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A brief introduction to approximate groups
EMMANUEL BREUILLARD

This introduction to approximate groups highlights their connection with super-
strong approximation, the Freiman inverse problem, the Helfgott–Lindenstrauss
conjecture, and the classification of approximate subgroups of simple algebraic
groups over finite fields.

1. Approximate groups and their classification

A finite subgroup of a group G is a finite subset stable under product. It is
tempting to investigate what happens if we consider finite subsets that are almost
stable under products. Are they close to genuine subgroups in some meaningful
sense? Before answering this question, we need to make precise what we mean
by “almost stable”. The subject of approximate groups first attempts to do just
that, and then tackles the more general problem of classifying such objects.

The formal definition of an approximate group given in Definition 1.2 below
was introduced by T. Tao [2008] and was in part motivated by its use in the ground-
breaking work of Bourgain and Gamburd [2008b] on superstrong approximation
for Zariski dense subgroups of SL.2;Z/. However the origins of the concept
can be traced much earlier and people have been studying approximate groups
much before they were even defined. A significant part of additive number
theory as it developed in the last fifty years, and in particular the study of
sets of integers with small doubling (e.g., Freiman’s theorem; see Theorem 1.9
below), was precisely about understanding abelian approximate groups. Similarly
the sum-product phenomenon (see Theorem 2.5), which played a key role in
superstrong approximation especially in the early developments of the subject
(e.g., in [Helfgott 2008]), is equivalent to classifying approximate subgroups of
the affine group fx 7! axC bg.

This article intends to give a brief introduction to this subject and present some
of its recent developments. Worthwhile expository readings on the same topics
include [Green 2009; 2012; Breuillard et al. 2013b; Pyber and Szabó 2014].

1.1. Approximate groups: the definition. Given sets A;B in a group G, we
write AB D fab j a 2 A; b 2 Bg and AnC1 D AnA. Also jAj denotes the
cardinality of A.
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Definition 1.2 (approximate groups [Tao 2008]). Let K > 1 be a parameter, G

a group and A�G a finite subset. We say that A is a K-approximate subgroup
of G if

(1) 1 2A,

(2) A is symmetric: ADA�1, and

(3) there is a symmetric set X of size at most K such that AA�XA.

Remark. Observe that if K D 1, then we recover the definition of a finite sub-
group of G. Namely 1-approximate subgroups are just genuine finite subgroups.

Tao’s definition of a K-approximate subgroup is only one of several natural
candidates. The following result says that all these notions are roughly equivalent.

Proposition 1.3 (Balog, Szemerédi, Gowers, Tao). There is an absolute constant
C > 0 such that, given a finite set A in an ambient group G and parameter
K > 1, the following conditions are roughly equivalent in a sense about to be
made precise:

(1) jAAj6KjAj.

(2) jAAAj6KjAj.

(3) jf.a; b; c; d/ 2A�A�A�A j ab D cdgj> jAj3=K.

(4) jf.a; b/ 2A�A W ab 2Agj> jAj2=K.

(5) A is a K-approximate subgroup of G,

More precisely, if any of these conditions holds for A with a constant K, the
other four conditions will hold, with a constant K0 6 CKC , for a set A0 � G

such that jA\A0j> 1=.CKC /maxfjAj; jA0jg.

Conditions (1) and (2) are the small doubling and tripling conditions, respec-
tively. Conditions (3) and (4) are statistical in nature. The rough equivalence
above was proved in [Tao 2008], but it relies1 on a tricky yet extremely useful
graph-theoretical result of Balog and Szemerédi, which was later improved by
Gowers, yielding the polynomial bound CKC in the statement. See [Tao and Vu
2006, Section 6.4] for a proof of the Balog–Szemerédi–Gowers lemma.

This proposition also gives a hint at what kind of equivalence between sets
one would like to impose when attempting to classify approximate groups. For
example, passing to a large (say > 1=CKC ) proportion of a set A is allowed and
does not significantly alter the structure of A (at least for our purposes).

1At least for the conditions involving (3) and (4); the rough equivalence between (1), (2) and
(5) is easier.
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Remark. It is often the case in various mathematical problems that one has to
confront approximate versions of some well-known mathematical notion, namely
objects that satisfy the usual axioms only most of the time, or perhaps just part
of the time. When it happens most of the time, people say that we are in the
99% regime, while if the axioms are satisfied only part of the time, we are in the
1% regime. This distinction makes sense for approximate groups when using
the statistical definitions (3) or (4). Approximate groups in the 99% regime are
easily seen to be very close to genuine subgroups (see Proposition 1.7 below and
the remark after it) and much of the subject of approximate groups concentrates
on the 1% regime.

Tao’s approximate groups are easier to handle than the other notions (1)–(4)
defined in this proposition. In fact it is fair to say that Tao’s definition is tailored
so as to reduce to a maximum the appearance of purely additive combinatorial
arguments in the proofs, so that classifying sets satisfying either of the conditions
(1)–(4) above in a given group G is reduced to understanding approximate groups
in Tao’s sense. This usually boils down to a more familiar algebraic or geometric
problem about the ambient group where combinatorics play a minor role.

1.4. Approximate groups and superstrong approximation. One of the main
motivations for the subject of approximate groups and its recent fast development
is its connection with superstrong approximation as was first made clear in
[Bourgain and Gamburd 2008b], for the case of SL2.Z=pZ/.

Superstrong approximation is the main topic of this volume and is discussed
at length in [Sarnak 2014; Salehi 2014; Ellenberg 2014]. So I will not attempt
here to give a detailed account of it, but let me only recall that if � 6 SLd .Z/ is a
Zariski dense subgroup, then strong approximation for � is the statement that for
every large enough prime number p, the subgroup � surjects onto SLd .Z=pZ/

(see [Rapinchuk 2014; Matthews et al. 1984; Nori 1987]), while superstrong
approximation asserts that given any fixed generating set S of � , the sequence
of Cayley graphs Cay.SLd .Z=pZ/;S mod p/ forms a family of "-expanders,
for some "D ".S/ > 0.

Up until 2005, the main tool for constructing such families of expanders
was representation theory. This started with Margulis [1973] and his use of
Kazhdan’s property .T / to give the first construction of expander graphs, then
was continued in the work of Lubotzky, Phillips and Sarnak on Ramanujan graphs
[Lubotzky et al. 1988], and many others later on. This approach applied only to
arithmetic lattices � and was essentially based on a transfer principle between
the representation theory of L2.G=�/ and that of � .

A consequence of the expander property is that the simple random walk on �
(i.e., the stochastic process one gets by multiplying on the left a generator from
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S chosen at random uniformly among the generators), when projected onto the
finite quotients, becomes equidistributed very fast, typically in logarithmic time
(in the size of the quotient). And usually this fast equidistribution is the reason
why one wants to prove a spectral gap (as in applications to sieving, for example).
In 2005 Bourgain and Gamburd [2008b] reversed the idea: they proved the fast
equidistribution of the random walk by combinatorial methods, then deduced
the spectral gap. Indeed it is not difficult to prove (see Theorem 3.2 in [Hoory
et al. 2006] or Appendix E in [Breuillard et al. 2013a]) that the spectral gap is in
fact equivalent to the fast equidistribution of the random walk.

