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Superstrong approximation
for monodromy groups

JORDAN S. ELLENBERG

Finitely generated subgroups of arithmetic lattices are frequently encountered
in geometry, where they appear as monodromy groups attached to the variation
of cohomology in families of manifolds or algebraic varieties. Here we survey
briefly the construction of monodromy groups, discuss our (limited) knowledge
about whether such groups are arithmetic, and summarize the results of [Ellenberg
et al. 2012], which derive an application to arithmetic geometry from recent
advances in superstrong approximation [Helfgott 2008; Pyber and Szabó 2011;
Breuillard et al. 2011; Salehi Golsefidy and Varjú 2012]. We conclude by
indulging ourselves in some speculations about more general contexts, asking:
what are the interesting questions about “nonabelian superstrong approximation”
and “superstrong approximation for Galois groups”?

1. What is monodromy?

The simplest example of monodromy is provided by the topological notion of a
covering space. Suppose given a path-connected base space B, endowed with a
choice of basepoint b, and let f WX !B be a covering space of degree n; that is,
each point x 2X has a neighborhood U such that f �1.U / is homeomorphic to n

disjoint copies of U . In particular, f �1.b/ consists of n points. A paradigmatic
example is provided by B DX DC�, where the map f is given by z 7! zn, and
b D 1.

Now let 
 be a loop in B beginning and ending at b, and let Qb be a point in
f �1.b/. It follows from the definition of covering space that there is a unique
path Q
 which starts at Qb and projects to 
 . Intuitively, one imagines the point in X

“following its shadow” in B, whose motion is specified by 
 . In the paradigmatic
example, we can take 
 W Œ0; 1�! B to be a counterclockwise traversal of the
unit circle


 .t/D e2�it

and Qb D 1. Then Qb starts at 1, and at time t is required to satisfy

Q
 .t/n D e2�it :
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It follows that Q
 .t/D e2�it=n. The path Q
 starts at 1, but it ends at e2�i=n. In fact,
starting at any point Qb and following your shadow around 
 puts you at Qbe2�=n.
The permutation of the n points in f �1.b/ induced by this operation is called
the monodromy of the cover around 
 ; in this case, it is a cyclic permutation of
the n points. It is easy to check that the map sending a path 
 based at b to its
monodromy is a homomorphism

� W �1.B; b/! Sym.f �1.b//;

which we call the monodromy map of the cover. The image of � is called the
monodromy group.

Any identification of f �1.b/ with the set Œ1; : : : ; n� allows us to express
the monodromy of the cover as a homomorphism from the fundamental group
�1.B; b/ to Sn; of course, changing the labeling on f �1.b/ changes the mon-
odromy by conjugation. Note that the monodromy map need not surject onto
the symmetric group of f �1.b/; for instance, in the paradigmatic example, the
monodromy group is cyclic of order n. For that matter, the monodromy group
can be trivial — this happens precisely when X is isomorphic to the trivial cover
B � Œ1 : : : ; n�. The monodromy group is transitive if and only if X is connected;
in this case, there is a well-defined conjugacy class of point stabilizers in the
monodromy group, and the preimage in �1.B; b/ of such a stabilizer is an
index-n subgroup of �1.B; b/. In this setting, we are just rephrasing the usual
Galois-theoretic identification between connected degree-n covers of B and
index-n subgroups of �1.B; b/.

We can generalize this story: suppose now that f WX ! B is a fibration of
manifolds. Denote the fiber over b 2B by Xb . One can take hold of a homology
class in Hi.Xb;Z/ and “move it along 
 ” just as we did in above with a single
point of X , and this defines a monodromy map

� W �1.B; b/! GL.Hi.Xb;Z//;

Again, the monodromy group of the fibration (or the monodromy group on
Hi , if there is some ambiguity) is the image of �1.B; b/ in the arithmetic group
GL.Hi.Xb;Z//. Of course, we can define a monodromy group using the action
on cohomology in just the same way.

Rather than define this process rigorously, we will sketch an illustrative case.
Suppose that B is the moduli space M of lattices in R2 up to homothety, and
let X be the universal torus over M; in other words, for each point p of M

parametrizing a lattice ƒp � R2, the fiber Xp is the torus R2=ƒp.
Now let the basepoint b be the point parametrizing the square lattice ƒb
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generated by .1; 0/ and .0; 1/, and define a loop 
 �M by letting 
 .t/ be the
lattice generated by .1; 0/ and .t; 1/. Note that 
 .1/D 
 .0/D b.

The path from .0; 0/ to .0; 1/ represents a nontrivial homology class in
H1.Xb;Z/, which we call e1. Write e2 for the homology class of the path
from .0; 0/ to .1; 0/; then e1 and e2 freely generate H1.Xb;Z/.

What happens as we move along 
 , carrying e1 along with us as we go? At
time t , our path moves along a straight line segment from .0; 0/ to .t; 1/. And
when the loop is finished, our path goes from .0; 0/ to .1; 1/. The torus has
returned to its starting point, but the homology class on Xb represented by our
path is now e1C e2.

What if we’d started with the path from .0; 0/ to .1; 0/? This path stays in
place through our whole trip around 
 .

In other words, the loop 
 induces a unipotent monodromy transformation on
H1.Xb;Z/, sending e1 to e1C e2 and fixing e2.

Below we present a few examples of monodromy maps attached to families
of manifolds.

