field in .M;g/. Near any point of M there exist local coordinates x D .x1;x

0/

such that X D @1 and

g.x1;x
0/D

�
1 0

0 g0.x
0/

�
; for some metric g0 in the x0 variables:

Conversely, if g is of this form then @1 is a unit parallel vector field.

This says that the existence of a unit parallel vector field X implies that M is
locally isometric to a subset of .R; e/� .M0;g0/ for some .n� 1/-dimensional
manifold .M0;g0/. One can think of the direction of X as being a Euclidean
direction on the manifold.

Note that any parallel vector field X has constant length on each component of
M , since V .jX j2/D 2hDV X;X i D 0 for any vector field V . Thus the existence
of any nontrivial parallel vector field implies a product structure.

Theorem 3.1 now says that .M;g/ admits an LCW if and only if up to a
conformal factor there is a Euclidean direction on the manifold. More precisely:

Lemma 3.13 (LCWs in local coordinates). Let ' be an LCW in .M;g/. Near
any point of M there are local coordinates x D .x1;x

0/ such that in these
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coordinates '.x/D x1 and

g.x1;x
0/D c.x/

�
1 0

0 g0.x
0/

�
where c is a positive function and g0 is some metric in the x0 variables. Con-
versely, any metric of this form has the LCW '.x/D x1.

Exercise 3.4. Prove this lemma.

Example. Manifolds which admit LCWs include the following:

1. Euclidean space Rn since any constant vector field is parallel,

2. all open subsets of the model spaces Rn, Sn X fp0g, and H n since these are
conformal to Euclidean space,

3. more general manifolds locally conformal to Rn, such as symmetric spaces
in 3D, admit LCWs locally,

4. all 2D manifolds admit LCWs at least locally by Proposition 3.7,

5. .�;g/ admits an LCW if � � Rn and if in some coordinates x D .x1;x
0/

the metric g has the form

g.x1;x
0/D c.x/

�
1 0

0 g0.x
0/

�
for some positive function c and some .n� 1/-dimensional metric g0.

The rest of this section is devoted to the proofs of Lemma 3.12 and the fact
which was used in the proof of Theorem 3.1. We start with the latter.

Lemma 3.14. If M is a manifold with H 1
dR.M / D f0g, then any parallel unit

vector field on M is a gradient field.

Proof. Let X be a parallel unit vector field on M . We choose ! DX [ to be the
1-form corresponding to X . It is enough to prove that d! D 0, since then the
condition on the first de Rham cohomology group implies that ! D d' for some
smooth function ' and consequently X D .d'/] Dr'.

The fact that d! D 0 follows from the general identity

d.X [/.Y;Z/D hDY X;Zi � hDZ X;Y i

since DV X D 0 for any V . �
Exercise 3.5. Show the identity used in the proof.

To prove Lemma 3.12 we need a version of the Frobenius theorem. For
this purpose we introduce some terminology; see [Lee 2003, Section 14] for
more details. A k-plane field on a manifold M is a rule � which associates to
each point p in M a k-dimensional subspace �p of TpM , such that �p varies
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smoothly with p. A vector field X on M is called a section of � if X.p/ 2 �p

for any p. A k-plane field � is called involutive if for any V;W which are
sections of � , also the Lie bracket ŒV;W � is a section of � .

Theorem (Frobenius). If � is an involutive k-plane field, then through any point
p in M there is an integral manifold S of � (that is, S is a k-dimensional
submanifold of M with �jS D TS ).

The other tool that is needed is a special local coordinate system called
semigeodesic coordinates. The usual geodesic normal coordinates are obtained
by following geodesic rays starting at a given point. Semigeodesic coordinates are
instead obtained by following geodesics which are normal to a given hypersurface
S . On manifolds with boundary, semigeodesic coordinates where S is part of
the boundary are called boundary normal coordinates.

Lemma 3.15 (semigeodesic coordinates). Let p2M and let S be a hypersurface
through p. There is a chart .U;x/ at p such that S \U D fx1 D 0g, the curves
x1 7! .x1;x

0/ correspond to normal geodesics starting from S , and the metric
has the form

g.x1;x
0/D

�
1 0

0 g0.x1;x
0/

�
:

The inverse of the map .x1;x
0/ 7! expq.x0/.x1N.q.x0/// gives such a chart,

where x0 7! q.x0/ is a parametrization of S near p and N is a unit normal
vector field of S .

Exercise 3.6. Prove this lemma.

Proof of Lemma 3.12. For the forward implication, let Let X be unit parallel,
and let � be the .n� 1/-plane field consisting of vectors orthogonal to X . If
V;W are vector fields orthogonal to X then

hŒV;W �;X i D hDV W �DW V;X i D V hW;X i �W hV;X i D 0

using the symmetry and metric property of the Levi-Civita connection and the
fact that X is parallel. This shows that � is an involutive .n� 1/-plane field.

Fix p 2M , and use the Frobenius theorem to find a hypersurface S through
p such that X is normal to S . If x0 7! q.x0/ parametrizes S near p, then
.x1;x

0/ 7! expq.x0/.x1X.q.x0/// gives semigeodesic coordinates near p such
that @1 is the tangent vector of a normal geodesic to S and

g.x1;x
0/D

�
1 0

0 g0.x1;x
0/

�
:

Now the integral curves of X are geodesics, because P
 .t/DX.
 .t// implies
D P
.t/ P
 .t/DD P
.t/X.
 .t//D 0). This shows that X D @1. It remains to prove
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that g0.x1;x
0/ is independent of x1. But for j ; k � 2 we have

@1gjk D @1h@j ; @ki D hD@1
@j ; @kiC h@j ;D@1

@ki

D hD@j @1; @kiC h@j ;D@k
@1i D 0

since D@1
@l �D@l

@1 D Œ@1; @l �D 0 and since @1 DX is parallel.
The converse if left as an exercise. �

Exercise 3.7. Prove the converse direction in Lemma 3.12.

4. Carleman estimates

In the previous chapter we introduced limiting Carleman weights (LCWs), mo-
tivated by the possibility of constructing special solutions to the Schrödinger
equation .��gCV /uD 0 in M having the form

uD e˙'=h.aC r/

where ' is an LCW, h > 0 is a small parameter, and the correction term r

converges to zero as h! 0. The arguments involved solving inhomogeneous
equations of the type

e˙'=h.��gCV /e�'=hr D f in M (4-1)

with the norm estimate

krkL2.M / � C hkf kL2.M /; 0< h< h0:

We then gave a definition of LCWs based on an abstract condition on the vanishing
of a Poisson bracket and proved that on a simply connected open manifold .M;g/,
by Theorem 3.1 and Lemma 3.13,

' is an LCW in .M;g/

”rQcg' is unit parallel in .M; Qcg/ for some Qc > 0

D) locally in some coordinates '.x/D x1 and g D c.e˚g0/:

On the last line, the notation means that c�1g is the product of the Euclidean
metric e on R and some .n� 1/-dimensional metric g0.

In this section we will show that the existence of an LCW indeed implies the
solvability of the inhomogeneous equation (4-1) with the right norm estimates.
We will prove this under the extra assumption that the metric has the product
structure g D c.e˚g0/ globally instead of just locally. Following [Kenig et al.
2011], this assumption makes it possible to use Fourier analysis to write down
the solutions in a rather explicit way. See [Dos Santos Ferreira et al. 2009,
Section 4] for a different (though less explicit) proof based on integration by
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parts arguments as in Section 3A, which does not require the extra assumption
on global structure of g.

4A. Motivation and main theorem. As usual, we will first consider solvability
of the inhomogeneous equation in the Euclidean case. Here and below we will
consider a large parameter � D 1=h instead of a small parameter. This is just
a matter of notation, and this choice will be slightly more transparent (also the
Fourier analysis proof will allow us to avoid semiclassical symbol calculus for
which a small parameter would be more natural).

