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Enclosure methods for Helmholtz-type
equations

JENN-NAN WANG AND TING ZHOU

The inverse problem under consideration is to reconstruct the shape informa-
tion of obstacles or inclusions embedded in the (inhomogeneous) background
medium from boundary measurements of propagating waves. This article
is a survey of enclosure-type methods implementing exponential complex
geometrical optics waves as boundary illumination. The equations for acoustic
waves, electromagnetic waves and elastic waves are considered for a medium
with impenetrable obstacles and penetrable inclusions (characterized by a
jump discontinuity in the parameters). We also outlined some open problems
along this direction of research.

1. Introduction

This paper serves as a survey of enclosure-type methods used to determine the
obstacles or inclusions embedded in the background medium from the near-field
measurements of propagating waves. A type of complex geometric optics waves
that exhibits exponential decay with distance from some critical level surfaces
(hyperplanes, spheres or other types of level sets of phase functions) are sent
to probe the medium. One can easily manipulate the speed of decay such that
the waves can only detect the material feature that is close enough to the level
surfaces. As a result of sending such waves with level surfaces moving along
each direction, one should be able to pick out those that enclose the inclusion.

The problem that Calderón proposed [1980] was whether one can determine
the electrical conductivity by making voltage and current measurements at the
boundary of the medium. Such electrical methods are also known as electrical
impedance tomography (EIT) and have broad applications in medical imaging,
geophysics and so on. A breakthrough in solving the problem was due to Sylvester
and Uhlmann [1987], who constructed complex geometric optics (CGO) solutions
to the conductivity equation and proved the unique determination of C1 isotropic
conductivity from the boundary measurements in three- and higher-dimensional
spaces. The result has been extended to Lipschitz conductivities [Haberman
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and Tataru 2011] in three dimensions and L1 conductivities in two dimensions
[Astala and Päivärinta 2006].

The inverse problem in this paper concerns reconstructing an obstacle or a
jump-type inclusion (in three dimensions) embedded in a known background
medium, which is not included in the previous results when considering electro-
statics. Several methods are proposed to solve the problem based on utilizing,
generally speaking, two special types of solutions. The Green’s type solutions
were considered first in [Isakov 1990], and several sampling methods [Cakoni
and Colton 2006; Kirsch and Grinberg 2008; Arens 2004; Arens and Lechleiter
2009] and probing methods [Ikehata 1998; Potthast 2001] were developed. On
the other hand, with the CGO solutions at disposal, the enclosure method was
introduced by Ikehata [1999a; 2000] with the idea as described in the first
paragraph. Another method worth mentioning uses the oscillating-decaying type
of solutions and was proved valid for elasticity systems [Nakamura et al. 2005].
It is the enclosure type of methods that is of the presenting paper’s interest.

Here we aim to discuss the enclosure method for Helmholtz-type equations.
For the enclosure method in the static equations, we refer to [Ikehata 1999a; 2000;
Ide et al. 2007; Uhlmann and Wang 2008; Takuwa et al. 2008] for the conductivity
equation, to [Uhlmann and Wang 2007; Uhlmann et al. 2009] for the isotropic
elasticity. The major difference between the static equations and Helmholtz-type
equations is the loss of positivity in the latter equations. It turns out we have to
analyze the effect of the reflected solution due to the existence of lower order term
in Helmholtz-type equations. For the acoustic equation outside of a cavity having
a C 2 boundary (representing and impenetrable obstacle), one can overcome the
difficulty by the Sobolev embedding theorem, see [Nakamura and Yoshida 2007]
(also see [Ikehata 1999b] for a similar idea). Such a result can be generalized for
Maxwell’s equations to determine impenetrable electromagnetic obstacles [Zhou
2010]. However, in the inclusion case, i.e., penetrable obstacles, the coefficient
is merely piecewise smooth. The Sobolev embedding theorem does not work
because the solution is not smooth enough. To tackle the problem, a Hölder type
estimate for the second order elliptic equation with coefficients having jump
discontinuity based on the result of Li and Vogelius [2000] was developed by
Nagayasu, Uhlmann, and the first author in [Nagayasu et al. 2011]. Later, this
result was improved by Sini and Yoshida [2010] using Lp estimate for the second
order elliptic equation in divergence form developed by Meyers [1963]. Recently,
Kuan [2012] extended Sini and Yoshida’s method to the elastic wave equations.

The paper is organized as follows. In Section 2, we discuss the enclosure
method for the acoustic and electromagnetic equations with impenetrable obsta-
cles. In Section 3, we to survey results in the inclusion case (penetrable obstacle)
for the acoustic and elastic waves. Some open problems are listed in Section 4.
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2. Enclosing obstacles using acoustic and electromagnetic waves

In this section, we give more precise descriptions of the enclosure methods to
identify impenetrable obstacles of acoustic or electromagnetic equations. In
particular, we are interested in the results in [Ikehata 1999a] and [Nakamura
and Yoshida 2007] for both convex and nonconvex sound hard obstacles using
complex geometrical optics (CGO) solutions for Helmholtz equations and the
result in [Zhou 2010] for perfect magnetic conducting (PMC) obstacles using
CGO solutions for Maxwell’s equations.

