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Strong approximation for algebraic groups
ANDREI S. RAPINCHUK

We survey results on strong approximation in algebraic groups, considering
in detail the classical form of strong approximation as well as more recent
results on strong approximation for arbitrary Zariski-dense subgroups. Some
other topics, ranging from strong approximation in homogeneous spaces of
algebraic groups to various applications of strong approximation, are also
discussed.

1. Introduction

This article is a survey of known results related to strong approximation in
algebraic groups. We focus primarily on two aspects: the classical form of strong
approximation, which is really strong approximation for S-arithmetic groups
(Section 2), and its more modern version for arbitrary Zariski-dense subgroups
(Section 3). Along the way we will also mention results dealing with strong
approximation in arbitrary varieties and particularly homogeneous spaces (which
are probably not so well known to the general audience as some other results
in the article) and some applications. The reader will find more applications
of strong approximation for Zariski-dense subgroups in other articles in this
volume.

1A. Strong approximation and congruences. The most elementary way to start
thinking about strong approximation is in terms of lifting solutions of integer
polynomial equations mod m for all m> 1, to integer solutions. So, suppose we
have a family of polynomials

f˛.x1; : : : ;xd / 2 ZŒx1; : : : ;xd �; ˛ 2 I;

and we let X � Ad
Z denote the closed affine subscheme defined by these poly-

nomials. Thus, for any Z-algebra R, the scheme X has the following set of
R-points:

X.R/D
˚
.a1; : : : ; ad / 2Rd

j f˛.a1; : : : ; ad /D 0 for all ˛ 2 I
	
:

Then for any integer m> 1, we have a natural reduction modulo m map

�m WX.Z/!X.Z=mZ/;
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and the question is whether these maps are surjective for all m. (Of course,
this question is meaningful only if we assume that X.Z=mZ/¤ ∅ for all m.)
Observe that for m j n, there is a canonical homomorphism Z=nZ! Z=mZ,
hence a natural map �n

m WX.Z=nZ/!X.Z=mZ/. Clearly, fX.Z=mZ/; �n
mg is

an inverse system, so we can assemble all the X.Z=mZ/’s together by taking
the inverse limit:

lim
 �

X.Z=mZ/DX.yZ/; where yZD lim
 �

Z=mZ:

Recall that the Chinese remainder theorem furnishes an isomorphism yZ'
Q

p Zp ,
where Zp is the ring of p-adic integers and the product is taken over all primes,
which allows us to identify X.yZ/ with

Q
p X.Zp/.

Just as above, for any integer m> 1, there is a natural map

O� WX.yZ/ �!X.yZ=myZ/DX.Z=mZ/:

The preimages of points under the O�m form a basis of a natural topology on
X.yZ/, which coincides with either of the following topologies:

� the topology of the inverse limit on lim
 �

X.Z=mZ/— cf. [Klopsch et al. 2011,
Chapter I, 5.3];

� the topology induced by the embedding X.yZ/ ,! yZd , where yZ is endowed
with the inverse limit topology on lim

 �
Z=mZ;

� the direct product topology on
Q

pX.Zp/, where X.Zp/ gets its topology from
the embedding X.Zp/ ,! Zd

p , and Zp is endowed with the natural p-adic
topology.

As an immediate consequence, we have:

Lemma 1.1. The following conditions are equivalent:

(1) �m WX.Z/!X.Z=mZ/ is surjective for all integers m> 1;

(2) the natural embedding � W X.Z/ ,! X.yZ/ has a dense image in the above
topology.

In this situation, we say X has strong approximation if it satisfies the equiv-
alent conditions of Lemma 1.1 (of course, this is only a first approximation to
the precise definition(s) of strong approximation that will be given later; see
Section 2A). Intuitively, strong approximation should not be very common as
there are plentiful examples where X.yZ/ ¤ ∅ but X.Z/ D ∅ (i.e., the Hasse
principle fails — note that here we actually omit the archimedean place of Q), and
also examples where X.Z/ is nonempty but so “small” that it cannot possibly be
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dense in X.yZ/. A classical example of the second situation is a cubic hypersurface
X � A3 given by the equation

3x3
C 4y3

C 5z3
D 0I

it is known that X.Z/Df.0; 0; 0/g but X.Zp/¤f.0; 0; 0/g (hence infinite as any
point on X other than the origin is smooth) for all prime p. In fact, very little
appears to be known about strong approximation for schemes (varieties) lying
outside some special classes such as homogeneous spaces — one can only give
some necessary conditions (see Proposition 2.2 and subsequent remarks). So, in
this article we will deal almost exclusively with algebraic groups.

1B. SL2 versus GL2. Let us start with two elementary examples: G1 D SL2

and G2 D GL2. One doesn’t see much of a difference between these examples
just by looking at the defining equations, which can be written as follows, with
the obvious labeling of coordinates:

� G1 can be realized as a hypersurface in A4, given by

x11x22�x12x21 D 1:

� G2 can be realized as a hypersurface in A5, given by

y.x11x22�x12x21/D 1:

However, G1 has strong approximation, and G2 does not.

Lemma 1.2. For any m> 1, the reduction modulo m map

�m W SL2.Z/ �! SL2.Z=mZ/

is surjective.

Proof. The argument does not use equations (in fact, it is not a completely
trivial task to prove strong approximation using equations in this case — see
the discussion after Proposition 2.4). The crucial observation is that any Ng 2
SL2.Z=mZ/ can be written as a product of elementary matrices:

Ng D
Y
k

eikjk
. Nak/ with .ik ; jk/ 2 f.1; 2/; .2; 1/g and Nak 2 Z=mZ: (1)

(As usual, for i ¤ j , we let eij .a/ denote the elementary matrix having a as its
ij -entry.) For this, one needs to observe that if mD p

˛1

1
� � �p

˛r
r then it follows

from the Chinese remainder theorem that

SL2.Z=mZ/D SL2.Z=p
˛1

1
Z/� � � � �SL2.Z=p

˛r
r Z/;
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which reduces the problem to the case where mD p˛. Now, given

Ng D

�
x11 x12

x21 x22

�
2 SL2.Z=p

˛Z/;

we see that either x11 or x12 is a unit mod p˛, so using Gaussian elimination
one can easily write Ng as a product of elementaries over Z=p˛Z.