Motivation. Consider the analog of the Equation (4-1) in Rn with the LCW
'.x/D x1 and with V D 0,

e�x1.��/e��x1uD f in Rn:

Noting that e�x1De��x1 DDC i�e1 where D D�ir, we compute

e�x1.��/e��x1 D .DC i�e1/
2
D��C 2�@1� �

2:

The equation becomes

.��C 2�@1� �
2/uD f in Rn:

The operator on the left has constant coefficients, and one can try to find a solution
by taking the Fourier transform of both sides. Since .Dj u/O.�/D �j Ou.�/, this
gives the equation

.j�j2C 2i��1� �
2/ Ou.�/D Of .�/ in Rn:

Thus, one formally obtains the solution

uD F�1
n

1

p.�/
Of .�/

o
where p.�/ WD j�j2��2C2i��1. The problem is that the symbol p.�/ has zeros,
and it is not immediately obvious if one can divide by p.�/. In fact the zero set
of the symbol is a codimension 2 manifold,

p�1.0/D f� 2 Rn
I j�j D j� j; �1 D 0g:

It was shown in [Sylvester and Uhlmann 1987] after a careful analysis that one
can indeed justify the division by p.�/ if the functions are in certain weighted
L2 spaces. Define for ı 2 R the space

L2
ı .R

n/ WD ff 2L2
loc.R

n/ I .1Cjxj2/ı=2f 2L2.Rn/g:
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The result of [Sylvester and Uhlmann 1987] states that if �1< ı < 0, then for
any f 2L2

ıC1
.Rn/ this argument gives a unique solution u 2L2

ı
.Rn/ with the

right norm estimates.

It turns out that a similar Fourier analysis argument will also work in the
Riemannian case if the metric is related to the product metric on R�M0. One
can then use the ordinary Fourier transform on R, but on the transversal manifold
M0 the Fourier transform is replaced by eigenfunction expansions. Also, since
the spectrum in the transversal directions is discrete, it turns out we can easily
avoid the problem of dividing by zero just by imposing a harmless extra condition
on the large parameter � .

In this section we will be working in a cylinder T WD R�M0 with metric
g WD c.e˚g0/, where .M0;g0/ is a compact .n�1/-dimensional manifold with
boundary and c > 0 is a smooth positive function. We will write points of T as
.x1;x

0/ where x1 is the Euclidean coordinate on R and x0 are local coordinates
on M0. Thus g has the form

g.x1;x
0/D c.x/

�
1 0

0 g0.x
0/

�
:

Note that these coordinates and the representation of the metric are valid globally
in x1 and locally in M0.

We denote by L2.T / D L2.T; dVg/ the natural L2 space on .T;g/. The
local L2 space is

L2
loc.T / WD ff I f 2L2.Œ�R;R��M0/ for all R> 0g:

Writing hxi D .1Cjxj2/1=2, we define for any ı 2R the polynomially weighted
(in the x1 variable) spaces

L2
ı .T / WD ff 2L2

loc.T / I hx1i
ıf 2L2.T /g;

H 1
ı .T / WD ff 2L2

ı .T / I df 2L2
ı .T /g;

H 1
ı;0.T / WD ff 2H 1

ı .T / I f jR�M0
D 0g:

These have natural norms

kf kL2
ı
.T / WD khx1i

ıf kL2.T /;

kf kH 1
ı
.T / WD khx1i

ıf kL2.T /Ckhx1i
ıdf kL2.T /:

More precisely, L2
ı
.T / and H 1

ı
.T / are the completions in the respective norms

of the space ff 2 C1.T / I f .x1;x
0/ D 0 for jx1j largeg, and H 1

ı;0
.T / is the

completion of C1c .T int/ in the H 1
ı
.T / norm.
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If g has the special form given above, '.x/ D x1 is a natural LCW. We
denote by �g and �g0

the Laplace–Beltrami operators in .T;g/ and .M0;g0/,
respectively. The main result is as follows.

Theorem 4.1 (solvability and norm estimates). Assume that c.x1;x
0/D 1 for

jx1j large. Let ı > 1=2, and let V be a complex function in T with hx1i
2ıV in

L1.T /. There exist C0; �0 > 0 such that whenever

j� j � �0 and �2
62 Spec.��g0

/;

then for any f 2L2
ı
.T / there is a unique solution u 2H 1

�ı;0
.T / of the equation

e�x1.��gCV /e��x1uD f in T:

This solution satisfies

kukL2
�ı
.T / �

C0

j� j
kf kL2

ı
.T /;

kukH 1
�ı
.T / � C0kf kL2

ı
.T /:

Here Spec.��g0
/ is the discrete set of Dirichlet eigenvalues of ��g0

in
.M0;g0/. The extra restriction �2 62 Spec.��g0

/ allows us to avoid the problem
of dividing by zero. One can always find a sequence of �’s converging to plus
or minus infinity which satisfies this restriction, which is all that we will need
for the applications to inverse problems. Typically, if we consider an inverse
problem in a compact manifold .M;g/ with boundary, Theorem 4.1 will be used
by embedding .M;g/ in a cylinder .T;g/ of the above type and then solving
the inhomogeneous equations in the larger manifold .T;g/.

Let us formulate some open questions related to the above theorem (some of
these questions should be quite doable).

Question 4.1. By using slightly different function spaces, prove an analog of
Theorem 4.1 without the restriction �2 62 Spec.��g0

/.

Question 4.2 (existence of LCW implies global product structure). Find condi-
tions on a manifold .M;g/ such that the existence of an LCW on .M;g/ would
imply that .M;g/b .T;g/ for a cylinder as above.

Question 4.3 (operators with first-order terms). Prove an analog of Theorem 4.1
when the operator ��gCV is replaced by ��gC2X CV where X is a vector
field on T with suitable regularity and decay.

4B. Proof of the estimates. We begin the proof of Theorem 4.1. The first step
is to observe that it is enough to prove the result for c � 1. Note that the metric
in T is of the form c Qg where Qg D e˚g0 is a product metric.
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Lemma 4.2 (Schrödinger equation under conformal scaling). If c is a positive
function in .M; Qg/ and V is a function in M then

c
nC2

4 .��c QgCV /.c�
n�2

4 v/D
�
�� QgC cV � c

nC2
4 �g.c

�n�2
4 /
�
v:

Exercise 4.1. Prove the lemma.

Suppose now that Theorem 4.1 has been proved for the metric Qg D e˚ g0.
For the general case g D c Qg, we need to produce a solution of

e�x1.��c QgCV /e��x1uD f in T:

We try uD c�
n�2

4 v for some v. By Lemma 4.2, it is enough to solve

e�x1
�
�� QgC cV � c

nC2
4 �g.c

�n�2
4 /
�
e��x1v D c

nC2
4 f in T:

But since c D 1 for jx1j large, the potential QV WD cV � c
nC2

4 �g.c
�n�2

4 / has the
same decay properties as V (that is, QV 2 hx1i

2ıL1.T /). The right hand side
Qf WD c

nC2
4 f is also in L2

ı
.T / like f , so Theorem 4.1 for Qg implies the existence

of a unique solution v. Since uD c�
n�2

4 v the solution u belongs to the same
function spaces and satisfies similar estimates as v, and Theorem 4.1 follows in
full generality.

From now on we will assume that c � 1 and that we are working in .T;g/
where g D e˚g0, or in local coordinates

g.x1;x
0/D

�
1 0

0 g0.x
0/

�
:

Since jgj only depends on x0, the Laplace–Beltrami operator splits as

�g D @
2
1C�g0

:

Similarly, using that e�x1D1e��x1 DD1C i� , the conjugated Laplace–Beltrami
operator has the expression

e�x1.��g/e
��x1 D .D1C i�/2��g0

D�@2
1C 2�@1� �

2
��g0

:

Assuming that V D 0 for the moment, the equation that we need to solve has
now the form

.�@2
1C 2�@1� �

2
��g0

/uD f in T: (4-2)

As mentioned above, we will employ eigenfunction expansions in the manifold
M0 to solve the equation. Let 0<�1��2�� � � be the Dirichlet eigenvalues of the
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Laplace–Beltrami operator ��g0
in .M0;g0/, and let �l be the corresponding

Dirichlet eigenfunctions so that

��g0
�l D �l�l in M; �l 2H 1

0 .M0/:

We assume that f�lg
1
lD1

is an orthonormal basis of L2.M0/. Then, if f is a
function on T such f .x1; � /2L2.M0/ for almost every x1, we define the partial
Fourier coefficients

Qf .x1; l/ WD

Z
M0

f .x1;x
0/�l.x

0/ dVg0
.x0/: (4-3)

One has the eigenfunction expansion

f .x1;x
0/D

1X
lD1

Qf .x1; l/�l.x
0/

with convergence in L2.M0/ for almost every x1.

