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Inverse problems for connections
GABRIEL P. PATERNAIN

We discuss various recent results related to the inverse problem of determining
a unitary connection from its parallel transport along geodesics.

1. Introduction

Let .M;g/ be a compact oriented Riemannian manifold with smooth boundary,
and let SM Df.x; v/2TM I jvj D 1g be the unit tangent bundle with canonical
projection � W SM ! M . The geodesics going from @M into M can be
parametrized by the set @C.SM /D f.x; v/ 2 SM I x 2 @M; hv; �i � 0g, where
� is the outer unit normal vector to @M . For any .x; v/ 2 SM we let t 7!


 .t;x; v/ be the geodesic starting from x in direction v. We assume that .M;g/

is nontrapping, which means that the time �.x; v/ when the geodesic 
 .t;x; v/
exits M is finite for each .x; v/ 2 SM . The scattering relation

˛ D ˛g W @C.SM /! @�.SM /

maps a starting point and direction of a geodesic to the end point and direction,
where @�.SM /D f.x; v/ 2 SM I x 2 @M; hv; �i � 0g.

Suppose now that E!M is a Hermitian vector bundle of rank n over M

and r is a unitary connection on E. Associated with r there is the following
additional piece of scattering data: given .x; v/ 2 @C.SM /, let P .x; v/ D

Pr.x; v/ WE.x/!E.�ı˛.x; v// denote the parallel transport along the geodesic

 .t;x; v/. This map is a linear isometry and the main inverse problem we wish
to discuss here is the following:

Question. Does P determine r?

The first observation is that the problem has a natural gauge equivalence.
Let  be a gauge transformation, that is, a smooth section of the bundle of
automorphisms AutE. The set of all these sections naturally forms a group
(known as the gauge group) which acts on the space of unitary connections by
the rule

. �r/s WD  r. �1s/
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where s is any smooth section of E. If in addition  j@M D Id, then it is a simple
exercise to check that

Pr D P �r :

Thus we can rephrase the question above more precisely as follows:

Question I (manifolds with boundary). Let r1 and r2 be two unitary con-
nections with Pr1

D Pr2
. Does there exist a gauge transformation  with

 j@M D Id and  �r1 Dr2?

There is a version of this question which makes sense also for closed manifolds,
that is, @M D ∅. Let 
 W Œ0;T �! M be a closed geodesic and let Pr.
 / W

E.
 .0//!E.
 .0// be the parallel transport along 
 .

Question II (closed manifolds). Let r1 and r2 be two unitary connections and
suppose there is a connection r gauge equivalent to r1 such that Pr.
 / D

Pr2
.
 / for every closed geodesic 
 . Are r1 and r2 gauge equivalent?

A connection r is said to be transparent if Pr.
 /D Id for all closed geodesics

 . Understanding the set of transparent connections modulo gauge is an important
special case of Question II.

To make further progress on Questions I and II we need to impose some
conditions on the manifold .M;g/.

In the case of manifolds with boundary a typical hypothesis is that of simplicity.
A compact Riemannian manifold with boundary is said to be simple if for any
point x 2M the exponential map expx is a diffeomorphism onto M , and if
the boundary is strictly convex. The notion of simplicity arises naturally in the
context of the boundary rigidity problem [Michel 1981]. For the case of closed
manifolds there are two reasonable disjoint options. One is to assume that .M;g/

is a Zoll manifold, that is, a Riemannian manifold all of whose geodesics are
closed, but we shall not really discuss this case in any detail here. The other is
to assume that the geodesic flow is Anosov. Recall that the geodesic flow �t is
Anosov if there is a continuous splitting TSM DE0˚Eu˚Es , where E0 is
the flow direction, and there are constants C > 0 and 0 < � < 1 < � such that
for all t > 0 we have

kd��t jEuk � C ��t and kd�t jEsk � C �t :

It is very well known that the geodesic flow of a closed negatively curved
Riemannian manifold is a contact Anosov flow [Katok and Hasselblatt 1995].
The Anosov property automatically implies that the manifold is free of conjugate
points [Klingenberg 1974; Anosov 1985; Mañé 1987]. Simple manifolds are
also free of conjugate points (this follows directly from the definition) and both
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conditions (simplicity and Anosov) are open conditions on the metric. It is
remarkable that similar results exist in both situations.

It is easy to see from the definition that a simple manifold must be diffeomor-
phic to a ball in Rn. Therefore any bundle over such M is necessarily trivial. For
most of this paper we shall consider Questions I and II only for the case of trivial
bundles; this will make the presentation clearer without removing substantial
content.

Question I arises naturally when considering the hyperbolic Dirichlet-to-
Neumann map associated to the Schrödinger equation with a connection. It was
shown in [Finch and Uhlmann 2001] that when the metric is Euclidean, the
scattering data for a connection can be determined from the hyperbolic Dirichlet-
to-Neumann map. A similar result holds true on simple Riemannian manifolds: a
combination of the methods in [Finch and Uhlmann 2001; Uhlmann 2004] shows
that the hyperbolic Dirichlet-to-Neumann map for a connection determines the
scattering data Pr .

2. Elementary background on connections

Consider the trivial bundle M �Cn. For us a connection A will be a complex
n� n matrix whose entries are smooth 1-forms on M . Another way to think of
A is to regard it as a smooth map A W TM ! Cn�n which is linear in v 2 TxM

for each x 2M .
Very often in physics and geometry one considers unitary or Hermitian con-

nections. This means that the range of A is restricted to skew-Hermitian matrices.
In other words, if we denote by u.n/ the Lie algebra of the unitary group U.n/,
we have a smooth map A WTM ! u.n/ which is linear in the velocities. There is
yet another equivalent way to phrase this. The connection A induces a covariant
derivative dA on sections s 2 C1.M;Cn/ by setting dAs D ds CAs. Then
A being Hermitian or unitary is equivalent to requiring compatibility with the
standard Hermitian inner product of Cn in the sense that

dhs1; s2i D hdAs1; s2iC hs1; dAs2i

for any pair of functions s1; s2.
Given two unitary connections A and B we shall say that A and B are gauge

equivalent if there exists a smooth map u WM ! U.n/ such that

B D u�1duCu�1Au: (1)

It is an easy exercise to check that this definition coincides with the one given in
the previous section if we set  D u�1.
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The curvature of the connection is the 2-form FA with values in u.n/ given
by

FA WD dACA^A:

If A and B are related by (1) then:

FB D u�1 FA u:

Given a smooth curve 
 W Œa; b�!M , the parallel transport along 
 is obtained
by solving the linear differential equation in Cn:�

PsCA.
 .t/; P
 .t//s D 0;

s.a/D w 2 Cn:
(2)

The isometry PA.
 / W C
n! Cn is defined as PA.
 /.w/ WD s.b/. We may also

consider the fundamental unitary matrix solution U W Œa; b�! U.n/ of (2). It
solves �

PU CA.
 .t/; P
 .t//U D 0;

U.a/D Id:
(3)

Clearly PA.
 /.w/D U.b/w.

3. The transport equation and the attenuated ray transform

Consider now the case of a compact simple Riemannian manifold. We would
like to pack the information provided by (3) along every geodesic into one PDE
in SM . For this we consider the vector field X associated with the geodesic
flow �t and we look at the unique solution UA W SM ! U.n/ of�

X.UA/CA.x; v/UA D 0; .x; v/ 2 SM

UAj@C.SM / D Id:
(4)

The scattering data of the connection A is now the map CA W @�.SM /! U.n/

defined as CA WD UAj@�.SM /.
We can now rephrase Question I as follows:

Question I (manifolds with boundary). Let A and B be two unitary connections
with CAD CB . Does there exist a smooth map U WM !U.n/ with U j@M D Id
and B D U�1dU CU�1AU ?

Suppose CA D CB and define U WD UA.UB/
�1 W SM ! U.n/. One easily

checks that U satisfies: �
XU CAU �UB D 0;

U j@.SM / D Id:
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If we show that U is in fact smooth and it only depends on the base point
x 2M we would have an answer to Question I, since the equation above reduces
to dU CAU �UB D 0 and U j@M D Id which is exactly gauge equivalence.
Showing that U only depends of x is not an easy task and it often is the crux of
the matter in these type of problems. To tackle this issue we will rephrase the
problem in terms of an attenuated ray transform.

Consider W WD U � Id W SM ! Cn�n, where as before Cn�n stands for the
set of all n� n complex matrices. Clearly W satisfies

XW CAW �WB D B �A; (5)
W j@.SM / D 0: (6)

We introduce a new connection OA on the trivial bundle M �Cn�n as follows:
given a matrix R 2 Cn�n we define OA.R/ WDAR�RB. One easily checks that
OA is Hermitian if A and B are. Then equations (5) and (6) are of the form:�

XuCAuD�f;

uj@.SM / D 0:

where A is a unitary connection, f W SM ! CN is a smooth function linear in
the velocities, u W SM ! CN is a function that we would like to prove smooth
and only dependent on x 2 M and N D n � n. As we will see shortly this
amounts to understanding which functions f linear in the velocities are in the
kernel of the attenuated ray transform of the connection A.

First recall that in the scalar case, the attenuated ray transform Iaf of a
function f 2 C1.SM;C/ with attenuation coefficient a 2 C1.SM;C/ can be
defined as the integral

Iaf .x; v/ WD

Z �.x;v/

0

f .'t .x; v//exp
�Z t

0

a.'s.x; v// ds

�
dt;

.x; v/ 2 @C.SM /:

Alternatively, we may set Iaf WD uj@C.SM / where u is the unique solution of
the transport equation

XuC auD�f in SM ; uj@�.SM / D 0:

The last definition generalizes without difficulty to the case of connections.
Assume that A is a unitary connection and let f 2 C1.SM;Cn/ be a vector
valued function. Consider the following transport equation for u W SM ! Cn,

XuCAuD�f in SM ; uj@�.SM / D 0:
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On a fixed geodesic the transport equation becomes a linear ODE with zero
initial condition, and therefore this equation has a unique solution uD uf .

Definition 3.1. The attenuated ray transform of f 2 C1.SM;Cn/ is given by

IAf WD uf j@C.SM /:

We note that IA acting on sums of 0-forms and 1-forms always has a nontrivial
kernel, since

IA.dpCAp/D 0 for any p 2 C1.M;Cn/ with pj@M D 0:

Thus from the ray transform IAf one only expects to recover f up to an element
having this form.

