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Microlocal analysis of asymptotically
hyperbolic spaces and high-energy resolvent

estimates
ANDRÁS VASY

In this paper we describe a new method for analyzing the Laplacian on asymp-
totically hyperbolic spaces, which was introduced by the author in 2010. This
new method in particular constructs the analytic continuation of the resolvent
for even metrics (in the sense of Guillarmou), and gives high-energy estimates
in strips. The key idea is an extension across the boundary for a problem
obtained from the Laplacian shifted by the spectral parameter. The extended
problem is nonelliptic — indeed, on the other side it is related to the Klein–
Gordon equation on an asymptotically de Sitter space — but nonetheless it
can be analyzed by methods of Fredholm theory. This method is a special
case of a more general approach to the analysis of PDEs which includes, for
instance, Kerr–de Sitter- and Minkowski-type spaces. The present paper is
self-contained, and deals with asymptotically hyperbolic spaces without bur-
dening the reader with material only needed for the analysis of the Lorentzian
problems considered in earlier work by the author.

1. Introduction

In this paper we describe a new method for analyzing the Laplacian on asymp-
totically hyperbolic, or conformally compact, spaces, which was introduced in
[Vasy 2010a]. This new method in particular constructs the analytic continuation
of the resolvent for even metrics (in the sense of [Guillarmou 2005]), and gives
high-energy estimates in strips. The key idea is an extension across the boundary
for a problem obtained from the Laplacian shifted by the spectral parameter. The
extended problem is nonelliptic — indeed, on the other side it is related to the
Klein–Gordon equation on an asymptotically de Sitter space — but nonetheless it
can be analyzed by methods of Fredholm theory. In [Vasy 2010a] these methods,
with some additional ingredients, were used to analyze the wave equation on
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Kerr-de Sitter space-times; the present setting is described there as the simplest
application of the tools introduced. The purpose of the present paper is to give a
self-contained treatment of conformally compact spaces, without burdening the
reader with the additional machinery required for the Kerr-de Sitter analysis.

We start by recalling the definition of manifolds with even conformally
compact metrics. These are Riemannian metrics g0 on the interior of an n-
dimensional compact manifold with boundary X0 such that near the boundary
Y , with a product decomposition nearby and a defining function x, they are of
the form

g0 D
dx2C h

x2
;

where h is a family of metrics on Y D @X0 depending on x in an even manner,
that is, only even powers of x show up in the Taylor series. (There is a much
more natural way to phrase the evenness condition, see [Guillarmou 2005, Defini-
tion 1.2].) We also write X0;even for the manifold X0 when the smooth structure
has been changed so that x2 is a boundary defining function; thus, a smooth
function on X0 is even if and only if it is smooth when regarded as a function on
X0;even. The analytic continuation of the resolvent in this category, but without
the evenness condition, was obtained in [Mazzeo and Melrose 1987] (similar
results appear in [Agmon 1986; Perry 1987; 1989] in the restricted setting of
hyperbolic quotients), with the possibility of some essential singularities at pure
imaginary half-integers noticed by Borthwick and Perry [2002]. Guillarmou
[2005] showed that for even metrics the latter do not exist, but generically they
do exist for noneven metrics, by a more careful analysis utilizing the work of
Graham and Zworski [2003]. Further, if the manifold is actually asymptotic
to hyperbolic space (note that hyperbolic space is of this form in view of the
Poincaré model), Melrose, Sá Barreto and Vasy [Melrose et al. 2011] proved
high-energy resolvent estimates in strips around the real axis via a parametrix
construction; these are exactly the estimates that allow expansions for solutions
of the wave equation in terms of resonances. Estimates just on the real axis were
obtained in [Cardoso and Vodev 2002; Vodev 2004] for more general conformal
infinities. One implication of our methods is a generalization of these results:
we allow general conformal infinities, and obtain estimates in arbitrary strips.

In the sequel PC1.X0/ denotes “Schwartz functions” on X0, that is, C1

functions vanishing with all derivatives at @X0, and C�1.X0/ is the dual
space of “tempered distributions” (these spaces are naturally identified for X0

and X0;even), while H s.X0;even/ is the standard Sobolev space on X0;even (cor-
responding to extension across the boundary, see, for example, [Hörmander
1985a, Appendix B], where these are denoted by NH s.X ı

0;even/). For instance,
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kuk2
H 1.X0;even/

D kuk2
L2.X0;even/

C kduk2
L2.X0;even/

, with the norms taken with
respect to any smooth Riemannian metric on X0;even (all choices yield equivalent
norms by compactness). Here we point out that while x2g0 is a smooth nonde-
generate section of the pull-back of T �X0 to X0;even (which essentially means
that it is a smooth, in X0;even, nondegenerate linear combination of dx and dyj

in local coordinates), as �D x2 means d�D 2x dx, it is actually not a smooth
section of T �X0;even. However, xnC1 jdg0j is a smooth nondegenerate density,
so L2.X0;even/ (up to norm equivalence) is the L2 space given by the density
xnC1 jdg0j, i.e., it is the space x�.nC1/=2L2

g0
.X0/, which means that

kx�.nC1/=2ukL2.X0;even/
� kukL2

g0
.X0/

:

Further, in local coordinates .�;y/, using 2@� D x�1@x , the H 1.X0;even/ norm
of u is equivalent to

kuk2
L2.X0;even/

Ckx�1@xuk2
L2.X0;even/

C

n�1X
jD1

k@yj uk2
L2.X0;even/

:

We also let H s
„
.X0;even/ be the standard semiclassical Sobolev space, that

is, for h bounded away from 0 this is equipped with a norm equivalent to the
standard fixed (h-independent) norm on H s.X0;even/, but the uniform behavior
as h! 0 is different; for example, locally the H 1

„
.X / norm is given by

kuk2
H 1
„

D
P
j

khDj uk2
L2 Ckuk

2
L2 I

see [Dimassi and Sjöstrand 1999; Evans and Zworski 2010]. Thus, in (1-1),
for s D 1 (which is possible when C < 1

2
, that is, if one only considers the

continuation into a small strip beyond the continuous spectrum),

s D 1 H) kukH s�1

j�j�1
.X0;even/

D kukL2.X0;even/

and kuk2H s

j�j�1
.X0;even/

D kuk2
L2.X0;even/

Cj� j�2
kduk2

L2.X0;even/
;

with the norms taken with respect to any smooth Riemannian metric on X0;even.

Theorem. (See Theorem 5.1 for the full statement.) Suppose that X0 is an
n-dimensional manifold with boundary Y with an even Riemannian conformally
compact metric g0. Then the inverse of

�g0
�

�
n�1

2

�2

� �2;
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written as R.�/ W L2! L2, has a meromorphic continuation from Im � � 0

to C,
R.�/ W PC1.X0/! C�1.X0/;

with poles with finite rank residues. If in addition .X0;g0/ is nontrapping, then
nontrapping estimates hold in every strip �C < Im � < CC, jRe � j � 0: for
s > 1

2
CC ,

x�.n�1/=2C{�R.�/f




H s

j�j�1
.X0;even/

� QC j� j�1


x�.nC3/=2C{�f




H s�1

j�j�1
.X0;even/

: (1-1)

If f has compact support in X ı
0

, the s � 1 norm on f can be replaced by the
s� 2 norm. For suitable ı0 > 0, the estimates are valid in regions �C < Im � <

ı0 jRe � j if the multipliers x{� are slightly adjusted.

Further, as stated in Theorem 5.1, the resolvent is semiclassically outgoing
with a loss of h�1, in the sense of recent results of Datchev and Vasy [2011;
2010]. This means that for mild trapping (where, in a strip near the spectrum,
one has polynomially bounded resolvent for a compactly localized version of the
trapped model) one obtains resolvent bounds of the same kind as for the above-
mentioned trapped models, and lossless estimates microlocally away from the
trapping. In particular, one obtains logarithmic losses compared to nontrapping
on the spectrum for hyperbolic trapping in the sense of [Wunsch and Zworski
2011, Section 1.2], and polynomial losses in strips, since for the compactly
localized model this was shown in [Wunsch and Zworski 2011].

Our method is to change the smooth structure, replacing x by �D x2, conju-
gate the operator by an appropriate weight as well as remove a vanishing factor of
�, and show that the new operator continues smoothly and nondegenerately (in
an appropriate sense) across �D 0, that is, Y , to a (nonelliptic) problem which
we can analyze utilizing by now almost standard tools of microlocal analysis.
These steps are reflected in the form of the estimate (1-1); � shows up in the use
of evenness, conjugation due to the presence of x�.nC1/=2C{� , and the two halves
of the vanishing factor of � being removed in x˙1 on the left and right sides.

While it might seem somewhat ad hoc, this construction in fact has origins
in wave propagation in Lorentzian spaces of one dimension higher, i.e., .nC1/-
dimensional: either Minkowski space, or de Sitter space blown up at a point at
future infinity. Namely in both cases the wave equation (and the Klein–Gordon
equation in de Sitter space) is a totally characteristic, or b-, PDE, and after a
Mellin transform this gives a PDE on the sphere at infinity in the Minkowski
case, and on the front face of the blow-up in the de Sitter setting. These are
exactly the PDE arising by the process described in the previous paragraph, with
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the original manifold X0 lying in the interior of the light cone in Minkowski
space (so there are two copies, at future and past infinity) and in the interior
of the backward light cone from the blow-up point in the de Sitter case; see
[Vasy 2010a] for more detail. This relationship, restricted to the X0-region, was
exploited in [Vasy 2010b, Section 7], where the work of Mazzeo and Melrose
was used to construct the Poisson operator on asymptotically de Sitter spaces.
Conceptually the main novelty here is that we work directly with the extended
problem, which turns out to simplify the analysis of Mazzeo and Melrose in
many ways and give a new explanation for Guillarmou’s results as well as yield
high-energy estimates.

We briefly describe this extended operator, P� . It has radial points at the
conormal bundle N �Y n o of Y in the sense of microlocal analysis, i.e., the
Hamilton vector field is radial at these points — it is a multiple of the generator
of dilations of the fibers of the cotangent bundle there. However, tools exist
to deal with these, going back to Melrose’s geometric treatment of scattering
theory on asymptotically Euclidean spaces [Melrose 1994]. Note that N �Y n o

consists of two components, ƒC, resp. ƒ�, and in S�X D .T �X n o/=RC the
images, LC, resp. L�, of these are sources, resp. sinks, for the Hamilton flow.
At L˙ one has choices regarding the direction one wants to propagate estimates
(into or out of the radial points), which directly correspond to working with
strong or weak Sobolev spaces. For the present problem, the relevant choice
is propagating estimates away from the radial points, thus working with the
“good” Sobolev spaces (which can be taken to have order as positive as one
wishes; there is a minimum amount of regularity imposed by our choice of
propagation direction — see the requirement s > 1

2
CC above (1-1)). All other

points are either elliptic, or real principal type. It remains to either deal with
the noncompactness of the “far end” of the n-dimensional de Sitter space — or
instead, as is indeed more convenient when one wants to deal with more singular
geometries, adding complex absorbing potentials, in the spirit of [Nonnenmacher
and Zworski 2009; Wunsch and Zworski 2011]. In fact, the complex absorption
could be replaced by adding a space-like boundary [Vasy 2010a], but for many
microlocal purposes complex absorption is more desirable, hence we follow the
latter method. However, crucially, these complex absorbing techniques (or the
addition of a space-like boundary) already enter in the nonsemiclassical problem
in our case, as we are in a nonelliptic setting.

One can reverse the direction of the argument and analyze the wave equation
on an n-dimensional even asymptotically de Sitter space X 0

0
by extending it

across the boundary, much like the Riemannian conformally compact space X0

is extended in this approach. Then, performing microlocal propagation in the
opposite direction, which amounts to working with the adjoint operators that we
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already need in order to prove existence of solutions for the Riemannian spaces,
we obtain existence, uniqueness and structure results for asymptotically de Sitter
spaces, recovering a large part of the results of [Vasy 2010b]. Here we only
briefly indicate this method of analysis in Remark 5.3.

In other words, we establish a Riemannian–Lorentzian duality, that will have
counterparts both in the pseudo-Riemannian setting of higher signature and in
higher rank symmetric spaces, though in the latter the analysis might become
more complicated. Note that asymptotically hyperbolic and de Sitter spaces are
not connected by a “complex rotation” (in the sense of an actual deformation);
they are smooth continuations of each other in the sense we just discussed.

To emphasize the simplicity of our method, we list all of the microlocal
techniques (which are relevant both in the classical and in the semiclassical
setting) that we use on a compact manifold without boundary; in all cases only
microlocal Sobolev estimates matter (not parametrices, etc.):

(i) Microlocal elliptic regularity.