Motivation. Formally, the proof of Theorem 4.1 now proceeds as follows. We
consider eigenfunction expansions

u.x1;x
0/D

1X
lD1

Qu.x1; l/�l.x
0/; f .x1;x

0/D

1X
lD1

Qf .x1; l/�l.x
0/:

Inserting these expansions in (4-2) and using that ��g0
�l D �l�l results in the

following ODEs for the partial Fourier coefficients:

.�@2
1C 2�@1� �

2
C�l/ Qu. � ; l/D Qf . � ; l/ for all l : (4-4)

The easiest way to prove uniqueness of solutions is to take Fourier transforms
in the x1 variable. If the ODEs (4-4) are satisfied with zero right hand side, then
with obvious notations

.�2
1 C 2i��1� �

2
C�l/ Ou.�1; l/D 0 for all l :

Now if the symbol p.�1; l/ WD �
2
1
C 2i��1� �

2C�l would be zero, looking at
real and imaginary parts would imply �1 D 0 and �2 D �l . But the condition
�2 62 Spec.��g0

/ shows that this is not possible. Thus p.�1; l/ is nonvanishing,
and we obtain Ou.�1; l/� 0 and consequently u� 0. This proves uniqueness.

To show existence with the right norm estimates we observe that

�@2
1C 2�@1� �

2
D�.@1� �/

2;

and we factor (4-4) as

.@1� � �
p
�l/.@1� � C

p
�l/ Qu. � ; l/D� Qf . � ; l/ for all l :
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The Fourier coefficients of the solution u are then obtained from the Fourier
coefficients of f by solving two ODEs of first-order.

After this formal discussion, we will give the rigorous arguments which lie
behind these ideas. Let us begin with uniqueness.

Proposition 4.3 (uniqueness for V D 0). Let u 2 H 1
ı;0
.T / for some ı 2 R, let

�2 62 Spec.��g0
/, and assume that u satisfies

.�@2
1C 2�@1� �

2
��g0

/uD 0 in T:

Then uD 0.

Proof. The condition that u is a solution implies thatZ
T

u.�@2
1� 2�@1� �

2
��g0

/ dVg D 0

for any  2 C1c .T int/. We make the choice  .x1;x
0/D �.x1/�lj .x

0/ where
� 2 C1c .R/ and �lj 2 C1c .M int

0
/ with �lj ! �l in H 1.M0/ as j !1. The

last fact is possible since �l 2H 1
0
.M0/. Now gD e˚g0, so we have for any wZ

T

w dVg D

Z 1
�1

Z
M0

w.x1;x
0/ dVg0

.x0/ dx1:

Thus, with this choice of  we obtain thatZ 1
�1

�Z
M0

u.x1; � /�lj dVg0

�
.�@2

1� 2�@1� �
2/�.x1/ dx1

C

Z 1
�1

�Z
M0

u.x1; � /.��g0
�lj / dVg0

�
�.x1/ dx1 D 0: (4-5)

Note that u.x1; � / 2H 1
0
.M0/ for almost every x1, because of the assumption

u 2H 1
ı;0
.T / and the factsZ 1

�1

hx1i
2ı
ku.x1; � /k

2
L2.M0/

dx1 D kukL2
ı
.T / <1;Z 1

�1

hx1i
2ı
krg0

u.x1; � /k
2
L2.M0/

dx1 D krg0
ukL2

ı
.T / <1:

Since ��g0
is an isomorphism H 1

0
.M0/!H�1.M0/, we haveZ

M0

u.x1; � /�lj dVg0
! Qu.x1; l/;Z

M0

u.x1; � /.��g0
�lj / dVg0

! �l Qu.x1; l/
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as j !1 for any x1 such that u.x1; � / 2 H 1
0
.M0/. Dominated convergence

shows that we may take the limit in (4-5) and obtainZ 1
�1

Qu.x1; l/.�@
2
1� 2�@1� �

2
C�l/�.x1/ dx1 D 0 for all l :

The condition u2L2
ı
.T / ensures that Qu. � ; l/2 h � i�ıL2.R/, and the last identity

implies

.�@2
1C 2�@1� �

2
C�l/ Qu. � ; l/D 0 for all l :

It only remains to take the Fourier transform in x1 (which can be done in the
sense of tempered distributions on R), which gives

.�2
1 C 2i��1� �

2
C�l/ Ou. � ; l/D 0 for all l :

The symbol �2
1
C 2i��1 � �

2 C �l is never zero because �2 62 Spec.��g0
/.

Thus Qu. � ; l/ D 0 for all l , showing that u.x1; � / D 0 for almost every x1 and
consequently uD 0. �

As discussed above, the existence of solutions will be established via certain
first-order ODEs. The next result gives the required solvability results and
norm estimates. Here L2

ı
.R/ is the space defined via the norm kf kL2

ı
.R/ WD

khxiıf kL2.R/, and S0.R/ is the space of tempered distributions in R.

Proposition 4.4 (solvability and norm estimates for an ODE). Let a be a nonzero
real number, and consider the equation

u0� auD f in R:

For any f 2 S0.R/ there is a unique solution u 2 S0.R/. Writing Saf WD u, we
have the mapping properties

Sa WL
2
ı .R/!L2

ı .R/ for all ı 2 R;

Sa WL
1.R/!L1.R/;

and the norm estimates

kSaf kL2
ı
�

Cı

jaj
kf kL2

ı
if jaj � 1 and ı 2 R;

kSaf kL2
�ı
� Cıkf kL2

ı
if a¤ 0 and ı > 1=2;

kSaf kL1 � kf kL1 :
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Proof. Step 1. Let us first consider solvability in S0.R/. Taking Fourier trans-
forms, we have

u0� auD f ” .i� � a/ OuD Of

” uD F�1
fm.�/ Of .�/g

with m.�/ WD .i��a/�1. Since a¤ 0 the function m is smooth and its derivatives
are given by m.k/.�/D .�i/kk!.i� � a/�k�1. Therefore

km.k/
kL1 � k! jaj�k�1; k D 0; 1; 2; : : : : (4-6)

Thus m has bounded derivatives and v 7!mv is continuous on S0.R/. It follows
that Saf WD F�1fm.�/ Of .�/g produces for any f 2 S0.R/ a unique solution in
S0.R/ to the given ODE.

Step 2. Let f 2L2
ı
.R/ where ı 2 R. We will use the following Sobolev space

facts on R: if kmkW k;1 WD
Pk

jD0km
.j/kL1 then

kvkH ı D kh � i
ı
OvkL2 D kOvkL2

ı
; (4-7)

kmvkH ı � CıkmkW k;1kvkH ı when k � jıj: (4-8)

Then for k � jıj

kSaf kL2
ı
D kF�1

fSaf gkH ı D .2�/�1
k.m Of /.� � /kH ı

� Cı.2�/
�1
kmkW k;1k Of .� � /kH ı

D CıkmkW k;1kf kL2
ı
:

This proves that Sa maps L2
ı

to itself. If additionally jaj � 1, the estimates (4-6)
imply

kSaf kL2
ı
�

Cı

jaj
kf kL2

ı
:

Step 3. Let f 2L1.R/, and let a> 0 (the case a< 0 is analogous). To prove the
L1!L1 bounds we will work on the spatial side and solve the ODE by using
the standard method of integrating factors. In the sense of distributions

u0� auD f ” u0e�at
� aue�at

D fe�at

” .ue�at /0 D fe�at :

Integrating both sides from x to1 (here we use that a> 0 so e�at is decreasing
as t !1), we define

u.x/ WD �

Z 1
x

f .t/e�a.t�x/ dt:
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Since je�a.t�x/j�1 for t�x, uniformly over a>0, we see that kukL1�kf kL1 .
Since u clearly solves the ODE we have uD Saf by uniqueness of solutions.
This shows the mapping property and norm estimates of Sa on L1.

Step 4. Finally, let f 2L2
ı
.R/ with ı > 1=2. It remains to convert the L1!L1

estimate to a weighted L2 estimate. Using that

cı WD

�Z 1
�1

hti�2ı

�1=2

<1

for ı > 1=2, we have

kSaf kL2
�ı
D

�Z 1
�1

hti�2ı
jSaf .t/j

2 dt

�1=2

� cıkSaf kL1 � cıkf kL1

D cı

Z 1
�1

hti�ıhtiıjf .t/j dt � c2
ı kf kL2

ı
:

The last inequality follows by Cauchy-Schwarz. �

Exercise 4.2. Verify the Sobolev space facts (4-7), (4-8).

Remark 4.5. We will employ the L2
ı
!L2

ı
estimate when jaj � 1. The proof

shows that when a is small then the constant in this estimate blows up. This is
why we need the L2

ı
!L2

�ı
estimate for ı > 1

2
, with constant independent of a.