The transform IA also has an integral representation. Consider the unique
matrix solution UA W SM ! U.n/ from above. Then it is easy to check that

IAf .x; v/D

Z �.x;v/

0

U�1
A .�t .x; v//f .�t .x; v// dt:

We are now in a position to state the next main question:

Question III (kernel of IA). Let .M;g/ be a compact simple Riemannian man-
ifold and let A be a unitary connection. Assume that f W SM ! Cn is a
smooth function of the form F.x/C j̨ .x/v

j , where F WM ! Cn is a smooth
function and ˛ is a Cn-valued 1-form. If IA.f /D 0, is it true that F D 0 and
˛D dApD dpCAp, where p WM !Cn is a smooth function with pj@M D 0?

As explained above a positive answer to Question III gives a positive answer
to Question I. The next recent result provides a full answer to Question III in the
two-dimensional case:

Theorem 3.2 [Paternain et al. 2011a]. Let M be a compact simple surface.
Assume that f W SM ! Cn is a smooth function of the form F.x/C j̨ .x/v

j ,
where F W M ! Cn is a smooth function and ˛ is a Cn-valued 1-form. Let
also A W TM ! u.n/ be a unitary connection. If IA.f / D 0, then F D 0 and
˛ D dAp, where p WM ! Cn is a smooth function with pj@M D 0.

Let us explicitly state the positive answer to Question I in the case of surfaces:

Theorem 3.3 [Paternain et al. 2011a]. Assume M is a compact simple surface
and let A and B be two unitary connections. Then CA D CB implies that there
exists a smooth U WM ! U.n/ such that

U j@M D Id and B D U�1dU CU�1AU:
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We will provide a sketch of the proof of Theorem 3.2 in the next section, but
first we survey some prior results on this topic.

In the case of Euclidean space with the Euclidean metric the attenuated ray
transform is the basis of the medical imaging technology of SPECT and has been
extensively studied; see [Finch 2003] for a review. We remark that in connection
with injectivity results for ray transforms, there is great interest in reconstruction
procedures and inversion formulas. For the attenuated ray transform in R2 with
Euclidean metric and scalar attenuation function, an explicit inversion formula
was proved by R. Novikov [2002a]. A related formula also including 1-form
attenuations appears in [Boman and Strömberg 2004], inversion formulas for
matrix attenuations in Euclidean space are given in [Eskin 2004; Novikov 2002b],
and the case of hyperbolic space H2 is considered in [Bal 2005].

In our general geometric setting an essential contribution is made in the
paper [Salo and Uhlmann 2011] in which it is was shown that the attenuated
ray transform is injective in the scalar case with a 2 C1.M;C/ for simple
two dimensional manifolds. This paper also contains the proof of existence of
holomorphic integrating factors of a for arbitrary simple surfaces; a result that
extends to the case when a is a 1-form and that will be crucial in the proof of
Theorem 3.2.

Various versions of Theorem 3.3 have been proved in the literature. Sharafut-
dinov [2000] proves the theorem assuming that the connections are C 1 close to
another connection with small curvature (but in any dimension). In the case of
domains in the Euclidean plane the theorem was proved by Finch and Uhlmann
[2001] assuming that the connections have small curvature and by G. Eskin
[2004] in general. R. Novikov [2002b] considers the case of connections which
are not compactly supported (but with suitable decay conditions at infinity) and
establishes local uniqueness of the trivial connection and gives examples in which
global uniqueness fails (existence of “ghosts”). His examples are based on a
remarkable connection between the Bogomolny equation in Minkowski .2C 1/-
space and the scattering data associated with the transport equation considered
above. As explained in [Ward 1988] (see also [Dunajski 2010, Section 8.2.1]),
certain soliton solutions A have the property that when restricted to space-like
planes the scattering data is trivial. In this way one obtains connections in R2 with
the property of having trivial scattering data but which are not gauge equivalent
to the trivial connection. Of course these pairs are not compactly supported in R2

but they have a suitable decay at infinity. Motivated by this L. Mason obtained a
full classification of U.n/ transparent connections for the round metric on S2

(unpublished) using methods from twistor theory as in [Mason 2006].
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4. Sketch of proof of Theorem 3.2

Let .M;g/ be a compact oriented two dimensional Riemannian manifold with
smooth boundary @M . As before SM will denote the unit circle bundle which is
a compact 3-manifold with boundary given by @.SM /Df.x; v/2SM W x2@M g.
Since M is assumed oriented there is a circle action on the fibers of SM

with infinitesimal generator V called the vertical vector field. It is possible
to complete the pair X;V to a global frame of T .SM / by considering the
vector field X? WD ŒX;V �. There are two additional structure equations given
by X D ŒV;X?� and ŒX;X?� D �KV where K is the Gaussian curvature of
the surface. Using this frame we can define a Riemannian metric on SM by
declaring fX;X?;V g to be an orthonormal basis and the volume form of this
metric will be denoted by d†3. The fact that fX;X?;V g are orthonormal
together with the commutator formulas implies that the Lie derivative of d†3

along the three vector fields vanishes.
Given functions u; v W SM ! Cn we consider the inner product

.u; v/D

Z
SM

hu; viCn d†3:

Since X;X?;V are volume preserving we have .V u; v/D�.u;V v/ for u; v 2

C1.SM;Cn/, and if additionally uj@.SM / D 0 or vj@.SM / D 0 then also
.Xu; v/D�.u;Xv/ and .X?u; v/D�.u;X?v/.

The space L2.SM;Cn/ decomposes orthogonally as a direct sum

L2.SM;Cn/D
M
k2Z

Hk

where Hk is the eigenspace of �iV corresponding to the eigenvalue k. A
function u 2L2.SM;Cn/ has a Fourier series expansion

uD

1X
kD�1

uk ;

where uk 2Hk . Let �k D C1.SM;Cn/\Hk .
An important ingredient is the fiberwise Hilbert transform H. This can be

introduced in various ways (see [Pestov and Uhlmann 2005; Salo and Uhlmann
2011]), but perhaps the most informative approach is to indicate that it acts
fiberwise and for uk 2�k ,

H.uk/D�sgn.k/ iuk
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where we use the convention sgn.0/D0. Moreover, H.u/D
P

k H.uk/. Observe
that

.IdC iH/uD u0C 2

1X
kD1

uk and .Id� iH/uD u0C 2

�1X
kD�1

uk :

Definition 4.1. A function u W SM ! Cn is said to be holomorphic if

.Id� iH/uD u0:

Equivalently, u is holomorphic if uk D 0 for all k < 0. Similarly, u is said to be
antiholomorphic if .IdC iH/uD u0 which is equivalent to saying that uk D 0

for all k > 0.

As in previous works the following commutator formula from [Pestov and
Uhlmann 2005] will come into play:

ŒH;X �uDX?u0C .X?u/0; u 2 C1.SM;Cn/: (7)

We will give a proof of this formula in Lemma 6.7.
It is easy to extend this bracket relation so that it includes a connection A. We

often think of A as a function restricted to SM . We also think of A as acting on
smooth functions u 2 C1.SM;Cn/ by multiplication. Note that V .A/ is a new
function on SM which can be identified with the restriction of �?A to SM , so
we will simply write V .A/D�?A. Here ? denotes the Hodge star operator of
the metric g.

Lemma 4.2. For any smooth function u we have

ŒH;X CA�uD .X?C?A/.u0/Cf.X?C?A/.u/g0:

The proof makes use of this regularity result:

Proposition 4.3 [Paternain et al. 2011a, Proposition 5.2]. Let f W SM ! Cn be
smooth with IA.f /D 0. Then uf W SM ! Cn is smooth.

The next proposition will provide the holomorphic integrating factors in the
scalar case.

Proposition 4.4 [Paternain et al. 2011a, Theorem 4.1]. Let .M;g/ be a simple
two-dimensional manifold and f 2 C1.SM;C/. The following conditions are
equivalent.

(a) There exist a holomorphic w 2 C1.SM;C/ and an antiholomorphic Qw 2
C1.SM;C/ such that Xw DX Qw D�f .

(b) f .x; v/D F.x/C j̨ .x/v
j where F is a smooth function on M and ˛ is a

1-form.
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The existence of holomorphic and antiholomorphic solutions for the case
˛ D 0 was first proved in [Salo and Uhlmann 2011], but here we will need the
case in which F D 0, but ˛ is nonzero.

Another key ingredient is an energy identity or a “Pestov type identity”, which
generalizes the standard Pestov identity [Sharafutdinov 1994] to the case where a
connection is present. There are several predecessors for this formula [Vertgeı̆m
1991; Sharafutdinov 2000] and its use for simple surfaces is in the spirit of
[Sharafutdinov and Uhlmann 2000; Dairbekov and Paternain 2007]. Recall that
the curvature FA of the connection A is defined as FA D dACA^A and ?FA

is a function ?FA WM ! u.n/.

Lemma 4.5 (energy identity). If u W SM ! Cn is a smooth function such that
uj@.SM / D 0, then

k.XCA/V uk2�.K V u;V u/�.?FAu;V u/DkV .XCA/.u/k2�k.XCA/uk2:

Remark 4.6. The same energy identity holds true for closed surfaces.

To use the energy identity we need to control the signs of various terms. The
first easy observation is the following:

Lemma 4.7. Assume .X CA/u D F.x/C j̨ .x/v
j , where F WM ! Cn is a

smooth function and ˛ is a Cn-valued 1-form. Then

kV .X CA/uk2�k.X CA/uk2 D�kFk2 � 0:

Proof. It suffices to note the identities

kV .X CA/uk2 D kV˛k2 D k˛k2 and kF C˛k2 D k˛k2CkFk2: �

Next we have the following lemma due to the absence of conjugate points on
simple surfaces (compare with [Dairbekov and Paternain 2007, Theorem 4.4]):

Lemma 4.8. Let M be a compact simple surface. If u W SM ! Cn is a smooth
function such that uj@.SM / D 0, then

k.X CA/V uk2� .K V u;V u/� 0:

Proof. Consider a smooth function a WSM!R which solves the Riccati equation
X.a/C a2CK D 0. These exist by the absence of conjugate points (see for
example [Sharafutdinov 1999, Theorem 6.2.1] or the proof of Lemma 4.1 in
[Sharafutdinov and Uhlmann 2000]). Set for simplicity  D V .u/. Clearly
 j@.SM / D 0.

