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Hybrid inverse problems and internal
functionals

GUILLAUME BAL

This paper reviews recent results on hybrid inverse problems, which are
also called coupled-physics inverse problems of multiwave inverse problems.
Inverse problems tend to be most useful in, e.g., medical and geophysical
imaging, when they combine high contrast with high resolution. In some
settings, a single modality displays either high contrast or high resolution but
not both. In favorable situations, physical effects couple one modality with
high contrast with another modality with high resolution. The mathematical
analysis of such couplings forms the class of hybrid inverse problems.

Hybrid inverse problems typically involve two steps. In a first step, a well-
posed problem involving the high-resolution low-contrast modality is solved
from knowledge of boundary measurements. In a second step, a quantitative
reconstruction of the parameters of interest is performed from knowledge of
the point-wise, internal, functionals of the parameters reconstructed during
the first step. This paper reviews mathematical techniques that have been
developed in recent years to address the second step.

Mathematically, many hybrid inverse problems find interpretations in terms
of linear and nonlinear (systems of) equations. In the analysis of such equa-
tions, one often needs to verify that qualitative properties of solutions to elliptic
linear equations are satisfied, for instance the absence of any critical points.
This paper reviews several methods to prove that such qualitative properties
hold, including the method based on the construction of complex geometric
optics solutions.
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1. Introduction

The success of most medical imaging modalities rests on their high, typically
submillimeter, resolution. Computerized tomography (CT), magnetic resonance
imaging (MRI), and ultrasound imaging (UI) are typical examples of such modal-
ities. In some situations, these modalities fail to exhibit a sufficient contrast
between different types of tissues, whereas other modalities, for example based on
the optical, elastic, or electrical properties of these tissues, do display such high
contrast. Unfortunately, the latter modalities, such as optical tomography (OT),
electrical impedance tomography (EIT) and elastographic imaging (EI), involve
a highly smoothing measurement operator and are thus typically low-resolution
as stand-alone modalities.

Hybrid inverse problems concern the combination of a high contrast modality
with a high resolution modality. By combination, we mean the existence of a
physical mechanism that couples these two modalities. Several examples of
physical couplings are reviewed in Section 2. A different strategy, consisting of
fusing data acquired independently for two or more imaging modalities, is referred
to as multimodality imaging and is not considered in this paper. Examples of
possible physical couplings include: optics or electromagnetism with ultrasound
in photoacoustic tomography (PAT), thermoacoustic tomography (TAT) and in
ultrasound modulated optical tomography (UMOT), also called acousto-optic
tomography (AOT); electrical currents with ultrasound in ultrasound modulated
electrical impedance tomography (UMEIT), also called electroacoustic tomogra-
phy (EAT); electrical currents with magnetic resonance in magnetic resonance
EIT (MREIT) or current density impedance imaging (CDII); and elasticity with
ultrasound in transient elastography (TE). Some hybrid modalities have been
explored experimentally whereas other hybrid modalities have not been tested
yet. Some have received quite a bit of mathematical attention whereas other
ones are less well understood. While more references will be given throughout
the review, we refer the reader at this point to the recent books [Ammari 2008;
Scherzer 2011; Wang and Wu 2007] and their references for general information
about practical and theoretical aspects of medical imaging.

Reconstructions in hybrid inverse problems typically involve two steps. In a
first step, an inverse problem involving the high-resolution-low-contrast modal-
ity needs to be solved. In PAT and TAT for instance, this corresponds to re-
constructing the initial condition of a wave equation from available boundary
measurements. In UMEIT and UMOT, this corresponds in an idealized setting to
inverting a Fourier transform that is reminiscent of the reconstructions performed
in MRI. In transient elastography, this essentially corresponds to solving an
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inverse scattering problem in a time-dependent wave equation. In this review,
we assume that this first step has been performed.

Our interest is in the second step of the procedure, which consists of re-
constructing the coefficients that display high contrasts from the mappings
obtained during the first step. These mappings involve internal functionals
of the coefficients of interest. Typically, if 
 is a coefficient of interest and u

is the solution to a partial differential equation involving 
 , then the internal
“measurements” obtained in the first step take the form H.x/D 
 .x/uj .x/ for
j D 1; 2 or H.x/D 
 .x/jrujj .x/ again for j D 1; 2.

Several questions can then be raised: are the coefficients, e.g., 
 , uniquely
characterized by the internal measurements H.x/? How stable are the recon-
structions? If specific boundary conditions are prescribed at the boundary of the
domain of interest, how do the answers to the above questions depend on such
boundary conditions? The answers to these questions depend on the physical
model of interest. However, there are important common features that we would
like to present in this review.

One such feature relates to the stability of the reconstructions. Loosely speak-
ing, an inverse problem is well-posed, or at least not severely ill-posed, when
singularities in the coefficients of interest propagate into singularities in the
available data. The map reconstructed during step 1 provides local, point-wise,
information about the coefficients. Singularities of the coefficient do not need
to propagate to the domain’s boundary and we thus expect resolution of hybrid
modalities to be significantly improved compared to the stand-alone high-contrast-
low-resolution modalities. This will be verified in the examples reviewed here.

Another feature is the relationship between hybrid inverse problems and
nonlinear partial differential equations. Typically, both the coefficient 
 and
the solution u are unknown. However, for measurements of the form H.x/D


 .x/uj .x/, one can eliminate 
 in the equation for u using the expression for
H.x/. This results in a nonlinear equation for u.x/. The resulting nonlinear
equations often do not display any of the standard features that are amenable to
proofs of uniqueness, such as admitting a variational formulation with a strictly
convex functional. The main objective is to obtain uniqueness and stability
results for such equations, often in the presence of redundant (overdetermined)
information.

A third feature shared by many hybrid inverse problems is that their solution
strategies often require that the forward solution u satisfy certain qualitative
properties, such as for instance the absence of any critical point (points where
ruD 0). The derivation of qualitative properties such as lower bounds for the
modulus of a gradient is a difficult problem. In two dimensions of space, the
fact that critical points of elliptic solutions are necessarily isolated is of great
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help. In higher dimension, such results no longer hold in general. A framework
to obtain the requested qualitative behavior of the elliptic solutions is based on
the so-called complex geometric optics (CGO) solutions. Such solutions, when
they can be constructed, essentially allow us to treat the unknown coefficients as
perturbations of known operators, typically the Laplace operator. Using these
solutions, we can construct an open set of boundary conditions for which the
requested property is guaranteed. This procedure provides a restricted class of
boundary conditions for which the solutions to the hybrid inverse problems are
shown to be uniquely and stably determined by the internal measurements. From
a practical point of view, these mathematical results confirm the physical intuition
that the coupling of high contrast and high resolution modalities indeed provides
reconstructions that are robust with respect to errors in the measurements.

The rest of this paper is structured as follows. Section 2 is devoted to the
modeling of the hybrid inverse problems and the derivation of the internal
measurements for the applications considered in this paper, namely: PAT, TAT,
UMEIT, UMOT, TE, CDII. The following two sections present recent results of
uniqueness and stability obtained for such hybrid inverse problems: Section 3
focuses on internal functionals of the solution u of the forward problem, whereas
Section 4 is concerned with internal functionals of the gradient of the solution
ru. As we mentioned above, these uniqueness and stability results hinge on the
forward solutions u to verify some qualitative properties. Section 5 summarizes
some of these properties in the two-dimensional case and presents the derivation
of such properties in higher spatial dimensions by means of complex geometric
optics (CGO) solutions. Some concluding remarks are proposed in Section 6.

2. Physical modeling

High resolution imaging modalities include ultrasound imaging and magnetic
resonance imaging. High contrast modalities include optical tomography, electri-
cal impedance tomography, and elastography. This sections briefly presents four
couplings between high-contrast and high-resolution modalities: two different
methods to couple ultrasound and optics or (low frequency) electromagnetism
in PAT/TAT via the photoacoustic effect and in UMOT/UMEIT via ultrasound
modulation; the coupling between ultrasound and elastography in transient
elastography; and the coupling between electrical impedance tomography and
magnetic resonance imaging in CDII/MREIT.

2A. The photoacoustic effect. The photoacoustic effect may be described as
follows. A pulse of radiation is sent into a domain of interest. A fraction of
the propagating radiation is absorbed by the medium. This generates a thermal
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expansion, which is the source of ultrasonic waves. Ultrasound then propagates
to the boundary of the domain where ultrasonic transducers measure the pressure
field. The physical coupling between the absorbed radiation and the emitted
sound is called the photoacoustic effect. This is the premise for the medical
imaging technique photoacoustic tomography (PAT).

Two types of radiation are typically considered. In optoacoustic tomography
(OAT), near-infrared photons, with wavelengths typically between 600nm and
900nm are used. The reason for this frequency window is that they are not
significantly absorbed by water molecules and thus can propagate relatively deep
into tissues. OAT is often simply referred to as PAT and we will follow this con-
vention here. In thermoacoustic tomography (TAT), low-frequency microwaves,
with wavelengths on the order of 1m, are sent into the medium. The rationale
for using such frequencies is that they are less absorbed than optical frequencies
and thus propagate into deeper tissues.

In both PAT and TAT, the first step of an inversion procedure is the recon-
struction of the map of absorbed radiation from the ultrasonic measurements.
In both applications, the inversion may be recast as the reconstruction of an
initial condition of a wave equation from knowledge of ultrasound measurements.
Assuming a domain of infinite extension with nonperturbative measurements
to simplify the presentation, ultrasound propagation is modeled by the wave
equation

1

c2
s .x/

@2p

@t2
��p D 0; t > 0; x 2 Rn;

p.0;x/DH.x/ and
@p

@t
.0;x/D 0; x 2 Rn:

(1)

Here cs is the speed of sound (assumed to be known), n is spatial dimension,
and H.x/ is the ultrasonic signal generated at time t D 0. Measurements are
then of the form p.t;x/ for t > 0 and x 2 @X at the boundary of a domain X

where H.x/ is supported.
Note that the effect of propagating radiation is modeled as an initial condition

at t D 0. The reason for this stems from the large difference between light speed
(roughly 2:3 108m=s in water) and sound speed (roughly 1:5 103m=s in water).
When a short pulse of radiation is emitted into the medium, we may assume that
it propagates into the medium at a time scale that is very short compared to that
of ultrasound. This is a very valid approximation in PAT but is a limiting factor
in the (still significantly submillimeter) spatial resolution we expect to obtain in
TAT; see [Bal et al. 2010; 2011b], for example.