The method for converting an L1! L1 estimate to a weighted L2 estimate
arises in Agmon’s scattering theory for short range potentials. The weighted
L2 estimate is more convenient for our purposes than the stronger L1! L1

estimate since the weighted L2 spaces will make it possible to use orthogonality.

We can now show the existence of solutions to the inhomogeneous equation
with no potential.

Proposition 4.6 (existence for V D 0). Let f 2L2
ı
.T / where ı > 1=2. There is

C0 > 0 such that whenever j� j � 1 and �2 62 Spec.��g0
/, then the equation

.�@2
1C 2�@1� �

2
��g0

/uD f in T (4-9)

has a solution u 2H 1
�ı;0

.T / satisfying

kukL2
�ı
.T / �

C0

j� j
kf kL2

ı
.T /;

kukH 1
�ı
.T / � C0kf kL2

ı
.T /:

Proof. Step 1. We begin with a remark on orthogonality. Since f 2 L2
ı
.T /,

we know that f .x1; � / 2 L2.M0/ for almost every x1. Then for such x1 the
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Parseval identity impliesZ
L2.M0/

jf .x1;x
0/j2 dVg0

.x0/D

1X
lD1

j Qf .x1; l/j
2:

Here Qf .x1; l/ are the Fourier coefficients (4-3). It follows that

kf k2
L2
ı
.T /
D

Z 1
�1

hx1i
2ı

�Z
M0

jf .x1;x
0/j2 dVg0

.x0/

�
dx1

D

Z 1
�1

hx1i
2ı

 
1X

lD1

j Qf .x1; l/j
2

!
dx1

D

1X
lD1

k Qf . � ; l/k2
L2
ı
.R/
:

In the last equality, we used Fubini’s theorem which is valid since the integrand
is nonnegative. In particular, this argument shows that Qf . � ; l/ 2L2

ı
.R/ for all l ,

and that the last sum converges.

Step 2. From now on we assume that � > 0 (the case � < 0 is analogous).
Motivated by the discussion before (4-4), we will show that for any l there is a
solution Qu. � ; l/ 2L2

�ı
.R/ of the ODE

.�@2
1C 2�@1� �

2
C�l/ Qu. � ; l/D Qf . � ; l/ (4-10)

satisfying the norm estimate

k Qu. � ; l/kL2
�ı
.R/ �

C0

� C
p
�l

k Qf . � ; l/kL2
ı
.R/: (4-11)

In fact, using the factorization to first-order equations given after (4-4), the ODE
for Qu. � ; l/ becomes

.@1� � �
p
�l/.@1� � C

p
�l/ Qu. � ; l/D� Qf . � ; l/:

Since Qf . � ; l/ 2L2
ı
.R/, Proposition 4.4 shows there is a unique solution given

by

Qu. � ; l/ WD �S��
p
�l

S�C
p
�l

Qf . � ; l/: (4-12)

Since � �
p
�l ¤ 0 and � C

p
�l � 1 by the assumptions on � , the estimates in

Proposition 4.4 yield (4-11).
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Step 3. With Qu. � ; l/ as above, define

uN .x1;x
0/ WD

NX
lD1

Qu.x1; l/�l.x
0/:

Our objective is to show that as N !1, uN converges in L2
�ı
.T / to a function

u which is a weak solution of (4-9) and satisfies

kukL2
�ı
.T / �

C0

�
kf kL2

ı
.T /:

If N 0 >N , the orthogonality argument in Step 1 and the estimate (4-11) show
that

kuN 0 �uN k
2

L2
�ı
.T /
D

N 0�1X
lDN

k Qu. � ; l/k2
L2
�ı
.R/
�

�
C0

�

�2 N 0�1X
lDN

k Qf . � ; l/k2
L2
ı
.R/
:

Since f 2 L2
ı
.T / the last expression converges to zero as N;N 0!1. This

shows that .uN / is a Cauchy sequence in L2
�ı
.T /, hence converges to a function

u 2L2
�ı
.T /.

Using that ��g0
�l D �l�l , we have by (4-10)

.�@2
1C 2�@1� �

2
��g0

/uN D

NX
lD1

.�@2
1C 2�@1� �

2
C�l/ Qu.x1; l/�l.x

0/

D

NX
lD1

Qf .x1; l/�l.x
0/:

The right hand side converges to f in L2
ı
.T / as N !1. Integrating against a

test function in C1c .T int/, we see that u is indeed a weak solution of (4-9). The
norm estimate follows from orthogonality and (4-11):

kuk2
L2
�ı
.T /
D

1X
lD1

k Qu. � ; l/k2
L2
�ı
.R/
�

�
C0

�

�2 1X
lD1

k Qf . � ; l/k2
L2
ı
.R/

�

�
C0

�

�2

kf k2
L2
ı
.T /
:

Step 4. It remains to show that u 2H 1
�ı;0

.T / and

kukH 1
�ı
.T / � C0kf kL2

ı
.T /:

This can be done by looking at the first-order derivatives in x1 and x0 separately.
By the definition (4-12) of Qu. � ; l/ (where of course S��

p
�l

and S�C
p
�l

can be
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interchanged) and the definition of Sa, we have

@1 Qu. � ; l/D .� C
p
�l/ Qu. � ; l/�S��

p
�l

Qf . � ; l/:

Then (4-11) and Proposition 4.4 imply

k@1 Qu. � ; l/kL2
�ı
.R/ � C0k

Qf . � ; l/kL2
ı
.R/:

Orthogonality shows that k@1ukL2
�ı
.T / � C0kf kL2

ı
.T /.

For the x0 derivatives we use the exterior derivative dx0 in .M0;g0/. Since
uN vanishes on R� @M0, we have

kdx0uN k
2

L2
�ı
.T /
D

Z 1
�1

hx1i
�2ı
hdx0uN ; dx0 NuN iM0

dx1

D

Z 1
�1

hx1i
�2ı
h.��g0

uN /; NuN iM0
dx1

D

Z 1
�1

NX
lD1

hx1i
�2ı�l j Qu. � ; l/j

2 dx1

D

NX
lD1

�lk Qu. � ; l/k
2

L2
�ı
.R/
:

Orthogonality and (4-11) give the estimate

kdx0uN k
2

L2
�ı
.T /
� C0kf k

2

L2
ı
.T /
:

An argument using Cauchy sequences shows that dx0uN converges in L2
�ı
.T /,

hence also dx0u 2L2
�ı
.T / and kdx0ukL2

�ı
.T / � C0kf kL2

ı
.T /.

We have proved that u 2 H 1
�ı
.T / with the right norm estimate. It is now

enough to note that uN 2H 1
�ı;0

.T /, and the same is true for the limit u since
this space is closed in H 1

�ı
.T /. �

We have now completed the proof of Theorem 4.1 in the case where cD 1 and
V D 0. In fact, the combination of Propositions 4.3 and 4.6 immediately shows
the existence of a solution operator G� for the conjugated Laplace–Beltrami
equation with metric g D e˚g0.

Proposition 4.7 (solution operator for V D 0). Let ı > 1=2. If j� j � 1 and
�2 62 Spec.��g0

/, there is a bounded operator

G� WL
2
ı .T /!H 1

�ı;0.T /

such that uDG�f is the unique solution in H 1
�ı;0

.T / of the equation

e�x1.��g/e
��x1uD f in T :
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This operator satisfies

kG�f kL2
�ı
.T / �

C0

j� j
kf kL2

ı
.T /;

kG�f kH 1
�ı
.T / � C0kf kL2

ı
.T /:

It is now an easy matter to prove Theorem 4.1 also with a nonzero potential
V by using a perturbation argument.

Proof of Theorem 4.1. We assume, as we may, that c � 1. Let us first consider
uniqueness. Assume that u 2H 1

�ı;0
.T / satisfies

e�x1.��gCV /e��x1uD 0 in T :

This can be written as

e�x1.��g/e
��x1uD�V u in T :

By the assumption hx1i
2ıV 2 L1.T /, the right hand side is in L2

ı
.T /. The

uniqueness part of Proposition 4.7 implies

uD�G� .V u/:

The norm estimates for G� give

kukL2
�ı
.T / �

C0khx1i
2ıV kL1.T /

j� j
kukL2

�ı
.T /:

Thus, if we choose

�0 WDmax.2C0khx1i
2ıV kL1.T /; 1/; (4-13)

then the condition j� j � �0 will imply kukL2
�ı
.T / �

1
2
kukL2

�ı
.T /, showing that

u� 0.
As for existence, we seek a solution of the equation

e�x1.��gCV /e��x1uD f in T

in the form u D G� Qf for some Qf 2 L2
ı
.T /. Inserting this expression in the

equation and using that G� is the inverse of the conjugated Laplace–Beltrami
operator, we see that Qf should satisfy

.IdCVG� / Qf D f in T :

Now if j� j � �0 with �0 as in (4-13), we have

kVG�kL2
ı
.T /!L2

ı
.T / �

C0khx1i
2ıV kL1.T /

j� j
�

1
2
:
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Thus IdCVG� is invertible on L2
ı
.T /, with norm of the inverse � 2. It follows

that u WDG� .IdCVG� /
�1f is a solution with the required properties. �

Exercise 4.3. Prove that the solution construction in Theorem 4.1 is in fact in
H 2
�ı
.T / and satisfies kukH 2

�ı
.T / � C0j� jkf kL2

ı
.T /.

