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The orbital circle method
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We discuss several recent applications of the circle method to the study of
integers represented by thin orbits.

1. “Almost every” local-global theorems in thin orbits

A number of articles in these proceedings will discuss the affine sieve method
which in general produces some (usually unspecified) number of almost-primes
in an orbit of affine linear maps [Bourgain et al. 2010a; Salehi Golsefidy and
Sarnak 2011]. Our goal in these notes is to highlight several occasions in which
actual primes can be produced in the thin setting.1 In the results surveyed below,
these come from the stronger statement of an “almost every” local-to-global
phenomenon, which has recently been established in several a priori unrelated
settings by Bourgain and the author. The key idea is to replace sieving with the
circle method, and develop the latter in the setting of thin orbits. We now state
these results.

1A. Representing numbers by thin subgroups of SL2.Z/. In [Bourgain and
Kontorovich 2010] we studied integers represented by certain “thin” subgroups
� < SL.2;Z/, where thin means that � is of infinite index in SL.2;Z/ (equiva-
lently, the hyperbolic surface �nH has infinite volume). Fix vectors v0;w0 2 Z2,
assumed to be primitive (their coordinates are coprime). We shall say that n 2 Z

is represented by the triple .�; v0;w0/ if there is a 
 2� such that nDhv0
;w0i.
Here the inner product is the standard one on R2. Let S be the set of represented
integers,

S D hv0 ��;w0i: (1.1)

Partially supported by NSF grants DMS-1209373, DMS-1064214 and DMS-1001252.
1For our purposes, “thin” means the following. Let � � GLn.Z/ be a finitely generated

semigroup and for v0 2 Zn, let O WD v0 �� be a �-orbit. Fix a norm k � k on Rn, and let NO be the
Zariski closure of O. We call the orbit O thin if there is an � > 0 such that, for all T large,

jfv 2O W kvk< T gj< jfv 2 NO.Z/ W kvk< T gj1��:

Other authors can simply define a �-orbit to be thin if � has infinite covolume in its Zariski
closure, but this definition only makes sense when � is a group. Since our applications require us
to consider semigroups � , we reformulate thinness as above.
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For example, if v0 D w0 D .0; 1/, then n 2 S exactly when it is the bottom
right entry of some matrix in � . We will see in Section 1B–1C that this setting
is, roughly speaking, the starting point, and our other examples will boil down
to similar problems. It was shown in [Bourgain and Kontorovich 2010], under
some conditions on � , that S satisfies an “almost every” local-global principle.
First we explain the conditions on � , before stating the theorem precisely.

Assume that � is free, finitely generated with no parabolic elements, and
assume that � , while thin, is “not too thin.” To explain what this last condition
means, recall that one can attach a Poincare series P�.s/ to � , given by

P�.s/ WD
X

2�

k
k�2s; (1.2)

with s 2 C and k
k the Euclidean norm of the matrix entries of 
 . This series
converges in some half-plane Re s � C , and its abscissa of convergence is called
the critical exponent ı D ı.�/. For example, if � D SL2.Z/ or any lattice, then
ı.�/D 1, while for � thin as above, it is known that ı < 1. The condition that
� is not too thin is then encoded in the requirement that

ı > 1� "0; (1.3)

for some explicit "0 > 0; in particular "0 D 5� 10�5 suffices.
We now explain the “almost every” local-global principle. Call n 2 Z admis-

sible if it is everywhere locally represented, meaning n 2 S mod q for all q. Let
A denote the set of all admissible numbers. Though it is not a priori obvious, it
follows from strong approximation that only finitely many q need be checked
for admission to A.

Theorem 1.4 [Bourgain and Kontorovich 2010]. Let � be as above. For almost
every n (in the sense of natural density),

n is represented if and only if n is admissible. (1.5)

Quantitatively, the number of exceptions to (1.5) up to N, is at most O.N 1��0/,
for some �0 > 0, that is,

#.S \ Œ1;N �/

#.A\ Œ1;N �/
D 1CO.N��0/ as N !1:

In particular, almost every admissible prime is produced, since up to N ,
the exceptional set of order O.N 1��0/ is too small to contain even a positive
proportion of primes, of cardinality N= log N .