For additional references to the photoacoustic effect, we refer the reader to
the works [Cox et al. 2009a; 2009b; Fisher et al. 2007; Xu and Wang 2006; Xu
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et al. 2009] and their references. The first step in thermo- and photoacoustics is
the reconstruction of the absorbed radiation map H.x/ from boundary acoustic
wave measurements. There is a vast literature on this inverse source problem in
the mathematical and physical literature; we refer the reader to [Ammari et al.
2010; Finch et al. 2004; Haltmeier et al. 2004; Hristova et al. 2008; Kuchment
and Kunyansky 2008; Patch and Scherzer 2007; Stefanov and Uhlmann 2009],
for example. Serious difficulties may need to be addressed in this first step, such
as limited data, spatially varying acoustic sound speed [Ammari et al. 2010;
Hristova et al. 2008; Stefanov and Uhlmann 2009], and the effects of acoustic
wave attenuation [Kowar and Scherzer 2012]. In this paper, we assume that the
absorbed radiation map H.x/ has been reconstructed. This provides now internal
information about the properties of the domain of interest. What we can extract
from such information depends on the model of radiation propagation. The
resulting inverse problems are called quantitative PAT (QPAT) and quantitative
TAT (QTAT) for the different modalities of radiation propagation, respectively.

In the PAT setting with near-infrared photons, arguably the most accurate
model for radiation propagation is the radiative transfer equation. We shall not
describe this model here and refer the reader to [Bal et al. 2010] for QPAT in
this setting and to [Bal 2009] for more general inverse problems for the radiative
transfer equation. The models we consider for radiation propagation are as
follows.

QPAT modeling. In the diffusive regime, photon (radiation) propagation is mod-
eled by the second-order elliptic equation

�r � 
 .x/ruC �.x/uD 0 in X

uD f on @X:
(2)

To simplify, we assume that Dirichlet conditions are prescribed at the boundary
of the domain @X . Throughout the paper, we assume that X is a bounded open
domain in Rn with smooth boundary @X . The optical coefficients .
 .x/; �.x//
are 
 .x/ the diffusion coefficient and �.x/ the absorption coefficient, which are
assumed to be bounded from above and below by positive constants.

The information about the coefficients in QPAT takes the following form:

H.x/D �.x/�.x/u.x/ a.e. x 2X: (3)

The coefficient �.x/ is the Grüneisen coefficient. It models the strength of the
photoacoustic effect, which converts absorption of radiation into emission of
ultrasound. The objective of QPAT is to reconstruct .
; �; �/ from knowledge
of H.x/ in (3) obtained for a given number of illuminations f in (2). This is
an example of an internal measurement that is linear in the solution u.x/ and
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the absorption coefficient � . For more on QPAT, see, e.g., [Ren and Bal 2012;
Bal and Uhlmann 2010; Cox et al. 2009a; 2009b; Ripoll and Ntziachristos 2005;
Zemp 2010] and their references.

QTAT modeling. Low-frequency radiation in QTAT is modeled by the system of
Maxwell’s equations

�r�r�EC k2EC ik�.x/E D 0 in X;

� �E D f on @X:
(4)

Here, E is the (time-harmonic) electromagnetic field with fixed wavenumber
k D !

c
where ! is the frequency and c the speed of light. We assume that

radiation is controlled by the boundary condition f .x/ on @X . The unknown
coefficient is the conductivity (absorption) coefficient �.x/. Setting � D 1 to
simplify, the map of absorbed electromagnetic radiation is then of the form

H.x/D �.x/jEj2.x/: (5)

The above system of equations may be simplified by modeling radiation by
a scalar quantity u.x/. In this setting, radiation is modeled by the Helmholtz
equation

�uC k2uC ik�.x/uD 0 in X

uD f on @X;
(6)

for a given boundary condition f .x/. The internal data are then of the form

H.x/D �.x/juj2.x/: (7)

For such models, QTAT then consists of reconstructing �.x/ from knowledge
of H.x/. Note that H.x/ is now a quadratic quantity in the solutions E.x/ or
u.x/. There are relatively few results on QTAT; see [Bal et al. 2011b; Li et al.
2008].

2B. The ultrasound modulation effect. We consider the elliptic equation

�r � 
 .x/ruC �.x/uD 0 in X;

uD f on @X:
(8)

The objective of ultrasound modulation is to send an acoustic signal through the
domain X that modifies the coefficients 
 and � . We assume here that the sound
speed is constant and that we are able to generate an acoustic signal that takes the
form of the plane wave p cos.k �xC'/ where p is amplitude, k wave-number
and ' an additional phase. We assume that the acoustic signal modifies the
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properties of the diffusion equation and that the effect is small. The coefficients
in (8) are thus modified as


".x/D 
 .x/.1C �"c/CO."2/; �".x/D �.x/.1C �"c/CO."2/; (9)

where we have defined c D c.x/ D cos.k � x C '/ and where " D p� is the
product of the acoustic amplitude p 2 R and a measure � > 0 of the coupling
between the acoustic signal and the modulations of the constitutive parameters
in (8). We assume that "� 1. The terms in the expansion are characterized by �
and � and depend on the specific application.

Let u and v be solutions of (8) with fixed boundary conditions f and h,
respectively. When the acoustic field is turned on, the coefficients are modified
as described in (9) and we denote by u" and v" the corresponding solution. Note
that u�" is the solution obtained by changing the sign of p or equivalently by
replacing ' by 'C� .

By standard regular perturbation arguments, we find that u" D u0C "u1C

O."2/. Multiplying the equation for u" by v�" and the equation for v�" by u",
subtracting the results, and using standard integrations by parts, we obtain thatZ

X

.
"�
�"/ru" �rv�"C.�"���"/u"v�"dxD

Z
@X


�"
@v�"

@�
u"�
"

@u"

@�
v�"d�:

(10)

We assume that 
"@�u" and 
"@�v" are measured on @X , at least on the support
of v" D h and u" D f , respectively, for several values " of interest. The above
equation also holds if the Dirichlet boundary conditions are replaced by Neumann
boundary conditions. Let us define

J" WD
1

2

Z
@X


�"
@v�"

@�
u"� 
"

@u"

@�
v�"d� D "J1C "

2J2CO."3/: (11)

We assume that the real valued functions Jm D Jm.k; '/ are known from
the physical measurement of the Cauchy data of the form .u"; 
"@�u"/ and
.v"; 
"@�v"/ on @X .

Equating like powers of ", we find that at the leading orderZ
X

�
�
 .x/ru0 �rv0.x/C��.x/u0v0.x/

�
cos.k �xC'/ dxD J1.k; '/: (12)

Acquiring this for all k 2 Rn and ' D 0; �
2

, this yields after inverse Fourier
transform:

H Œu0; v0�.x/D �
 .x/ru0 � rv0.x/C ��.x/u0v0.x/: (13)
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In the setting of ultrasound modulated optical tomography (UMOT), the
coefficients 
" and �" in (9) take the form [Bal and Schotland 2010]


".x/D
Q
"

cn�1
"

.x/ and �".x/D
Q�"

cn�1
"

.x/;

where Q�" is the absorption coefficient, Q
" is the diffusion coefficient, c" is the
light speed, and n is spatial dimension. When the pressure field is turned on, the
amount of scatterers and absorbers is modified by compression and dilation. Since
the diffusion coefficient is inversely proportional to the scattering coefficient, we
find that

Q�".x/D Q�.x/
�
1C "c.x/

�
;

1


".x/
D

1


 .x/

�
1C "c.x/

�
:

The pressure field changes the index of refraction of light as follows c".x/D

c.x/.1C "c.x//; where  is a constant (roughly equal to 1
3

for water). This
shows that

� D�.1C .n� 1/ /; �D 1� .n� 1/ : (14)

In the application of ultrasound modulated electrical impedance tomography
(UMEIT), 
 .x/ is a conductivity coefficient and � D 0. We then have 
".x/D

 .x/.1C"c.x// with thus �D 1 and �D 0. The objective of UMOT and UMEIT
is to reconstruct (part of) the coefficients .
 .x/; �.x// in the elliptic equation

�r � 
 .x/ruC �.x/uD 0 in X;

uD f on @X
(15)

from measurements of the form

H Œu0; v0�.x/D �
 .x/ru0 � rv0.x/C ��.x/u0v0.x/; (16)

for one or several values of the illumination f .x/ on @X .
In a simplified version of UMOT (also called acousto-optic tomography;

AOT), � D 0 and the measurements are quadratic (or bilinear) in the solutions
to the elliptic equation. More challenging mathematically is the case � D 1 and
�D 0 where the measurements are quadratic (or bilinear) in the gradients of the
solution. No theoretical results exist to date in the setting where both � and �
are nonvanishing.

The effect of ultrasound modulation is difficult to observe experimentally as
the coupling coefficient � above is rather small. For references on ultrasound
modulation in different contexts, see [Ammari et al. 2008; Bal 2012; Bal and
Schotland 2010; Capdeboscq et al. 2009; Gebauer and Scherzer 2008; Kuchment
and Kunyansky 2011; Zhang and Wang 2004]. These references concern the
so-called incoherent regime of wave propagation, while the coherent regime,
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whose mathematical structure is different, is addressed in the physical literature
in, e.g., [Atlan et al. 2005; Kempe et al. 1997; Wang 2004].

2C. Transient elastography. Transient elastography images the (slow) prop-
agation of shear waves using ultrasound. For more details, see [McLaughlin
et al. 2010] and its extended list of references. As shear waves propagate, the
resulting displacements can be imaged by ultrafast ultrasound. Consider a scalar
approximation of the equations of elasticity

r � 
 .x/ru.x; t/D �.x/@t tu.x; t/; t 2 R; x 2X;

u.x; t/D f .x; t/; t 2 R; x 2 @X;
(17)

where u.x; t/ is the (say, downward) displacement, 
 .x/ is one of the Lamé
parameters and �.x/ is density. Using ultrafast ultrasound measurements, the
displacement u.x; t/ can be imaged. This results in a very simplified model of
transient elastography where we aim to reconstruct .
; �/ from knowledge of
u.x; t/; see [McLaughlin et al. 2010] for more complex models. We may slightly
generalize the model as follows. Upon taking Fourier transforms in the time
domain and accounting for possible dispersive effects of the tissues, we obtain

r � 
 .xI!/ru.xI!/C!2�.xI!/u.xI!/D 0; ! 2 R; x 2X;

u.xI!/D f .xI!/; ! 2 R; x 2 @X:
(18)

The inverse transient elastography problem with dispersion effect would then be
the reconstruction of .
 .xI!/; �.xI!// from knowledge of u.xI!/ correspond-
ing to one or several boundary conditions f .xI!/ applied at the boundary @X .
This hybrid inverse problem again involves measurements that are linear in the
solution u.

2D. Current density imaging. Magnetic impedance electrical impedance to-
mography (MREIT) and current density impedance imaging (CDII) are two
modalities aiming to reconstruct the conductivity in an equation using magnetic
resonance imaging (MRI). The electrical potential u solves the following elliptic
equation

�r � 
 .x/ruD 0 in X;

uD f on @X;
(19)

with 
 .x/ the unknown conductivity and f a prescribed voltage at the domain’s
boundary. The electrical current density J D �
ru satisfies the system of
Maxwell’s equations

r �J D 0; J D
1

�0
r �B; x 2X: (20)
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Here �0 is a constant, known, magnetic permeability.
Ideally, the whole field B can be reconstructed from MRI measurements. This

provides access to the current density J.x/ in the whole domain X . CDI then
corresponds to reconstructing 
 from knowledge of J . In practice, acquiring B

requires rotation of the domain of interest (or of the MRI apparatus) which is
not straightforward. MREIT thus assumes knowledge of the third component
Bz of the magnetic field for several possible boundary conditions. This provides
information about 
 .x/. We do not consider the MREIT inverse problem further
and refer the reader to the recent review [Seo and Woo 2011] and its references
for additional information.