Example 1. If X ! B is a finite covering space of degree n, then Xb is a set
of n points, and the only nontrivial homology group of Xb is H0.Xb/Š Zn. In
this case, after choosing an identification of Xb with 1; : : : ; n, the monodromy
map factors as

� W �1.B; b/! Sn! GLn.Z/;

where the second map is the standard permutation representation.

Example 2. Let B be the moduli space of genus g Riemann surfaces, and let X

be the universal curve over B; that is, for each point p of B, the fiber Xp is the
Riemann surface parametrized by p. In this case, �1.B; b/ is the mapping class
group �g of genus g. (See [Farb and Margalit 2011] for a thorough introduction
to the mapping class group and its basic properties.) We can identify H1.Xb;Z/

with Z2g; having done so, the monodromy map takes the form

� W �g! GL2g.Z/:

This map is definitely not surjective once d > 2, because H1.Xb;Z/ carries a
symplectic intersection form which is preserved when moving around in moduli
space. So the image lies in the subgroup of matrices preserving this form, and
we can write:

� W �g! Sp2g.Z/:

In fact, the image of � is known to be all of Sp2g.Z/; see [Farb and Margalit
2011, §6.3.2], for example.
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Example 3. Let B be the configuration space parametrizing unordered n-tuples
of distinct elements of C, so that �1.B; b/ is the Artin braid group Bn on n

strands. Let X be the family whose fiber over a configuration fp1; : : : ;png is
the smooth proper algebraic curve with affine model

yd
D .x�p1/.x�p2/ : : : .x�pn/:

Then the monodromy map

� W Bn! GL.H1.Xb//

is a representation of the braid group, which is studied extensively in [McMullen
2013]. Each fiber Xb is an algebraic curve with a Z=dZ-action: namely, 1 sends
y to e2� i=dy and leaves x unchanged. Thanks to the intersection form, the
image of � is again contained in the group of symplectomorphisms H1.Xb/.
By contrast with the previous example, the monodromy group is not the full
symplectic group, because it commutes with the canonical action of Z=dZ on
the fiber. So the monodromy group is contained in the centralizer of Z=dZ in
the symplectic group; we denote this group by SpT .H1.Xb//.

Remark. Another classical route to monodromy groups is via solutions of
differential equations. We won’t pursue examples of this kind here, but see
[Sarnak 2014; Fuchs 2014] in this volume for a fuller account.

2. Big monodromy and superstrong approximation

Given a fibration X ! B, we might aim to describe, as best we can, the cor-
responding monodromy group � D �.�1.B; b// in GL.Hi.Xb;Z//. A crucial
invariant is the Zariski closure G of � , which is an algebraic group over Q

contained in a general linear group GLn, where nD dimQ Hi.Xb;Q/. We refer
to G as the algebraic monodromy group. By G.Z/ we shall mean the intersection
of G.C/ with GL.Hi.Xb;Z//.1

As a first step, we would like to be able to say whether it is big. Of course,
there are several senses in which the word “big” could be meant. For instance,
we can ask whether G is all of GLn. As we’ve seen, the answer is often negative,
sometimes for readily perceived reasons — for instance, in the case where X!B

is a family of genus g curves, the intersection form on H1.Xb;Z/ constrains G

to be contained in Sp2g. So one might also ask, more vaguely, “is G as big as
it could be, given all the reasons I can think of for it to be small”? For a typical
family of curves, this amounts to asking whether G is the full symplectic group.
In the context of Example 3, it would mean to ask whether G is the whole of SpT .

1In this article, we will always be in a context where Hi.Xb ;Z/ is torsion-free, and where any
subtleties about the “right” model for G over Spec Z do not intervene.
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It is not straightforward to compute the algebraic monodromy group G in
general, but much progress has been made towards ensuring that G is big under
various checkable conditions. See [Katz 2004] and [Hall 2008] for representative
recent results.

2.1. Thin monodromy. Even if G is known, there are still important questions
about the size of � itself. First of all, we can compare � with the full lattice
G.Z/. The critical question is whether � has finite index in G.Z/.

Definition 4. A subgroup � of G.Z/ is thin if it is Zariski-dense and has infinite
index.

There is, of course, a large literature on the geometry, group theory, and dy-
namics of arithmetic lattices — the main theme of this conference is to understand
the extent to which some of these results extend to thin subgroups.

It can be difficult, in practice, to know whether the monodromy group of a
family is thin, and both thin and nonthin cases do arise. For instance, the family
of hyperelliptic curves of genus g has monodromy group which is finite-index
in Sp2g.Z/, by a theorem of A’Campo [1979]. On the other hand, the family
of curves described in Example 3 can have either thin or nonthin monodromy
depending on the parameters; for instance, McMullen [2013, Section 11] shows
(following Deligne and Mostow) that the monodromy is thin when .n; d/ D
.4; 18/. On the other hand, Venkataramana [2013] shows that the monodromy is
an arithmetic lattice whenever n� 2d . Brav and Thomas [2012] have recently
shown that a family of quintic three-folds constructed by Dwork has as its H 3-
monodromy a thin subgroup of Sp4.Z/. Fuchs’s article [2014] in this volume
describes several senses in which thinness seems to be the “generic” situation,
including many examples of differential equations whose monodromy groups
appear on experimental grounds to be thin.