For this, the strategy is to control the random walk on the finite quotients
SLd .Z=pZ/ in three stages:

(1) For short times (typically t < c log p, c > 0 small constant), one needs to
show that the random walk escapes proper subgroups; that is, it does not
give too much mass to any proper subgroup of SLd .Z=pZ/.

(2) For medium times (with c log p < t < C log p, c < C ), one shows that the
walk escapes from approximate subgroups. This is sometimes phrased in
terms of probability measures as the “`2-flattening” lemma.

(3) For long times one uses quasirandomness (i.e., the Frobenius–Landazuri–
Seitz bounds on the dimension of complex linear representations of finite
simple groups) to show that the walk covers the whole group very quickly.

The hard parts in this strategy are (1) and (2). In their original paper, Bourgain
and Gamburd dealt only with SL2.Z=pZ/, whose subgroup structure is very
simple, so item (1) in this case was a simple consequence of Kesten’s thesis
[1959] on the decay of the probability of return to the identity of simple random
walks on groups. Currently there are two (related) known methods to deal with
(1) in higher rank: to use ping-pong and produce a free subgroup which has
small intersection with every proper algebraic subgroup (see [Varjú 2012; Salehi
and Varjú 2012]), or to use the theory of products of random matrices à la
Furstenberg–Guivarc’h; see [Bourgain and Gamburd 2008a; 2009].

Item (2) is the subject of this article and amounts to understanding approximate
subgroups of the finite quotients. This was first done in [Helfgott 2008] for
SL2.Z=pZ/ (see also [Helfgott 2011] for SL3.Z=pZ/), which then allowed
Bourgain and Gamburd to implement their strategy in the SL2 case. Basically
Helfgott’s theorem says that there are no approximate subgroups of SL2.Z=pZ/

except for bounded sets and cobounded sets (i.e., sets forming a significant
proportion of the whole group). Hence the random walk at stage .2/ cannot
remain “stuck” in an approximate subgroup of intermediate size.

The higher rank case and the extension of Helfgott’s theorem to arbitrary
semisimple algebraic groups over arbitrary finite fields was done later in [Pyber
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and Szabó 2010b] and independently in [Breuillard et al. 2011]. See the second
part of this article as well as [Pyber and Szabó 2014] to this volume for a detailed
account of this story.

1.5. The Freiman inverse problem. While in part motivated by the superstrong
approximation result of Bourgain and Gamburd, Tao’s definition of an approx-
imate group fitted well within a general line of thought coming from additive
number theory and combinatorics, which was guided by the:

Freiman inverse problem. Given a group G and a parameter K > 1, describe
the “structure” of finite subsets A of G such that jAAj6KjAj.

Sets with jAAj 6 KjAj are said to have doubling at most K, and the ratio
jAAj=jAj is often called the doubling constant of A. Note that K-approximate
groups are examples of sets with doubling at most K.

Later in this note, I will state a recent theorem of Green, Tao and myself
[Breuillard et al. 2012], which provides an answer to Freiman’s inverse problem
for general groups. For the applications to superstrong approximation however
(i.e., for step (2) of the Bourgain–Gamburd strategy outlined above) this general
theorem is of no use, because it provides no explicit bounds in terms of the
parameter K. Nevertheless it treats the general case while for these applications
one only cares about approximate subgroups of linear groups (i.e., subgroups
of GLd for some fixed d). In the linear setting one has an entirely different set
of tools and techniques (in particular algebraic geometry) that can be exploited.
And they indeed yield explicit (even polynomial) bounds for the Freiman inverse
problem as I will explain in Section 2.

Many people have contributed to the Freiman inverse problem in recent years
in the noncommutative case. To name a few:

� Bourgain, Katz and Tao [Bourgain et al. 2004]: the sum-product theorem
for finite fields (2003).

� Helfgott [2008]: the SL2.Fp/ case using the sum-product (2005).

� Tao [2008] transposed to the noncommutative setting most of the apparatus
of additive number theory previously used to tackle Freiman’s problem in
abelian groups and defined approximate groups (2005).

� Helfgott [2011]: SL3.Fp/ then partial results for SLd .Fp/ in [Gill and
Helfgott 2011].

� Dinai [2010]: SL2.Fq/.

� Tao [2010]: general solvable groups with bounded solvability length.

� Breuillard and Green [2011a; 2011b; 2012]: polynomial bounds for torsion-
free nilpotent groups, solvable linear groups, compact Lie groups.
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� Bourgain, Gamburd and Sarnak [2010]: SL2.Z=qZ/ with q square-free
integer.

� Hrushovski [2012b]: progress towards the Freiman inverse problem for
arbitrary groups; also for general linear groups (no explicit bounds) using
model theory.

� Pyber and Szabó [2010b]; Breuillard, Green and Tao [Breuillard et al. 2011]:
G.Fq/, G a simple algebraic group over a finite field Fq (with polynomial
bounds).

� Varjú [2012]: G.Z=qZ/, q square free, GD SLn.

� Bourgain and Varjú [2012]: handled SLd .Z=nZ/ for arbitrary modulus n.

� Salehi and Varjú [2012]: G.Z=qZ/, q square free, G perfect.

� Gill and Helfgott [2010]: solvable algebraic subgroups over Fp.

� Breuillard, Green, and Tao [Breuillard et al. 2012]: arbitrary groups (but no
explicit bounds).

� Tointon [2012]: arbitrary nilpotent groups (with polynomial bounds).

� Pyber and Szabó [2014]: general linear groups (with polynomial bounds).

1.6. Some examples of approximate groups. Having given the definition of
approximate groups and stated Freiman’s inverse problem, we now discuss some
simple instances of this problem and give a number of examples of approximate
groups. We begin with a simple observation.

Remark. Suppose A is a finite set of an ambient group G. It is a simple exercise
to prove that the requirement that jAj D jAAj is equivalent to saying that A is
a normalizing coset of a finite subgroup, namely that AD aH for some a 2G

and some finite subgroup H in G such that aH DHa.

This remark answers completely Freiman’s inverse problem when the doubling
constant K equals 1. What if K is slightly bigger than 1? Here is an old result
of Freiman, first published in [Freiman 1973a]:

Proposition 1.7 (Freiman inverse problem for K < 3
2

; see [Tao 2009], [Freiman
2012], or [Breuillard 2011b]). Let A be a finite subset of an ambient group G

such that jAAj < 3
2
jAj. Then there exists a finite subgroup H of G and a 2 G

such that aH DHa and A� aH with jAj> 2
3
jH j. The converse is clear.

