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Multiwave methods via ultrasound
PLAMEN STEFANOV AND GUNTHER UHLMANN

We survey recent results by the authors on multiwave methods where the
high-resolution method is ultrasound. We consider the inverse problem of
determining a source inside a medium from ultrasound measurements made
on the boundary of the medium. Some multiwave medical imaging meth-
ods where this is considered are photoacoustic tomography, thermoacoustic
tomography, ultrasound modulated tomography, transient elastography and
magnetoacoustic tomography. In the case of measurements on the whole
boundary, we give an explicit solution in terms of a Neumann series expansion.
We give almost necessary and sufficient conditions for uniqueness and stability
when the measurements are taken on a part of the boundary. We study the case
of a smooth speed and speeds having jump type of singularities. The latter
models propagation of acoustic waves in the brain, where the skull has a much
larger sound speed than the rest of the brain. In this paper we emphasize a
microlocal viewpoint.

1. Introduction

Multiwave imaging methods, also called hybrid methods, attempt to combine
the high resolution of one imaging method with the high contrast capabilities of
another through a physical principle. One important medical imaging application
is breast cancer detection. Ultrasound provides high (submillimeter) resolution,
but it suffers from low contrast. On the other hand, many tumors absorb much
more energy from electromagnetic waves (in some specific energy bands) than
healthy cells. Photoacoustic tomography (PAT) [Wang 2009] consists of exposing
tissues to relatively harmless optical radiation that causes temperature increases
in the millikelvin range, resulting in the generation of propagating ultrasound
waves (the photoacoustic effect). Such ultrasonic waves are readily measurable.
The inverse problem then consists of reconstructing the optical properties of the
tissue. In thermoacoustic tomography (TAT) — see, e.g., [Kruger et al. 1999] —
low frequency microwaves, with wavelengths on the order of 1 m, are sent
into the medium. The rationale for using the latter frequencies is that they are
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less absorbed than optical frequencies. In ultrasound modulated tomography
(UMT), radiation is sent through the tissues at the same time as a modulating
acoustic signal, which changes the local properties of the optical parameters (the
acousto-optic effect) in a controlled manner. The objective is then the same as
in PAT: to reconstruct the optical properties of the tissues. In both modalities,
we seek to combine the large contrast in optical parameters between normal and
cancerous tissues with the high (submillimeter) resolution of ultrasound imaging.
Transient elastography (TE) [McLaughlin et al. 2010] images the propagation of
shear waves using ultrasound. In magnetoacoustic tomography (MAT) [Xu and
He 2005] the medium is located in a static magnetic field and a time-varying
magnetic field. The time dependent magnetic field induces an eddy current and
therefore induce an acoustic wave by the Lorentz force which are measured at
the boundary of the medium. PAT, TAT, UMT, TE and MAT offer potential
breakthroughs in the clinical application of multiwave methods to early detection
of cancer, functional imaging, and molecular imaging among others.

We remark that we are only considering the first step in solving the inverse
problem, namely recovering the source term from ultrasound measurements at
the boundary. For a review of the results in recovering optical, elastic, electro-
magnetic and other properties of tissues see [Bal 2013] in this volume. This
first step has been studied extensively in the mathematical literature; see, e.g.,
[Agranovsky et al. 2009; Finch et al. 2004; Finch and Rakesh 2009; Hristova
2009; Hristova et al. 2008; Kuchment and Kunyansky 2008; Patch 2004; Stefanov
and Uhlmann 2009b; 2011] and the references there.

The purpose of this survey is to present an approach to the problem allowing
us to treat variable and discontinuous sound speeds, and also consider partial
data, based on [Stefanov and Uhlmann 2009b; 2011]. This approach is based
on microlocal, PDE and functional analysis methods, rather than trying to find
explicit closed form formulas for the partial case of a constant speed. We always
assume a variable speed. We will actually formulate the problem in anisotropic
media modeled by a Riemannian metric g in Rn. Let c > 0, q � 0 be functions,
all smooth and real-valued. Assume for convenience that g is Euclidean outside
a large compact, and c � 1D q D 0 there.

Let P be the differential operator

P D�c2�gC q; �g D
1

p
det g

@

@xi
gij
p

det g
@

@xj
: (1-1)

Let u solve the problem8<:
.@2

t CP /u D 0 in .0;T /�Rn;

ujtD0 D f;

@tujtD0 D 0;

(1-2)
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where T > 0 is fixed.
Assume that f is supported in �, where � � Rn is some smooth bounded

domain. The measurements are modeled by the operator

ƒf WD ujŒ0;T ��@�: (1-3)

The problem is to reconstruct the unknown f , knowing c; and if possible, to
reconstruct both. The same problem, but with data on a part of @� is of great
practical interest, as well.

The accepted mathematical model is as described above with g Euclidean,
and q D 0; see, e.g., [Xu and Wang 2006a; Wang and Wu 2007; Finch et al.
2004]. Including nontrivial g and q does not complicate the problem further,
and one can even include a magnetic field [Stefanov and Uhlmann 2009b].

If T D1, then one can solve a problem with Cauchy data 0 at t D1 (as
a limit), and boundary data h D ƒf . The zero Cauchy data are justified by
local energy decay that holds for nontrapping geometry, for example (actually,
it is always true but much weaker and not uniform in general). Then solving
the resulting problem backwards recovers f . This is known as time reversal
or back-projection. For a fixed T , one can still do the same thing with an
error �.T / ! 0, as T ! 1. In the nontrapping case, n odd, the error is
uniform and �.T /DO.e�T=C /. There is no good control over C though. Error
estimates based on local energy decay can be found in [Hristova 2009]; see also
Corollary 4.2. Other reconstruction methods have been used as well (see, e.g.,
[Hristova et al. 2008] for a discussion) and they all use measurements for all t in
the variable coefficients case, i.e., T D1; and they are only approximate for
T <1 with an error depending on the local energy decay rate. Of course, if n

is odd and P D��, any finite T > diam.�/ suffices by Huygens’ principle. In
the constant-speed case and for � of a specific type such as a ball or a box there
are explicit closed-form inversion formulas; see [Finch et al. 2004; Xu and Wang
2005; Haltmeier et al. 2004; 2005; Finch et al. 2007] and references therein.

We describe now briefly the contents of this survey. We study what happens
when T <1 is fixed. When the speed is smooth, Tataru’s continuation principle
[1995; 1999] provides a sharp time T0 such that there is uniqueness for T > T0

and no uniqueness for T < T0. This time can be characterized as the least time
T such that a signal from any point can reach @� before that time. For stable
recovery, we need something more: from any point and any direction, we need
the corresponding unit speed geodesic to hit @� for time t such that jt j< T1=2.
The optimal T1 with that property is the length of the longest geodesic in�. Then
when T > T1=2, there is stability. In case of data on Œ0;T �� @�, T > T1=2,
we present an explicit Neumann series inversion formula. We also analyze
the same questions for observations on a part of the boundary. In Section 3
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we give an almost necessary and sufficient condition for uniqueness, and in
Section 5 we give another almost necessary and sufficient condition for stability.
In Proposition 5.1 we characterize ƒ as a sum of two Fourier integral operators
with canonical relations of graph type. Under the stability assumption, we do
not have an explicit inversion anymore but we show that the problem reduces to
a Fredholm equation with a trivial kernel.

In Section 6, we discuss a relation between the problems we consider and
boundary control.

In Section 7 we give an estimate of the largest time interval for the geodesics
to leave the medium which is important for the stability analysis.

In Section 8 we discuss briefly the connection with integral geometry.
In Section 9, we study the case where c is piecewise smooth, with jumps

over smooth surfaces. This case is important for applications since in brain
imaging, the acoustic speed jumps by a factor of two in the skull. Propagation of
singularities is more complicated in this case: a single singularity can reflect and
refract when hitting the boundary, then each branch can do the same. etc. Rays
tangent to the boundary behave in an even more complicated manner. We present
results similar to some of the ones above, under more restrictive assumptions
which would allow us to avoid the analysis of the tangent rays. We review
thoroughly the construction of geometrical optics solutions in this case.

In the Appendix we review briefly some basic concepts of microlocal analysis
used in this survey. This is based mainly on [Stefanov 2012].

We also mention that a numerical method based on the theoretical develop-
ments considered here has been developed in [Qian et al. 2011].

We assume throughout the paper that the speed of sound is known. It has
been suggested [Jin and Wang 2006] that one can use ultrasound transmission
tomography, which measures travel times, to determine the speed of sound. For
a numerical algorithm for UTT and also reflection tomography see [Chung et al.
2011]. This algorithm is based on the theoretical work [Stefanov and Uhlmann
1998a].

2. Preliminaries

2A. Energy spaces. Let g, q � 0 and c be in C1 first. The operator P is
formally self-adjoint with respect to the measure c�2d Vol, where d Vol.x/D
p

det g dx. Given a domain U , and a function u.t;x/, define the energy

EU .t;u/D

Z
U

�
jDuj2C c�2qjuj2C c�2

jut j
2
�

d Vol;

where Dj D�i@=@xj , D D .D1; : : : ;Dn/, jDuj2 D gij .Diu/.Dj u/. In partic-
ular, we define the space HD.U / to be the completion of C1

0
.U / under the



MULTIWAVE METHODS VIA ULTRASOUND 275

Dirichlet norm

kf k2HD
D

Z
U

�
jDuj2C c�2qjuj2

�
d Vol : (2-1)

It is easy to see that HD.U /�H 1.U /, if U is bounded with smooth boundary,
therefore, HD.U / is topologically equivalent to H 1

0
.U /. If U D Rn, this is true

for n � 3 only, if q D 0. By the finite speed of propagation, the solution with
compactly supported Cauchy data always stays in H 1 even when nD 2. The
energy norm for the Cauchy data .f; h/, that we denote by k � kH is then defined
by

k.f; h/k2H D

Z
U

�
jDf j2C c�2qjf j2C c�2

jhj2
�

d Vol :

This defines the energy space

H.U /DHD.U /˚L2.U /:

Here and below, L2.U /DL2.U I c�2d Vol/. Note also that

kf k2HD
D .Pf; f /L2 : (2-2)

The wave equation then can be written down as the system

ut DPu; P D

�
0 I

�P 0

�
; (2-3)

where uD .u;ut / belongs to the energy space H. The operator P then extends
naturally to a skew-selfadjoint operator on H. In this paper, we will deal with
either U D Rn or U D �. In the latter case, the definition of HD.U / reflects
Dirichlet boundary conditions.

Assume now that c, 1=c and q are in L1. Then again, P is a skew-selfadjoint
operator on H.U / (see [Stefanov and Uhlmann 2011]) and the statements above
still hold. The important case for applications is g D fıij g and q D 0.

By [Lasiecka et al. 1986; Katchalov et al. 2001], the operator

ƒ WHD.�/!H 1
.0/.Œ0;T �� @�/

is bounded, where the subscript .0/ indicates the subspace of functions vanishing
for t D 0.

2B. Finite propagation speed and unique continuation for the wave equation.
It is well known (see [Taylor 1996, Chapter 8], for example) that the wave
equation (2-7) has the finite speed of propagation property: “signals” propagate
with speed no greater that 1, in the metric c�2g (or with speed c, in the metric g).
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More precisely, if u solves (2-7) and has Cauchy data .f; h/ for t D 0, then

u.t;x/D 0 for t > dist.x; supp.f; h//; (2-4)

where “dist” is the distance in the metric c�2g. Another way to say this is
that any solution of (2-7) at .t0;x0/ has a domain of dependence given by the
characteristic cone

f.t;x/I dist.x;x0/� jt � t0jg : (2-5)

The forward part of this cone is given by t > t0, and the backward one by t < t0.
Recall that given two subsets A and B of a metric space, the distance

dist.A;B/ is defined by

dist.A;B/D sup.dist.a;B/I a 2A/: (2-6)

This function is not symmetric in general; the Hausdorff distance is defined as

distH.A;B/Dmax
�
dist.A;B/; dist.B;A/

�
:

The finite speed propagation property can then be formulated in the following
form: if u has Cauchy data .f; h/ at t D 0 supported in the set U , then u.t;x/D 0

when dist.x;U / > jt j.
We recall next a Holmgren’s type of unique continuation theorem for the wave

equation .@2
t CP /uD 0 due mainly to Tataru [1995; 1999]. The local version

of this theorem states that we have unique continuation across every surface that
is not characteristic for P . One of its global versions, presented below, follows
from its local version by Holmgren’s type of arguments; see also [Katchalov
et al. 2001].

Theorem 2.1. Let P be the differential operator in Rn defined in (1-1). Assume
that u 2H 1

loc satisfies
.@2

t CP /uD 0; (2-7)

near the set in (2-8) and vanishes in a neighborhood of Œ�T;T � � fx0g, with
some T > 0, x0 2 Rn. Then

u.t;x/D 0 for jt jC dist.x0;x/ < T: (2-8)

Proof. If P has analytic coefficients, this is Holmgren’s theorem. In the non-
analytic coefficients case, a version of this theorem was proved in [Robbiano
1991] with � replaced by K� with an unspecified constant K > 0. It is derived
there from a local unique continuation theorem across a surface that is “not too
close to being characteristic”. Hörmander [1992, Theorem 1 and Corollary 7]
showed that one can choose K D

p
27=23, in both the local theorem and the

global theorem. Moreover, he showed that K in the global one can be chosen to be
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the same as the K in the local one. Finally, Tataru [1995; 1999] proved a unique
continuation result that implies unique continuation across any noncharacteristic
surface. This shows that actually K D 1 in Hörmander’s work, and the theorem
above then follows from [Hörmander 1992, Corollary 7]. �

For the partial data analysis we need a version of that theorem restricted to
a bounded (connected) domain �. The inconvenience of the theorem above is
that it requires u to solve the wave equation in a cone that may not fit in R��.
The next theorem shows unique continuation of Cauchy data on R� @� to their
domain of influence; see e.g., [Katchalov et al. 2001, Theorem 3.16].