On probabilistic grounds, one may expect something like (1.5) to hold with
a more relaxed condition on ı in (1.3). Indeed, if k
k is about T , then so is
nD hv0 �
;w0i, roughly speaking. The number of such 
 is on the order of T 2ı ,
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so conspiracies notwithstanding, n is expected to occur with multiplicity T 2ı�1.
As long as ı > 1

2
, this multiplicity should grow, giving heuristic evidence that

(1.3) can be relaxed to any "0 <
1
2

. If ı falls below 1
2

, then certainly (1.5) is
false; the set S , even counted with multiplicity, is already too thin to be even a
positive proportion of the integers.

1B. Zaremba’s conjecture. If x 2 .0; 1/ has the continued fraction expansion

x D
1

a1C
1

a2C
: : :

;

we write x D Œa1; a2; : : : � . The numbers aj 2 N are called the partial quotients
of x. For A � 1, let RA denote by RA the set of all rational numbers b=d ,
.b; d/D 1, whose partial quotients are bounded by A:

RA WD

�
b

d
D Œa1; : : : ; ak � W .b; d/D 1 and aj �A for all j

�
:

Let DA be the set of denominators appearing in RA:

DA WD

�
d � 1 W there exists b such that .b; d/D 1 and

b

d
2RA

�
:

Conjecture 1.6 [Zaremba 1972, p. 76]. Every number is the denominator of a
reduced fraction whose partial quotients are absolutely bounded. That is, there
is some absolute A> 1 (possibly AD 5 suffices) such that

DA D N:

This seemingly innocuous conjecture has important applications to the theory
of good lattice points in multidimensional quasi-Monte Carlo numerical integra-
tion, as well as to the linear congruential method for generating pseudorandom
numbers; see, for example, [Niederreiter 1978].

The conjecture is known to be true for a set of density one:

Theorem 1.7 [Bourgain and Kontorovich 2011]. Almost every number is the
denominator of a reduced fraction whose partial quotients are bounded by 50.
That is, for AD 50,

#.DA\ Œ1;N �/

N
! 1 as N !1: (1.8)

The best previously known bound, due to Hensley [2006, Theorem 3.2], states
that, for any fixed " > 0, there is some large ADA."/ such that

#.DA\ Œ1;N �/ > C" �N
1�":
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This problem turns out to be nearly identical to that in Section 1A. Observe
that b=d D Œa1; a2; : : : ; ak � if and only if�

� b

� d

�
D

�
0 1

1 a1

��
0 1

1 a2

�
� � �

�
0 1

1 ak

�
: (1.9)

Hence we set �A to be the semigroup generated by the matrices of the above
type:

�A WD

��
0 1

1 a

�
W a�A

�C
: (1.10)

(The superscript plus sign denotes generation as a semigroup.) Then from (1.9),
the set DA of denominators is nothing more than the set of bottom right entries,

DA D hv0 ��A;w0i;

with v0 D w0 D .0; 1/. That is, this set is precisely of the same form as (1.1).
One can again attach a Poincaré series (1.2) to �A; it has some critical exponent
ıA, which approaches 1 as A!1 [Hensley 1992]. In fact, the condition AD 50

in (1.8) is derived from the condition

ıA > 1� 5
312
; (1.11)

as in (1.3).

1C. The local-global conjecture for Apollonian gaskets. In Figure 1 we see
a bounded integral Apollonian gasket G. This is constructed by starting with
three tangent circles in the plane, and iteratively packing new circles into the
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Figure 1. An integral Apollonian gasket.
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complementary interstices. The closure of this circle packing in the plane is a
fractal-like gasket of Hausdorff dimension

ı � 1:3: (1.12)

In the special configuration shown, all circles in the gasket have integral curva-
tures (one over their radii); these are the numbers illustrated. The author and
Oh [2011] proved an asymptotic formula for the number of circles C in such a
gasket G whose curvatures b.C/ are bounded by a growing parameter T : There
is a constant c > 0 such that

#fC 2 G W b.C/ < T g D c T ı.1C o.1// as T !1: (1.13)

This result was made effective in Vinogradov’s thesis [2012], and independently
by Lee and Oh [2013], replacing the error o.1/ in (1.13) by an effective rate
O.T �"0/ with "0 > 0; see also [Sarnak 2011; Oh and Shah 2013].