In other words if A has doubling < 3
2

, then A is contained in a coset of a
genuine subgroup which is not much larger than A itself. This is certainly an
instance of the Freiman problem, because starting only from a small doubling
assumption, we have exhibited structure: there is a genuine subgroup that hangs
around.
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As an illustrative example, let us give a complete argument showing that if
jAA�1Aj6 .1C"/jAj for some "<1, then A is close to a (left coset of a) genuine
subgroup in the sense that H WDA�1A is a genuine subgroup of cardinality at
most .1C"/jAj. Indeed H�1DH and for every x;y 2H , Ax and Ay intersect
nontrivially, because " < 1. It follows that xy�1 2H . Hence H is stable under
multiplication and hence a genuine subgroup. Note finally that jH j6 .1C "/jAj
and A� aH for every a 2A. The proof of Proposition 1.7 is more involved, but
makes use of similar arguments.

If K > 3
2

, Freiman’s problem is more tricky. However, as long as K < 2, it
will remain the case that doubling at most K implies that A is contained in a
bounded number of cosets of a genuine finite subgroup, which is itself not much
bigger than A. This is a recent result of Y. Hamidoune [2013], which answered
a question of Tao (see also [Tao 2011] for a proof).

It is clear that such a thing no longer holds if K > 2, because of the following
other well-known example of a set with small doubling (besides finite subgroups),
namely arithmetic progressions: the subset A WD Œ�N;N �� Z has doubling at
most 2.

This brings about the following family of approximate groups:

Example 1.8 (symmetric generalized arithmetic progressions). Let N1; : : : ;Nd

be positive integers and consider the box BD
Qd

1 Œ�Ni ;Ni ��Zd . Let� WZd!G

be a group homomorphism. Then A WD �.B/ is called a (symmetric) d-dimen-
sional (generalized) arithmetic progression. Clearly B is a 2d -approximate group.
It follows that A too is a 2d -approximate group and in particular jAAj6 2d jAj.

For instance, fa; aC r; aC 2r; : : : ; aC 2N rg, an arithmetic progression of
odd length in Z, is nothing other than a translate of a symmetric generalized
arithmetic progression of dimension d D 1, where N1 DN and the �.x/D rx.

Generalized arithmetic progressions can be generalized further to the setting
of nilpotent groups. Basically any homomorphic image of a “box” in a finitely
generated nilpotent group will have small doubling. This leads to the notion of
nilprogression or nilpotent progression. It was investigated in [Breuillard and
Green 2011a] as well as in Tao’s paper on solvable groups [2010]. There are
several natural definitions of nilprogressions which are all roughly equivalent.
One can define them as the homomorphic image of a box in the free nilpotent
group Nr;k.Z/ of step r and rank k. A natural definition for the box can be to take
all elements that can be written as a word in the generators e1; : : : ; ek of Nr;k.Z/

with ei appearing at most Ni times. Another more geometric way to proceed is
to take as our box the integer points in the Lie group Nr;k.R/ that lie in the ball
of radius 1 for the left-invariant Carnot–Caratheodory metric induced on Nr;k.R/

by the norm k.x1; : : : ;xk/k D
P
jxi j=Ni on the abelianization Rk of Nr;k.R/.
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The two definitions lead to two roughly equivalent notions of nilprogressions.
See [Breuillard and Green 2011a], the appendix to [Breuillard et al. 2012], and
Tointon’s paper [2012] on approximate subgroups of nilpotent groups.

Let us leave the general case for a moment and say a word about approximate
subgroups of G D Z, the infinite cyclic group. In this case, the inverse Freiman
problem was solved by Freiman himself in the late 1960s. There are no nontrivial
finite subgroups of Z, so finite groups will not appear. However there are
generalized arithmetic progressions. Freiman’s theorem [1973b] says that every
approximate subgroup of Z is roughly equivalent to a generalized arithmetic
progression.

Theorem 1.9 (Freiman’s theorem). Let A be a K-approximate subgroup of Z.
Then there is a d -dimensional generalized arithmetic progression P and a set X

in Z such that

(1) A�X CP ,

(2) jP j6 C jAj, with C 6OK .1/,

(3) jX j6OK .1/,

(4) d 6OK .1/.

For a proof, see [Green 2002] or [Tao and Vu 2006].
Ruzsa [1994] gave a simplified proof of Freiman’s theorem, which was im-

proved by Chang [2002] and then pushed to all abelian groups by Green and
Ruzsa [2007]. Ruzsa’s proof gave bounds of the form C 6 exp.O.KO.1///,
d 6 O.KO.1// and jX j 6 O.KO.1//. Note that, given the exponential bound
on C , one could ignore the set X altogether by declaring it to be part of the
progression P at the expense of increasing slightly the rank d of the progres-
sion. However the set X becomes important when one considers the following
conjecture:

Conjecture 1.10 (polynomial Freiman–Ruzsa conjecture). One can take

C 6O.KO.1//;

while keeping jX j and d of size O.KO.1//.

Recently Tom Sanders [2012] gave almost polynomial bounds towards this
conjecture: he has d DO.log6 K/, while C 6K3 and jX j DO.Klog6 K /. See
also his excellent recent survey [Sanders 2013], where these bounds are further
improved.

1.11. The combinatorial toolbox of approximate groups. As Tao has observed,
many combinatorial arguments from additive number theory actually work with-
out modification in the noncommutative setting. This is the case for the celebrated
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Ruzsa triangle inequality, which asserts that the Ruzsa distance

d.A;B/D log
jAB�1jp
jAjjBj

for any finite subsets A;B of an ambient group G satisfies the triangle inequality

d.A;C /6 d.A;B/C d.B;C /:

The proof of the Ruzsa triangle inequality is just a few lines, which I cannot
resist including here. Note first that obviously

jAB�1
j> jAj and jAB�1

j> jBj;

so that jAB�1j2 > jAjjBj, yielding d.A;B/> 0 always. Next consider the map
AC�1�B!AB�1�BC�1, which sends .x; b/ to .axb�1; bc�1

x /, where we
made a choice of ax 2A and cx 2 C for each x 2AC�1. Then quite obviously
this map is injective. Hence jBjjAC�1j 6 jAB�1jjBC�1j, which is another
way to phrase the triangle inequality d.A;C /6 d.A;B/C d.B;C /. QED.

Clearly this proof is much easier than that of the Balog–Szemerédi–Gowers
lemma mentioned on page 24. Applying only the Ruzsa triangle inequality one
can prove the following (see, e.g., [Tao 2008] or [Breuillard 2011b]):

Lemma 1.12. Let A be a finite subset of a group G and K > 1 be a parameter.

� If jA3j6KjAj, then jAnj6K2njAj for all n> 1.

� If jA3j 6KjAj, then B WD .A[A�1[ f1g/2 is a O.KO.1//-approximate
group.

� If A is a K-approximate subgroup and B an L-approximate subgroup, then
A2\B2 is a .KL/2-approximate subgroup.

Note. Although the two notions are roughly equivalent in the sense of Proposition
1.3, small doubling is not enough to guarantee small tripling! If ADH [fxg for
some finite subgroup H such that xHx�1\H D f1g (this situation can arise),
then AADH [ xH [Hx [ fx2g— a set of size at most 3jAj— while AAA

contains HxH , which has size jH j2.