Proposition 2.2. Let��Rn be a domain, and let u2H 1 solve the homogeneous
wave equation Pu D 0 in Œ�T;T ���. Assume that u has Cauchy data zero
on Œ�T;T ��� , where � � @� is open. Then uD 0 in the domain of influence
f.t;x/ 2 Œ�T;T ���I dist.x; �/ < T � jt jg.

One way to derive Proposition 2.2 from the unique continuation theorem is
to extend u as zero in a one sided neighborhood of � , in the exterior of � (by
extending g and c there first), and this extension will still be a solution. Then we
apply unique continuation along a curve connecting that exterior neighborhood
with an arbitrary point x such that dist.x; �/ < T . To make sure that we always
stay in some neighborhood of that curve in the x space, we need to apply the
unique continuation Theorem 2.1 in small increments. We refer to the proof of
[Stefanov and Uhlmann 2011, Theorem 6.1] for similar arguments.

3. Uniqueness for a smooth speed

Uniqueness and reconstruction results in the constant coefficients case based
on spherical means have been known for a while; see e.g., the review paper
[Kuchment and Kunyansky 2008]. If P D �c2.x/�, and ƒf is known on
Œ0;T �� @�, Finch and Rakesh [2009] have proved that ƒf recovers f uniquely
as long as T > 2T0; see the definition below. A uniqueness result when � is a
part of @� in the constant coefficients case is given in [Finch et al. 2004], and
we follow the ideas of that proof below. Holmgren’s uniqueness theorem for
constant coefficients and its analogue for variable ones (see Theorem 2.1) play
a central role in the proofs, which suggests possible instability without further
assumptions; see also the remark following Theorem 5.2 below.

Stability of the reconstruction when P D �� and T D 1 follows from
known reconstruction formulas; see e.g., [Kuchment and Kunyansky 2008]. In
the variable coefficients case, stability estimates as T !1 based on local energy
decay have been established recently in [Hristova 2009]. When T is fixed, there is
the general feeling that if one can recover “stably” all singularities, and if there is
uniqueness, there must be stability (although this has been viewed from the point
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of view of integral geometry; see also Section 8). We prove this to be the case in
Theorem 5.2, and we use the analysis in [Stefanov and Uhlmann 2009a] as well.

3A. Data on the whole boundary. We study first the uniqueness of recovery of
f , given ƒf . Since this is a linear problem, we just need to study conditions
under which ƒ has a trivial kernel.

We would like to use the unique continuation Theorem 2.1 but we only
know that the solution u to (1-2) vanishes for x 2 @� and t 2 Œ0;T �. For
the application of the uniqueness continuation theorem, we need to know that
the normal derivative of u on @� vanishes, as well. Then we could apply
Proposition 2.2. Here, we would use the simple fact that u extends as a solution
to the wave equation for t < 0 in an even way, since ut D 0 for t D 0.

It turns out, that knowing ƒf , one can recover the Neumann derivative of the
solution at Œ0;T �� @� as well. This is done by applying the nonlocal exterior
Dirichlet-to-Neumann map to ƒf ; see Lemma 6.1. We will explain now briefly
the uniqueness part of this recovery. Suppose that ƒf D 0 (on Œ0;T ���). The
function u also solves the wave equation in the exterior of � for 0< t < T , with
vanishing Dirichlet data on Œ0;T ��@� by assumption. The Cauchy data at t D 0

are zero as well, because suppf � �. Therefore, u D 0 on Œ0;T �� .Rn n�/.
Take a normal derivative @=@� on @� from the exterior, to get @u=@� D 0 on
Œ0;T ��@�. We can extend those equalities for t 2 Œ�T; 0�, as well, because u is
an even function of t . By Proposition 2.2, f .x/D 0 for dist.x; @�/ < T . Note
that this is a sharp inequality by the finite speed of propagation. To get f D 0

for all x 2�, we need to take T greater than the critical “uniqueness time”

T0 D dist.�; @�/I (3-1)

see (2-6).
We have therefore proved the following.

Theorem 3.1. Letƒf D0 with f 2HD.�/. Then f .x/D0 for dist.x; @�/<T .
In particular:

(a) If T < T0, then f .x/ can be arbitrary for dist.x; @�/ > T .

(b) If T > T0, then f D 0.

If we restrict f to a subspace of functions supported in some compact set
K � �, then the theorem above admits an obvious generalization with T0

replaced by T0.K/ WD dist.K; @�/. Also, f can be a distribution supported in
�, and the theorem would still hold.

3B. Data on a part of @�. The case of partial measurements has been discussed
in the literature as well; see, e.g., [Kuchment and Kunyansky 2008; Xu et al.
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2004; 2009]. One of the motivations is that in breast imaging, for example,
measurements are possible only on part of the boundary. Remember that P D��

outside �. All geodesics below are related to the metric c�2g.
Let � � @� be a relatively open subset of @�. We are interested in what

information about f can be obtained when making measurements on sets of the
kind

G WD f.t;x/I x 2 �; 0< t < s.x/g ; (3-2)

where s is a fixed continuous function on � . This corresponds to measurements
taken at each x 2 � for the time interval 0< t < s.x/. The special case studied
so far is s.x/� T , for some T > 0; then GD Œ0;T ��� , and this is where our
main interest is.

We assume now that the observations are made on G only, i.e., we assume we
are given

ƒf jG; (3-3)

where, with some abuse of notation, we denote by ƒ the operator in (1-3), with
T D1 that actually can be replaced by any upper bound of the function s.

We study below functions f with support in some fixed compact K��. By
the finite speed of propagation, to be able to recover all f supported in K, we
want for any x 2K, at least one signal from x to reach G, i.e., we want to have a
signal that reaches some z 2 � for t � s.z/. In other words, we should at least
require that

8x 2 K; 9z 2 � such that dist.x; z/ < s.z/: (3-4)

We strengthened slightly the condition by replacing the � sign by < . In
Theorem 3.2 below, we show that this is a sufficient condition, as well.

Another way to formulate this condition is to say that f D 0 in the domain of
influence

�G WD fx 2�I 9z 2 � such that dist.x; z/ < s.z/g :

We have the following uniqueness result, which in particular generalizes the
result in [Finch et al. 2004] to the case of variable coefficients.

Theorem 3.2. Let P D�� outside � and let @� be strictly convex. Under the
assumption (3-4), if ƒf D 0 on G for f 2HD.�/ with suppf �K, then f D 0.

As above, we can make this more precise.

Proposition 3.3. Let P D�� outside � and let @� be strictly convex. Assume
that ƒf D 0 on G for some f 2HD.�/ with suppf �� that may not satisfy
(3-4). Then f D 0 in �G. Moreover, no information about f in � n�G is
contained in ƒf jG.
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Sketch of the proof. We follow the proof in [Finch et al. 2004], where c is constant
everywhere (and g is Euclidean).

The main difficulty in the partial data case is that we do not have the whole
Cauchy data on G, and unlike the case of the whole boundary, we cannot recover
the Neumann data directly. If we assume for a moment that the Cauchy data on
G vanishes, the unique continuation principle of Theorem 2.1 finishes the proof.

Note first that it is enough to prove the theorem if � D U � @�, where U

is a small neighborhood of some p 2 @�, and �G given by dist.x;p/ � s.p/.
We fist recover the Neumann data on a part of RC �� (smaller than we would
want), using a finite domain of dependence result: Proposition 2 of [Finch et al.
2004], which shows, roughly speaking, that the corresponding solution u to the
exterior problem with Dirichlet data equal to zero on Œ0;T ��� vanishes in an
exterior neighborhood Œ0;T0�� fpg (and therefore has zero normal derivative
there) only for T0 > 0 such that no signal traveling in the exterior of � can reach
p for time not exceeding T0. In other words, if we define a distance function
diste.x;y/ outside � as the infimum of the Euclidean distance of all curves
outside �, connecting x and y, then any time T1 with that property would not
exceed diste.p; @� n�/. A critical observation is that if we are not restricted to
the exterior of �, the (geodesic) distance between p and @� n� is strictly less.
Moreover, if are restricted to a set on @� where either of those distances has a
uniform positive lower bound, then so does the difference. Now, knowing that
uD 0 near Œ0;T0��fpg, we apply unique continuation to conclude that f .x/D 0

for dist.x;p/ < T0, and to conclude that u has zero Dirichlet data on a larger
part than � , by the reason explained above. Then we repeat the same argument
using the fact that at each step, we improve the maximal distance at which we
can get inside by at least a positive constant, independent of the step. �

4. Reconstruction with data on the whole boundary; the modified
back-projection

One method to get an approximate solution of the thermoacoustic problem is
the following time reversal (back-projection) method. Given h, which eventually
will be replaced by ƒf , let v0 solve8̂̂<̂

:̂
.@2

t CP /v0 D 0 in .0;T /��;
v0jŒ0;T ��@� D h;

v0jtDT D 0;

@tv0jtDT D 0:

(4-1)

Then we define the back-projection

A0h WD v0.0; � / in �:
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The function A0ƒf is viewed as a candidate for a reconstructed f . Since h

does not necessarily vanish at t D T , the compatibility condition of first order
may not be satisfied because there might be a possible jump at fT g � @�. That
singularity will propagate back to t D 0 and will affect v0, and then v0 may not
be in the energy space. For this reason, h is usually cut off smoothly near t D T ,
i.e., h is replaced by �.t/h.t;x/, where �2C1.R/, �D 0 for t D T , and �D 1

in a neighborhood of .�1;T .�//. See, e.g., [Hristova 2009, Section 2.2].
As we mentioned above, the back-projection v0 converges to f , as T !1;

see [Hristova 2009] for rate of convergence estimates based on local energy
decay results. In our analysis, T is fixed however.

We will modify this approach in a way that would make the problem Fredholm,
and will make the error operator a contraction for certain explicit T � 1. Given
h (that eventually will be replaced by ƒf ), solve8̂̂<̂

:̂
.@2

t CP /v D 0 in .0;T /��;
vjŒ0;T ��@� D h;

vjtDT D �;

@tvjtDT D 0;

(4-2)

where � solves the elliptic boundary value problem

P� D 0; �j@� D h.T; � /: (4-3)

Since P is a positive operator, 0 is not a Dirichlet eigenvalue of P in �, and
therefore (4-3) is uniquely solvable. Now the initial data at t D T satisfy
compatibility conditions of first order (no jump at fT g � @�). Then we define
the modified back-projection

Ah WD v.0; � / in �: (4-4)

The operator A maps continuously the closed subspace of H 1.Œ0;T � � @�/

consisting of functions that vanish at t D T (compatibility condition) to H 1.�/;
see [Lasiecka et al. 1986]. It also sends the range of ƒ to H 1

0
.�/ŠHD.�/, as

the proof below indicates.
To explain the idea behind this approach, let us assume for a moment that

we knew the Cauchy data Œu;ut � on fT g ��. Then one could simply solve the
mixed problem in Œ0;T ��� with that Cauchy data and boundary data ƒf . Then
that solution at t D 0 would recover f . We do not know the Cauchy data Œu;ut �

on fT g ��, of course, but we know the trace of u (a priori in H 1 for t fixed)
on fT g � @�. The trace of ut does not make sense because the latter is only in
L2 for t D T . The choice of the Cauchy data in (4-2) can then be explained by
the following. Among all possible Cauchy data that belong to the “shifted linear
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space” ˚
g D Œg1;g2� 2H 1.�/˚L2.�/I g1j@� D h.T; � /

	
;

(the linear space H.�/ translated by a single element of the set above) we chose
the one that minimizes the energy. The “error” will then be minimized. We refer
to the proof of Theorem 4.1 for more details.

In the next theorem and everywhere below, T1 D T1.�/ is the supremum of
the lengths of all geodesics of the metric c�2g in �. Also, dist.x;y/ denotes the
distance function in that metric. We then call .�; c�2g/ nontrapping, if T1 <1.
It is easy to see that

T0 � T1=2: (4-5)

Theorem 4.1. Let .�; c�2g/ be nontrapping, and let T > T1=2. Then AƒD

Id�K, where K is compact in HD.�/, and kKkHD.�/ < 1. In particular,
Id�K is invertible on HD.�/, and the inverse thermoacoustic problem has an
explicit solution of the form

f D

1X
mD0

KmAh; h WDƒf: (4-6)

Sketch of the proof. Let u solve (1-2) with a given f 2 HD , and let v be the
solution of (4-2) with hDƒf . Then w WD u� v solves8̂̂<̂

:̂
.@2

t CP /w D 0 in .0;T /��;
wjŒ0;T ��@� D 0;

wjtDT D ujtDT ��;

wt jtDT D ut jtDT ;

(4-7)

Restrict w to t D 0 to get

f DAƒf Cw.0; � /:

Therefore, the “error” is given by

Kf D w.0; � /:

First, we show that

kKf kHD.�/ � kf kHD.�/; 8f 2HD.�/; (4-8)

for any fixed T >0 (not necessarily greater than T1/. Since the Dirichlet boundary
condition is energy preserving, it is enough to estimate th energy of .uT ��;uT /,
where uT WD u.T; � /.

In what follows, . � ; � /HD.�/ is the inner product in HD.�/— see (2-1) —
applied to functions that belong to H 1.�/ but maybe not to HD.�/ (because
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they may not vanish on @�). By (2-2) and the fact that uT D � on @�, we get

.uT
��; �/HD.�/ D 0:

Then

kuT
��k2HD.�/

D kuT
k

2
HD.�/

�k�k2HD.�/
� kuT

k
2
HD.�/

:

Therefore, the energy of the initial conditions in (4-7) satisfies the inequality

E�.w;T /D ku
T
��k2HD.�/

CkuT
t k

2
L2.�/

�E�.u;T /: (4-9)

As mentioned above, the Dirichlet boundary condition is energy preserving,
therefore

E�.w; 0/DE�.w;T /�E�.u;T /�ERn.u;T /DE�.u; 0/D kf k
2
HD.�/

:

This proves (4-8). Note that no condition on T > 0 was needed. If suppf �K,
and T < dist.K; @�/, for example, then KD Id, and Aƒf D 0. Then the “error”
is 100%, and we have no information about f but (4-8) is still true.