Several works have considered the problem of the reconstruction of 
 in (19)
from knowledge of the scalar information jJ j rather than the full current J . This
inverse problem, referred to as the 1-Laplacian, will be addressed below and
compared to the 0-Laplacian that appears in UMEIT and UMOT. For more on
MREIT and CDII, we refer the reader to [Kim et al. 2002; Nachman et al. 2007;
2009; 2011] and their references.

3. Reconstructions from functionals of u

In this section, we consider internal measurements H.x/ of the form H.x/D

�.x/u.x/ for �.x/ a function that depends linearly on unknown coefficients such
as the diffusion coefficient 
 or the absorption coefficient � in Section 3A and
internal measurements H.x/ of the form H.x/ D �.x/ju.x/j2 in Section 3B,
where � again depends linearly on unknown coefficients. Measurements of the
first form find applications in quantitative photoacoustic tomography (QPAT)
and transient elastography (TE) while measurements of the second form find
applications in quantitative thermoacoustic tomography (QTAT) and simplified
models of acousto-optics tomography (AOT).

3A. Reconstructions from linear functionals in u. Recall the elliptic model
for photon propagation in tissues:

�r � 
 .x/ruC �.x/uD 0 in X;

uD f on @X:
(21)

The information about the coefficients in QPAT takes the form

H.x/D �.x/�.x/u.x/ a.e. x 2X: (22)

The coefficient �.x/ is the Grüneisen coefficient. In many works in QPAT, it
is assumed to be constant. We assume here that it is Lipschitz continuous and
bounded above and below by positive constants.
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Nonunique reconstruction of three coefficients. Let f1 and f2 be two Dirichlet
conditions on @X and u1 and u2 be the corresponding solutions to (21). We
make the following assumptions:

(i) The coefficients .
; �; �/ are of class W 1;1.X / and bounded above and
below by positive constants. The coefficients .
; �; �/ are known on @X .

(ii) The illuminations f1 and f2 are positive functions on @X and are the traces
on @X of functions of class C 3.X /.

(iii) the vector field

ˇ WDH1rH2�H2rH1 DH 2
1r

H2

H1

DH 2
1r

u2

u1

D�H 2
2r

H1

H2

(23)

is a vector field in W 1;1.X / such that ˇ 6� 0 a.e.

(iii0) Same as (iii) above with

jˇj.x/� ˛0 > 0 a.e. x 2X: (24)

Beyond the regularity assumptions on .
; �; �/, the domain X , and the boundary
conditions f1 and f2, the only real assumption we impose is (24). In general,
there is no guaranty that the gradient of u2=u1 does not vanish. In dimension
d D 2, a simple condition guarantees that (24) holds. We have the following
result [Alessandrini 1986; Nachman et al. 2007]:

Lemma 3.1 [Bal and Ren 2011a]. Assume that hD g2=g1 on @X is an almost
two-to-one function in the sense of [Nachman et al. 2007], i.e., a function that is
a two-to-one map except possibly at its minimum and at its maximum. Then (24)
is satisfied.

In dimension d � 3, the above result on the (absence of) critical points of
elliptic solutions no longer holds. By continuity, we verify that (24) is satisfied
for a large class of illuminations when 
 is close to a constant and � is sufficiently
small. For arbitrary coefficients .
; �/ in dimension d � 3, a proof based on
CGO solutions shows that (24) is satisfied for an open set of illuminations; see
[Bal and Uhlmann 2010] and Section 5B below. Note also that (24) is a sufficient
condition for us to solve the inverse problem of QPAT. In [Alessandrini 1986], a
similar problem is addressed in dimension d D 2 without assuming a constraint
of the form (24).

We first prove a result that provides uniqueness up to a specified transformation.

Theorem 3.2 [Bal and Ren 2011a; Bal and Uhlmann 2010]. Assume that the
hypotheses (i)–(iii) hold.

(a) H1.x/ and H2.x/ uniquely determine the measurement operator
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H WH
1
2 .@X /!H 1.X /;

which to f defined on @X associates H.f /DH in X defined by (3).

(b) The measurement operator H uniquely determines the two functionals

�.x/ WD

p



��
.x/; q.x/ WD �

�
�
p



p


C
�




�
.x/: (25)

Here � is the Laplace operator.

(c) Knowledge of the two functionals � and q uniquely determines H1.x/ and
H2.x/. In other words, the reconstruction of .
; �; �/ is unique up to
transformations that leave .�; q/ invariant.

The proof of this theorem is given in [Bal and Ren 2011a] under the additional
assumption (iii0). The following minor modification allows one to prove the
theorem as stated above. The original proof is based on the fact that the equalityR
X .�� 1/2jˇj2dx D 0 implies that � D 1 a.e. Such a result clearly still holds

provided that ˇ 6D 0 a.e.
Note that the result ˇ 6D 0 a.e. holds for a very large class of boundary

conditions .f1; f2/. Indeed, ˇ is the solution of (26) below with �2 bounded
from below by a positive constant. This implies that u2=u1 is the solution of an
elliptic equation.

Thus, the set ˇ D 0 corresponds to the set of critical points r.u2=u1/D 0.
When u2=u1 is not constant, it is proved that for such elliptic equations, the set
of critical points r.u2=u1/D 0 is of Lebesgue measure zero provided that the
coefficients in (21) are sufficiently smooth [Hardt et al. 1999; Robbiano and
Salazar 1990]. We thus find that so long that f1=f2 is not a constant a.e., then
ˇ 6D 0 a.e. and the two internal functionals .H1;H2/ uniquely characterize the
coefficients .�; q/.

Reconstruction of two coefficients. The above result shows that the unique recon-
struction of .
; �; �/ is not possible even from knowledge of the full measurement
operator H defined in Theorem 3.2. Two well-chosen illuminations uniquely
determine the functionals .�; q/ and acquiring additional measurements does not
provide any new information. However, we can prove that if one coefficient in
.
; �; �/ is known, then the other two coefficients are uniquely determined:

Corollary 3.3 [Bal and Ren 2011a]. Under the hypotheses of Theorem 3.2, let
.�; q/ in (25) be known.

(a) If � is known, then .
; �/ are uniquely determined.

(b) If 
 is known, then .�; �/ are uniquely determined.

(c) If � is known, then .
; �/ are uniquely determined.
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The above uniqueness results are constructive. In all cases, we need to solve
the following transport equation for �:

�r � .�2ˇ/D 0 in X; �j@X known on @X; (26)

with ˇ the vector field defined in (23). This uniquely defines � > 0. Then we
find that

q.x/D�
�.H1�/

H1�
D�

�.H2�/

H2�
: (27)

This provides explicit reconstructions for .�; q/ from knowledge of .H1;H2/

when (24) holds.
In case (b), no further equation needs to be solved. In cases (a) and (c), we

need to solve an elliptic equation for
p

 , which is the linear equation

.�C q/
p

 C

1

��
D 0 in X;

p


j@X D

p

j@X on @X;

(28)

in (a) and the (uniquely solvable) nonlinear (semilinear) equation
p

 .�C q/

p

 C � D 0 in X;
p


j@X D

p

j@X on @X;

(29)

in (c). These inversion formulas were implemented numerically in [Bal and Ren
2011a]. Moreover, reconstructions are known to be Hölder or Lipschitz stable
depending on the metric used in the stability estimate. For instance:

Theorem 3.4 [Bal and Ren 2011a]. Assume that the hypotheses of Theorem 3.2
and (iii0) hold. Let H D .H1;H2/ be the measurements corresponding to the
coefficients .
; �; �/ for which hypothesis (iii) holds. Let QH D . QH1; QH2/ be the
measurements corresponding to the same illuminations .f1; f2/ with another set
of coefficients . Q
 ; Q�; Q�/ such that (i) and (ii) still hold. Then we find that

k�� Q�kLp.X / � CkH � QHk
1
2

.W
1;

p
2 .X //2

for all 2� p <1: (30)

Let us assume, moreover, that 
 .x/ is of class C 3.X /. Then we have that

k�� Q�kL1.X / � CkH � QHk
p

3.dCp/

.L
p
2 .X //2

for all 2� p <1: (31)

We may for instance choose p D 4 above to measure the noise level in the
measurement H in the square integrable norm when noise is described by its
power spectrum in the Fourier domain. This shows that reconstructions in QPAT
are Hölder stable, unlike the corresponding reconstructions in optical tomography
[Bal 2009; Uhlmann 2009].
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An application to transient elastography. We can apply the above results to the
time-harmonic reconstruction in a simplified model of transient elastography.
Let us assume that 
 and � are unknown functions of x 2X and ! 2 R. Recall
that the displacement solves (18). Assuming that u.xI!/ is known after step 1 of
the reconstruction using the ultrasound measurements, then we are in the setting
of Theorem 3.2 with �� D 1. Let us then assume that the two illuminations
f1.xI!/ and f2.xI!/ are chosen such that for u1 and u2 the corresponding
solutions of (18), we have that (24) holds. We have seen a sufficient condition for
this to hold in dimension nD 2 in Lemma 3.1 and will present other sufficient
conditions in Section 5B, which is devoted to CGO solutions in the setting n� 3.
Then, (25) shows that the reconstructed function � uniquely determines the
Lamé parameter 
 .xI!/ and that the reconstructed function q then uniquely
determines !2� and hence the density parameter �.xI!/. The reconstructions
are performed for each frequency ! independently. We may summarize this as
follows:

Corollary 3.5. Under the hypotheses of Theorem 3.2 and the hypotheses de-
scribed above, let .�; q/ in (25) be known. Then .
 .xI!/; �.xI!// are uniquely
determined by two well-chosen measurements. Moreover, the stability results in
Theorem 3.4 hold.

Alternatively, we may assume that in a given range of frequencies, 
 .x/ and
�.x/ are independent of !. In such a setting, we expect that one measurement
u.xI!/ for two different frequencies will provide sufficient information to re-
construct .
 .x/; �.x//. Assume that u.xI!/ is known for ! D !j , j D 1; 2 and
define 0< ˛ D !2

2
!�2

1
6D 1. Then straightforward calculations show that

r � 
ˇ˛ D 0; ˇ˛ D .u1ru2�˛u2ru1/: (32)

This provides a transport equation for 
 that can be solved stably provided that
jˇ˛j� c0>0, i.e., ˇ˛ does not vanish on X . Then, Theorem 3.2 and Theorem 3.4
apply in this setting. Since ˇ˛ cannot be written as the ratio of two solutions as
in (23) when ˛D 1, the results obtained in Lemma 3.1 do not apply when ˛ 6D 1.
However, we prove in Section 5B that jˇ˛j � c0 > 0 is satisfied for an open set
of illuminations constructed by means of CGO solutions for all ˛ > 0; see (96)
below.