The polynomial bounds in Proposition 1.3 and Lemma 1.12 are crucial for the
applications to superstrong approximation and to the classification of approximate
subgroups of simple algebraic groups that we are about to describe. Also crucial
is the following approximate version of the orbit-stabilizer lemma for group
actions.
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Lemma 1.13 (approximate orbit-stabilizer lemma). Suppose a group G acts on
a set X and let A be a K-approximate subgroup of G for some K > 1. For every
integer k > 2, and x 2X , we have

jAj6 jA �xj jStab.x/\Ak
j6KkC1

jAj:

Observe that this lemma applies in particular to the action by left translations
on the coset space G=H for any subgroup H . It follows from the lemma applied to
this action that the size of Ak\H is roughly (i.e., up to a factor Kk) independent
of k > 2. See [Pyber and Szabó 2014], where this feature is exploited with great
skill: growth in a subgroup implies growth of the set.

Proofs of the two lemmas above can be found in [Breuillard 2011b]; see
also [Tao and Vu 2006; Tao 2008; Helfgott 2008]. They form the basic tool-
kit of approximate groups. Their use is widespread in the proofs of many
classification results regarding approximate groups. They also allow to make
many group-theoretical arguments (as used in classical group theory; at least
those not involving divisibility properties of the order of the group) work in the
approximate groups setting. And indeed the following principle will remain our
slogan for the remainder of this article:

Philosophy. Group-theoretical arguments can often be successfully transferred
to approximate groups.

1.14. Classification of approximate groups and the Helfgott–Lindenstrauss
conjecture. We have seen two chief examples of approximate groups: finite
subgroups, and generalized arithmetic progressions. We also mentioned that the
latter is only a special case of the notion of nilprogression.

Furthermore one can build extensions of approximate groups: if A normalizes
a finite subgroup H and A is an approximate subgroup, then AH is again an
approximate subgroup. In particular any set of the form HL, where H is a
finite subgroup normalized by L and L is a finite subset such that HnHL is
a nilprogression is an approximate subgroup. Such HL sets are called coset
nilprogressions.

The following conjecture and theorem say that every approximate group is
roughly equivalent to an HL set as above. The conjecture was formulated by
E. Lindenstrauss in a private communication. It is also implicit in Helfgott’s
SL3.Z=pZ/ paper [2011], because it coincides with his description of an arbitrary
approximate subgroup of SL3.Z=pZ/.

Conjecture 1.15 (Helfgott–Lindenstrauss). Let G be an arbitrary group. Let
A be a K-approximate subgroup of G. Then there are finite subsets P;X �G

satisfying the following conditions:
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(1) A�XP .

(2) jX j6OK .1/.

(3) jP j6OK .1/jAj.

(4) P is a coset nilprogression; that is, P DHL, where H is a finite subgroup
of G and L a finite subset lying in the normalizer NG.H / of H in G such
that HnHL generates a nilpotent subgroup of HnNG.H / with complexity
OK .1/ (i.e., number of generators and nilpotency class are OK .1/).

This conjecture was proved by Green, Tao and myself:

Theorem 1.16 [Breuillard et al. 2012]. The Helfgott–Lindenstrauss conjecture
holds. In it, one can take P �A4, a coset nilprogression of complexity OK .1/.

Note that the theorem not only proves the conjecture, but also generalizes
Freiman’s classification of approximate subgroups of Z (see Theorem 1.9),
because nilprogressions in Z are just generalized arithmetic progressions. In fact
our proof of Theorem 1.16 gives a new proof of Freiman’s theorem.

The theorem also gives a strengthening of Gromov’s polynomial growth
theorem and has several applications to Riemannian geometry and nonnega-
tive curvature. Gromov’s theorem can be deduced in only a few lines from
Theorem 1.16.

A proof of Theorem 1.16 can be found in [Breuillard et al. 2012]. The basic
strategy was inspired by the preprint version of [Hrushovski 2012b], which
outlines a way to tackle the Freiman inverse problem for general groups using
model theory to construct limits of sequences of approximate groups. In particular
Hrushovski showed that every infinite sequence of K-approximate groups (K
fixed) yields a certain locally compact group in a certain model-theoretic limit.
Studying this locally compact group, and in particular applying the Gleason–
Montgomery–Zippin–Yamabe structure theorem (Hilbert fifth problem), already
gets you a long way towards the above theorem and indeed Hrushovski was also
able to improve on Gromov’s polynomial growth theorem using these ideas. In
[Breuillard et al. 2012], we delve into the proof of the Gleason–Montgomery–
Zippin–Yamabe structure theorem and manage to transfer some of the group-
theoretic arguments there to approximate groups in order to exhibit the coset
nilprogression P . For readers with a taste for model theory, we also recommend
Hrushovski’s beautiful lecture notes [2012a], where the proof of Theorem 1.16
is presented in full from a model-theoretic viewpoint.

The proof of Theorem 1.16 does not give any explicit bounds on the complexity
of the coset nilprogression2 nor on the size of X . This is due to the inherently
nonexplicit nature of the proof, which makes use of ultrafilters to take limits.

2If one does not require P �A4, our proof does give a O.log K/ bound on the dimension of P .
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In view of the polynomial Freiman–Ruzsa conjecture (Conjecture 1.10) it is
reasonable to expect that these bounds can be made polynomial in K.

We will see in Section 2 that this polynomiality of the bounds can be proven for
approximate subgroups of GLd with exponents depending only on the dimension
d . But can they be made independent of d? This was asked by László Pyber
at his workshop lecture (see also [Pyber and Szabó 2014]). For approximate
subgroups of GLd one can even hope to find a P which is normalized by A; this
is what happens in Helfgott’s SL3.Z=pZ/ theorem. One should however bear in
mind the following example due to Pyber (see also the end of [Pyber and Szabó
2010b]).

Example 1.17. Let G D S2nC1 be the symmetric group on 2nC 1 objects. Let
H be the subgroup generated by all transpositions .i; i C 1/ for i D 1; : : : ; n.
Let � be the shift i 7! i C 2 mod 2nC 1. Let A WD H [ f�˙1g. Then A is a
10-approximate group which generates G. While it is contained in at most 10

cosets of H , it does not normalize any proper subgroup of G (except A2nC1),
because S2nC1 has no nontrivial normal subgroup (apart from A2nC1).

In this example, the approximate group is roughly equivalent to a large finite
subgroup which is almost normalized by A, but A does not normalize any
subgroup (except trivial ones, which are either much smaller or much larger
than A).

2. Approximate subgroups of linear groups: some proofs

In the remainder of the article, we give an introduction to the works [Breuillard
et al. 2011] and [Pyber and Szabó 2010b], which classify approximate subgroups
of simple algebraic groups over finite fields. We will give complete proofs
save for the Larsen–Pink-type nonconcentration estimate (Theorem 2.15 below),
whose proof we only briefly sketch as it is rather more involved.