We show next that the inequality above is strict when T > T0.�/:

kKf kHD.�/ < kf kHD.�/; f 6D 0: (4-10)

Assuming the opposite, we would get for some f 6D 0 that all inequalities leading
to (4-8) are equalities. In particular,

u.T;x/D ut .T;x/D 0 for x 62�:

By the finite domain of dependence then

u.t;x/D 0 when dist.x; �/ > jT � t j: (4-11)

One the other hand, we also have

u.t;x/D 0 when dist.x; �/ > jt j: (4-12)

Therefore,

u.t;x/D 0 when dist.x; @�/ > T=2; �T=2� t � 3T=2: (4-13)

Since u extends to an even function of t that is still a solution of the wave
equation, we get that (4-13) actually holds for jt j< 3T=2.

We will conclude next by the unique continuation Theorem 2.1 that u D 0

on Œ0;T ���, and therefore f D 0 (see Figure 1). To this end, notice fist that
by John’s theorem (equivalent to Tataru’s unique continuation result [Stefanov
and Uhlmann 2009b, Theorem 2] in the Euclidean setting), we get u D 0 on
Œ�T;T ��Rn n�. Fix x0 2�. Then there is a piecewise smooth curve starting
at x0 in direction either �0 or ��0, where �0 is arbitrary and fixed, of length less
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t=T

t=T/2

t=0

t=3T/2

∂Ω

t=-T

Γ

Figure 1

than T that reaches @� because T > T0. This means that dist.x0;R
n n�/ < T .

Then by Theorem 2.1, u.0; � /D 0 near x0. Since x0 was arbitrary, we get f D 0.
This completes the proof of (4-10).

Finally, we show that kKk< 1 if T >T1=2 as claimed in the theorem. Indeed,
for such T , and .x; �/ 2 S��, at least one of the rays originating from .x;˙�/

leaves �. Then for any " > 0, K can be represented as a sum of an operator K1

with norm not exceeding 1=2C ", plus a compact one, K2. The spectrum of
K�K on the interval ..1=2C "/2; 1� then is discrete and consists of eigenvalues
only; and 1 cannot be among them, by (4-10). Then

kKf kHD.�/ �

p
�1kf kHD.�/; f 6D 0; (4-14)

where �1 < 1 is the maximum of 1=2 and the largest eigenvalue of K�K greater
than 1=2, if any.

It is worth mentioning that for T > T1, K is compact. �

The proof of Theorem 4.1 provides an estimate of the error in the reconstruction
if we use the first term in (4-6) only that is Ah. It is in the spirit of [Hristova
2009] and relates the error to the local energy decay, as can be expected.

Corollary 4.2.

kf �Aƒf kHD.�/ �

�
E�.u;T /

E�.u; 0/

� 1
2

kf kHD.�/; 8f 2HD.�/; f 6D 0;

where u is the solution of (1-2).
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Note that the f �Aƒf DKf , and the corollary actually provides an upper
bound for kKf k. The estimate above also can be used to estimate the rate of
convergence of the Neumann series (4-6) when we have a good control over the
uniform local energy decay from time t D 0 to time t D T .

5. Stability and a microlocal characterization of ƒ and the
back-projection

Note first that in case of observations on Œ0;T ��@� with T >T1=2, Theorem 4.1
already implies a Lipschitz stability estimate of the type below. We consider
below the partial boundary data case, where ƒf is known on G; see (3-2).

If we want that recovery to be stable, we need to be able to recover all
singularities of f “in a stable way.” By the zero initial velocity condition,
each singularity .x; �/ splits into two parts (see Proposition 5.1 below and
the Appendix): one that starts propagating in the direction �; and another one
propagates in the direction ��. Moreover, neither one of those singularities
vanishes at t D 0 (and therefore never vanishes), they actually start with equal
amplitudes. For a stable recovery, we need to be able to detect at least one of
them, in the spirit of [Stefanov and Uhlmann 2009a], i.e., at least one of them
should reach G.

Define �˙.x; �/ by the condition

�˙.x; �/Dmax
�
� � 0I 
x;�.˙�/ 2�

�
:

Based on the arguments above, for a stable recovery we should assume that G

satisfies the condition

8.x; �/ 2 S�K,
�
�� .x; �/; 
x;�.�� .x; �/

�
2 G

for either � DC or � D� (or both). (5-1)

Compared to condition (3-4), this means that for each x 2 K and each unit
direction �, at least one of the signals from .x; �/ and .x;��/ reaches G. This
condition becomes necessary if we replace G by its closure above; see Remark 5.3.
In Theorem 5.2 below, we show that it is also sufficient.

We start with a description of the operator ƒ that is of independent interest as
well. In the next proposition, we formally choose T D1. We restrict the result
below to functions supported in � (the support cannot touch @�) to avoid the
analysis at the boundary, where ƒ is of more general class.

Proposition 5.1. ƒDƒCCƒ�; whereƒ˙ WC10 .�/!C1..0;1/�@�/ are
elliptic Fourier integral operators of zeroth order with canonical relations given
by the graphs of the maps

.y; �/ 7!
�
�˙.y; �/; 
y;�.˙�˙.y; �//; �j�j; P


0
y;�.˙�˙.y; �//

�
; (5-2)
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where j�j is the norm in the metric c�2g, and P
 0 stands for the tangential
projection of P
 on T @�.

Proof. This statement is well known and follows directly from [Duistermaat
1996], for example. See also the Appendix where microlocal analysis and
geometric optics is briefly reviewed. We will give more details that are needed
just for the proof of this proposition in order to be able to compute the principal
symbol in Theorem 5.2.

We start with a standard geometric optics construction. See Section A.4 in
the Appendix.

Fix x0 2�. In a neighborhood of .0;x0/, the solution to (4-2) is given by

u.t;x/D .2�/�n
X
�D˙

Z
ei�� .t;x;�/a� .x; �; t/ Of .�/ d�; (5-3)

modulo smooth terms, where the phase functions �˙ are positively homogeneous
of order 1 in � and solve the eikonal equations (A-16), (A-17), while a˙ are
classical amplitudes of order 0 solving the corresponding transport equations
(A-18). Singularities starting from .x; �/ 2WF.f / propagate along geodesics in
the phase space issued from .x; �/, i.e., they stay on the curve .
x;�.t/; P
x;�.� t//

for � D ˙. This is consistent with the general propagation of singularities
theory for the wave equation because the principal symbol of the wave operator
�2� c2j�jg has two roots � D˙cj�jg.

The construction is valid as long as the eikonal equations are solvable, i.e.,
along geodesics issued from .x;˙�/ that do not have conjugate points. Assume
that WF.f / is supported in a small neighborhood of .x0; �0/ with some �0 6D 0.
Assume first that the geodesic from .x0; �0/with endpoint on @� has no conjugate
points. We will study the � DC term in (5-3) first. Let �b, ab be the restrictions
of �C, aC, respectively, on R� @�. Then, modulo smooth terms,

ƒCf WD uC.t;x/jR�@� D .2�/
�n

Z
ei�b.t;x;�/ab.x; �; t/ Of .�/ d�; (5-4)

where uC is the � D C term in (5-3). Set t0 D �C.x0; �0/, y0 D 
x0;�0
.t0/,

�0 D P
x0;�0
.t0/; in other words, .y0; �0/ is the exit point and direction of the

geodesic issued from .x0; �0/ when it reaches @�. Let xD .x0;xn/ be boundary
normal coordinates near y0. Writing Of in (5-4) as an integral, we see that (5-4)
is an oscillating integral with phase function ˆD �C.t;x0; 0; �/� y � �. Then
(see [Trèves 1980], for example), the set † WD fˆ� D 0g is given by the equation

y D @��C.t;x
0; 0; �/

It is well known (see Example 2.1 in [Trèves 1980, VI.2], for example) that
this equation implies that .x0; 0/ is the endpoint of the geodesic issued from
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.y; �/ until it reaches the boundary, and t D �C.y; �/, i.e., t is the time it takes
to reach @�. In particular, † is a manifold of dimension 2n, parametrized by
.y; �/. Next, the map

† 3 .y; t;x0; �/ 7! .y; t;x0;��; @t�C; @x0�C/ (5-5)

is smooth of rank 2n at any point. This shows that ˆ is a nondegenerate phase;
see [Trèves 1980, VIII.1], and that f 7! ƒCf is an FIO associated with the
Lagrangian given by the right side of (5-5). The canonical relation is then given
by

C WD .y; �; t;x0; @t�C; @x0�C/; .y; t;x0; �/ 2†:

Then (5-2) follows from the way �C is constructed by the Hamilton-Jacobi
theory. The proof in the � D� case is the same.

The proof above was done under the assumption that there are no conjugate
points on 
y0;�0

.t/, 0 � t � �C.y0; �0/. To prove the theorem in the general
case, let t1 2 .0; �C.y0; �0// be such that there are no conjugate points on that
geodesic for t1 � t � �C.y0; �0/. Then each of the terms in (5-3) extends to
a global elliptic FIO mapping initial data at t D 0 to a solution at t D t1; see,
e.g., [Duistermaat 1996]. Its canonical relation is the graph of the geodesic flow
between those two moments of time (for � DC, and with obvious sign changes
when � D�). We can compose this with the local FIO constructed above, and the
result is a well defined elliptic FIO of order 0 with canonical relation (5-2). �

We now consider the situation where ƒf is given on a set G satisfying (5-1).
Since K is compact and G is closed, one can always choose G0 b G that still
satisfies (5-1). Fix � 2 C1

0
.Œ0;T �� @�/ such that supp�� G and �D 1 on G0.

The measurements are then modeled by �ƒf , which depends on ƒf on G only.
Choose and fix T > sup� s; see (3-2). Let A be the back-projection operator

defined in (4-2) and (4-4). Note that A is always applied to �ƒ below, therefore
� D 0 in this case.

Theorem 5.2. A�ƒ is a zero-order classical pseudodifferential operator (‰DO)
in some neighborhood of K with principal symbol

1
2
�
�
�C.x; �/; 
x;�.�C.x; �//

�
C

1
2
�
�
�C.x; �/; 
x;�.��.x; �//

�
:

If G satisfies (5-1), then

(a) A�ƒ is elliptic,

(b) A�ƒ is a Fredholm operator on HD.K/, and

(c) there exists a constant C > 0 such that

kf kHD.K/ � Ckƒf kH 1.G/: (5-6)
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Remark 5.3. By [Stefanov and Uhlmann 2009a, Proposition 3], condition (5-1),
with G replaced by its closure, is a necessary condition for stability in any pair of
Sobolev spaces. In particular, c�2g has to be nontrapping for stability. Indeed,
then the proof below shows that A�ƒ will be a smoothing operator on some
nonempty open conic subset of T �K n 0.

Remark 5.4. Note thatƒ WHD.K/!H 1.Œ0;T ��@�/ is bounded. This follows
for example from Proposition 5.1.

Sketch of the proof. To construct a parametrix for A�ƒf , we apply again a geo-
metric optic construction, using the two characteristic roots ˙cj�jg. It is enough
to assume that A�ƒf has a wave front set in a conic neighborhood of some point
.t0;y0; �0; �

0
0
/ 2 Œ0;T �� @�, using the notation above. For simplicity, assume

that the eikonal equation is solvable for t in some neighborhood of Œ0;T �. Let
�0<0, for example. We look for a parametrix of the solution of the wave equation
(4-2) with zero Cauchy data at t D T and boundary data �ƒCf in the form

v.t;x/D .2�/�n

Z
ei�C.t;x;�/b.x; �; t/ Of .�/ d�:

Let .x0; �0/ be the intersection of the bicharacteristic issued from .t0;y0; �0; �
0
0
/

with t D 0. The choice of that parametrix is justified by the fact that all singular-
ities of that solution must propagate along the geodesics close to 
x0;�0

in the
opposite direction, as t decreases because there are no singularities for t D T .
The critical observation is that the first transport equation for the principal term
b0 of b is a linear ODE along bicharacteristics, and starting from initial data
b0 D �a0, where a0 D 1=2, at time t D 0, we will get that b0.x; �/jtD0 is given
by the value of �=2 at the exit point of 
x;� on @�.

This proves the first statement of the theorem.
Parts (a), (b) follows immediately from the ellipticity of A�ƒ that is guaranteed

by (5-1).
To prove part (c), note first that the ellipticity of A�ƒ and the mapping

property of A (see [Lasiecka et al. 1986]) imply the estimate

kf kHD.K/ � C .k�ƒf kH 1 Ckf kL2/ :

By Theorem 3.2, and (5-1), �ƒ is injective on HD.K/. By [Taylor 1981, Propo-
sition V.3.1], one gets estimate (5-6) with a constant C > 0 possibly different
than the one above. �

6. Relations to boundary control and observability

This problem is closely related but not equivalent to the observability problem in
boundary control. The observability problem asks the following. Let u solve
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:̂
.@2

t CP /u D 0 in .0;T /��;
uj.0;T /�@� D 0;

ujtD0 D f;

@tujtD0 D h;

(6-1)

where � is a bounded domain with a smooth boundary as above and T > 0 is
fixed. Comparing this with (1-2), we see that the Cauchy data at t D 0 given by
.f; h/ with h not necessarily zero (which is not essential for the discussion here)
but the equation is satisfied for x 2 � only and there is a Dirichlet boundary
condition for x 2 @�. Then the question is: given @u=@� on .0;T /�� , with
some � ��, can we determine .f; h/, and therefore, u? One can have Neumann
or Robin boundary conditions in (6-1) and measure Dirichlet ones on .0;T /�� .
The essential assumption on a possibly different boundary condition is that the
latter defines a well posed problem and the measurement determines the Cauchy
data on .0;T /� � . Physically, and microlocally, the presence of a boundary
condition leads to waves that reflect off @�. In the thermoacoustic case, they do
not; actually then there is no boundary for the direct problem. The measurements
consist of “half” of the Cauchy data only — the Dirichlet part.