2A. Nonconvex sound hard obstacles. In [Ikehata 1999a] and [Nakamura and
Yoshida 2007], the authors consider the inverse scattering problem of identifying
a sound hard obstacle D�Rn, n� 2 in a homogeneous medium from the far field
pattern. It can be reformulated as an equivalent inverse boundary value problem
with near-field measurements described as follows. Given a bounded domain
�� Rn with smooth boundary and such that D �� and � nD is connected,
the underlying boundary value problem for acoustic wave propagation in the
known homogeneous medium in � nD with no source is given by8̂<̂

:
.�C k2/uD 0 in � nD;

u
ˇ̌
@�
D f;

@�u
ˇ̌
@D
D 0

(2-1)

where k > 0 is the wave number and � denotes the unit outer normal of @D. At
this point, we assume that @D is C 2. Suppose k is not a Dirichlet eigenvalue
of Laplacian. Given each prescribed boundary sound pressure f 2H 1=2.@�/,
there exists a unique solution u.x/ 2H 1.� nD/ to (2-1). The inverse boundary
value problem consists of reconstructing the obstacle D from the full boundary
data that can be encoded in the Dirichlet-to-Neumann (DN) map on @�:

ƒD W H 1=2.@�/ ! H�1=2.@�/;

f 7! @�u
ˇ̌
@�
:

(2-2)

In particular, the enclosure method utilizes the measurements (DN map) for
those f taking the traces of CGO solutions to .�Ck2/uD 0 in the background
domain �

u0 D e�.'.x/�t/Ci .� Ix// .a.x/C r.xI �// ; (2-3)

where r.xI �/ and its first derivatives are uniformly bounded in � . As �!1, u0

evolves vertical slope at the level set fx j'.x/D tg for t 2R. Physically speaking,
such evanescent waves couldn’t detect the change of the material, namely the
presence of D in �, happening relatively far from the level set. Hence, there is
little gap between the associated energies of domains with and without D. On
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the other hand, if D ever intersects the level set, the energy gap is going to be
significant for large � . This implies that the geometric relation between D and
the level set fx j '.x/D tg can be read from the following indicator function
describing the energy gap associated to the input f D u0j@�:

I.�; t/ WD

Z
@�

�
ƒD �ƒ∅

�
.u0j@�/;u0j@� dS; (2-4)

whereƒ∅ represents the DN map associated to the background domain�without
D, hence ƒ∅.u0j@�/D @�u0j@�. When the linear phase '.x/D x �! is used,
where ! 2 Sn�1, the CGO solution (2-3) is the exponential function

u0.x/D e�.x�!�t/Ci
p
�2Ck2x�!?

where !? 2 Sn�1 satisfies ! �!? D 0. The discussion above is verified in the
following result by Ikehata to enclose the convex hull of D by reconstructing
the support function

hD.!/ WD sup
x2D

x �!:

Theorem 2.1 [Ikehata 1999a]. Assume that the set fx 2Rn jx �!DhD.!/g\@D

consists of one point and the Gaussian curvature of @D is not vanishing at that
point. Then the support function hD.!/ can be reconstructed by the formula

hD.!/D inf
˚
t 2 R j lim

�!1
I.�; t/D 0

	
: (2-5)

This result shows that a strictly convex obstacle can be identified by an
envelope surface of planes. Geometrically, this appears as the planes are enclosing
the obstacle from every direction, justifying the name “enclosure method”.

It is natural to expect that the method can be generalized to recover some
nonconvex part of the shape of D by using CGO solutions with nonlinear phase.
Based on a Carleman estimate approach, such solutions were constructed in
[Kenig et al. 2007] (or see [Dos Santos Ferreira et al. 2007]) for the Schrödinger
operator (or the conductivity operator) in R3, with ' being one of a few limiting
Carleman weights (LCW)

'.x/D ln jx�x0j; x0 2 R3
n�;

which bears spherical level sets, and therefore were called complex spherical
waves (CSW). Then such CSW were used into the enclosure method in [Ide et al.
2007] to identify nonconvex inclusions in a conductive medium. In R2, there
are more candidates for limiting Carleman weights than in R3: all harmonic
functions with nonvanishing gradient are LCW (see [Dos Santos Ferreira et al.
2009] for more descriptions of LCW). Then the similar reconstruction scheme is
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available in [Uhlmann and Wang 2008] for more generalized two-dimensional
systems by using level curves of harmonic polynomials.

Below we present the result of Nakamura and Yoshida that adopts the CSW
described in the following proposition to enclose a nonconvex sound hard obsta-
cle.

Proposition 2.2 [Dos Santos Ferreira et al. 2007]. Choose x0 2 Rn n� and let
!0 2 Sn�1 be a vector such that

fx 2 Rn
j x�x0 Dm!0; m 2 Rg\ @�D∅:

Then there exists a solution to the Helmholtz equation in � of the form

u0.xI �; t;x0; !0/D e�.t�ln jx�x0j/�i� .x/
�
a.x/C r.xI �; t;x0; !0/

�
; (2-6)

where � > 0 and t 2R are parameters, a.x/ is a smooth function on� and  .x/
is a function defined by

 .x/ WD dSn�1

�
x�x0

jx�x0j
; !0

�
;

with the metric function dSn�1. �; � / on Sn�1. Moreover, the remainder function
r is in H 1.�/ and satisfies

krkH 1.�/ DO.��1/ as � !1:

The corresponding support function is given by

hD.x0/D inf
x2D

ln jx�x0j; x0 2 Rn
n�;

and can be reconstructed based on the following result.

