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Ergodic properties of the Burger–Roblin
measure

AMIR MOHAMMADI

1. Introduction

In this article we describe some dynamical properties of one-parameter unipotent
flows on the frame bundle of a convex cocompact hyperbolic 3-manifold.

Much effort and study have been spent in the case of manifolds with finite
volume, and quite a rich theory has developed in this case. The case of infinite
volume manifolds, however, is far less understood. The goal here is to highlight
some of the difficulties one faces, and possible modifications, in extending
techniques developed in the finite volume case to the case of infinite volume
manifolds.

Throughout, G D PSL2.C/, the group of orientation-preserving isometries
of the hyperbolic space H3. We let � be a nonelementary discrete subgroup
of G which is convex cocompact, that is, the convex hull of the limit set of �
is compact modulo � . Equivalently, �nH3 admits a finite sided fundamental
domain with no cusps.

The frame bundle of the manifold �nH3 is identified with the homogeneous
space X D �nG. Certain subgroups of G will be of particular importance in the
sequel. Let K D PSU2, AD fas W s 2 Rg, and N D fnz W z 2 Cg, where

as D

�
es=2 0

0 e�s=2

�
and nz D

�
1 0

z 1

�
:

Any one-parameter unipotent subgroup of G is conjugate to

U D

�
ut WD

�
1 0

t 1

�
W t 2 R

�
: (1)

The flow considered here is indeed the right action of U on X .
One possible starting point is to study ergodicity1 of this action with respect to

natural measures on X . If X has finite volume, then Moore’s ergodicity theorem
[1966] implies that this flow is ergodic with respect to the volume measure, i.e.,

The author is supported in part by NSF grant 1200388.
1Any invariant Borel subset is either null or conull.
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the G-invariant measure. If � is not a lattice, however, the volume measure is
not ergodic for the action of N . It turns out, in this case the interesting measure
to consider is the so-called BR measure. This is an infinite measure when � is
not a lattice, and is the volume measure when � is a lattice.

We now describe a construction of the BR measure. Let � be as above, and let
ı denote the critical exponent of � . Fix o2H3 stabilized by K, and denote by �o

the Patterson–Sullivan measure on the boundary @.H3/ associated to o [Patterson
1976; Sullivan 1979], we will refer to it as the PS measure. Using the transitive
action of K on @.H3/, we lift �o to a measure on K trivially, and continue to
denote this extension by �o. Using the Iwasawa decomposition, G DKAN , we
define a measure on G:

Burger–Roblin (BR) measure. Define the measure QmBR on G as follows: for
 2 Cc.G/,

QmBR. /D

Z
G

 .kasnz/e
�ısd�o.k/ ds dz;

where ds and dz are Lebesgue measures on R and C respectively. It is left
�-equivariant and right N-invariant. The BR measure, mBR, is a locally finite
measure on X induced by QmBR. It is an infinite measure except when ı D 2, in
which case it is the G-invariant measure on X . It is shown in [Burger 1990], for
surfaces, and in [Roblin 2003], in general, that the BR measure is the unique
N-invariant ergodic measure on X , not supported on a closed N-orbit.2

The question we are interested in is: whether the BR measure is ergodic for
the action of U . The answer to this question turns out to depend on ı:

Theorem 1.1 [Mohammadi and Oh 2011]. Let � be a nonelementary convex
cocompact subgroup. The action of U on X is ergodic with respect to mBR if
and only if ı > 1.3

The rest of this article is devoted to describing ideas involved in the proof of
Theorem 1.1.

We close this section by mentioning that since in the interesting case, that is,
ı < 2, the BR measure is an infinite measure, the usual approach, using the study
of L2.X;mBR/, falls short in proving ergodicity. It is also worth mentioning that
a priori it is not even clear that the action of U is conservative, that is: for any
subset B of positive measure the futg-orbit of almost every point in B spends
infinite amount of time in B. Indeed one of the ingredients in the proof is to
show that when ı > 1 the flow is conservative and in the case ı � 1 the flow
does not have certain recurrence properties which are necessary for ergodicity.

2The result in [Roblin 2003] is much more general.
3Understanding all U-invariant ergodic Radon measures seems to be a very interesting and

difficult problem.
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2. Properties of the BR measure

The proof of Theorem 1.1 is based on a careful study of conditional measures
of mBR and its push-forward, .a�s/�m

BR, along N -leaves. It turns out that a
lot of the interesting dynamical properties of the action of A, and that of N , on
.X;mBR/ are in fact governed by a probability measure on X , called the BMS
measure. In this section we describe local structure of the BR and the BMS
measures, and state an important result of Roblin relating the two.