Exercise 4.4. Prove Theorem 4.1 in the more general case where the Schrödinger
operator ��gCV with hx1i

2ıV 2L1.T / is replaced by a Helmholtz operator
��gCV � k2 where k > 0 is fixed.

5. Uniqueness result

In this section we will prove a uniqueness result for the inverse problem consid-
ered in the introduction. The result will be proved for the case of the Schrödinger
equation in a compact manifold .M;g/. The method, as discussed in Section 3, is
to show that the set of products fu1u2g of solutions to two Schrödinger equations
is dense in L1.M /. The special solutions which will be used to prove the density
statement have the form

uD e˙�'.mC r0/:

The starting point for constructing such solutions is an LCW '. For this
reason we will need to work in manifolds which admit LCWs. Thus we will
assume that .M;g/ is contained in a cylinder .T;g/ where T D R�M0 and
gD c.e˚g0/, which is roughly equivalent to M having an LCW by the results
in Section 3.

However, the existence of an LCW is only a starting point for the solution of
the inverse problem. One also needs construct the term m so that e˙�'m is an
approximate solution, which can be corrected into an exact solution by the term
r0 obtained from solving an inhomogeneous equation as in Section 4. Finally,
one needs to do this construction so that the density of the products fu1u2g

can be proved by using the special solutions. In Euclidean space one typically
employs the Fourier transform, which is not immediately available in .M;g/.

We will use a hybrid method which involves the Fourier transform in the x1

variable where it is available, and integrals over geodesics in the x0 variables.
In fact, we will choose the functions m to concentrate near fixed geodesics in
.M0;g0/. The uniqueness theorem will then rely on the result that a function
in M0 can be determined from its integrals over geodesics. At present, such a
result is only known under strong restrictions on the geodesic flow of .M0;g0/.
One such restriction is that .M0;g0/ is simple, meaning roughly that any two
points can be connected by a unique length-minimizing geodesic.

Leaving the precise definition of simple manifolds to Section 5B, we now
define the class of admissible manifolds for which we can prove uniqueness
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results for inverse problems. There are three conditions: the first one requiring the
dimension to be at least three (the case of 2D manifolds requires quite different
methods), the second stating that the manifold should admit an LCW, and the
third stating that the transversal manifold .M0;g0/ satisfies a restriction ensuring
that functions are determined by their integrals over geodesics.

Definition. A compact manifold .M;g/ with smooth boundary is called admis-
sible if

(a) dim.M /� 3,

(b) .M;g/b .T;g/ where T DR�M0 and gD c.e˚g0/ with c> 0 a smooth
positive function and e the Euclidean metric on R, and

(c) .M0;g0/ is a simple .n� 1/-dimensional manifold.

The main uniqueness result is as follows. Recall that we implicitly assume
that all DN maps are well defined.

Theorem 5.1 (global uniqueness). Let .M;g/ be an admissible manifold, and
assume that V1 and V2 are continuous functions on M . If ƒg;V1

Dƒg;V2
, then

V1 D V2.

In fact, it is enough to prove the theorem for admissible manifolds where the
conformal factor is constant and V1 and V2 are in Cc.M

int/. In the proofs below,
we will work under these assumptions. We now give a sketch how to make this
reduction.

Suppose .M;g/ is admissible and g D c Qg with Qg D e˚g0, and assume that
ƒg;V1

D ƒg;V2
. Note that we are free to assume that c D 1 outside a small

neighborhood of M in T . A boundary determination result [Dos Santos Ferreira
et al. 2009, Theorem 8.4] shows that V1j@M D V2j@M . Extending V1;V2 to a
slightly larger admissible manifold . QM ;g/ so that c D 1 and V1 D V2 D 0 near
@ QM , it is not hard to see that ƒg;V1

Dƒg;V2
for the DN maps in . QM ;g/. Now

by the conformal scaling law for �g, it holds that

ƒc Qg;Vj Dƒ Qg;c.Vj�qc/

where qc D c
n�2

4 �c Qg.c
�n�2

4 /. Thus ƒ Qg;V1
Dƒ Qg;V2

for the DN maps in . QM ; Qg/,
which completes the reduction.

5A. Complex geometrical optics solutions. Here we will construct the special
solutions, also called complex geometrical optics solutions, to the Schrödinger
equation. The first step is to construct approximate solutions

u0 D e��ˆa
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where � >0 is a large parameter,ˆ2C1.M / is a complex function (the complex
phase), and a is smooth complex function on M (the complex amplitude). Note
that we have replaced the real function ' with a complex function ˆ. In fact the
real part of ˆ is later taken to be an LCW '.

We extend the inner product h � ; � i as a C-bilinear form to complex tangent
and cotangent vectors. This means that for �; �; � 0; �0 2 T �p M ,

h�C i�; � 0C i�0i WD h�; � 0i � h�; �0iC i.h�; �0iC h�; � 0i/:

Note that h � ; � i is not a Hermitian inner product, since there are nonzero complex
vectors whose inner product with itself is zero.

With this notation, we have the following analog of the computation in
Lemma 3.2 (just replace ' by ˆ).

Lemma 5.2 (expression for conjugated Schrödinger operator).

e�ˆ.��gCV /e��ˆv

D��2
hdˆ; dˆivC �

�
2hdˆ; dviC .�gˆ/v

�
C .��gCV /v:

This result gives an expansion of the conjugated operator e�ˆ.��gCV /e��ˆ

in terms of powers of � . We will look for approximate solutions u0 D e��ˆa

such that the terms with highest powers of � go away. This leads to equations for
ˆ and a, and also an equation for the correction term r0 when one looks for the
exact solution u corresponding to u0. The next result follows from Lemma 5.2.

Proposition 5.3 (equations). Let .M;g/ be a compact manifold with boundary
and let V 2L1.M /. The function uD e��ˆ.aC r0/ is a solution of

.��gCV /uD 0

in M , provided that in M

hdˆ; dˆi D 0; (5-1)

2hdˆ; daiC .�gˆ/aD 0; (5-2)

e�ˆ.��gCV /e��ˆr0 D .�g �V /a: (5-3)

The last result is analogous the (real) geometrical optics method, or the WKB
method, for constructing solutions to various equations. The main difference to
the standard setting is that we need to consider complex quantities. Here (5-1) is
called a complex eikonal equation, that is, a certain nonlinear first-order equation
for the complex phase ˆ. Equation (5-2) is a complex transport equation, which
is a linear first-order equation for the amplitude a. The last equation, (5-3), is an
inhomogeneous equation for the correction term r0.



THE CALDERÓN PROBLEM ON RIEMANNIAN MANIFOLDS 233

Writing ˆD 'C i where ' and  are real, the Equation (5-3) becomes

e�'.��gCV /e��'.e�i� r0/D e�i� .�g �V /a:

This equation can be solved by Theorem 4.1 if ' is an LCW and the manifold has
an underlying product structure. Using that  is real we have ke�i� vkL2.M /D

kvkL2.M /, so the terms e�i� will not change the resulting L2 estimates.
We now assume that .M;g/ is admissible, and further that c � 1 which is

possible by the reduction above. Thus .M;g/ is embedded in the cylinder .T;g/
where T DR�M0 and gD e˚g0, and further .M0;g0/b .U;g0/ with .U ;g0/

simple. In the coordinates x D .x1;x
0/,

g.x1;x
0/D

�
1 0

0 g0.x
0/

�
:

We also assume that Re.ˆ/D ' where '.x1;x
0/ WD x1 is the natural LCW in

the cylinder.