Example 5. Consider the family of complex algebraic curves given by

Xt W y
2
D f .x/.x� t/;

where f .x/ is a fixed squarefree polynomial of degree 2g, with g > 1, and t

varies over the base B, which is the complement of the roots of f in A1. The
monodromy group � of this family is Zariski dense in Sp2g; see unpublished
work of Yu [1997] and the more general theorem of Hall [2008, Theorem 4.1]. In
fact, Yu proves that the monodromy group of this family is a specified finite-index
subgroup of Sp2g.Z/, contained in the principal congruence subgroup of level
2 and containing the principal congruence subgroup of level 4. We take this
opportunity to correct an error in Section 4.1 of [Ellenberg et al. 2012], where
we make the incorrect assertion that the monodromy group is the whole of �.2/.
(This error does not affect the argument in which it appears.)



56 JORDAN S. ELLENBERG

Yu computes the monodromy group by direct computation with matrices. Ian
Agol explained to us a very handsome pure-thought argument via the Margulis
normal subgroup theorem; we include this argument here in the hope that the
idea might be useful in other similar cases.

Let Conf2gC1 be the configuration space parametrizing squarefree complex
polynomials of degree 2g C 1. The fundamental group of Conf2gC1 is the
Artin braid group Br2gC1, and there is a natural family of genus-g curves
over Conf2gC1 whose fiber over a polynomial g.x/ is the hyperelliptic curve
y2 D g.x/. By the theorem of A’Campo already mentioned, the image of the
corresponding monodromy map

Br2gC1! Sp2g.Z/

is a finite-index subgroup of Sp2g.Z/ containing the full level-2 congruence
subgroup �.2/.

The permutation action on strands induces a map Br2gC1! S2gC1 whose
kernel P2gC1 is called the pure braid group. The image of P2gC1 under the
monodromy image above is precisely �.2/.

Now the base space B considered in the present example maps to Conf2gC1

by sending t to f .x/.x� t/, and the monodromy map �1.B; b/! Sp2g.Z/ thus
factors as a composition

� W �1.B; b/! �1.Conf2gC1; b/Š Br2gC1! Sp2g.Z/:

Topologically speaking, the image of �1.B; b/ in Br2gC1 is the point-pushing
group H consisting of all braids in which the first 2g strands are fixed in place,
and the last is free to wind around the others. The point-pushing group is the
kernel in the Birman exact sequence

H ! P2gC1! P2g! 1;

and in particular is a normal subgroup of the pure braid group. Thus, �.H / is a
normal subgroup of the lattice �.2/. It then follows form the Margulis normal
subgroup theorem that �.H / is either finite or finite-index; but it is easy to
check that a loop carrying t once around a root of f has unipotent (and thus
infinite-order) monodromy, so �.H / must be finite index, as claimed.

To sum up: the monodromy group � can be “big” in the sense that its Zariski
closure G is as large as possible, but it might well be the case that � is very
“small” by virtue of being thin, and in a given explicit geometric situation we
may not know which is the case. The question is then whether thin groups are
“big enough” for applications.
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2.2. Strong approximation. One may ask how well � approximates G.Z/ lo-
cally — that is, with respect to the p-adic Lie groups G.Zp/. A natural question
in this vein is whether the inclusion �!G.Zp/ is dense for almost all p; that
is, does � satisfy strong approximation? Of course, this requires that G.Z/

itself satisfies strong approximation; this is the case whenever G is semisimple
and simply connected and G.R/ is noncompact. It is a remarkable fact, due in
its strongest form to Weisfeiler, that (under mild conditions on G) any finitely
generated Zariski-dense subgroup � of G.Z/ satisfies strong approximation. For
details and history concerning these results, see [Rapinchuk 2014] in this volume.

A central theme of the lectures in this workshop has been that, despite the name
“strong approximation”, density of � in almost all G.Zp/ is not the strongest
local approximation condition we can place on � . Indeed, strong approximation
is not strong enough to make sieving arguments work. For this we need a
stronger condition, called superstrong approximation, which we explain below.
See [Salehi Golsefidy 2014; Kowalski 2014] in this volume for a survey of the
affine sieve and other arguments which use superstrong approximation to derive
quantitative statements on thin subgroups of arithmetic groups.

2.3. Superstrong approximation. Let � be a finitely generated subgroup of
G.Z/, and let 
 D 
1; : : : ; 
r be a set of generators for � . If � W G.Z/!Q is
a finite quotient of G.Z/, then we can form a Cayley graph X.Q; 
 /, whose
vertices are labeled by the elements of Q, and which has q adjacent to q0 precisely
when q0 D q�.
i/

˙1 for some generator 
i .
In what follows, we will let Q range over the congruence quotients G.Z=pZ/,

and we will refer to the Cayley graph X.G.Z=pZ/; 
 / simply as Xp.
Note first that � surjects on G.Z=pZ/ if and only if Xp is connected. The

notion of connectedness, in turn, can be addressed spectrally: the (suitably
normalized) Laplacian operator on Xp always has an eigenvalue of 0, attached
to the space of constant eigenfunctions, and all other eigenvalues � 0. In fact,
the number of components of Xp is precisely the multiplicity of the eigenvalue
0. In other words, the second-largest eigenvalue �1 is 0 precisely when Xp is
not connected. And strong approximation, from a spectral point of view, says
that �1.Xp/D 0 for only finitely many p.

Replacing this condition with a quantitative bound yields the notion of super-
strong approximation.