6A. Measurements on the whole boundary. If � D @�, then the two problems
are actually equivalent in a stable way. Indeed, we will show here that knowing
ƒf , one can recover the normal derivative of the solution of (1-2) on Œ0;T ��@�
as well. This is done by applying a nonlocal ‰DO to ƒf .

We will define first the outgoing DN map. Given h 2 C1
0
.Œ0;1/� @�/, let

w solve the exterior mixed problem related to the Euclidean Laplacian:8̂̂<̂
:̂
.@2

t ��/w D 0 in .0;T /�Rn n�;

wjŒ0;T ��@� D h;

wjtD0 D 0;

@twjtD0 D 0:

(6-2)

Then we set

Ng D
@w

@�

ˇ̌̌
Œ0;T ��@�

:

By [Lasiecka et al. 1986], for h 2H 1
.0/
.Œ0;T �� @�/, we have

Œw;wt � 2 C.Œ0;T /I H/I

therefore,
N WH 1

.0/.Œ0;T �� @�/! C.Œ0;T ��H
1
2 .@�//

is continuous. Note that the results in [Lasiecka et al. 1986] require the domain
to be bounded but by finite domain of dependence we can remove that restriction



290 PLAMEN STEFANOV AND GUNTHER UHLMANN

in our case. We also refer to [Finch et al. 2004, Proposition 2] for a sharp domain
of dependence result for exterior problems.

Lemma 6.1. Let u solve (1-2) with f 2 HD.�/ compactly supported in �.
Assume that P D�� outside �. Then for any T > 0, ƒf determines uniquely
u in Œ0;T ��Rn n� and the normal derivative of u on Œ0;T �� @� as follows:

(a) The solution u in Œ0;T ��Rn n� coincides with the solution of (6-2) with
hDƒf .

(b) We have
@w

@�

ˇ̌̌
Œ0;T ��@�

DNƒf: (6-3)

Proof. Let w be the solution of (6-2) with g D ƒf 2 H 1
.0/
.Œ0;T �� @�/. Let

u be the solution of (1-2). Then u�w solves the unit speed wave equation in
Œ0;T ��Rn n� with zero Dirichlet data and zero initial data. Therefore, uD w

in Œ0;T ��Rn n�. �
The operator N is well known in scattering theory as the outgoing DN map,

also called the Neumann operator sometimes. If @� is strictly convex, it is a
classical ‰DO of order 1 restricted to noncharacteristic codirections (correspond-
ing to either reflecting rays or evanescent waves) and has a more complicated
structure near characteristic vectors (corresponding to glancing rays). The range
of ƒ acting in f with suppf �� can have a wave front set in the hyperbolic
region only, corresponding to reflected rays.

Now, knowing ƒf , we can recover the whole Cauchy data .f;Nƒf / on
.0;T /� @�. In this case, the observability problem is to recover f from the
Cauchy data there as well. One can therefore use all results known in the literature
about the observability problem (see [Bardos et al. 1992], for example) to obtain
results for the thermoacoustic one. On the other hand, this may not be the best
way to do, numerically, at least. Also, the special and in fact the simpler structure
of the thermoacoustic solution of (1-2) (no reflected waves) would be ignored if
we did so. An essential part of [Bardos et al. 1992] is devoted to the analysis of
such reflected waves which do not exist in our case.

6B. Measurements on a part of the boundary. When ƒ is known restricted to
.0;T /�� , ���, the relation between the two problems is not so straightforward.
First, the solution u to (1-2) and that to (6-1) are different as we explained already.
In the observability problem, we know u on Œ0;T �� @� (zero), and @u=@� on
the smaller set .0;T /�� . In the thermoacoustic one, we know that the waves go
through @�, which is equivalent to the hidden boundary condition @u=@� DN u

on Œ0;T � � @�, and we know u on .0;T / � � . As Theorem 3.2 shows, we
can, in a nontrivial way, recover @u=@� on .0;T /�� . The proof uses unique
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continuation, which is unstable. Therefore, trying to reduce the thermoacoustic
problem to an observability one this way (and no other is known to the authors)
goes through a unstable step and will not lead to sharp results because we have
showed in Theorem 5.2 that under certain conditions, the recovery is stable.

7. Estimating the uniqueness time T0 and the stability time T1

One practical question is how to estimate the times T0 and T1 from above, to be
certain that the chosen T is large enough for uniqueness or stability.

The max-min Equation (3-1) of T0 makes it easy to get an upper bound.
First, to estimate dist.x; @�/ from above for x fixed, we can take any path
Œa; b�3 s 7! 
 .s/ from x to @� and compute the length of that path as

R b
a
j P
.s/jds
c.
 .s//

.
Then we take an upper bound with respect to x 2�. Let R> 0 be such that �
is contained in the ball B.0;R/ and assume that 0 2�. Then, for example,

T0 < max
j!jD1

Z R

0

dr

c.r!/
:

In particular, if c.x/� c0 D const:, we get

T0 <
R

c0

:

We estimate T1 now, which (divided by 2) is critical for stability. A possible
way to do this is to use a suitable escape function, a method well known and
used in scattering theory. Consider the Hamiltonian

H.x; �/D 1
2
c2.x/gij .x/�i�j

of P on the energy level † WD f.x; �/ 2 T ��I H D 1=2g. Here, gij are the
components of g�1. Let  .x; �/ be a smooth function on ��Rn which we
regard as T �� in local coordinates. Assume that for some constant ˛,

XH � ˛ > 0 on †; (7-1)

where XH is the Hamiltonian vector field related to H . Relation (7-1) tells us
that  is strictly increasing along the Hamiltonian flow. Let

ADmax
†
j .x; �/j:

Then any Hamiltonian curve on † issued from T �� will leave � for time t such
that ˛t > 2A. Thus T1 � 2A=˛.

For example, assume that g is Euclidean. Then H D 1
2
c2j�j2 and

XH D

X�
c2�j

@

@xj
� c

@c

@xj
j�j2

@

@�j

�
:
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Choose  D x � � . Then

XH D c2
j�j2� j�j2cx � @xc:

On the energy level †, we have

XH D 1� c�1x � @xc:

Condition (7-1) is then satisfied if

x � @xc.x/ < c.x/ in �: (7-2)

In particular, if c D c.r/ is radial, condition (7-2) reduces to r@c=@r < c or
@r .r=c.r// > 0. This is the condition imposed by Herglotz [1905] and Wiechert
and Zoeppritz [1907] more than a century ago in their solution of the inverse
kinematic problem for radial speeds arising in seismology.

We have therefore proved the following.

Proposition 7.1. Let 0< c0 � c.x/ in �� NB.0;R/. Then

T0 <R=c0:

Assume that
˛ WDmin

�

.1� c�1x � @xc/ > 0:

Then T1=2�R=.˛c0/.

To finish the proof it only remains to notice that j j � jxjj�j �R=c.x/ on
the energy level †.

8. Multiwave tomography and integral geometry

If P D ��, and if n is odd, the solution of the wave equation is given by
Kirchhoff’s formula and can be expressed in terms of integrals over spheres
centered at @� with radius t , and their t-derivatives. Then the problem can
be formulated as an integral geometry problem — recovering f from integrals
over spheres centered at @�, with radii in Œ0;T �. This point of view has been
exploited a lot in the literature. Uniqueness theorems can be proved using analytic
microlocal calculus, when the boundary is analytic (a ball, for example). Explicit
formulas has been derived when @� is a ball. There are also works studying
“uniqueness sets” — what configuration of the boundary, not necessarily smooth,
provides unique recovery; see [Kuchment and Kunyansky 2008], for example.

One may attempt to apply the same approach in the variable coefficients case;
then one has to integrate over geodesic spheres. This has two drawbacks. First,
those integrals represent the leading order terms of the solution operator only,
not the whole solution. That would still be enough for constructing a parametrix
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however but not the Neumann series solution in Theorem 4.1. The second
problem is that the geodesic spheres become degenerate in presence of caustics.
The wave equation viewpoint that we use in this paper is not sensitive to caustics.
We still have to require that the metric be nontrapping in some of our theorems.
By the remark following Theorem 5.2 however, this is a necessary condition
for stability. On the other hand, it is not needed for the uniqueness result as
long as (3-4) is satisfied. Also, there is no clear integral geometry approach to
uniqueness, except for analytic speeds, that would replace unique continuation.
So in this sense, the integral geometry problem is “the wrong approach” when
the speed is variable.

9. Brain imaging

In this section, we study the mathematical model of thermoacoustic and photoa-
coustic tomography when the sound speed has a jump across a smooth surface.
This models the change in the sound speed in the skull when trying to image
the human brain. This problem was proposed by Lihong Wang at the meeting
in Banff on inverse transport and tomography in May, 2010 and it arises in
brain imaging [Xu and Wang 2006b; Yang and Wang 2008]. We derive again
an explicit inversion formula in the form of a convergent Neumann series under
the assumptions that all singularities from the support of the source reach the
boundary.

The main difference between the case of a smooth speed c and a discontinuous
one with jump type of singularities is the propagation of singularities. In the
present case, each ray may split into two parts when it hits the surface � where
the speed jumps, then each branch may split again, etc. This is illustrated in
Figure 2. Each such branch carries a positive fraction of the high frequency
energy if there are segments tangent to � . The stability condition (9-5) then
requires that we can detect at least one of those branches issued from suppf and
any direction at time jt j<T . Then we also have an explicit inversion in the form
of a convergent Neumann series as shown in Theorem 4.1. That reconstruction is
based on applying a modified time reversal with a harmonic extension step, and
then iterating it. While for a smooth speed, the classical time reversal already
provides a parametrix but not necessarily an actual inversion, in the case under
consideration the harmonic extension and the iteration are even more important
because the first term or the classical time reversal are not parametrices. This
has been also numerically observed in [Qian et al. 2011].

We describe the mathematical model now. Let �� Rn be a bounded domain
with smooth boundary. Let � �� be a smooth closed, orientable, not necessarily
connected surface. Let the sound speed c.x/ > 0 be smooth up to � with a
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Figure 2. Propagation of singularities for the transmission prob-
lem in the skull example. The shaded region represents the skull,
and the speed there is higher than in the nonshaded part. The
dotted curves represent the propagation of the same singularity
but moving with a negative wave speed.

nonzero jump across it. For x 2 � , and a fixed orientation of � , we introduce
the notation

cint.x/D cj�int
; cext.x/D cj�ext

(9-1)

for the limits from the interior and from the exterior of � n� . Our assumption
then is that those limits are positive as well, and

cint.x/ 6D cext.x/ for all x 2 �: (9-2)

In the case of brain imaging, the brain is represented by some domain�0b�. Let
�1 be another domain representing the brain and the skull, so that�0b�1b�,
and �1 n�0 is the skull; see Figure 2. The measuring devices are then typically
placed on a surface encompassing the skull, modeled by @� in our case. Then

cj�0
< cj�1n�0

; cj�1n�0
> cj�n�1

;

with the speed jumping by about a factor of two inside the skull�1n�0. Another
motivation to study this problem is to model the classical case of a smooth speed
in the patient’s body but account for a possible jump of the speed when the
acoustic waves leave the body and enter the liquid surrounding it.
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Let u solve the problem8̂̂̂̂
<̂̂
ˆ̂̂̂:

.@2
t � c2�/u D 0 in .0;T /�Rn;

uj
�int
D uj

�ext
;

.@u=@�/j
�int
D .@u=@�/j

�ext
;

ujtD0 D f;

@tujtD0 D 0;

(9-3)

where T > 0 is fixed, uj�int,ext is the limit value (the trace) of u on � when taking
the limit from the exterior and from the interior of � , respectively, and f is the
source that we want to recover. We similarly define the interior/exterior normal
derivatives, and � is the exterior unit (in the Euclidean metric) normal to � .

Assume that f is supported in �, where � � Rn is some smooth bounded
domain. The measurements are modeled by the operator ƒf as in (1-3). The
problem is to reconstruct the unknown f .

We study the case where f is supported in some compact K in �. In ap-
plications, this corresponds to f , that is not necessarily zero outside K but are
known there. By subtracting the known part, we arrive at the formulation that
we described above. We also assume that c D 1 on Rn n�.

The propagation of singularities for the transmission problem is well under-
stood, at least away from possible gliding rays [Hansen 1984; Taylor 1976;
Petkov 1982a; 1982b]. When a singularity traveling along a geodesic hits the
interface � transversely, there is a reflected ray carrying a singularity, that reflects
at � according to the usual reflection laws. If the speed on the other side is
smaller, there is a transmitted (refracted) ray as well, at an angle satisfying Snell’s
law; see (9-41). In the opposite case, such a ray exists only if the angle with �
is above some critical angle; see (9-42). If that angle is smaller than the critical
one, there is no transmitted singularity on the other side of � . This is known as
a full internal reflection. This is what happens in the case of the skull when a
ray hits the skull boundary from inside at a small enough angle; see Figure 2.
Therefore, the initial ray splits into two parts, or does not split; or it hits the
boundary exactly at the critical angle. The latter case is more delicate, and we
refer to Section 9B for some discussion on that.

Next, consider the propagation of each branch, if more than one. Each branch
may split into two, etc. In the skull example, a ray coming from the interior of
the skull hitting the boundary goes to a region with a smaller speed; and therefore
there is always a transmitted ray, together with the reflected one. Then a single
singularity starting at time t D 0 until time t D T in general propagates along
a few branches that look like a directed graph. This is true at least under the
assumption than none of those branches, including possible transmitted ones, is
tangent to the boundary.
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Since ut jtD0D 0, singularities from .x0; �
0/ start to propagate in the direction

�0 and in the negative one ��0. If none of the branches reaches @� at time T

or less, a stable recovery is not possible [Stefanov and Uhlmann 1998b]. In the
next subsection, we study the case where the initial data is supported in some
compact K � � n � and for each .x0; �

0/ 2 T �K n 0, each ray through it, or
through .x0;��

0/ has a branch that reaches @� transversely at time less than
T . The main idea of the proof is to estimate the energy that each branch carries
at high energies. If there is branching into rays not tangent to the boundary, we
show that a positive portion of the energy is transmitted, and a positive one is
reflected, at high energies. As long as one of these branches reaches the boundary
transversely, at a time at which measurements are still done, we can detect that
singularity. If we can do that for all singularities originating from K, we have
stability. This explains condition (9-5) below. Uniqueness follows from unique
continuation results.