Using that A is skew-Hermitian, we compute

j.X CA/. /�a j2Cn D j.X CA/. /j2Cn�2<h.X CA/. /; a iCnCa2
j j2Cn

D j.X CA/. /j2Cn�2a<hX. /;  iCnCa2
j j2Cn :
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Using the Riccati equation we have

X.aj j2/D .�a2
�K/j j2C 2a<hX. /;  iCn I

thus

j.X CA/. /� a j2Cn D j.X CA/. /j2Cn �Kj j2Cn �X.aj j2Cn/:

Integrating this equality with respect to d†3 and using that  vanishes on
@.SM / we obtain

k.X CA/. /k2� .K  ; /D k.X CA/. /� a k2 � 0: �

Theorem 4.9. Let f W SM ! Cn be a smooth function. Suppose u W SM ! Cn

satisfies �
XuCAuD�f;

uj@.SM / D 0:

Then if fk D 0 for all k � �2 and i?FA.x/ is a negative definite Hermitian
matrix for all x 2M , the function u must be holomorphic. Moreover, if fk D 0

for all k � 2 and i?FA.x/ is a positive definite Hermitian matrix for all x 2M ,
the function u must be antiholomorphic.

Proof. Let us assume that fk D 0 for k � �2 and i?FA is a negative definite
Hermitian matrix; the proof of the other claim is similar.

We need to show that .Id� iH/u only depends on x. We apply X CA to it
and use Lemma 4.2 together with .Id� iH/f D f0C 2f�1 to derive

.X CA/Œ.Id� iH/u�

D�f � i.X CA/.Hu/

D�f � i.H..X CA/.u//� .X?C?A/.u0/�f.X?C?A/.u/g0/

D�.Id� iH/.f /C i.X?C?A/.u0/C if.X?C?A/.u/g0

D�f0� 2f�1C i.X?C?A/.u0/C if.X?C?A/.u/g0

D F.x/C˛x.v/;

where F WM ! Cn and ˛ is a Cn-valued 1-form. Now we are in good shape to
use the energy identity from Lemma 4.5. We will apply it to

v D .Id� iH/uD u0C 2

�1X
kD�1

uk :

We know from Lemma 4.7 that its right-hand side is � 0 and using Lemma 4.8
we deduce

.?FAv;V v/� 0:
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On the other hand,

.?FAv;V v/D�4
�1P

kD�1

k.i?FAuk ;uk/

and since i?FA is negative definite this forces uk D 0 for all k < 0. �
Outline of proof of Theorem 3.2. Consider the area form !g of the metric g.
Since M is a disk there exists a smooth 1-form ' such that !g D d'. Given
s 2 R, consider the Hermitian connection

As WDA� is' Id:

Clearly its curvature is given by

FAs
D FA� is!gIdI

therefore
i?FAs

D i?FAC sId;

from which we see that there exists s0 > 0 such that for s > s0, i?FAs
is positive

definite and for s < �s0, i?FAs
is negative definite.

Since IA.f /D 0, Proposition 4.3 implies that there is a smooth u WSM !Cn

such that .X CA/.u/ D �f and uj@.SM / D 0 (to abbreviate the notation we
write u instead of uf ).

Let esw be an integrating factor of�is'. In other wordsw WSM!C satisfies
X.w/D i'. By Proposition 4.4 we know we can choose w to be holomorphic
or antiholomorphic. Observe now that us WD eswu satisfies usj@.SM / D 0 and
solves

.X CAs/.us/D�eswf:

Choose w to be holomorphic. Since f DF.x/C j̨ .x/v
j , the function eswf

has the property that its Fourier coefficients .eswf /k vanish for k ��2. Choose
s such that s<�s0 so that i?FAs

is negative definite. Then Theorem 4.9 implies
that us is holomorphic and thus uD e�swus is also holomorphic.

Choosing w antiholomorphic and s > s0 we show similarly that u is antiholo-
morphic. This implies that uD u0 which together with .X CA/uD�f , gives
dAu0 D�f . If we set p D�u0 we see right away that F � 0 and ˛ D dAp as
desired. �

5. Applications to tensor tomography

In this section we explain how the ideas of the previous section can be used to
tackle a well-known inverse problem which is a priori unrelated with unitary
connections.
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We consider the geodesic ray transform acting on symmetric m-tensor fields
on M . When the metric is Euclidean and mD 0 this transform reduces to the
usual X-ray transform obtained by integrating functions along straight lines.
More generally, given a symmetric (covariant) m-tensor field

f D fi1���im
dxi1 ˝ � � �˝ dxim

on M , we define the corresponding function on SM by

f .x; v/D fi1���im
vi1 � � � vim :

The ray transform of f is defined by

If .x; v/D

Z �.x;v/

0

f .�t .x; v// dt; .x; v/ 2 @C.SM /;

where �t denotes the geodesic flow of the Riemannian metric g. If h is a
symmetric .m� 1/-tensor field, its inner derivative dh is a symmetric m-tensor
field defined by dh D �rh, where � denotes symmetrization and r is the
Levi-Civita connection. A direct calculation in local coordinates shows that

dh.x; v/DXh.x; v/;

where X as before is the geodesic vector field associated with �t . If additionally
hj@M D 0, then one clearly has I.dh/ D 0. The ray transform on symmetric
m-tensors is said to be s-injective if these are the only elements in the kernel. The
terminology arises from the fact that any tensor field f may be written uniquely
as f D f sC dh, where f s is a symmetric m-tensor with zero divergence and
h is an .m� 1/-tensor with hj@M D 0 (see [Sharafutdinov 1994]). The tensor
fields f s and dh are called respectively the solenoidal and potential parts of the
tensor f . Saying that I is s-injective is saying precisely that I is injective on
the set of solenoidal tensors.

The next result shows that the ray transform on simple surfaces is s-injective for
tensors of any rank. This settles a long standing question in the two-dimensional
case [Pestov and Sharafutdinov 1988; Sharafutdinov 1994, Problem 1.1.2].

Theorem 5.1 [Paternain et al. 2011b]. Let .M;g/ be a simple surface and let
m� 0. If f is a smooth symmetric m-tensor field on M which satisfies If D 0,
then f D dh for some smooth symmetric .m � 1/-tensor field h on M with
hj@M D 0. (If mD 0, then f D 0.)

It is not the objective of this article to discuss the vast literature on the
tensor tomography problem for simple manifolds. Instead we refer the reader
to [Sharafutdinov 1994] and to the references in [Paternain et al. 2011b] and
we limit ourselves to supplying a proof of Theorem 5.1 based on the ideas of



382 GABRIEL P. PATERNAIN

the previous section. The proof reduces to proving the next result. We say that
f 2 C1.SM;C/ has degree m if fk D 0 for jkj � mC 1 and m � 0 is the
smallest nonnegative integer with that property.

Proposition 5.2. Let .M;g/ be a simple surface. Assume that u 2 C1.SM;C/

satisfies XuD �f in SM with uj@.SM / D 0. If f 2 C1.SM;C/ has degree
m� 1, then u has degree m� 1. If f has degree 0, then uD 0.

Proof of Theorem 5.1. Let f be a symmetric m-tensor field on SM and suppose
that If D 0. We write

u.x; v/ WD

Z �.x;v/

0

f .�t .x; v//; .x; v/ 2 SM:

Then uj@.SM / D 0, and also u 2 C1.SM / by Proposition 4.3.
Now f has degree m, and u satisfies XuD �f in SM with uj@.SM / D 0.

Proposition 5.2 implies that u has degree m� 1 (and uD 0 if mD 0). We let
h WD �u. It is not hard to see that h gives rise to a symmetric .m�1/-tensor still
denoted by h. Since X.h/D f , this implies that dh and f agree when restricted
to SM and thus dhD f . This proves the theorem. �

Proposition 5.2 is in turn an immediate consequence of the next two results.

Proposition 5.3. Let .M;g/ be a simple surface. Assume that u 2 C1.SM;C/

satisfies XuD�f in SM with uj@.SM / D 0. If m� 0 and if f 2 C1.SM;C/

is such that fk D 0 for k � �m� 1, then uk D 0 for k � �m.

Proposition 5.4. Let .M;g/ be a simple surface. Assume that u 2 C1.SM;C/

satisfies XuD�f in SM with uj@.SM / D 0. If m� 0 and if f 2 C1.SM;C/

is such that fk D 0 for k �mC 1, then uk D 0 for k �m.

We will only prove Proposition 5.3, the proof of the other result being com-
pletely analogous. We shall need the following result from [Salo and Uhlmann
2011, Proposition 5.1]:

Proposition 5.5. Let .M;g/ be a simple surface and let f be a smooth holomor-
phic (antiholomorphic) function on SM . Suppose u 2 C1.SM;C/ satisfies

XuD�f in SM; uj@.SM / D 0:

Then u is holomorphic (antiholomorphic) and u0 D 0.

Proof of Proposition 5.3. Suppose that u is a smooth solution of XuD�f in
SM where fk D 0 for k ��m�1 and uj@.SM /D 0. We choose a nonvanishing
function r 2�m and define the 1-form

A WD �r�1Xr:
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Then ru solves the problem

.X CA/.ru/D�rf in SM; ruj@.SM / D 0:

Note that rf is a holomorphic function. Next we employ a holomorphic inte-
grating factor: by Proposition 4.4 there exists a holomorphic w 2 C1.SM;C/

with Xw DA. The function ewru then satisfies

X.ewru/D�ewrf in SM; ewruj@.SM / D 0:

The right-hand side, ewrf , is holomorphic. Now Proposition 5.5 implies that
the solution ewru is also holomorphic and .ewru/0 D 0. Looking at Fourier
coefficients shows that .ru/k D 0 for k � 0, and therefore uk D 0 for k � �m

as required. �

Finally, let us explain the choice of r and A in the proof in more detail.
Since M is a disk we can consider global isothermal coordinates .x;y/ on
M such that the metric can be written as ds2 D e2�.dx2 C dy2/ where � is
a smooth real-valued function of .x;y/. This gives coordinates .x;y; �/ on
SM where � is the angle between a unit vector v and @=@x. Then �m consists
of all functions a.x;y/eim� where a 2 C1.M;C/. We choose the specific
nonvanishing function

r.x;y; �/ WD eim� :

In the .x;y; �/ coordinates the geodesic vector field X is given by:

X D e��
�

cos �
@

@x
C sin �

@

@y
C

�
�
@�

@x
sin � C

@�

@y
cos �

�
@

@�

�
: (8)

The connection AD�Xr=r has the form

AD ime��
�
�
@�

@y
cos � C

@�

@x
sin �

�
D im

�
�
@�

@y
dxC

@�

@x
dy

�
:

Here as usual we identify A with A.x; v/ where .x; v/ 2 SM . This shows
that the connection A is essentially the Levi-Civita connection of the metric g

on the tensor power bundle TM˝m, and since .X CA/r D 0 we have that r

corresponds to a section of the pull-back bundle ��.TM˝m/ whose covariant
derivative along the geodesic vector field vanishes (here � W SM !M is the
standard projection).