Next, given an arbitrary Ng 2 SL2.Z=mZ/, pick a factorization (1), and further-
more, for each k pick an integer ak in the class Nak modulo m. Set

g D
Y
k

eikjk
.ak/ 2 SL2.Z/:

Then �m.g/D Ng, proving the surjectivity of �m. �

Note that the proof of Lemma 1.2 relies on the consideration of unipotent
elements, so it is worth pointing out that, as we will see in the course of this
article, unipotent elements are involved in one way or another in most known
results on strong approximation (even when the group at hand does not contain
any nontrivial rational unipotent elements, i.e., is anisotropic).

The fact that G2 D GL2 does not have strong approximation is much easier:
in fact, already the map

�5 W GL2.Z/ �! GL2.Z=5Z/

fails to be surjective. (Indeed, since all matrices in GL2.Z/ have determinant˙1,
the matrices in �5.GL2.Z// have determinant ˙1 .mod 5/, and therefore, for
example,

� N1
N0

N0
N2

�
does not lie in the image of �5.) One can conceptually articulate

the obstruction that prevents GL2 from having strong approximation in this case
by saying that in order for an affine Q-variety X to have strong approximation,

X.Z/ must be Zariski-dense in X:

Indeed, let Y D X.Z/ be the Zariski closure of X.Z/ in X , and assume that
Y ¤ X . Pick a point a 2 X. NQ/ nY . NQ/, where NQ is an algebraic closure of Q.
Then one can find a polynomial f 2 ZŒx1; : : : ;xd � that vanishes on Y and such
that f .a/¤ 0. It follows from Chebotarev’s density theorem that for infinitely
many primes p, we have a 2X.Zp/ and f .a/ 6� 0 .mod p/. Let Na 2X.Fp/ be
the reduction of a modulo p, where Fp D Z=pZD Zp=pZp . (Note that it would
be more appropriate to write X .p/.Fp/ instead of X.Fp/, where X .p/ denotes
the reduction of X modulo p, but we will slightly abuse the notations in this
introductory section in order to keep them simple.) Then clearly

Na 2X.Fp/ nY .Fp/;
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and in particular, X.Fp/¤ Y .Fp/. On the other hand, the image of the reduction
map �p W X.Z/! X.Fp/ is obviously contained in Y .Fp/. Thus, if X.Z/ is
not Zariski-dense in X then �p fails to be surjective for infinitely many p,
which certainly prevents X from having strong approximation. (Incidentally,
this observation implies that if G is an algebraic Q-group and G.Z/ is not
Zariski-dense in G then the closure of G.Z/ in G.yZ/ is of infinite index.)

In fact, the conclusion about the absence of strong approximation in X as
above can be made even sharper. First, it is easy to show that X cannot possibly
have strong approximation unless it is absolutely irreducible (see the remark after
Proposition 2.2). So, assume that X is such. Then by the Lang–Weil estimates
[1954] we have

jX.Fp/j � pdim X ;

for p sufficiently large. Similarly, for any proper Q-subvariety Y � X , the
cardinality jY .Fp/j is bounded above by an expression of the form C �pdim Y ,
where C is a constant independent of p. It follows that Y .Fp/ ¤ X.Fp/ for
almost all p, and therefore unless X.Z/ is Zariski-dense in X , the reduction map
�p WX.Z/!X.Fp/ is not surjective for almost all p.

So, the fact that GL2.Z/ is not Zariski-dense in GL2 (its Zariski closure is
precisely the subgroup consisting of g 2 GL2 that satisfy .det g/2� 1D 0), is
definitely one of the factors that prevent GL2 from having strong approximation;
in fact, the reduction maps �p are nonsurjective for all p> 5. Now, let us slightly
change the set-up by replacing the ring of integers Z with some localization, for
example, Z

�
1
2

�
. Then GL2

�
Z
�

1
2

��
is already Zariski-dense in GL2, and in fact

the map

�5 W GL2

�
Z
�

1
2

��
�! GL2.Z=5Z/

is surjective, however the map

�17 W GL2

�
Z
�

1
2

��
�! GL2.Z=17Z/

is not. The reason is that the possible determinants of matrices in GL2

�
Z
�

1
2

��
are of the form ˙2` with ` 2 Z, hence squares modulo p D 17 (in fact, this
property will hold for any prime of the form 8kC 1, and by Dirichlet’s theorem
there are infinitely many such primes; compare Section 2B).

We see that Zariski density is definitely not sufficient for strong approximation
in the general case. At the same time, let us consider the following example
involving various subgroups of the group SL2.Z/. We have

�0 WD SL2.Z/D
˝�

1
0

1
1

�
;
�

1
1

0
1

�˛
:
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For `> 1, we define

�` D

��
1

0

2`

1

�
;

�
1

2`
0

1

��
:

Then we have the inclusions

�0 � �1 � �2 � � � � � �` � �`C1 � � � � ;

with
Œ�0 W �1�D 12 and Œ�` W �`C1�D1; for `> 1:

(The fastest way to verify both of these claims is to use the virtual Euler–Poincaré
characteristic; cf. [Serre 1971]. It is known that the Euler–Poincaré characteristic
�.�0/D�

1
12

. On the other hand, for any m> 2 the matrices
�

1
0

m
1

�
and

�
1
m

0
1

�
generate a rank 2 free subgroup �m � �0 (see [de la Harpe 2000, p. 26]), so
�.�m/D �1. It is an elementary exercise to show that �1 D�2 contains the
congruence subgroup SL2.Z; 4/ modulo 4, so the index d D Œ�0 W �1� is finite.
So we have

�.�1/D d ��.�0/;

whence d D 12, as claimed. On the other hand, the assumption that the index
Œ�` W �`C1� is finite — denote it by d , say — would imply that

�1D �.�`C1/D d ��.�`/D�d;

that is, �`C1 D �`, which is clearly false (consider the reduction modulo 2`C1/.
Incidentally, the same argument shows that �m is of infinite index in �0 for any
m> 3. Indeed, we can now assume that m is not a power of 2. If Œ�0 W�m�D

d <1 then

�1D �.�m/D d ��.�0/D�
d

12
;

implying that d D 12. But �m is contained in the congruence subgroup
SL2.Z;m/, so if p is an odd prime divisor of m then

Œ�0 W�m�> Œ�0 W SL2.Z;m/�> jSL2.Fp/j D p.p2
� 1/> 24;

a contradiction. We note that the group �3 D
˝�

1
0

3
1

�
;
�

1
3

0
1

�˛
received a lot of

attention during the workshop.)
So, for large `, the subgroup �` is very “thin” in �0, and essentially the only

property it retains is Zariski density. Nevertheless, for all odd m we still have

�m.�`/D �m.�0/D SL2.Z=mZ/:

So, if we ignore pD 2 (more precisely, the dyadic component Z2 of yZ), then we
still have an analog of the property of strong approximation for �`, for any `> 1.
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At the same time, the closure of �` in SL2.Z2/ is open (see Lemma 2.7 for a
more general statement). Thus, we eventually obtain that the closure of �` in
SL2.yZ/ is open — one should think of this property as being the next best thing
to strong approximation. Note that for a general X as above, the openness of the
closure of X.Z/ in X.yZ/ implies that the reduction maps �m WX.Z/!X.Z=mZ/

are surjective for all m coprime to some fixed exceptional number N0 DN0.X /.
To summarize, we see that generally speaking the idea that in certain situations

Zariski density should (or may) imply some version of strong approximation, at
least for subgroups, appears to be sound, but in order to make it more precise,
we need to figure out what is wrong with GL2 (compared to SL2).

Before we do this, however, we would like to generalize our set-up and also
describe a somewhat different (although closely related) approach to strong
approximation. The issue is that typically an algebraic group does not come with
a fixed geometric (or linear) realization G ,!GLn, and different realizations may
result in different groups of integral points. So, it makes sense to reformulate
the property of strong approximation in terms of the group of rational points.

2. Strong approximation in algebraic groups and homogeneous spaces

2A. Adele groups and strong approximation. Let G be an algebraic group
defined over a global field K, and let S be a set of places of K. For now, we fix
a matrix realization G ,! GLn, which enables us to define unambiguously the
groups

G.Ov/DG \GLn.Ov/;

for all nonarchimedean places v of K, where Ov is the valuation ring in the
completion Kv. We let AS denote the ring of S -adeles of K, and let

G.AS /D

�
g D .gv/ 2

Y
v 62S

G.Kv/ j gv 2G.Ov/ for almost all v 62 S

�
be the group of S -adeles of G. We refer the reader to [Platonov and Rapinchuk
1994, Section 5.1] for a more detailed discussion of adeles, and in particular
for the definition of the space of S-adeles X.AS / for any affine algebraic K-
variety X (we note that AS is a K-algebra so we can in fact talk about the set
of AS -points X.AS / in an intrinsic way). Here we recall only that one endows
G.AS / with a natural topology (called the S -adelic topology) that makes it into
a locally compact topological group. When S contains all archimedean places
of K, this topology is obtained by taking the open subgroups of

Q
v 62SG.Ov/

for a fundamental system of neighborhoods of the identity — thus, the S -adelic
topology on G.AS / in this case is the “natural extension” of the product topology
on
Q
v 62SG.Ov/. (We note that in the case K D Q, S D f1g, the latter group
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coincides with
Q

pG.Zp/DG.yZ/, so these adelic definitions are direct general-
izations of the notions we discussed in Section 1.) One proves (see [Platonov and
Rapinchuk 1994, Section 5.1]) that the topological group G.AS / is independent
of the choice of a K-realization G ,! GLn. Furthermore, there is a canonical
embedding G.K/ ,!G.AS /, so we can give the following.

Definition. An algebraic K-group G has strong approximation with respect to
S if G.K/ is dense in G.AS /.

(Of course, one can give a similar definition for an arbitrary affine K-variety
X . We note that if S D∅ then X.K/ is a closed discrete subspace of X.AS /,
so in discussing strong approximation one actually needs to assume from the
outset that S is nonempty.)

Defined this way (in terms of rational points), the property of strong approxi-
mation does not depend on the choice of a matrix realization G ,! GLn. On the
other hand, in the case where S contains all nonarchimedean places, its validity
implies that for any realization, the group G.O.S// of points over the ring of
S -integers O.S/, which can alternatively be described as

G.O.S//DG.K/\
Y
v 62S

G.Ov/;

is dense in
Q
v 62SG.Ov/ (thus, we have strong approximation in the sense dis-

cussed in Section 1 for any realization).

2B. Absence of strong approximation in algebraic tori. Our next goal is to
explain why GL2 has no chance to possess strong approximation. However, it
is easiest to pin down the reason by working with the 1-dimensional T D Gm:
we will now show that it does not have strong approximation with respect to
any finite set of places S , and will then demonstrate how the same phenomenon
manifests itself in the case of GL2 and other situations.