In a lovely series of papers on Apollonian packings and generalizations,
Graham et al. [2003] posed a different question: what numbers appear in Figure 1?
Let BDB.G/ be the set of curvatures in G,

B WD fn 2 Z W the exists C 2 G with b.C/D ng:

As before, we say n is represented if n 2 B. A moment’s reflection reveals
that there are local obstructions, for example in the gasket G of Figure 1, every
number is

� 2; 3; 6; 11; 14; 15; 18; or 23 mod 24: (1.14)

As before, call such a number admissible, and let A D A.G/ be the set of
admissible numbers. These obstructions, observed empirically in [Graham et al.
2003], are determined rigorously by Fuchs [2011], who proved that for any
gasket, admissibility is a condition mod 24.

Conjecture 1.15 [Graham et al. 2003; Fuchs and Sanden 2011]. Every suffi-
ciently large admissible number is represented.

This is again an instance of a local-global problem in thin orbits. (The orbit
and thinness will be revealed below.)

Theorem 1.16 [Bourgain and Kontorovich 2013]. Almost every admissible num-
ber is represented. That is,

#.B\ Œ1;N �/

#.A\ Œ1;N �/
! 1 as N !1:

The best previously known result, due to Bourgain and Fuchs [2011], is the
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so-called positive density conjecture, which states that

#.B\ Œ1;N �/�N:

To relate this problem to the previous two, we assume that the reader is familiar
with the Apollonian group and the root quadruple of a packing; see for example
[Fuchs 2014] in this volume. Specifically, the Apollonian group � is the integer
matrix group

� WD hS1;S2;S3;S4i (1.17)

generated by the following four explicit matrices:

S1D

0BBB@
–1

2 1

2 1

2 1

1CCCA; S2D

0BBB@
1 2

–1

2 1

2 1

1CCCA; S3D

0BBB@
1 2

1 2

–1

2 1

1CCCA; S4D

0BBB@
1 2

1 2

1 2

–1

1CCCA:
The Apollonian group sits inside the orthogonal group of integer matrices pre-
serving a certain quadratic form Q of signature .3; 1/:

� <OQ.Z/: (1.18)

The index of � in OQ.Z/ is infinite, but nevertheless � is Zariski dense in OQ.
The root quadruple v0 2Z4 is the set of curvatures corresponding to a configu-

ration of four mutually tangent circles in G of largest radius (smallest curvature).
For the packing G in Figure 1, the root quadruple is v0D .�10; 18; 23; 27/. Here
the negative sign attached to the outermost circle’s curvature accounts for its
opposite orientation, being internally tangent to the other circles. It is the only
circle with negative curvature.

It is a consequence of Descartes’ kissing circles theorem that the orbit

O WD v0 ��

of the root quadruple under the Apollonian group consists of all quadruples
of curvatures corresponding to four mutually tangent circles in G. (Note that
this orbit is thin, since � has infinite index in the ambient group OQ.Z/.) In
particular, the entries of O contain all curvatures in G, which one can recover
taking the union of sets of the form

hv0 ��;w0i;

as w0 ranges through the standard basis vectors

w0 2 fe1; : : : ; e4g:
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Here e1 D .1; 0; 0; 0/; : : : ; e4 D .0; 0; 0; 1/. So this problem again turns into the
form (1.1).