A second proof of Proposition 5.4 in the same spirit may be found in [Paternain
et al. 2011b].
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6. Closed manifolds

In this section we will discuss Question II, but before embarking into that we
need some preliminary discussion on cocycles with values in a Lie group over a
flow �t .

Let N be a closed manifold and �t WN !N a smooth flow with infinitesimal
generator X . Let G be a compact Lie group; for our purposes it is enough to
think of G as a compact matrix group like U.n/.

Definition 6.1. A G-valued cocycle over the flow �t is a map C WN �R!G

that satisfies
C.x; t C s/D C.�tx; s/C.x; t/

for all x 2N and s; t 2 R.

In this paper the cocycles will always be smooth. In this case C is determined
by its infinitesimal generator B WN ! g given by

B.x/ WD �
d

dt

ˇ̌̌̌
tD0

C.x; t/:

The cocycle can be recovered from B as the unique solution to

d

dt
C.x; t/D�dRC.x;t/.B.�tx//; C.x; 0/D Id;

where Rg is right translation by g 2 G. We will indistinctly use the word
“cocycle” for C or its infinitesimal generator B.

Definition 6.2. The cocycle C is said to be cohomologically trivial if there exists
a smooth function u WN !G such that

C.x; t/D u.�tx/u.x/
�1

for all x 2N and t 2 R.

Observe that the condition of being cohomologically trivial can be equivalently
expressed in terms of the infinitesimal generator B of the cocycle by saying that
there exists a smooth function u WN !G that satisfies the equation

dxu.X.x//C dIdRu.x/.B.x//D 0

for all x 2N . If G is a matrix group we can write this more succinctly as

XuCBuD 0

where it is understood that differentiation and multiplication is in the set of
matrices.
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Definition 6.3. A cocycle C is said to satisfy the periodic orbit obstruction
condition if C.x;T /D Id whenever �T x D x.

Obviously a cohomologically trivial cocycle satisfies the periodic orbit ob-
struction condition. The converse turns out to be true for transitive Anosov flows:
this is one of the celebrated Livšic theorems [Livšic 1971; 1972; Nit,ică and
Török 1998].

Theorem 6.4 (smooth Livšic periodic data theorem). Suppose �t is a smooth
transitive Anosov flow. Let C be a smooth cocycle such that C.x;T / D Id
whenever �T x D x. Then C is cohomologically trivial.

Given two G-valued cocycles C1 and C2 we shall say that they are coho-
mologous (or X -cohomologous) if there is a smooth function u WN !G such
that

C1.x; t/D u.�tx/C2.x; t/u.x/
�1

for all x 2N and t 2 R. Clearly if C1 and C2 are cohomologous, C1.x;T /D

u.x/C2.x;T /u.x/
�1, whenever �T x D x. An extension of the Livšic theorem

due to W. Parry [1999] together with the regularity result from [Nit,ică and Török
1998] gives the following extension of Theorem 6.4:

Theorem 6.5 (smooth Livšic periodic data theorem for two cocycles). Suppose
�t is a smooth transitive Anosov flow. Let C1 and C2 be two smooth cocycles
such that there is a Hölder continuous function u WN !G for which C1.x;T /D

u.x/C2.x;T /u.x/
�1 whenever �T x D x. Then C and D are cohomologous.

Observe that if G is a matrix group then two cocycles C1 and C2 are coho-
mologous if and only if their infinitesimal generators B1 and B2 are related by a
smooth function u WN !G such that

XuCB1u�uB2 D 0

or equivalently

B2 D u�1XuCu�1B1u:

Note the formal similarity of this equation with the one that defines gauge
equivalent connections. One could take the viewpoint that the main question
raised in this paper is to decide when it is possible to go from cohomology
defined by the operator X to cohomology defined by d in the geometric situation
when X is the geodesic vector field. Let us be a bit more precise about this.

Let .M;g/ be a closed Riemannian manifold with unit tangent bundle SM and
projection � W SM !M . The geodesic flow �t acts on SM with infinitesimal
generator X .
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Consider the trivial bundle M �Cn and let A stand for the set of all unitary
connections. Given A 2A, we have a pull-back connection ��A on the bundle
SM �Cn and we denote by ��A the set of all such connections.

Each connection A gives rise to a cocycle over the geodesic flow whose
generator is ��A.X / W SM ! u.n/. Note that ��A.X /.x; v/ D A.x; v/, in
words, ��A.X / is the restriction of A W TM ! u.n/ to SM .

The cocycle C associated with this generator is nothing but parallel transport
along geodesics, so that C W SM �R! U.n/ solves

d

dt
C.x; v; t/CA.�t .x; v//C.x; v; t/D 0; C.x; v; 0/D Id :

On the set ��A we impose the equivalence relation �X of being X -cohomo-
logous and on A we have the equivalence relation � given by gauge equivalence.
There is a natural map induced by � :

A=� 7! ��A=�X: (9)

Suppose now we have two connections A1 and A2 as in Question II and
the geodesic flow is Anosov. Then Theorem 6.5 implies that ��A1.X / and
��A2.X / are cohomologous cocycles, that is, there is a smooth map u W SM !

U.n/ such that on SM we have the cohomological equation

A2 D u�1XuCu�1A1u: (10)

This is the main dynamical input, that allows the passage from closed geodesics
to X -cohomology. What is left is the geometric problem of deciding if the map
in (9) is injective. Suppose for a moment that for some reason we can show
that u.x; v/ only depends on x. Then (10) means exactly that A1 and A2 are
gauge equivalent since XuD du. Thus understanding the dependence of u in the
velocities is crucial and this often can be achieved using Pestov type identities
and/or Fourier analysis as in the sketch of proof of Theorem 3.2 before. Let us
see a good example of this in the simplest possible case in which nD 1. Since
U.1/D S1 is abelian we can reduce (10) to the cohomologically trivial case

XuCAuD 0

where ADA1�A2 and u W SM ! S1. Write AD i� , where � is an ordinary
real-valued 1-form. Then

du.X /C i�uD 0: (11)

The function u gives rise to a real-valued closed 1-form in SM given by ' WD du
iu

.
Since �� WH 1.M;R/!H 1.SM;R/ is an isomorphism when M is different
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from the 2-torus, there exists a closed 1-form ! in M and a smooth function
f W SM ! R such that

' D ��!C df:

(It is easy to see that if �t is Anosov, then M cannot be a 2-torus since for
example, �1.M / must grow exponentially.) When this equality is applied to X

and combined with (11) one obtains

��x.v/�!x.v/D df .X.x; v//DX.f /.x; v/

for all .x; v/ 2 SM . It is known that this implies that � C! is exact and that f
only depends on x. This was proved by V. Guillemin and D. Kazhdan [1980a] for
surfaces of negative curvature, by C. Croke and Sharafutdinov [1998] for arbitrary
manifolds of negative curvature and by N.S. Dairbekov and Sharafutdinov [2003]
for manifolds whose geodesic flow is Anosov. It follows easily now that u only
depends on x and hence A1 and A2 must be gauge equivalent and thus for nD 1

we have a full answer. Before going further let us explain why if we have a
smooth solution u to the cohomological equation

XuD �

where � is a 1-form, then � is exact and u only depends on x. We can see this
for dim M D 2 using the energy identity from Lemma 4.5 for the case AD 0.
Since � is a 1-form, the right-hand side is zero as in Lemma 4.7; thus

kXV uk2� .KV u;V u/D 0: (12)

If the flow is Anosov there are two solutions r s;u of the Riccati equation X.r/C

r2CK D 0. These solutions are related to the stable and unstable bundles as
follows: �X?C r s;uV 2 Es;u and r s � ru never vanishes; for an account of
these results we refer to [Paternain 1999]. Hence using the proof of Lemma 4.8
and (12) we deduce:

XV u� r s;uV uD 0

from which it follows that .r s � ru/V uD 0 and thus V uD 0. This shows that u

only depends on x and therefore � is exact.
Now that we have a better understanding of the abelian case n D 1, let us

go back to the general equation (10). As in Section 3 we can introduce a new
unitary connection OA on the trivial bundle M �Cn�n as follows: given a matrix
R 2 Cn�n we define OA.R/ WDAR�RB. Then (10) is the form

XuCAuD 0

at the price of course, of increasing the rank of our trivial vector bundle. Note
that F OA.R/D FAR�RFB .
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This suggests that in general we should study the following problem on closed
manifolds. Given a unitary connection A on M �Cn and f WSM!Cn a smooth
function of the form F.x/C j̨ .x/v

j , where F WM ! Cn is a smooth function
and ˛ is a Cn-valued 1-form, describe the set of smooth solutions u W SM !Cn

to the equation

XuCAuD�f: (13)

Unfortunately we know very little about (13) in the general Anosov case.
However for closed surfaces of negative curvature we have the following fun-
damental result which should be regarded as an extension of [Guillemin and
Kazhdan 1980a, Theorem 3.6].

The Fourier analysis that we set up in Section 4 works equally well in the case
of closed oriented surfaces. Given u 2 C1.SM;Cn/, we write uD

P
m2Z um,

where um2�m. We will say that u has degree N , if N is the smallest nonnegative
integer such that um D 0 for all m with jmj �N C 1.

Theorem 6.6 [Paternain 2009, Theorem 5.1]. If M is a closed surface of negative
curvature and f W SM ! Cn has finite degree, then any smooth solution u of
XuCAuD�f has finite degree.