Let us start with the case K DQ. If S D f1g then T .Z/D f˙1g which is
not even Zariski-dense. For S D f1; 2g, we have

T
�
Z
�

1
2

��
D˙h2i;

which is already Zariski-dense, but nevertheless T still does not have strong
approximation. Indeed, pick any prime p of the form 8kC 1. Then �1 and 2

are squares modulo p, so the map

˙h2i ! .Z=pZ/�

is not surjective. What really happens here is that T possesses a 2-sheeted cover

� W T ! T; t 7! t2;



STRONG APPROXIMATION FOR ALGEBRAIC GROUPS 277

and for any prime p � 1 .mod 8/ we have

T
�
Z
�

1
2

��
� �.T .Zp//¤ T .Zp/:

Since �.T .Zp// � T .Zp/ is a closed subgroup, we obtain that T
�
Z
�

1
2

��
is

not dense in T .Zp/ for any such p. Moreover, by Dirichlet’s Prime Number
Theorem, for any r > 1 we can find r distinct primes p1; : : : ;pr congruent to
1 .mod 8/. Then the image of the map

˙h2i ! .Z=p1 � � �pr Z/�

is contained in .Z=p1 � � �pr Z/�
2, which has index 2r in .Z=p1 � � �pr Z/�. It

follows that the closure of T .ZŒ1
2
�/ in T .yZ/D

Q
p T .Zp/ is of infinite index.

This approach easily generalizes. First, let T D Gm over an arbitrary num-
ber field K, and let S be an arbitrary finite set of places of K containing all
archimedean ones. Then by Dirichlet’s unit theorem [Lang 1994, p. 105], the
group T .O.S// is generated by a finite collection of elements, say t1; : : : ; tr . Set
LDK.

p
t1; : : : ;

p
tr /. By Chebotarev’s density theorem [Lang 1994, p. 169],

there exist infinitely many places v 62 S that totally split in L (i.e., L � Kv).
Considering again the covering � W T ! T , �.t/D t2, we see that for any such
nondyadic v we have the inclusions

T .O.S//� �.T .Ov//¤ T .Ov/:

This implies that the closure of T .O.S// in
Q
v 62S T .Ov/ is of infinite index, and

therefore the closure of T .K/ in T .AS / is of infinite index as well.
Next, this argument can be extended to an arbitrary torus T over a global

field K and any finite set S of places of K. Moreover, by considering coverings
(isogenies) �m W T ! T , �m.t/D tm for various m prime to char K, one proves
the following.

Proposition 2.1. Let T be a nontrivial torus over a global field K, and S a finite
set of places of K. If T .K/ is the closure of T .K/ in T .AS / then the quotient

T .AS /=T .K/

is a group of infinite exponent.

This proposition yields a strong version of the fact that a nontrivial torus
over a global field always fails to have strong approximation with respect to any
finite set of places S . Nevertheless, a torus may have strong approximation with
respect to some infinite (and coinfinite) sets S ; see Remark 3 after Theorem 2.3.
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2C. Simply connectedness as a necessary condition. The discussion of tori in
the previous subsection suggests that the existence of a nontrivial covering map
for a given variety X over a global field K may prevent it from having strong
approximation with respect to any finite set of places S . Indeed, as we will see
soon, simply connectedness of a connected absolutely almost simple group G

(i.e., the absence of nontrivial central isogenies � W zG!G with connected zG —
[Tits 1966] for a more detailed discussion) is one of the essential conditions in the
strong approximation theorem for algebraic groups (see Theorem 2.3 below). But
before we shift our focus entirely to algebraic groups, we would like to mention
the following general result of Minchev [1989] which does not seem to be well-
known to the general audience. (Note that we did not formally define adeles for
arbitrary varieties, so the reader may want to assume that all varieties considered
are actually affine, in which case the definitions are completely parallel to the
above definitions for algebraic groups.)

Proposition 2.2 [Minchev 1989, Theorem 1]. Let X be an irreducible normal
variety over a number field K. If there exists a nontrivial connected unramified
covering f W Y !X defined over an algebraic closure K, then X does not have
strong approximation with respect to any finite set S of places of K.

Proof. Since this appeared only in Russian, in a journal with limited circulation,
we sketch the argument here assuming X and Y to be affine and smooth and S

to contain all archimedean places. We may assume that f is a Galois cover of
degree n> 1, and pick a finite extension L=K such that Y and f are L-defined.
For x 2 X.L/, we let L.f �1.x// denote the extension of L generated by the
coordinates of all preimages of x in Y .K/; note that ŒL.f �1.x// WL�6n! . Using
the local version of the Chevalley–Weil theorem (cf. [Lang 1983, Chapter 2,
Lemma 8.3]), for which we need f to be unramified, one shows that there exists
a finite set of places S1 of K containing S such that any v 62 S1 is unramified
in L.f �1.x// for all x 2 X.O.S//. Invoking Hermite’s theorem [Lang 1994,
p. 122], we now conclude that there are only finitely many possibilities for
L.f �1.x// as x ranges in X.O.S//, and therefore there exists a finite extension
L1=L such that f �1.X.O.S///� Y .L1/. Enlarging L, we can actually assume
that LD L1 and L=K is a Galois extension. Also, expanding S if necessary,
we can make sure that if v 62 S splits completely in L (i.e., L�Kv) then

X.O.S//� fKv
.Y .Ov//: (2)

On the other hand, for almost all nonarchimedean places w of L, the reductions
X .w/ and Y .w/ modulo w are smooth irreducible varieties over the residue
field `w, and the reduction f .w/ W Y .w/! X .w/ is an n-sheeted Galois cover.
It follows that
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ˇ̌
f
.w/

`w
.Y .w/.`w//

ˇ̌
D
jY .w/.`w/j

n
: (3)