(ii) Real principal type propagation of singularities.

(iii) Rough analysis at a Lagrangian invariant under the Hamilton flow which
roughly behaves like a collection of radial points, though the internal struc-
ture does not matter, in the spirit of [Melrose 1994, Section 9].

(iv) Complex absorbing “potentials” in the spirit of [Nonnenmacher and Zworski
2009; Wunsch and Zworski 2011].

These are almost “off the shelf” in terms of modern microlocal analysis, and thus
our approach, from a microlocal perspective, is quite simple. We use these to
show that on the continuation across the boundary of the conformally compact
space we have a Fredholm problem, on a perhaps slightly exotic function space,
which however is (perhaps apart from the complex absorption) the simplest
possible coisotropic function space based on a Sobolev space, with order dictated
by the radial points. Also, we propagate the estimates along bicharacteristics
in different directions depending on the component †˙ of the characteristic
set under consideration; correspondingly the sign of the complex absorbing
“potential” will vary with †˙, which is perhaps slightly unusual. However, this
is completely parallel to solving the standard Cauchy, or forward, problem for
the wave equation, where one propagates estimates in opposite directions relative
to the Hamilton vector field in the two components of the characteristic set.

The complex absorption we use modifies the operator P� outside X0;even.
However, while .P� � {Q� /

�1 depends on Q� , its behavior on X0;even, and
even near X0;even, is independent of this choice; see the proof of Section 5 for a
detailed explanation. In particular, although .P� � {Q� /

�1 may have resonances
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other than those of R.�/, the resonant states of these additional resonances
are supported outside X0;even, hence do not affect the singular behavior of the
resolvent in X0;even.

While the results are stated for the scalar equation, analogous results hold
for operators on natural vector bundles, such as the Laplacian on differential
forms. This is so because the results work if the principal symbol of the extended
problem is scalar with the demanded properties, and the principal symbol of
1
2{
.P� �P�� / is either scalar at the ‘radial sets’, or instead satisfies appropriate

estimates (as an endomorphism of the pull-back of the vector bundle to the
cotangent bundle) at this location; see Remark 3.1. The only change in terms
of results on asymptotically hyperbolic spaces is that the threshold .n�1/2=4 is
shifted; in terms of the explicit conjugation of Section 5 this is so because of the
change in the first order term in (3-2).

In Section 3 we describe in detail the setup of conformally compact spaces
and the extension across the boundary. Then in Section 4 we describe the in
detail the necessary microlocal analysis for the extended operator. Finally, in
Section 5 we translate these results back to asymptotically hyperbolic spaces.

2. Notation

We start by briefly recalling the basic pseudodifferential objects, in part to
establish notation. As a general reference for microlocal analysis, we refer to
[Hörmander 1985a; 1985b], while for semiclassical analysis, we refer to [Dimassi
and Sjöstrand 1999; Evans and Zworski 2010].

First, Sk.RpIR`/ is the set of C1 functions on R
p
z �R`

�
satisfying uniform

bounds
jD˛

z D
ˇ

�
aj � C˛ˇh�i

k�jˇj; ˛ 2 Np; ˇ 2 N`:

If O�Rp and ��R`
�

are open, we define Sk.OI�/ by requiring these estimates
to hold only for z 2O and � 2 � . (We could instead require uniform estimates
on compact subsets; this makes no difference here.) The class of classical (or
one-step polyhomogeneous) symbols is the subset Sk

cl.R
pIR`/ of Sk.RpIR`/

consisting of symbols possessing an asymptotic expansion

a.z; r!/�
X

aj .z; !/r
k�j ; (2-1)

where aj 2 C1.Rp � S`�1/. Then on Rn
z , pseudodifferential operators A 2

‰k.Rn/ are of the form

AD Op.a/I .Op.a/u/.z/D .2�/�n

Z
Rn

ei.z�z0/��a.z; �/u.z0/ d� dz0;

u 2 S.Rn/; a 2 Sk.Rn
IRn/I
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understood as an oscillatory integral. Classical pseudodifferential operators,
A2‰k

cl.R
n/, form the subset where a is a classical symbol. The principal symbol

�k.A/ of A2‰k.Rn/ is the equivalence class of a in Sk.RnIRn/=Sk�1.RnIRn/,
denoted by Œa�. For classical a, one can instead regard a0.z; !/r

k as the principal
symbol; it is a C1 function on Rn�.Rnnf0g/, which is homogeneous of degree k

with respect to the RC-action given by dilations in the second factor, Rnnf0g. The
principal symbol is multiplicative, that is, �kCk0.AB/D �k.A/�k0.B/. More-
over, the principal symbol of a commutator is given by the Poisson bracket (or
equivalently by the Hamilton vector field): �kCk0�1.{ŒA;B�/D H�k.A/�k0.B/,
with HaD

Pn
jD1..@�j a/@zj � .@zj a/@�j /. Note that for a homogeneous of order

k, Ha is homogeneous of order k � 1.
There are two very important properties: nondegeneracy (called ellipticity)

and extreme degeneracy (captured by the operator wave front set) of an operator.
One says that A is elliptic at ˛ 2 Rn � .Rn n f0g/ if there exists an open cone
� (conic with respect to the RC-action on Rn n o) around ˛ and R> 0, C > 0

such that ja.x; �/j � C j�jk for j�j>R, .x; �/ 2 � , where Œa�D �k.A/. If A is
classical, and a is taken to be homogeneous, this just amounts to a.˛/¤ 0.

On the other hand, for A D Op.a/ and ˛ 2 Rn � .Rn n o/ one says that
˛ 62WF0.A/ if there exists an open cone � around ˛ such that aj� 2 S�1.�/,
that is, aj� is rapidly decreasing, with all derivatives, as j�j !1, .x; �/ 2 � .
Note that both the elliptic set ell.A/ of A (i.e., the set of points where A is
elliptic) and WF0.A/ are conic.

Differential operators on Rn form the subset of‰.Rn/ in which a is polynomial
in the second factor, Rn

�
, so locally

AD
X
j˛j�k

a˛.z/D
˛
z ; �k.A/D

X
j˛jDk

a˛.z/�
˛:

If X is a manifold, one can transfer these definitions to X by localization and
requiring that the Schwartz kernels are C1 densities away from the diagonal in
X 2 DX �X ; then �k.A/ is in Sk.T �X /=Sk�1.T �X /, resp. Sk

hom.T
�X n o/

when A 2‰k.X /, resp. A 2‰k
cl.X /; here o is the zero section, and hom stands

for symbols homogeneous with respect to the RC action. If A is a differential
operator, then the classical (i.e., homogeneous) version of the principal symbol
is a homogeneous polynomial in the fibers of the cotangent bundle of degree
k. The notions of ell.A/ and WF0.A/ extend to give conic subsets of T �X n o;
equivalently they are subsets of the cosphere bundle S�X D .T �X n o/=RC.
We can also work with operators depending on a parameter � 2O by replacing
a 2 Sk.RnIRn/ by a 2 Sk.Rn � OIRn/, with Op.a�/ 2 ‰k.Rn/ smoothly
dependent on � 2 O . In the case of differential operators, a˛ would simply
depend smoothly on the parameter �.
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We next consider the semiclassical operator algebra. We adopt the convention
that „ denotes semiclassical objects, while h is the actual semiclassical parameter.
This algebra, ‰„.Rn/, is given by

Ah D Op„.a/I Op„.a/u.z/D .2�h/�n

Z
Rn

ei.z�z0/��=ha.z; �; h/u.z0/ d� dz0;

u 2 S.Rn/; a 2 C1.Œ0; 1/hIS
k.Rn
IRn
� //I

its classical subalgebra, ‰„;cl.R
n/ corresponds to a 2 C1.Œ0; 1/hIS

k
cl.R

nIRn
�
//.

The semiclassical principal symbol is now �„;k.A/D ajhD0 2 Sk.Rn �Rn/. In
the setting of a general manifold X , Rn �Rn is replaced by T �X . Correspond-
ingly, WF0

„
.A/ and ell„.A/ are subsets of T �X . We can again add an extra

parameter � 2 O , so a 2 C1.Œ0; 1/hIS
k.Rn �OIRn

�
//; then in the invariant

setting the principal symbol is ajhD0 2 Sk.T �X �O/.
Differential operators now take the form

Ah;� D

X
j˛j�k

a˛.z; �I h/.hDz/
˛: (2-2)

Such a family has two principal symbols, the standard one (but taking into
account the semiclassical degeneration, that is, based on .hDz/

˛ rather than D˛
z ),

which depends on h and is homogeneous, and the semiclassical one, which is at
hD 0, and is not homogeneous:

�k.Ah;�/D
X
j˛jDk

a˛.z; �I h/�
˛;

�„.Ah;�/D
X
j˛j�k

a˛.z; �I 0/�
˛:

However, the restriction of �k.Ah;�/ to hD0 is the principal symbol of �„.Ah;�/.
In the special case in which �k.Ah;�/ is independent of h (which is true in the
setting considered below), one can simply regard the usual principal symbol as
the principal part of the semiclassical symbol.

This is a convenient place to recall from [Melrose 1994] that it is often useful
to consider the radial compactification of the fibers of the cotangent bundle to
balls (or hemispheres, in Melrose’s exposition). Thus, one adds a sphere at
infinity to the fiber T �q X of T �X over each q 2 X . This sphere is naturally
identified with S�q X , and we obtain compact fibers T �qX with boundary S�q X ,
with the smooth structure near S�q X arising from reciprocal polar coordinates
. Q�; !/ D .r�1; !/ for Q� > 0, but extending to Q� D 0, and with S�q X given by
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Q�D 0. Thus, with X D Rn the classical expansion (2-1) becomes

a.z; Q�; !/� Q��k
X

aj .z; !/ Q�
j ;

where aj 2 C1.Rp �S`�1/, so in particular for k D 0, this is simply the Taylor
series expansion at S�X of a function smooth up to S�X D @T �X . In the
semiclassical context then one considers T �X � Œ0; 1/, and notes that “classical”
semiclassical operators of order 0 are given locally by Op„.a/ with a extending
to be smooth up to the boundaries of this space, with semiclassical symbol
given by restriction to T �X � f0g, and standard symbol given by restriction to
S�X � Œ0; 1/. Thus, the claim regarding the limit of the semiclassical symbol
at infinity is simply a matching statement of the two symbols at the corner
S�X � f0g in this compactified picture.

Finally, we recall that if P D
P
j˛j�k a˛.z/D

˛
z is an order k differential

operator, then the behavior of P�� as �!1 can be converted to a semiclassical
problem by considering

P„;� D hk.P ��/D
X
j˛j�k

hk�j˛ja˛.z/.hDz/
˛
� �;

where � D hk�. Here there is freedom in choosing h, for example, hD j�j1=k ,
in which case j� j D 1, but it is often useful to leave some flexibility in the choice
so that h� j�j1=k only, and thus � is in a compact subset of C disjoint from 0.
Note that

�„.P„;� /D
X
j˛jDk

a˛.z/�
˛
� �:

If we do not want to explicitly multiply by hk , we write the full high-energy
principal symbol of P �� as

�full.P�/D
X
j˛jDk

a˛.z/�
˛
��:

More generally, if P .�/D
P
j˛jCjˇj�k a˛.z/�

ˇD˛
z is an order k differential

operator depending on a large parameter �, we let

�full.P .�//D
X

j˛jCjˇjDk

a˛.z/�
ˇ�˛

be the full large-parameter symbol. With �D h�1� ,

P„;� D hkP .�/D
X

j˛jCjˇj�k

hk�j˛j�jˇja˛.z/�
ˇ.hDz/

˛
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is a semiclassical differential operator with semiclassical symbol

�„.P„;� /D
X

j˛jCjˇjDk

a˛.z/�
ˇ�˛:

Note that the full large-parameter symbol and the semiclassical symbol are “the
same”, that is, they are simply related to each other.

3. Conformally compact spaces

3A. From the Laplacian to the extended operator. Suppose that g0 is an even
asymptotically hyperbolic metric on X0, with dim X0D n. Then we may choose
a product decomposition near the boundary such that

g0 D
dx2C h

x2
(3-1)

there, where h is an even family of metrics; it is convenient to take x to be a
globally defined boundary defining function. Then the dual metric is

G0 D x2.@2
xCH /;

with H the dual metric family of h (depending on x as a parameter), and

jdg0j D
p
jdet g0j dx dy D x�n

p
jdet hj dx dy;

so
�g0
D .xDx/

2
C {.n�1Cx2
 /.xDx/Cx2�h; (3-2)

with 
 even, and �h the x-dependent family of Laplacians of h on Y .
We show now that if we change the smooth structure on X0 by declaring that

only even functions of x are smooth, that is, introducing �D x2 as the boundary
defining function, then after a suitable conjugation and division by a vanishing
factor the resulting operator smoothly and nondegenerately continues across the
boundary, that is, continues to X�ı0

D .�ı0; 0/��Y tX0;even, where X0;even is
the manifold X0 with the new smooth structure.