Below we shall sketch the proof of this theorem, but first we need some
preliminaries. As in [Guillemin and Kazhdan 1980a] we introduce the first-order
elliptic operators

�C; �� W C
1.SM;Cn/! C1.SM;Cn/

given by

�C WD .X C iX?/=2; �� WD .X � iX?/=2:

Clearly X D �CC ��. We have

�C W�m!�mC1; �� W�m!�m�1; .�C/
�
D���:

Before going further, let us use these operators to give a short proof of the
bracket relation (7):

Lemma 6.7. The following formula holds:

ŒH;X �uDX?u0C .X?u/0; u 2 C1.SM;Cn/:

Proof. It suffices to show that

ŒIdC iH;X �uD iX?u0C i.X?u/0:
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Since X D�CC�� we need to compute ŒIdCiH; �˙�, so let us find ŒIdCiH; �C�u,
where uD

P
k uk . Recall that .IdC iH/uD u0C 2

P
k�1 uk . We find:

.IdC iH/�CuD �Cu�1C 2
X
k�0

�Cuk ;

�C.IdC iH/uD �Cu0C 2
X
k�1

�Cuk :

Thus
ŒIdC iH; �C�uD �Cu�1C �Cu0:

Similarly we find
ŒIdC iH; ���uD���u0� ��u1:

Therefore using that iX? D �C� �� we obtain

ŒIdC iH;X �uD iX?u0C i.X?u/0

as desired. �

To deal with the equation XuCAuD�f , we introduce the “twisted” operators

�C WD �CCA1; �� WD ��CA�1;

where ADA�1CA1 and

A1 WD
A� iV .A/

2
2�1; A�1 WD

AC iV .A/

2
2��1:

This decomposition corresponds precisely with the usual decomposition of u.n/-
valued 1-forms on a surface:

�1.M; u.n//˝CD�1;0.M; u.n//˚�0;1.M; u.n//;

where ?D�i on �1;0 and ?D i on �0;1 (here ? is the Hodge star operator of
the metric).

We also have

�C W�m!�mC1; �� W�m!�m�1; .�C/
�
D���:

The equation XuCAuD�f is now �C.u/C��.u/D�f .

Sketch of proof of Theorem 6.6. We shall use the following equality proved in
[Paternain 2009, Corollary 4.4]. Given u 2 C1.SM;Cn/ we have

k�Cuk2 D k��uk2C
i

2

�
.K V u;u/C .?FAu;u/

�
;
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where K is the Gaussian curvature of the metric and FA is the curvature of A.
This L2 identity is a close relative of the identity in Lemma 4.5. For um 2�m

we have

k�Cumk
2
D k��umk

2
C

1

2

�
.i?FA�mK Id/um;um

�
:

Hence if K < 0, there exist a constant c > 0 and a positive integer ` such that

k�Cumk
2
� k��umk

2
C ckumk

2 (14)

for all m � `. Projecting the equation XuCAuD �f onto �m-components
we obtain

�C.um�1/C��.umC1/D�fm (15)

for all m 2 Z. Since f has finite degree, combining (15) and (14) we obtain

k�C.umC1/k � k�C.um�1/k (16)

for all m sufficiently large. Since the function u is smooth, �C.um/ must tend
to zero in the L2-topology as m!1. It follows from (16) that �C.um/D 0

for all m sufficiently large. However, (14) implies that �C is injective for m

large enough and thus um D 0 for all m large enough.
A similar argument shows that umD 0 for all m sufficiently large and negative

thus concluding that u has finite degree as desired. �

A glance at the proof shows that we can obtain the same finiteness result under
the following weaker hypothesis: K � 0 and the support of ?FA is contained in
the region where K < 0. A more careful inspection shows the following:

Corollary 6.8. Suppose that the Hermitian matrix ˙i?FA.x/ � K.x/ Id is
positive definite for all x 2M and that f has degree N . Then, any solution u of
XuCAuD�f must have degree N � 1. If N D 0, then f D 0 and uD u.x/

with dAuD 0.

Let us apply these ideas to show that for closed negatively curved surfaces, the
map (9) is locally injective at flat connections. If A and B are two connections
with sufficiently small curvatures, then F OA will be small enough so that the
hypothesis of Corollary 6.8 is satisfied. Hence the map u solving (10) depends
only on x 2 M and A and B must be gauge equivalent. Putting everything
together we have shown:

Theorem 6.9. Let M be a closed negatively curved surface. There is " > 0 such
that if A and B are two connections as in Question II with kFAkC 0 , kFBkC 0 <",
then A and B are gauge equivalent.
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When A is the trivial connection, this is essentially [Paternain 2009, Theorem A].
Let us see an easy example which shows that the result in the theorem fails for

nD 2 without assumptions on the smallness of the curvature. The tangent bundle
of an orientable Riemannian surface M is naturally a Hermitian line bundle. It
is certainly not trivial in general, but it carries the Levi-Civita connection which
is easily seen to be transparent. Indeed, the parallel transport along a closed
geodesic 
 must fix P
 .0/ and consequently any vector orthogonal to it since the
parallel transport is an isometry and the surface is orientable. The Levi-Civita
connection on T �M is also transparent and thus we obtain a transparent unitary
connection on TM ˚T �M . But TM ˚T �M has zero first Chern class and
thus it is unitarily equivalent to the trivial bundle M � C2. In this way we
obtain a transparent connection on M �C2 which in general is not equivalent to
the trivial connection (it is nonflat if the Gaussian curvature is not identically
zero). Taking higher tensor powers of TM and T �M and adding them we
obtain more examples of transparent connections all arising from the Levi-Civita
connection. It turns out that these are not the only examples, but the failure of
the uniqueness can be fully understood at least in some important cases. This
will be the content of the next section, but before that, we would like to take
another look at Theorem 6.6 in the abelian case nD 1.

When nD 1, AD i� and the set �m can be identified with the set of smooth
sections of �˝m, where � is the canonical line bundle of M . In this case, well
known results on the theory of Riemann surfaces imply that �� is surjective for
m� 2 (see for example [Duistermaat 1972]) since �� is essentially a N@A-operator
(we are assuming here that M has genus � 2); see (25) below. It follows that
�C is injective for m� 1. Hence if f has degree N and u has finite degree and
solves XuC i�uD �f , then u must have degree N � 1. Thus in the abelian
case we have:

Theorem 6.10. Suppose that M is a closed surface of negative curvature and
nD 1. If f has degree N , then any solution u of XuC i�uD �f must have
degree N � 1. If N D 0, then f D 0 and uD u.x/ with duC i�uD 0.

When n� 2, the operators �C could have nontrivial kernels for m� 1, and
this precisely gives room for the existence of transparent connections.

7. Transparent connections

We start with some motivation for the constructions in this section. How can we
construct a cohomologically trivial connection on M �C2? Let us suppose that
we start with the simplest possible nontrivial u. This would be a smooth map
u W SM ! SU.2/ such that uD u�1Cu1. We would need AD�X.u/u�1 to
be a connection, thus its Fourier expansion should have only terms of degree ˙1.
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Writing X D �CC �� we discover that A is a connection if and only if

�C.u1/u
�
�1 D ��.u�1/u

�
1 D 0:

In fact ��.u�1/u
�
1
D 0 implies �C.u1/u

�
�1
D 0 and vice versa. This can be seen

simply by conjugating each relation. So we need to ensure that:

��.u�1/u
�
1 D 0: (17)

What does this mean? Since u is unitary we have u�1u�
1
D 0 from which we

see that L WD Ker.u�1/D Im.u�
1
/ is a line subbundle of C2. Now (17) can be

rewritten as
u�1��.u

�
1/D 0

so if we pick 0 ¤ � 2 C2, then s WD u�
1
� 2 L and the equation above says

��.s/ 2L. In (22) below we will write an equation for �� in local coordinates
which shows that it is essentially a N@-operator and hence (17) is saying that L

must be a holomorphic line bundle. But there is an ample supply of these: it is
equivalent to providing a meromorphic function on M . Now we can ask, given
a holomorphic line bundle L can we find a function u W SM ! SU.2/ such that
u D u�1C u1 and Ker.u�1/ D L? We will see below that this is indeed the
case, but here is one way to think about it. Given the line bundle L consider
the unique map f WM ! su.2/ with detf D 1 (so that it hits the unit sphere
in su.2/) such that L is the eigenspace of f corresponding to the eigenvalue i .
The map u in local coordinates is now

u.x; �/D cos � IdC sin � f .x/:

Thus for every meromorphic function we obtain a cohomologically trivial connec-
tion. Are these all? Not quite, there are many more in which u has higher-order
dependence on velocities as we will see below.

We now provide details and we begin by giving a general classification result
for cohomologically trivial connections on any surface.

As before let M be an oriented surface with a Riemannian metric and let SM

be its unit tangent bundle. Let

A WD fA W SM ! u.n/ W V 2.A/D�Ag:

The set A is identified with the set of all unitary connections on the trivial bundle
M �Cn. Indeed, a function A satisfying V 2.A/CAD 0 extends to a function
on TM depending linearly on the velocities.

Recall from the previous section that A is said to be cohomologically trivial if
there exists a smooth u WSM!U.n/ such that C.x;v; t/Du.�t .x;v//u.x;v/

�1.
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Differentiating with respect to t and setting t D 0 this is equivalent to

XuCAuD 0: (18)

Let A0 be the set of all cohomologically trivial connections, that is, the set of
all A 2A such that there exists u W SM ! U.n/ for which (18) holds.

Given a vector field W in SM , let GW be the set of all u W SM ! U.n/

such that W .u/D 0, that is, first integrals of W . Note that GV is nothing but
the group of gauge transformations of the trivial bundle M �Cn.

We wish to understand A0=GV . Now let D be the set of all f W SM ! u.n/

such that
�X?.f /CVX.f /D ŒX.f /; f �

and there is u W SM ! U.n/ such that f D u�1V .u/. It is easy to check that
GX acts on D by f 7! a�1f aC a�1V .a/ where a 2GX .

Theorem 7.1. There is a one-to-one correspondence between A0=GV and
D=GX .

Proof. Forward direction: a cohomologically trivial connection A comes with a u

such that XuCAuD 0. If we set f WD u�1V .u/, then f 2D, that is, f satisfies
the PDE �X?.f /C VX.f / D ŒX.f /; f �. This a calculation (see [Paternain
2009, Theorem B] for details), but for the reader’s convenience we explain
the geometric origin of this equation. Using u we may define a connection
on SM gauge equivalent to ��A by setting B WD u�1duC u�1��Au, where
� W SM ! M is the foot-point projection. Since ��A is the pull-back of a
connection on M , the curvature FB of B must vanish when one of the entries is
the vertical vector field V . The PDE �X?.f /CVX.f /D ŒX.f /; f � arises by
combining the two equations FB.X;V /D FB.X?;V /D 0 with B.X /D 0.