Since X .w/ and Y .w/ are irreducible, by the Lang–Weil theorem [1954], the
cardinalities jX .w/.`w/j and jY .w/.`w/j are both “approximately equal” to qd

w ,
where qwDj`wj and d is the common dimension of X .w/ and Y .w/. Comparing
this with (3), we see that for almost all w, the cardinality

ˇ̌
f
.w/

`w
.Y .w/.`w//

ˇ̌
is only a fraction of jX .w/.`w/j; in particular, f .w/

`w
.Y .w/.`w// ¤ X .w/.`w/:

Since by Hensel’s lemma, the reduction map X.Ow/!X .w/.`w/ is surjective,
we obtain that

fLw
.Y .Ow//¤X.Ow/:

(in fact, our argument shows that fLw
.Y .Ow// is “much smaller” than — in some

sense, a “fraction” of — X.Ow/).
This discussion, in conjunction with (2) implies that for almost all v that split

completely in L, the set X.O.S// is not dense in X.Ov/. Since by Chebotarev’s
density theorem [Lang 1994, p. 169], there are infinitely many v’s that split
completely in L, we obtain that X does not have strong approximation with
respect to S (and in fact that the closure of X.O.S// in

Q
v 62S X.Ov/ is very

“thin”). �

(We note that Minchev [1989] points out another necessary condition for
strong approximation in a K-variety X (which is much easier to prove): X needs
to be (absolutely) irreducible.)

Remark. It was pointed out to us by Joël Bellaïche that using the version of the
Chevalley–Weil theorem given in [Serre 1997, Section 4.2], one can get rid of
the normality assumption in Proposition 2.2.

While the proof of Proposition 2.2 for general varieties requires some facts
from arithmetic algebraic geometry, there is a much simpler argument in the case
of algebraic groups (see [Platonov and Rapinchuk 1994, Section 7.4]). Since
most readers are likely to be particularly interested in this case, we will explain
the idea using the following example. Consider the canonical isogeny

zG D SL2
�
�! PGL2 DG

of algebraic groups over a number field K. By the Skolem–Noether theorem,
one can think of G as the automorphism group Aut.M2/ of the degree two
matrix algebra. Then for any field extension F=K, again by the Skolem–Noether
theorem, we have

G.F /D AutF .M2.F //D PGL2.F /:
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Then there is an exact sequence

zG.F /
�F
�!G.F /

�F
�! F�=F�

2
! 1; (4)

where �F is induced by the determinant, viz. gF� 7! .det g/F�
2. (Alternatively,

one can think of G as the special orthogonal group SO3.q/ of the Killing form
q on the Lie algebra sl2 — recall that q D 2x2Cyz in the Chevalley basis; then
zG can be identified with Spin3.q/, and �F becomes simply the spinor norm map
on SO3.q/.F /.)

The point is that given any finitely generated subgroup � �G.K/, its image
� WD �K .�/ is a finite group. If K is a number field, it follows from Chebotarev’s
density theorem that there are infinitely many nonarchimedean places v of K

such that the image of � under the natural map K�=K�
2
!K�v =K

�
v

2 is trivial.
From the exactness of (4) for F DKv, we conclude that for these v we have

� � �Kv
. zG.Kv//¤G.Kv/:

Applying this to � DG.O.S// (which is finitely generated), we obtain that for
almost all such v,

G.O.S//� �Kv
. zG.Ov//¤G.Ov/:

The latter implies that the closure of G.O.S// in
Q
v 62SG.Ov/ is of infinite

index, for any finite set S of places of K, and hence G fails to have strong
approximation.

This type of argument easily generalizes to prove that if a connected algebraic
group G over a number field K is not simply connected, then G fails to have
strong approximation for any finite set S of places of K (see [Platonov and
Rapinchuk 1994, Section 7.4] for the details).

Example. Let G D GL2. Set zG D G �Gm. Then the product map zG! G is
an isogeny of degree 2. Composing it with the map

zG! zG; .g; t/ 7! .g; t`/; for `> 1;

we obtain an isogeny zG!G of an arbitrary even degree 2`. On the other hand,
the map G ! G, g 7! .det g/`g for ` > 1, is an isogeny of an arbitrary odd
degree .2`C 1/. Thus, G has finite-sheeted connected coverings of any degree,
in particular, it is not simply connected. In view of the results discussed above,
this explains why G does not have strong approximation with respect to any
finite S .

2D. Strong approximation theorem. So far, we have identified two necessary
conditions for strong approximation in a connected algebraic group G over a
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number field K with respect to a finite set S of places of K that contains all
archimedean places: the S -arithmetic subgroups (i.e., subgroups commensurable
with G.O.S//) must be Zariski-dense, and G must be simply connected. It turns
out that for semisimple groups, these conditions are also sufficient. Since the
general case easily reduces to absolutely almost simple groups (cf. [Platonov and
Rapinchuk 1994, Section 7.4]), we will give a precise statement of the strong
approximation theorem only for this case (however, we will include global fields
of positive characteristic).

Theorem 2.3 ([Kneser 1965; Platonov 1969] in characteristic zero; [Margulis
1977; Margulis 1991; Prasad 1977] in positive characteristic). Let G be a con-
nected absolutely almost simple algebraic group over a global field K, and let S

be a finite set of places of K. Then G has strong approximation with respect to
S (i.e., G.K/ is dense in G.AS /) if and only if

(1) G is simply connected;

(2) GS WD
Q
v2S G.Kv/ is noncompact.

(We note that for an absolutely almost simple group G, condition (2) is
equivalent to G.O.S// being infinite, and hence Zariski-dense in G; see [Platonov
and Rapinchuk 1994, Theorem 4.10]. It should also be mentioned that in the
statement of the theorem we included only the names of the main contributors;
the interested reader will find more historical remarks at the end of Section 7.4
in [Platonov and Rapinchuk 1994], and also at the end of the current section.)