Retain the notation from the introduction. Further, let M denote the centralizer
of A in K. Indeed the unit tangent bundle, T1.H3/, is identified with G=M . We
let � W T1 H3! H3 denote the natural projection.

Recall that a collection of nonzero finite Borel measures, f�x W x 2 @H3g, on
@H3 is called �-invariant conformal density of dimension ı� if for any x;y 2H3,

 2 � , and � 2 @H3 we have


��x D �
x and
d�y

d�x

.�/D e�ı�ˇ�.y;x/:

Fix two �-invariant conformal densities � and �0 of dimension ı� and ı�0 .
Following Roblin, we define a left �-equivariant right M-invariant measure
Qm�;�0 on G as follows: fix o 2 H3 and identify T1.H3/ with�

@.H3/� @.H3/�
˚
.�; �/ W � 2 @.H3/

	�
�R;

via the map x 7! .xC;x�; ˇx�.o;x//. Here x˙ 2 @H3 denotes the end points of
the corresponding geodesic, and for any � 2 @H3, ˇ� is the Busemann function
based at � . Define

Qm�;�0.x/D eı�ˇxC
.o;�.x// eı�0ˇx� .o;�.x// d�o.x

C/d�0o.x
�/ dt; 4

Since � and �0 are �-invariant, this defines a left �-equivariant measure on
T1 H3. We lift this to an M-invariant measure on G. Let m�;�0 denote the
measure induced by this measure on X D �nG. This measure is quasiinvariant
under the action of as . Indeed

asm�;�0
D e.ı��ı�0 /s m�;�0 : (2)

With this notation, the Haar measure on X corresponds to � D �0 D m,
the (2-dimensional) G-invariant density on @H3. Let � denote the unique (ı-
dimensional) �-invariant geometric density on @H3 supported on the limit set,
ƒ.�/, of � . This will be referred to as the Patterson–Sullivan (PS) density; see

4See [Oh 2013] in this volume for further discussion of this definition.
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[Patterson 1976; Sullivan 1979]. With our choice of � , the PS measure coincides
with the ı-dimensional Hausdorff measure of the limit set of � . Put

mBR
D �m;� and mBMS

D ��;� :

We will refer to these measures as the BMS and the BR measures. The above
definition coincides with the definition of the BR measure given in the introduc-
tion. It follows from (2) that mBR is a finite measure if and only if ı D 2, that is,
if and only if � is a lattice [Yau 1975; Sullivan 1979]. Similarly we get that the
BMS measure is A-invariant.

For later use, let us record here that supp.mBR/ is �nfg 2 G W g� 2ƒ.�/g,
and supp.mBMS/ is �nfg 2 G W g˙ 2 ƒ.�/g. In particular when � is convex
cocompact the BMS measure has compact support, and is a finite measure.5

The important properties of the BR and the BMS measure that will be used
here are listed in the following theorem. Of particular interest to us is (iii) in this
theorem, which is [Roblin 2003, Theorem 3.4]. This relates the BR measure,
which is an infinite measure and fasg quasi invariant, to the BMS measure which
is a finite measure and fasg invariant. Indeed we loose the N-invariance in this
transition, but since the conditional measures of the BMS measure along the
N -leaves are ı-dimensional Hausdorff measures, they still carries quite a lot of
information.

Theorem 2.1 [Flaminio and Spatzier 1990; Roblin 2003]. Let � be as before
and normalize so that mBMS is a probability measure.

(i) The action of fasg on X is mixing with respect to mBMS, that is, for any
 1;  2 2L2.X;mBMS/, as s!˙1,Z

X

 1.gas/ 2.g/ dmBMS.g/!mBMS. 1/m
BMS. 2/:

(ii) mBR is the unique N-ergodic measure on X which is not supported on a
closed N-orbit.