Backward direction: Given f with uf D V .u/, set A WD �X.u/u�1. Then
A 2A0, that is, V 2.A/D�A; again this is a calculation done fully in Theorem
B in [Paternain 2009].

Now there are two ambiguities here. Going forward, we may change u as
long as we solve XuCAuD 0. This changes f by the action of GX . Going
backwards we may change u as long as uf D V .u/, this changes A by a gauge
transformation, that is, an element in GV . �

Note that if the geodesic flow is transitive (i.e., there is a dense orbit) the only
first integrals are the constants and thus GX D U.n/ acts simply by conjugation.
If M is closed and of negative curvature, the geodesic flow is Anosov and
therefore transitive.

The fact that the PDE describing cohomologically trivial connections arises
from zero curvature conditions is an indication of the “integrable” nature of
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the problem at hand. The existence of a Bäcklund transformation that we will
introduce shortly is another typical feature of integrable systems. Note that the
space D=GX is in some sense simpler and larger when the underlying geodesic
flow is more complicated, that is, when it is transitive GX reduces to U.n/.

The Bäcklund transformation. For the remainder of this section we restrict to
the case in which the structure group is SU.2/. This is the simplest nontrivial
case.

Suppose there is a smooth map b W SM ! SU.2/ such that f WD b�1V .b/

solves the PDE:
�X?.f /CVX.f /D ŒX.f /; f �: (19)

Then, by Theorem 7.1, A WD �X.b/b�1 defines a cohomologically trivial con-
nection on M and �?AD V .A/D�bX.f /b�1CX?.b/b

�1.

Lemma 7.2. Let g WM! su.2/ be a smooth map with det gD1 (i.e., g2D� Id).
Then there exists a W SM ! SU.2/ such that g D a�1V .a/.

Proof. Let L.x/ and U.x/ be the eigenspaces corresponding respectively to
the eigenvalues i and �i of g.x/. We have an orthogonal decomposition
C2 DL.x/˚U.x/ for every x 2M . Consider sections

˛ 2�1;0.M;C/ and ˇ 2�1;0.M;Hom.L;U //D�1;0.M;L�U /

such that j˛j2Cjˇj2D 1. Such a pair of sections always exists; for example, we
can choose a section Q̌ with a finite number of isolated zeros and then choose a
Q̨ that does not vanish on the zeros of Q̌. Then we set ˛ WD Q̨=.j Q̨ j2Cj Q̌j2/1=2

and ˇ WD Q̌=.j Q̨ j2Cj Q̌j2/1=2. Note that

N̨ 2�0;1.M;C/ and ˇ� 2�0;1.M;Hom.U;L//D�0;1.M;U �L/:

Using the orthogonal decomposition we define a W SM ! SU.2/ by

a.x; v/D

�
˛.x; v/ ˇ�.x; v/

�ˇ.x; v/ N̨ .x; v/

�
:

Clearly aD a�1C a1, where

a1 D

�
˛ 0

�ˇ 0

�
and a�1 D

�
0 ˇ�

0 N̨

�
:

It is straightforward to check that ag D V .a/. �
Remark 7.3. There is an alternative proof of this lemma along the following
lines. Consider an open set U in M over which the circle fibration � WSM !M

trivializes as U �S1, where S1 D R=2�Z. In this trivialization V D @=@� and
any solution to ag D V .a/ has the form aU WD rU .x/.cos � IdC sin � g.x//,
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where rU W U ! SU.2/ is smooth. Consider another set U 0 which trivializes
� W SM !M and which intersects U . We obtain a transition function  U U 0 W

U \ U 0 ! S1. The functions aU can be glued to define a global function
a W SM ! SU.2/ as long as

rU .x/.cos � IdC sin � g.x//D rU 0.x/.cos � 0 IdC sin � 0 g.x//

where � D � 0C U U 0.x/ and x 2 U \U 0. Hence to have a globally defined a

we need to show the existence of smooth functions rU W U ! SU.2/ such that

'U U 0.x/ WD cos. U U 0.x//IdC cos. U U 0.x//g.x/D .rU .x//
�1rU 0.x/:

The key observation is that 'U U 0 defines an SU.2/-cocycle in the sense of princi-
pal bundles. Indeed, the cocycle property 'U U 00.x/D'U U 0.x/ 'U 0U 00.x/ follows
right away from the fact that  U U 0 is an S1-cocycle. But an SU.2/-bundle over
a surface is trivial. The existence of the functions rU W U ! SU.2/ follows.

Note that by construction, Ker a˙1 coincides with the �i eigenspace of g.

Now let u WD ab W SM ! SU.2/ and let F WD .ab/�1V .ab/D b�1g bCf .

Question. When does F satisfy (19)?

If it does, then it defines (via Theorem 7.1) a new cohomologically trivial
connection given by

AF D�X.ab/.ab/�1
D�X.a/a�1

C aAa�1;

where A is the cohomologically trivial connection associated to f .
Recall that the connection A defines a covariant derivative dAgD dgC ŒA;g�.

Lemma 7.4. F satisfies (19) if and only if

�?dAg D .dAg/g: (20)

Proof. Starting with F D b�1g bCf and using that AD�X.b/b�1D bX.b�1/

we compute

X.F /D b�1 .ŒA;g�CX.g// bCX.f /:

Similarly, using X?.b/D�.?A/bC bX.f / we find

X?.F /D b�1 .Œ?A;g�CX?.g// b� ŒX.f /; b�1g b�CX?.f /:

Now we compute VX.F /; here we use that V .g/D 0. We obtain

VX.F /D Œb�1.ŒA;g�CX.g//b; f �C b�1 .Œ�?A;g�CVX.g// bCVX.f /:
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The last term we need for (19) is

ŒX.F /;F �D b�1
�
ŒA;g�CX.g/;g

�
bC

�
b�1.ŒA;g�CX.g//b; f

�
CŒX.f /; b�1g b�C ŒX.f /; f �:

Since f satisfies (19) we see that F satisfies (19) if and only if

�X?.g/CVX.g/� 2Œ?A;g�D
�
ŒA;g�CX.g/;g

�
:

Since g depends only on the base point and g2 D�Id we can rewrite this as

�2?.dgC ŒA;g�/D ŒdgC ŒA;g�;g�D 2.dgC ŒA;g�/g:

Thus F satisfies (19) if and only if

�?dAg D .dAg/g;

as claimed. �

We will now rephrase (20) in terms of holomorphic line bundles. Recall
that the connection A induces a holomorphic structure on the trivial bundle
M � C2 and on the endomorphism bundle M � C2�2. We have an operator
N@A D .dA� i?dA/=2D N@C ŒA�1; �� acting on sections f WM ! C2�2.

Set � WD .Id�ig/=2 and �? D .IdCig/=2 so that � C�? D Id. Let L.x/

be as above the eigenspace corresponding to the eigenvalue i of g.x/. Note that
� is the Hermitian orthogonal projection over L.x/D Image.�.x//.

Lemma 7.5. Let g WM ! su.2/ be a smooth map with det gD 1. The following
conditions are equivalent.

(1) �?dAg D .dAg/g.

(2) L is a N@A-holomorphic line bundle.

(3) �? N@A� D 0.

Proof. Suppose that (1) holds. Apply ? to obtain dAg D .?dAg/g. Thus

dAg� i?dAg D i.dAg� i?dAg/g:

In other words N@Ag D i.N@Ag/g D �ig.N@Ag/ (recall that g2 D � Id). Since
�D .Id�ig/=2, then N@AgD�ig.N@Ag/ is equivalent to �? N@A�D 0 which is (3).

Using the condition �2 D � , we see that �? N@A� D 0 is equivalent to
.N@A�/� D 0. The line bundle L is holomorphic if and only if given a local
section � of L, then N@A� 2 L. Using that �� D � we see that N@A� 2 L if and
only if .N@A�/� D 0. Clearly, this happens if and only if .N@A�/� D 0 and thus
(2) holds if and only if (3) holds. �
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The next theorem summarizes the Bäcklund transformation that we just intro-
duced and it follows directly from Lemmas 7.4 and 7.5 and Theorem 7.1.

Theorem 7.6. Let A be a cohomologically trivial connection and let L be a
holomorphic line subbundle of the trivial bundle M � C2 with respect to the
complex structure induced by A. Define a map g WM ! su.2/ with det gD 1 by
declaring L to be its eigenspace with eigenvalue i . Consider a W SM ! SU.2/
with g D a�1V .a/ as given by Lemma 7.2. Then

AF WD �X.a/a�1
C aAa�1

defines a cohomologically trivial connection.

Definition 7.7. Let A be a cohomologically trivial connection. Given a map
g WM ! su.2/ with det g D 1 and �?dAg D .dAg/g, let a W SM ! SU.2/
be any smooth map with ag D V .a/. Then the Bäcklund transformation of the
connection A with respect to the pair .g; a/ is:

Bg;a.A/ WD �X.a/a�1
C aAa�1:

By Theorem 7.6, Bg;a.A/ is a new cohomologically trivial connection.

Remark 7.8. Note that if the geodesic flow is transitive, two solutions u; w

of XuCAuD 0 are related by uD wg where g is a constant unitary matrix,
because X.w�1u/D 0. Thus the degrees of u and w are the same. We can then
talk about the “degree” of a cohomologically trivial connection as the degree of
any solution of XuCAuD 0.

Remark 7.9. If we let q WDaga�1, then a simple calculation shows that V .q/D0

and dAF
q D a.dAg/a�1. Moreover, ?dAF

q D .dAF
q/q which means that �q

satisfies (20) with respect to AF . Hence if we run the Bäcklund transformation on
AF with g0 WD�q and a0 WD a�1 we recover A (note that a0g0DV .a0/). In other
words B�q;a�1.Bg;a.A//DA. Thus the Bäcklund transformation described in
Theorem 7.6 has a natural “inverse”.