A key tool is the use of quasirandomness through Gowers’ trick, which shows
that large subsets of a finite simple group of Lie type grow quickly. We include
a proof of that via nonabelian Fourier analysis of finite groups.

We also include a presentation of the sum-product phenomenon and give a
geometric proof of it, which is run in parallel with the proof of the classification
of approximate subgroups of simple algebraic groups, emphasizing the parentage
between the two problems.

2.1. Quasirandomness and Gowers’ trick. A distinctive feature of finite simple
groups (as opposed to abelian groups for instance) is that they have few complex
linear representations of small dimension. The smallest dimension m.G/ of a
nontrivial complex linear representation must tend to infinity with the size of the
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finite simple group G. This fact is a simple consequence of Jordan’s theorem
on finite subgroups of GLd .C/, which asserts that every such group must have
an abelian normal subgroup of index at most some bound c.d/ which depends
on d only. Indeed, since G is simple, any nontrivial linear representation of G

must be faithful, hence the abelian normal subgroup must be trivial, and G must
have cardinality at most c.d/ (see, e.g., [Breuillard 2011a] for some historical
comments on Jordan’s theorem).

This feature has played a very important role in the spectral theory of arithmetic
surfaces; see [Sarnak and Xue 1991]. It also plays an important role in the
Bourgain–Gamburd proof of the spectral gap for SL2.Z=pZ/ in the last step
of their proof, when one derives the spectral gap from the fast decay of the
probability of return to the identity of the random walk at time C log p.

For finite simple groups of Lie type (as opposed to the alternating groups) a
very strong lower bound on the dimension of complex linear representations is
known. This goes back to Frobenius, who showed that m.PSL2.Fp//D

1
2
.p�1/,

and was established in full generality as follows:

Fact (Landazuri–Seitz bound [1974]). There is a constant cd > 0 such that
m.G/ > cd jGj

r=d for every finite simple group of Lie type G D G.q/ over a
finite field Fq with dimension d D dim G and rank3 r .

In the early 2000s, Tim Gowers [2008] exploited this fact in order to answer
a combinatorial question of Babai and Sós: Does every finite group G have a
product free set of size > cjGj? A product free set is a subset X �G such that
XX � GnX . Gowers shows that answer is no for PSL2.Fp/ and for all finite
simple groups of Lie type precisely thanks to the above fact about m.G/. And
indeed this follows directly from the following formulation (first observed by
Nikolov and Pyber in [2011]) of Gowers’ result (take ADBDX and C DX�1

to answer the Babai–Sos question negatively):

Lemma 2.2 (Gowers’ trick). Suppose A;B;C are subsets of a finite group G

such that jAjjBjjC j> jGj3=m.G/. Then ABC DG.

Gowers’ proof (as well as the proof given later by Babai, Nikolov and Pyber
[Babai et al. 2008]) is based on spectral analysis of bipartite graphs. We give a
seemingly different argument based on the nonabelian Fourier transform.

Recall that the convolution of two functions f1; f2 on a finite group G is
defined by

f1 �f2.x/D
X

a;b2G
abDx

f1.a/f2.b/:

3Recall that the rank of G is the dimension of a maximal torus, in particular it is < d .
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The convolution product is associative: .f1 � f2/� f3 D f1 � .f2 � f3/. For a
subset A in G we denote by 1A the indicator function of A, namely 1A.x/D 1

if x 2A and 1A.x/D 0 if x 62A.

Proof. Let f WD1A�1B�1C be the convolution product of the indicator functions
of the three subsets A;B and C . Note that the support of f is precisely the
product set ABC . So in order to show that ABC DG it is enough to prove that
f .g/ > 0 for every g 2G. To show that, the idea is very simple: expand f in
Fourier.

Recall the nonabelian Fourier inversion and Parseval formulas (see [Serre
1977] on representation theory of finite groups, for example). Let d� D dim.H�/

be the dimension of the irreducible representation � of G. Then

Parseval W
X
g2G

jf .g/j2 D
1

jGj

X
�

d�k�.f /k
2;

Fourier inversion W f .g/D
1

jGj

X
�

d�h�.f /; �.g/i:

Here we have written �.f / D
P

g2G f .g/�.g/, where � is an irreducible
complex linear representation of G, and the sums on the right extend over all
such representations; moreover the scalar product is defined on End.H�/ by
hX;Y i D trace.XY �/.

From the Parseval formula applied to 1A and the bound d� >m.G/ for every
nontrivial � , we see that jAj D .1=jGj/

P
� d�k�.1A/k

2, and thus

k�.1A/k6

s
jAjjGj

m.G/
; (2.2.1)

for every nontrivial � .
Now writing the Fourier inversion formula for f and splitting the sum into

a main term (corresponding to the trivial representation) and a remainder term
(corresponding to all other representations), we get

f .g/> jAjjBjjC j
jGj

�
1

jGj

X
�¤1

d�k�.1A/k � k�.1B/k � k�.1C /k:

Using (2.2.1) to control k�.1A/k and Cauchy–Schwarz inequality together
with the Parseval identity to handle k�.1B/k and k�.1C /k, we get

f .g/> jAjjBjjC j
jGj

�

s
jAjjGj

m.G/

1

jGj

p
jGjjBj

p
jGjjC j;

which is > 0 as soon as jAjjBjjC j> jGj3=m.G/, as claimed. �



A BRIEF INTRODUCTION TO APPROXIMATE GROUPS 37

Combining Gowers’ trick with the bound on m.G/ mentioned above, we
obtain this result for approximate groups:

Corollary 2.3. Let G DG.q/ be a finite simple group of Lie type of dimension
d D dim G over a finite field Fq . There is ı D ı.d/ > 0 independent of q such
that AAADG for every subset A�G such that jAj> jGj1�ı.

Gowers calls quasirandom a finite group G for which m.G/ is large. This
terminology comes from the abelian case, where a quasirandom subset, say of
G D .Fp;C/, is by definition a subset A�G such that �.1A/D

P
a2A �.a/ is

small compare to jGj for every nontrivial character � of G. Certainly random
subsets of G (chosen by flipping independent coins for each element of G) are
quasirandom. The bound (2.2.1) shows that if m.G/ is large, then every subset
of G is quasirandom in the sense that k�.1A/k is small compared to jGj for
every nontrivial irreducible representation � .

2.4. The sum-product theorem. The story of approximate groups really began
when Bourgain, Katz and Tao proved the following:

Theorem 2.5 (sum-product in Fp; see [Bourgain et al. 2004]). Let Fp be the finite
field with p elements (p prime). Then for every ı > 0, there is " > 0 independent
of p such that

jSS jC jS CS j> jS j1C";

for every subset S � Fp such that pı < jS j< p1�ı.