First, changing to coordinates .�;y/, �D x2, we obtain

�g0
D 4.�D�/

2
C 2{.n�1C�
/.�D�/C��h; (3-3)

Now we conjugate by ��{�=2C.nC1/=4 to obtain

�{�=2�.nC1/=4
�
�g0
� .n�1/2=4� �2

�
��{�=2C.nC1/=4

D 4.�D�� �=2� {.nC1/=4/2C 2{.n�1C�
/.�D�� �=2� {.nC1/=4/

C��h� .n�1/2=4� �2
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D 4.�D�/
2
� 4�.�D�/C��h� 4{.�D�/C 2{� � 1

C 2{�
.�D�� �=2� {.nC1/=4/:

Next we multiply by ��1=2 from both sides to obtain

��1=2�{�=2�.nC1/=4.�g0
� .n�1/2=4� �2/��{�=2C.nC1/=4��1=2

D4�D2
���

�1
�4�D��2{���1

C�h�4{D�C2��1
C2{���1

���1

C 2{
 .�D�� �=2� {.n�1/=4/

D 4�D2
�� 4�D�C�h� 4{D�C 2{
 .�D�� �=2� {.n�1/=4/: (3-4)

This operator is in Diff2.X0;even/, and now it continues smoothly across the
boundary, by extending h and 
 in an arbitrary smooth manner. This form suffices
for analyzing the problem for � in a compact set, or indeed for � going to infinity
in a strip near the reals. However, it is convenient to modify it as we would
like the resulting operator to be semiclassically elliptic when � is away from
the reals. We achieve this via conjugation by a smooth function, with exponent
depending on � . The latter would make no difference even semiclassically in
the real regime as it is conjugation by an elliptic semiclassical FIO. However, in
the nonreal regime (where we would like ellipticity) it does matter; the present
operator is not semiclassically elliptic at the zero section. So finally we conjugate
by .1C�/{�=4 to obtain

P� D 4.1C a1/�D2
�� 4.1C a2/�D�� .1C a3/�

2
C�h

� 4{D�C b1�D�C b2� C c1; (3-5)

with aj smooth, real, vanishing at �D 0, bj and c1 smooth. In fact, we have
a1 � 0, but it is sometimes convenient to have more flexibility in the form of the
operator since this means that we do not need to start from the relatively rigid
form (3-2).

Writing covectors as � d�C � dy, the principal symbol of P� 2 Diff2.X�ı0
/,

including in the high-energy sense (� !1), is

pfull D 4.1C a1/��
2
� 4.1C a2/�� � .1C a3/�

2
Cj�j2�;y ; (3-6)

and is real for � real. The Hamilton vector field is

Hpfull D 4.2.1C a1/�� � .1C a2/�/@�C QHj�j2�;y

�

�
4
�
1C a1C�

@a1

@�

�
�2
� 4

@a2

@�
��C

@a3

@�
�2
C
@j�j2�;y

@�

�
@�

�

�
4
@a1

@y
��2
� 4

@a2

@y
�� �

@a3

@y
�2

�
@�; (3-7)
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where QH indicates that this is the Hamilton vector field in T �Y , that is, with �
considered a parameter. Correspondingly, the standard, “classical”, principal
symbol is

p D �2.P� /D 4.1C a1/��
2
Cj�j2�;y ; (3-8)

which is real, independent of � , while the Hamilton vector field is

Hp D 8.1C a1/��@�C QHj�j2�;y

�

�
4
�
1C a1C�

@a1

@�

�
�2
C
@j�j2�;y

@�

�
@� � 4

@a1

@y
��2@�: (3-9)

It is useful to keep in mind that as �g0
� �2 � .n�1/2=4 is formally self-

adjoint relative to the metric density jdg0j for � real, so the same holds for
��1=2.�g0

� �2� .n�1/2=4/��1=2 (as � is real), and indeed for its conjugate
by ��{�=2.1C�/{�=4 for � real since this is merely unitary conjugation. As for
f real, A formally self-adjoint relative to jdg0j, f �1Af is formally self-adjoint
relative to f 2jdg0j, we then deduce that for � real, P� is formally self-adjoint
relative to

�.nC1/=2
jdg0j D

1
2
jdhj jd�j;

as x�n dx D 1
2
��.nC1/=2 d�. Note that �.nC1/=2jdg0j thus extends to a C1

density to X�ı0
, and we deduce that with respect to the extended density,

�1.
1
2{
.P� � P�� //j��0 vanishes when � 2 R. Since in general P� � PRe�

differs from �4{.1C a2/ Im �D� by a zeroth order operator, we conclude that

�1

�
1

2{
.P� �P�� /

�ˇ̌̌
�D0
D�4.Im �/�: (3-10)

We still need to check that � can be appropriately chosen in the interior away
from the region of validity of the product decomposition (3-1) (where we had
no requirements so far on �). This only matters for semiclassical purposes, and
(being smooth and nonzero in the interior) the factor ��1=2 multiplying from
both sides does not affect any of the relevant properties (semiclassical ellipticity
and possible nontrapping properties), so can be ignored — the same is true for
� -independent powers of �.

Thus, near � D 0, but � bounded away from 0, the only semiclassically
nontrivial action we have done was to conjugate the operator by e�{�� where
e�D�1=2.1C�/�1=4; we need to extend � into the interior. But the semiclassical
principal symbol of the conjugated operator is, with � D z=h,

.� � z d�; � � z d�/G0
� z2
D j�j2G0

� 2z.�; d�/G0
� .1� jd�j2G0

/z2: (3-11)
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For z nonreal this is elliptic if jd�jG0
< 1. Indeed, if (3-11) vanishes then from

the vanishing imaginary part we get

2 Im z..�; d�/G0
C .1� jd�j2G0

/Re z/D 0; (3-12)

and then the real part is

j�j2G0
� 2 Re z.�; d�/G0

� .1� jd�j2G0
/..Re z/2� .Im z/2/

D j�j2G0
C .1� jd�j2G0

/..Re z/2C .Im z/2/; (3-13)

which cannot vanish if jd�jG0
< 1. But, reading off the dual metric from the

principal symbol of (3-3),

1
4

ˇ̌
d.log�� 1

2
log.1C�//

ˇ̌2
G0
D

�
1�

�

2.1C�/

�2

< 1

for �> 0, with a strict bound as long as � is bounded away from 0. Correspond-
ingly, �1=2.1C�/�1=4 can be extended to a function e� on all of X0 so that
semiclassical ellipticity for z away from the reals is preserved, and we may even
require that � is constant on a fixed (but arbitrarily large) compact subset of X ı

0
.

Then, after conjugation by e�{�� ,

Ph;z D e{z�=h��.nC1/=4�1=2.h2�g0
� z/�.nC1/=4�1=2e�{z�=h (3-14)

is semiclassically elliptic in � > 0 (as well as in �� 0, � near 0, where this is
already guaranteed), as desired.

Remark 3.1. We have not considered vector bundles over X0. However, for
instance for the Laplacian on the differential form bundles it is straightforward
to check that slightly changing the power of � in the conjugation the resulting
operator extends smoothly across @X0, has scalar principal symbol of the form
(3-6), and the principal symbol of 1

2{
.P� �P�� /, which plays a role below, is

also as in the scalar setting, so all the results in fact go through.

3B. Local dynamics near the radial set. Let

N �S n oDƒC[ƒ�; ƒ˙ DN �S \f˙� > 0g; S D f�D 0gI

thus S �X�ı0
can be identified with Y D @X0.D @X0;even/. Note that p D 0 at

ƒ˙ and Hp is radial there since

N �S D f.�;y; �; �/ W �D 0; �D 0g;

so
HpjN�S D�4�2@� :
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This corresponds to dpD 4�2 d� at N �S , so the characteristic set †D fpD 0g

is smooth at N �S .
Let L˙ be the image of ƒ˙ in S�X�ı0

. Next we analyze the Hamilton flow
at ƒ˙. First,

Hpj�j
2
�;y D 8.1C a1/��@�j�j

2
�;y � 4

@a1

@y
��2
�h � (3-15)

and
Hp�D 8.1C a1/��: (3-16)

In terms of linearizing the flow at N �S , p and � are equivalent as dpD 4�2 d�

there, so one can simply use Op D p=j�j2 (which is homogeneous of degree 0,
like �), in place of �. Finally,

Hpj�j D �4 sgn.�/C b; (3-17)

with b vanishing at ƒ˙.
It is convenient to rehomogenize (3-15) in terms of O�D �=j�j. This can be

phrased more invariantly by working with S�X�ı0
D .T �X�ı0

no/=RC, briefly
discussed in Section 2. Let L˙ be the image of ƒ˙ in S�X�ı0

. Homogeneous
degree zero functions on T �X�ı0

n o, such as Op, can be regarded as functions
on S�X�ı0

. For semiclassical purposes, it is best to consider S�X�ı0
as the

boundary at fiber infinity of the fiber-radial compactification T �X�ı0
of T �X�ı0

,
also discussed in Section 2. Then at fiber infinity near N �S , we can take
.j�j�1; O�/ as (projective, rather than polar) coordinates on the fibers of the

Figure 1. The cotangent bundle of X�ı0
near S D f�D 0g. It

is drawn in a fiber-radially compactified view. The boundary
of the fiber compactification is the cosphere bundle S�X�ı0

; it
is the surface of the cylinder shown. †˙ are the components
of the (classical) characteristic set containing L˙. They lie in
�� 0, only meeting S�

S
X�ı0

at L˙. Semiclassically, that is, in
the interior of T �X�ı0

, for z D h�1� > 0, only the component
of the semiclassical characteristic set containing LC can enter
� > 0. This is reversed for z < 0.
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cotangent bundle, with Q� D j�j�1 defining S�X�ı0
in T �X�ı0

. Then W D

j�j�1Hp is a C1 vector field in this region and

j�j�1Hpj O�j
2
�;y D 2j O�j2�;yHpj�j

�1
Cj�j�3Hpj�j

2
�;y D 8.sgn �/j O�j2C Qa; (3-18)

where Qa vanishes cubically at N �S . In similar notation we have

Hp Q�D 4 sgn.�/C Qa0; Q�D j�j�1; (3-19)

and
j�j�1Hp�D 8.sgn �/�C Qa00; (3-20)

with Qa0 smooth (indeed, homogeneous degree zero without the compactification)
vanishing at N �S , and Qa00 is also smooth, vanishing quadratically at N �S . As
the vanishing of O�; j�j�1 and � defines @N �S , we conclude that L�D @ƒ� is a
sink, while LC D @ƒC is a source, in the sense that all nearby bicharacteristics
(in fact, including semiclassical (null)bicharacteristics, since Hpj�j

�1 contains
the additional information needed; see (3-29)) converge to L˙ as the parameter
along the bicharacteristic goes to �1. In particular, the quadratic defining
function of L˙ given by

�0 D
yQpC Op2; where Op D j�j�2p; yQp D jO�j2;

satisfies
.sgn �/W�0 � 8�0CO.�

3=2
0
/: (3-21)

We also need information on the principal symbol of 1
2{
.P��P�� / at the radial

points. At L˙ this is given by

�1

�
1

2{
.P� �P�� /

�
jN�S D�.4 sgn.�// Im � j�jI (3-22)

here .4 sgn.�// is pulled out due to (3-19), namely its size relative to Hpj�j
�1

matters. This corresponds to the fact that .�˙ {0/{� , which are Lagrangian
distributions associated to ƒ˙, solve the PDE (3-5) modulo an error that is two
orders lower than what one might a priori expect, that is, P� .�˙ {0/{� 2 .�˙

{0/{�C1.X�ı0
/. Note that P� is second order, so one should lose two orders a

priori, that is, get an element of .�˙{0/{��2C1.X�ı0
/; the characteristic nature

of ƒ˙ reduces the loss to 1, and the particular choice of exponent eliminates
the loss. This has much in common with e{�=xx.n�1/=2 being an approximate
solution in asymptotically Euclidean scattering; see [Melrose 1994].

3C. Global behavior of the characteristic set. By (3-8), points with � D 0

cannot lie in the characteristic set. Thus, with

†˙ D†\f˙� > 0g;
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†D†C[†� and ƒ˙ �†˙. Further, the characteristic set lies in �� 0, and
intersects �D 0 only in ƒ˙.