Eikonal equation. Writing ˆ D ' C i where ' and  are real-valued, the
complex eikonal equation (5-1) becomes the pair of equations

jd j2 D jd'j2; hd'; d i D 0: (5-4)

Using that '.x/D x1 and the special form of the metric, these equations become

jd j2 D 1; @1 D 0:

The second equation just means that  should be independent of x1, that is,
 D  .x0/. Thus we have reduced matters to solving a (real) eikonal equation
in M0:

jd j2g0
D 1 in M0:

Such an equation does not have global smooth solutions on a general manifold
.M0;g0/. However, in our case where .M0;g0/ is assumed to be simple (see
Section 5B), there are many global smooth solutions. It is enough to choose
some point ! 2 U XM0 and to take

 .x1; r; �/D  !.x1; r; �/ WD r

where .r; �/ are polar normal coordinates in .U;g0/ with center !. Since
jdr jg0

D 1 on the maximal domain where polar normal coordinates are defined
(excluding the center), this gives a smooth solution in M .

In fact, if x D .x1; r; �/ are coordinates in T where .r; �/ are polar normal
coordinates in .U;g0/ with center !, then the form of the metric g0 in polar
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normal coordinates shows that

g.x1; r; �/D

0@ 1 0 0

0 1 0

0 0 g1.r; �/

1A (5-5)

for some .n� 2/� .n� 2/ positive definite matrix g1. This gives the coordinate
representation

ˆ.x1; r; �/Dˆ!.x1; r; �/ WD x1C i r:

Remark 5.4. For nD 2 the complex eikonal equation, which is equivalent to the
pair (5-4), just says that ' and  should be (anti)conjugate harmonic functions,
so that ˆ should be (anti)holomorphic. In dimensions n � 3 solutions of the
complex eikonal equation can be considered as analogs in a certain sense of
(anti)holomorphic functions. In our setting, using the given coordinates, ˆ is
just x1C i r which can be considered as a complex variable z and hence also as
a holomorphic function.

Transport equation. Having obtained the complex phase ˆD 'C i D x1C i r ,
it is not difficult to solve the complex transport equation. Using the coordinates
.x1; r; �/ and the special form (5-5) for the metric, we see that

hdˆ; dai D gjk@jˆ@kaD .@1C i@r /a

and

�gˆD jgj
�1=2@j .jgj

1=2gjk@k.x1C i r//

D jgj�1=2@r .jgj
1=2i/

D
1
2
.@1C i@r /.log jgj/:

The transport equation (5-2) now has the form

.@1C i@r /aC .@1C i@r /.log jgj1=4/aD 0:

Multiplying by the integrating factor jgj1=4, we obtain the equivalent equation

.@C i@r /.jgj
1=4a/D 0:

Thus the complex amplitudes satisfying (5-2) have the form

a.x1; r; �/D jgj
�1=4a0.x1; r; �/

where a0 is a smooth function in M satisfying .@1C i@r /a0 D 0.
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Inhomogeneous equation. Given ˆ and a, the final equation (5-3) in the present
setting becomes

e�x1.��gCV /e��x1.e�i� r r0/D f in M

where f WD e�i� r .�g �V /a. We extend V and f by zero to T , and consider
the equation

e�x1.��gCV /e��x1v D f in T:

If j� j is large and �2 62 Spec.��g0
/, this equation has a unique solution v 2

H 1
�ı;0

.T / by Theorem 4.1. It satisfies for any ı > 1=2

kvkL2
�ı
.T / �

C0

j� j
kf kL2

ı
.T /:

Define r0 WD ei� rvjM . Then r0 2H 1.M / and

kr0kL2.M / �
C0

j� j
kakH 2.M /:

Also, r0 satisfies (5-3) by construction.
We collect the results of the preceding arguments in the next proposition.

Proposition 5.5 (complex geometrical optics solutions). Assume .M;g/ is an
admissible manifold embedded in .T;g/, where T D R�M0 and g D e˚ g0

and where .M0;g0/ b .U ;g0/ are simple manifolds. Let also V 2 L1.M /.
There are C0; �0 > 0 such that whenever

j� j � �0 and �2
62 Spec.��g0

/;

then for any ! 2 U XM0 and for any smooth function a0 in M with .@1 C

i@r /a0 D 0, where .x1; r; �/ are coordinates in M such that .r; �/ are polar
normal coordinates in .U;g0/ with center !, there is a solution

uD e��.x1Cir/.jgj�1=4a0C r0/

of the equation .��gCV /uD 0 in M , such that

kr0kL2.M / �
C0

j� j
ka0kH 2.M /:

We can now complete the proof of Theorem 5.1, modulo the following state-
ment on the attenuated geodesic ray transform which will be discussed in the
next section.

Theorem (injectivity for the attenuated geodesic ray transform). Let .M0;g0/

be a simple manifold. There exists " > 0 such that for any � 2 .�"; "/, if a
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function f 2 C.M0/ satisfies Z



e��tf .
 .t// dt

for any maximal geodesic 
 going from @M0 into M0, then f � 0.

Proof of Theorem 5.1. We make the reduction described after Theorem 5.1 to the
case where c � 1 and V1;V2 2 Cc.M

int/. The assumption that ƒg;V1
Dƒg;V2

implies that Z
M

.V1�V2/u1u2 dV D 0

for any uj 2H 1.M / with .��gCVj /uj D 0 in M .
We use Proposition 5.5 and choose uj to be solutions of the following form.

Let ! be a fixed point in U XM0, let .x1; r; �/ be coordinates near M such
.r; �/ are polar normal coordinates in .U;g0/ with center !, and let � be a fixed
real number and b D b.�/ 2 C1.Sn�2/ a fixed function. Then, for � > 0 large
enough and outside a discrete set, we can choose uj of the form

u1 D e��.x1Cir/.jgj�1=4ei�.x1Cir/b.�/C r1/;

u2 D e�.x1Cir/.jgj�1=4
C r2/:

Note that the functions ei�.x1Cir/b.�/ and 1 are holomorphic in the .x1; r/

variables, so we indeed have solutions of this form. Further, krjkL2.M / � C=� .
Inserting the solutions in the integral identity and letting � !1 outside a

discrete set, we obtainZ
M

.V1�V2/jgj
�1=2ei�.x1Cir/b.�/ dVg D 0:

Since V1 and V2 are compactly supported, the integral can be taken over the
cylinder T . Using the .x1; r; �/ coordinates in T and the fact that dVg D

jg.x1; r; �/j
1=2 dx1 dr d� , this implies thatZ

Sn�2

�Z 1
�1

Z 1
0

.V1�V2/.x1; r; �/e
i�.x1Cir/ dx1 dr

�
b.�/ d� D 0:

The last statement is valid for any fixed b 2 C1.Sn�2/. We can choose b to
resemble a delta function at a fixed direction �0 in Sn�2, and varying b will
then imply that the quantity in brackets vanishes for all �0. This is the point
where we have chosen the solution u1 to approximately concentrate near a fixed
geodesic, corresponding to a fixed direction in Sn�2, in the transversal manifold
.M0;g0/.
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We have proved thatZ 1
0

e��r

�Z 1
�1

.V1�V2/.x1; r; �/e
i�x1 dx1

�
dr D 0; for all �:

Denote the quantity in brackets by f�.r; �/. Then f� is a smooth function in
.M0;g0/ compactly supported in M int

0
, and the curve 
!;� W r 7! .r; �/ is a

geodesic in .U;g0/ issued from the point ! in direction � . This shows thatZ 1
0

e��rf�.
!;� .r// dr D 0

for all ! 2U XM0 and for all directions � . Letting ! approach the boundary of
M0 and varying � , the last result implies thatZ




e��tf�.
 .t// dt D 0

for all geodesics 
 starting from points of @M0 which are maximal in the sense
that 
 is defined for the maximal time until it exits M0.

The injectivity result for the attenuated geodesic ray transform, stated just
before this proof, shows that there is " > 0 such that for any � 2 .�"; "/, the
function f� is identically zero on M0. Thus for j�j< ",Z 1

�1

.V1�V2/.x1; r; �/e
i�x1 dx1 D 0; for any fixed r; �:

If .r; �/ is fixed then the function x1 7! .V1�V2/.x1; r; �/ is compactly supported
on the real line, and the last result says that its Fourier transform vanishes for
j�j < ". But by the Paley-Wiener theorem the Fourier transform is analytic,
which is only possible if .V1�V2/. � ; r; �/D 0 on the real line. This is true for
any fixed .r; �/, showing that V1 D V2 as required. �

5B. Geodesic ray transform. In this section we will give some arguments re-
lated to the injectivity result for the attenuated geodesic ray transform, which
was used in the proof of the global uniqueness theorem. The treatment will be
very sketchy and not self-contained, but hopefully it will give an idea about why
such a result would be true.