There are several proofs of this result (see, e.g., [Tao and Vu 2006]), most of
them quite combinatorial. Konyagin [2003] gave a proof that does not require the
jS j> pı assumption. We will give a more geometric proof (also not requiring
the jS j>pı assumption) below. All proofs require some version of the following
result:

Lemma 2.6 (Katz and Tao; see [Tao and Vu 2006] or [Breuillard 2011b]). For
every n > 1 there is a constant C D C.n/ > 0 such that for every K > 1 and
for any set S � Fp with jS C S j C jSS j 6 KjS j, there are � 2 F�p and a
subset S 0 � �S with jS 0j> jS j=CKC and jFn.S

0/j6 CKC jS j, where Fn.S
0/

denotes the set of all elements of Fp one can obtain from 0 by applying at most n

operations (i.e., additions, subtractions, multiplications, divisions) by elements
from S 0 or from the previously constructed elements.

It turns out that one can recast the sum-product theorem in terms of the
Freiman inverse problem, which we discussed in the first lecture. This was first
observed by Helfgott in his SL3 paper [2011]. Consider the group of affine
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transformations of the Fp-line, namely Fp Ì F�p viewed as a matrix group as��
˛ ˇ

0 1

� ˇ̌̌
˛ 2 F�p ; ˇ 2 Fp

�
;

and inside this group consider the subset

B WD

��
˛ ˇ

0 1

� ˇ̌̌
˛ 2 S 0; ˇ 2 S 0

�
;

where S 0 is the subset obtained from the Katz–Tao lemma (applied with nD 4,
say). Then B satisfies

jBBBj6 CKC
jBj

for some absolute constant C . So in view of Lemma 1.12 the subset

A WD .B [B�1
[fidg/2

is a O.KO.1//-approximate subgroup of the affine group. So if we knew the
solution to Freiman’s inverse problem for the affine group, namely a complete
description (with polynomial bounds) of its approximate subgroups, then we
would derive the sum-product theorem as a corollary. We will pursue this strategy
to the end, but before that I would like to describe the answer to Freiman’s inverse
problem inside simple algebraic groups.

2.7. The product theorem. In 2005, Helfgott established a seminal result:

Theorem 2.8 (product theorem [Helfgott 2008]). For every ı > 0 there is " > 0

(independent of p) such that

jSSS j> jS j1C"

for every finite generating subset of SL2.Z=pZ/ such that jS j< jSL2.Z=pZ/j1�ı .

Approximate groups are not mentioned in this statement. The bridge between
product theorems and results about the classification of approximate groups
is clear however: if one has jSSS j 6 jS j1C", then S has tripling at most K,
where K D jS j", and thus by Lemma 1.12 A WD .S [S�1[fidg/2 is a CKC -
approximate group. So Helfgott’s theorem can be rephrased (somewhat abusively)
as saying that: there are no nontrivial approximate subgroups of SL2.Fp/.

Helfgott’s proof was based on the Bourgain–Katz–Tao sum-product theorem
and explicit 2�2 matrix calculations. It appeared clearly from the proof however
that a key role was played by large subsets of simultaneously diagonalizable
matrices in S . This idea was further exploited in Helfgott’s SL3 paper [2011].

After Helfgott’s results (and also the partial results on SLd .Z=pZ/ in [Gill
and Helfgott 2011]) it became highly plausible that a product theorem should
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hold in full generality for subsets of arbitrary simple algebraic groups (such as
SLd ) over an arbitrary field. Moreover a proof of such a theorem should be
geometric and exploit the underlying algebraic geometry of simple algebraic
groups and in particular the geometry of maximal tori.

The breakthrough came in 2009, with the preprint of [Hrushovski 2012b],
where use was made of model-theoretic tools to give an essentially complete
classification of approximate subgroups of simple algebraic groups, albeit with
no explicit bounds. One statement is the following:

Theorem 2.9 [Hrushovski 2012b, Theorem 1.3]. Let G be a simple algebraic
group over an algebraically closed field k with dim GD d . Let A�G.k/ be a
K-approximate subgroup of G.k/. Then there exists a subgroup H of G.k/ and a
number f .d;K/ depending only on d and K satisfying the following conditions:

(i) A intersects at most f .d;K/ cosets of H.

(ii) Either H is a proper connected algebraic subgroup of G, or H is finite and
contained in A4.

Hrushovski’s interest in approximate groups was triggered by his observation
of the similarity between the Freiman inverse problem and some model-theoretic
results, such as the Zilber stabilizer lemma, in stable group theory. His proof
however (as often in model theory) gave no explicit bounds on the function
f .d;K/ above in terms of d and K.

A few months after Hrushovski’s paper appeared on the arXiv, however, Pyber
and Szabó [2010a; 2010b] and independently Green, Tao and myself [Breuillard
et al. 2010; 2011] managed to give a polynomial bound on f .K; d/ and to
improve Hrushovski’s conclusion slightly as follows:

Theorem 2.10 (classification of approximate subgroups of G.k/). There are
constants C.d/ independent of K; k, and f .d;K/ 6 Od .K

Od .1//, such that
for every simple algebraic group G of dimension d D dim G defined over an
algebraically closed field k and every K-approximate subgroup A�G.k/, we
are in one of the following situations:

(1) There exists a proper closed algebraic subgroup H with at most C.d/

connected components and such that A� H.k/.

(2) jAj6 f .d;K/.
(3) jAj> jhAij=f .d;K/.

In cases (1) or (2), the first alternative in Theorem 2.9(ii) holds. If we are
in case (3) of Theorem 2.10, then hAi is finite and not much larger than A,
a condition that is close to the condition in the second branch of Theorem 2.9(ii),
yet not exactly the same (see however Corollary 2.12 below).
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I will sketch a proof of Theorem 2.10 below. (For a beautiful exposition of this
proof in the framework of model theory, we refer the reader to [Hrushovski 2013].)
An explicit bound on the implied constants f .d;K/ and C.d/ is obtainable in
principle from the proof (especially the version given by Pyber and Szabó),
although it has not been worked out, mostly because tracking the constants
throughout the proof would most likely not yield very sharp bounds.

It follows from the theorem that if conclusions .1/ and .2/ fail, then A gen-
erates a finite subgroup. In view of Jordan’s lemma on finite linear groups in
characteristic zero, which we already mentioned, this implies that k is of positive
characteristic. Now a deep result of Larsen and Pink [2011] implies that hAi
is then essentially (up to some bounded index issues) a finite simple group of
Lie type. In particular the Landazuri–Seitz bound (page 35) on the dimension of
complex linear representations holds and Gowers’ trick kicks in.

One can then easily derive the following generalization of Helfgott’s product
theorem.

Corollary 2.11 (the product theorem). Let G be a simple algebraic group over
an algebraically closed field k with dimension d D dim G. There is a constant
"D".d/>0, independent of the field k, such that for every finite subset S�G.k/,

(1) either S is contained in a proper algebraic subgroup with at most C con-
nected components, or

(2) jSN j>minfjhSij W jS j1C"g, where N DN.d/ and C DC.d/ are constants
independent of the field k.

One can take N.d/6maxf3; jZjg, where jZj is the size of the center of the
simply connected cover of G.