(iii) For any  2 Cc.X / or for  i D �Ei
for bounded Borel subsets Ei � X

with mBMS.@.Ei//D 0,Z
X

 1.ga�s/ 2.g/ dmBR.g/!mBMS. 1/m
BR. 2/ as s!C1:

In the sequel, especially when applying this theorem, we will need to take
“nice” local neighborhoods. We will use this definition: A subset E�X is called
a BMS box if E D x0N�� A�N�M , where x0 2 supp.mBMS/, � > 0 is at most

5The BMS measure is a finite measure for any geometrically finite group [Sullivan 1984].
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the injectivity radius at x0 and S� means the �-neighborhood of e in S for any
subset S of G.

3. Recurrence properties of the action of U and Theorem 1.1

In this section we describe the proof of Theorem 1.1, modulo the “window
theorem”, which will be stated and used as a black box. The proof of the window
theorem will be explained in the next section.

As was mentioned in the introduction for an infinite measure, L2 considera-
tions are not enough in proving ergodicity. Our proof is based on the polynomial
divergence of unipotent flows. We investigate the intermediate range for two
orbits of the unipotent flow and produce extra invariance.6 The study of unipotent
orbits in the intermediate range is not new, by any means, and has been used
successfully in several prior works, for example, [Margulis 1975; 1989; Ratner
1990; 1991; Lindenstrauss 2006; Einsiedler et al. 2006].

Let us explain the proof in the case of a finite measure. Suppose � is an
N-invariant and ergodic probability measure on X . Further, assume that � is
an “interesting” measure, one not supported on a closed N -orbit. In fact, for
simplicity, we will assume that we can find xn and yn D xngn, generic for the
action of U in the sense of the Birkhoff ergodic theorem, and satisfying the
following conditions:

(g1) gn! e.

(g2) The .1; 2/ entry of gn, which will be denoted by .gn/12, is nonzero.

(g3) The real and the imaginary parts of .gn/12 have comparable sizes.7

Now for any f 2 Cc.X / we have

1

T

Z T

0

f .�ut /!

Z
X

fd�
�

for �D xn;yn; (3)

where �
�

denotes the corresponding ergodic components of �.
We now compare the two orbits xnut and ynut . Properties (g2) and (g3)

imply that the divergence, in the transversal direction to U , is given by u�tgnut .
The matrix entries of u�tgnut are polynomials of degree at most 2, and the
fastest divergence is along the .2; 1/-entry, which is a polynomial of degree 2.
This polynomial is (i) nonconstant, (ii) has size roughly 1, certainly nonzero, if

6The fact that polynomial divergence can be used to prove ergodicity of unipotent flows is due
to Margulis.

7This last condition is admittedly stating quite precise information about the structure of the
“generic set” and in general is not easy to guarantee without having some information about the
A-action on this measure space.
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t 2 Œ.1� �/T;T � for small � and T of size 1=
p
j.gn/12j, and (iii) u�T gnuT 2

N �U , when T is of size 1=
p
j.gn/12j.

This special behavior of unipotent orbits in the intermediate range, and the
fact that (3) holds not only for Œ0;T � but also for short intervals like Œ.1��/T;T �,
imply that: if xn and yn are chosen from a “good” set in the sense that

(i) the convergence in (3) is uniform on this set, and

(ii) fxng; fyng are in a compact set where the map � 7!�
�

is continuous on this
set,8

and if we suppose xn ! x, then �x is invariant under an element in N �U .
This and N-ergodicity of �, using commutativity of N and standard arguments,
will imply that � is U-ergodic.

This argument is indeed an important step in Ratner’s proof of measure
classification theorem; arguments of this kind, in topological context, are also
crucial in Margulis’ proof of the Oppenheim conjecture.

The proof of Theorem 1.1 is along the lines of the above argument. However
there are some rather serious difficulties in carrying out this idea, which we
now discuss. The first difficulty is that in order for this argument to even start,
one needs to have an ergodic theorem for the action of U . The suitable ergodic
theorem is the Hopf ratio ergodic theorem [1937]. The form that we need
(see Theorem 7.4 of [Mohammadi and Oh 2011] and references there) is this:
Let � be a U-invariant and conservative measure on X , and let  2L1.X; �/

be nonnegative. Then for �-a.e. x such that
R T

0  .xut / dt !1, we haveR T
0 f .xut /R T

0  .xut / dt
!
�x.f /

�x. /
for any f 2L1.X; �/:

Note that the Hopf ergodic theorem only kicks in if we have already established
that the action of U is conservative, which, by Poincaré recurrence, is immediate
in the case of a probability measure.

Theorem 3.1 [Mohammadi and Oh 2011, Theorems 6.6 and 9.4]. Retain the
above notation.