Definition 6. Let � be a finitely generated subgroup of G.Z/ and define a
sequence of Cayley graphs Xp as above. We say � has superstrong approximation
if there exists a constant � > 0 such that �1 > � for all sufficiently large primes p.

In other words, superstrong approximation is the condition that the Xp form
a family of expander graphs. By the usual theory of expander graphs, this
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condition does not depend on the choice of the generating set 
 ; in other words,
it is a property of � �G.Z/, as our phrasing suggests. We note that superstrong
approximation follows immediately if � has Kazhdan’s property T , as it must if
it is a lattice in a higher-rank arithmetic group. But when � is thin, superstrong
approximation doesn’t follow from any abstract group-theoretic property of � .
Indeed, in practice � is often free, so has many actions on finite sets whose
corresponding Cayley graphs have small �1; superstrong approximation demands
that the G.Z=pZ/ are not among those finite sets.

The remarkable progress of the last few years towards uniform bounds for
expansion in Cayley graphs of linear groups, as described elsewhere in this
volume [Pyber and Szabó 2014], has brought us to the point where we now have
a superstrong analogue of Weisfeiler’s theorem; under mild conditions on the
ambient algebraic group G, thin groups have superstrong approximation merely
by virtue of their Zariski density in G.

3. Application: gonality growth in families of covers

We now describe an arithmetic application of superstrong approximation for
monodromy groups. All the material here is explained in substantially more
detail in our joint paper with Hall and Kowalski [Ellenberg et al. 2012].

Let U be an smooth (but not necessarily proper) algebraic curve over a number
field k, and let A! U be an abelian scheme over U (i.e., a family of abelian
varieties parametrized by U .) If t is a point of U. Nk/, we denote by At the fiber
of the family over t ; it is an abelian variety defined over the finite extension
k.t/=k. If n is an integer, At Œn� denotes the group of n-torsion points of At .

For instance, we could fix a squarefree polynomial f , let U be the complement
in A1 of the roots of f , and take A to be the family whose fiber At is the Jacobian
of the hyperelliptic curve y2 D f .x/.x� t/. (Though be warned that to prove
Theorem 7 in this case doesn’t use new results on thin groups, since in this
case the monodromy of the family is finite-index in Sp2g.Z/, as explained in
Example 5.)

The next result follows from Theorem 7 of [Ellenberg et al. 2012].

Theorem 7. For every d � 1 there exists a constant l.d/ such that, for all primes
l > l.d/, there are only finitely many t 2 U. Nk/ such that Œk.t/ W k� � d and
At Œl �.k.t// contains a nontrivial point.

In words, “there are only finitely many l-torsion points on fibers of A over
points of bounded degree”.

We now sketch the proof. The first step is to construct finite covers of U

as follows. For each integer n, let fn W Un! U be the map whose fiber is the
finite set of nontrivial n-torsion points At Œn�; this is a finite unramified covering
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of degree n2 dim A � 1. One might think of these covers as analogues of the
classical modular curves; for if U is the moduli space of elliptic curves Y .1/2,
the cover Un is precisely the moduli space Y1.n/ of elliptic curves with an n-
torsion point. In fact, the argument below is very much in the spirit of those of
[Abramovich 1996] and [Zograf 1984] which gave a lower bound for the gonality
of the classical modular curves; where we use new developments in superstrong
approximation, they use Selberg’s theorem that (in modern language) SL2.Z/

has property � with respect to the family of congruence subgroups.
Theorem 7 is really a statement about algebraic points on the covers Ul : we

are saying that, for all l > l.d/, the curve Ul has only finitely many points whose
field of definition has degree at most d over k.

This statement might at first seem rather strong, since there are infinitely many
degree-d field extensions of k. Even if a curve C has genus at least 2, so that
jC.k 0/j<1 for each k 0=k of degree d by Faltings’ theorem, it is far from clear
that the union of C.k 0/ over all such k 0 should be finite. Indeed, this is often
not the case: for instance, the curve

y2
D x5

CxC 1

has infinitely many points over quadratic extensions of Q, since one may produce
such a point by specifying x 2Q arbitrarily. Of course, the story is the same for
any hyperelliptic curve, which may have arbitrarily large genus. So the genus is
not sufficient to distinguish curves with many degree-d algebraic points from
curves with few such points. For that purpose, we need to study a different
geometric invariant: the gonality.

Definition 8. The gonality of an algebraic curve C=k is the minimum integer 

such that there exists a morphism C ! P1 of degree 
 .

(In this section, we take gonality to be a geometric invariant of the curve;
that is, in the definition we allow the morphism C ! P1 to be defined over an
extension of k.)

For example, a curve has gonality 1 precisely when it has genus 0, and
gonality 2 precisely when it is hyperelliptic but not rational.

The gonality of a curve has a very strong effect on its points over fields of
bounded degree over a fixed field, as we know from [Faltings 1983; Abramovich
and Voloch 1996; Frey 1994]. Namely, if C=k has gonality greater than 2d ,
then C. Nk/ has only finitely many points t such that Œk.t/ W k�� d .