Sketch of proof. Set KDjS j" and apply Theorem 2.10 to A WD .S[S�1[fidg/2,
which is a O.KO.1//-approximate group. Then, thanks to the polynomial bound
on f .d;K/ obtained in Theorem 2.10, item .2/ in that theorem cannot hold if "
is chosen small enough. So if .1/ does not hold either, it must be that .3/ holds.
Then hAi is finite and k has positive characteristic (because the negation of .1/
is incompatible with Jordan’s lemma in characteristic zero). Larsen–Pink then
tell us that hAi is (after taking the commutator subgroup and modding out by the
center) a finite simple group of Lie type of bounded rank. If " is small enough,
we can apply Gowers’ trick (see Corollary 2.3 above) to ŒhAi; hAi�=center and
the result follows. �

Finite simple groups of Lie type4 are of form G D G.Fq/=center for some
absolutely almost simple (simply connected) algebraic group G defined over Fq .

4Except the Suzuki and Ree families, which arise slightly differently and can also be handled
similarly.
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It can be shown that they (rather their lift to G) are not contained in a proper
algebraic group of G with boundedly many connected components. Moreover
finite simple groups are quasirandom in the sense of Gowers (compare the
Landazuri–Seitz bound, page 35) and Gowers’ trick applies to large subsets of G.
The product theorem then takes the following simple form for generating sets of
finite simple groups of Lie type.

Corollary 2.12 (product theorem for finite simple groups of Lie type). Let
GDG.q/ be a finite simple group of Lie type over a finite field Fq with dDdim G.
Let S be any generating set for G. Then

jSSS j>minfjGj; jS j1C"g

for some constant "D ".d/ > 0 independent of the field Fq .

I will now turn to the proof of Theorem 2.10. I will give an essentially
complete proof, modulo the Larsen–Pink inequality, for which I will refer to
[Breuillard et al. 2011]. I will start with a geometric proof of the sum-product
theorem (Theorem 2.5), because this proof can easily be transformed into a proof
of Theorem 2.10.

2.13. A geometric proof of the sum-product theorem. In this paragraph I give
a proof of Theorem 2.5. I keep the notation of that theorem and of the discussion
following it. In particular G D Fp Ì F�p is the group of affine transformations of
the line over the finite field Fp. In matrix notation

G D

��
˛ ˇ

0 1

� ˇ̌̌
˛ 2 F�p ; ˇ 2 Fp

�
:

This group admits two remarkable actions:

(a) its action on itself by conjugation gh WD hgh�1, and

(b) its action on the affine line Fp by affine transformations g �x WD ˛xCˇ.

In case (b) the stabilizers of a point x 2 Fp are the tori Tx made of all
homotheties fixing the point x. In case (a) the stabilizers are centralizer subgroups.
Note that if g is a nontrivial homothety (i.e., fixes a point x and is not the
identity), then its centralizer CG.g/ is precisely the torus Tx . Finally note that
gTxg�1 D Tg�x .

The sum-product theorem is a consequence of the tension between these
two actions. The proof relies on the orbit-stabilizer lemma for approximate
groups (i.e., Lemma 1.13) applied to both actions. The approximate group in
consideration is obtained from the set S in the way that was described earlier,
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namely A WD .B [B�1[fidg/2, where B is the set

B WD

��
˛ ˇ

0 1

� ˇ̌̌
˛ 2 S 0; ˇ 2 S 0

�
;

and S 0 is the subset obtained from the Katz–Tao lemma applied with nD 6, say,
and with K D jS j" for some small " to be determined later. Then B satisfies
jBBBj6CKC jBj and by Lemma 1.12 A is a O.KO.1//-approximate subgroup
of G. Moreover jS 0j D jBj

1
2 > jS j =O.KO.1//.

Let us apply the orbit-stabilizer lemma (Lemma 1.13) to both actions:

Action (a): suppose g 2 A2\Tx for some x 2 Fp and g ¤ 1, then computing
the matrix gh for h 2A, the Katz–Tao lemma implies that jgAj6O.KO.1//jS j

because the translation part of that matrix is an algebraic expression of small
length involving only elements from S 0. From the orbit-stabilizer lemma, we
conclude that

jA2
\Txj>

jS j

O.KO.1//
:

Action (b): we clearly have

jA �xj> jS 0j> jS j

O.KO.1//

for every x 2 Fp , for example, because A contains many translations. From the
orbit-stabilizer lemma applied to this action, we conclude that

jA2
\Txj6O.KO.1//jS j:

Conclusion. For every x 2 Fp, if A2\Tx ¤ f1g, then jA2\Txj �K jS j.

Here the shorthand jA1j �K jA2j signifies that jA1j> jA2j=O.K
O.1// and

vice versa.
This is where the miracle happens: if A2 \ Tx has one nontrivial element,

then it has many! Everything will follow easily from this. Let T be the set of tori
Tx which intersect A2 nontrivially (the so-called involved tori in the terminology
of [Breuillard et al. 2010]).

Key claim. If jS 0j > CKC for some absolute constant C , then T is invariant
under conjugation by A (and hence by the subgroup hAi generated by A).

Proof. Recall again the orbit stabilizer lemma (Lemma 1.13) and its extra feature
that jAk \Stab.x/j is roughly of the same size as jA2\Stab.x/j for any given
k > 2. So we may write:

jA2
\ aTxa�1

j D ja�1A2a\Txj �K ja
�1A4a\Txj> jA2

\Txj
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If the Tx 2 T, then the right-hand side is large. Hence the left-hand side too
is large, and is in particular > 1, so aTxa�1 2 T as claimed. �

Note from the way we defined A that A contains a nontrivial translation
(e.g., of the form b�1

1
b2, where b1 and b2 have the same top left matrix entry).

Since p is prime, Z=pZ has no nontrivial proper subgroup and it follows that
hAi contains all translations. Therefore, since gTxg�1 D Tg�x , every torus Tx

belongs to T, and jTj D p.
To finish the proof it only remains to count A2 by slicing it into different tori.

Since tori are disjoint (except for the fact that they all contain the identity), we
may write [

Tx2T

.A2
\Txnf1g/�A2

I

thus

jTj
jS j

O.KO.1//
6
X

Tx2T

ˇ̌
A2
\Tx n f1g

ˇ̌
6 jA2

j6KjAj DO.KO.1//jS j2:

Hence

jS j> jTj

O.KO.1//
D

p

O.KO.1//
:

Thus (remember that K D jS j") choosing " small enough — "6 ı

O.1/
will

do — we obtain jS j> p1�ı as claimed.

2.14. A proof of the product-theorem and the Larsen–Pink inequality. The
proof of the product theorem (in the form of the classification theorem for
approximate subgroups, that is, Theorem 2.10) follows exactly the same path as
the above geometric proof of the sum product theorem. Here too there will be
two different actions of the group and the tension between these two actions, via
the orbit-stabilizer lemma for approximate groups (Lemma 1.13), will yield the
proof.