Reconstruction of one coefficient. Let us conclude this section by some comments
on the reconstruction of a single coefficient from a measurement linear in u.
From an algorithmic point of view, such reconstructions are significantly simpler.
Let us consider the framework of Corollary 3.3. When � is the only unknown
coefficient, then we solve for u in (21) and reconstruct � from knowledge of H .
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When only � is unknown, then we solve the elliptic equation for u

�r � 
ruC
H

�
D 0 in X;

uD g on @X;

and then evaluate � DH=.�u/.
When only 
 is unknown with either H D �u in QPAT or with H D u in

elastography or in applications to ground water flows [Alessandrini 1986; Richter
1981], then u is known and 
 solves the transport equation

�r � 
ruD S in X;


 D 
j@X on @X;

with S known. Provided that the vector field ru does not vanish, the above
equation admits a unique solution as in (26). The stability results of Theorem 3.4
then apply. Other stability results based on solving the transport equation by the
method of characteristics are presented in [Richter 1981]. In two dimensions of
space, the constraint that the vector field ru does not vanish can be partially
removed. Under appropriate conditions on the oscillations of the illumination g

on @X , stability results are obtained in [Alessandrini 1986] in cases where ru is
allowed to vanish.

3B. Reconstructions from quadratic functionals in u.

Reconstructions under smallness conditions. The TAT and (simplified) AOT
problems are examples of a more general class we define as follows. Let P .x;D/

be an operator acting on functions defined in Cm for m 2N� an integer and with
values in the same space. Consider the equation

P .x;D/uD �.x/u; x 2X;

uD f; x 2 @X:
(33)

We assume that the above equation admits a unique weak solution in some Hilbert
space H1 for sufficiently smooth illuminations f .x/ on @X .

For instance, P could be the Helmholtz operator ik�1.� C k2/ seen in
the preceding section with u 2 H1 WD H 1.X IC/ and f 2 H

1
2 .@X IC/. Time-

harmonic Maxwell’s equations can be put in that framework with m and

P .x;D/D
1

ik
.r�r��k2/: (34)

We impose an additional constraint on P .x;D/ that the equation P .x;D/uD f

on X with u D 0 on @X admits a unique solution in H D L2.X ICm/. For
Maxwell’s equations, this constraint is satisfied so long as k2 is not an internal
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eigenvalue of the Maxwell operator [Dautray and Lions 1990]. This is expressed
by the existence of a constant ˛ > 0 such that:

.P .x;D/u;u/H � ˛.u;u/H: (35)

We assume that the conductivity � is bounded from above by a positive constant:

0< �.x/� �M a.e. x 2X: (36)

We denote by †M the space of functions �.x/ such that (36) holds. Measure-
ments are of the form

H.x/D �.x/juj2;

where j � j is the Euclidean norm on Cm. Then we have the following result.

Theorem 3.6 [Bal et al. 2011b]. Let �j 2†M for j D 1; 2. Let uj be the solution
to P .x;D/uj D �j uj in X with uj D f on @X for j D 1; 2. Define the internal
functionals Hj .x/D �j .x/juj .x/j

2 on X .
Assume that �M is sufficiently small that �M < ˛. Then:

(i) (Uniqueness) If H1 DH2 a.e. in X , then �1.x/D �2.x/ a.e. in X where
H1 DH2 > 0.

(ii) (Stability) We have the stability estimate

.p�1�
p
�2/w1




H
� C



.pH1�
p

H2/w2




H
; (37)

for some universal constant C and for positive weights given by

w2
1.x/D

Q
jD1;2

juj j
p
�j

.x/;

w2.x/D
1

˛� sup
x2X

p
�1�2

max
jD1;2

p
�j

juj 0 j
.x/C max

jD1;2

1
p
�j

.x/:

(38)

Here j 0 D j 0.j / is defined as j 0.1/D 2 and j 0.2/D 1.

The theorem uses the spectral gap in (35). Some straightforward algebra
shows that

P .x;D/.u1�u2/D
p
�1�2

�
ju2j Ou1�ju1j Ou2

�
C.
p

H1�
p

H2/

�p
�1

ju1j
�

p
�2

ju2j

�
:

Here we have defined OuD u=juj. Although this does not constitute an equation
for u1�u2, it turns out thatˇ̌

ju2j Ou1� ju1j Ou2

ˇ̌
D ju2�u1j:
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This combined with (35) yields the theorem after some elementary manipulations;
see [Bal et al. 2011b].

Reconstructions for the Helmholtz equation. Let us consider the scalar model of
TAT. We assume that � 2H p.X / for p > n=2 and construct

q.x/D k2
C ik�.x/ 2H p.X /; p >

n

2
: (39)

We assume that q.x/ is the restriction to X of the compactly supported function
(still called q) q 2 H p.Rn/. The extension is chosen so that kqjX kH p.X / �

CkqkH p.Rn/ for some constant C independent of q; see [Bal and Uhlmann
2010]. Then (6) may be recast as

�uC q.x/uD 0 in X;

uD f on @X:
(40)

The measurements are of the form H.x/D �.x/juj2.x/.
The inverse problem consists of reconstructing q.x/ from knowledge of H.x/.

Note that q.x/ need not be of the form (39). It could be a real-valued potential
in a Helmholtz equation as considered in [Triki 2010] with applications in the
so-called inverse medium problem. The reconstruction of q.x/ in (40) from
knowledge of H.x/D �.x/juj2.x/ has been analyzed in [Bal et al. 2011b; Triki
2010]. We cite two stability results, one global and one local.

Theorem 3.7 [Bal et al. 2011b]. Let Y DH p.X / and Z DH p� 1
2 .@X /, where

p > n=2. Let M be the space of functions in Y with norm bounded by a fixed
(arbitrary) M > 0. Let � and Q� be functions in M. Let f 2 Z be a given
(complex-valued) illumination and H.x/ the measurement given in (7) for a
solution u of (6). Define QH .x/ similarly, with Q� replacing � in (7) and (6).

Then there is an open set of illuminations f in Z such that H.x/D QH .x/ in Y

implies that �.x/D Q�.x/ in Y . Moreover, there exists a constant C independent
of � and Q� in M such that

k� � Q�kY � CkH � QHkY : (41)

The theorem is written in terms of � , which is the parameter of interest in
TAT. The same result holds if � is replaced by q.x/ in (41). The reconstruction
of � is also constructive as the application of a Banach fixed point theorem. The
proof is based on the construction of complex geometric optics solutions that
will be presented in Section 5B.

Theorem 3.8 [Triki 2010]. Let q.x/� c0 > 0 be real-valued, positive, bounded
on X and such that 0 is not an eigenvalue of � C q with domain equal to
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H 1
0
.X /\H2.X /. Let Qq satisfy the same hypotheses and let H and QH be the

corresponding measurements.
Then there is a constant " > 0 such that if q and Qq are "-close in L1.X / and

if f is in an "-dependent open set of (complex-valued) illuminations, then there
is a constant C such that

kq� QqkL2.X / � CkH � QHkL2.X /: (42)

Theorems 3.7 and 3.8 show that the TAT and the inverse medium problem are
stable inverse problems. This is confirmed by the numerical reconstructions in
[Bal et al. 2011b]. The first result is more global but requires more regularity of
the coefficients. It is based on the use of complex geometric optics CGO solutions
to show that an appropriate functional is contracting in the space of continuous
functions. The second result is more local in nature (a global uniqueness result
is also proved in [Triki 2010]) but requires less smoothness on the coefficient
q.x/ and provides a stability estimate in the larger space L2.X /. It also uses
CGO solutions to show that the norm of a complex-valued solution to an elliptic
equation is bounded from below by a positive constant. In both cases, the CGO
solutions have traces at the boundary @X and the chosen illumination f needs
to be chosen in the vicinity of such traces.

The results obtained in Theorem 3.6 under smallness constraints on � apply
for very general illuminations f . The above two results apply for more general
(essentially arbitrary) coefficients but require more severe constraints on the
illuminations f .

Nonunique reconstruction in the AOT setting. The results above concern the
uniqueness of the reconstruction of the potential in a Helmholtz equation when
well-chosen complex-valued boundary conditions are imposed. They also show
that the reconstruction of 0< c0 � q.x/ in �uCquD 0 with real-valued uD f

from knowledge of qu2 is unique. This corresponds to P .x;D/ D ��. In a
simplified version of the acousto-optics problem considered in [Bal and Schotland
2010], it is interesting to look at the problem where P .x;D/D � and where
the measurements are given by H.x/D �.x/u2.x/. Here, u is the solution of
the elliptic equation .��C�/uD 0 on X with uD f on @X . Assuming that f
is nonnegative, which is the physically interesting case, we obtain that juj D u

and hence

�.u1�u2/D
p
�1�2.u2�u1/C .

p
H1�

p
H2/

�
�1
p

H1

�
�2
p

H2

�
:

Therefore, as soon as 0 is not an eigenvalue of �C
p
�1�2, we obtain that

u1 D u2 and hence that �1 D �2. For �0 such that 0 is not an eigenvalue of
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�C�0, we find that for �1 and �2 sufficiently close to �0, then H1DH2 implies
that �1 D �2 on the support of H1 DH2.

However, it is shown in [Bal and Ren 2011b] that two different, positive,
absorptions �j for j D 1; 2, may in some cases provide the same measurement
H D �j u2

j with �uj D �j uj on X with uj D f on @X and in fact �1 D �2

on @X so that these absorptions cannot be distinguished by their traces on @X .
This counterexample shows that conditions such as the smallness condition in
Theorem 3.6 are necessary in general.

More generally, and following [Bal and Ren 2011b], consider an elliptic
problem of the form

PuD �u in X;

uD f on @X;
(43)

and assume that measurements of the form H.x/ D �.x/u2.x/ are available.
Here, P is a self-adjoint, nonpositive, elliptic operator, which for concreteness
we will take of the form PuDr �
 .x/ru with 
 .x/ known, sufficiently smooth,
and bounded above and below by positive constants. We assume f > 0 and 
 > 0

so that by the maximum principle, u> 0 on X . We also assume enough regularity
on @X and f so that u 2C 2;ˇ.X / for some ˇ > 0 [Gilbarg and Trudinger 1977].