If we start, for example, with the trivial connection AD 0 (which is obviously
cohomologically trivial), then a map g WM ! su.2/ with det gD 1 and �?dgD

.dg/g can be identified with a meromorphic function. The connections of degree
one AF D�X.a/a�1 given by Theorem 7.6 were first found in [Paternain 2009]
and coincide with the ones described at the beginning of the section. In the
next subsection we will show that any cohomologically trivial connection such
that the associated u has a finite Fourier series can be built up by successive
applications of the transformation described in Theorem 7.6, provided that the
geodesic flow is transitive. This will provide a full classification of transparent
SU.2/-connections over negatively curved surfaces.
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The classification result. Let A be a transparent connection with AD�X.b/b�1

and f D b�1V .b/, where b W SM ! SU.2/.
We first make some remarks concerning the SU.2/-structure. Let j WC2!C2

be the antilinear map given by

j .z1; z2/D .�Nz2; Nz1/:

If we think of a matrix a 2 SU.2/ as a linear map a W C2! C2, then jaD aj .
This implies that given b W SM ! SU.2/ with b D

P
k2Z bk , then jbk D b�kj

for all k 2 Z.

Assumption. Suppose b has a finite Fourier expansion, that is, bD
PkDN

kD�N bk ,
where N � 1. By Theorem 6.6 we know that this holds if M has negative
curvature.

Let us assume also that N is the degree of b, so both bN and b�N D�jbNj

are nonzero.
The unitary condition bb� D b�b D Id implies that bN b�

�N
D b�
�N

bN D 0.
These relations imply that the rank of b�N and bN is at most one and equals
one on an open set, which, as we will see shortly, must be all of M except for
perhaps a finite number of points. But first we need some preliminaries.

Consider isothermal coordinates .x;y/ on M such that the metric can be
written as ds2 D e2�.dx2C dy2/, where � is a smooth real-valued function of
.x;y/. This gives coordinates .x;y; �/ on SM , where � is the angle between a
unit vector v and @=@x. In these coordinates X is given by (8) and X? by:

X? D�e��
�
� sin �

@

@x
C cos �

@

@y
�

�
@�

@x
cos � C

@�

@y
sin �

�
@

@�

�
: (21)

Consider u 2 �m and write it locally as u.x;y; �/ D h.x;y/eim� . Using (8)
and (21) a straightforward calculation shows that

��.u/D e�.1Cm/� N@.hem�/ei.m�1/� ; (22)

where N@D 1
2
.@=@xC i @=@y/. In order to write �� suppose that A.x;y; �/D

a.x;y/ cos �Cb.x;y/ sin � . If we also write ADAxdxCAydy, then AxDae�

and Ay D be�. Let ANz WD
1
2
.AxC iAy/. Using the definition of A�1 we derive

A�1 D
1
2
.aC ib/e�i�

DANzd Nz: (23)

Putting this together with (22) we obtain

��.u/D e�.1Cm/�
�
N@.hem�/CANzhem�

�
ei.m�1/� : (24)

Note that �m can be identified with the set of smooth sections of the bundle
.M�M2.C//˝�

˝m where � is the canonical line bundle. The identification takes
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uD heim� into hem�.dz/m (m� 0) and uD he�im� 2��m into hem�.d Nz/m.
The second equality in (23) should be understood using this identification.

Consider now a fixed vector � 2 C2 such that s.x; v/ WD b�N .x; v/� 2 C2 is
not zero identically. Clearly s can be seen as a section of .M �C2/˝ �˝�N .
We may write b�N and s in local isothermal coordinates as b�N D he�iN� and
s D eN�h�.d Nz/N .

Lemma 7.10. The local section e�2N�s is N@A-holomorphic.

Proof. Using the operators �˙ we can write X.b/CAb D 0 as

�C.bk�1/C��.bkC1/D 0

for all k. This gives �C.bN / D ��.b�N / D 0. But ��.b�N / D 0 is saying
that e�2N�s is N@A-holomorphic. Indeed, using (24), we see that ��.b�N /D 0

implies
N@.he�N�/CANzhe�N�

D 0

which in turn implies

N@.e�N�h�/CANze�N�h� D 0:

This equation says that e�2N�s D e�N�h�.d Nz/N is N@A-holomorphic. �

The section s spans a line bundle L over M which by the previous lemma
is N@A-holomorphic. The section s may have zeros, but at a zero z0, the line
bundle extends holomorphically. Indeed, in a neighborhood of z0 we may write
e�2N�.z/s.z/ D .z � z0/

kw.z/, where w is a local holomorphic section with
w.z0/¤ 0. The section w spans a holomorphic line subbundle which coincides
with the one spanned by s off z0. Therefore L is a N@A-holomorphic line bundle
that contains the image of b�N (and U D jL is an antiholomorphic line bundle
that contains the image of bN ). We summarize this in a lemma:

Lemma 7.11. The line bundle L determined by the image of b�N is N@A-holo-
morphic.

We will now use the line bundle L to construct an appropriate g WM ! su.2/

such that when we run the Bäcklund transformation from the previous subsection
we obtain a cohomologically trivial connection of degree �N � 1. But first we
need the following lemma. Recall that a matrix-valued function f is said to be
odd if f .x; v/D�f .x;�v/ and even if f .x; v/D f .x;�v/.

Lemma 7.12. Assume that the geodesic flow is transitive and let b WSM!SU.2/
solve X.b/CAb D 0. Then b is either even or odd.
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Proof. Write b D boC be where bo is odd and be is even. Since the operator
.X C A/ maps even to odd and odd to even, the equation X.b/ C Ab D 0

decouples as
X.bo/CAbo D 0;

X.be/CAbe D 0:

A calculation using these equations shows that X.b�o bo/, X.b�e be/, X.b�o be/

all vanish. Since the geodesic flow is transitive, these matrices are all constant.
Moreover, since b�o be is odd it must be zero. On the other hand jbD bj implies
that jboD boj and jbe D bej , which in turn implies that both bo and be cannot
have rank 1. Putting all this together, we see that either bo or be must vanish
identically. �

Suppose the geodesic flow is transitive. By Lemma 7.12, b D b�N CdCbN ,
where d has degree � N � 2. We now seek a W SM ! SU.2/ of degree one
such that u WD ab has degree �N � 1. For this we need a1bN D a�1b�N D 0.
We take a map g WM ! su.2/ with det g D 1 such that its i eigenspace is L

and its �i eigenspace is U . By Lemmas 7.5 and 7.11, �?dAg D .dAg/g. The
construction of a with ag D V .a/ from Lemma 7.2 is precisely such that the
kernel of a�1 is L and the kernel of a1 is U , so the needed relations to lower
the degree hold.

Finally by Theorem 7.6, u gives rise to a cohomologically trivial connection
�X.u/u�1. Combining this with Theorem 6.6 we have arrived at the main result
of this section:

Theorem 7.13. Let M be a closed orientable surface of negative curvature. Then
any transparent SU.2/-connection can be obtained by successive applications of
Bäcklund transformations as described in Theorem 7.6.

We finish this section with some remarks on the operators�˙. Let �.M; �˝m/

denote the space of smooth sections of the m-th tensor power of the canonical
line bundle �. Locally its elements have the form w.z/dzm for m � 0 and
w.z/d Nz�m for m� 0. Given a metric g on M , there is map

'g W �.M; �˝m/!�m

given by restriction to SM . This map is a complex linear isomorphism. Let
us check what this map looks like in isothermal coordinates. An element of
�.M; �˝m/ is locally of the form w.z/dzm. Consider a tangent vector Pz D
Px1C i Px2. It has norm 1 in the metric g if and only if ei� D e� Pz. Hence the
restriction of w.z/dzm to SM is

w.z/e�m�eim�
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as indicated above. Moreover there is also a restriction map

 g W �.M; �˝m
˝ N�/!�m�1

which is an isomorphism. The restriction of w.z/dzm˝ d Nz to SM is

w.z/e�.mC1/�ei.m�1/� ;

because e�i� D e� NPz.
Given any holomorphic bundle � over M , there is a @-operator defined on:

@ W �.M; �/! �.M; �˝ N�/:

In particular we can take � D �˝m (or �˝m˝Cn). Combining this with (22) we
get the following commutative diagram:

�.M; �˝m/
'g - �m

�.M; �˝m
˝ N�/

@

?
 g- �m�1

��

?

In other words:
�� D  g @ '

�1
g :

This equation exhibits explicitly the relation of �� with the metric. More gener-
ally, if we let @A WD @CANz , then (24) shows that

�� D  g @A '
�1
g : (25)

In particular we see from (25) that the injectivity and surjectivity properties of
�� only depend on the conformal class of the metric and are the same as those of
@A. Also, the index of �� may be computed using Riemann–Roch; see [McDuff
and Salamon 2004, Appendix C]. If � D �˝m˝Cn and g denotes the genus of
M , then

index.��/D n.1� g/C c1.�/D .g� 1/n.2m� 1/:

For the abelian case nD 1, it is a classical result that @A is surjective if g � 2
and m� 2.

8. Higgs fields

Virtually everything that we have said above extends when a Higgs field is present.
For us, a Higgs field is a smooth matrix-valued function ˆ WM ! Cn�n. Often
in gauge theories, the structure group is U.n/ and the field ˆ is required to take
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values in u.n/. We call a Higgs field ˆ WM ! u.n/ a skew-Hermitian Higgs
field. The pairs .A; ˆ/ often appear in the so-called Yang–Mills–Higgs theories.
A good example of this is the Bogomolny equation in Minkowski .2C 1/-space
given by dAˆD ?FA. Here dA stands for the covariant derivative induced on
endomorphism dAˆD dˆC ŒA; ˆ�, FA D dACA^A is the curvature of A

and ? is the Hodge star operator of Minkowski space. The Bogomolny equation
appears as a reduction of the self-dual Yang–Mills equation in .2C 2/-space
and has been object of intense study in the literature of solitons and integrable
systems; see for instance [Dunajski 2010; Manton and Sutcliffe 2004, Chapter 8;
Hitchin et al. 1999, Chapter 4; Mason and Woodhouse 1996].

To include the Higgs field in the discussions above, we consider the following
transport equation for u W SM ! Cn,

XuCAuCˆuD�f in SM ; uj@�.SM / D 0:

As before, on a fixed geodesic the transport equation becomes a linear system
of ODEs with zero initial condition, and therefore this equation has a unique
solution uD uf .

Definition 8.1. The geodesic ray transform of f 2 C1.SM;Cn/ with attenua-
tion determined by the pair .A; ˆ/ is given by

IA;ˆf WD uf j@C.SM /:

Obviously IA D IA;0 when ˆD 0. The following extension of Theorem 3.2
holds:

Theorem 8.2 [Paternain et al. 2011a]. Let M be a compact simple surface.
Assume that f W SM ! Cn is a smooth function of the form F.x/C j̨ .x/v

j ,
where F WM ! Cn is a smooth function and ˛ is a Cn-valued 1-form. Let also
A W SM ! u.n/ be a unitary connection and ˆ WM ! u.n/ a skew-Hermitian
matrix function. If IA;ˆ.f /D 0, then F Dˆp and ˛D dAp, where p WM !Cn

is a smooth function with pj@M D 0.