Remarks. 1. The condition that G is simply connected is used in the proof of
sufficiency in Theorem 2.3 in a very peculiar way that is totally unrelated to the
above considerations showing that simply connectedness is necessary for strong
approximation. More precisely, what we need is the fact that for all v 62 S such
that G is Kv-isotropic (i.e., has positive rank over Kv), the group G.Kv/ does
not have proper (abstract) subgroups of finite index (see Section 2F). It turns
out that in the situation at hand, for G simply connected, the group G.Kv/ does
not, in fact, have any proper noncentral normal subgroups. To put this result in
perspective, we recall the result of Tits [1964] asserting that given an absolutely
almost simple isotropic algebraic group G over a field P with > 4 elements,
the subgroup G.P /C of G.P / generated by the P -rational points of P -defined
parabolics, does not have any proper noncentral normal subgroups. In the same
paper, Tits proposed a conjecture, which later became known as the Kneser–Tits
conjecture, that actually G.P /C DG.P / if G is simply connected. While over
general fields this conjecture turns out to be false [Platonov 1980], it holds over
nonarchimedean local fields of characteristic zero (finite extensions of the p-adic
field Qp), as shown in [Platonov 1969] (over R this fact was established much
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earlier by E. Cartan; see [Platonov and Rapinchuk 1994, Proposition 7.6]). This
connection between strong approximation and the Kneser–Tits conjecture was
the centerpiece of [Platonov 1969]. We will see another manifestation of this
connection in the analysis of strong approximation for arbitrary Zariski-dense
subgroups (Section 3), although in a different setting (viz., over finite fields). On
the other hand, over a local or a finite field P , we have G.P /C ¤G.P / if G is
not simply connected, and hence in this case G.P / does have proper noncentral
normal subgroups (of finite index). This is where the proof of Theorem 2.3 and
the corresponding argument in Section 3 breaks down if one drops the assumption
that G is simply connected. Finally, we remark that the Kneser–Tits conjecture
has generated a lot of research not associated with strong approximation; see
[Gille 2009] for a recent survey.

2. The effect of nonsimply connectedness on strong approximation with respect
to a finite set S is different for tori and semisimple groups: for a K-torus T , the
quotient T .AS /=T .K/ by the closure of the group of rational points has infinite
exponent (Proposition 2.1), while, as follows from Theorem 2.3, for a connected
absolutely almost simple nonsimply connected K-group G with a universal
K-defined cover � W zG!G such that the group zGS is not compact, the closure
G.K/�G.AS / is a normal subgroup with the infinite quotient G.AS /=G.K/

having finite exponent. (This distinction, of course, reflects the fact that the
(algebraic) fundamental group of G is finite, while that of T is infinite.)

3. A connected K-group G may have strong approximation with respect to
certain infinite sets S of places of K without being simply connected. For
example, in [Prasad and Rapinchuk 2001], we examined in this context strong
approximation in tori (which can never be valid for finite S ; see Proposition 2.1).
To avoid technical definitions, we will just indicate what our results give in the
case of the 1-dimensional split torus T D Gm over K D Q: If S is an infinite
set of places of K that contains the p-adic places for almost all primes p in
a certain arithmetic progression, then the closure T .Q/ of T .Q/ in the group
of S-adeles T .AS / is of finite index. The result for general tori is basically
the same but contains one important exclusion that has to do with how the
arithmetic progression interacts with the splitting field of the torus. This fact is
instrumental for the analysis of the congruence subgroup problem: it implies, in
particular, that if G is an absolutely almost simple simply connected algebraic
group over a number field K, which is an inner form, and S is a set of places of
K that contains all archimedean places and also almost all places in a certain
generalized arithmetic progression, then the corresponding congruence kernel
C S .G/ is trivial, that is, every subgroup of finite index in G.O.S// contains a
suitable congruence subgroup (provided that G.K/ has a standard description of
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normal subgroups). See [Prasad and Rapinchuk � 2012].

4. For general affine varieties, the analogs of conditions (1) and (2) in Theorem 2.3
may not be sufficient for strong approximation, even in homogeneous spaces.

Example. Let f .x;y; z/ D ax2 C by2 C cz2 be the nondegenerate ternary
quadratic form over a number field K, and let X � A3 be a quadric given by
f .x;y; z/D a. Set g.x;y/D by2C cz2. Let S be a finite set of places of K

such that XS D
Q
v2S X.Kv/ is noncompact (equivalently, for some v 2 S the

form f is Kv-isotropic). Then (see Section 2E) X has strong approximation
with respect to S if and only if one of the following two conditions holds:

(a) g is K-isotropic.

(b) g is K-anisotropic and there exists v 2 S such that g remains anisotropic
over Kv and either v is nonarchimedean or f is Kv-isotropic.

It follows that a rational quadric X defined by x2
1
C x2

2
� 2x2

3
D 1 (which is

simply connected) does not have strong approximation with respect to S D f1g.

2E. Strong approximation in homogeneous spaces. The fact quoted in the
above example is a consequence of the analysis of strong approximation in
(affine) homogeneous spaces of algebraic groups. Since these results (found
in [Borovoi 1989] and [Rapinchuk 1988]; a detailed exposition of the latter
paper was given in [Rapinchuk 1990]) are not as widely known as Theorem 2.3,
we briefly mention some of them here for the sake of completeness. The fact
that only connected simply connected varieties have a chance to possess strong
approximation, by and large, forces us to focus our attention on homogeneous
spaces of the form X D G=H , where G is a semisimple simply connected
algebraic K-group, and H is a K-defined connected reductive subgroup (any
such variety is affine and simply connected). Furthermore, given a set S of places
of K, it is not difficult to show that for such X , the space XS is noncompact
if and only if GS is noncompact. Assuming now that G is actually absolutely
almost simple, we conclude from Theorem 2.3 that G has strong approximation
with respect to S (for a general semisimple group G we need to consider its
simple components). Then using Galois cohomology one investigates when
strong approximation in G implies strong approximation in X DG=H . Here is
one easy result in this direction.