Moreover, as Hp� D 8.1C a1/�� and � ¤ 0 on †, and � only vanishes
at ƒC [ƒ� there, for �0 > 0 sufficiently small the C1 function � provides
a negative global escape function on � � ��0 which is decreasing on †C,
increasing on†�. Correspondingly, bicharacteristics in†� travel from �D��0

to L�, while in †C they travel from LC to �D��0.

3D. High energy, or semiclassical, asymptotics. We are also interested in the
high-energy behavior, as j� j ! 1. For the associated semiclassical problem
one obtains a family of operators

Ph;z D h2Ph�1z;

with hD j� j�1, and z corresponding to �=j� j in the unit circle in C. Then the
semiclassical principal symbol p„;z of Ph;z is a function on T �X�ı0

, whose
asymptotics at fiber infinity of T �X�ı0

is given by the classical principal symbol
p. We are interested in Im � ��C , which in semiclassical notation corresponds
to Im z � �C h. It is sometimes convenient to think of p„;z , and its rescaled
Hamilton vector field, as objects on T �X�ı0

. Thus,

p„;zD �2;„.Ph;z/D 4.1Ca1/��
2
�4.1Ca2/z��.1Ca3/z

2
Cj�j2�;y ; (3-23)

so
Im p„;z D�2 Im z.2.1C a2/�C .1C a3/Re z/: (3-24)

In particular, for z nonreal, Im p„;z D 0 implies 2.1Ca2/�C .1Ca3/Re z D 0,
so

Re p„;z D
�
.1Ca1/.1Ca3/

2.1Ca2/
�2�C.1C2a2/.1Ca3/

�
.Re z/2

C .1C a3/.Im z/2Cj�j2�;y > 0 (3-25)

near �D 0; in other words, p„;z is semiclassically elliptic on T �X�ı0
, but not

at fiber infinity, i.e., at S�X�ı0
(standard ellipticity is lost only in � � 0, of

course). In � > 0 we have semiclassical ellipticity (and automatically classical
ellipticity) by our choice of � following (3-11). Explicitly, if we introduce for
instance

.�;y; �; O�/; � D j�j�1; O�D �=j�j; (3-26)

as valid projective coordinates in a (large!) neighborhood of L˙ in T �X�ı0
,

then

�2p„;z D 4.1C a1/�� 4.1C a2/.sgn �/z� � .1C a3/z
2�2
CjO�j2y;�;
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so

�2 Im p„;z D�4.1C a2/.sgn �/� Im z� 2.1C a3/�
2 Re z Im z;

which automatically vanishes at � D 0, that is, at S�X�ı0
. Thus, for � large and

pure imaginary, the semiclassical problem adds no complexity to the “classical”
quantum problem, but of course it does not simplify it. In fact, we need somewhat
more information at the characteristic set, which is thus at � D 0 when Im z is
bounded away from 0:

� small; Im z� 0 ) .sgn �/ Im p„;z � 0 ) ˙ Im p„;z � 0 near †„;˙;

� small; Im z� 0 ) .sgn �/ Im p„;z � 0 ) ˙ Im p„;z � 0 near †„;˙;
(3-27)

which, as we recall in Section 4, means that for Ph;z with Im z > 0 one can
propagate estimates forwards along the bicharacteristics where � > 0 (in partic-
ular, away from LC, as the latter is a source) and backwards where � < 0 (in
particular, away from L�, as the latter is a sink), while for P�

h;z
the directions are

reversed since its semiclassical symbol is p„;z . The directions are also reversed
if Im z switches sign. This is important because it gives invertibility for z D {

(corresponding to Im � large positive, that is, the physical half-plane), but does
not give invertibility for z D�{ negative.

We now return to the claim that even semiclassically, for z almost real (i.e.,
when z is not bounded away from the reals; we are not fixing z as we let h vary!),
when the operator is not semiclassically elliptic on T �X�ı0

as mentioned above,
the characteristic set can be divided into two components †„;˙, with L˙ in
different components. The vanishing of the factor following Im z in (3-24) gives
a hypersurface that separates †„ into two parts. Indeed, this is the hypersurface
given by

2.1C a2/�C .1C a3/Re z D 0;

on which, by (3-25), Re p„;z cannot vanish, so

†„ D†„;C[†„;�; †„;˙ D†„\f˙.2.1C a2/�C .1C a3/Re z/ > 0g:

Farther in � > 0, the hypersurface is given, due to (3-12), by

.�; d�/G0
C .1� jd�j2G0

/Re z D 0;

and on it, by (3-13), the real part is j�j2
G0
C .1�jd�j2

G0
/..Re z/2C .Im z/2/ > 0;

correspondingly

†„ D†„;C[†„;�; †„;˙ D†„\f˙..�; d�/G0
C .1� jd�j2G0

/Re z/ > 0g:
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In fact, more generally, the real part is

j�j2G0
� 2 Re z.�; d�/G0

� .1� jd�j2G0
/..Re z/2� .Im z/2/

D j�j2G0
� 2 Re z

�
.�; d�/G0

C .1� jd�j2G0
/Re z

�
C.1� jd�j2G0

/
�
.Re z/2C .Im z/2

�
;

so for ˙Re z > 0, �..�; d�/G0
C .1�jd�j2

G0
/Re z/ > 0 implies that p„;z does

not vanish. Correspondingly, only one of the two components of †„;˙ enters
� > 0: for Re z > 0, it is †„;C, while for Re z < 0, it is †„;�.

We finally need more information about the global semiclassical dynamics.

Lemma 3.2. There exists �0 > 0 such that the following holds. All semiclassical
null-bicharacteristics in .†„;C nLC/\ f��0 � � � �0g go to either LC or to
� D �0 in the backward direction and to � D �0 or � D ��0 in the forward
direction, while all semiclassical null-bicharacteristics in .†„;� nL�/\f��0 �

�� �0g go to L� or �D �0 in the forward direction and to �D �0 or �D��0

in the backward direction.
For Re z > 0, only †„;C enters � > 0, so the �D �0 possibility only applies

to †„;C then, while for Re z < 0, the analogous remark applies to †„;�.

Proof. We assume that Re z > 0 for the sake of definiteness. Observe that the
semiclassical Hamilton vector field is

Hp„;z D 4.2.1C a1/�� � .1C a2/z/@�C QHj�j2�;y

�

�
4.1C a1C�

@a1

@�
/�2
� 4

@a2

@�
z�C

@a3

@�
z2
C
@j�j2�;y

@�

�
@�

�

�
4
@a1

@y
��2
� 4

@a2

@y
z� �

@a3

@y
z2

�
@�I (3-28)

here we are concerned about z real. Near S�X�ı0
D @T �X�ı0

, using the
coordinates (3-26) (which are valid near the characteristic set), we have

W„ D �Hp„;zD

4.2.1C a1/�.sgn �/� .1C a2/z�/@�C � QHj�j2�;y

C.sgn �/
�

4.1Ca1C�
@a1

@�
/�4

@a2

@�
z.sgn �/�C

@a3

@�
z2�2
C
@j O�j2�;y

@�

�
.�@�CO�@ O�/

�

�
4
@a1

@y
�� 4.sgn �/

@a2

@y
z� �

@a3

@y
z2�2

�
@ O�; (3-29)

with

� QH
j�j2�;y

D

X
ij

Hij O�i@yj �

X
ijk

@Hij

@yk

O�i O�j@ O�k
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smooth. Thus, W„ is a smooth vector field on the compactified cotangent bundle,
T �X�ı0

which is tangent to its boundary, S�X�ı0
, and W„�W D �W ] (with

W considered as a homogeneous degree zero vector field) with W ] smooth and
tangent to S�X�ı0

. In particular, by (3-19) and (3-21), using that Q�2C �0 is a
quadratic defining function of L˙,

.sgn �/W„. Q�
2
C �0/� 8. Q�2

C �0/�O.. Q�2
C �0/

3=2/

shows that there is �1 > 0 such that in Q�2C �0 � �1, � > 0, Q�2C �0 is strictly
increasing along the Hamilton flow except at LC, while in Q�2C �0 � �1, � < 0,
Q�2C �0 is strictly decreasing along the Hamilton flow except at L�. Indeed, all
null-bicharacteristics in this neighborhood of L˙ except the constant ones at
L˙ tend to L˙ in one direction and to Q�2C �0 D �1 in the other direction.

Choosing �0
0
> 0 sufficiently small, the characteristic set in

T �X�ı0
\f��00 � �� �

0
0g

is disjoint from S�X�ı0
n f Q�2C �0 � �1g, and indeed only contains points in

†„;C as Re z > 0. Since Hp„;z�D 4.2.1C a1/�� � .1C a2/z/, it is negative
on T �

f�D0g
X�ı0

nS�X�ı0
. In particular, there is a neighborhood U of �D 0

in †„;C nS�X�ı0
on which the same sign is preserved; since the characteristic

set in T �X�ı0
n f Q�2C�0 < �1g is compact, and is indeed a subset of T �X�ı0

n

f Q�2C�0<�1g, we deduce that j�j is bounded below on†n.U [f Q�2C�0<�1g/,
say j�j � �00

0
> 0 there, so with �0 Dmin.�0

0
; �00

0
/, Hp„;z� < 0 on

†„;C\f��0 � �� �0g n f Q�
2
C �2

0 < �1g:

As Hp„;z� < 0 at �D 0, bicharacteristics can only cross �D 0 in the outward
direction.

Thus, if 
 is a bicharacteristic in †„;C, there are two possibilities. If 
 is
disjoint from f Q�2C �0 < �1g, it has to go to �D �0 in the backward direction
and to � D ��0 in the forward direction. If 
 has a point in f Q�2C �0 < �1g,
then it has to go to LC in the backward direction and to Q�2C �0 D �1 in the
forward direction; if j�j � �0 by the time Q�2C �0 D �1 is reached, the result
is proved, and otherwise Hp„;z� < 0 in Q�2C �0 � �1, j�j � �0, shows that the
bicharacteristic goes to �D��0 in the forward direction.

If 
 is a bicharacteristic in †„;�, only the second possibility exists, and the
bicharacteristic cannot leave f Q�2C �0 < �1g in j�j � �0, so it reaches �D��0

in the backward direction (as the characteristic set is in �� 0). �

If we assume that g0 is a nontrapping metric, that is, bicharacteristics of g0

in T �X ı
0
n o tend to @X0 in both the forward and the backward directions, then

�D �0 can be excluded from the statement of the lemma, and the above argument
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gives the following stronger conclusion: for sufficiently small �0 > 0, and for
Re z>0, any bicharacteristic in†„;C in��0�� has to go to LC in the backward
direction, and to � D ��0 in the forward direction (with the exception of the
constant bicharacteristics at LC), while in †„;�, all bicharacteristics in ��0 ��

lie in ��0 ��� 0, and go to L� in the forward direction and to �D��0 in the
backward direction (with the exception of the constant bicharacteristics at L�).

In fact, for applications, it is also useful to remark that for sufficiently small
�0 > 0, and for ˛ 2 T �X0,

0<�.˛/< �0; p„;z.˛/D 0 and .Hp„;z�/.˛/D 0 ) .H2
p„;z

�/.˛/< 0: (3-30)

Indeed, as Hp„;z� D 4.2.1C a1/�� � .1C a2/z/, the hypotheses imply that
z D 2.1C a1/.1C a2/

�1�� and

0D p„;z

D 4.1Ca1/��
2
�8.1Ca1/��

2
�4.1Ca1/

2.1Ca2/
�2.1Ca3/�

2�2
Cj�j2�;y

D�4.1Ca1/��
2
�4.1Ca1/

2.1Ca2/
�2.1Ca3/�

2�2
Cj�j2�;y ;

so j�j2�;y D 4.1C b/��2, with b vanishing at � D 0. Thus, at points where
Hp„;z� vanishes, writing aj D � Qaj ,

H2
p„;z

�D 8.1C a1/�Hp„;z �C 8�2�Hp„;z Qa1� 4z�Hp„;z Qa2

D 8.1C a1/�Hp„;z �CO.�2�2/: (3-31)

Now

Hp„;z � D�

�
4
�
1C a1C�

@a1

@�

�
�2
� 4

@a2

@�
z�C

@a3

@�
z2
C
@j�j2�;y

@�

�
:

Since z� is O.��2/ due to Hp„;z�D 0, z2 is O.�2�2/ for the same reason, and
j�j2 and @�j�j2 are O.��2/ due to p„;z D 0, we deduce that Hp„;z � < 0 for
sufficiently small j�j, so (3-31) implies (3-30). Thus, � can be used for gluing
constructions as in [Datchev and Vasy 2011].