Similarly to the case of smooth speed studied above, assuming (9-5), we also
get an explicit converging Neumann series formula for reconstructing f ; see
Theorem 4.1. As in the case of a smooth speed considered in [Stefanov and
Uhlmann 2009b] the “error” operator K in (4-6) is a contraction. An essential
difference in this case is that K is not necessarily compact. Roughly speaking,
Kf corresponds to that part of the high frequency energy that is still held in �
until time T due to reflected or transmitted signals that have not reached @�
yet. While the first term only in (4-6) will still recover all singularities of f ,
it will not recover their strength, in contrast to the situation in [Stefanov and
Uhlmann 2009b], where the speed is smooth. Thus one can expect somewhat
slower convergence in this case.

9A. Main result. Let u solve the problem (9-3) where T >0 is fixed. Letƒf WD

ujŒ0;T ��@� as in (1-3). The trace ƒf is well defined in C.0/
�
Œ0;T �I H 1=2.@�/

�
,

where the subscript .0/ indicates that we take the subspace of functions h such
that hD 0 for t D 0. For a discussion of other mapping properties, we refer to
[Isakov 2006], when c has no jumps. By finite speed of propagation, one can
reduce the analysis of the mapping properties of ƒ to that case.

As in the case of a smooth speed, one could use the standard back-projection
that would serve as some kind of approximation of the actual solution. We cut off
smoothly ƒf near t D T to satisfy the compatibility conditions in the next step;
and then we solve a backward mixed problem with boundary data the so cut ƒf ;
and Cauchy data Œ0; 0� at t D T . As in the case of a smooth speed (see [Hristova
2009; Stefanov and Uhlmann 2009b]) one can show that such a back-projection
would converge to f as T !1 at a rate that depends on f and that is at least a
slow logarithmic one if one knows a priori that f 2H 2; see [Bellassoued 2003].
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If � D @�0, where �0 � � is strictly convex, then in the case that the speed
outside �0 is faster than the speed inside (then there is full internal reflection),
the convergence would be no faster than logarithmic, as suggested by the result
in [Popov and Vodev 1999]. In the opposite case, it is exponential if n is odd,
and polynomial when n is even [Cardoso et al. 1999]. Our goal in this work is
to fix T however.

Consider the modified back-projection described in (4-2)–(4-4). The function
Ah with hDƒf can be thought of as the “first approximation” of f . On the
other hand, the proof of Theorem 9.1 below shows that it is not even a parametrix,
in contrast to the case where c is smooth; see Remark 9.2.

The discussion in the Introduction and in Section 9B indicates that the singu-
larities that we are certain to detect at @� lie in the nontrapped set

UD
˚
.x; �/ 2 S�.�n�/I there is a geodesic path issued from either .x; �/ or
.x;��/ at t D 0, never tangent to � , and outside� at time t DT

	
: (9-4)

Actually, U is the maximal open set with the property that a singularity in U

is visible at Œ0;T � � @�; and what happens at the boundary of that set, that
includes for example rays tangent to � , will not be important for our analysis.
We emphasize here that “visible” means that some positive fraction of the energy
and high frequencies can be detected as a singularity of the data; and of course
there is a fraction that is reflected; then some trace of it may appear later on @�,
and so on.

One special case is the following. Take a compact set K��n� with smooth
boundary, and assume that

S�K�U: (9-5)

In other words, we require that for any x 2 K and any unit � 2 S�x K, at least
one of the multi-branched “geodesics” starting from .x; �/, and from .x;��/,
at t D 0 has a path that hits @� for time t < T and satisfies the nontangency
assumption of (9-4). Such a set may not even exist for some speeds c.

Example 1. Let�0�� be two concentric balls, and let c be piecewise constant;
more precisely, assume

�D B.0;R/; �0 D B.0;R0/; 0<R0 <R;

and let

c D

�
c0 < 1 in �0;

1 in Rn n�0:

Then such a set K always exist and can be taken to be a ball with the same
center and small enough radius. Indeed, the requirement then is that all rays
starting from K hit � at an angle greater than a critical one �=2�˛0; see (9-42).
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This can be achieved by choosing KD B.0; �/ with �� R0. An elementary
calculation shows that we need to satisfy the inequality �=R0 < sin˛0 D c0,
i.e., it is enough to choose � < c0 < R0. Then there exists T0 such that (9-5)
holds for T > T0, and T0 is easy to compute. On can also add to K any compact
included in fR0 < jxj < Rg. In other words, K can be any compact in � not
intersecting fc0R0 � jxj �R0g, the zone where the trapped rays lie.

If c D c0 > 1 in �0, then any compact K in � satisfies (9-5). In that case,
there is always a transmitted ray leaving �0.

Example 2. This is a simplified version of the skull model. Let �0 ��1 ��

be balls such that

�D B.0;R/; �0 D B.0;R0/; �1 D B.0;R1/ 0<R0 <R1 <R;

Assume that
cj�0

D c0; cj�1n�0
D c1; cjRnn�1

D 1

with some constants c0, c1 such that c0< c1, c1> 1. Here, c0 models the acoustic
speed in the brain, c1 is the speed in the skull, and 1 is the acoustic speed in the
liquid outside the head. If for a moment we consider �0 and �1 only, we have
the configuration of the previous example. If KD B.0; �/ with � < .c0=c1/R0,
then K satisfies (9-5) with an appropriate T . Now, since c1> 1, rays that hit @�1

always have a transmitted part outside �1, and therefore (9-5) is still satisfied in
�. Rays originating outside �1 are not trapped, therefore, more generally, K

can be any compact in � n fc0R0=c1 � jxj �R0g.

Let …K WHD.�/!HD.K/ be the orthogonal projection of elements of the
former space to the latter (considered as a subspace of HD.�/). It is easy to
check that …Kf D f jK � P@K.f j@K/, where P@K is the Poisson operator of
harmonic extension in K.

Our main result about discontinuous speeds is the following.

Theorem 9.1. Let K satisfy (9-5). Then …KA1ƒ D Id�K in HD.K/, with
kKkHD.K/ < 1. In particular, Id�K is invertible on HD.K/, and ƒ restricted
to HD.K/ has an explicit left inverse of the form

f D

1X
mD0

Km…KAh; hDƒf: (9-6)

Remark 9.2. As discussed in the Introduction, K is not a compact operator as
in the case of smooth sound speed. It follows from the proof of the theorem that
the least upper bound of its essential spectrum (always less that 1) corresponds
to the maximal portion of the high-frequency energy that is still held in � at
time t D T .
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Remark 9.3. Consider the case now where K does not satisfy (9-5). If there is an
open set of singularities that does not reach @�, a stable recovery is impossible
[Stefanov and Uhlmann 1998b]. In either case however, a truncated version of
the series (9-6) would provide an approximate parametrix that would recover the
visible singularities, i.e., those in U. By an approximate parametrix we mean a
pseudodifferential operator elliptic in U with a principal symbol converging to 1

in any compact in that set as the number of the terms in (9-6) increases. This
shows that roughly speaking, if a recovery of the singularities is the primary
goal, then only those in U can be recovered in a “stable way”, and (9-6) works
in that case as well, without the assumption (9-5).

9B. Sketch of the proof; geometric optics. The proof of Theorem 9.1 is based
on a detailed microlocal analysis of the solution of the forward equation (9-3).
As we explained above, propagation of singularities is well understood, and we
avoided the most delicate cases with our assumptions about K. To prove that the
“error operator” K is a contraction however, we show first that it is a contraction
up to a compact operator by studying the parametrix first. Then we use a suitable
adaptation of the unique continuation property to this setting, combined with
arguments similar to those in the smooth case to show that the whole K is a
contraction as well. The most essential part of the proof is to show that the
parametrix is a contraction. This requires not only to trace the propagation of
singularities but to show that each time a ray splits into a reflected and transmitted
one (neither one tangent), both rays carry a positive fraction of the energy.

Analysis at the boundary. We will analyze what happens when the geodesic
.x0; �

0/ issued from .x0; �
0/, x0 62 � , hits � for first time, under some assump-

tions. Let the open sets �int, �ext, be the interior and the exterior part of � near
x0, according to the orientation of � . They only need to be defined near the
first contact with � . Let us assume that this geodesic hits � from �int. We will
construct here a microlocal representation of the reflected and the transmitted
waves near the boundary. We refer to Section A.4 for the geometric optics
construction.

Extend cj�int in a smooth way in a small neighborhood on the other side of
� , and let uC be the solution described above, defined in some neighborhood
of that geodesic segment. Since we are only going to use uC in the microlocal
construction described below, and we will need only the trace of uC on RC ��

near the first contact of the bicharacteristic from .x0; �
0/ with � , the particular

extension of c would not affect the microlocal expansion but may affect the
smoothing part.

Set
h WD uCjR�� : (9-7)
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Let .t1;x1/ 2RC�� be the point where the geodesic from 
x0;�0 hits � for the
first time (see Figure 3). We assume that such a t1 exists. Let �1 be the tangent
covector to that geodesic at .t1;x1/. Assume that �0 is unit covector in the metric
c�2dx2, then so is �1 (in the metric c�2

int dx2), i.e., cintj�j D 1, where j�j is the
Euclidean norm. Assume that �1 is transversal to � . In view of condition (9-5),
this is the case that we need to study.
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Figure 3. Reflected and the transmitted rays in x-space (top)
and in .t;x/-space (bottom).
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Standard microlocal arguments show that the map Œf1; f2� 7! h is an elliptic
Fourier integral operator (FIO) with a canonical relation that is locally a canonical
graph described in Proposition 3 of [Stefanov and Uhlmann 2009b]; see the
proof of that proposition for details. That diffeomorphism maps .x0; �

0/ into
.t1;x1; 1; .�

1/0/, where the prime stands for the tangential projection onto T ��;
and that maps extends as a positively homogeneous one of order one with respect
to the dual variable. In particular, the dual variable � to t stays positive. In
fact, WF.u/ is in the characteristic set �2 � c2.x/j�j2 D 0, and .x; �/ belongs
to some small neighborhood of .x1; �

1/. The wave front set WF.h/ is given
by .x; � 0/ 2 T �� , .x; �/ 2 WF.u/, where � 0 is the tangential projection of �
to the boundary. Then .t;x; �; � 0/ is the image of some . Qx; Q�/ close to .x0; �

0/

under the canonical map above. Here . Qx; Q�/ is such that the x-projection x.s/

of the bicharacteristic from it hits � for the first time at time for the value of s

given by sc. Qx/ D t . Since �2 � c2
int.x/j�j

2 D 0, for the projection � 0 we have
�2� c2

int.x/j�
0j2 > 0, where .x; � 0/ 2 T �� , and j� 0j is the norm of the covector

� 0 in the metric on � induced by the Euclidean one.
The microlocal regions of T �.R��/ 3 .t;x; �; � 0/ with respect to the sound

speed cint, i.e., in �int, are defined as follows:

hyperbolic region: cint.x/j�
0j< � ,

glancing manifold: cint.x/j�
0j D � ,

elliptic region: cint.x/j�
0j> � .

One has a similar classification of T �� with respect to the sound speed cext. A
ray that hits � transversely, coming from �int, has a tangential projection on
T �.R��/ in the hyperbolic region relative to cint. If cint < cext, that projection
may belong to any of the three microlocal regions with respect to the speed
cint. If cint > cext, then that projection is always in the hyperbolic region for cext.
When we have a ray that hits � from �ext, then those two cases are reversed.

Reflected and transmitted waves. We will analyze the case where .�1/0 belongs
to the hyperbolic region with respect to both cint and cext, i.e., we will work with
� 0 in a neighborhood of .�1/0 satisfying

c�2
int �

2
� j� 0j2 > 0; c�2

ext �
2
� j� 0j2 > 0: (9-8)

The analysis also applies to the case of a ray coming from �ext, under the same
assumption. We will confirm below in this setting the well known fact that under
that condition, such a ray splits into a reflected ray with the same tangential
component of the velocity that returns to the interior �int, and a transmitted one,
again with the same tangential component of the velocity, that propagates in
�ext. We will also compute the amplitudes and the energy at high frequencies of
the corresponding asymptotic solutions.
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Choose local coordinates on � that we denote by x0, and a normal coordinate
xn to � such that xn > 0 in �ext, and jxnj is the Euclidean distance to �; then
x D .x0;xn/. We will express the solution uC in R��int that we defined above,
as well as a reflected solution uR in the same set; and a transmitted one uT in
R��ext, up to smoothing terms in the form

u� D .2�/
�n

Z
ei'� .t;x;�;�0/b� .t;x; �; �

0/ Oh.�; � 0/ d� d� 0; � DC;R;T;

(9-9)
where Oh WD

R
R�Rn�1 e�i.�t�Cx0��0/h.t;x0/dt dx0. We chose to alter the sign of �

so that if cD 1, the phase function in (9-9) equals 'C, i.e., then 'CD�t�Cx �� .
The three phase functions 'C, 'R, 'T solve the eikonal equation

@t'� C c.x/jrx'� j D 0; '� jxnD0 D�t� Cx0 � � 0: (9-10)

The right choice of the sign in front of @t'C (see (A-16)) is the positive one
because @t'C D�� < 0 for xn D 0, and that derivative must remain negative
near the boundary as well. We see below that '

R;T
have the same boundary

values on xnD 0, therefore they satisfy the same eikonal equation, with the same
choice of the sign.