Theorem 2.3 [Nakamura and Yoshida 2007]. Let x0 2 Rn n�. Assume that
the set fx 2 Rn j jx�x0j D ehD.x0/g\ @D consists of finitely many points and
the relative curvatures of @D at these points are positive. Then there are two
characterizations of hD.x0/:

hD.x0/D supft 2 R j lim inf
�!1

jI.�; t/j D 0g (2-7)

and

t � hD.x0/D lim
�!1

ln jI.�; t/j
2�

; (2-8)

where I.�; t/ is defined by (2-4) with u0 given by (2-6).

Remark. The relative curvature in the theorem refers to the Gaussian curvature
after a change of coordinates that stretches the sphere onto flat space. For a more
rigorous definition, we refer to [Nakamura and Yoshida 2007].
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For completeness, we provide briefly the steps of the proof. The proof of (2-7)
involves showing that

lim
�!1

jI.�; t/j D 0 when t < hD.x0/; (2-9)

that is, when the level sphere St;x0
WD fx 2Rn j jx�x0jD etg has no intersection

with D, and showing that

lim inf
�!1

jI.�; t/j> C > 0 when t � hD.x0/; (2-10)

namely, when St;x0
intersects D. These two statements can be shown by estab-

lishing proper upper and lower bounds of I.�; t/ from the key equality

�I.�; t/

D

Z
�nD

jrwj2 dxC

Z
D

jru0j
2 dx�k2

Z
�nD

jwj2 dx�k2

Z
D

ju0j
2 dx, (2-11)

where w WD u� u0 is the reflected solution and u is the solution to (2-1) with
f D u0j@�. Since w is a solution to8̂<̂

:
.�C k2/w D 0 in � nD;

wj@� D 0;

@�wj@D D�@�u0j@D ;

(2-12)

and by (2-11), one has the upper bound

jI.�; t/j � Cku0k
2
H 1.D/

for some constant C > 0 (throughout the article we use the same letter C to
denote various constants). As a consequence of plugging in the CGO solution
(2-6), the first statement (2-9) is obtained since

jI.�; t/j � C�2

Z
D

e2�.t�ln jx�x0j/ dx .� � 1/:

However, difficulties arise in dealing with the second statement, (2-10). Due
to the loss of positivity for the associated bilinear form, two negative terms are
present in (2-11), which implies that to find a nonvanishing (as � !1) lower
bound for I.�; t/ is not as easy as the case of the conductivity equations, in
which we have I.�; t/� C

R
D jru0j

2 dx. As a remedy, one needs to show that
the two negative terms can be absorbed by the positive terms for � large. To be
more specific, first it is not hard to see

I.�; t/D e2�.t�hD.x0//I.�; hD.x0//: (2-13)
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This implies that it is sufficient to show (2-10) for t D hD.x0/, which in turn can
be derived from (2-11) and the following two inequalities when t D hD.x0/:

lim inf
�!1

Z
D

jru0j
2 dx > C > 0 (2-14)

and

k2
R
�nD jwj

2 dxC k2
R

D ju0j
2 dxR

D jru0j
2 dx

< ı < 1 .� � 1/: (2-15)

Equation (2-14) is true sinceZ
D

jru0j
2 dx � C�2

Z
D

e�2�.ln jx�x0j�hD.x0// dx

�

�
O.�1=2/ nD 2

O.1/ nD 3
.� � 1/;

(2-16)

given the geometric assumption of the positive relative curvature of @D.
As for (2-15), the difficult part is to show that

lim inf
�!1

k2
R
�nD jwj

2 dxR
D jru0j

2 dx
D 0 (2-17)

since the property of CGO solutions gives

k2
R

D ju0j
2 dxR

D jru0j
2 dx

DO.��2/ .� � 1/:

In both [Ikehata 1999a] and [Nakamura and Yoshida 2007], (2-17) is proved by
establishing the following estimate.

Lemma 2.4. Let ShD.x0/;x0
\ @D D fx1; : : : ;xN g and define for ˛ 2 .0; 1/

Ixj ;˛ WD

Z
@D

j@�u0j jx�xj j
˛ dS; j D 1; : : : ;N:

Then

kwk2
L2.�nD/

� C

� NX
jD1

I2
xj ;˛
Cku0k

2
L2.D/

�
; ˛ 2 .0; 1/ (2-18)

Remark. The proof of Lemma 2.4 is based on H 2-regularity theory and the
Sobolev embedding theorem for an auxiliary boundary value problem8̂<̂

:
.�C k2/p D w in � nD;

pj@� D 0;

@�pj@D D 0:
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Such estimates of the reflected solution kwkL2.�nD/ for the impenetrable obsta-
cle case and kwkL2.�/ for the penetrable inclusion case, which will be reviewed
in the next section, are usually crucial for the justification of the enclosure meth-
ods. Several improvements of the result and removal of geometric assumptions
are basically due to the development of different estimates, which we will see
shortly.

In particular, choosing ˛D 1
2

for nD 3 and ˛D 3
4

when nD 2, one can show
that

I2
xj ;˛
�

�p
" O.�1=2/ if nD 2;

O.��1=2/ if nD 3;

for arbitrary small ", again by the assumption that the relative curvature is positive.
Combined with (2-16), this immediately yields (2-15).