Proposition 2.4 [Rapinchuk 1988]. Let X DG=H be the quotient of a connected
absolutely almost simple simply connected algebraic group G defined over a
number field K by a connected semisimple simply connected K-subgroup H .
Then X has strong approximation with respect to a finite set S of places of K if
and only if the space XS D

Q
v2S X.Kv/ is noncompact.
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Now, let q D q.x1; : : : ;xn/ be a nondegenerate quadratic form in n > 3

variables. Consider the quadric X �An given by the equation q.x1; : : : ;xn/D a

for some a 2 K�. Assuming that X.K/ ¤ ∅, pick x 2 X.K/. Then X D

G=H , where G D Spinn.q/ and H D G.x/ (the stabilizer of x); note that
H ' Spinn�1.q

0/; where q0 is the restriction of q to the orthogonal complement
of x. So, it follows from Proposition 2.4 that for n> 5, the quadric X has strong
approximation with respect to X if and only if there exists v 2 S such that q

is Kv-isotropic. The same result remains valid for n D 4 even though in this
case G is not absolutely almost simple. (Incidentally, this result applies to the
defining equation of SL2 given on page 271, yielding thereby another proof of
strong approximations for this group; compare Lemma 1.2.)

The case n D 3 is different, as here H is a torus. This case can also be
treated in a rather explicit form using the results of Nakayama–Tate on the Galois
cohomology of tori. More precisely, let T be a K-torus, and let L be the splitting
field of T . As usual, given a module M over the Galois group Gal.L=K/, we let
H i.L=K;M / denote the Galois cohomology group H i.Gal.L=K/;M /. Given
a finite set S of places of K, we let S denote the set of all extensions of places
in S to L, and let AL and AL;S denote the rings of adeles and S-adeles of L.
Finally, let cL.T /D T .AL/=T .L/ be the adele class group of T over L, and let

ı WH 1.L=K;T .AL// �!H 1.L=K; cL.T //

be the corresponding map on cohomology. Then, viewing TS and T .AL;S / as
subgroups of T .AL/, we have the following statement.

Proposition 2.5 [Rapinchuk 1988]. Let X D G=T , where G is an absolutely
almost simple simply connected K-group and T �G is a K-torus. Then X has
strong approximation with respect to a finite set S of places of K if and only if
XS is noncompact and

ı
�
H 1

�
L=K;T .AL;S /

��
� ı

�
Ker

�
H 1.L=K;TS /!H 1.L=K;GS /

��
;

where L is the splitting field of T and S consists of all extensions of places in S

to L.

This proposition yields the criterion for strong approximation for the quadrics
defined by ternary forms we used in Remark 4 of Section 2D. It also implies that
for X DG=T , one can find a finite set of places S0 (depending on T ) such that
X has strong approximation with respect to S whenever S � S0. It turns out
that this qualitative statement remains valid for quotients by arbitrary connected
reductive subgroups. More precisely, using some ideas that eventually led him
to theorems of the Nakayama–Tate type for Galois cohomology of arbitrary
connected groups, Borovoi proved the following.
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Proposition 2.6 [Borovoi 1989]. Let X DG=H be the quotient of a connected
absolutely almost simple algebraic group G over a number field K by its con-
nected reductive K-defined subgroup H . There exists a finite set S0 of places of
K such that X has strong approximation with respect to S0 (and then, of course,
it also has strong approximation with respect to any S � S0).

We remark in passing that the results on strong approximation in homogeneous
spaces were used to extend Kneser’s method for proving the centrality of the
congruence kernel for spinor groups to groups of other classical types as well
as G2 [Rapinchuk 1988; 1989; 1990] (see also [Tomanov 1989a; 1989b]), to
establish bounded generation of some S-arithmetic subgroups in orthogonal
groups [Erovenko and Rapinchuk 2006], and to study some Diophantine questions
involving quadratic forms [Colliot-Thélène and Xu 2009]. (We should mention
that the results of the latter work were recently generalized in [Demarche 2011]
where the deviation from strong approximation in a connected K-group G has
been expressed in terms of a certain subquotient of the Brauer group of G.)

2F. On the proof of sufficiency in Theorem 2.3. We begin with the following
statement that applies to arbitrary Zariski-dense subgroups.

Lemma 2.7. Let G be an absolutely almost simple algebraic Q-group, and let
� �G.Z/ be a Zariski-dense subgroup of G. Then for any prime p, the closure
�.p/ �G.Zp/ is open.

Proof. Let g be the Lie algebra of G as an algebraic group, so that gQp
is the Lie

algebra of G.Zp/ as a p-adic analytic group. By a theorem of Cartan [Platonov
and Rapinchuk 1994, Theorem 3.4], � WD�.p/ is a p-adic Lie group, of positive
dimension as � is nondiscrete in G.Zp/ (the discreteness would force it to be
finite, and therefore prevent it from being Zariski-dense). So, the Lie algebra h

of � as a p-adic analytic group is a nonzero Qp-subalgebra of gQp
. Clearly, h is

invariant under Ad� , so the Zariski density of � in G implies that h˝Qp
Qp is

invariant under Ad G. Since the adjoint representation of G on g is irreducible,
we conclude that h D gQp

, and therefore � is open in G.Zp/ by the implicit
function theorem. �

As we will discuss at the beginning of Section 3, this lemma, though useful,
falls short of proving any form of strong approximation. We will now indicate
additional considerations needed to prove the sufficiency in Theorem 2.3 in
characteristic zero, following Platonov’s original argument [Platonov 1969]. Let
us assume that S contains all archimedean valuations of K. In this case, it is easy
to see from the definition of the topology on G.AS / that strong approximation
is equivalent to the following statement:
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For any finite set of places S1 of K which is disjoint from S , the group
G.O.S [S1// is dense in GS1

WD
Q
v2S1

G.Kv/.