2Warning: Y .1/ is not really an algebraic curve but a stack with nontrivial generic inertia. So
it would be more precise to say that when U D Y1.p/ for p > 3 and not dividing n, we have
Un D Y1.np/.
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To prove Theorem 7, it thus suffices to show that the gonality 
 .Ul/ increases
with l . This is accomplished using two main tools. First, we pass to the complex
numbers and invoke an analytic theorem of Li and Yau [1982] which provides
lower bounds for the gonality of a complex algebraic curve in terms of the
spectrum of the Laplacian. In particular, it is enough to show that the family of
Riemann surfaces Ul has a Laplacian spectral gap.

Why should this be so? This requires a combinatorial detour. The argument
runs roughly as follows. Choose a basepoint u 2U.C/ and a basis 
1; : : : ; 
r for
�1.U.C/;u/. (For simplicity we assume here that U is a punctured sphere, so
that �1.U / is free.) We can represent each 
i by a loop in U.C/ based at u, and
we can arrange our loops to be mutually disjoint. We denote the union of these
loops by X ; it is a one-vertex graph embedded in the Riemann surface U.C/.

Now the preimage of X under the cover Ul!U is a graph X.Ul/ embedded
in the Riemann surface U.C/. The vertices of X.Ul/ are the points of Ul lying
over u; we recall that these correspond to the l2g � 1 nontrivial l-torsion points
on Au.

On the other hand, we have a monodromy representation

� W �1.U.C/;u/! Sp.H1.A;Z//Š Sp2g.Z/:

The l-torsion in Au is canonically identified with the mod-l homology group
H1.Au;Z= lZ/. So what happens if we start at a point Qu in Ul.C/ lying over
u, and make Qu “follow its shadow” around a loop 
i in U.C/? The description
of monodromy from the first section tells us that the path ends at �.
i/ Qu. In
other words, the permutation on the preimages of u induced by 
i is the same as
that induced by the reduction mod l of the symplectomorphism �.
i/. This is
precisely the same as saying that two vertices Qu and Qu0 of X.Ul/ are adjacent
precisely when Qu0 D �.
i/ Qu for some i . In other words, X.Ul/ is a quotient of
the Cayley graph Xl we described in Section 2.

This is the crucial point. For a given family of abelian variety we may have
no easy way of checking whether the monodromy group � is thin or arithmetic.
But it doesn’t matter! The Helfgott, Pyber–Szabó, Breuillard–Green–Tao, and
Golsefidy–Varjú theorems work equally well in either case to tell us that � has
superstrong approximation. It is precisely this robustness that makes Theorem 7
possible.

Superstrong approximation for � tells us that the Xl have a spectral gap;
that is, the nontrivial eigenvalues of the discrete Laplacians on these graphs is
bounded away from 0 as l grows. (Hidden here is a certain amount of work
necessary to pin down the possibilities for G, the Zariski closure of monodromy;
this is necessary in order to ensure that superstrong approximation applies. This
is covered in Section 5 of [Ellenberg et al. 2012].)
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What is the relationship between the Laplacian of the graph and the geometry
of the surface in which the graph is embedded? It can be illustrative to visualize
the case where all the Ul have genus 0; that is, they are homeomorphic to the
sphere. Now a graph embedded in a sphere is a planar graph, and it is known
that a sequence of planar graphs with increasingly many vertices cannot have a
spectral gap; intuitively, graphs with a spectral gap have very quickly dispersing
random walks, while the random walk on a planar graph is constrained to linger
for a while in the neighborhood of the plane where it starts out.

More generally, we should expect Xl to serve as a kind of combinatorial
approximation to the geometry of Ul . Speaking roughly: the graph is like a wire
frame along which Ul is stretched, and the graph separates Ul into many small
components, each one of which is a copy of a patch on U . So the geometry of Ul

is, in a sense, a hybrid of the geometry of Xl and the geometry of U . As l grows,
and along with it the number of vertices of Xl , the graph plays a proportionately
greater and greater role in the geometry of Ul and the shape of U a smaller and
smaller one.

This intuition is beautifully confirmed and extended by results of Kelner,
Brooks, and Burger, which together provide us with a “comparison principle”
between the Laplacian spectrum of the Riemann surface Ul.C/ and the (discrete)
Laplacian spectrum of the embedded graph Xl . In particular, the combination of
their theorems shows that the sequence of Riemann surfaces Ul.C/ has a spectral
gap whenever the sequence of graphs Xl does. This completes the proof.

Remarks. (1) For the arithmetic applications in [Ellenberg et al. 2012], the
full strength of superstrong approximation was not needed, and we used a
weaker condition instead. We call a sequence of graphs fXlg esperantist when
�1.Xl/ decays no more quickly than a power of the logarithm of jXl j. At
the time [Ellenberg et al. 2012] was written, results guaranteeing superstrong
approximation in the required generality were not available, but the results of
[Pyber and Szabó 2011] established the esperantist condition in the contexts
we needed. Though we now have superstrong approximation for thin groups in
much greater generality, it still seems useful to keep in mind that in applications
it is often sufficient to have at hand the easier condition on � that the Cayley
graphs attached to � are esperantist (“slightly superstrong approximation. . . ”?)
On the other hand, the full strength of expansion allows one to conclude, not
only that the gonality of Ul grows without bound as l!1, but that the gonality
is bounded below by a constant multiple of deg.Ul=U /; in this case we say the
gonality has linear growth.

(2) Many more applications of the basic method appear in [Ellenberg et al. 2012].
For instance, if the monodromy group � is Zariski dense in Sp2g.Z/, it follows
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from Theorem 4 of [Ellenberg et al. 2012] that there are only finitely many t

of degree at most d over k such that At is isogenous to a product of abelian
varieties of smaller dimension.