Lastly, the formula (2-8) is directly derived from (2-13) and the fact that

jI.�; hD.x0//j � C�2; .� � 1/:

Remark. The result can be easily extended to the case with inhomogeneous
background medium in � nD, where the CSW in Proposition 2.2 is available.

2B. Electromagnetic PMC obstacles. This section is devoted to reviewing the
enclosure method for Maxwell’s equations [Zhou 2010] to identify perfect mag-
netic conducting (PMC) obstacles. The same reconstruction scheme works for
identifying perfect electric conducting (PEC) obstacles and more generalized
impenetrable obstacles.

In a bounded domain �� R3 with an obstacle D such that D �� with @D
being C 2 and � nD connected, the electric-magnetic field .E;H / satisfies the
Maxwell equations8̂<̂

:
r �E D ik�H; r �H D�ik"E; in � nD;

� �Ej@� D f;

� �H j@D D 0 (PMC condition);

(2-19)

where k is the frequency and �.x/ and ".x/ describe the isotropic (inhomoge-
neous) background electromagnetic medium and satisfy the following assump-
tions: there are positive constants "m; "M ; �m; �M , "c and �c such that for all
x 2�

"m � ".x/� "M ; �m � �.x/� "M ; �.x/D 0
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and "� "c ; ���c 2 C 3
0
.�/. Given that k is not a resonant frequency, we have

a well-defined boundary impedance map

ƒD W TH 1=2.@�/ ! TH 1=2.@�/;

f D � �Ej@� 7! � �H j@�:

To show that D can be determined by the impedance map ƒD using the
enclosure method, we first notice an analogue of the identity (2-11) for Maxwell’s
equations:

i!

Z
@�

.� �E0/ �
�
.ƒD �ƒ∅/.� �E0/� �

�
dS

D

Z
�nD

�j QH j2�!2"j QEj2 dxC

Z
D

�jH0j
2
�!2"jE0j

2 dx; (2-20)

where . QE; QH / WD .E �E0;H �H0/ denotes the reflected solutions, .E;H / is
the solution to (2-19), .E0;H0/ is the solution to the Maxwell’s equations

r �E0 D ik�H0; r �H0 D�ik"E0 in �; (2-21)

and � �Ej@� D � �E0j@�.
One would encounter the same difficulty as that for Helmholtz equations due

to the loss of positivity of the system. We recall that this was actually overcome
by the property that the CGO solution u0 shares different asymptotic speed (�2

slower) from ru0. More specifically, this is because of the H 1 boundedness of
the remainder r.xI �/ with respect to � in (2-3). The natural question to ask is
then whether this key ingredient: such CGO type of solutions, can be constructed
for the background Maxwell’s system.

The construction of CGO solutions for the Maxwell’s equations has been
extensively studied in [Ola et al. 1993; Ola and Somersalo 1996; Colton and
Päivärinta 1992]. The work in [Zhou 2010] adopts the construction approach
in [Ola and Somersalo 1996] by reducing the Maxwell’s equations into a ma-
trix Schrödinger equation. Finally, to guarantee that the CGO solution for the
reduced matrix Schrödinger operator derives the CGO solution .E0;H0/ for the
Maxwell’s equations and at the same time that the electric field E0 and H0 have
different asymptotic speeds as �!1, the incoming constant field corresponding
to a.x/ in (2-3) has to be chosen very carefully. To summarize, one has

Proposition 2.5. Let !;!? 2 S2 with ! �!? D 0. Set

� D�i�!C
p
�2C k2!?
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where k1 D k."0�0/
1=2. Choose a 2 R3 such that

a? !; a? !? and b D
1
p

2
.�i!C!?/:

Then, given

� WD
1

j�j

�
�.� � a/� � k1� � bC k2

1a
�
; � WD

1

j�j

�
k1� � a� .� � b/�C k2

1b
�
;

for t 2 R and � > 0 large enough, there exists a unique complex geometric optics
solution .E0;H0/ 2H 1.�/3 �H 1.�/3 of Maxwell’s equations (2-21) having
the form

E0 D ".x/
�1=2e�.x�!�t/Ci

p
�2Ck2x�!?.�CR.x//;

H0 D �.x/
�1=2e�.x�!�t/Ci

p
�2Ck2x�!?.� CQ.x//:

Moreover, we have

�D O.1/; � D O.�/ for � � 1;

and R.x/ and Q.x/ are bounded in .L2.�//3 for � � 1.

Plugging .E0;H0/ into the indicator function defined by

I.�; t/ WD i!

Z
@�

.� �E0/ �
�
.ƒD �ƒ∅/.� �E0/� �

�
dS;

a similar argument as for Helmholtz equations follows using identity (2-20) and
we have:

Theorem 2.6 [Zhou 2010]. There is a subset †� S2 of measure zero such that,
when ! 2 S2 n†, the support function

hD.!/ WD sup
x2D

x �!

can be recovered by

hD.!/D inf
˚
t 2 R j lim

�!1
I.�; t/D 0

	
:

Moreover, if D is strictly convex, one can reconstruct D.

