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How random are word maps?
MICHAEL LARSEN

Any word w in the free group on d generators determines a function Gd !G

for every group G. If w is a fixed nontrivial word and G ranges over the finite
simple groups, the resulting sequence of functions can be expected to enjoy
some properties of a random sequence of functions. In this paper, we review
the current state of the art, emphasizing open problems.

1. Introduction

Let Fd denote the free group on d generators x1; : : : ;xd and w 2Fd a nontrivial
element. For every group G, w defines a word map fw;G WGd !G obtained by
substituting for x1; : : : ;xd respectively the coordinates g1; : : : ;gd of a given
element of Gd . A number of authors have examined the behavior of fw;G
when w is fixed and G ranges over some set of groups, especially the set of all
(nonabelian) finite simple groups. A unifying theme behind a good deal of recent
work is this question: for a given word w, do the maps fw;G behave like random
functions Gd ! G? The answer depends partly on the choice of w but also
on what properties of random functions are desired. This paper examines some
recent progress in understanding basic randomness properties of word maps,
with an emphasis on open questions.

Given a positive integer d and an infinite sequence X1;X2;X3; : : : of finite
sets, we consider sequences f1; f2; f3; : : : of functions fi WX

d
i ! Xi chosen

uniformly and independently. We are interested in properties of such sequences
of functions which hold with probability 1. We will limit ourselves to the case
that

1X
nD1

1

jXnj
<1: (1-1)

It is an easy consequence of classification that the finite simple groups satisfy
this property. The following theorem gives some typical examples of properties
which hold for almost all sequences of random functions for Xi satisfying (1-1).
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Theorem 1.1. Let d be a positive integer. Let X1;X2;X3; : : : denote an infi-
nite sequence of finite sets satisfying (1-1). Then for almost every sequence of
functions fi WX

d
i !Xi , the following conditions hold:

(1) (Image size.)

(a) If d D 1,

lim
n!1

jfn.Xn/j

jXnj
D 1�

1

e
:

(b) If d > 1, then fn.Xn/DXn for all but finitely many n.

(2) (Measure preservation in the limit.) If d > 1,

lim
n!1

sup
S�Xn

ˇ̌̌̌
jS j

jXnj
�
jf �1

n .S/j

jX d
n j

ˇ̌̌̌
D 0:

(3) (Fiber size.) If d > 1 and a> .d � 1/=2, then for all n� 0 and all x 2Xn,ˇ̌
jf �1

n .x/j � jXnj
d�1

ˇ̌
< jXnj

a:

Note that item (3) implies (1b) and (2). The proof of this theorem is given in
the Appendix. In the body of the paper, we will examine whether these properties
of random sequences of maps in fact hold for the fw;G as G ranges over the
finite simple groups. Because they are all limiting properties, we can omit the
sporadic groups, restricting our attention to alternating groups and groups of Lie
type.

If G is an algebraic group, the word map fw;G is a morphism of algebraic
varieties. A theorem of Borel [1983] asserts that if G is a semisimple algebraic
group and w is nontrivial, then fw;G is a dominant morphism, so that its image
contains a nonempty open subset of G. (Note that in general fw;G need not be
surjective; for example, the matrix�

�1 1

0 �1

�
does not lie in the image of fx2

1
;SL2

.) Information about fw;G can translate
into information about fw;G when G is of Lie type, especially when G is a
large group of small rank. This point of view is especially useful in dealing
with groups of exceptional Lie type, such as E8.q/ but of course breaks down
completely in dealing with alternating groups.