Let now h be a compactly supported distribution on R� � with WF.h/ in
a small conic neighborhood of .t1;x1; 1; .�

1/0/. We will take h as in (9-7)
eventually, with uC the solution corresponding to initial data f at t D 0 but
in what follows, h is arbitrary as long as WF.h/ has that property, and uC is
determined through h. We now look for a parametrix

QuD uCCuRCuT (9-11)

near .t1;x1/ with uC, uR, uT of the type (9-9), satisfying the wave equation
and (9-7). We use the notation for uC now for a parametrix in �int having
singularities that come from the past and hit �; i.e., for an outgoing solution.
The subscript C is there to remind us that this is related to the positive sound
speed c.x/j�j. Next, uR is a solution with singularities that are obtained form
those of uC by reflection; they propagate back to �int. It is an outgoing solution
in �int. And finally, uT is a solution in �ext with singularities that go away from
� as time increases; hence it is outgoing there. To satisfy the first transmission
condition in (9-3), we need to have

'T D 'R D 'C D�t� Cx � � 0 for xn
D 0; (9-12)

that explains the same boundary condition in (9-10), and

1C bR D bT for xn
D 0: (9-13)
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In particular, for the leading terms of the amplitudes we get

b
.0/
T
� b

.0/
R
D 1 for xn

D 0: (9-14)

To satisfy the second transmission condition, we require

i
@'C

@xn
C
@bC

@xn
C i
@'R

@xn
bRC

@bR

@xn
D i

@'T

@xn
bT C

@bT

@xn
for xn

D 0: (9-15)

Expanding this in a series of homogeneous in .�; �/ terms, we get series of initial
conditions for the transport equations that follow. Comparing the leading order
terms only, we get

@'T

@xn
b
.0/
T
�
@'R

@xn
b
.0/
R
D
@'C

@xn
for xn

D 0: (9-16)

The linear system (9-14), (9-16) for b
.0/
R
jxnD0, b

.0/
T
jxnD0 has determinant

�

�
@'T

@xn
�
@'R

@xn

� ˇ̌̌̌
xnD0

: (9-17)

Provided that this determinant is nonzero near x1, we can solve for b
.0/
R
jxnD0 and

b
.0/
T
jxnD0. Moreover, the determination of each subsequent term b

.�j/
R
jxnD0

or b
.�j/
T
jxnD0 in the asymptotic expansion of bRjxnD0 and bT jxnD0 can be found

from (9-15) by solving a linear system with the same (nonzero) determinant.

Solving the eikonal equations. As is well known, the eikonal equation (9-10) in
any fixed side of R�� , near .t1;x1/, has two solutions. They are determined by
a choice of the sign of the normal derivative on R�� and the boundary condition.
We will make the choice of the signs according to the desired properties for the
singularities of uC, uR, uT . Let rx0 denote the tangential gradient on � . By
(9-12),

rx0'T Drx0'R Drx0'C D �
0; @t'T D @t'R D @t'C D�� for xn

D 0:

(9-18)
Using the eikonal equation (9-10) and the boundary condition there, we get

@'C

@t
D��;

@'C

@xn
D

q
c�2

int �
2� j� 0j2 for xn

D 0: (9-19)

We made a sign choice for the square root here based on the required property of
uC described above. This shows in particular, that the map h 7! @uC=@t (that is
just d=dt ), and the interior incoming Dirichlet-to-Neumann map

Nint,in W h 7!
@uC

@�

ˇ̌̌
R��
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are locally ‰DOs of order 1 with principal symbols given by �i� , and

�p.Nint,in/D i
@'C

@xn
D i
q

c�2
int �

2� j� 0j2: (9-20)

The notion “interior incoming” is related to the fact that locally, near .t1;x1/,
we are solving a mixed problem in R��int with lateral boundary value h and
zero Cauchy data for t � 0.

Consider 'R next. The reflected phase 'R solves the same eikonal equation,
with the same boundary condition, as 'C. By the eikonal equation (9-10), we
must have

@'R

@xn
D˙

@'C

@xn
for xn

D 0: (9-21)

The “C” choice will give us the solution 'C for 'R . We chose the negative sign,
that uniquely determines a solution locally, that we call 'R, i.e.,

@'R

@xn
D�

@'C

@xn
for xn

D 0: (9-22)

Therefore, r'R on the boundary is obtained from r'C by inverting the sign of
the normal derivative. This corresponds to the usual law of reflection. Therefore,

@'R

@t
D��;

@'R

@xn
D�

q
c�2

int �
2� j� 0j2 for xn

D 0: (9-23)

In particular, @uR=@x
njR�� can be obtained from uRjR�� , that we still need to

determine, via the interior outgoing Dirichlet-to-Neumann map

Nint,out W uR

ˇ̌̌
R��

7�!
@uR

@xn

ˇ̌̌
R��

that is locally a first order ‰DO with principal symbol

�p.Nint,out/D i
@'R

@t
D�i

q
c�2

int �
2� j� 0j2: (9-24)

To construct 'T , we work in �ext. We define 'T as the solution of (9-10)
with the following choice of a normal derivative. This time 'T and 'C solve the
eikonal equation at different sides of � , and c has a jump at � . By (9-18),

c2
ext

�
j� 0j2C

ˇ̌̌@'T

@xn

ˇ̌̌2�
D �2 for xn

D 0: (9-25)

We solve this equation for j@'T =@x
nj2. Under the assumption (9-8), this solution

is positive, therefore we can solve for @'T =@x
n to get

@'T

@xn
D

q
c�2

ext �
2� j� 0j2 for xn

D 0: (9-26)
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The positive sign of the square root is determined by the requirement the singu-
larity to be outgoing. In particular, we get that the exterior outgoing Dirichlet-to-
Neumann map

Next,out W uT

ˇ̌
R��
7�!

@uT

@xn

ˇ̌̌
R��

has principal symbol

�p.Next,out/D i
@'T

@xn
D i
q

c�2
ext �

2� j� 0j2: (9-27)

For future reference, we note the inequality

0�
@'T

@xn
� 


@'C

@xn
; where 
 WDmax

�

cint

cext
< 1: (9-28)

Amplitude and energy calculations. By (9-23), (9-26), the determinant (9-17) is
negative. Solving (9-14) and (9-16) then yields

b
.0/
T
D

2@'C=@x
n

@'C=@xnC @'T =@xn
; b

.0/
R
D
@'C=@x

n� @'T =@x
n

@'C=@xnC @'T =@xn
for xn

D 0:

(9-29)
As explained below (9-17), we can get initial conditions for the subsequent
transport equations, and then solve those transport equation. By (9-12), the maps

PR W h 7! uRjR�� ; PT W h 7! uT jR�� (9-30)

are ‰DOs of order 0 with principal symbols equal to b
.0/
R

, b
.0/
T

restricted to
R��; see (9-29). We recall (9-7) as well.

We estimate next the amount of energy that is transmitted in �ext. We will do
it only based on the principal term in our parametrix. That corresponds to an
estimate of the solution operator corresponding to transmission, up to compact
operators, as we show below.

A quick look at (9-29) (see also (9-14)) shows that b
.0/
T
> 1. This may look

strange because we should have only a fraction of the energy transmitted, and
the rest is reflected. There is no contradiction however because the energy is not
proportional to the amplitude.

Let u solve .@2
t �c2�/uD 0 in the bounded domain U with smooth boundary

for t 0 � t � t 00 with some t 0 < t 00. A direct calculation yields

EU .u.t
00//DEU .u.t

0//C 2<

Z
Œt 0;t 00��@U

ut
@ Nu

@�
dt dS: (9-31)

We will use this to estimate the energy of uT in �ext. Since the wave front set of
uT is contained in some small neighborhood of the transmitted bicharacteristic,
we have smooth data for t D 0. Therefore, if t2 > t1 is fixed closed enough to
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t1, we can apply (9-31) to a large ball minus �int to get that modulo a compact
operator applied to h,

E�ext.uT .t2//Š 2<

Z
Œ0;t2���

@uT

@t

@ NuT

@�
dt dS: (9-32)

Therefore,

E�ext
.uT .t2//Š 2<.PtuT ;Next,outuT /D<.2P�T N �ext,outPtPT h; h/; (9-33)

where . � ; � / is the inner product in R�Rn�1, and Pt D d=dt .
Apply similar arguments to uC in �int. Since the bicharacteristics leave �int,

we have modulo smoother terms

0ŠE�int.uC.0//C 2<

Z
Œ0;t2���

@uC

@t

@ NuC

@�
dt dS: (9-34)

Similarly we get (see again (9-30))

E�int.uC.0//Š�2<.Pth;Nint,inh/D<.2N �int,inPth; h/: (9-35)

For the principal symbols of the operators in (9-33), (9-35) we have

�p.2P�
T

N �ext,outPtPT /

�p.2N �int,inPt /
D
@'T =@�

@'C=@�
.b
.0/
T
/2 D

4.@'C=@�/.@'T =@�/

.@'C=@�C @'T =@�/2
: (9-36)

Denote for a moment a WD @'C=@�, b WD @'T =@�. Then the quotient above
equals 4ab=.aC b/2 � 1 that confirms that the reflected wave has less energy
than the incident one. By (9-28), 0� b � 
a, 0< 
 < 1. This easily implies

4ab

.aC b/2
�

4


.1C 
 /2
< 1: (9-37)

Therefore, the expression in the middle represents an upper bound of the portion
of the total energy that gets transmitted in the asymptotic regime when the
frequency tends to infinity. To get a lower bound, assume in addition that
b � b0 > 0 and a� a0 for some a0, b0, i.e.,

0< b0 <
@'T

@�
;

@'C

@�
� a0: (9-38)

Then
4ab

.aC b/2
�

4b2
0
=


.1C 
 /2a2
0

> 0: (9-39)

This is a lower bound of the ratio of the high frequency energy that is transmitted.
As we can see, if the transmitted ray gets very close to a tangent one, that ratio
tends to 0.
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So far this is still not a proof of such a statement but just a heuristic argument.
For the a precise statement, see [Stefanov and Uhlmann 2011].

Snell’s law. Now assume that .�1/0 is in the hyperbolic region for cint but not
necessarily for cext. This corresponds to a ray hitting � from the interior �int.
There is no change in solving the eikonal equation for 'R but a real phase 'T

does not exist if the expression under the square root in (9-26) is negative. This
happens when .�1/0 is in the elliptic region for cext. Then there is no transmitted
singularity in the parametrix. We analyze this case below. If cint > cext, then
.�1/0 that is in the hyperbolic region for cint by assumption, also falls into the
hyperbolic region for the speed cext, i.e., there is always a transmitted ray. If
cint < cext, then existence of a transmitted wave depends on where .�1/0 belongs
with respect to cext.

Let ˛ be the angle that �1D @'C=@x
n makes with the (co)-normal represented

by dxn, and let ˇ be the angle between the latter and �T WD @'T =@x
n. We have

j� 0j D j�1
j sin˛ D c�1

int � sin˛; j� 0j D j�T j sinˇ D c�1
ext � sinˇ (9-40)

By (9-40), we recover Snell’s law

sin˛
sinˇ

D
cint

cext
; (9-41)

Assume now that cint< cext, which is the case where there might be no transmitted
ray. Denote by

˛0.x/D arcsin.cint.x/=cext.x// (9-42)

the critical angle at any x 2 � that places .�1/0 in the glancing manifold with
respect to cext. Then the transmitted wave does not exist when ˛ > ˛0; more
precisely we do not have a real phase function 'T in that case. It exists, when
˛ < ˛0. In the critical case ˛ D ˛0, this construction provides an outgoing ray
tangent to � that we are not going to analyze.

The full internal reflection case. Assume now that .�1/0 is in the elliptic region
with respect to cext, then there is no transmitted singularity, but one can still
construct a parametrix for the “evanescent” wave in �ext; and there is a reflected
ray. This is known as a full internal reflection. We give details below.

We proceed as above with one essential difference. There is no real-valued
solution 'T to the eikonal equation (9-10) outside �0. Similarly to (9-26), we
get formally,

@'T

@�
D i

q
j� 0j2� c�2

ext �
2 for xn

D 0: (9-43)
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The choice of the sign of the square root is dictated by the requirement that the
parametrix (9-9) with � D T be exponentially decreasing away from � instead
of exponentially increasing.

In general, the eikonal equation may not be solvable but one can still construct
solutions modulo O..xn/1/. The same applies to the transport equations. One
can show that the O..xn/1/ error does not change the properties of uT to be a
parametrix. In particular, in (9-33) in this case one gets

E�ext.uT .t2//Š 0; (9-44)

because the principal term of @ NuT =@� in (9-32) now is pure imaginary instead
of being real. Moreover, uT is smooth in �ext. Therefore, no energy, as far as
the principal part only is considered, is transmitted to �ext. That does not mean
that the solution vanishes there, of course.

Glancing, gliding rays and other cases. We do not analyze the cases where
.�1/0 is in the glancing manifold with respect one of the speeds. We can do that
because the analysis of those cases in not needed because of our assumptions
guaranteeing no tangent rays. The analysis there is more delicate, and we refer
to [Taylor 1976; Petkov 1982a; 1982b] for more details and examples. We do
not analyze either the case where .�1/0 is in the elliptic region with respect to
either speed.

Justification of the parametrix. Denote by uR D ŒuR; @tuR �, uT D ŒuT ; @tuT � the
approximate solutions constructed above, defined for t in some neighborhood
of t2. Then uR D VRh, uT D VT h, where VR;T are the FIOs constructed
above. Let uC be the solution of (9-3) defined above, with initial data …Cf

at t D 0 having wave front set in a small neighborhood of .x0; �
0/. The map

ƒC W f 7! uCjR�� D h is an FIO described in [Stefanov and Uhlmann 2009b].
Then near .t1;x1/,

uR D VRƒf ; uT D VTƒf ;

the former supported in R��int, and the later in R��ext. So far we had two
objects that we denoted by uC: first, the parametrix of the solution of (9-3)
corresponding to the positive sound speed c.x/j�j; and the parametrix in R��int

for the incoming solution corresponding to boundary value h. When hDƒCf ,
those two parametrices coincide up to a smooth term, as it is not hard to see
(the second one is a back-projection and is discussed in [Stefanov and Uhlmann
2009b], in fact). This justifies the same notation for them that we will keep.