2. Sketches of proofs

2A. The circle method. We now describe some of the ingredients going into
the proofs of Theorems 1.4, 1.7, and 1.16. Specifically, we will highlight the
following tools:

� the circle method; decomposition into major and minor arcs;

� infinite volume spectral and representation theory; Lax–Phillips and Patterson–
Sullivan theory;

� the thermodynamic formalism of Ruelle transfer operators and their “congru-
ence” versions;

� expansion and uniform spectral gaps;

� strong approximation, and explicit versions thereof;

� thin bisector counting with effective rates;

� Vinogradov’s method of estimating bilinear forms;

� estimates of Gauss sums and a Kloosterman refinement.

Recall that in each of our applications, the set of represented numbers is of
the form (1.1). We begin with the Hardy–Littlewood circle method, looking at
the exponential sum

SN .�/ WD
X

2�N

e.�hv0
;w0i/; (2.1)

where � 2 R=Z, e.x/ WD e2� ix , and

�N � f
 2 � W k
k<N g

is a certain carefully chosen ensemble. For now, one can think of it as the whole
�-ball of radius N . Observe that n is certainly represented if the n-th Fourier
coefficient of SN ,

cSN .n/D

Z 1

0

SN .�/e.�n�/ d� D
X

2�N

1fnDhv0
;w0ig

is nonzero. Here 1f�g is the indicator function. According to the circle method,
one breaks the range Œ0; 1� of integration into the major arcs M (where � � a=q

with q small) and the complementary minor arcs mD Œ0; 1� nM, writingcSN .n/DMN .n/C EN .n/: (2.2)
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Here

MN .n/ WD

Z
M
SN .�/e.�n�/ d�

should be the main term and

EN .n/ WD

Z
m
SN .�/e.�n�/ d� (2.3)

is the error. For the main term MN , one attempts to prove an asymptotic formula,
or at least a good lower bound. In particular, since every admissible number is
expected to be represented, one would like to show, say, for N=2< n<N , that

MN .n/�S.n/
#�N

N
: (2.4)

Here S.n/� 0 is a certain product of local densities called the singular series.
In particular, S.n/ vanishes if n is not admissible, and otherwise is�N�" for
any " > 0. The singular series is well-understood, and for ease of exposition, we
pretend henceforth that every n is admissible and

S.n/D 1: (2.5)

For the minor arcs integral EN , one wishes to give an upper bound, asymptoti-
cally smaller than the lower bound given for MN . If one is able to do this at the
level of individual n, then one can show that every sufficiently large admissible
n is represented. At present, we do not know how to give such strong upper
bounds, instead settling for a sharp upper bound on average, in particular in
L2-norm, as follows. From the definition (2.3), Parseval’s theorem states thatX

n

jEN .n/j
2
D

Z
m
jSN .�/j

2 d�: (2.6)

A trivial bound for SN .�/ in (2.1) is just � j�N j, giving a trivial bound of
� j�N j

2 for (2.6). We claim that it suffices for our applications to save a little
more than

p
N on average over m off of each term SN in (2.6), that is, we seek

the bound Z
m
jSN .�/j

2 d� D o

�
j�N j

2

N

�
: (2.7)

First we claim this suffices. Let E.N / be the set of exceptional n up to N ,
that is, those that are admissible but not represented. Certainly the n-th Fourier
coefficient (2.2) is nonzero if MN .n/ > jEN .n/j, so the number of exceptions is
bounded by

#E.N /�
X
jnj<N

n is admissible

1fjEN .n/j�MN .n/g:
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For admissible n, we have (2.4) and (2.5), thus

#E.N /�
X

n

1fjEN .n/j�j�N j=N g�
N 2

j�N j
2

X
n

jEN .n/j
2:

Now applying (2.6) and (2.7) gives

#E.N /D o

�
N 2

j�N j
2

j�N j
2

N

�
D o.N /;

so almost every admissible number is represented.
In the next two subsections, we focus individually on the tools needed to

establish the major arcs bound (2.4) and the error bound (2.7).