2. Image size

In this section, we consider the images w.G/ WD fw;G.Gd / of word maps. We
consider first the case d D 1. In this case w D xm

1
for some nonzero integer m.
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Of course the cases mD˙1 are special, with fw;G surjective for every G. For
jmj � 2, we have [Larsen 1997]

jw.Sn/j � cjmjn
��.m/=mn!;

where � is Euler’s function, so

lim
n!1

jw.An/j

jAnj
D 0:

The factor n�.m/=m grows very slowly compared to n! , so we might hope for some
result that says that in general jw.G/j is not much smaller than jGj. Borel’s
theorem implies that if G ranges over finite simple groups of bounded rank,
jw.G/j=jGj is bounded below by a positive constant. Starting from this point and
systematically exploiting the fact that w.G/ contains w.H / for every subgroup
H �G, one can prove the following theorem:

Theorem 2.1 [Larsen 2004]. For w fixed, we have

lim
jGj!1

log jw.G/j
log jGj

D 1:

One might ask for something stronger:

Question 2.2. For w fixed, do we have

jw.G/j �
jGj

log jGj
;

for all G sufficiently large?

Here is a result in this direction, by Aner Shalev and the author:

Theorem 2.3 [Larsen and Shalev 2009]. For w and � > 0 fixed, we have

jw.G/j �
jGj

log29=9C�
jGj

;

for all sufficiently large finite simple groups, except possibly those of the form
PSLn.Fq/ and PSUn.Fq/.

For d � 2, randomness would imply thatw.G/DG for all sufficiently large G.
In special cases, this is known to be true. We mention two such results, the first
due to Martin Liebeck, Eamonn O’Brien, Shalev and Pham Tiep, and the second
by Shalev, Tiep, and the author:

Theorem 2.4 (Ore’s conjecture [Liebeck et al. 2010]). The commutator map is
surjective for all finite simple groups.
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Theorem 2.5 [Larsen et al. 2011]. If w D w1w2, where w1 and w2 are non-
trivial words such that no generator xi of Fd appears in both w1 and w2, then
w.G/DG for all G sufficiently large.

Words of the type described in Theorem 2.5 are particularly easy to handle
because w.G/D w1.G/w2.G/. By analogy with the classical Waring problem
in analytic number theory, we say that words of the form w D xn

1
xn

2
, and more

generally, all words of the form w D w1w2, where the generators appearing in
w1 and w2 are disjoint, are of Waring type.

These special examples might raise the hope that if d � 2, (1b) holds for all
G sufficiently large, but this cannot be true if w is of the form wm

0
for m � 2.

Words of this type will be called power words; among all words, they seem in
some sense to be the ones whose word maps are the farthest from random.

Recent examples due to Sebastian Jambor, Liebeck, and O’Brien [Jambor
et al. 2012] show that even if w is not a power word, there may be arbitrarily
large G for which w.G/¤ G. There seems to be a general expectation that if
w is not a power word and G has sufficiently high rank, then w.G/DG. In a
related direction, one might ask the following question:

Question 2.6. If w is a nonpower word, is it true that

lim
jGj!1

jw.G/j

jGj
D 1? (2-1)

3. Measure preservation in the limit

For any finite set X , let �X denote the uniform probability measure on X . A
function f WX ! Y is measure preserving if f��X D �Y , or equivalently, if
jf �1.y/j is constant on Y . The L1 norm of f��X ��Y therefore quantifies
the failure of f to preserve measure. (To date, nobody seems to have considered
the behavior of kf��X ��Y kp except in the cases p D 1 and p D1, the latter
to be discussed in §4.) It is easy to see that

kf��X ��Y k1 D 2 sup
S�Y

j�X .f
�1.S//��Y .S/j;

so that (2) can be reformulated as

lim
n!1

kfn��X d
n
��Xn

k1 D 0:

Question 3.1. If w is a nonpower word, is it true that

lim
jGj!1

kfw;G��Gd ��Gk1 D 0? (3-1)

Note that for any word w, (3-1) implies (2-1), so an affirmative answer to
Question 3.1 implies an affirmative answer to Question 2.6.
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Here is a geometric analogue of Question 3.1:

Question 3.2. If w is a nonpower word, is it true that for all simply connected
almost simple algebraic groups G, the generic fiber of the morphism fw;G is
geometrically irreducible?