On the other hand, the construction of a proper CGO solution with nonlinear
weight for the Maxwell’s equations has not been successful based on the Carleman
estimate argument. An alternative approach to reconstruct nonconvex part of the
shape of D would be to introduce some transformation. For example, one can
utilize the Kelvin transformation

Tx0;R W x 7! R2 x�x0

jx�x0j
2
Cx0 WD y;
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which is the inversion transformation with respect to the sphere S.x0;R/ for
R>0 and x0 2R3n�. Tx0;R maps generalized spheres (spheres and planes) into
generalized spheres. Geometrically, fixing a reference circle S.x0;R/, enclosing
D with spheres passing through x0 corresponds to enclosing ODx0;RDTx0;R.D/

with planes, where the reconstruction scheme in Theorem 2.6 applies. A rigorous
proof consists of showing that the Maxwell’s equations are invariant under the
transformation and computing the impedance map OI.�; t/ associated to the image
domain. It is worth mentioning the byproduct of this method is the complex
spherical wave

OE.y/D OEj dyj
D
�
.DT �1

x0;R
/kj .y/Ek.T

�1
x0;R

.y//
�

dyj ; y D Tx0;R.x/;

with nonlinear limiting Carleman weight

'.x/D

�
R2 x�x0

jx�x0j
2
Cx0

�
�!; ! 2 S2:

Therefore, the corresponding support function is given by

OhD.x0;R; !/D sup
x2D

�
R2

�
x�x0

jx�x0j
2

�
�!Cx0 � �

�
:

Theorem 2.7 [Zhou 2010]. Given x02R3n� and R>0 such that��B.x0;R/,
there is a zero measure subset † of S2, s.t., when ! 2 S2 n†, we have

OhD.x0;R; !/D infft 2 R j lim
�!1

OI.�; t/D 0g:

3. Enclosing inclusions using acoustic and elastic waves

In this section we will consider the enclosure method for the case where the
unknown domain is an inclusion by using acoustic and elastic waves. In other
words, the obstacle is a penetrable one. In this situation, the reflected solution
will satisfy the elliptic equation with discontinuous coefficients. Unlike the case
of impenetrable obstacle, the Sobolev embedding theorem is not sufficient to
provide us estimates of the reflected solution we need. In the case of acoustic
waves, the difficulty was overcome in [Nagayasu et al. 2011] for dimension
nD 2, using estimates from [Li and Vogelius 2000]. The extension to nD 3 was
accomplished in [Yoshida 2010]. Sini and Yoshida [2010] then improved the
result in [Nagayasu et al. 2011] with the help of Meyers’ Lp estimate and the
sharp Friedrichs inequality. Kuan [2012] extended Sini and Yoshida’s result to
elastic waves.

3A. Acoustic penetrable obstacle. Here we will review the result in [Nagayasu
et al. 2011] for nD 2. For nD 3, one simply replaces CGO solutions in nD 2
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by complex spherical waves [Yoshida 2010]. We assume D b � � R2. For
technical simplicity, we suppose that both D and � have C 2 boundaries. Let

D 2 C 2.D/ satisfy 
D � c
 for some positive constant c
 and z
 WD 1C
D�D ,
where �D is the characteristic function of D. Let k > 0 and consider the steady
state acoustic wave equation in � with Dirichlet condition�

r � .z
rv/C k2v D 0 in �;
v D f on @�:

(3-1)

We assume that k2 is not a Dirichlet eigenvalue of the operator �r � .z
r� /. Let
ƒD WH

1=2.@�/!H�1=2.@�/ be the associated Dirichlet-to-Neumann map.
As before, our aim is to reconstruct the shape of D by ƒD . The key in the
enclosure method is the CGO solutions. To construct the CGO solutions to the
Helmholtz equation for nD 2, we begin with the CGO solutions with polynomial
phases to the Laplacian operator, then apply the Vekua transform [1967, page
58].

More precisely, let us define �.x/ WD c�
�
.x1�x�;1/C i.x2�x�;2/

�N as the
phase function, where c� 2 C satisfies jc�j D 1, N is a positive integer, and
x� D .x�;1;x�;2/ 2 R2 n�. Without loss of generality we may assume that
x� D 0 using an appropriate translation. Denote �R.x/ WD Re �.x/ and note that

�R.x/D rN cos N.� � ��/ for x D r.cos �; sin �/ 2 R2:

It is readily seen that �R.x/ > 0 for all x 2 � , where

� WD
n
r.cos �; sin �/ W j� � ��j<

�

2N

o
;

i.e., a cone with opening angle �=N .
Given any h > 0, LV� .x/ WD exp.��.x// is a harmonic function. Following

[Vekua 1967], we define a map Tk on any harmonic function LV .x/ by

Tk
LV .x/ WD LV .x/�

Z 1

0

LV .tx/
@

@t

n
J0

�
kjxj
p

1� t
�o

dt

D LV .x/� kjxj

Z 1

0

LV
�
.1� s2/x

�
J1.kjxjs/ ds;

where Jm is the Bessel function of the first kind of order m. We now set V
]
� .x/ WD

Tk
LV� .x/. Then V

]
� .x/ satisfies the Helmholtz equation �V

]
� Ck2V

]
� D 0 in R2.