3E. Complex absorption. The final step of fitting P� into our general microlocal
framework is moving the problem to a compact manifold, and adding a complex
absorbing second order operator. We thus consider a compact manifold without
boundary X for which X�0

D f� > �0g, �0 D��0 < 0, with �0 > 0 as above,
is identified as an open subset with smooth boundary; it is convenient to take X

to be the double of X�0
, so there are two copies of X0;even in X .

In the case of hyperbolic space, this doubling process can be realized from the
perspective of .nC 1/-dimensional Minkowski space. Then, as mentioned in the
introduction, the Poincaré model shows up in two copies, namely in the interior
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of the future and past light cone inside the sphere at infinity, while de Sitter
space as the “equatorial belt”, that is, the exterior of the light cone at the sphere
at infinity. One can take the Minkowski equatorial plane, t D 0, as � D �0,
and place the complex absorption there, thereby decoupling the future and past
hemispheres. See [Vasy 2010a] for more detail.

It is convenient to separate the “classical” (i.e., quantum!) and “semiclassical”
problems, for in the former setting trapping for g0 does not matter, while in the
latter it does.

We then introduce a “complex absorption” operator Q� 2‰
2
cl.X / with real

principal symbol q supported in, say, � < ��1, with the Schwartz kernel also
supported in the corresponding region (i.e., in both factors on the product space
this condition holds on the support) such that p˙ {q is elliptic near @X�0

, that
is, near � D �0, and which satisfies that ˙q � 0 near †˙. This can easily
be done since †˙ are disjoint, and away from these p is elliptic, hence so is
p˙ {q regardless of the choice of q; we simply need to make q to have support
sufficiently close to †˙, elliptic on †˙ at �D��0, with the appropriate sign
near †˙. Having done this, we extend p and q to X in such a way that p˙ {q

are elliptic near @X�0
; the region we added is thus irrelevant at the level of

bicharacteristic dynamics (of p) in so far as it is decoupled from the dynamics
in X0, and indeed also for analysis as we see shortly (in so far as we have two
essentially decoupled copies of the same problem). This is accomplished, for
instance, by using the doubling construction to define p on X nX�0

(in a smooth
fashion at @X�0

, as can be easily arranged; the holomorphic dependence of P�
on � is still easily preserved), and then, noting that the characteristic set of p still
has two connected components, making q elliptic on the characteristic set of p

near @X�0
, with the same sign in each component as near @X�0

. (An alternative
would be to make q elliptic on the characteristic set of p near X nX�0

; it is just
slightly more complicated to write down such a q when the high-energy behavior

Figure 2. The cotangent bundle near S D f�D 0g. It is drawn
in a fiber-radially compactified view, as in Figure 1. The circles
on the left show the support of q; it has opposite signs on the two
disks corresponding to the opposite directions of propagation
relative to the Hamilton vector field.
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is taken into account. With the present choice, due to the doubling, there are
essentially two copies of the problem on X0: the original, and the one from the
doubling.) Finally we take Q� be any operator with principal symbol q with
Schwartz kernel satisfying the desired support conditions and which depends
on � holomorphically. We may choose Q� to be independent of � so Q� is
indeed holomorphic; in this case we may further replace it by 1

2
.Q� CQ�� / if

self-adjointness is desired.
In view of Section 3C we have arranged the following. For ˛ 2 S�X \†,

let 
C.˛/, resp. 
�.˛/ denote the image of the forward, resp. backward, half-
bicharacteristic of p from ˛. We write 
˙.˛/! L˙ (and say 
˙.˛/ tends to
L˙) if given any neighborhood O of L˙, 
˙.˛/\O ¤∅; by the source/sink
property this implies that the points on the curve are in O for sufficiently large
(in absolute value) parameter values. Then, with ell.Q� / denoting the elliptic
set of Q� ,

˛ 2†� nL� ) 
C.˛/!L� and 
�.˛/\ ell.Q� /¤∅;

˛ 2†C nLC ) 
�.˛/!LC and 
C.˛/\ ell.Q� /¤∅:
(3-32)

That is, all forward and backward half-(null)bicharacteristics of P� either enter
the elliptic set of Q� , or go to ƒ˙, that is, L˙ in S�X . The point of the
arrangements regarding Q� and the flow is that we are able to propagate estimates
forward near where q � 0, backward near where q � 0, so by our hypotheses
we can always propagate estimates for P� � {Q� from ƒ˙ towards the elliptic
set of Q� . On the other hand, for P�� C {Q�� , we can propagate estimates from
the elliptic set of Q� towards ƒ˙. This behavior of P� � {Q� vs. P�� C {Q�� is
important for duality reasons.

An alternative to the complex absorption would be simply adding a boundary
at �D �0; this is easy to do since this is a space-like hypersurface, but this is
slightly unpleasant from the point of view of microlocal analysis as one has to
work on a manifold with boundary (though as mentioned this is easily done; see
[Vasy 2010a]).

For the semiclassical problem, when z is almost real (namely when Im z

is bounded away from 0 we only need to make sure we do not mess up the
semiclassical ellipticity in T �X�ı0

) we need to increase the requirements on
Q� , and what we need to do depends on whether g0 is nontrapping.

If g0 is nontrapping, we choose Q� such that h2Qh�1z 2 ‰
2
„;cl.X / with

semiclassical principal symbol q„;z , and in addition to the above requirement for
the classical symbol, we need semiclassical ellipticity near �D �0, that is, that
p„;z�{q„;z and its complex conjugate are elliptic near @X�0

, that is, near �D�0,
and which satisfies that for z real ˙q„;z � 0 on †„;˙. Again, we extend P� and
Q� to X in such a way that p � {q and p„;z � {q„;z (and thus their complex
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conjugates) are elliptic near @X�0
; the region we added is thus irrelevant. This is

straightforward to arrange if one ignores that one wants Q� to be holomorphic:
one easily constructs a function q„;z on T �X (taking into account the disjointness
of †„;˙), and defines Qh�1z to be h�2 times the semiclassical quantization of
q„;z (or any other operator with the same semiclassical and standard principal
symbols). Indeed, for our purposes this would suffice since we want high-energy
estimates for the analytic continuation resolvent on the original space X0 (which
we will know exists by the nonsemiclassical argument), and as we shall see, the
resolvent is given by the same formula in terms of .P� � {Q� /

�1 independently
whether Q� is holomorphic in � (as long as it satisfies the other properties), so
there is no need to ensure the holomorphy of Q� . However, it is instructive to
have an example of a holomorphic family Q� in a strip at least: in view of (3-24)
we can take (with C > 0)

qh;z D 2.2.1C a2/�C .1C a3/z/.�
2
Cj�j2C z2

CC 2h2/1=2�.�/;

where �� 0 is supported near �0; the corresponding full symbol is

�full.Q� /D 2.2.1C a2/�C .1C a3/�/.�
2
Cj�j2C �2/1=2�.�/;

and Q� is taken as a quantization of this full symbol. Here the square root is
defined on CnŒ0;�1/, with real part of the result being positive, and correspond-
ingly qh;z is defined away from h�1z 2 ˙{ŒC;C1/. Note that �2Cj�j2C �2

is an elliptic symbol in .�; �;Re �; Im �/ as long as jIm � j < C 0 jRe � j, so the
corresponding statement also holds for its square root. While qh;z is only holo-
morphic away from h�1z 2 ˙{ŒC;C1/, the full (and indeed the semiclassical
and standard principal) symbols are actually holomorphic in cones near infinity,
and indeed, for example, via convolutions by the Fourier transform of a compactly
supported function can be extended to be holomorphic in C, but this is of no
importance here.

If g0 is trapping, we need to add complex absorption inside X0 as well, at
�D �0, so we relax the requirement that Q� is supported in�<��0=2 to support
in j�j> �0=2, but we require in addition to the other classical requirements that
p„;z � {q„;z and its complex conjugate are elliptic near � D ˙�0, and which
satisfies that ˙q„;z � 0 on †„;˙. This can be achieved as above for � near �0.
Again, we extend P� and Q� to X in such a way that p� {q and p„;z � {q„;z
(and thus their complex conjugates) are elliptic near @X�0

.
In either of these semiclassical cases we have arranged that for sufficiently

small ı0 > 0, p„;z� {q„;z and its complex conjugate are semiclassically nontrap-
ping for jIm zj<ı0, namely the bicharacteristics from any point in†„n.LC[L�/

flow to ell.q„;z/[L� (i.e., either enter ell.q„;z/ at some finite time, or tend to L�)
in the forward direction, and to ell.q„;z/[LC in the backward direction. Here
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ı0 > 0 arises from the particularly simple choice of q„;z for which semiclassical
ellipticity is easy to check for Im z > 0 (bounded away from 0) and small; a more
careful analysis would give a specific value of ı0, and a more careful choice of
q„;z would give a better result.

4. Microlocal analysis

4A. Elliptic and real principal type points. First, recall the basic elliptic and
real principal type regularity results. Let WFs.u/ denote the H s wave front set
of a distribution u 2 C�1.X /, that is, ˛ 62WFs.u/ if there exists A 2 ‰0.X /

elliptic at ˛ such that Au 2H s . Elliptic regularity states that

P� � {Q� elliptic at ˛; ˛ 62WFs�2..P� � {Q� /u/) ˛ 62WFs.u/:

In particular, if .P�� {Q� /u2H s�2 and p� {q is elliptic at ˛ then ˛ 62WFs.u/.
Analogous conclusions apply to P�� C {Q�� ; since both p and q are real, p� {q

is elliptic if and only if pC {q is.
We also have real principal type propagation, in the usual form valid outside

supp q:
WFs.u/ n .WFs�1..P� � {Q� /u/[ supp q/

is a union of maximally extended bicharacteristics of Hp in the characteristic set
†D fp D 0g of P� . Putting it differently,

˛ 62WFs.u/[WFs�1..P� � {Q� /u/[ supp q) Q
 .˛/\WFs.u/D∅;

where Q
 .˛/ is the component of the bicharacteristic 
 .˛/ of p in the complement
of WFs�1..P� � {Q� /u/[ supp q. If .P� � {Q� /u 2H s�1, then the condition
WFs�1..P� � {Q� /u/D∅ can be dropped from all statements above; if q D 0

one can thus replace Q
 by 
 .
In general, the result does not hold for nonzero q. However, it holds in one

direction (backward/forward) of propagation along Hp if q has the correct sign.
Thus, let Q
˙.˛/ be a forward (C) or backward (�) bicharacteristic from ˛,
defined on an interval I . If ˙q � 0 on a neighborhood of Q
˙.˛/ (i.e., q � 0 on
a neighborhood of Q
C.˛/, or q � 0 on a neighborhood of Q
�.˛/) then (for the
corresponding sign)

˛ 62WFs.u/ and WFs�1..P� � {Q� /u/\ Q
˙.˛/D∅) Q
˙.˛/\WFs.u/D∅;

that is, one can propagate regularity forward if q � 0, backward if q � 0. A proof
of this claim that is completely analogous to Hörmander’s positive commutator
proof in the real principal type setting can easily be given: see [Nonnenmacher
and Zworski 2009; Datchev and Vasy 2011] in the semiclassical setting; the
changes are minor in the “classical” setting. Note that at points where q¤ 0, just
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˛ 62WFs�1..P� � {Q� /u/ implies ˛ 62WFsC1.u/ (stronger than stated above),
but at points with q D 0 such an elliptic estimate is unavailable (unless P� is
elliptic).