(3) The theorems in [Ellenberg et al. 2012] require that the families of abelian
varieties be defined over fields of characteristic 0, since everything rests on
the ability to compare the geometry of Riemann surfaces with that of graphs
drawn thereon. The statements of the theorems, however, largely make sense in
characteristic p; it seems very interesting to wonder whether the results continue
to be true in this case, and in particular whether any analogue of the argument
by superstrong approximation can be made to work.

(4) Work of Cadoret and Tamagawa, carried out independently around the same
time as [Ellenberg et al. 2012], gives lower bounds for the gonality of some of
the covers discussed here, by very different methods [Cadoret and Tamagawa
2009; Cadoret 2012]. In particular, their results are purely algebraic, and can be
applied in characteristic p as well as characteristic 0.

4. Speculations: nonabelian superstrong approximation

We can phrase the approximation criteria of the previous sections in a different
way. Think of GLn.Z/ as the automorphism group of the free abelian group
Zn. Then, for any finite abelian group A which can be generated by n elements,
GLn.Z/ acts by permutations on Epi.Zn;A/, the set of surjections from Zn to A:
we thus have a homomorphism

Aut Zn
! Sym.Epi.Zn;A//:

Strong approximation for a subgroup � of GLn.Z/ is essentially the statement
that the restriction of this action to � is transitive for all A; equivalently, the
Cayley–Schreier graphs attached to this action are connected. Superstrong
approximation, on the other hand, implies the stronger statement that those
graphs form an expander family.

It is natural to ask about nonabelian analogues of this story; for instance, one
can replace Zn with a free group Fn on n generators, and replace the finite abelian
group A with a general finite group G. It turns out that the analogues of strong
and superstrong approximation have already appeared in various interesting
contexts.

4.1. The product replacement algorithm. (Main references: [Lubotzky and Pak
2001; Lubotzky 2011].) If G is a finite group, then Epi.Fn;G/ is precisely the
set of n-element generating sets .g1; : : : ;gn/ of G. The product replacement
algorithm of Leedham-Green and Soicher is a random walk on this set, which
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proceeds as follows: choose distinct i; j in 1; : : : ; n at random, and then multiply
gi either on the left or right (chosen by coin flip) by gj or g�1

j (also chosen by
coin flip.)

This random walk appears in practice to converge extremely quickly to the
uniform distribution on generating n-tuples, making it an effective way to generate
random elements in a group without having to enumerate the entire group. In fact,
the product replacement algorithm is known to converge to uniform distribution
in polynomial time when n is allowed to grow (slowly) with jGj, by a result of
Pak [2000]. In the present paper we will concentrate mostly on the case where n

is fixed and G changes.
The product replacement graph is in fact a Cayley–Schreier graph for the

permutation action
AC! Sym.Epi.Fn;G//;

where AC is a subgroup of Aut Fn of index 2, generated by automorphisms
corresponding to the 4n.n� 1/ operations of the product replacement algorithm.
(We will casually fail to distinguish between Aut F2 and its finite-index subgroup
AC in what follows.) The rapid convergence of the random walk naturally
suggests the question: are these graphs expanders? In other words, if G1;G2; : : :

is a sequence of finite groups, we may ask:

Question 9. Does Aut Fn have superstrong approximation with respect to its
image in Sym.Epi.Fn;Gi//?

The above question would certainly have a positive answer if Aut Fn had property
T (or even property � for a suitable class of finite quotients.) Under such a
hypothesis, quantitative bounds for the performance of the product replacement
algorithm are given in [Lubotzky and Pak 2001]. Whether Aut Fn has property
T in general is a well-known open question, about whose answer there is no
clear consensus. We know that Aut Fn does not have property T when nD 2; 3

[Grunewald and Lubotzky 2009].
One very interesting partial result was proved in [Gamburd and Pak 2006]:

Question 9 has a positive answer for the family of groups PSL2.Fp/ under the
hypothesis that PSL2.Fp/ has uniform expansion; that is, there is a constant
� > 0 such that, for all p, and all Cayley graphs of PSL2.Fp/ with a specified
number of generators, the spectral gap is at least �. A very recent theorem of
Breuillard and Gamburd shows that there is a family P of primes of density 1

such that PSL2.Fp/ has uniform expansion as p ranges over P , but the general
case remains mysterious.

It’s important to keep in mind that, for all our talk about superstrong approxi-
mation, even the prior question of strong approximation is poorly understood
in the nonabelian case. Recall that strong approximation has to do with the
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transitivity of the action on the set of epimorphisms. There are many .G; n/ for
which we know that Aut Fn acts transitively on Epi.Fn;G/. But there are many
examples of .G; n/ such that the action is nontransitive; see [Pak 2001; Lubotzky
2011] for a full discussion of what is known and what is conjectured about this
problem.

So far, no thin groups have appeared in this discussion. It is not even precisely
clear how the notion of “thin subgroup” of Aut Fn should be defined. Still, we
can imagine what kind of questions might be asked in this setting. For instance,
one could ask about the following strengthening of Question 9.

Question 10. Let � be a finitely generated subgroup of Aut Fn whose image in
Sym

�
Epi.Fn;PSL2.Fp//

�
is the same as that of Aut Fn for all p. Do the Cayley–

Schreier graphs of the action of � on Epi.Fn;PSL2.Fp// form an expander
family?