Consider the parametrix vp WD uCC uR C uT . We can always assume that
its support is in some small neighborhood of the geodesic that hits R � � at
.t1;x1/ and is tangent to �1 there; and then reflects, and another branch refracts
(see Figure 3 on page 300). In particular, then h has t-support near t D t1,
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let us say that this included in the interval Œt1�"; t1C"� with some " > 0. At
t D t2 WD t1C2", let x2 be the position of the reflected ray, and let �2 be its unit
co-direction. Then WF.uR.t2; � // is in a small conic neighborhood of .x2; �

2/.
Let v.t; � / D etP…Cf be the exact solution — see (A-22) — with some

fixed choice of the parametrix Q�1 in the definition of …C, properly supported.
Consider w D v� vp in Œ0; t2��Rn. It satisfies

.@2
t � c2�/wjŒ0;t2���int

2C1; .@2
t � c2�/wjŒ0;t2���ext

2C1;

wjŒ0;t2���ext �wjŒ0;t2���int2C1;
@w

@�

ˇ̌
Œ0;t2���ext

�
@w

@�

ˇ̌
Œ0;t2���int

2C1:
(9-45)

On the other hand, for 0 � t � 1, v is smooth. Let � 2 C1.R/ be a function
that vanishes in .�1; ı� and equals 1 on Œ2ı;1/, 0 < ı � 1. Then Qw WD
�.t/w.t;x/ still satisfies (9-45) and also vanishes for t � 0. By [Williams 1992,
Theorem 1.36], Qw is smooth in Œ0; t2� ��int, up to the boundary, and is also
smooth in Œ0; t2���ext, up to the boundary. Therefore,

v.t; � /D vp.t; � /CKtf ; (9-46)

for any t 2 Œ0; t2�, where Kt is a compact operator in H, depending smoothly on
t . The operator Kt depends on Q as well. Therefore, the parametrix coincides
with the exact solution up to a compact operator that is also smoothing in the
sense described above.

This concludes the description of the microlocal part of the proof. The rest of
the proof of Theorem 9.1 is as indicated above. Write AƒD Id�K, as in the
smooth case. This time K is not compact any more, regardless of how large T

is. Based on our assumptions and on what we proved, its essential spectrum is
supported in a disk jzj<C0<1 in the complex plane; and by unique continuation,
we still have (4-10). This situation is similar to the proof of Theorem 4.1; see
(4-14). The difference is that in the smooth case, C0 D 1=2, if T1=2< T < T1,
and C0 D 0, if T > T1, while in the “skull” case, 0< C1 < 1 and we can only
make C1 as small as we want but not zero, as T !1, under our assumptions.

Numerical experiments done in [Qian et al. 2011] based on this approach
show that one gets very good reconstruction even without restricting the support
of f to sets K satisfying (9-5), i.e., if we allow for invisible singularities. The
reconstruction is worse in the trapping region, and trapped conormal singularities
are not recovered.

The partial data case for a discontinuous speed, i.e, when we have data on
a part of @� has not been studied yet. It seems plausible that the methods
in [Stefanov and Uhlmann 2009b] for a smooth speed described above can
be extended but there are new technical difficulties. Even for a smooth speed
however, a convergent series solution is not known. On the other hand, such



310 PLAMEN STEFANOV AND GUNTHER UHLMANN

reconstruction has been tried numerically in [Qian et al. 2011] with success.
Under the condition that all singularities issued from suppf are visible, for a
smooth speed, the inverse problem reduces to a Fredholm equation with a trivial
kernel. For a discontinuous speed of the type we study in this paper, it follows
from our analysis that we still get a Fredholm equation but the triviality of the
kernel is a more delicate question.

Appendix: Microlocal analysis and geometric optics

One of the fundamental ideas of classical analysis is a thorough study of functions
near a point, i.e., locally. Microlocal analysis, loosely speaking, is analysis near
points and directions, i.e., in the “phase space”.

A.1. Wave front sets. The phase space in Rn is the cotangent bundle T �Rn that
can be identified with Rn �Rn. Given a distribution f 2D0.Rn/, a fundamental
object to study is the wave front set WF.f /� T �Rn n 0 that we define below.

The basic idea goes back to the properties of the Fourier transform. If f is an
integrable compactly supported function, one can tell whether f is smooth by
looking at the behavior of Of .�/ (that is smooth, even analytic) when j�j !1.
It is known that f is smooth if and only if for any N , j Of .�/j � CN j�j

�N for
some CN . If we localize this requirement to a conic neighborhood V of some
�0 6D 0 (V is conic if � 2 V ) t� 2 V;8t > 0), then we can think of this as a
smoothness in the cone V . To localize in the base x variable however, we first
have to cut smoothly near a fixed x0.

We say that .x0; �0/ 2 Rn � .Rn n 0/ is not in the wave front set WF.f / of
f 2 D0.Rn/ if there exists � 2 C1

0
.Rn/ with �.x0/ 6D 0 such that for any N ,

there exists CN so that

jc�f .�/j � CN j�j
�N

for � in some conic neighborhood of �0. This definition is independent of
the choice of �. If f 2 D0.�/ with some open � � Rn, to define WF.f / �
�� .Rn n 0/, we need to choose � 2 C1

0
.�/. Clearly, the wave front set is a

closed conic subset of Rn � .Rn n 0/. Next, multiplication by a smooth function
cannot enlarge the wave front set. The transformation law under coordinate
changes is that of covectors making it natural to think of WF.f / as a subset of
T �Rn n 0, or T �� n 0, respectively.

The wave front set WF.f / generalizes the notion singsupp.f /— the comple-
ment of the largest open set where f is smooth. The points .x; �/ in WF.f / are
referred too as singularities of f . Its projection onto the base is

singsupp.f /D fxI 9�; .x; �/ 2WF.f /g:
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Examples. (a) WF.ı/Df.0; �/I � 6D 0g. In other words, the Dirac delta function
is singular at x D 0 in all directions.

(b) Let x D .x0;x00/, where x0 D .x1; : : : ;xk/, x00 D .xkC1; : : : ;xn/ with some
k. Then WF.ı.x0// D f.0;x00; � 0; 0/; � 0 6D 0g, where ı.x0/ is the Dirac delta
function on the plane x0 D 0, defined by hı.x0/; �i D

R
�.0;x00/ dx00. In other

words, WF.ı.x0// consists of all (co)vectors with a base point on that plane,
perpendicular to it.

(c) Let f be a piecewise smooth function that has a nonzero jump across some
smooth surface S . Then WF.f / consists of all (co)vectors at points of S , normal
to it. This follows from (a) and a change of variables that flatten S locally.

(d) Let f D pv 1
x
�� iı.x/ in R. Then WF.f /D f.0; �/I � > 0g.

In example (d) we see a distribution with a wave front set that is not symmetric
under the change � 7! �� . In fact, wave front sets do not have a special structure
except for the requirement to be closed conic sets; given any such set, there is a
distribution with a wave front set exactly that set.

Two distributions cannot be multiplied in general. However, if their wave
front sets do not intersect, there is a “natural way” to define a product.

A.2. Pseudodifferential operators.
Definitions. We first define the symbol class Sm.�/, m 2 R, as the set of
all smooth functions p.x; �/, .x; �/ 2 ��Rn, called symbols, satisfying the
following symbol estimates: for any compact K ��, and any multi-indices ˛,
ˇ, there is a constant CK ;˛;ˇ > 0 such that

j@˛� @
ˇ
xp.x; �/j � CK ;˛;ˇ.1Cj�j/

m�j˛j for all .x; �/ 2K �Rn: (A-1)

More generally, one can define the class Sm
�;ı
.�/ with 0� �, ı � 1 by replacing

m� j˛j there by m� �j˛j C ıjˇj. Then Sm.�/ D Sm
1;0
.�/. Often, we omit

� and simply write Sm. There are other classes in the literature, for example
�D Rn, and (A-1) is required to hold for all x 2 Rn.

The estimates (A-1) do not provide any control of p when x approaches
boundary points of �, or1.

Given p2Sm.�/, we define the‰DO with symbol p, denoted by p.x;D/, by

p.x;D/f D .2�/�n

Z
eix��p.x; �/ Of .�/ d�; f 2 C10 .�/: (A-2)

The definition is inspired by the following. If P D
P
j˛j�m a˛.x/D

˛ is a
differential operator, where D D�i@, then using the Fourier inversion formula
we can write P as in (A-2) with a symbol p D

P
j˛j�m a˛.x/�

˛ that is a
polynomial in � with x-dependent coefficients. The symbol class Sm allows
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for more general functions. The class of the pseudodifferential operators with
symbols in Sm is denoted usually by ‰m. The operator P is called a ‰DO if it
belongs to ‰m for some m. By definition, S�1D\mSm, and ‰�1D\m‰

m.
An important subclass is the set of the classical symbols that have an asymp-

totic expansion of the form

p.x; �/�

1X
jD0

pm�j .x; �/; (A-3)

where m 2 R, and pm�j are smooth and positively homogeneous in � of order
m� j for j�j> 1, i.e., pm�j .x; ��/D �

m�j pm�j .x; �/ for j�j> 1, � > 1; and
the sign � means that

p.x; �/�

NX
jD0

pm�j .x; �/ 2 Sm�N�1 for all N � 0: (A-4)

Any ‰DO p.x;D/ is continuous from C1
0
.�/ to C1.�/, and can be ex-

tended by duality as a continuous map from E0.�/ to D0.�/.

Principal symbol. The principal symbol of a ‰DO given by (A-2) is the equiv-
alence class Sm.�/=Sm�1.�/, and any its representative is called a principal
symbol as well. In case of classical ‰DOs, the convention is to choose the prin-
cipal symbol to be the first term pm, that in particular is positively homogeneous
in � .

Smoothing operators. Those are operators than map continuously E0.�/ into
C1.�/. They coincide with operators with smooth Schwartz kernels in ���.
They can always be written as ‰DOs with symbols in S�1, and vice versa — all
operators in‰�1 are smoothing. Smoothing operators are viewed in this calculus
as negligible and ‰DOs are typically defined modulo smoothing operators, i.e.,
AD B if and only if A�B is smoothing. Smoothing operators are not “small”.

The pseudolocal property. For any ‰DO P and any f 2 E0.�/,

singsupp.Pf /� singsuppf: (A-5)

In other words, a ‰DO cannot increase the singular support. This property is
preserved if we replace singsupp by WF; see (A-11).

Symbols defined by an asymptotic expansion. In many applications, a symbol is
defined by consecutively constructing symbols pj 2 Smj , j D 0; 1; : : : , where
mj &�1, and setting

p.x; �/�
X

j

pj .x; �/: (A-6)
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The series on the right may not converge but we can make it convergent by using
our freedom to modify each pj for � in expanding compact sets without changing
the large � behavior of each term. This extends the Borel idea of constructing
a smooth function with prescribed derivatives at a fixed point. The asymptotic
(A-6) then is understood in a sense similar to (A-4). This shows that there exists
a symbol p 2 Sm0 satisfying (A-6). That symbol is not unique but the difference
of two such symbols is always in S�1.

Amplitudes. A seemingly larger class of ‰DOs is defined by

Af D .2�/�n

Z
ei.x�y/��a.x;y; �/f .y/ dy d�; f 2 C10 .�/; (A-7)

where the amplitude a satisfies

j@˛� @
ˇ
x@


y a.x;y; �/j�CK ;˛;ˇ;
 .1Cj�j/

m�j˛j for all .x;y; �/2K�Rn (A-8)

for any compact K � � ��, and any ˛, ˇ, 
 . In fact, any such ‰DO A is
a ‰DO with a symbol p.x; �/ (independent of y) with the formal asymptotic
expansion

p.x; �/�
X
˛�0

D˛
� @
˛
y a.x;x; �/:

In particular, the principal symbol of that operator can be taken to be a.x;x; �/.

Transpose and adjoint operators to a‰DO. The mapping properties of any ‰DO
A indicate that it has a well defined transpose A0, and a complex adjoint A� with
the same mapping properties. They satisfy

hAu; vi D hu;A0vi; hAu; Nvi D hu;A�vi for all u; v 2 C10

where h � ; � i is the pairing in distribution sense; and in this particular case just an
integral of uv. In particular, A�uDA0 Nu, and if A maps L2 to L2 in a bounded
way, then A� is the adjoint of A in L2 sense.

The transpose and the adjoint are ‰DOs in the same class with amplitudes
a.y;x;��/ and Na.y;x; �/, respectively; and symbolsX

˛�0

.�1/j˛j
1

˛!
.@˛�D˛

xp/.x;��/;
X
˛�0

1

˛!
@˛�D˛

x Np.x; �/;

if a.x;y; �/ and p.x; �/ are the amplitude and/or the symbol of that ‰DO. In
particular, the principal symbols are p0.x;��/ and Np0.x; �/, respectively, where
p0 is (any representative of) the principal symbol.

Composition of ‰DOs and ‰DOs with properly supported kernels. Given two
‰DOs A and B, their composition may not be defined even if they are smoothing
ones because each one maps C1

0
to C1 but may not preserve the compactness
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of the support. For example, if A.x;y/, and B.x;y/ are their Schwartz kernels,
the candidate for the kernel of AB given by

R
A.x; z/B.z;y/may be a divergent

integral. On the other hand, for any ‰DO A, one can find a smoothing correction
R such that ACR has properly supported kernel, i.e., the kernel of ACR, has
a compact intersection with K �� and ��K for any compact K � �. The
proof of this uses the fact that the Schwartz kernel of a ‰DO is smooth away
from the diagonal fx D yg and one can always cut there in a smooth way to
make the kernel properly supported at the price of a smoothing error. ‰DOs with
properly supported kernels preserve C1

0
.�/, and also E0.�/, and therefore can

be composed in either of those spaces. Moreover, they map C1.�/ to itself, and
can be extended from D0.�/ to itself. The property of the kernel to be properly
supported is often assumed, and it is justified by considering each ‰DO as an
equivalence class.

If A 2‰m.�/ and B 2‰k.�/ are properly supported ‰DOs with symbols
a and b, respectively, then AB is again a ‰DO in ‰mCk.�/ and its symbol is
given by X

˛�0

.�1/j˛j
1

˛!
@˛� a.x; �/D˛

xb.x; �/:

In particular, the principal symbol can be taken to be ab.