As P�� C {Q�� has symbol pC {q, one can propagate regularity in the opposite
direction as compared to P� � {Q� . Thus, if �q � 0 on a neighborhood of
Q
˙.˛/ (i.e., q � 0 on a neighborhood of Q
C.˛/, or q � 0 on a neighborhood of
Q
�.˛/) then (for the corresponding sign)

˛ 62WFs.u/ and WFs�1..P�� C{Q�� /u/\ Q
˙.˛/D∅) Q
˙.˛/\WFs.u/D∅:

4B. Analysis near ƒ˙. The last ingredient in the classical setting is an analogue
of Melrose’s regularity result at radial sets which have the same features as ours.
Although it is not stated in this generality in Melrose’s paper [1994], the proof is
easily adapted. Thus, the results are:

At ƒ˙, for s �m> 1
2
� Im � , we can propagate estimates away from ƒ˙:

Proposition 4.1. Suppose s �m> 1
2
� Im � , and WFm.u/\ƒ˙ D∅. Then

ƒ˙\WFs�1.P�u/D∅ ) ƒ˙\WFs.u/D∅:

This is completely analogous to Melrose’s estimates in asymptotically Eu-
clidean scattering theory at the radial sets [Melrose 1994, Section 9]. Note that
the H s regularity of u at ƒ˙ is “free” in the sense that we do not need to impose
H s assumptions on u anywhere; merely H m at ƒ˙ does the job; of course, on
P�u one must make the H s�1 assumption, that is, the loss of one derivative
compared to the elliptic setting. At the cost of changing regularity, one can
propagate estimate towards ƒ˙. Keeping in mind that taking P�� in place of P� ,
principal symbol of 1

2{
.P� �P�� / switches sign, we have the following:

Proposition 4.2. For s < 1
2
C Im � , and O a neighborhood of ƒ˙,

WFs.u/\ .O nƒ˙/D∅; WFs�1.P�� u/\ƒ˙ D∅)WFs.u/\ƒ˙ D∅:

Proof of Propositions 4.1 and 4.2. The proof is a positive commutator estimate.
Consider commutants C �� C� with C� 2 ‰

s�1=2�ı.X / for � > 0, uniformly
bounded in ‰s�1=2.X / as �! 0; with the �-dependence used to regularize the
argument. More precisely, let

c D �.�0/ Q�
�sC1=2; c� D c.1C � Q��1/�ı;

where � 2 C1c .R/ is identically 1 near 0, �0 � 0 and � is supported sufficiently
close to 0 so that

�0 2 supp d� ) ˙Q�Hp�0 > 0I (4-1)
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such � exists by (3-21). To avoid using the sharp Gårding inequality, we choose
� so that

p
���0 is C1. Note that the sign of Hp Q�

�sC1=2 depends on the sign
of �s C 1=2 which explains the difference between s > 1=2 and s < 1=2 in
Propositions 4.1–4.2 when there are no other contributions to the threshold value
of s. The contribution of the principal symbol of 1

2{
.P� �P�� /, however, shifts

the critical value 1=2.
Now let C 2 ‰s�1=2.X / have principal symbol c, and have WF0.C / �

supp� ı �0, and let C� D CS� , S� 2‰
�ı.X / uniformly bounded in ‰0.X / for

� > 0, converging to Id in ‰ı
0

.X / for ı0 > 0 as �! 0, with principal symbol
.1C � Q��1/�ı. Thus, the principal symbol of C� is c�.

First, consider Proposition 4.1. Then

�2s.{.P
�
�C �� C� �C �� C�P� //D �1.{.P

�
� �P� //c

2
� C 2c�Hpc�

D˙8
�
�Im ��C

�
�sC 1

2

�
�˙ 1

4
. Q�Hp�0/�

0
Cı

�

Q�C�
�
�
� Q��2s.1C� Q��1/�2ı;

(4-2)

so

˙�2s.{.P
�
�C �� C��C �� C�P� //��8

�
s� 1

2
CIm ��ı

�
Q��2s.1C� Q��1/�2ı�2

C 2.˙ Q�Hp�0/ Q�
�2s.1C � Q��1/�2ı�0�: (4-3)

Here the first term on the right-hand side is negative if s� 1=2C Im � � ı > 0

and this is the same sign as that of �0 term; the presence of ı (needed for the
regularization) is the reason for the appearance of m in the estimate. Thus,

˙{.P��C �� C� �C �� C�P� /D�S�� .B
�BCB�1 B1CB�2;�B2;�/S�CF�;

with B;B1;B2;� 2 ‰
s.X /, B2;� uniformly bounded in ‰s.X / as � ! 0, F�

uniformly bounded in ‰2s�1.X /, and �s.B/ an elliptic multiple of �.�0/ Q�
�s .

Computing the pairing, using an extra regularization (insert a regularizer ƒr 2

‰�1.X /, uniformly bounded in ‰0.X /, converging to Id in ‰ı.X / to justify
integration by parts, and use that Œƒr ;P

�
� � is uniformly bounded in ‰1.X /,

converging to 0 strongly, cf. [Vasy 2000, Lemma 17.1] and its use in [Vasy 2000,
Lemma 17.2]) yields

h{.P��C �� C� �C �� C�P� /u;ui D h{C
�
� C�u;P�ui � h{P�u;C �� C�ui:

Using Cauchy–Schwartz on the right-hand side, a standard functional analytic
argument (see, for instance, Melrose [1994, Proof of Proposition 7 and Section 9])
gives an estimate for Bu, showing u is in H s on the elliptic set of B, provided u

is microlocally in H s�ı . A standard inductive argument, starting with s� ıDm

and improving regularity by � 1
2

in each step proves Proposition 4.1.
For Proposition 4.2, when applied to P� in place of P�� (so the assumption is

s < .1� Im �/=2), the argument is similar, but we want to change the overall
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sign of the terms in (4-2) corresponding to the first term on the right-hand side
of (4-3), that is, we want it to be positive. This is satisfied if s� 1=2C Im � < 0

since the regularizer now contributes the correct sign. On the other hand, �0

now has the wrong sign, so one needs to make an assumption on supp d�; one
can arrange that this is in O nƒ by making � have sufficiently small support,
but identically 1 near 0. Since the details are standard — see [Melrose 1994,
Section 9] — we leave them to the reader. When interchanging P� and P�� ,
we need to take into account the switch of the sign of the principal symbol of
1
2{
.P� �P�� /, which causes the sign change in front of Im � in the statement of

the proposition. �

4C. Global estimates. For our Fredholm results, we actually need estimates.
However, these can be easily obtained from regularity results as in, for example,
[Hörmander 1985b, Proof of Theorem 26.1.7] by the closed graph theorem. It
should be noted that of course one really proved versions of the relevant estimates
when proving regularity, but the closed graph theorem provides a particularly
simple way of combining these (though it comes at the cost of using a theorem
which in principle is unnecessary).

So suppose s � m > 1
2
� Im � , u 2 H m and .P� � {Q� /u 2 H s�1. The

above results give that, first, WFs.u/ (indeed, WFsC1.u/) is disjoint from the
elliptic set of P� � {Q� . Next ƒ˙ is disjoint from WFs.u/, hence so is a
neighborhood of ƒ˙ as the complement of the wave front set is open. Thus by
propagation of singularities and (3-32), taking into account the sign of q along
†˙, WFs.u/\†˙ D∅. Now, by the regularity result, the inclusion map

Zs D fu 2H m
W .P� � {Q� /u 2H s�1

g !H m;

in fact maps to H s .
Note that Zs is complete with the norm kuk2Zs

Dkuk2
H mCk.P��{Q� /uk

2
H s�1 .

Indeed, if fuj g
1
jD1

is Cauchy in Zs we have uj ! u in H m and

.P� � {Q� /uj ! v 2H s�1:

By the first convergence, .P� � {Q� /uj ! .P� � {Q� /u in H m�2, thus, as
s� 1�m� 2, .P� � {Q� /uj ! v in H m�2 shows .P� � {Q� /uD v 2H s�1,
and thus, .P� � {Q� /uj ! .P� � {Q� /u in H s�1, so uj ! u in Zs .

The graph of the inclusion map, considered as a subset of Zs �H s is closed,
for .uj ;uj /! .u; v/ 2 Zs �H s implies in particular uj ! u and uj ! v in
H m, so uD v 2 Zs \H s . Correspondingly, by the closed graph theorem, the
inclusion map is continuous, that is,

kukH s � C.k.P� � {Q� /ukH s�1 CkukH m/; u 2 Zs: (4-4)
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This estimate implies that Ker.P� � {Q� / in H s is finite dimensional since
elements of this kernel lie in Zs , and since on the unit ball of this closed subspace
of H s (for P� � {Q� WH

s!H s�2 is continuous), kukH s � CkukH m , and the
inclusion H s ! H m is compact. Further, elements of Ker.P� � {Q� / are in
C1.X / by our regularity result, and thus this space is independent of the choice
of s.

On the other hand, for the adjoint operator P�� C {Q�� , if s0 < 1
2
C Im � (recall

that replacing P� by its adjoint switches the sign of the principal symbol of
1
2{
.P� �P�� /), u 2H�N and .P�� C {Q�� /u 2H s0�1 then first WFs0.u/ (indeed,

WFs0C1.u/) is disjoint from the elliptic set of P�� C {Q�� . Next, by propagation
of singularities and (3-32), taking into account the sign of q along †˙, namely
the sign of the imaginary part of the principal symbol switched by taking the
adjoints, WFs0.u/\ .†˙ nƒ˙/D∅. Finally, by the result at the radial points
ƒ˙ is disjoint from WFs0.u/. Thus, the inclusion map

Ws0 D fu 2H�N
W .P�� C {Q�� /u 2H s0�1

g !H�N ;

in fact maps to H s0 . We deduce, as above, by the closed graph theorem, that

kukH s0 � C.k.P�� C {Q�� /ukH s0�1 CkukH�N /; u 2Ws0 : (4-5)

As above, this estimate implies that Ker.P�� C {Q�� / in H s0 is finite dimensional.
Indeed, by our regularity results (elliptic regularity, propagation of singularities,
and then regularity at the radial set) elements of Ker.P�� C {Q�� / have wave front
set in ƒC[ƒ� and lie in \s0<1=2CIm�H s0 .

The dual of H s for s> 1
2
�Im � , is H�sDH s0�1, s0D 1�s, so s0< 1

2
CIm �

in this case, while the dual of H s�1, s > 1
2
� Im � , is H 1�s D H s0 , with

s0 D 1� s < 1
2
C Im � again. Thus, the spaces (apart from the residual spaces

H m and H�N , into which the inclusion is compact) in the left, resp. right, side
of (4-5), are exactly the duals of those on the right, resp. left, side of (4-4).
Thus, by a standard functional analytic argument [Hörmander 1985b, Proof of
Theorem 26.1.7], namely dualization and using the compactness of the inclusion
H s0 !H�N for s0 > �N , (4-5) gives the H s-solvability, s D 1� s0 (i.e., we
demand u 2H s), of

.P� � {Q� /uD f; s > 1
2
� Im �;

for f in the annihilator (in H s�1D .H s0/� with duality induced by the L2 inner
product) of the finite dimensional subspace Ker.P�� C {Q�� / of H s0 .

Recall from [Hörmander 1985b, Proof of Theorem 26.1.7] that this argument
has two parts: first for any complementary subspace V of Ker.P�� C{Q�� / in H s0

(i.e., V is closed, V \Ker.P�� C {Q�� /D f0g, and V CKer.P�� C {Q�� /DH s0 ,
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for example, V is the H s0 orthocomplement of Ker.P�� C {Q�� /), one can drop
kukH�N from the right-hand side of (4-5) when u 2 V \Ws0 at the cost of
replacing C by a larger constant C 0. Indeed, if no C 0 existed, one would have a
sequence uj 2 V \Ws0 such that kujkH s0 D 1 and k.P�� C {Q�� /ujkH s0�1! 0,
so .P�� C {Q�� /uj ! 0 in H s0�1. By weak compactness of the H s0 unit ball,
there is a weakly convergent subsequence uj` converging to some u 2H s0 , by
the closedness (which implies weak closedness) of V , u 2 V , so

.P�� C {Q�� /uj` ! .P�� C {Q�� /u

weakly in H s0�2, and thus .P�� C {Q�� /uD 0 so u 2 V \Ker.P�� C {Q�� /D f0g.
On the other hand, by compactness of the inclusion H s0 ! H�N , uj` ! u

strongly in H�N , so fuj`g is Cauchy in H�N , hence from (4-5), it is Cauchy in
H s0 , so it converges to u strongly in H s0 and hence kukH s0 D 1. This contradicts
uD 0, completing the proof of

kukH s0 � C 0k.P�� C {Q�� /ukH s0�1 ; u 2 V \Ws0 : (4-6)

Thus, with s0D1�s, and for f in the annihilator (in H s�1, via the L2-pairing)
of Ker.P�� C {Q�� /�H s0 , and for v 2 V \Ws0 ,

jhf; vij � kf kH s�1kvkH s0 � C 0kf kH s�1k.P�� C {Q�� /vkH s0�1 :

As adding an element of Ker.P�� C {Q�� / to v does not change either side,
the inequality holds for all v 2 Ws0 � H s0 . Thus, the conjugate-linear map
.P�� C {Q�� /v 7! hf; vi, v 2 Ws0 , which is well-defined, is continuous from
RanWs0

.P�� C {Q�� / � H s0�1 to C, and by the Hahn–Banach theorem can be
extended to a continuous conjugate linear functional ` on H s0�1 D .H s/�, so
there exists u 2H s such that hu; �i D `.�/ for � 2H s0�1. In particular, when
� D .P�� C {Q�� / ,  2 C1.X /�Ws0 ,

hu; .P�� C {Q�� / i D `.�/D hf; i;

so .P� � {Q� /uD f as claimed.
In order to set up Fredholm theory, let QP be any operator with principal symbol

p� {q; for example, QP is P�0
� {Q�0

for some �0. Then consider

Xs
D fu 2H s

W QPu 2H s�1
g; Ys

DH s�1; (4-7)

with
kuk2Xs D kuk

2
H s Ck QPuk2

H s�1 :

Note that the Zs-norm is equivalent to the Xs-norm, and Zs D Xs , by (4-4) and
the preceding discussion. Note that Xs only depends on the principal symbol of QP .
Moreover, C1.X / is dense in Xs; this follows by considering R� 2‰

�1.X /,
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� > 0, such that R� ! Id in ‰ı.X / for ı > 0, R� uniformly bounded in
‰0.X /; thus R� ! Id strongly (but not in the operator norm topology) on
H s and H s�1. Then for u 2 Xs , R�u 2 C1.X / for � > 0, R�u! u in H s

and QPR�uDR�
QPuC Œ QP ;R� �u, so the first term on the right converges to QPu

in H s�1, while Œ QP ;R� � is uniformly bounded in ‰1.X /, converging to 0 in
‰1Cı.X / for ı > 0, so converging to 0 strongly as a map H s!H s�1. Thus,
Œ QP ;R� �u! 0 in H s�1, and we conclude that R�u! u in Xs . (In fact, Xs is
a first-order coisotropic space, more general function spaces of this nature are
discussed in [Melrose et al. 2009, Appendix A].)