It goes without saying that it would be of interest to ask all of the above
questions with Aut Fn replaced by the braid group on n strands — or, for that
matter, the mapping class group of any oriented surface whose fundamental group
is isomorphic to Fn. This is more in the spirit of monodromy, since mapping
class groups, unlike automorphism groups of free groups, are fundamental groups
of natural moduli spaces — namely, moduli spaces of punctured curves.

4.2. Square-tiled surfaces and approximation for Aut F2. The action of

Aut F2 on Epi.F2;G/

also appears in the theory of square-tiled surfaces. A square-tiled surface is just
a connected degree-d cover of a torus branched at a single point. Such a cover
can be thought of as a map from �1;1 to Sd , where �1;1 is the fundamental group
of the once-punctured torus; it is a free group on 2 generators.

There is a natural obstruction to transitivity of the action of Aut F2 on
Hom.F2;Sd /; namely, the conjugacy class of the puncture on the torus (al-
ternately: the commutator of a pair of free generators of F2) is preserved up to
conjugacy by Aut F2. Since we have not demanded that our homomorphisms be
surjective, we can break down Hom.F2;Sd / further according to the image of
the homomorphism.

Precisely: Let � be a conjugacy class of Sd , that is, a partition of d , and let
G be a transitive permutation group of rank d (i.e., a transitive subgroups of
Sd defined up to conjugacy.) Then we denote by Hom�.F2;Sd ;G/ the set of
homomorphisms from F2 to Sd which send the puncture class to � and whose
image is G. This set also carries an action of Sd , by conjugation on the right,
and we denote the set of orbits of this action by H 1

�.F2;Sd ;G/.
Now Aut F2 acts on H 1

�.F2;Sd ;G/, and in fact this action factors through its
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quotient Out F2. We denote the associated Cayley–Schreier graph by X.d; �;G/,
and we can now ask questions of the same genre we have considered before: for
which .d; �/ is X.d; �;G/ connected? For which sequences of .d; �;G/ do the
X.d; �;G/ form an expander family?

We remark that Out F2 is naturally identified with GL2.Z/ via its action
on F ab

2
D Z2, and its index 2 subgroup is in turn naturally identified with the

mapping class group �1;1 of the once-punctured torus, which is the fundamental
group of M1;1, the moduli space of genus-1 curves with a single marked point.
Under these identifications, the action of �1;1 on the finite set H 1

�.F2;Sd ;G/

corresponds to a finite cover of M1;1; this is precisely a moduli space Hd;�;G

of square-tiled surfaces, where the map Hd;�;G ! M1;1 sends a square-tiled
surface to the punctured torus which it covers.

The moduli space Hd;�;G is a Hurwitz space and is also an example of a
Teichmüller curve. Their geometry and their relationship with moduli spaces of
higher genus curves has been much studied — see, for example, [McMullen 2005;
Chen 2011]. Any superstrong approximation result for a family of X.d; �;G/

could in principle be used to give lower bounds for the gonality of Hd;�;G along
the lines explained in the previous section. And of course one could go further
and ask about approximation results for infinite-index subgroups of �1;1 (though
it is not clear at first glance whether such results have interesting implications in
this context.)

We note that it is not possible that only finitely many Hd;�;G have a component
with low gonality, for the simple reason that every algebraic curve over a number
field is birational to a connected component of Hd;�;G for some G [Ellenberg
and McReynolds 2012]. So any general statement of growing gonality would
have to be restricted to a special family of .d; �;G/.

5. Speculations: superstrong approximation for Galois groups and the
Bogomolov property

In Section 3 we explained how results on superstrong approximation could
provide lower bounds for gonality in a family of covers of algebraic curves
over characteristic 0 fields. The group to which the approximation results were
applied was the image of the topological monodromy group of the base (a free
group) in the arithmetic lattice Sp2g.Z/.

If one tries to do the same thing over a more general base — for instance, a
base in characteristic p — one immediately encounters the problem that there is
no longer a discrete fundamental group; all that remains is the étale fundamental
group, a topologically finitely generated profinite group.
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What might superstrong approximation mean for a profinite, rather than
a discrete group? Let … be a profinite group which is topologically finitely
generated. If �1; : : : ; �k are topological generators, the subgroup � they generate
is dense in …. We say � has property � with respect to … if the Cayley graphs
induced by � on the finite quotients of … form an expander family. We might
wish to say that … satisfies superstrong approximation if the dense subgroup
� has property � with respect to …. But there’s a problem; it follows from
a result of Alon, Lubotzky and Wigderson [Alon et al. 2001] show that there
are profinite groups … and dense finitely generated subgroups �; � 0 �… such
that � has property � with respect to …, but � 0 does not. Kassabov (personal
communication) has shown that this can hold even when the profinite completions
of � and � 0 are actually isomorphic to ….

One can instead place on … the stronger condition that every dense finitely
generated subgroup � has property � with respect to ….3 In this case we say that
… has property O� . This is very close to asking that the Cayley graphs attached to
generating sets of size k of finite quotients Q of … satisfy a spectral gap which
is independent of Q. In other words, … needs to have uniform expansion as
discussed in the previous section. Uniform expansion is for the moment out of
reach, but it is widely believed to hold, for example, when …D Sp2g.

OZ/, the
relevant case for the current discussion.