One can show that V
]
� satisfies the following estimate in �:

Lemma 3.1 [Nagayasu et al. 2011]. We have

V ]
� .x/D exp .��.x//

�
1CR0.x/

�
in �; (3-2)
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where R0.x/DR0.xI �/ satisfies

jR0.x/j �
1

�

k2jxj2

4�R.x/
;

ˇ̌̌̌
@R0

@xj
.x/

ˇ̌̌̌
�

N k2jxjNC1

4�R.x/
C

1

�

k2jxj j

2�R.x/
in �:

Notice that here V
]
� .x/ is only defined in � \�. We now extend it to the

whole domain� by using an appropriate cut-off. Let ls WD fx 2� W �R.x/D 1=sg

for s > 0. For " > 0 small enough and t] > 0 large enough, we choose a function
�t 2 C1.R2/ satisfying

�t .x/D

�
1 for x 2

S
0<s<tC"=2 ls; t 2 Œ0; t]�;

0 for x 2 R2 n
S

0<s<tC" ls; t 2 Œ0; t]�;

and
j@˛x�t .x/j � C� for j˛j � 2; x 2�; t 2 Œ0; t]�

for some positive constant C� depending only on�, N , t] and ". Next we define
the function Vt;� by

Vt;� .x/ WD �t .x/ exp
�
�
�

t

�
V ]
� .x/ for x 2�:

Then we know by Lemma 3.1 that the dominant parts of Vt;� and its derivatives
are as follows:

Vt;� .x/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0 for x 2� n
S

0<s<tC"

ls;

exp
�
�
�
�

1

t
C �.x/

���
�t .x/CS0.x/h

�
for x 2�\

S
0<s<tC"

ls;

(3-3)

rVt;� .x/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0 for x 2� n
S

0<s<tC"

ls;

� exp
�
�
�
�

1

t
C �.x/

���
�t .x/r�.x/CS .x/h

�
for x 2�\

S
0<s<tC"

ls

(3-4)

for t 2 .0; t]� and ��1 2 .0; 1�, where S0.x/DS0.xI t; �/ and S .x/DS .xI t; �/

satisfy

jS0.x/j; jS .x/j � CV for any x 2�\
S

0<s<tC"

ls; t 2 .0; t]�; ��1
2 .0; 1�

with a positive constant CV depending only on �, N , t], " and k. It should
be remarked that the function Vt;� does not satisfy the Helmholtz equation in
�. Nonetheless, if we let v0;t;� be the solution to the Helmholtz equation in �
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with boundary value ft;� WD Vt;� j@�, then the error between Vt;� and v0;t;� is
exponentially small.

Lemma 3.2. There exist constants C0;C
0
0
> 0 and a> 0 such that

kv0;t;� �Vt;�kH 2.�/ � �C 00e��at � C0e��a

for any ��1 2 .0; 1�, where the constants C0 and C 0
0

depend only on �, k, N , t]

and "; the constant a depends only on t] and "; and we set at WD1=t�1=.tC"=2/.

This lemma can be proved in the same way as Lemma 4.1 in [Uhlmann and
Wang 2008].

Now we consider the energy gap

I.�; t/D

Z
@�

.ƒD �ƒ∅/ft;� f t;� dS:

It can be shown that

I.�; t/� k2

Z
�

jwt;� j
2 dxC

Z
D


D jrv0;t;� j
2 dx; (3-5)

I.�; t/�

Z
D


D

1C 
D

jrv0;t;� j
2 dx� k2

Z
�

jwt;� j
2 dx; (3-6)

where v0;t;� satisfies the Helmholtz equation in � with Dirichlet condition
v0;t;� j@� D ft;� and wt;� D vt;� � v0;t;� is the reflected solution, i.e.,(

r �
�
z
rwt;�

�
C k2wt;� D�r �

�
.z
 � 1/rv0;t;�

�
in �;

wt;� D 0 on @�
(3-7)

(see [Nagayasu et al. 2011, Lemma 4.1]). It is easy to see thatZ
�

jwt;� j
2 dx � C

Z
D

jrv0;t;� j
2 dx:

In other words, in view of (3-5), the upper bound of I.t; �/ solely depends onR
D jrv0;t;� j

2 dx:

To estimate the lower bound of I.�; t/, we proceed as above and introduce

Ix0;˛ WD

Z
@D

ˇ̌
@�v0;t;� .x/

ˇ̌
jx�x0j

˛ dS

for any x0 2� and 0< ˛ < 1. The following estimate is crucial in determining
the behavior of I.�; t/ when the level curve of �R intersects D.

Lemma 3.3 [Nagayasu et al. 2011, Lemma 3.7]. For any x0 2�, 0<˛ < 1 and
2< q � 4, we haveZ

�

jwt;� j
2 dx � Cq;˛

�
I2

x0;˛
C Ix0;˛krv0;t;�kLq.D/Ckv0;t;�k

2
L2.D/

�
: (3-8)
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It should be noted that wt;� satisfies an elliptic equation with coefficients
having jump interfaces. To get the desired estimate (3-8), we make use of the
Hölder estimate of Li and Vogelius [2000] for the this type of equations.

The enclosure method is now based on the following theorem regarding the
behavior of I.�; t/.