With these preliminaries,

P� � {Q� W X
s
! Ys

is bounded for each � with s � m > 1
2
� Im � , and is an analytic family of

bounded operators in this half-plane of �’s. Further, it is Fredholm for each � :
the kernel in Xs is finite dimensional, and it surjects onto the annihilator in H s�1

of the (finite dimensional) kernel of P�� C {Q�� in H 1�s , which thus has finite
codimension, and is closed, since for f in this space there exists u 2H s with
.P� � {Q� /uD f , and thus u 2 Xs . Restating this as a theorem:

Theorem 4.3. Let P� , Q� be as above, and Xs , Ys as in (4-7). Then

P� � {Q� W X
s
! Ys

is an analytic family of Fredholm operators on

Cs D f� 2 C W Im � > 1
2
� sg: (4-8)

Thus, analytic Fredholm theory applies, giving meromorphy of the inverse
provided the inverse exists for a particular value of � .

Remark 4.4. Note that the Fredholm property means that P�� C {Q�� is also
Fredholm on the dual spaces; this can also be seen directly from the estimates.
The analogue of this remark also applies to the semiclassical discussion below.

4D. Semiclassical estimates. There are semiclassical estimates completely anal-
ogous to those in the classical setting; we again phrase these as wave front set
statements. Let H s

„
denote the semiclassical Sobolev space of order s, that is, as

a function space this is the space of functions .uh/h2I , I � .0; 1�h with values
in the standard Sobolev space H s , with Ahuh bounded in L2 for an elliptic,
semiclassically elliptic, operator Ah 2‰

s
„
.X /. (Note that uh need not be defined

for all h 2 .0; 1�; we suppress I from the notation.) Let

WFs;r
„
.u/� @.T �X � Œ0; 1/h/D S�X � Œ0; 1/h[T �X � f0gh
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denote the semiclassical wave front set of a polynomially bounded family of
distributions, that is, uD .uh/h2I , I � .0; 1�, satisfying uh is uniformly bounded
in h�N H�N

„
for some N . This is defined as follows: we say that ˛ 62WFs;r

„
.u/

if there exists A 2‰0
„
.X / elliptic at ˛ such that Au 2 hr H s

„
. Note that, in view

of the description of the symbols in Section 2, ellipticity at ˛ means the ellipticity
of �„.Ah/ if ˛ 2 T �X � f0g, that of �0.Ah/ if ˛ 2 S�X � .0; 1/, and that of
either (and thus both, in view of the compatibility of these symbols) of these
when ˛ 2S�X �f0g. The semiclassical wave front set captures global estimates:
if u is polynomially bounded and WFs;r

„
.u/D∅, then u 2 hr H s

„
.

Elliptic regularity states that

Ph;z � {Qh;z elliptic at ˛; ˛ 62WFs�2;0
„

..Ph;z � {Qh;z/u/) ˛ 62WFs;0
„
.u/:

Thus, .Ph;z � {Qh;z/ 2H s�2
„

and p„;z � {q„;z is elliptic at ˛ then ˛ 62WFs
„
.u/.

We also have real principal type propagation:

WFs;�1
„

.u/ n .WFs�1;0
„

..Ph;z � {Qh;z/u/[ supp q„;z/

is a union of maximally extended bicharacteristics of Hp in the characteristic set
†„;z D fp„;z D 0g of Ph;z . Put differently,

˛ 62WFs;�1.u/[WFs�1;0..Ph;z � {Qh;z/u/[ supp q„;z

) Q
 .˛/\WFs;�1.u/D∅;

where Q
 .˛/ is the component of the bicharacteristic 
 .˛/ of p„;z in the com-
plement of WFs�1;0..Ph;z � {Qh;z/u/[ supp q„;z . If .Ph;z � {Qh;z/u 2H s�1,
then WFs�1;0..Ph;z � {Qh;z/u/D∅ can be dropped from all statements above;
if q„;z D 0 one can thus replace Q
 by 
 .

In general, the result does not hold for nonzero q„;z . However, it holds in one
direction (backward/forward) of propagation along Hp„;z if q„z

has the correct
sign. Thus, with Q
˙.˛/ a forward (C) or backward (�) bicharacteristic from ˛

defined on an interval, if ˙q„;z � 0 on a neighborhood of Q
˙.˛/ then

˛ 62WFs;�1
„

.u/ and Q
˙.˛/\WFs�1;0
„

..P„;z � {Q„;z/u/D∅

) Q
˙.˛/\WFs;�1
„

.u/D∅;

that is, one can propagate regularity forward if q„;z � 0, backward if q„;z � 0;
see [Nonnenmacher and Zworski 2009; Datchev and Vasy 2011]. Again, for
P�
„;z
C {Q�

„;z
the directions are reversed, that is, one can propagate regularity

forward if q„;z � 0, backward if q„;z � 0.
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A semiclassical version of Melrose’s regularity result was proved in [Vasy
and Zworski 2000] in the asymptotically Euclidean setting. We need a more
general result, which is an easy adaptation:

Proposition 4.5. Suppose s �m > 1
2
� Im � , and WFm;�N

„
.u/\L˙ D ∅ for

some N . Then

L˙\WFs�1;0.P„;zu/D∅)L˙\WFs;�1.u/D∅:

Again, at the cost of changing regularity, one can propagate estimate towards
L˙.

Proposition 4.6. For s < 1
2
C Im � and O a neighborhood of L˙,

WFs;�1
„

.u/\ .O nL˙/D∅; WFs�1;0
„

.P�
„;zu/\L˙ D∅

) WFs;�1
„

.u/\L˙ D∅:

Proof. We just need to localize in Q� in addition to �0; such a localization in the
classical setting is implied by working on S�X or with homogeneous symbols.
We achieve this by modifying the localizer � in the commutant constructed in the
proof of Propositions 4.1 and 4.2. As already remarked, the proof is much like
at radial points in semiclassical scattering on asymptotically Euclidean spaces,
studied in [Vasy and Zworski 2000], but we need to be more careful about
localization in �0 and Q� as we are assuming less about the structure.

First, note that L˙ is defined by Q� D 0, �0 D 0, so Q�2C �0 is a quadratic
defining function of L˙. Thus, let � 2 C1c .R/ be identically 1 near 0, �0 � 0

and � supported sufficiently close to 0 so that

Q�2
C �0 2 supp d�)˙ Q�.Hp�0C 2 Q�Hp Q�/ > 0

and
Q�2
C �0 2 supp�)˙ Q�Hp Q� > 0:

Such a � exists by (3-19) and (3-21) as

˙ Q�.Hp�0C 2 Q�Hp Q�/� 8�0C 8 Q�2
�O.. Q�2

C �0/
3=2/:

Then let c be given by

c D �.�0C Q�
2/ Q��sC1=2; c� D c.1C � Q��1/�ı:

The rest of the proof proceeds exactly as for Propositions 4.1 and 4.2, except one
writes Ph;z D Ph;z;ReC {Ph;z;Im with the two summands being symmetric, resp.
antisymmetric, thus with principal symbol Re p„;z and { Im p„;z , one computes
the commutator with Ph;z;Re which involves Re p„;z , obtains an extra term from
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Ph;z;Im which has the correct sign as in the case of complex absorption in view
of (3-27); see [Datchev and Vasy 2011, Lemma 5.1] for its treatment. �

Suppose now that p„;z is semiclassically nontrapping, as discussed at the end
of Section 3. Suppose again that s�m> 1

2
�Im � , hN uh is bounded in H m

„
and

.Ph;z� {Qh;z/uh 2H s�1
„

. The above results give that, first, WFs;�1
„

.u/ (indeed,
WFsC1;0
„

.u/) is disjoint from the elliptic set of Ph;z � {Qh;z . Next we see that
L˙ is disjoint from WFs;�1

„
.u/, hence so is a neighborhood of L˙. Thus by

propagation of singularities and the semiclassically nontrapping property, taking
into account the sign of q along †„;˙, WFs;�1

„
.u/\†„;˙ D ∅. In summary,

WFs;�1
„

.u/D∅, i.e., huh is bounded in H s
„

, i.e.,

hN uh bounded in H m
„
; .Ph;z � {Qh;z/uh 2H s�1

„
) huh 2H s

„
: (4-9)

Now suppose that for a decreasing sequence hj ! 0, wh 2Ker.Ph;z� {Qh;z/

and kwhkH s
„
D 1. Then for any N , uhD h�Nwh satisfies the above hypotheses,

and we deduce that huh is uniformly bounded in H s
„

, that is, h�NC1wh is
uniformly bounded in H s

„
. But for N > 1 this contradicts that kwhkH s

„
D 1,

so such a sequence hj does not exist. Therefore Ker.Ph;z � {Qh;z/ D f0g for
sufficiently small h.

Using semiclassical propagation of singularities in the reverse direction, much
as we did in the previous section, we deduce that Ker.P�

h;z
C {Q�

h;z
/D f0g for

h sufficiently small. Since Ph;z � {Qh;z W Xs ! Ys is Fredholm, we deduce
immediately that there exists h0 such that it is invertible for h< h0.

In order to obtain uniform estimates for .Ph;z � {Qh;z/
�1 as h! 0, it is

convenient to “renormalize” the problem to make the function spaces (and their
norms) independent of h so that one can use the uniform boundedness principle.
(Again, this could have been avoided if we had just stated the estimates uniformly
in u as well, much like the closed graph theorem could have been avoided in the
previous section.) So for r 2 R let ƒr

h
2‰r

h
be elliptic and invertible, and let

P s
h;z � {Qs

h;z Dƒ
s�1
h .Ph;z � {Qh;z/ƒ

s
h:

Then, with QP D P s
h0;z0

2‰1.X /, for instance, independent of h,

XD fu 2L2
W QPu 2L2

g; YDL2;

P s
h;z
� {Qs

h;z
W X! Y is invertible for h < h0 by the above observations. Let

j W X! ZDL2 be the inclusion map. Then

j ı h.P s
h;z � {Qs

h;z/
�1
W Y! Z

is continuous for each h< h0.
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We claim that for each (nonzero)f 2Y, fkh.P s
h;z
� {Qs

h;z
/�1f kL2 W h< h0g

is bounded. Indeed, let vh D h.P s
h;z
� {Qs

h;z
/�1f , so we need to show that vh

is bounded. Suppose first that hvh is not bounded, so consider a sequence hj

with hjkvhj kL2 � 1. Then let uh D h�2vh=kvhkL2 , h 2 fhj W j 2 Ng, so h2uh

is bounded in L2, so uh is in particular polynomially bounded in L2. Also,
.P s

h;z
� {Qs

h;z
/uh D h�1f=kvhkL2 is bounded in L2 as kvhk � h�1. Thus, by

(4-9), huh is bounded in L2, that is, h�1vh=kvhkL2 is bounded, which is a
contradiction, showing that hvh is bounded. Thus, introducing a new uh, namely
uhDh�1vh, uh is polynomially bounded, and .P s

h;z
�{Qs

h;z
/uhDf is bounded,

so, by (4-9), huh D vh is bounded as claimed.
Thus, by the uniform boundedness principle, j ıh.P s

h;z
�{Qs

h;z
/�1 is equicon-

tinuous. Undoing the transformation, we deduce that

k.Ph;z � {Qh;z/
�1f kH s

„
� C h�1

kf kH s�1
„
;

which is exactly the high-energy estimate we were after.
Our arguments were under the assumption of semiclassical nontrapping. As

discussed in Sections 3D and 3E, this always holds in sectors ı jRe � j< Im � <

ı0 jRe � j (with Q� supported in �< 0!) since Ph;z � {Qh;z is actually semiclas-
sically elliptic then. In particular this gives the meromorphy of P� � {Q� by
giving invertibility of large � in such a sector. Rephrasing in the large parameter
notation, using � instead of h,