(i) If ı > 1, then the action of U is conservative for mBR.

(ii) Suppose either that 0 < ı < 1 or that ƒ.�/ is a purely unrectifiable 1-set.
Then the action of U on X is not strongly recurrent for mBR. In particular
mBR is not U-ergodic.

8Indeed by Egorov’s and Lusin’s theorems, these hold on a set of “almost” full measure.
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Let us recall from [Mohammadi and Oh 2011, Definition 9.3] that a measure-
preserving flow futg, on a � -finite measure space .X; �/, is called strongly recur-
rent if for any two nonnull measurable subsets B1;B2, we have ft W xut 2 B2g

is unbounded for �-a.e. x 2 B1. It follows from the Hopf ratio ergodic theorem
that any nontransitive ergodic action of U is strongly recurrent.

The proofs of the above statements are based on the general philosophy that
the support of the BMS measure controls a lot of the dynamics of the action of U ,
and the action of A. The proofs also use some standard facts from geometric
measure theory regarding dimension of projections, slices of certain measures,
and some properties of condensation points.

Thanks to this theorem, we need to prove ergodicity in the case of ı > 1.
Thus we assume ı > 1 for the rest of the argument. The algebraic part of the
above argument goes through without change. That is: if we can find xn, and
yn D xngn, where the gn satisfy properties (g1)–(g3), then we can construct a
nontrivial polynomial of degree 2 in the (2,1) matrix entry which governs the
fastest divergence of the two orbits xnU and ynU .

Let us continue to denote points by xn, and yn D xngn. In order to get an
element in N �U , which is the goal of the argument, it is essential to consider
times in the intermediate range, that is, when the two orbits are roughly size
one apart from each other. Indeed a simple matrix multiplication, considering
u�tgnut , implies: this holds for t 2 ŒrT;T �, where 0< r < 1 and T of order of
1=
p
j.gn/12j.

In order to be able to use this algebraic fact, however, one needs to have some
information regarding dynamics of this piece of the orbit. In the finite measure
case it follows from the Birkhoff Ergodic Theorem that for a typical point x,
the piece of the orbit, fxut W t 2 ŒrT;T �g, is equidistributed. In the case of an
infinite measure, on the other hand, not only is this not free of charge, it seems
to even be wrong in general.9 This is the main technical difficulty in carrying
out the above outline to the case in hand.

As we will see later our treatment of the main difficulty above makes it crucial
that we are able to find gn satisfying (g1)–(g3) in “all scales”. The precise
formulation is this:

Proposition 3.2 [Mohammadi and Oh 2011, Proposition 4.4]. Let ı > 1. Fix
some BMS box E and some 0< r <1. There exist positive numbers d0Dd0.r/>

1 and s0� 1 such that for any Borel subset F �E with mBR.F / > r �mBR.E/

and any s � s0, there exists a pair of elements xs;ys 2 F satisfying

(i) xs D ysn�ws
for n�ws

2N�,

(ii) 1=d0s � jwsj � d0=s and

9The author, however, does not know of an example.
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(iii) j=.ws/j � j<.ws/j=d0.

This proposition gives a rather precise description of how two generic points
approach each other along contracting leaves. In the case of a probability measure,
conditions similar to this proposition, but weaker, can be proved using positive
entropy. Our proof uses similar tools: we are able to guarantee this, because
the conditional measures of BR along N�, transpose of N , carry quite a lot of
information. In particular, the conditional measure of a ball of radius r in N�,
centered at a point in the support of this conditional, is of order r ı . This fact in
view of ı > 1, and a covering argument implies the proposition.

As we mentioned above the major difficulty in the proof is to get equidistribu-
tion of the orbits in the intermediate range of time. The following is a partial
resolution of this problem and is the main technical result used in the proof of
Theorem 1.1:

Theorem 3.3 (window theorem [Mohammadi and Oh 2011, Theorem 1.3]).
Retain the above notation and assumptions, in particular ı > 1. Let E �X be
a BMS box, and suppose  2 Cc.X / be a nonnegative function with  jE > 0.
Then there exist 0< r < 1 and T0 > 1 such that for any T � T0,

mBR
�

x 2E W

Z rT

�rT

 .xut / dt � .1� r/

Z T

�T

 .xut / dt

�
>

r

2
�mBR.E/: (4)

This theorem is used to control the dynamics when two orbits have moderately
diverged. Let us however mention two difficulties one faces in applying this
theorem. First (and more importantly) is that the set in (4), where one has a
“doubling” property of return times for the action of U , depends on the time
parameter T . Hence in order to be able to apply this theorem successfully, one
needs to be able to find “good points”, as above, which are close to each other in
all scales. This is why Proposition 3.2 is essential to our analysis. In working
with an unknown measure a statement of this form will be difficult to utilize.