Theorem 3.4 [Nagayasu et al. 2011, Theorem 4.1]. Assume D\�¤∅. Suppose
that fx 2 � W �R.x/D‚Dg\ @D consists only of one point x0 and the relative
curvature (see [Nagayasu et al. 2011] for the definition) to �R.x/D‚D of @D
at x0 is not zero. Then there exist positive constants C1, c1 and �1 such that for
any 0< t � t] and � � �1 the following holds:

(I) if 1=t >‚D then

jI.�; t/j �

8̂<̂
:

C1�
2 exp

�
2�
�
�

1

t
C

1

tC"=2

��
if ‚D �

1

tC"=2
;

C1�
2 exp

�
2�
�
�

1

t
C‚D

��
if 1

tC"=2
<‚D <

1

t
:

(II) if 1=t �‚D then

I.�; t/� c1 exp
�
2�
�
�

1

t
C‚D

��
�1=2:

The proof of this theorem relies on estimates we obtained above. Moreover,
even though we impose some restriction on the curvature of @D at x0, one can
show that the curvature assumption is always satisfied as long as N is large
enough for C 2 boundary @D.

3B. An improvement by Sini and Yoshida. In the enclosure method discussed
above (for impenetrable or penetrable obstacles), two conditions are assumed,
that is, the level curve of real part of the phase function in CGO solutions touches
@D at one point and the nonvanishing of the relative curvature at the touching
point. These two assumptions are removed in [Sini and Yoshida 2010]. Roughly
speaking, the authors use following estimates for the reflected solution w

kwkL2.�/ � CpkvkW 1;p.D/ with p < 2 (3-9)

for a penetrable obstacle, and

kwkL2.�n ND/ � Ctkvk
H
�tC 3

2 .D/
with t < 1 (3-10)

for an impenetrable obstacle. Here v satisfies the Helmholtz equation in �.
The derivation of (3-9) is based on Meyers’ theorem [1963] and the sharp

Friedrichs inequality, while, the proof of (3-10) relies on layer potential tech-
niques on Sobolev spaces and integral estimates of the p-powers of Green’s
function. We refer to [Sini and Yoshida 2010] for details. Here we would like to
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see how (3-9) and (3-10) lead to the characteristic behaviors of the energy gap
in the enclosure method. To illustrate the ideas, we follow Sini and Yoshida in
considering only CGO solutions with linear phases, i.e.,

v.xI �; t/D e�.x�!�t/Ci
p
�2Ck2x�!? :

It is clear that v is a solution of the Helmholtz equation. Denote the energy gap
by

I.�; t/D

Z
@�

.ƒD �ƒ∅/v Nv dS:

The following behavior of I can be obtained.

Theorem 3.5 [Sini and Yoshida 2010, Theorem 2.4]. Let D b� with Lipschitz
boundary @D. For both the penetrable and impenetrable cases, we have:

(i) lim
�!1

I.�; t/D 0 if t > hD.!/;

lim inf
�!1

jI.�; hD.!//j D1 .nD 2/; lim inf
�!1

jI.�; hD.!//j> 0 .nD 3/;

lim
�!1

jI.�; t/j D1 if t < hD.!/:

(ii) hD.!/� t D lim�!1
ln jI.�; t/j

2�
:

To prove Theorem 3.5, it is enough to estimate the lower bound of I.�; t/ at
t D hD.!/ for nD 3. Let y 2 @D\fx �! D hD.!/g WDK. Since K is compact,
there exist y1; : : : ;yN 2K such that

K �Dı for ı > 0 sufficiently small;

where

Dı D

N[
jD1

.D\B.yj ; ı//:

It is obvious that
R

DnDı
jrmvjpdx is exponentially small in � for m D 0; 1.

Therefore, to obtain the behaviors of
R

D jr
mvjpdx in � , it suffices to study the

integrals over Dı . Using the change of coordinates, it is tedious but not difficult
to show that

kvk2
L2.D/

� C��2;
krvk2

L2.D/

kvk2
L2.D/

� C�2 (3-11)

and
kvk2

Lp.D/

kvk2
L2.D/

� C�1�2=p;
krvk2

Lp.D/

kvk2
L2.D/

� C�3�2=p (3-12)
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with maxf2� "; 6=5g< p � 2 (see [Sini and Yoshida 2010, pages 6–9]). Using
(3-9) we get from (3-12) that

kwk2
Lp.D/

kvk2
L2.D/

� C�3�2=p: (3-13)

Recall that

I.�; t/�

Z
D


D

1C 
D

jrvj2 dx� k2

Z
�

jwj2 dx:

Thus, combining (3-11) and (3-13) implies that

I.�; hD.!//� C�2
kvk2

L2.D/
� C 0 > 0

As for an impenetrable obstacle (sound hard), we recall that

�I.�; t/�

Z
D

jrvj2dx� k2

Z
�n ND

jwj2 (3-14)

(see for example [Ikehata 1999a, Lemma 4.1]). Let s D 3
2
� t , then 1

2
< s � 3

2
if

0� t < 1. From (3-10) and (3-14), we have that

�I.�; t/�

Z
D

jrvj2dx�Ckvk2H s.D/:

Using the interpolation and Young’s inequalities, one can choose appropriate
parameters such that

�I.�; t/� C

Z
D

jrvj2dx�C 0
Z

D

jvj2dx

and thus
�I.�; hD.!// > 0

follows from (3-11).