We observe that
uPuDH in X;

uD f on @X;
(44)

so that the inverse problem may be recast as a semilinear problem. The nonunique-
ness result is derived from [Ambrosetti and Prodi 1972] and in some sense
generalizes the observation that x 7! x2 admits 0, 1, or 2 (real-valued) solutions
depending on the value of x2. Let us define

� W C 2;ˇ.X /! C 0;ˇ.X /; u 7! �.u/D uPu: (45)

The singular points of � are calculated from its first-order Fréchet derivative:

�0.u/v D vPuCuPv: (46)

The operator �0.u/ is not invertible when � WD .Pu/=u is such that P C ��

admits �D 1 as an eigenvalue. Let �0 be such that P C �0 is not invertible. We
assume that the corresponding eigen-space is one-dimensional and spanned by
the eigenvector  > 0 on @X such that .P C �0/ D 0 and  D 0 on @X . Let
us define u0 as

Pu0 D �0u0 in X;

u0 D f on @X;

�0 > 0:

(47)
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Moreover, u0 is a singular point of �.u/ with �0.u0/ D 0. Then define

uı WD u0C ı in X; ı 2 .�ı0; ı0/; (48)

�ı WD
Puı

uı
D �0

u0� ı 

u0C ı 
; (49)

Hı WD �ıu
2
ı D �0uıu�ı D �0.u

2
0� ı

2 2/: (50)

We choose ı0 such that �ı > 0 a.e. on X for all ı 2 .�ı0; ı0/. Then:

Proposition 3.9 [Bal and Ren 2011b]. Let u0 be a singular point and H0 D

�.u0/ a critical value of � as above and let  be the normalized solution of
�0.u0/ D 0. Let uı , �ı , and Hı be defined as in (48)–(50) for 0 6D ı 2 .�ı0; ı0/

for ı0 sufficiently small. Then we verify that:

�ı 6D ��ı; �ı > 0; Hı DH�ı; Puı D �ıuı in X; uı D f on @X:

This shows the nonuniqueness of the reconstruction of � from knowledge of
H D �u2. Moreover we verify that �˙ı agree on @X so that this boundary infor-
mation cannot be used to distinguish between �ı and ��ı. The nonuniqueness
result is not very restrictive since we have seen that two coefficients, hence one
coefficient, may be uniquely reconstructed from two well-chosen illuminations in
the PAT results. Nonetheless, the above result shows once more that identifiability
of the unknown coefficients is not always guaranteed by the availability of internal
measurements.

4. Reconstructions from functionals of ru

We have seen two models of hybrid inverse problems with measurements involv-
ing ru. In UMEIT, the measurements are of the form H.x/D 
 .x/jruj2.x/

whereas in CDII, they are of the form H.x/D 
 .x/jruj.x/.
We consider more generally measurements of the form H.x/D 
 .x/jruj2�p

for u the solution to the elliptic equation

�r � 
 .x/ruD 0 in X;

uD f on @X:
(51)

Since H.x/ is linear in 
 .x/, we have formally what appears to be an extension
to p � 0 of the p-Laplacian elliptic equations

�r �
H.x/

jruj2�p
ruD 0; (52)

posed on a bounded, smooth, open domain X � Rn, n � 2, with prescribed
Dirichlet conditions, say. When 1<p<1, the above problem is known to admit
a variational formulation with convex functional J Œru� D

R
X H.x/jrujpdx,
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which admits a unique minimizer in an appropriate functional setting solution of
the above associated Euler–Lagrange equation [Evans 1998].

When pD 1, the equation becomes degenerate while for p< 1, the equation is
in fact hyperbolic. We consider the problem of measurements that are quadratic
(or bilinear) in ru (with applications to UMEIT and UMOT) in the next two
sections. In the following section, we consider the case p D 1.

4A. Reconstruction from a single power density measurement. The presenta-
tion follows [Bal 2012]. When p D 0 so that measurements are of the form
H.x/D 
 .x/jruj2, the above 0-Laplacian turns out to be a hyperbolic equation.
Anticipating this behavior, we assume the availability of Cauchy data (i.e., u and

� �ru with � the unit outward normal to X ) on @X rather than simply Dirichlet
data. Then (52) with p D 0 becomes after some algebra

.I � 2cru˝cru/ W r2uCr ln H � ruD 0 in X;

uD f and
@u

@�
D j on @X:

(53)

Here cruDru=jruj. With

gij
D gij .ru/D�ıij

C 2.cru/i.cru/j and ki
D�.r ln H /i ;

the above equation is in coordinates

gij .ru/@2
ij uC ki@iuD 0 in X;

uD f and
@u

@�
D j on @X:

(54)

Since gij is a definite matrix of signature .1; n�1/, (54) is a quasilinear strictly
hyperbolic equation. The Cauchy data f and j then need to be provided on a
spacelike hyper-surface in order for the hyperbolic problem to be well-posed
[Hörmander 1983]. This is the main difficulty in solving (54) with redundant
Cauchy boundary conditions.

In general, we cannot hope to reconstruct u.x/, and hence 
 .x/ on the whole
domain X . The reason is that the direction of “time” in the second-order hyper-
bolic equation is cru(x). The normal �.x/ at the boundary @X will distinguish
between the (good) part of @X that is “spacelike” and the (bad) part of @X that
is “timelike”. Spacelike surfaces such as t D 0 provide stable information to
solve the standard wave equation whereas in general it is known that arbitrary
singularities can form in a wave equation from information on “timelike” surfaces
such as x D 0 or y D 0 in a three-dimensional setting (where .t;x;y/ are local
coordinates of X ) [Hörmander 1983].
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Uniqueness and stability. Let .u; 
 / and . Qu; Q
 / be two solutions of the Cauchy
problem (54) with measurements .H; f; j / and . QH ; Qf ; Qj /, where we define the
reconstructed conductivities


 .x/D
H

jruj2
.x/; Q
 .x/D

QH

jr Quj2
.x/: (55)

Let v D Qu�u. We find that

r �

�
H

jr Quj2jruj2

�
.ruCr Qu/˝ .ruCr Qu/� .jruj2Cjr Quj2/I

�
rv

C ıH

�
r Qu

jr Quj2
C
ru

jruj2

��
D 0:

This equation is recast as

gij .x/@2
ijvC ki@ivC @i.l

iıH /D 0 in X;

v D Qf �f;
@v

@�
D Qj � j on @X;

(56)

for appropriate coefficients ki and l i , where

g.x/D
H

jr Quj2jruj2

�
.ruCr Qu/˝ .ruCr Qu/� .jruj2Cjr Quj2/I

�
D ˛.x/

�
e.x/˝ e.x/�ˇ2.x/

�
I � e.x/˝ e.x/

��
; (57)

with

e.x/D
ruCr Qu

jruCr Quj
.x/; ˇ2.x/D

jruCr Quj2

jruCr Quj2� .jruj2Cjr Quj2/
.x/; (58)

and ˛.x/ is the appropriate (scalar) normalization coefficient. For ru and r Qu
sufficiently close so that ru � r Qu > 0, then the above linear equation for v is
strictly hyperbolic. We define the Lorentzian metric hD g�1 so that hij are the
coordinates of the inverse of the matrix gij . We denote by h � ; � i the bilinear
product associated to h so that hu; vi D hij uivj where the two vectors u and v
have coordinates ui and vi , respectively. We verify that

h.x/ D
1

˛.x/

�
e.x/˝ e.x/�

1

ˇ2.x/

�
I � e.x/˝ e.x/

��
: (59)

The spacelike part †g of @X is given by h.�; �/ > 0, i.e., � is a timelike
vector, or equivalently

j�.x/ � e.x/j2 >
1

1Cˇ2.x/
; x 2 @X: (60)
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Above, the dot product is with respect to the standard Euclidean metric and � is
a unit vector for the Euclidean metric, not for the metric h. Let †1 be an open
connected component of †g and let OD[0<�<s†2.�/ be a domain of influence
of †1 swept out by the spacelike surfaces †2.�/; see [Bal 2012; Taylor 1996].
Then we have the following local stability result:

Theorem 4.1 (local uniqueness and stability). Let u and Qu be two solutions of
(54). We assume that g constructed in (57) is strictly hyperbolic. Let †1 be an
open connected component of †g the spacelike component of @X and let O be a
domain of influence of †1 constructed as above. Let us define the energy

E.dv/D hdv; �2i
2
�

1
2
hdv; dvih�2; �2i: (61)

Here, dv is the gradient of v in the metric h given in coordinates by gij@jv. Then

Z
O

E.dv/ dx � C

�Z
†1

jf � Qf j2Cjj � Qj j2 d� C

Z
O
jrıH j2 dx

�
; (62)

where dx and d� are the standard measures on O and †1, respectively.
In the Euclidean metric, let �2.x/ be the unit vector to x 2 †2.�/, define

c.x/ WD �2.x/ � e.x/ and

� WD min
x2†2.�/

�
c2.x/�

1

1Cˇ2.x/

�
: (63)

ThenZ
O
jv2
jC jrvj2C .
 � Q
 /2 dx

�
C

�2

�Z
†1

jf � Qf j2Cjj � Qj j2 d
 C

Z
O
jrıH j2 dx

�
; (64)

where 
 and Q
 are the conductivities in (55). Provided that f D Qf , j D Qj , and
H D QH , we obtain that v D 0 and the uniqueness result uD Qu and 
 D Q
 .

The proof is based on adapting energy methods for hyperbolic equations as
they are summarized in [Taylor 1996]. The energy E.dv/ fails to control dv

for null-like or spacelike vectors, i.e., h.dv; dv/� 0. The parameter � measures
how timelike the vector dv is on the domain of influence O. As O approaches the
boundary of the domain of influence of†g and � tends to 0, the energy estimates
deteriorate as indicated in (64).

Assuming that the errors on the Cauchy data f and j are negligible, we obtain
the following stability estimate for the conductivity

k
 � Q
kL2.O/ �
C

�
kH � QHkH 1.X /: (65)
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Under additional regularity assumptions on 
 , for instance assuming that H 2

H s.X / for s � 2, we find by standard interpolation that

k
 � Q
kL2.O/ �
C

�
kH � QHk

1� 1
s

L2.X /
kH C QHk

1
s

H s.X /
; (66)

We thus obtain Hölder-stable reconstructions in the practical setting of square
integrable measurement errors. However, stability is local. Only on the domain
of influence of the spacelike part of the boundary can we obtain a stable recon-
struction. This can be done by solving a nonlinear strictly hyperbolic equation
analyzed in [Bal 2012] using techniques summarized in [Hörmander 1997].

Global reconstructions. In the preceding result, the main roadblock to global
reconstructions was that the domain of influence of the spacelike part of the
boundary was a strict subset of X . There is a simple solution to this problem:
simply make sure that the whole boundary is a level set of u and that no critical
points of u (where ruD 0) exist. Then all of X is in the domain of influence of
the spacelike part of @X , which is the whole of @X . This setting can be made
possible independent of the conductivity 
 in two dimensions of space but not
always in higher dimensions.

Let nD 2. We assume that X is an open smooth domain diffeomorphic to an
annulus with boundary @X D @X0[@X1. We assume that f D 0 on the external
boundary @X0 and that f D 1 on the internal boundary @X1. The boundary of X

is thus composed of two smooth connected components that are different level
sets of the solution u. The solution u to (51) is uniquely defined on X . Then we
can show:

Proposition 4.2 [Bal 2012]. We assume that both the geometry of X and 
 .x/
are sufficiently smooth. Then jruj is bounded from above and below by positive
constants. The level sets †c D fx 2 X W u.x/ D cg for 0 < c < 1 are smooth
curves that separate X into two disjoint subdomains.

The proof is based on the fact that critical points of solutions to elliptic
equations in two dimensions are isolated [Alessandrini 1986]. The result extends
to higher dimensions provided that jruj does not vanish with exactly the same
proof. In the absence of critical points, we thus obtain that e.x/D cruD �.x/

so that �.x/ is clearly a timelike vector. Then the local results of Theorem 4.1
become global results, which yields the following proposition:

Proposition 4.3. Let X be the geometry described above in dimension n � 2

and u.x/ the solution to (51). We assume here that both the geometry and 
 .x/
are sufficiently smooth. We also assume that jruj is bounded from above and
below by positive constants. Then the nonlinear (54) admits a unique solution
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and the reconstruction of u and of 
 is stable in X in the sense described in
Theorem 4.1.