Explicit inversion methods. To set the stage and to obtain some intuition to the
problem, we first consider the classical question of inverting the Radon transform
in R2. This is the transform which integrates a function f 2 C1c .R2/ over all
lines, and can be expressed as follows:

Rf .s; !/ WD

Z 1
�1

f .s!?C t!/ dt; s 2 R; ! 2 S1:
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Here !? is the vector in S1 obtained by rotating ! counterclockwise by 90ı.
There is a well-known relation between Rf and the Fourier transform Of . We

denote by bRf . � ; !/ the Fourier transform of Rf with respect to s.

Proposition 5.6 (Fourier slice theorem).

bRf .�; !/D Of .�!?/:
Proof. Parametrizing R2 by y D s!?C t!, we have

bRf .�; !/D
Z 1
�1

e�i�s

Z 1
�1

f .s!?C t!/ dt ds D

Z
R2

e�i�y�!?f .y/ dy

D Of .�!?/: �

This result gives the first proof of injectivity of Radon transform: if f 2
C1c .R2/ is such that Rf � 0, then Of � 0 and consequently f � 0. To obtain a
different inversion formula, and for later purposes, we will consider the adjoint
of R. This is obtained by computing for f 2C1c .R2/ and h2C1.R�S1/ that

.Rf; h/R�S1 D

Z 1
�1

Z
S1

Rf .s; !/h.s; !/ d! ds

D

Z 1
�1

Z
S1

Z 1
�1

f .s!?C t!/h.s; !/ dt d! ds

D

Z
R2

f .y/

�Z
S1

h.y �!?; !/ d!

�
dy:

Thus the adjoint of R is the operator

R� W C1.R�S1/! C1.R2/; R�h.y/D

Z
S1

h.y �!?; !/ d!:

Proposition 5.7 (Fourier transform of R�). Letting O� D �=j�j,

.R�h/O.�/D
2�

j�j

�
Oh.j�j;�O�?/C Oh.�j�j; O�?/

�
:

Proof. We will make a formal computation (which is not difficult to justify).
Using again the parametrization y D s!?C t!,

.R�h/O.�/D

Z
R2

Z
S1

e�iy��h.y �!?; !/ d! dy

D

Z 1
�1

Z 1
�1

Z
S1

e�is!?��e�it!��h.s; !/ d! ds dt

D

Z
S1

Oh.!? � �; !/

�Z 1
�1

e�it!�� dt

�
d!:
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The quantity in the parentheses is just .2�=j�j/ı0.! � O�/ where ı0 is the Dirac
delta function at the origin. Since ! � O� is zero exactly when ! D˙O�?, the result
follows. �

The Radon transform in R2 satisfies the symmetry Rf .�s;�!/DRf .s; !/,
and the Fourier slice theorem implies

.R�Rf /O.�/D
4�

j�j
bRf .j�j;�O�?/D 4�

j�j
Of .�/:

This shows that the normal operator R�R is a classical pseudodifferential operator
of order �1 in R2, and also gives an inversion formula.

Proposition 5.8 (normal operator). One has

R�RD 4�.��/�1=2;

and f can be recovered from Rf by the formula

f D
1

4�
.��/1=2R�Rf:

The last result is an example of an explicit inversion method for the Radon
transform in the Euclidean plane, based on the Fourier transform. Similar methods
are available for the Radon transform on manifolds with many symmetries where
variants of the Fourier transform exist (see [Helgason 1999] and other books
of Helgason for results of this type). However, for manifolds which do not
have symmetries, such as small perturbations of the Euclidean metric, explicit
transforms are usually not available and other inversion methods are required.

Pseudodifferential methods. Let .M;g/ be a compact manifold with smooth
boundary, assumed to be embedded in a compact manifold .N;g/ without
boundary. We parametrize geodesics by points in the unit sphere bundle, defined
by

SM WD
W

x2M SxM; SxM WD f� 2 TxM I j�j D 1g:

If .x; �/ 2 SM we denote by 
 .t;x; �/ the geodesic in N which starts at the
point x in direction �, that is,

D P
 P
 D 0; 
 .0;x; �/D x; P
 .0;x; �/D �:

Let �.x; �/ be the first time when 
 .t;x; �/ exits M ,

�.x; �/ WD inf ft > 0 I 
 .t;x; �/ 2N XM g:

We assume that .M;g/ is nontrapping, meaning that �.x; �/ is finite for any
.x; �/ 2 SM .
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The geodesic ray transform of a function f 2 C1.M / is defined by

If .x; �/ WD

Z �.x;�/

0

f .
 .t;x; �// dt; .x; �/ 2 @.SM /:

Thus, If gives the integral of f over any maximal geodesic in M starting from
@M , such geodesics being parametrized by points of

@.SM /D f.x; �/ 2 SM I x 2 @M g:

So far, we have not imposed any restrictions on the behavior of geodesics in
.M;g/ other than the nontrapping condition. However, injectivity and inversion
results for If are only known under strong geometric restrictions. One class of
manifolds where such results have been proved is the following. From now on
the treatment will be sketchy, and we refer to [Dos Santos Ferreira et al. 2009;
Dairbekov et al. 2007; Sharafutdinov 1994] for more details.

Definition. A compact manifold .M;g/ with boundary is called simple if

(a) for any point p 2M , the exponential map expp is a diffeomorphism from
its maximal domain in TpM onto M , and

(b) the boundary @M is strictly convex.

Several remarks are in order. A diffeomorphism is, as earlier, a homeomor-
phism which together with its inverse is smooth up to the boundary. The maximal
domain of expp is starshaped, and the fact that expp is a diffeomorphism onto M

thus implies that M is diffeomorphic to a closed ball. The last fact uses that � is
smooth in S.M int/. This is a consequence of strict convexity, which is precisely
defined as follows:

Definition. Let .M;g/ be a compact manifold with boundary. We say that @M
is stricly convex if the second fundamental form l@M is positive definite. Here
l@M is the 2-tensor on @M defined by

l@M .X;Y /D�hDX �;Y i; X;Y 2 C1.@M;T .@M //;

where � is the outer unit normal to @M .

Alternatively, the boundary is strictly convex if and only if any geodesic in N

starting from a point x 2 @M in a direction tangent to @M stays outside M for
small positive and negative times. This implies that any maximal geodesic going
from @M into M stays inside M except for its endpoints, which corresponds to
the usual notion of strict convexity.

If .M;g/ is simple, one can always find an open manifold .U;g/ such that
.M;g/b .U;g/ where .U ;g/ is simple. We will always understand that .M;g/

and .U;g/ are related in this way.
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Intuitively, a manifold is simple if the boundary is strictly convex and if the
whole manifold can be parametrized by geodesic rays starting from any fixed
point. The last property can be thought of as an analog for the parametrization
y D s!? C t! of R2 used in the discussion of the Radon transform in the
plane. These parametrizations can be used to prove the analog of the first part of
Proposition 5.8 on a simple manifold.

Proposition 5.9 (normal operator). If .M;g/ is a simple manifold, then QI� QI is
an elliptic pseudodifferential operator of order �1 in U where QI is the geodesic
ray transform in .U ;g/.

It is well known that elliptic pseudodifferential operators can be inverted up
to smoothing (and thus compact) operators. This implies an inversion formula
as in Proposition 5.8 which however contains a compact error term (resulting in
a Fredholm problem). If g is real-analytic in addition to being simple then this
error term can be removed by the methods of analytic microlocal analysis, thus
proving injectivity of I in this case.

For general simple metrics one does not obtain injectivity in this way, but
invertibility up to a compact operator implies considerable stability properties for
this problem. In particular, if I is known to be injective in .M;g/, then suitable
small perturbations of I are also injective: it follows from the results of [Frigyik
et al. 2008] that injectivity of I implies the injectivity of the attenuated transform
in Section 5A for sufficiently small �. Thus, it remains to prove in some way the
injectivity of the unattenuated transform I on simple manifolds.

Energy estimates. The most general known method for proving injectivity of
the geodesic ray transform, in the absence of symmetries or real-analyticity, is
based on energy estimates. Typically these estimates allow to bound some norm
of a function u by some norm of Pu where P is a differential operator, or to
prove the uniqueness result that uD 0 whenever PuD 0. Such estimates are
often proved by integration by parts.