2B. The major arcs. We now sketch an argument leading to (2.4). Recall that
MN is an integral over the major arcs � 2M, and we may pretend that � is just
equal to a fraction a=q. Then the analysis reduces to evaluating (2.1) at � D a=q.
Pretend now that �N is just the whole �-ball:

�N D f
 2 � W k
k<N g:

Then

SN

�
a

q

�
D

X

2�
k
k<N

e

�
a

q
hv0 � 
;w0i

�
:

The exponent only depends on the residue class of 
 mod q. Let �q D � mod q

be the set of such residue classes. We split the sum as

SN

�
a

q

�
D

X

02�q

e

�
a

q
hv0
0;w0i

�� X

2�
k
k<N

1f
�
0 mod qg

�
: (2.8)

Expansion (that certain corresponding Cayley graphs have a uniform spectral
gap) is used critically here to estimate the bracketed term. Roughly speaking,
expansion ensures that, for q sufficiently small relative to N , the random walk in
� mod q is rapidly uniformly mixing, implying that the bracketed term in (2.8)
is, up to acceptable error, just

1

j�qj

X

2�
k
k<N

1:

In the group cases (Section 1A and the Apollonian case, Section 1C), one uses
uniform spectral gaps [Gamburd 2002; Bourgain et al. 2010a; Bourgain and
Varjú 2012; Varjú 2012], while in the semigroup case for Zaremba (Section 1B)
one invokes the thermodynamic formalism and “congruence” Ruelle transfer
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operators; see [Bourgain et al. 2011].
The rest of the analysis of SN reduces to a certain local analysis via explicit

versions of strong approximation, Goursat’s lemma, and some other ingredients;
see [Fuchs 2011; Bourgain and Kontorovich 2010, Section 4.3]. Inserting this
estimation of SN into MN , one needs a final ingredient of independent interest to
establish (2.4), namely an effective infinite-volume bisector estimate, as follows.

Considering first the setting of Section 1A, let G D SL.2;R/, and write the
Cartan decomposition G DKACK,

g D k1.g/a.g/k2.g/
�1:

Here k1; k2 2K D SO.2/ and

a 2AC D

��
e�t 0

0 et

�
W t � 0

�
:

Given a nonelementary (not virtually abelian), finitely generated, discrete group
� <G of infinite covolume, and two intervals I1; I2 �K, a bisector count is an
estimate for

N�;I1;I2
.T / WD #

˚

 2 � W k
k< T; k1.
 / 2 I1; k2.
 / 2 I2

	
;

as T !1. In the finite covolume case, such an estimate is given with best
known error terms by Good [1983]. To explain the answer in infinite volume,
we need to recall a few more notions.

Since � acts discontinuously on the hyperbolic plane H, any �-orbit has
a limit set ƒ D ƒ.�/ in the boundary @H Š S1, and this limit set has some
Hausdorff dimension. By Patterson–Sullivan theory [Patterson 1976; Sullivan
1984], this dimension is equal to the critical exponent ı of � . It is also connected
to the spectral resolution of the hyperbolic Laplacian � acting on the Hilbert
space of square-integrable functions on �nH. Namely, it was shown in [Lax and
Phillips 1982], under the standard normalization of �, that the spectrum below 1

4

consists of a finite number of discrete eigenvalues, and the spectrum above 1
4

is
purely continuous. Moreover, the discrete spectrum is empty unless ı > 1

2
, in

which case the base eigenvalue is related to the critical exponent by

�0 D ı.1� ı/:

Corresponding to �0 is the base eigenfunction, which can be realized explicitly as
the integral of a Poisson kernel against the so-called Patterson–Sullivan measure
� on the boundary. Roughly speaking, � is the weak� limit as s! ıC of the
measures

�s.x/ WD

P

2� exp.�s d.o; 
 � o//1xD
oP


2� exp.�s d.o; 
 � o//
;
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where d.�; �/ is the hyperbolic distance, and o is the fixed point of K in H. Then
the theorem proved by Bourgain, Kontorovich and Sarnak [2010b] can be stated
as follows. Assuming ı > 1

2
and @I1\ƒD @I2\ƒD∅, there are some C > 0

and "0 > 0 such that

N�;I1;I2
.T /D C �.I1/ �.I2/ T 2ı

CO.T 2ı�"0/; (2.9)

as T ! 1. Here "0 > 0 depends only on the spectral gap for � . Without
effective rates, such an asymptotic statement can be proved by other means —
see [Sharp 2001; Oh and Shah 2013], for example — but the error terms are
used crucially in our applications. The method of proof is a combination of the
above-mentioned spectral theory, as well as ergodic and representation theory of
L2.�nG/.