One can ask equivalently whether G has a nonempty open set of points whose
inverse images are geometrically irreducible of dimension .d � 1/ dim G. If the
answer is affirmative, then by the Lang–Weil bound, almost all the fibers of
fw;G.Fq/ have approximate size q.d�1/ dim G when q is large, and this implies
that almost all fibers of fw;G have approximate size jGjd�1 where G is the
(simple) quotient of G.Fq/ by its center. It follows that an affirmative answer to
Question 3.2 leads to an affirmative answer to Question 3.1 for bounded rank.

At present, little is known about these questions. We mention two results; the
first is due to Shelly Garion and Shalev.

Theorem 3.3 [Garion and Shalev 2009]. If w D x1x2x�1
1

x�1
2

then (3-1) holds.

Theorem 3.4 [Larsen and Shalev 2013]. If wD x
n1

1
x

n2

2
for integers n1; n2, then

(3-1) holds.

It seems likely that Theorem 3.4 should generalize at least to all words of
Waring type. In this setting, the answer to Question 3.2 is known to be yes
[Larsen and Shalev 2009].

4. Fiber size

Any nontrivial lower bound on fiber size immediately implies the surjectivity of
fw;G for large G, so at present, we can only hope to prove such bounds for very
special words. For example, by a theorem of Liebeck and Shalev [2005], for the
“surface” words

w D

gY
iD1

x2i�1x2ix
�1
2i�1x�1

2i

of genus g � 2 we have

jf �1
w;G.e/j D jGj

2g�1
C o.jGj2g�1 /;

and the proof gives the same estimate uniformly for all fibers of fw;G . This, of
course, is much weaker than (3), but it does give both lower and upper bounds
for fiber size.

The best behaved words, in some sense, are the primitive words. Recall that
an element w1 2 Fd is primitive if and only if there exist w2; : : : ; wd such that
w1; : : : ; wd generate Fd , in which case they do so freely. There is a one-to-
one correspondence between d -tuples .g1; : : : ;gd / 2Gd and homomorphisms
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�WFd!G given by substituting x1Dg1; : : :xd Dgd and likewise a one-to-one
correspondence between homomorphisms � and d -tuples .h1; : : : ; hd / obtained
by setting h1 D �.w1/; : : : ; hd D �.wd /. Thus jf �1

w;G
.h1/j D jGj

d�1 for all
h1 2G. Thus (3) holds for primitive words.

The situation for upper bounds is only a little better. Some words which
behave fairly well with respect to other randomness properties can have quite
large fibers. For instance, if w D x1x2x�1

1
x�1

2
and e 2 G is the identity, then

jf �1
w;G

.e/jD jGj�jG\j, where G\ denotes the set of conjugacy classes of G. For G

of Lie type of fixed rank r , jG\j grows like qr . So, for instance, if GDPSL2.Fq/,
then jf �1

w;G
.e/j grows like jGj4=3.

For general words, we have:

Theorem 4.1 [Larsen and Shalev 2012]. For every nontrivial word w 2 Fd ,
there exists � > 0 such that for all sufficiently large finite simple groups G and
all g 2G,

jf �1
w;G.g/j< jGj

d��:

When w D xm
1

for m> 1 a fixed odd integer, and G D PSLm.Fq/ for q � 1

(mod m), the identity fiber f �1
w;G

.e/ contains a regular semisimple element,
namely the image Nı in G of any diagonal element ı 2 SLm.Fq/ whose diagonal
entries are all the m-th roots of unity in Fq . Thus, the identity fiber contains the
image in G of the conjugacy class of ı in SLm.Fq/, so

jF�1
w;G.e/j �

1

m

jSLm.Fq/j

.q� 1/m�1
�

qm2�m

m
:

Taking the limit q!1, we see that � must be taken no greater than 1=.mC 1/

in Theorem 4.1. Taking the limit m!1, we see that in some sense Theorem 4.1
is as strong as possible, though it remains an interesting question how � depends
on w, for example on the length of w as a word. One might also ask whether a
stronger bound holds for nonpower words.