Motivation. Let us consider a very simple energy estimate for the Laplace
operator in a bounded open set � � R2 with smooth boundary. Suppose that
u 2 C 2.�/ and ��uD 0 in �, uj@� D 0. We wish to show that uD 0. To do
this, we integrate the equation ��uD 0 against the test function u and use the
Gauss-Green formula:

0D

Z
�

.��u/u dx D�

Z
@�

@u

@�
u dS C

Z
�

jruj2 dx:

Since uj@� D 0 it follows that
R
�jruj2 dx D 0, showing that u is constant on

each component and consequently uD 0.
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We will now proceed to prove an energy estimate for the geodesic ray transform
in the case .M;g/D .�; e/ where �� R2 is a bounded open set with strictly
convex boundary and e is the Euclidean metric. This will give an alternative
proof of the injectivity result for the Radon transform in R2, the point being
that this proof only uses integration by parts and can be generalized to other
geometries.

Suppose f 2 C1c .M int/ and If � 0. The first step is to relate the integral
operator I to a differential operator. This is the standard reduction of the integral
geometry problem to a transport equation. We identify SM with M �S1 and
vectors !� D .cos �; sin �/2S1 with the angle � 2 Œ0; 2�/. Consider the function
u defined as the integral of f over lines,

u.x; �/ WD

Z �.x;�/

0

f .xC t!� / dt; x 2M; � 2 Œ0; 2�/:

The geodesic vector field is the differential operator on SM defined for v 2
C1.SM / by

Hv.x; �/ WD
@

@s
v.xC s!� ; �/

ˇ̌̌̌
sD0

D !� � rxv.x; �/:

Since u is the integral of f over lines and H differentiates along lines, it is not
surprising that

Hu.x; �/D
@

@s

Z �.x;�/�s

0

f .xC .sC t/!� / dt

ˇ̌̌̌
ˇ
sD0

D

Z �.x;�/

0

@

@t
f .xC t!� / dt D�f .x/:

Here we used the rule for differentiating under the integral sign.
Thus, if f 2 C1c .M int/ and If � 0, then u as defined above is a smooth

function in SM and satisfies the following boundary value problem for the
transport equation involving H:�

HuD�f in SM;

uD 0 on @.SM /:
(5-6)

Further, since f does not depend on � , we can take the derivative in � and obtain�
@�HuD 0 in SM;

uD 0 on @.SM /:
(5-7)

We will prove an energy estimate which shows that any smooth solution u of this
problem must be identically zero. By (5-6) this will imply that f � 0, proving
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that I is injective (at least on smooth compactly supported functions, which we
assume for simplicity).

To establish the energy estimate, we use @�Hu as a test function and integrate
(5-7) against this function, and then apply integration by parts to identify some
positive terms and to show that some terms are zero. This will make use of the
following special identity.

Proposition 5.10 (Pestov identity in R2). For smooth uD u.x; �/, one has the
identity

j@�Huj2 D jH@�uj2C divh.V /C divv.W /

where for smooth X D .X 1.x; �/;X 2.x; �//, the horizontal and vertical diver-
gences are defined by

divh.X /W D rx �X.x; �/;

divv.X /W D r� �
�

X

�
x;

�

j�j

��ˇ̌̌̌
�D!�

D !?� � @�X.x; �/

and the vector fields V and W are given by

V W D
�
.!?� � rxu/!� � .!� � rxu/!?�

�
@�u;

W W D .!� � rxu/rxu:

Once the identity is known, the proof is in fact a direct computation and is left
as an exercise. Let us now show how the Pestov identity can be used to prove
that the only solution to (5-7) is the zero function. Note how the divergence
terms are converted to boundary terms by integration by parts, and how one term
vanishes because of the boundary condition and the other term is nonnegative.

Proposition 5.11. If u 2 C1.SM / solves (5-7), then u� 0.

Proof. As promised, we integrate (5-7) against the test function @�Hu and use
the Pestov identity:

0D

Z
M

Z
S1

j@�Huj2 d� dx

D

Z
M

Z
S1

�
jH@�uj2C divh.V /C divv.W /

�
d� dx:

HereZ
M

divh.V / dx D

Z
M

rx �V .x; �/ dx D

Z
@M

� �V .x; �/ dS.x/D 0
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since V .x; �/D Œ � �@�u.x; �/D 0 for x 2 @M by the boundary condition for u.
Also, integrating by parts on S1,Z

S1

divv.W / d� D

Z
S1

!?� � @�W d� D�

Z
S1

@� .� sin �; cos �/ �W d�

D

Z
S1

!� �W d� D

Z
S1

j!� � rxuj2 d�:

This shows that Z
M

Z
S1

�
jH@�uj2Cj!� � rxuj2

�
d� dx D 0:

Since the integrand is nonnegative, we see that !� � rxu D 0 on SM . Thus
u. � ; �/ is constant along lines with direction !� , and the boundary condition
implies that uD 0 as required. �

This concludes the energy estimate proof of the injectivity of the ray transform
in bounded domains in R2. A similar elementary argument can be used to show
that the geodesic ray transform is injective on simple domains in R2, see [Bal
2012] or [Sharafutdinov 1994].

Let us finish by sketching the proof of the injectivity result for the geodesic
ray transform on simple manifolds of any dimension n � 2. For details see
[Sharafutdinov 1994] and [Dos Santos Ferreira et al. 2009, Section 7] in particular.

Proposition 5.12 (injectivity of the geodesic ray transform). Let .M;g/ be a
simple n-manifold, let f 2 C1c .M int/, and suppose that If � 0. Then f � 0.

Sketch of proof. If .M;g/ and f are as in the statement, then as in the R2 case
we define a function u 2 C1.SM / by

u.x; �/ WD

Z �.x;�/

0

f .
 .t;x; �// dt; .x; �/ 2 SM:

The geodesic vector field acting on smooth functions v 2 C1.SM / is given by

Hv.x; �/ WD
@

@t
v.
 .t;x; �/; P
 .t;x; �//

ˇ̌̌
tD0

:

Since If � 0, we obtain as above that u solves the transport equation�
HuD�f in SM;

uD 0 on @.SM /:
(5-8)

At this point we would like to differentiate the equation in the angular variable
� to remove the f term. To do this, we need to introduce the horizontal and
vertical gradients r and @, which are invariantly defined differential operators
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on so-called semibasic tensors on SM . For smooth functions v 2 C1.SM /,
they are defined by

rj u.x; �/ WD
@

@xj
.u.x; �=j�j//�� l

jk�
k@lu.x; �/;

@j u.x; �/ WD
@

@�j
.u.x; �=j�j//:

The geodesic vector field can be defined on semibasic tensor fields via H WD �jrj .
We also define j@vj2 WD gjk@jv@kv, etc. One then has the following general
Pestov identity whose proof is again a direct computation (which uses basic
properties ofr and @). A major difference to the Euclidean case is the appearance
of a curvature term.

Proposition 5.13 (Pestov identity). For .M ;g/ an n-manifold and u2C1.SM /,
one has the identity

j@Huj2 D jH@uj2C divh.V /C divv.W /�R.@u; �; �; @u/

where the horizontal and vertical divergence are defined by

divh.X / WD rj X j ; divv.X / WD @j X j ;

and V and W are given by

V j
WD h@u;rui�j

� .Hu/@j u; W j
WD .Hu/rj u:

Also, R is the Riemann curvature tensor.

We now take the vertical gradient in (5-8) and obtain�
@HuD 0 in SM;

uD 0 on @.SM /:
(5-9)

Similarly as in the R2 case, we pair this equation against @Hu, integrate over
SM and use the Pestov identity to obtain thatZ

SM

�
jH@uj2C divh.V /C divv.W /�R.@u; �; �; @u/

�
d.SM /D 0:

Integrating by parts, the divh.V / term vanishes and the divv.W / term gives a
positive contribution as in the Euclidean case. One eventually gets thatZ

SM

�
jH@uj2�R.@u; �; �; @u/

�
d.SM /C .n� 1/

Z
SM

jHuj2 d.SM /D 0:
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The first term is related to the index form for a geodesic 
 D 
 . � ;x; �/ in .M;g/,
which is given by

I.X;X / WD

Z �.x;�/

0

.jD P
X j2�R.X; P
 ; P
 ;X // dt

for vector fields X on 
 with X.0/D X.�.x; �//D 0. If .M;g/ is simple, or
more generally if no geodesic in .M;g/ has conjugate points, then the index
form is known to be always nonnegative. This implies that the first term above
is nonnegative, showing that Hu D 0 and u D 0 as required. From (5-8) one
obtains that f � 0. �
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