Theorem 4.7. Let P� , Q� , Cs be as above, and Xs , Ys as in (4-7). Then, for
� 2 Cs ,

P� � {Q� W X
s
! Ys

has a meromorphic inverse

R.�/ W Ys
! Xs:

Moreover, there is ı0 > 0 such that for all ı 2 .0; ı0/ there is �0 > 0 such that
R.�/ is invertible in

f� W ı jRe � j< Im � < ı0 jRe � j; jRe � j> �0g;

and nontrapping estimates hold:

kR.�/f kH s

j�j�1
� C 0j� j�1

kf kH s�1

j�j�1
:

If the metric g0 is nontrapping then p„;z � {q„;z and its complex conjugate
are semiclassically nontrapping by Section 3D, so the high-energy estimates are
then applicable in half-planes Im � < �C , that is, half-planes Im z ��C h. The
same holds for trapping g0 provided that we add a complex absorbing operator
near the trapping, as discussed in Section 3E.
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Translated into the classical setting, this gives:

Theorem 4.8. Let P� , Q� , Cs , ı0 > 0 be as above, in particular semiclassically
nontrapping, and Xs , Ys as in (4-7). Let C > 0. Then there exists �0 such that

R.�/ W Ys
! Xs;

is holomorphic in f� W �C < Im � < ı0 jRe � j; jRe � j > �0g, assumed to be a
subset of Cs , and nontrapping estimates

kR.�/f kH s

j�j�1
� C 0j� j�1

kf kH s�1

j�j�1

hold. For s D 1 this states that for jRe � j> �0, Im � > �C ,

kR.�/f k2
L2 Cj� j

�2
kdR.�/k2

L2 � C 00j� j�2
kf k2

L2 :

While we stated just the global results here, one also has microlocal estimates
for the solution. In particular we have the following, stated in the semiclassical
language, as immediate from the estimates used to derive from the Fredholm
property:

Theorem 4.9. Let P� , Q� , Cs be as above, in particular semiclassically non-
trapping, and Xs , Ys as in (4-7).

For Re z > 0 and s0 > s, the resolvent Rh;z is semiclassically outgoing with a
loss of h�1 in the following sense. Let ˛ 2 T �X \†„;˙ and let 
� and 
C be
the backward and forward bicharacteristic from ˛, respectively.

If WFs0�1;0
„

.f /\ 
� D ∅ (where the upper sign in � corresponds to the
upper sign in˙ in the previous paragraph), then ˛ 62WFs0;�1

„
.Rh;zf /.

In fact, for any s0 2 R, the resolvent Rh;z extends to f 2H s0

h
.X /, with non-

trapping bounds, provided that WFs;0
„
.f /\.LC[L�/D∅. The semiclassically

outgoing with a loss of h�1 result holds for such f and s0 as well.

Proof. The only part that is not immediate by what has been discussed is the last
claim. This follows immediately, however, by microlocal solvability in arbitrary
ordered Sobolev spaces away from the radial points (i.e., solvability modulo C1,
with semiclassical estimates), combined with our preceding results to deal with
this smooth remainder plus the contribution near LC[L�, which are assumed
to be in H s

h
.X /. �

This result is needed for gluing constructions as in [Datchev and Vasy 2011],
namely polynomially bounded trapping with appropriate microlocal geometry
can be glued to our resolvent. Furthermore, it gives nontrapping estimates
microlocally away from the trapped set provided the overall (trapped) resolvent
is polynomially bounded, as shown in [Datchev and Vasy 2010].
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5. Results in the conformally compact setting

We now state our results in the original conformally compact setting. Without the
nontrapping estimate, these are a special case of a result of Mazzeo and Melrose
[1987], with improvements by Guillarmou [2005], with “special” meaning that
evenness is assumed. If the space is asymptotic to actual hyperbolic space, the
nontrapping estimate is a slightly stronger version of the estimate of [Melrose
et al. 2011], where it is shown by a parametrix construction; here conformal
infinity can have arbitrary geometry. The point is thus that first, we do not need
the machinery of the zero calculus here, second, we do have nontrapping high-
energy estimates in general (and without a parametrix construction), and third,
we add the semiclassically outgoing property which is useful for resolvent gluing,
including for proving nontrapping bounds microlocally away from trapping,
provided the latter is mild, as shown in [Datchev and Vasy 2010; 2011].

Theorem 5.1. Suppose that .X0;g0/ is an n-dimensional manifold with bound-
ary with an even conformally compact metric and boundary defining function
x. Let X0;even denote the even version of X0, that is, with the boundary defining
function replaced by its square with respect to a decomposition in which g0 is
even. Then the inverse of

�g0
�

�
n�1

2

�2
� �2;

written as R.�/ WL2!L2, has a meromorphic continuation from Im � � 0 to
C,

R.�/ W PC1.X0/! C�1.X0/;

with poles with finite rank residues. If in addition .X0;g0/ is nontrapping, then,
with � as in Section 3A, and for suitable ı0 > 0, nontrapping estimates hold in
every region �C < Im � < ı0 jRe � j, jRe � j � 0: for s > 1

2
CC ,

kx�.n�1/=2e{��R.�/f kH s

j�j�1
.X0;even/

� QC j� j�1
kx�.nC3/=2e{��f kH s�1

j�j�1
.X0;even/

: (5-1)

If f is supported in X ı
0

, the s� 1 norm on f can be replaced by the s� 2 norm.
Furthermore, for Re z > 0, Im z D O.h/, the resolvent R.h�1z/ is semiclas-

sically outgoing with a loss of h�1 in the sense that if f has compact support
in X ı

0
, ˛ 2 T �X is in the semiclassical characteristic set and if WFs�1;0

„
.f / is

disjoint from the backward bicharacteristic from ˛, then

˛ 62WFs;�1
„

.R.h�1z/f /:
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We remark that although in order to go through without changes, our methods
require the evenness property, it is not hard to deduce more restricted results
without this. Essentially one would have operators with coefficients that have
a conormal singularity at the event horizon; as long as this is sufficiently mild
relative to what is required for the analysis, it does not affect the results. The
problems arise for the analytic continuation, when one needs strong function
spaces (H s with s large); these are not preserved when one multiplies by the
singular coefficients.

Proof. All of the results of Section 4 apply.
By self-adjointness and positivity of �g0

and as PC1.X0/ is in its domain,�
�g0
� �2

�

�
n�1

2

�2�
uD f 2 PC1.X0/

has a unique solution uDR.�/f 2L2.X0; jdg0j/ when Im �� 0. On the other
hand, let � be as in Section 3A, so e� D�1=2.1C�/�1=4 near �D 0 (so e� � x

there), Qf0D e{��x�.nC1/=2x�1f in �� 0, and Qf0 still vanishes to infinite order
at �D 0. Let Qf be an arbitrary smooth extension of Qf0 to the compact manifold
X on which P� � {Q� is defined. Let QuD .P� � {Q� /

�1 Qf , with .P� � {Q� /
�1

given by our results in Section 4; this satisfies .P��{Q� / QuD Qf and Qu2C1.X /.
Thus, u0 D e�{��x.nC1/=2x�1 Quj�>0 satisfies u0 2 x.n�1/=2e�{��C1.X0/, and�

�g0
� �2

�

�
n�1

2

�2�
u0 D f;

by (3-5) and (3-14) (as Q� is supported in �< 0). Since u0 2L2.X0; jdg0j/ for
Im � > 0, by the aforementioned uniqueness, uD u0.

To make the extension from X0;even to X more systematic, let

Es WH
s.X0;even/!H s.X /

be a continuous extension operator, Rs WH
s.X /!H s.X0;even/ the restriction

map. Then, as we have just seen, for f 2 PC1.X0/,

R.�/f De�{��x.nC1/=2x�1Rs.P��{Q� /
�1Es�1e{��x�.nC1/=2x�1f: (5-2)

While, for the sake of simplicity, Q� is constructed in Section 3E in such a
manner that it is not holomorphic in all of Im � > �C due to a cut in the upper
half plane, this cut can be moved outside any fixed compact subset, so taking
into account that R.�/ is independent of the choice of Q� , the theorem follows
immediately from the results of Section 4. �

Our argument proves that every pole of R.�/ is a pole of .P� � {Q� /
�1 (for

otherwise (5-2) would show R.�/ does not have a pole either), but it is possible
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for .P� � {Q� /
�1 to have poles which are not poles of R.�/. However, in the

latter case, the Laurent coefficients of .P� � {Q� /
�1 would be annihilated by

multiplication by Rs from the left, that is, the resonant states (which are smooth)
would be supported in �� 0, in particular vanish to infinite order at �D 0.

In fact, a stronger statement can be made: by a calculation completely analo-
gous to what we just performed, we can easily see that in �< 0, P� is a conjugate
(times a power of �) of a Klein–Gordon-type operator on n-dimensional de Sitter
space with �D 0 being the boundary (i.e., where time goes to infinity). Thus, if
� is not a pole of R.�/ and .P� � {Q� / QuD 0 then one would have a solution
u of this Klein–Gordon-type equation near �D 0, that is, infinity, that rapidly
vanishes at infinity. It is shown in [Vasy 2010b, Proposition 5.3] by a Carleman-
type estimate that this cannot happen; although there �2 2 R is assumed, the
argument given there goes through almost verbatim in general. Thus, if Q�

is supported in � < c, where c < 0, then Qu is also supported in � < c. This
argument can be iterated for Laurent coefficients of higher order poles; their
range (which is finite dimensional) contains only functions supported in � < c.

Remark 5.2. We now return to our previous remarks regarding the fact that our
solution disallows the conormal singularities .�˙ i0/{� from the perspective
of conformally compact spaces of dimension n. Recalling that �D x2, the two
indicial roots on these spaces correspond to the asymptotics �˙{�=2C.n�1/=4 in
� > 0. Thus for the operator

��1=2�{�=2�.nC1/=4
�
�g0
� .n�1/2=4� �2

�
��{�=2C.nC1/=4��1=2;

or indeed P� , they correspond to�
��{�=2C.nC1/=4��1=2

��1
�˙{�=2C.n�1/=4

D �{�=2˙{�=2:

Here the indicial root �0 D 1 corresponds to the smooth solutions we construct
for P� , while �{� corresponds to the conormal behavior we rule out. Back
to the original Laplacian, thus, ��{�=2C.n�1/=4 is the allowed asymptotics and
�{�=2C.n�1/=4 is the disallowed one. Notice that Re {� D� Im � , so the disal-
lowed solution is growing at �D 0 relative to the allowed one, as expected in
the physical half plane, and the behavior reverses when Im � < 0. Thus, in the
original asymptotically hyperbolic picture one has to distinguish two different
rates of growths, whose relative size changes. On the other hand, in our approach,
we rule out the singular solution and allow the nonsingular (smooth one), so
there is no change in behavior at all for the analytic continuation.

Remark 5.3. For even asymptotically de Sitter metrics on an n-dimensional
manifold X 0

0
with boundary, the methods for asymptotically hyperbolic spaces

work, except P� � {Q� and P�� C {Q�� switch roles, which does not affect
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Fredholm properties; see Remark 4.4. Again, evenness means that we may
choose a product decomposition near the boundary such that

g0 D
dx2� h

x2
(5-3)

there, where h is an even family of Riemannian metrics; as above, we take x

to be a globally defined boundary defining function. Then with Q� D x2, so
Q� > 0 is the Lorentzian region, � in place of � (recalling that our aim is to
get to P�� C {Q�� ) the above calculations for �g0

� .n�1/2=4� �2 in place of
�g0
� .n�1/2=4� �2 leading to (3-4) all go through with � replaced by Q�, �

replaced by � and �h replaced by ��h. Letting �D� Q�, and conjugating by
.1C�/{�=4 as above, yields

�4�D2
�C 4�D�C �

2
��hC 4{D�C 2{
 .�D�� �=2� {.n�1/=4/; (5-4)

modulo terms that can be absorbed into the error terms in operators in the class
(3-5), that is, this is indeed of the form P�� C{Q�� in the framework of Section 3E,
at least near Q�D0. If now X 0

0
is extended to a manifold without boundary in such

a way that in Q� < 0, that is, � > 0, one has a classically elliptic, semiclassically
nontrapping problem, then all the results of Section 4 are applicable.
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