3C. Elastic penetrable obstacles. Recently, Kuan [2012] extended the enclo-
sure method to the reconstruction of a penetrable obstacle using elastic waves.
Her result is in 2 dimensions, but it can be generalized to 3 dimensions without
serious difficulties. Consider the elastic waves in �� R2 with smooth boundary
@�

r � .�.u//C k2uD 0 in �; (3-15)

where u is the displacement vector and

�.u/D �.r �u/I2C 2��.u/
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is the stress tensor. Here �.u/D 1
2
.ruC .ru/T / denotes the infinitesimal strain

tensor. Assume that

�D �0C�D�D and �D �0C�D�D ;

where D is an open subset of � with ND � � and �D , �D belong to L1.D/.
Assume that

�0C�0 > 0; �0 > 0; �C� > 0; � > 0 in �:

We would like to discuss the reconstruct of the shape of D from boundary
measurements in the spirit of enclosure method.

Assume that �k2 is not a Dirichlet eigenvalue of the Lamé operator r � .�. � //.
Define the Dirichlet-to-Neumann (displacement-to-traction) map

ƒD W uj@�! �.u/�j@�:

Let v satisfy the Lamé equation with Lamé coefficients �0; �0, i.e.,

r � .�.v//C k2v D 0 in �; (3-16)

with
�.v/D �0.r � v/I2C 2�0�.v/:

Likewise, we assume that �k2 is not a Dirichlet eigenvalue of the free Lamé
operator. We then define the corresponding Dirichlet-to-Neumann map

ƒ∅ W vj@�! �.v/�j@�:

Similar as above, in the enclosure method, we need to construct the CGO
solutions for the Lamé equation (3-16). For simplicity, we assume that both
�0 and �0 are constants. To construct the CGO solutions in this case, we take
advantage of the Helmholtz decomposition and consider two Helmholtz equations(

�'C k2
1
' D 0;

� C k2
2
 D 0;

(3-17)

where

k1 D

�
k2

�0C 2�0

�1=2

and k2 D

�
k2

�0

�1=2

:

Then v Dr'Cr? solves (3-16). Here r? WD .�@2 ; @1 /
T . For (3-17),

we can construct the CGO solutions having linear or polynomial phases, which
will give us the CGO solutions v for (3-16).
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We will not repeat the construction of CGO solutions here. We simply denote
v.�; t/ the CGO solution. Similarly, we define the energy gap

I.�; t/D

Z
@�

.ƒD �ƒ∅/f�;t � Nf�;tdS;

where f�;t D v.�; t/j@�. Let � be the domain where the real part of the phase
function of v, denoted by �.x/, is positive. Let

hD D

(
sup

x2D\�

�.x/ if D\� ¤∅;

0 if D\� D∅:

Assume appropriate jump conditions on �D and �D . Then the following behav-
iors of I.�; t/ are obtained in [Kuan 2012].

Theorem 3.6. (i) lim�!1 I.�; t/D 0 if t > hD .

(ii) If t D hD and @D 2 C 0;˛; 1=3< ˛ � 1; then lim inf
�!1

jI.�; hD.!//j D1.

(iii) If t < hD and @D 2 C 0; then lim�!1 jI.�; t/j D1.

The proof of Theorem 3.6 is based on the following inequalities for the energy
gap:

I.�; t/�

Z
D

.�D C�D/jr � vj
2dx

C 2

Z
D

�D

ˇ̌
�.v/� 1

2
.r � v/I2

ˇ̌2
dxC k2

kwk2
L2.�/

;

I.�; t/�

Z
D

.�0C�0/.�D C�D/

�C�
jr � vj2dx

C 2

Z
D

�0�D

�

ˇ̌
�.v/� 1

2
.r � v/I2

ˇ̌2
dx� k2

kwk2
L2.�/

;

where w is the reflected solution. The rest of the proof is similar to that in [Sini
and Yoshida 2010], which relies on the following Lp estimate:

Lemma 3.7 [Kuan 2012, Lemma 4.2]. There exist constants C > 0 and p0 in
Œ1; 2/ such that, for p0 < p � 2,

kwkL2.�/ � CkrvkLp.D/:

Lemma 3.7 can be proved adapting arguments from [Meyers 1963].

4. Open problems

The enclosure method in the electromagnetic waves we discussed in Section 2B
is for the case of an impenetrable obstacle. Therefore, it is a legitimate project
to study the penetrable case for the electromagnetic waves. However, the tools
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used in the acoustic waves, i.e., Li–Vogelius type estimates or Meyers type Lp

estimates, are not available in the electromagnetic waves. The derivation of these
estimates itself is an interesting problem.1 Another interesting problem is to
extend the enclosure method to the plate or shell equations. The distinct feature
of these equations is the appearance of the biharmonic operator �2.

Finally, it is desirable to design stable and efficient algorithms for the en-
closure method. Attempts of numerical implementations have been made for
the conductivity equation [Brühl and Hanke 2000; Ide et al. 2007; Ikehata and
Siltanen 2000; Uhlmann and Wang 2008] and for the 2D static elastic equation
[Uhlmann et al. 2009]. There are two obvious difficulties. On one hand, the
boundary data involves large parameter which gives rise to highly oscillatory
functions. On the other hand, a reliable way of numerically determining whether
I.�; t/ decays or blows up as � !1 is yet to be found.
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