Suppose Sp2g.
OZ/ has property O� , let U be a complex algebraic curve, and let

� W �1.U.C/;u/! Sp2g.
OZ/ be a representation of the fundamental group of U .

For each l , the reduction N�l W �1.U.C/;u/! Sp2g.Z= lZ/ gives rise to a cover
Ul of U , and the arguments of the previous section show that the Ul grow in
gonality.

One might ask the same question for a curve U over a finite field Fq . We
slightly modify the question in order to avoid introducing the machinery of the
étale fundamental group. Suppose given, for an infinite sequence of primes l ,
an étale cover Ul ! U such that .Ul/Fq

! UFq
is a Galois cover with Galois

group Sp2g.Z= lZ/. For instance, you might make such a cover by adjoining the
l-torsion points of an abelian g-fold A over U .

Question 11. Is the gonality of Ul bounded below by a positive constant multiple
of ŒUl W U �? What if we impose the extra condition that the Ul are obtained by
adjoining the l-torsion points on a fixed abelian g-fold A=U ?

We have focused on the case of curves over finite fields because of an intriguing
connection with a different topic in number theory, which we now explain. Write
Kl for the function field of Ul . To say Ul has gonality greater than n is to say

3There is a natural temptation to call this criterion superduperstrong approximation, but this
terminology is perhaps better kept quarantined in a footnote.
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that there is no rational function f on Ul with at most n poles and n zeroes.
This is equivalent to the assertion that there is no nonconstant element f of K�

l

whose (logarithmic) Weil height hKl
.f / is at most n. The absolute height of

an element f of an extension of Kl is just hKl
.f /=ŒUl W U �. In other words,

Question 11 asks whether the absolute height of an element of K�
l

is bounded
below by a constant if it is nonzero.

This condition already has a name — it is called the Bogomolov property.

Definition 12. Let K be a global field. A set S of algebraic numbers over K

has the Bogomolov property if the set of positive absolute heights of elements of
S is bounded away from 0.

Note that this definition makes sense not only when K is a function field (as
in the case described above) but also when K is a number field; in fact, it is the
case K DQ that has been most energetically studied. Some sets known to have
the Bogomolov property over Q are the field of totally real algebraic numbers
(Schinzel), the maximal abelian extension of Q (Amoroso–Zannier) and the
maximal extension of Q totally split at a finite place p (Bombieri–Zannier). The
recent paper of Amoroso, David, and Zannier [Amoroso et al. 2011] contains a
good summary of what is known along with several striking new results.

Speculation piled atop speculation: If we believe that Sp2g.Fl/ has uniform
expansion, and if we believe by analogy with the complex case that uniform ex-
pansion of Galois groups implies the Bogomolov property for the corresponding
extensions of function fields, might this be the case for number fields as well?
There are many ways one could analogize Question 11 to the number field case.
Here is a minimalist version:

Question 13. Let A=Q be an abelian variety and let Kl be the number field
Q.AŒl �/. Does the compositum of all the Kl have the Bogomolov property?

And here is a maximalist version:

Question 14. Let F=Q be an infinite Galois extension such that Gal.FQab=Qab/

has property O� . Does F have the Bogomolov property?

A striking result of Habegger [2013] shows that the answer to Question 13 is
affirmative when A is an elliptic curve. The theorems from [Ellenberg et al. 2012]
described in Section 3 can be used to show that the analogue of Question 13 with
Q replaced by C.t/ has an affirmative answer as well; this requires lower bounds
for the gonality, not only of the covers Ul , but of fiber products of multiple Uli

over U . In the case of C.t/, the relevant expansion theorem (which was not
available when [Ellenberg et al. 2012] was written) came with [Salehi Golsefidy
and Varjú 2012]. It shows that expansion holds not only for the Cayley graphs
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associated to reduction modulo primes, but also modulo arbitrary squarefree
integers.

As for the maximalist question, its interest is somewhat diminished by our
lack of examples of groups known to have property O� . This need not keep us
from speculating. For instance, S be a finite set of primes, and let Kt

S
be the

maximal extension of Q which is unramified outside S and tamely ramified at
S , and let Gt

S
be its Galois group. Then Gt

S
has property FAb, which is to say

that every finite-index subgroup of Gt
S

has finite abelianization. This makes
Gt

S
a reasonable candidate for having some form of spectral expansion property.

Caution is required, since Gt
S

is only conjectured to be topologically finitely
generated. One can circumvent this problem as follows. For each integer k,
we can consider the family of all Cayley graphs on finite quotients G of Gt

S

endowed with subsets .g1; : : : ;gk/ generating G. We say that Gt
S

has O�k if there
is a uniform spectral gap for all such Cayley graphs.

Question 15. Does Gt
S

have property O�k for all k? Does Kt
S

have the Bogo-
molov property?

Note that for Gt
S

to have property O�2 would require that there are only finitely
many n such that Gt

S
has a quotient isomorphic to Sn. It is not even known

whether there are arbitrarily large Sn-extensions of Q unramified away from S ;
a recent preprint of Roberts and Venkatesh [� 2012] argues that such extensions
might indeed exist and proposes a construction, but at the same time suggests
that these extensions are not likely to be tamely ramified at the primes in S .
Another hint that the first question is not completely unreasonable comes from
Ershov’s work in [2011] on Golod–Shafarevich groups with infinite quotients
with property T . But we should emphasize that we have no strong opinion as to
the answer to either question.
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