It turns out that, except whenw is primitive, condition (3) never holds. Alexan-
dru Nica [1994] proved that given a word w, there exists a rational function
R.x/ such that for n sufficiently large, the average number of fixed points
of fw;Sn

.g1; : : : ;gd / is R.1=n/. The argument holds for every sufficiently
transitive permutation group and therefore for alternating groups An if n is
sufficiently large. Doron Puder and Ori Parzanchevski [2012; 2013] proved
that R.x/ is identically 1 if and only if w is primitive. Otherwise, it admits a
power series expansion in x. On the other hand, if every fiber of fw;An

has order
jAnj

d�1CjAnj
a and a< d �1, then the expected number En of fixed points of

fw;An
.g1; : : : ;gd / is 1CO.n!a�d /, so for every k, jEn� 1j< n�k for large n.

It follows that R.x/D 1, and w is primitive.
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In conclusion, the only word maps which satisfy (1), (2), and (3) are those
associated to primitive elements. However, even the primitive elements cannot
boast true randomness. Indeed, if fnWX

d
n ! Xn is a random sequence, with

probability 1, there exists an arbitrarily large n and a pair of elements xn;yn 2Xn

such that jf �1
n .xn/j ¤ jf

�1
n .yn/j.

Appendix: Proof of Theorem 1.1

Let X be a finite set and nD jX j. Let Y denote the set of functions X ! X .
Define f WY ! Z by f .g/ WD jg.X /j. Let F WX � Y ! f0; 1g be the function
such that F.x;g/D 1 if and only if g�1.x/D∅. Thus

n�f .g/D
X
x2X

F.x;g/;

and

.n�f .g//2D
X

x1;x22X

F.x1;g/F.x2;g/Dn�f .g/C
X

x1¤x2

F.x1;g/F.x2;g/:

ThusX
g2Y

�
1

e
�

�
1�

f .g/

n

��2

D e�2
jY j � 2e�1n�1

X
x2X

X
g2Y

F.x;g/

Cn�2
X
x2X

X
g2Y

F.x;g/

Cn�2
X

x1¤x2

X
g2Y

F.x1;g/F.x2;g/

D e�2nn
C

�
1

n
�

2

e

�
.n�1/nC

n�1

n
.n�2/n: (4-1)

As
.n� k/n

nn
D e�k

CO.1=n/;

we conclude that the average value of .e�1� .1�f .g/=n//2 on Y is O.1=n/.
Thus, with respect to the uniform probability distribution on Y , the measure of
the set of functions gWX !X such that

jg.X /j 62 Œ.1� e�1
� �/n; Œ.1� e�1

C �/n�

is bounded above by a constant multiple of 1=�2n. By (1-1), the Borel–Cantelli
lemma implies (1a).
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For (3) (and therefore also (1b) and (2)), we observe that the probability that

jf �1.x/� nd�1
j � na

for any particular x 2X is bounded above by

nd sup
fkW jk�nd�1j�nag

�
nd

k

��
1

n

�k�
n� 1

n

�nd�k

:

Now,

�
nd

k

��
1

n

�k�
n� 1

n

�nd�k

�

�
nd

k

��
1
n

�k�
n�1

n

�nd�k

�
nd

nd�1

��
1
n

�nd�1�
n�1

n

�nd�nd�1

D
nd�1!.nd � nd�1/!

.n� 1/k�nd�1
k!.nd � k/!

:

(4-2)

Writing k D nd�1C j , if j is positive (and therefore j � na), the right hand
side of (4-2) equals

jY
iD1

.n� 1/nd�1� i

.n� 1/.nd�1C i/
�

�
.n� 1/nd�1�b

na

2
c

.n� 1/.nd�1Cb
na

2
c/

�bna

2
c

� e�
n2a�.d�1/

2C� :

for every � > 0. If j is negative (and therefore j � �na), the right hand side of
(4-2) equals

�jY
iD1

.n� 1/.nd�1� i/

.n� 1/nd�1C i
�

�
.n� 1/.nd�1�b

na

2
c/

.n� 1/nd�1Cb
na

2
c

�bna

2
c

� e�
n2a�.d�1/

2C� :

Since 2a> d � 1, we can apply Borel–Cantelli to obtain (3). �
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