Secondly, as in the case of probability measure, we really need equidistribution
of Œ.1� �/T;T �, for small �. In order to achieve this, for any fixed n, we use the
window theorem above and a simple covering argument to find a subinterval, I

say, with length �T , where we have the equidistribution for xn. We then use the
fact that the two pieces of orbits f�ut W t 2 Ig, for �D xn;yn, stay O.1/ of each
other for t 2 Œ0;T �, to show that fynut W t 2 Ig is also equidistributed.

4. Proof of the window theorem

In this section we describe the ingredients involved in the proof of Theorem 3.3.
The proof has elements similar to the low entropy method introduced in [Linden-
strauss 2006].
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The rough idea is this: The BMS measure is an A-invariant probability mea-
sure, and the leafwise measures of BMS along N are ı-dimensional Hausdorff
measure. This, and the M-invariance of the BMS measure, imply: when ı > 1

the entropy of as along U is nontrivial. Then, facts relating entropy and leaf-
wise measures (see [Lindenstrauss 2006; Einsiedler et al. 2006]) imply that
the leafwise measures of BMS measure along U restricted to Œ�1; 1� satisfy a
non-concentration property on a set of “almost” full measure; see [Lindenstrauss
2006; Einsiedler et al. 2006]. This is restated in [Mohammadi and Oh 2011,
Theorem 6.11]. Now by (iii) in Theorem 2.1 we have, after renormalization,
a�smBRjE weakly converges to the BMS measure, as s ! 1. Here E is a
BMS box fixed once and for all. The goal now is to use these to prove such
non-concentration properties for the return times of the action of U with respect
to the BR measure.

It is worth mentioning, however, that usually such information cannot be
extracted — for example, due to discontinuity of the entropy with respect to weak
star topology. We succeed, essentially, for two reasons:

(i) The BR and BMS measures have the same transversal measures, that is,
locally, up to normalization, they only differ along N -leaves. This follows
from the definition of these two measure.

(ii) The measures in question, that is, mBMS and a�smBRjE , are quite regular;
see Propositions 4.1, 4.2 below.

Let us now fix some notation to be used in the course of the proof. For each
s > 0, define a Borel measure �BR

E;s
on X to be the normalization of a�smBRjE :

for  2 Cc.X /,

�BR
E;s. / WD

1

mBR.E/

Z
E

 .ga�s/ dmBR.g/:

It follows from (iii) in Theorem 2.1 that �
E;s
!mBMS in the weak star topology.

We have the following; see [Mohammadi and Oh 2011, Theorem 3.3].

Proposition 4.1. Suppose that x� 2 ƒ.�/. For all small enough � > 0, let
�E;x;s denote the conditional measure of �BR

E;s
along xN�. We have,

lim
s!1

�E;x;s. /D �
PS
x . / for any  2 Cc.xN�/;

The proof of the above proposition draws from the convergence of �BR
E;s

to mBMS,
and a rather special feature of �BR

E;s
: the conditionals of �BR

E;s
along N -leaves are

obtained from a measure on the boundary, and in particular they change regularly
as we move in the transversal direction.
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We will now fix some x with x˙2ƒ.�/, and some small �>0, and investigate
�E;x;s . Given some � 2 Œ0; 2��we let m� 2M denote the corresponding element.
Also we will put

U
�

�
WD ft exp.2� i�/ W t 2 Œ��; ��g;

V
�

�
WD fi t exp.2��/ W t 2 Œ��; ��g:

For any 0<� � �, and � 2 Œ0; 2�� we let ��
x;�;s

(resp. ��
x;�

) denote the projection
to V �

�
of �E;x;sjxU �

�
V �
�

(resp. �PS
x jxU �

�
V �
�

). Furthermore, for any measure � on
R, we let D.�/ denote the Radon–Nikodym derivative of � with respect to the
Lebesgue measure.