In dimensions n � 3, we cannot guaranty that u does not have any critical
point independent of the conductivity. If the conductivity is close to a constant,
then by continuity, u does not have any critical point and the above result applies.
This proves the result for sufficiently small perturbations of the case 
 .x/D 
0.
In the general case, however, we cannot guaranty that ru does not vanish and in
fact can produce counterexamples (see [Bal 2012]):

Proposition 4.4 [Bal 2012; Briane et al. 2004; Melas 1993]. There is an example
of a smooth conductivity such that u admits critical points.

So in dimensions n � 3, we are not guaranteed that the nonlinear equation
will remain strictly hyperbolic. What we can do, however, is again to use the
notion of complex geometric optics solutions. We have the result:

Theorem 4.5 [Bal 2012]. Let 
 be extended by 
0D 1 on Rnn QX , where QX is the
domain where 
 is not known. We assume that 
 is smooth on Rn. Let 
 .x/� 1

be supported without loss of generality on the cube .0; 1/� .�1
2
; 1

2
/n�1. Define

the domain X D .0; 1/�Bn�1.a/, where Bn�1.a/ is the .n�1/-dimensional ball
of radius a centered at 0 and where a is sufficiently large that the light cone for
the Euclidean metric emerging from Bn�1.a/ strictly includes QX .

There exists an open set of illuminations .f1; f2/ such that if u1 and u2 are
the corresponding solutions of (51), then 
 .x/ is uniquely determined by the
measurements

H1.x/D 
 .x/jru1j
2.x/;

H2.x/D 
 .x/jru2j
2.x/;

H3.x/D 
 .x/jr.u1Cu2/j
2;

(67)

with the corresponding Cauchy data .f1; j1/, .f2; j2/ and .f1Cf2; j1C j2/ at
x1 D 0.

Let QHi be measurements corresponding to Q
 and let . Qf1; Qj1/ and . Qf2; Qj2/ be
the corresponding Cauchy data at x1D 0. Assume that 
 .x/�1 and Q
 .x/�1 are
smooth and such that their norm in H

n
2
C3C".Rn/ for some " > 0 are bounded

by M . Then for a constant C that depends on M , we have the global stability
result

k
� Q
k
L2. QX /

�C

�
kdC�

QdC k.L2.Bn�1.a///4
C

3X
iD1

krHi�r
QHikL2.X /

�
: (68)

Here, we have defined dC D .f1; j1; f2; j2/ with QdC being defined similarly.
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The three measurements Hi in (67) actually correspond to two physical
measurements since H3 may be determined from the experiments yielding H1

and H2, as demonstrated in [Bal 2012; Kuchment and Kunyansky 2011]. The
three measurements are constructed so that two independent strictly hyperbolic
Lorentzian metrics can be constructed everywhere inside the domain. These
metrics are constructed by means of CGO solutions. The boundary conditions
fj have to be close to the traces of the CGO solutions. We thus obtain a global
Lipschitz stability result. The price to pay is that the open set of illuminations is
not very explicit and may depend on the conductivities one seeks to reconstruct.

For conductivities that are close to a constant, several reconstructions are
therefore available. We have seen that geometries of the form of an annulus (with
a hole that can be arbitrarily small and arbitrarily close to the boundary where
f D0) allowed us to obtain globally stable reconstructions since in such situations,
it is relatively easy to avoid the presence of critical points. The method of CGO
solutions can be shown to apply for a well-defined set of illuminations since the
(harmonic) CGO solutions are explicitly known for the Euclidean metric and of
the form e��x for � a complex valued vector such that � ��D0. After linearization
in the vicinity of the Euclidean metric, another explicit reconstruction procedure
was introduced in [Kuchment and Kunyansky 2011].

4B. Reconstructions from multiple power density measurements. Rather than
reconstructing 
 from one given measurement of the form 
 .x/jruj2, we can
instead acquire several measurements of the form

Hij .x/D 
 .x/rui.x/ � ruj .x/ in X; 1� i; j �M; (69)

where uj solves the elliptic problem (51) with f given by fj for 1 � j �M .
The result presented in Theorem 4.5 above provides a positive answer for M D 2

when the available internal functionals are augmented by Cauchy data at the
boundary of the domain of interest.

Results obtained in [Bal et al. 2011a; Capdeboscq et al. 2009; Monard and Bal
2012] and based on an entirely different procedure and not requiring knowledge
of boundary data show that M D 2bnC1

2
c measurements allow for a global

reconstruction of 
 , i.e., M for n even and M C 1 for n odd. Such results
were first obtained in [Capdeboscq et al. 2009] in the case nD 2 and have been
extended with a slightly different presentation to the cases nD 2 and nD 3 in
[Bal et al. 2011a] while the general case n � 2 is treated in [Monard and Bal
2012]. Let us assume that nD 3 for concreteness. Then Hij D Si �Sj , where
we have defined

Sj .x/D
p

 .x/ruj .x/; 1� j �M:
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Let S D .S1;S2;S3/ be a matrix of nD 3 column vectors Sj . Then ST S DH ,
where ST is the transpose matrix made of the rows given by the Sj . We do
not know S or the Sj , but we know its normal matrix ST S DH . Let T be a
matrix such that RD ST T is a rotation-valued field on X . Two examples are
T DH�

1
2 or the lower-triangular T obtained by the Gram–Schmidt procedure.

We thus have information on S . We need additional equations to solve for S , or
equivalently R, uniquely. The elliptic equation may be written as r �

p

Sj D 0,

or equivalently

r �Sj CF �Sj D 0; F Dr.log
p

 /D 1

2
r log 
: (70)

Now, since 
�
1
2 Sj is a gradient, its curl vanishes and we find that

r �Sj �F �Sj D 0: (71)

Here, F is unknown. We first eliminate it from the equations and then find a
closed form equation for S or equivalently for R as a field in SO.nIR/.

Let T be the aforementioned matrix T , say T D H�
1
2 with entries tij for

1� i; j � n. Let t ij be the entries of T �1 and define the vector fields

Vij WD r.tik/t
kj ; i.e., V l

ij D @l.tij /t
kl ; 1� i; j ; l � n: (72)

We then define R.x/D S.x/T T .x/ 2 SO.nIR/ the matrix whose columns are
composed of the column vectors Rj D Sj T T . Then in all dimension n� 2, we
find

Lemma 4.6 [Bal et al. 2011a; Monard and Bal 2012]. In n� 2, we have

F D
1

n

�
1

2
r log det H C

nX
i;jD1

�
.Vij CVji/ �Ri

�
Rj

�
: (73)

The proof in dimension n D 2; 3 can be found in [Bal et al. 2011a] and in
arbitrary dimension in [Monard and Bal 2012].

Note that the determinant of H needs to be positive on the domain X in
order for the above expression for F to make sense. It is, however, difficult to
ensure that the determinant of several gradients remains positive and there are
in fact counterexamples as shown in [Briane et al. 2004]. Here again, complex
geometric optics solutions are useful to control the determinant of gradients of
elliptic solutions locally and globally using several solutions. We state a global
result in the practical setting nD 3.

Let there be m � 3 solutions of the elliptic equation and assume that there
exists an open covering O D f�kg1�k�N (X �

SN
kD1�i), a constant c0 > 0
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and a function � W Œ1;N � 3 i 7! �.i/D .�.i/1; �.i/2; �.i/3/ 2 Œ1;m�
3, such that

inf
x2�i

det.S�.i/1.x/;S�.i/2.x/;S�.i/3.x//� c0; 1� i �N: (74)

Then we have the following result:

Theorem 4.7 (3D global uniqueness and stability). Let X � R3 be an open
convex bounded set, and let two sets of m � 3 solutions of (51) generate mea-
surements .H; QH / whose components belong to W 1;1.X /. Assume that one can
define a couple .O; �/ such that (74) is satisfied for both sets of solutions S and
QS . Let also x0 2�i0

�X and 
 .x0/, Q
 .x0/, fS�.i0/i .x0/; QS�.i0/i .x0/g1�i�3 be
given. Let 
 and Q
 be the conductivities corresponding to the measurements H

and QH , respectively. Then we have the following stability estimate:

klog 
 � log Q
kW 1;1.X / � C
�
�0CkH � QHkW 1;1.X /

�
; (75)

where �0 is the error at the initial point x0

�0 D jlog 
0� log Q
0jC

3X
iD1

kS�.i0/i .x0/� QS�.i0/i .x0/k:

This shows that the reconstruction of 
 is stable from such redundant measure-
ments. Moreover, the reconstruction is constructive. Indeed, after eliminating F

from the equations for R, we find an equation of the form rRDG.x;R/, where
G.x;R/ is polynomial of degree three in the entries of R. This is a redundant
equation whose solution, when it exists, is unique and stable with respect to
perturbations in G and the conditions at a given point x0.

That (74) is satisfied can again be proved by means of complex geometric
optics solutions, as is briefly mentioned in Section 5B below; see [Bal et al.
2011a].

4C. Reconstruction from a single current density measurement. Let us now
come back to the 1-Laplacian, which is a degenerate elliptic problem. In many
cases, this problem admits multiple admissible solutions [Kim et al. 2002]. The
inverse problem then cannot be solved uniquely. In some settings, however,
uniqueness can be restored [Kim et al. 2002; Nachman et al. 2007; 2009; 2011].

Recall that the measurements are of the form H.x/D 
 jruj so that u solves
the following degenerate quasilinear equation

r �
H.x/

jruj
ruD 0 in X: (76)

Different boundary conditions may then be considered. It is shown in [Kim et al.
2002] that the above equation augmented with Neumann boundary conditions of
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the form
H

jruj

@u

@�
D h on @X;

Z
@X

ud� D 0;

admits an infinite number of solutions once it admits a solution, and may also
admit no solution at all. One possible strategy is to acquire two measurements
of the form H.x/ D 
 jruj corresponding to two prescribed currents. In this
setting, it is shown in [Kim et al. 2002] that (appropriately defined) singularities
of 
 are uniquely determined by the measurements. We refer the reader to the
latter reference for the details.

Alternatively, we may augment the above (76) with Dirichlet data. Then the
reconstruction of 
 was shown to be uniquely determined in [Nachman et al.
2007; 2009; 2011]. Why Dirichlet conditions help to stabilize the equation may
be explained as follows. The 1-Laplace equation (76) may be recast as

.I �cru˝cru/ W r2uCr ln H � ruD 0;

following similar calculations to those leading to (53). The only difference is
the “2” in front of cru˝ cru replaced by “1”, or more generally 2� p for a
p-Laplacian. When p > 1, the problem remains strictly elliptic. When p < 1,
the problem is hyperbolic, and when p D 1, it is degenerate in the directioncru and elliptic in the transverse directions. We can therefore modify u so that
its level sets remain unchanged and still satisfy the above partial differential
equation. This modification can also be performed so that Neumann boundary
conditions are not changed. This is the procedure used in [Kim et al. 2002] to
show the nonuniqueness of the reconstruction for the 1-Laplacian with Neumann
boundary conditions.