It turns out that in order to implement this strategy, one needs one further
ingredient, which was already present in a crucial way in Hrushovski’s proof
of Theorem 2.9 (although used differently). This is the celebrated dimension
inequality of Larsen and Pink, devised in their 1995 preprint on finite subgroups
of linear groups (which has now appeared as [Larsen and Pink 2011]) and then
investigated in [Hrushovski and Wagner 2008] in the model-theoretic framework.

Theorem 2.15 (Larsen–Pink inequality). Let G be a (connected) simple al-
gebraic group over an algebraically closed field k. Given M > 1, there is
C D C.M; dim G/ > 0 independent of k such that the following holds. If A

denotes a finite K-approximate subgroup of G.k/, then either A is contained
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in some proper algebraic subgroup H of G such that ŒH;H0�6 C , or for every
closed algebraic subvariety V of G with degree at most M ,

jA\Vj6O.KO.1//jAj
dim T
dim G ;

where the implied constants depend on M and dim G only.

When k D Fp , which is the case of interest in the applications to approximate
groups, if A generates a subgroup of the form G.Fq/, for some large enough
qDpn, then the first possibility that A may be contained in some proper algebraic
subgroup with a bounded number of connected components is automatically
ruled out.

Larsen and Pink proved this inequality in [2011, Theorem 4.2] in the case when
A is a genuine finite subgroup of G.k/ (namely when K D 1). Hrushovski and
Wagner [2008] then gave a model theoretic proof as well as a vast generalization,
which was subsequently used in [Hrushovski 2012b] to prove Theorem 2.9.
It turns out that the proof in the approximate group case is no more difficult
than in the group case and this is a very good example where the philosophy
of transferring group-theoretical arguments to the approximate group setting is
particularly successful.

A word on the proof. There are at least two cases where the inequality
is obvious: when dim V D 0, because then V is finite and its degree is its
number of elements; and when dim V D dim G, obviously. Now the proof
proceeds by a double induction on the dimension of V. Starting with two
possible counterexamples, one of smallest possible dimension V� and one of
largest possible dimension VC one uses the assumption on A (that A is sufficiently
Zariski-dense, or sufficiently general in the Larsen–Pink terminology) and the
simplicity of G to deduce that there is a 2 Ak , where k depends only on the
degree bound, such that V�aVC has dimension dim VCC 1 at least. Indeed
assuming as we may that V� and VC are irreducible, an equality between the
dimensions dim V�aVC D dim VC for all a 2 Ak would imply that Ak is
contained in the proper (because G is simple) subvariety of bounded degree
fg 2 G.k/ j g�1V�

�1V�g � Stab.VC/g, where Stab.VC/ is the subgroup
fg 2G.k/jgVCDVCg. Then one can use the induction hypothesis on V�aVC
to deduce a contradiction (it will have too many points in AkC2).

In the proof of the product theorem, Theorem 2.15 will be applied to only
three kinds of subvarieties V, all of them of bounded degree (maximal tori and
their normalizers, conjugacy classes of regular semisimple elements, and the set
of nonregular semisimple elements).

We now move on to the proof of Theorem 2.10, which as we already said, is
just a matter of adapting the geometric proof of the sum-product theorem that
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was given above. At this point I only have to point out the words that need to
be changed in order to turn it into a proof of Theorem 2.10. At the blackboard
this was very easy to do by simply erasing and replacing a couple of words here
and there with a colored chalk. I cannot do this in this article, so let me briefly
describe what remains to be done.

The group now is G D G.k/ and as above we consider two actions of this
group:

(a) the action of G on itself by conjugation, gh WD hgh�1,

(b) the action of G on the variety of maximal tori G=NG.T /, g �T WD gTg�1.

Recall that maximal tori in G (i.e., maximal connected subgroups made of
semisimple elements) are all conjugate to each other (k is algebraically closed),
so the stabilizer of a maximal torus T in action (b) equals its normalizer NG.T /.
Moreover recall that NG.T /=T is finite (the Weyl group) and independent of k.

Now point stabilizers in action (a) are the centralizers of elements. Elements
g 2 G such that the (connected component of the) centralizer of g 2 G is a
maximal torus are called regular semisimple (e.g., the elements with distinct
eigenvalues in case GD SLn). They form a Zariski-open subset of G as well as
of every maximal torus T (in a maximal torus nonregular semisimple elements
are contained in a union of boundedly many proper subtori, the root tori). So
here, in order to define a notion of involved torus T , we need to require A2 to
intersect T not only nontrivially, but in such a way that A2\T contains a regular
element. Denote by Treg the regular semisimple elements of T . Then define

T WD
˚
T maximal torus jA2

\Treg ¤¿
	
:

We can now apply the orbit-stabilizer lemma (Lemma 1.13) in combination
with the Larsen–Pink inequality to actions (a) and (b).

Action (a): Suppose g 2 A2 \ Treg. The Larsen–Pink inequality applied to
VD gG the conjugacy class of g (it is a closed subvariety of bounded degree
and of dimension dim G� dim T because g is regular semisimple) yields

jgA
j6 jA3

\Vj6O.KO.1//jAj1�
dim T
dim G :

So, by the orbit-stabilizer lemma, we conclude that5

jA2
\T j> jAj

dim T
dim G

O.KO.1//
:

5Note that ŒCG.g/ W CG.g/
ı� is bounded above by a constant depending only on dim G and

not on g nor k.
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Action (b): We can apply the Larsen–Pink inequality directly to the variety
VD T and conclude that

jA2
\T j6O.KO.1//jAj

dim T
dim G :

Since nonregular elements form a proper Zariski closed subset of bounded
degree, another application of the Larsen–Pink inequality yields

jA2
\ .T nTreg/j6O.KO.1//jAj

dim T
dim G�1:

Conclusion. For every maximal torus T , if A2\Treg ¤¿, then

jA2
\Tregj �K jAj

dim T
dim G ;

Precisely the same argument as in the proof of the sum-product theorem given
above yields the analogous claim:

Key claim. If jAj> CKC , for some constant C depending on dim G only, then
T is invariant under conjugation by A (and hence by the subgroup hAi generated
by A).

The end of the proof is also the same: one can slice A2 into different maximal
tori and write, noting that Treg\T 0reg D¿ for two different tori T and T 0,[

T2T

.A2
\Treg/�A2;

thus

jTj
jAj

dim T
dim G

O.KO.1//
6
X
T2T

jA2
\Tregj6 jA2

j6KjAj;

hence

jAj1�
dim T
dim G > jTj

O.KO.1//
: (2.15.1)

However by the key claim and the orbit-stabilizer lemma (the original one for
groups this time!) we have for any T 2 T:

jTj> jT hAij D jhAij

jhAi \NG.T /j
:

Finally another application of the Larsen–Pink inequality (this time the original
one for genuine subgroups) gives

jhAi \NG.T /j6O.KO.1//jhAij
dim T
dim G :
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Combining this with (2.15.1) we obtain the desired conclusion:

jAj> jhAij

O.KO.1//
:

This ends the proof of the product theorem.
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