Change of variables and ‰DOs on manifolds. Let �0 be another domain, and let
� W�! Q� be a diffeomorphism. For any P 2‰m.�/, QPf WD .P .f ı�//ı��1

maps C1
0
. Q�/ into C1. Q�/. It is a ‰DO in ‰m. Q�/ with principal symbol

p.��1.y/; .d�/0�/ (A-9)

where p is the symbol of P , d� is the Jacobi matrix f@�i=@xj g evaluated at
xD ��1.y/, and .d�/0 stands for the transpose of that matrix. We can also write
.d�/0 D ..d��1/�1/0. An asymptotic expansion for the whole symbol can be
written down as well.

Relation (A-9) shows that the transformation law under coordinate changes is
that of a covector. Therefore, the principal symbol is a correctly defined function
on the cotangent bundle T ��. The full symbol is not invariantly defined there
in general.

Let M be a smooth manifold, and A WC1
0
.M /!C1.M / be a linear operator.

We say that A 2 ‰m.M /, if its kernel is smooth away from the diagonal in
M �M , and if in any coordinate chart .A; �/, where � WU !��Rn, we have
.A.uı�//ı��1 2‰m.�/. As before, the principal symbol of A, defined in any
local chart, is an invariantly defined function on T �M .
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Mapping properties in Sobolev spaces. In Rn, Sobolev spaces H s.Rn/, s 2 R,
are defined as the completion of S0.Rn/ in the norm

kf k2H s.Rn/ D

Z
.1Cj�j2/sj Of .�/j2 d�:

When s is a nonnegative integer, an equivalent norm is the square root ofP
j˛j�s

R
j@˛f .x/j2 dx. For such s, and a bounded domain �, one defines

H s.�/ as the completion of C1.�/ using the latter norm with the integral
taken in �. Sobolev spaces in � for other real values of s are defined by
different means, including duality or complex interpolation.

Sobolev spaces are also Hilbert spaces.
Any P 2 ‰m.�/ is a continuous map from H s

comp.�/ to H s�m
loc .�/. If the

symbols estimates (A-1) are satisfied in the whole Rn�Rn, then P WH s.Rn/!

H s�m.Rn/.

Elliptic ‰DOs and their parametrices. The operator P 2‰m.�/ with symbol
p is called elliptic of order m, if for any compact K ��, there exist constants
C > 0 and R> 0 such that

C j�jm � jp.x; �/j for x 2K, and j�j>R: (A-10)

Then the symbol p is called also elliptic of order m. It is enough to require
the principal symbol only to be elliptic (of order m). For classical ‰DOs, as in
(A-3), the requirement can be written as pm.x; �/ 6D 0 for � 6D 0. A fundamental
property of elliptic operators is that they have parametrices. In other words,
given an elliptic ‰DO P of order m, there exists Q 2‰�m.�/ such that

QP � Id 2‰�1; PQ� Id 2‰�1:

The proof of this is to construct a left parametrix first by choosing a symbol
q0 D 1=p, cut off near the possible zeros of p, that form a compact any time
when x is restricted to a compact as well. The corresponding ‰DO Q0 will
then satisfy Q0P D IdCR, R 2‰�1. Then we take a ‰DO E with asymptotic
expansion E� Id�RCR2�R3C� � � , that would be the formal Neumann series
expansion of .IdCR/�1, if the latter existed. Then EQ0 is a left parametrix
that is also a right parametrix.

An important consequence is the following elliptic regularity statement. If P

is elliptic (and properly supported), then

singsupp.PF /D singsupp.f / for all f 2 D0.�/:

In particular, Pf 2 C1 implies f 2 C1.
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‰DOs and wave front sets. The microlocal version of the pseudolocal property
is given by the following:

WF.Pf /�WF.f / (A-11)

for any (properly supported) ‰DO P and f 2 D0.�/. In other words, a ‰DO
cannot increase the wave front set. If P is elliptic for some m, it follows from the
existence of a parametrix that there is equality above, i.e., WF.Pf /DWF.f /.

We say that the ‰DO P is of order �1 in the open conic set U � T �� n 0,
if for any closed conic set K � U with a compact projection on the base “x-
space”, (A-1) is fulfilled for any m. The essential support ES.P /, sometimes
also called the microsupport of P , is defined as the smallest closed conic set on
the complement of which the symbol p is of order �1. Then

WF.Pf /�WF.f /\ES.P /:

Let P have a homogeneous principal symbol pm. The characteristic set Char P

is defined by

Char P D f.x; �/ 2 T �� n 0I pm.x; �/D 0g:

Char P can be defined also for general ‰DOs that may not have homogeneous
principal symbols. For any ‰DO P , we have

WF.f /�WF.Pf /[Char P for all f 2 E0.�/: (A-12)

P is called microlocally elliptic in the open conic set U , if (A-10) is satisfied
in all compact subsets, similarly to the definition of ES.P / above. If it has a
homogeneous principal symbol pm, ellipticity is equivalent to pm 6D 0 in U . If
P is elliptic in U , then Pf and f have the same wave front set restricted to U ,
as follows from (A-12) and (A-11).

A.3. The Hamilton flow and propagation of singularities. Let P 2 ‰m.M /

be properly supported, where M is a smooth manifold, and suppose that P has
a real homogeneous principal symbol pm. The Hamiltonian vector field of pm

on T �M n 0 is defined by

Hpm
D

nX
jD1

�
@pm

@xj

@

@�j
�
@pm

@�j

@

@xj

�
:

The integral curves of Hpm
are called bicharacteristics of P . Clearly, Hpm

pmD

0, thus pm is constant along each bicharacteristics. The bicharacteristics along
which pm D 0 are called zero bicharacteristics.

The Hörmander’s theorem about propagation of singularities is one of the
fundamental results in the theory. It states that if P is an operator as above, and
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PuD f with u 2 D0.M /, then

WF.u/ nWF.f /� Char P;

and is invariant under the flow of Hpm
.

An important special case is the wave operator P D @2
t ��g, where �g

is the Laplace Beltrami operator associated with a Riemannian metric g. We
may add lower order terms without changing the bicharacteristics. Let .�; �/ be
the dual variables to .t;x/. The principal symbol is p2 D ��

2C j�j2g, where
j�j2g WD

P
gij .x/�i�j , and .gij / D .gij /

�1. The bicharacteristics equations
then are P� D 0, Pt D�2� , Pxj D 2

P
gij�i , P�j D�2@xj

P
gij .x/�i�j , and they

are null one if �2 D j�j2g. Here, Px D dx=ds, etc. The latter two equations are
the Hamiltonian curves of QH WD

P
gij .x/�i�j and they are known to coincide

with the geodesics .
; P
 / on TM when identifying vectors and covectors by the
metric. They lie on the energy surface QH D const. The first two equations imply
that � is a constant, positive or negative, and up to rescaling, one can choose
the parameter along the geodesics to be t . That rescaling forces the speed along
the geodesic to be 1. The null condition �2 D j�j2g defines two smooth surfaces
away from .�; �/D .0; 0/: � D˙j�jg. This corresponds to geodesics starting
from x in direction either � or �� . To summarize, for the homogeneous equation
Pu D 0, we get that each singularity .x; �/ of the initial conditions at t D 0

starts to propagate from x in direction either � or �� or both (depending on the
initial conditions) along the unit speed geodesic. In fact, we get this first for the
singularities in T �.Rt �Rn

x/ first, but since they lie in Char P , one can see that
they project to T �Rn

x as singularities again.

A.4. Geometric optics. Geometric optics describes asymptotically the solutions
of hyperbolic equations at large frequencies. It also provides a parametrix (a
solution up to smooth terms) of the initial value problem for hyperbolic equations.
The resulting operators are not ‰DOs anymore; they are actually examples of
Fourier integral operators. Geometric optics also studies the large frequency
behavior of solutions that reflect from a smooth surface (obstacle scattering)
including diffraction; reflect from an edge or a corner; reflect and refract from a
surface where the speed jumps (transmission problems).

As an example, consider the acoustic equation

.@2
t � c2.x/�/uD 0; .t;x/ 2 Rn; (A-13)

with initial conditions u.0;x/D f1.x/, ut .0;x/D f2. It is enough to assume
first that f1 and f2 are in C1

0
, and extend the resulting solution operator to

larger spaces later.
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We are looking for a solution of the form

u.t;x/D .2�/�n

�

X
�D˙

Z
ei�� .t;x;�/

�
a1;� .x; �; t/ Of1.�/Cj�j

�1a2;� .x; �; t/ Of2.�/
�
d�; (A-14)

modulo terms involving smoothing operators of f1 and f2. The reason to expect
two terms is already clear by the propagation of singularities theorem, and is
also justified by the eikonal equation below. Here the phase functions �˙ are
positively homogeneous of order 1 in �. Next, we seek the amplitudes in the
form

aj ;� �

1X
kD0

a
.k/
j ;� ; � D˙; j D 1; 2; (A-15)

where a
.k/
j ;� is homogeneous in � of degree �k for large j�j. To construct such a

solution, we plug (A-14) into (A-13) and try to kill all terms in the expansion in
homogeneous (in �/ terms.

Equating the terms of order 2 yields the eikonal equation

.@t�/
2
� c2.x/jrx�j

2
D 0: (A-16)

Write fj D .2�/
�n
R

eix�� Ofj .�/ d�, j D 1; 2, to get the following initial condi-
tions for �˙

�˙jtD0 D x � �: (A-17)

The eikonal equation can be solved by the method of characteristics. First, we
determine @t� and rx� for t D 0. We get @t�jtD0 D�c.x/j�j, rx�jtD0 D �.
This implies existence of two solutions �˙. If c D 1, we easily get �˙ D
�j�jt C x � �. Let for any .z; �/, 
z;�.s/ be unit speed geodesic through .z; �/.
Then �C is constant along the curve .t; 
z;�.t// that implies that �CD z.x; �/ ��

in any domain in which .t; z/ can be chosen to be coordinates. Similarly, �� is
constant along the curve .t; 
z;��.t//. In general, we cannot solve the eikonal
equation globally, for all .t;x/. Two geodesics 
z;� and 
w;� may intersect, for
example, giving a value for �˙ that is not unique. However, we always have a
solution in a neighborhood of t D 0.

Now equate the first-order terms in the expansion of .@2
t � c2�/u to get that

the principal terms of the amplitudes must solve the transport equation�
.@t�˙/@t � cA2

rx�˙ � rxCC˙
�
a
.0/
j ;˙ D 0; (A-18)

with
2C˙ D .@

2
t � c2�/�˙:
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This is an ODE along the vector field .@t�˙; c
2rx�/, and the integral curves of

it coincide with the curves .t; 
z;˙�/. Given an initial condition at t D 0, it has a
unique solution along the integral curves as long as � is well defined.

Equating terms homogeneous in � of lower order we get transport equations
for a

.k/
j ;� , j D 1; 2; : : : with the same left-hand side as in (A-18) with a right-hand

side determined by a
.k�1/

k;�
.

Taking into account the initial conditions, we get

a1;CC a1;� D 1; a2;CC a2;� D 0 for t D 0:

This is true in particular for the leading terms a
.0/
1;˙

and a
.0/
2;˙

. Since @t�˙ D

�c.x/j�j for t D 0, and ut D f2 for t D 0, from the leading order term in the
expansion of ut we get

a
.0/
1;C
D a

.0/
1;�
; ic.x/.a.0/

2;�
� a

.0/
2;C
/D 1 for t D 0:

Therefore,

a
.0/
1;C
D a

.0/
1;�
D

1

2
; a

.0/
2;C
D�a

.0/
2;�
D

i
2c.x/

for t D 0: (A-19)

Note that if c D 1, then �˙ D x � � � t j�j, and a1;C D a1;� D 1=2, a2;C D

�a2;�D i=2. Using those initial conditions, we solve the transport equations for
a
.0/
1;˙

and a
.0/
2;˙

. Similarly, we derive initial conditions for the lower order terms
in (A-15) and solve the corresponding transport equations. Then we define aj ;�

by (A-15) as a symbol.
The so constructed u in (A-14) is a solution only up to smoothing operators

applied to .f1; f2/. Using standard hyperbolic estimates, we show that adding
such terms to u, we get an exact solution to (A-13). As mentions above, this
construction may fail for t too large, depending on the speed. On the other
hand, the solution operator .f1; f2/ 7! u makes sense as a global Fourier integral
operator for which this construction is just one if its local representations.

Projections to the positive and the negative wave speeds. The zeros of the
principal symbol of the wave operator, in regions where c is smooth, are given
by � D˙c.x/j�j, that we call wave speeds. We constructed above parametrices
u˙ for the corresponding solutions. We will present here a functional analysis
point of view that allows us to project the initial data f to data …˙f such that,
up to smoothing operators, u˙ corresponds to initial data …˙f .

Assume that c.x/ is extended from the maximal connected component of
Rnn� containing x0 to the whole Rn in a smooth way so that 0<1=C �c.x/�C .
Let

QD .�c2�/1=2; (A-20)
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where the operator in the parentheses is the natural self-adjoint extension of
�c2� to L2.Rn; c�2dx/, and the square root exists by the functional calculus.
Moreover, Q is an elliptic ‰DO of order 1 in any open set; and let Q�1 denote
a fixed parametrix.

It is well known that the solution to (9-3) can be written as

uD cos.tQ/f1C
sin.tQ/

Q
f2; (A-21)

and the latter operator is defined by the functional calculus as �.t;Q/ with
�.t; � /D sin.t � /=� 2 C1. Based on that, we can write

etP
D eitQ…CC e�itQ…�; (A-22)

where

…C D
1

2

�
1 �iQ�1

iQ 1

�
; …� D

1

2

�
1 iQ�1

�iQ 1

�
: (A-23)

It is straightforward to see that …˙ are orthogonal projections in H, up
to errors of smoothing type. Then given f 2 H supported on �, one has
u˙ D etPf˙, with f˙ WD…˙f .
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