Dirichlet conditions, however, are modified by changes in the level sets of u. It
turns out that even with Dirichlet conditions, several (viscosity) solutions to (76)
may be constructed when H � 1; see [Nachman et al. 2007; 2011]. However,
such solutions involve vanishing gradients on sets of positive measure.

The right formulation for the CDII inverse problem that allows one to avoid
vanishing gradients is to recast (76) as the minimization of the functional

F Œrv�D

Z
X

H.x/jrvjdx; (77)

over v 2H 1.X / with v D f on @X . Note that F Œrv� is convex although it is
not strictly convex. Moreover, let 
 be the conductivity and H D 
 jruj the
corresponding measurement. Let then v 2H 1.X / with v D f on @X . Then,

F Œrv�D

Z
X


 jrujjrvjdx �

Z
X


ru � rvdx D

Z
@X

�
@u

@�
fds D F Œru�;
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by standard integrations by parts. This shows that u minimizes F . We have the
following result:

Theorem 4.8 [Nachman et al. 2011]. Let .f;H / 2 C 1;˛.@X / � C ˛.X / with
H D 
 jruj for some 
 2 C ˛. NX /. Assume that H.x/ > 0 a.e. in X . Then the
minimization of

argmin
˚
F Œrv� W v 2W 1;1.X /\C.X /; vj@X D f

	
; (78)

has a unique solution u0. Moreover �0 DH jru0j
�1 is the unique conductivity

associated to the measurement H.x/.

It is known in two dimensions of space that H.x/ > 0 is satisfied for a large
class of boundary conditions f .x/; see Lemma 5.2 in the next section. In three
dimensions of space, however, critical points of u may arise as observed earlier in
this paper; see [Bal 2012]. The CGO solutions that are analyzed in the following
section allow us to show that H.x/ > 0 holds for an open set of illuminations f
at the boundary of the domain @X ; see (95) below.

Unfortunately, no such results exists for real-valued solutions and constraints
such as H.x/ > 0 in dimension n� 3 will not hold for a given f independent
of the conductivity 
 .

Several reconstruction algorithms have been devised in [Kim et al. 2002;
Nachman et al. 2007; 2009; 2011], to which we refer for additional details. The
numerical simulations presented in these papers show that when uniqueness is
guaranteed, then the reconstructions are very high resolution and quite robust with
respect to noise in the data, as is expected for general hybrid inverse problems.

5. Qualitative properties of forward solutions

5A. The case of two spatial dimensions. Several explicit reconstructions ob-
tained in hybrid inverse problems require that the solutions to the considered
elliptic equations satisfy specific qualitative properties such as the absence of
any critical point or the positivity of the determinant of gradients of solutions.
Such results can be proved in great generality in dimension n D 2 but do not
always hold in dimension n� 3.

In dimension nD 2, the critical points of u (points x where ru.x/D 0) are
necessarily isolated as is shown in [Alessandrini 1986]. From this and techniques
of quasiconformal mappings that are also restricted to two dimensions of space,
we can show the following results.

Lemma 5.1 [Alessandrini and Nesi 2001]. Let u1 and u2 be the solutions of
(51) on X simply connected with boundary conditions f1 D x1 and f2 D x2 on
@X , respectively, where x D .x1;x2/ are Cartesian coordinates on X . Assume
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that 
 is sufficiently smooth. Then .x1;x2/ 7! .u1;u2/ from X to its image is a
diffeomorphism. In other words, det.ru1;ru2/ > 0 uniformly on X .

This result is useful in the analysis of UMEIT and UMOT in the case of
redundant measurements. It is shown in [Briane et al. 2004] that the appropriate
extension of this result is false in dimension n� 3.

We recall that a function continuous on a simple closed contour is almost
two-to-one if it is two-to-one except possibly at its maximum and minimum
[Nachman et al. 2007]. Then we have, quite similarly to the result in Lemma 3.1
and Proposition 4.2, which also use the results in [Alessandrini 1986], the
following:

Lemma 5.2 [Nachman et al. 2007]. Let X be a simply connected planar domain
and let u be solution of (51) with f almost two-to-one and � sufficiently smooth.
Then jruj is bounded from below by a positive constant on X . Moreover, the
level sets of u are open curves inside X with their two end points on @X .

This shows that for a large class of boundary conditions with one maximum
and one minimum, the solution u cannot have any critical point in NX . On an
annulus with boundaries equal to level sets of u, we saw in Proposition 4.2 that
u had no critical points on X in dimension nD 2. This was used to show that
the normal vector to the level sets of u always forms a timelike vector for the
Lorentzian metric defined in (54).

All these results no longer hold in dimension n� 3. See [Bal 2012; Briane
et al. 2004] for counterexamples. In dimension n� 3, the required qualitative
properties cannot be obtained for a given set of illuminations (boundary con-
ditions) independent of the conductivity. However, for conductivities that are
bounded (with an arbitrary bound) in an appropriate norm, there are open sets
of illuminations that allow us to obtain the required qualitative properties. One
way to construct such solutions is by means of the complex geometric optics
solutions that are analyzed in the next section.

5B. Complex geometric optics solutions.

CGO solutions and Helmholtz equations. Complex geometrical optics (CGO)
solutions allow us to treat the potential q in the equation

.�C q/uD 0 in X;

uD f on @X;
(79)

as a perturbation of the leading operator �. When q D 0, CGO solutions are
harmonic solutions defined on Rn and are of the form

u�.x/D e��x; � 2 Cn such that � � �D 0:
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For � D �r C i�i with �r and �i vectors in Rn, this means that j�r j
2 D j�i j

2

and �r � �i D 0.
When q 6� 0, CGO solutions are solutions of the following problem

�u�C qu� D 0; u� � e��x as jxj !1: (80)

More precisely, we say that u� is a solution of the above equation with � ��D 0

and the proper behavior at infinity when it is written as

u�.x/D e��x
�
1C �.x/

�
; (81)

for  � 2L2
ı

a weak solution of

� �C 2� � r � D�q.1C �/: (82)

The space L2
ı

for ı 2 R is defined as the completion of C1
0
.Rn/ with respect to

the norm k � kL2
ı

defined as

kukL2
ı
D

�Z
Rn

hxi2ıjuj2dx

� 1
2

; hxi D .1Cjxj2/
1
2 : (83)

Let �1 < ı < 0 and q 2 L2
ıC1

and hxiq 2 L1. One of the main results in
[Sylvester and Uhlmann 1987] is that there exists �D �.ı/ such that the above
problem admits a unique solution with  � 2L2

ı
provided that

khxiqkL1 C 1� �j�j:

Moreover, k �kL2
ı
� C j�j�1kqkL2

ıC1
for some C D C.ı/. In the analysis of

many hybrid problems, we need smoother CGO solutions than what was recalled
above. We introduce the spaces H s

ı
for s � 0 as the completion of C1

0
.Rn/ with

respect to the norm k � kH s
ı

defined as

kukH s
ı
D

�Z
Rn

hxi2ıj.I ��/
s
2 uj2dx

� 1
2

: (84)

Here .I ��/
s
2 u is defined as the inverse Fourier transform of h�is Ou.�/, where

Ou.�/ is the Fourier transform of u.x/.

Proposition 5.3 [Bal and Uhlmann 2010]. Let �1 < ı < 0 and k 2 N�. Let

q 2H
n
2
CkC"

1
(hence q 2H

n
2
CkC"

ıC1
) and let � be such that

kqk
H

n
2
CkC"

1

C 1� �j�j: (85)
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Then  �, the unique solution to (82), belongs to H
n
2
CkC"

ı
and

j�jk �k
H

n
2
CkC"

ı

� Ckqk
H

n
2
CkC"

ıC1

; (86)

for a constant C that depends on ı and �.

We also want to obtain estimates for  � and u� restricted to the bounded
domain X . We have the following result.

Corollary 5.4 [Bal and Uhlmann 2010]. Let us assume the regularity hypotheses
of the previous proposition. Then we find that

j�jk �k
H

n
2
CkC"

.X /
Ck �k

H
n
2
CkC1C"

.X /
� Ckqk

H
n
2
CkC"

.X /
: (87)

These results show that for � sufficiently large,  � is small compared to 1 in
the class C k.X / by Sobolev imbedding.

Let Y DH p.X / and M the ball in Y of functions with norm bounded by a
fixed M > 0. Not only do we have that  � is small for j�j large, but we have
the following Lipschitz stability with respect to changes in the potential q.x/:

Lemma 5.5 [Bal et al. 2011b]. Let  � be the solution of

� �C 2� � r � D�q.1C �/; (88)

and let Q � be the solution of the same equation with q replaced by Qq, where Qq is
defined as in (27) with � replaced by Q� . We assume that q and Qq are in M. Then
there is a constant C such that for all � with j�j � j�0j, we have

k � � Q �kY �
C

j�j
k� � Q�kY : (89)

This is the property used in [Bal et al. 2011b] to show that � in the TAT
problem (6)–(7) solves the equation

�.x/D e.�C N�/�xH.x/�Hf Œ� �.x/ on X;

where
Hf Œ� �.x/D �

�
 f C f C f f .x/

�
;

is a contraction map for f in an open set of illuminations; see [Bal et al. 2011b].
The result in Theorem 3.7 then follows by a Banach fixed point argument.

CGO solutions and elliptic equations. Consider the more general elliptic equation

�r � 
ruC �uD 0 in X;

uD f on @X:
(90)
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Upon defining v D
p

u, we find that

.�C q/v D 0 in X; q D�
�
p



p


�
�



:

In other words, we find CGO solutions for (90) defined on Rn and of the form

u�.x/D
1
p



e��x
�
1C �.x/

�
; (91)

with j�j �.x/ bounded uniformly provided that 
 and � are sufficiently smooth
coefficients.

5C. Application of CGO solutions to qualitative properties of elliptic solutions.

Lower bound for the modulus of complex valued solutions. The above results
show that for j�j sufficiently large, then ju�j is uniformly bounded from below
by a positive constant on compact domains. Note that u� is complex valued and
that its real and imaginary parts oscillate very rapidly. Indeed,

e��x D e�r �x
�
cos.�i �x/C i sin.�i �x/

�
;

which is rapidly increasing in the direction �r and rapidly oscillating in the
direction �i . Nonetheless, on a compact domain such as X , then ju�j is uniformly
bounded from below by a positive constant.

Let now f� D u�j@X the trace of the CGO solution on @X . Then for f close
to f� and u the solution to, say, (79) or (90), we also obtain that juj is bounded
from below by a positive constant. Such results were used in [Triki 2010].

Lower bound for vector fields.