A similar counting statement is established in [Vinogradov 2012] for the
Apollonian case (Section 1C) of GD SL.2;C/ (which is the spin double cover of
the ambient orthogonal group; see (1.18)). For Zaremba’s problem (Section 1B),
we have only a semigroup �A, so none of the spectral, ergodic, and representation-
theoretic tools are available. Instead, one uses the counting technique pioneered
by Lalley [1989] (see also [Dolgopyat 1998; Naud 2005]), analytically continuing
the resolvent of the transfer operator, and its congruence version studied in
[Bourgain et al. 2011].

These techniques and some more standard circle method analysis lead eventu-
ally to (2.4).

2C. The minor arcs. We use different strategies to prove (2.7) for the setting of
Sections 1A–1B versus the Apollonian setting of Section 1C, so we present them
separately. The details are quite involved and will quickly fall outside the scope
of this survey. We will only give a few key ideas, encouraging the interested
reader to consult the original references.

The setting of Sections 1A–1B. To handle the minor arcs here, we make the
observation that the ensemble �N in the definition of SN from (2.1) need not be
a full �-ball. In fact, the definition of SN can be changed to, say,

SN .�/ WD
X

12�

k
1k<
p

N

X

22�

k
2k<
p

N

e.�hv0
1
2;w0i/; (2.10)

without damaging the major arcs analysis. This new sum encodes much more of
the (semi)group structure of � , while preserving the property that a nonvanishing
n-th Fourier coefficient implies that n is represented. (In reality, we use an even
more complicated exponential sum.) The advantage of (2.10) is that, fixing one
of the variables, we can apply the Cauchy–Schwarz inequality in the other, and
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begin to exploit the structure of (2.10) à la Vinogradov’s method [Vinogradov
1937] for estimating bilinear forms. In so doing, we pass at some point from
the thin and mysterious group � (or semigroup �A) to the full ambient group
SL.2;Z/. This type of perturbation argument only succeeds when ı is near 1,
explaining the restrictions (1.3) and (1.11).

The Apollonian case, Section 1C. The above strategy fails for the Apollonian
problem, because the Hausdorff dimension (1.12) is a fixed invariant which
cannot be adjusted. Instead, we use the observation from [Sarnak 2007] that
the Apollonian group, while of infinite index in OQ.Z/ (see (1.18)), contains
arithmetic subgroups of SO.2; 1/. In particular, consider the group consisting of
all even-length words in three of the generators of page 98 — say, S1;S2;S3:

„ WD hS1;S2;S3i \SOQ < �:

Sarnak observed that it is isomorphic to the principal congruence subgroup of
level 2:

ƒ.2/ WD
˚

 2 SL.2;Z/ W 
 � I mod 2

	
:

Then, like (2.10), we change the definition of the exponential sum to

SN .�/ WD
X
�2„
k�k<X

X

2�
k
k<T

e.�hv0 � � 
;w0i/; (2.11)

for certain parameters X and T chosen optimally in relation to N . One uses
the full sum over the group � to capture the major arcs. For the minor arcs
bound, one keeps 
 essentially fixed (though at some point even the 
 sum
is used), and tries to get cancellation from the sum on � 2 „. Since „ is an
arithmetic group, this sum can be converted into a more classical exponential
sum, allowing use of more standard tools (bounds for certain Gauss-like sums,
and a Kloosterman-like refinement, among other ingredients). In this way, one
gets the requisite cancellation in (2.11) and (2.6) to prove the desired bound (2.7).
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