We unfortunately cannot show a statement quite as strong as Proposition 4.1 for
the disintegration of �E;x;s along U -directions. The following is our replacement,
which is [Mohammadi and Oh 2011, Proposition 5.10].

Proposition 4.2. Let si!C1 be a fixed sequence. For every � > 0 and every
finite subset f�1; : : : ; �ng of .0; ��, there exists a Borel subset ‚.x/ � M of
measure at least 1� � such that for any � 2‚.x/ we have:

(i) For all 1� `� n, the measure ��`
x;�

is absolutely continuous with respect to
the Lebesgue measure on xV

�`
�

. Furthermore

D
�
�
�`
x;�

�
2H r

�
xV

�`
�

�
; for r D

ı� 1

4
:

(ii) There is a subsequence fsij g, depending on .x; �/, such that

D
�
�
�`
x;�;sij

� L2.xV� /
������!D

�
�
�`
x;�

�
for each 1� `� n:

The proof of this proposition uses some techniques from geometric measure
theory. Indeed an essential ingredient in the proof is a uniform bound for the
˛-dimensional energy of the �E;x;s , for some 1< ˛; see [Mohammadi and Oh
2011, Theorem 5.7]. This gives uniform control on fractional derivatives of the
Radon–Nikodym derivative of the projection of these measures with respect to the
Lebesgue measure; see [Peres and Schlag 2000, Proposition 2.2] or [Mattila 2004,
Theorem 4.5]. The L2-convergence in the above then follows from compact
embedding theorem of Sobolev spaces.

The desired energy estimate is proved using (i) the nonfocusing property of
the PS measure, which was also used in the proof of Proposition 3.2, (ii) the
fact that support of �s is contained in O.e�s/-thickening of the support of BMS
[Mohammadi and Oh 2011, Lemma 5.6], and (iii) some covering argument.

We can now complete the proof of the window theorem. As we mentioned
above, for the BMS measure the contribution of U to the entropy of as is
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nontrivial. Thus there is a set, �0, of almost full BMS-measure and some ˇ > 0,
such that

.mBMS/Ux Œ�ˇ; ˇ� <
1
2
.mBMS/Ux Œ�1; 1� for all x 2�0; (5)

where .mBMS/Ux denotes the U -leafwise measure. Now suppose the window
theorem fails, then there is a sequence ri! 0 and a sequence Ti!1 such that

mBR
�

x 2E W

Z ri Ti

�ri Ti

 .xut / dt � .1� ri/

Z Ti

�Ti

 .xut / dt

�
> .1� ri/m

BR.E/:

Let si D log Ti and denote the set on the left side of the above by E.si ; ri/. If
we flow this by a�si

, and use the definition of �
E;si

, we get

.�E;si
/Ux
�
Œ�ri ; ri �

�
> 1� ri ;

for all x in a subset Esi
.ri/ of E, with �

E;x;si
.Esi

.ri// > 1� ri .
Now by Fubini’s theorem there is a subset in the transversal direction to N of

measure 1� ri , such that if the transversal component of x is in this set, then
�E;x;si

.xN \Esi
.ri// > 1�

p
ri . This set, in the transversal direction, however

depends on i . To find a set which works for all i , we pass to a subsequence and
assume that

Pp
ri < �, and replace these sets by their intersection. Altogether:

there is some x such that �E;x;si
.xN \Esi

.ri// > 1�
p

ri simultaneously for
all i .

Indeed this condition is essentially to say that the disintegration of �iD�E;x;si
,

as a measure on N , along the direction of U is like a Dirac mass. Note also that
since �

E;s
is M-invariant the above could be done so that the same holds not

only for x, but also for xm� for “most” � . Hence we have the slices of �i along
U� is almost a dirac measure for many directions � .

It is more convenient for us, however, to work with the projections. Fix
some small � � ˇ. We take projection of the set Bad�;i D xN� \Esi

.ri/, for
�D 1; � , onto xV� . We have �1

i .Bad�;i/ > 1� 2ri�
1
i .Bad1;i/, where � denotes

the projection of �i onto xV� . It is worth mentioning that one needs to be careful
here, since these sets change as i changes; we need to show that Bad�;i has
almost full PS measure in xN�. If this is established then (5) would give a
contradiction. This thankfully follows from the L2-convergence statement in
Proposition 4.2; see [Mohammadi and Oh 2011, Lemma 5.11]. This completes
the proof.
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