Theorem 5.6 [Bal and Uhlmann 2010]. Let u�j for j D 1; 2 be CGO solutions
with q as above for both �j and k � 1 and with c�1

0
j�1j � j�2j � c0j�1j for some

c0 > 0. Then we have

Ǒ WD
1

2j�1j
e�.�1C�2/�x

�
u�1
ru�2

�u�2
ru�1

�
D
�1� �2

2j�1j
C Oh; (92)

where the vector field Oh satisfies the constraint

k OhkC k.X / �
C0

j�1j
; (93)

for some constant C0 independent of �j , j D 1; 2.

With �2 D �1 so that u�2
D u�1

, the imaginary part of (92) is a vector field
that does not vanish on X for j�1j sufficiently large. Moreover, let u�1

D vC iw
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and u�2
D v� iw for v and w real-valued functions. Then the imaginary and

real parts of (92) are given by

= Ǒ D
1

j�1j
e�2<�1�x.wrv� vrw/D

=�1

j�1j
C= Oh; < Ǒ D 0:

Let u1 and u2 be solutions of the elliptic problem (79) on X such that u1C iu2

on @X is close to the trace of u�1
. The above result shows that

ju1ru2�u2ru1j � c0 > 0 in X:

This yields (24) and the result on unique and stable reconstructions in QPAT.
The above derivation may be generalized to the vector field ˇ˛ in (32) with

applications in elastography. Indeed let us start from (81) with �D kC il such
that k � l D 0 and k WD jkj D jl j. Then, using Corollary 5.4, we find that

<u� D ek�x.cC'r
�/; =u� D ek�x.sC'i

�/;

r<u� D kek�x.c Ok� s Ol C�r
�/; r=u� D kek�x.s OkC c Ol C�i

�/;
(94)

where cD cos.l �x/, sD sin.l �x/, OkD k=jkj, Ol D l=jkj, and where j�j j�j is
bounded as indicated in Corollary 5.4 for � 2 f'r

� ; '
i
�; �

r
�; �

i
�g.

Let u1 on @X be close to <u�. Then we find by continuity that jru1j is close
to jr<u�j so that for k sufficiently large, we find that

jru1j � c0 > 0 in X: (95)

This proves that H.x/D 
 jruj is bounded from below by a positive constant
provided that the boundary condition f is in a well-chosen open set of illumina-
tions.

For the application to elastography, define

ˇ˛ D=u�r<u� �˛<u�r=u�; ˛ > 0:

For j�j> �˛ large enough that j�j< .min.1; ˛//2

4.1C˛/
for � 2 f'r

� ; '
i
�; �

r
�; �

i
�g, we

verify using (94) that

jˇ˛j � ke2k�x 1
2

�
.cs.1�˛//2C .s2

C˛c2/
�
� ke2k�x 1

2
.min.1; ˛//2: (96)

This provides a lower bound for ˇ˛ uniformly on compact sets. For an open set
of illuminations .f1; f2/ close to the traces of .=u�;<u�/ on @X , we find by
continuity that the vector field ˇ˛ D u1ru2�˛u2ru1 in (32) also has a norm
bounded from below uniformly on X .



HYBRID INVERSE PROBLEMS AND INTERNAL FUNCTIONALS 361

Lower bound for determinants. The reconstruction in Theorem 4.7 requires that
the determinants in (74) be bounded from below. In specific situations, for
instance when the conductivity is close to a given constant, such a determinant is
indeed bounded from below by a positive constant for a large class of boundary
conditions. However, it has been shown in [Briane et al. 2004] that the deter-
minant of the gradients of three solutions could change signs on a domain with
conductivities with large gradient. Unlike what happens in two dimensions of
space, it is therefore not possible in general to show that the determinant of
gradients of solutions has a given sign. However, using CGO solutions, we can
be assured that on given bounded domains, the larger of two determinants is
indeed uniformly positive for well-chosen boundary conditions.

Let u�.x/ be given by (91) solution of the elliptic problem (90). Upon treating
the term  � and its derivative as in (94) above and making them arbitrary small
by choosing � sufficiently large, we find that

p

u� D e��x C l.o.t., so that, to

leading order,
p

ru� D ek�x.kC il/

�
cos.l �x/C i sin.l �x/

�
C l.o.t.; �D kC il :

Let nD 3 and .e1; e2; e3/ a constant orthonormal frame of R3. It remains to take
the real and imaginary parts of the above terms and choose OkD e2 or OkD e3 with
Ol D e1 to obtain, up to normalization and negligible contributions (for k D jkj

sufficiently large), that for

QS1 D e2 cos kx1� e1 sin kx1; QS2 D e1 cos kx1C e2 sin kx1;

QS3 D e3 cos kx1� e1 sin kx1; QS4 D e2 cos jkjx1C e3 sin jkjx1;

we verify that det. QS1; QS2; QS3/D� cos kx1 and that det. QS1; QS2; QS4/D� sin kx1.
Upon changing the sign of S3 or S4 if necessary to make both determinants
nonnegative, we find that the maximum of these two determinants is always
bounded from below by a positive constant uniformly on X . This result is
sufficient to prove Theorem 4.7; see [Bal et al. 2011a].

Hyperbolicity of a Lorentzian metric. As a final application of CGO solutions,
we mention the proof that a given constant vector field remains a timelike vector
of a Lorentzian metric. This finds applications in the proof of Theorem 4.1 in
[Bal 2012].

Indeed, let Ok be a given direction in Sn�1 and �D ikCk? and u� D e��x ,
once again neglecting  �. The real and imaginary parts of ru� are such that

e�k?�x
=re��x D jkj�.x/; e�k?�x

<re��x D jkj�?.x/; (97)

where �.x/ D Ok cos k�xC Ok? sin k�x and �?.x/ D � Ok sin k�xC Ok? cos k�x.
As usual, OkD k=jkj.
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Define the Lorentzian metrics

h� D 2� ˝ � � I; h�? D 2�?˝ �?� I:

Note that �.x/ and �?.x/ oscillate in the plane .k;k?/. The given vector Ok thus
cannot be a time like vector for one of the Lorentzian metrics for all x 2X (unless
X is a domain included in a thin slab). However, in the vicinity of any point
x0, we can construct a linear combination  .x/D cos˛ �.x/C sin˛ �?.x/ for
˛ 2 Œ0; 2�/ such that

Ok is a timelike vector for h D2 ˝ �I; i.e., h . Ok; Ok/D2. � Ok/2�1>0;

uniformly for x close to x0; see [Bal 2012] for more details. When �.x/ is
constructed as cru for u solution to (79) or (90) for boundary conditions f close
to the trace of the corresponding CGO solution u�, then the Lorentzian metric
h constructed above still verifies that Ok is a timelike vector with h . Ok; Ok/

uniformly bounded from below by a positive constant locally.

6. Conclusions and perspectives

Research in hybrid inverse problems has been very active in recent years, primar-
ily in the mathematical and medical imaging communities but also in geophysical
imaging, see [White 2005] and references on the electrokinetic effect. This review
focused on time-independent equations primarily with scalar-valued solutions.
We did not consider the body of work done in the setting of time-dependent
measurements, which involves different techniques than those presented here; see
[McLaughlin et al. 2010] and references. We considered scalar equations with the
exception of the system of Maxwell’s equations as it appears in thermoacoustic
tomography. Very few results exist for systems of equations. The diffusion and
conductivity equations considered in this review involve a scalar coefficient 
 .
The reconstruction of more general tensors remains an open problem.

Compared to boundary value inverse problems, inverse problems with internal
measurements enjoy better stability estimates precisely because local information
is available. However, the derivation of such stability estimates often requires
that specific, qualitative properties of solutions be satisfied, such as for instance
the absence of critical points. This imposes constraints on the illuminations
(boundary conditions) used to generate the internal data that forms one of the
most difficult mathematical questions raised by the hybrid inverse problems.

What are the “optimal” illuminations (boundary conditions) for a given class
of unknown parameters and how robust will the reconstructions be when such
illuminations are modified are questions that are not fully answered. The theory
of complex geometrical optics (CGO) solutions provides a useful tool to address



HYBRID INVERSE PROBLEMS AND INTERNAL FUNCTIONALS 363

these questions and construct suitable illuminations or prove their existence in
several cases of interest. Numerical simulations will presumably be of great
help to better understand whether such theoretical predictions are useful or
reasonable in practice. Many numerical simulations performed in two dimensions
of space confirm the good stability properties predicted by theory [Ammari et al.
2008; Bal and Ren 2011a; Bal et al. 2011b; Capdeboscq et al. 2009; Gebauer
and Scherzer 2008; Kuchment and Kunyansky 2011; Nachman et al. 2009].
The two-dimensional setting is special as we saw in Section 5A. Very few
simulations have been performed in the theoretically more challenging case of
three (or more) dimensions of space. Simulations in [Kuchment and Kunyansky
2011] show very promising three-dimensional reconstructions in the setting of
diffusion coefficients that are close to the constant case, which is also understood
theoretically since jruj then does not vanish for a large class of boundary
conditions.

The main interest of hybrid inverse problems is that they combine high contrast
with high resolution. This translates mathematically into good (Lipschitz or
Hölder) stability estimates. Ideally, we would like to reconstruct highly oscillatory
coefficients with a minimal influence of the noise in the measurements. Yet,
all the results presented in this review paper and the cited references require
that the coefficients satisfy some unwanted smoothness properties. To focus on
one example for concreteness, the reconstructions in photoacoustic tomography
involve the solution of the transport equation (26), which is well-posed provided
that the vector field ˇ is sufficiently smooth. Using theories of renormalization,
the regularity of such vector fields can be decreased to W 1;1 or to the BV category
[Ambrosio 2004; Bouchut and Crippa 2006; DiPerna and Lions 1989]. Yet,
u1ru2�u2ru1 is a priori only in L2 when 
 is arbitrary as a bounded coefficient
[Hauray 2003]. The construction of CGO solutions presented in Section 5B also
requires sufficient smoothness of the coefficients. How such reconstructions and
stability estimates might degrade in the presence of nonsmooth coefficients is
quite open. Many similar problems are also open for boundary-value inverse
problems [Uhlmann 2009].

Finally, we have assumed in this review that the first step of the hybrid inverse
problems had been done accurately. In practice, this may not quite always
be so. PAT and TAT require that we solve an inverse source problem for a
wave equation, which is a difficult problem in the presence of partial data and
variable sound speed and is not entirely understood when realistic absorbing
effects are accounted for [Kowar and Scherzer 2012; Stefanov and Uhlmann
2011]. In UMEIT and UMOT, we have assumed in the derivation in Section 2
that standing plane waves could be generated. This is practically difficult to
achieve and different (equivalent) mechanisms have been proposed [Ammari
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et al. 2008; Kuchment and Kunyansky 2011]. In transient elastography, we have
assumed that the full (scalar) displacement could be reconstructed as a function
of time and space. This is also sometimes an idealized approximation of what
can be achieved in practice [McLaughlin et al. 2010]. Finally, we have assumed
knowledge of the current 
 jruj in CDII, which is also difficult to acquire in
practical settings as typically only the z component of the magnetic field Bz

can be constructed; see the recent review [Seo and Woo 2011]. The modeling
of errors generated during the first step of the procedure and the influence that
such errors may have on the reconstructions during the second step of the hybrid
inverse problem remain active areas of research.
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