The introduction of the Higgs field complicates matters from a technical point
of view: more terms appear in the Pestov identity, and these need to be carefully
controlled, we refer the reader to [Paternain et al. 2011a] for details.

Given a pair .A; ˆ/ one can also associate to it scattering data. We look at
the unique solution UA;ˆ W SM ! U.n/ of�

X.UA;ˆ/C .A.x; v/Cˆ.x//UA;ˆ D 0; .x; v/ 2 SM;

UA;ˆj@C.SM / D Id:

The scattering data of the pair .A; ˆ/ is now the map CA;ˆ W @�.SM /! U.n/

defined as CA;ˆ WD UA;ˆj@�.SM /.
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Using Theorem 8.2 we can derive the following result just as we have done
for the proof of Theorem 3.3.

Theorem 8.3 [Paternain et al. 2011a]. Assume M is a compact simple surface, let
A and B be two Hermitian connections, and let ˆ and ‰ be two skew-Hermitian
Higgs fields. Then CA;ˆDCB;‰ implies that there exists a smooth U WM!U.n/

such that U j@M D Id and B D U�1dU CU�1AU , ‰ D U�1ˆU .

A Higgs field can also be included for the case of closed manifolds. A
classification of SO.3/-transparent pairs .A; ˆ/ for surfaces of negative curvature
may be found in [Paternain 2012].

9. Arbitrary bundles

In this section we briefly discuss the case of closed surfaces and arbitrary (not
necessarily trivial) bundles. We begin with some generalities.

Suppose E is a rank n Hermitian vector bundle over a closed manifold N and
�t WN !N is a smooth transitive Anosov flow.

Definition 9.1. A cocycle over �t is an action of R by bundle automorphisms
which covers �t . In other words, for each .x; t/ 2N �R, we have a unitary map
C.x; t/ WEx!E�t x such that C.x; t C s/D C.�tx; s/C.x; t/.

If E admits a unitary trivialization f WE!N �Cn, then

f C.x; t/ f �1.x; a/D .�tx;D.x; t/a/;

where D WN �R! U.n/ is a cocycle as in Definition 6.1.
Let E� denote the dual vector bundle to E. If E carries a Hermitian metric

h, we have a conjugate isomorphism `h WE!E�, which induces a Hermitian
metric h� on E�. Given a cocycle C on E, C � WD `h C `�1

h
is a cocycle on

.E�; h�/.

Proposition 9.2. Let E be a Hermitian vector bundle over N such that E˚E�

is a trivial vector bundle. Let C be a smooth cocycle on E such that C.x;T /D Id
whenever �T x D x. Then E is a trivial vector bundle.

Proof. As explained above, the cocycle C on E induces a cocycle C � on E�.
On the trivial vector bundle E˚E� we consider the cocycle C ˚C �. Clearly
C ˚C �.x;T /D Id every time that �T x D x. Choose a unitary trivialization
f WE˚E�!N �C2n and write

f C ˚C �.x; t/ f �1.x; a/D .�tx;D.x; t/a/:

By Theorem 6.4, there exists a smooth function u W N ! U.2n/ such that
D.x; t/D u.�tx/u

�1.x/. Since �t is a transitive flow, we may choose x0 2N
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with a dense orbit and without loss of generality we may suppose that u.x0/D Id.
Let

fe1.x0/; : : : ; en.x0/g

be a unitary frame at Ex0
. Write f .x0; ei.x0//D .x0; ai/, where ai 2C2n. Let

ei.x/ WD f
�1.x;u.x/ai/:

Clearly at every x 2 N , fe1.x/; : : : ; en.x/g is a smooth unitary n-frame of
Ex ˚E�x . We claim that in fact ei.x/ 2 Ex for all x 2 N . This, of course,
implies the triviality of E. Note that

ei.�tx0/D f
�1.�tx0;u.�tx0/ai/

D f �1.�tx0;D.x0; t/ai/D C ˚C �.x0; t/ei.x0/:

But ei.x0/2Ex0
, thus ei.�tx0/2E�t x0

. It follows that ei.x/2Ex for a dense
set of points in N . By continuity of ei , ei.x/ 2Ex for all x 2N . �

Remark 9.3. The hypothesis of E˚E� being trivial is not needed in Proposition
9.2. Ralf Spatzier has informed me that it is possible to adapt the proof of the
usual Livšic periodic data theorem to show directly that E is trivial. However,
this weaker version is all that we will need below.

Let M be a closed orientable surface. In this case, complex vector bundles E

over M are classified topologically by the first Chern class c1.E/2H 2.M;Z/D

Z. Since c1.E
�/D�c1.E/ and c1 is additive with respect to direct sums, we

see that E ˚E� is the trivial bundle and therefore we will be able to apply
Proposition 9.2. In fact we will show:

Theorem 9.4 [Paternain 2009]. Let M be a closed orientable Riemannian sur-
face of genus g whose geodesic flow is Anosov. A complex vector bundle E over
M admits a transparent connection if and only if 2� 2g divides c1.E/.

Proof. Suppose E admits a transparent connection. As explained above we
may apply Proposition 9.2 to deduce that ��E is a trivial bundle and since
c1.�

�E/D ��c1.E/ we conclude that ��c1.E/D 0. Consider now the Gysin
sequence of the unit circle bundle � W SM !M :

0!H 1.M;Z/
��

�!H 1.SM;Z/

0
�!H 0.M;Z/

�.2�2g/
�! H 2.M;Z/

��

�!H 2.SM;Z/! � � � :

We see that ��c1.E/ D 0 if and only if c1.E/ is in the image of the map
H 0.M;Z/!H 2.M;Z/ given by cup product with the Euler class of the unit
circle bundle. Equivalently, 2� 2g must divide c1.E/.
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Let � be the canonical line bundle of M . We can think of � as the cotangent
bundle to M ; it has c1.�/ D 2g� 2. The tensor powers �s of � (positive and
negative) generate all possible line bundles with first Chern class divisible by
2 � 2g and they all carry the unitary connection induced by the Levi-Civita
connection of the Riemannian metric on M . All these connections are clearly
transparent. Topologically, all complex vector bundles over M whose first Chern
class is divisible by 2� 2g are of the form �s˚ ", where " is the trivial vector
bundle. Since the trivial connection on the trivial bundle is obviously transparent,
it follows that every complex vector bundle whose first Chern class is divisible
by 2� 2g admits a transparent connection. �

A similar argument shows that if E is a Hermitian line bundle with a trans-
parent connection and dim M � 3, then E must be trivial and the connection is
gauge equivalent to the trivial connection.

10. Open problems

To organize the discussion we will divide the set of open questions into the two
cases: compact simple M and closed manifolds with Anosov geodesic flow.

Compact simple manifolds with boundary.

(1) The most important problem here is to decide if Theorem 8.2 (or Theorem 3.2)
holds when dim M � 3. This will automatically extend Theorem 8.3 to any
dimension.

(2) Of equal importance is the tensor tomography problem in dimension � 3.
In other words, does Theorem 5.1 extend to any dimension? This problem
is explicitly stated in [Sharafutdinov 1994, Problem 1.1.2] and it has been
solved by Pestov and Sharafutdinov [1988] for negatively curved manifolds
and then by Sharafutdinov [1994] under a weaker curvature condition. It
is also known that if “ghosts” exist, they must be regular: on a simple
Riemannian manifold, every L2 solenoidal tensor field belonging to the
kernel of the ray transform is C1 smooth [Sharafutdinov et al. 2005].

(3) We have only considered unitary connections and skew-Hermitian Higgs
fields, mostly because these are the most relevant in physics, but the problems
addressed here make sense for any structure group. In particular, does
Theorem 8.2 extend to the case of GL.n;C/?

(4) The proof of Theorem 3.2 uses in an essential way the existence of holo-
morphic integrating factors from Proposition 4.4 for scalar 1-forms and
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carefully avoids the question of existence of holomorphic integrating fac-
tors for matrix valued 1-forms. In other words, suppose A is a GL.n;C/-
connection with n � 2. Does there exist a smooth fiberwise holomorphic
map R W SM !GL.n;C/ such that XRCARD 0 on SM ?

(5) Are there versions of Theorems 8.2 and Theorem 8.3 when the set of
geodesics of a simple surface is replaced by another set of distinguished
curves? I would expect a positive answer for magnetic geodesics in view of
the work in [Dairbekov et al. 2007].

Closed manifolds with Anosov geodesic flow. Here, the lack of answers is more
pronounced, even for surfaces, but this is reasonable as one expects this setting
to be harder. As we have seen, the appearance of ghosts (nontrivial transparent
connections) has to do with the different holomorphic structures that one can
have on a complex vector bundle over the surface. For simple surfaces this does
not appear because there is essentially only one N@A operator on a disk.

(1) Perhaps one of the most important questions for surfaces is whether in
Theorem 6.6 one can replace “negative curvature” by “Anosov geodesic
flow”. This question is of great interest even when AD 0.

(2) Does Theorem 6.9 extend to higher dimensions? I would expect a positive
answer based on the Fourier analysis displayed in [Guillemin and Kazhdan
1980b]. There is virtually nothing known on transparent connections in
dim M � 3 as the next question shows.

(3) Are there nontrivial transparent connections on M � C2, where M is a
closed hyperbolic 3-manifold?

(4) Classify transparent U.n/-connections (and pairs) over a negatively curved
surface using the ideas displayed in Section 7 for SU.2/.

(5) Let M be a surface with an Anosov geodesic flow and suppose there is a
smooth u W SM ! R such that XuD f , where f arises from a symmetric
m-tensor. Must f be potential? (The tensor tomography problem for an
Anosov surface). The proof given in this paper for simple surfaces does
not extend since we do not have the analogue of holomorphic integrating
factors from Proposition 4.4. The best result available for 2-tensors appears
in [Sharafutdinov and Uhlmann 2000] where a positive answer is given
assuming in addition that the surface is free of focal points. A solution of
this problem for the case of symmetric 2-tensors would give right away
infinitesimal spectral rigidity for Anosov surfaces [Guillemin and Kazhdan
1980a].
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