To showcase the idea, we will now prove this statement in the case where KDQ

and S1Dfpg, a single p-adic place such that G is Qp-isotropic; see [Platonov and
Rapinchuk 1994, Section 7.4] for the general case. First, by reduction theory for
S -arithmetic groups, G.O.S [S1// is a lattice (i.e., a discrete subgroup of finite
covolume) in GS[S1

; see [Platonov and Rapinchuk 1994, Theorem 5.7]. Since by
assumption the group GS is noncompact, it is not difficult to show (cf. [Platonov
and Rapinchuk 1994, Lemma 3.17]) that G.O.S [S1//�G.Qp/ is nondiscrete
(in particular, infinite), and if � denotes the p-adic closure G.O.S [S1//

.p/,
then G.Qp/=� carries a finite invariant measure. Next, the fact that G.O.S[S1//

is infinite implies that it is actually Zariski-dense in G (Borel’s density theorem;
see, for example, [Platonov and Rapinchuk 1994, Theorem 4.10]). Taking into
account the nondiscreteness of G.O.S [S1// in G.Qp/ and repeating the proof
of Lemma 2.7, we conclude that � is open in G.Qp/. Then the existence of a
finite invariant measure on G.Qp/=� implies that ��G.Qp/ is a subgroup of
finite index. On the other hand, since the group G is connected, absolutely almost
simple, simply connected and Qp-isotropic, by the Kneser–Tits conjecture over
p-adic fields we have G.Qp/DG.Qp/

C, and therefore the group G.Qp/ does
not have any proper noncentral normal subgroup. In particular, it does not contain
any proper subgroups of finite index, and we obtain that �DG.Qp/, as required.

This argument breaks down in positive characteristic, first and foremost,
because Cartan’s theorem, which is at the heart of the proof of Lemma 2.7, is
valid only in characteristic zero. It should be mentioned that eventually Pink
[1998] proved a result which in some sense can be viewed as an analog (or
replacement) of Cartan’s theorem. The precise general statement is too technical
for us to discuss here, so we will only indicate what it yields in one particular
case (see Theorem 0.7 in [Pink 1998]): Let G be an absolutely simple connected
adjoint group over a local field F , and assume that the adjoint representation
of G is irreducible. If � � G.F / is a compact Zariski-dense subgroup, then
there exists a closed subfield E � F and a model H of G over E such that
� is open in H.E/. This sort of result can be used to prove Theorem 2.3 in
positive characteristic, but the original argument given virtually simultaneously
by Margulis [1977] and Prasad [1977], was different. They derived strong
approximation (arguing along the lines indicated above) from the following
statement:

Let G be a connected semisimple algebraic group over a local field F ,
and let H �G.F / be a nondiscrete closed subgroup such that G.F /=H

carries a finite invariant Borel measure. Then H �G.F /C.
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Their argument used ergodic considerations and representation theory. More
than 25 years later, Pink [2004] used his results from [1998] to give a purely
algebraic proof of this theorem, and hence of strong approximation.

3. Strong approximation for Zariski-dense subgroups

3A. Overview. The strong approximation Theorem 2.3 gives us precise informa-
tion about the adelic closure of S -arithmetic subgroups: for example, if G is an
algebraic Q-group that has strong approximation with respect to S D f1g then
for any matrix realization of G, the group G.Z/ is dense in G.yZ/D

Q
p G.Zp/;

see Section 2. At the same time, as we explained in Section 1, one can expect a
general qualitative openness result for the adelic closure of an arbitrary Zariski-
dense subgroup. The goal of this section is to discuss some results in this
direction.

First, we note one consequence of Lemma 2.7. Let G be a connected absolutely
almost simple algebraic Q-group, and let � �G.Z/ be a Zariski-dense subgroup
of G. Then using the fact that G.Zp/ is a virtually pro-p group, one easily
deduces from Lemma 2.7 that given a finite set S of distinct primes, the closure

�.S/ �
Y

p2S

G.Zp/

is open. This statement is already sufficient for some applications; for example,
it was used in [Prasad and Rapinchuk 2003] to prove the existence of generic
elements in arbitrary finitely generated Zariski-dense subgroups � � G.K/,
where G is a semisimple algebraic group over a finitely generated field K of
characteristic zero; see [Gorodnik and Nevo 2011; Jouve et al. 2013; Lubotzky
and Rosenzweig 2012] for more recent work in this direction.1 On the other
hand, if we take S to be the set of all primes, the best we can get from Lemma 2.7
is the following:

The closure y� of � in G.yZ/D
Q

p G.Zp/ contains
Q

pWp , where Wp �

G.Zp/ is open for each p.

Of course, this does not imply that y� is open in G.yZ/— for this we need to
show that actually Wp DG.Zp/ for almost all p. The first general result in this
direction was the following.

Theorem 3.1 [Matthews et al. 1984]. Let G be a connected absolutely almost
simple simply connected algebraic group over Q.

1The article [Prasad and Rapinchuk 2014] in this volume surveys applications of generic
elements to the analysis of isospectral locally symmetric spaces; see also [Prasad and Rapinchuk
2009; 2010].
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(1) If � � G.Z/ is a Zariski-dense subgroup, then the closure y� � G.yZ/ is
open.

(2) If � �G.Q/ is a finitely generated Zariski-dense subgroup, then for some
finite set S of places of Q containing1, the closure of � in the group of
S -adeles G.AS / is open.

The paper [Matthews et al. 1984] appeared in 1984, but the interest in these
sorts of results arose at least 20 years earlier in connection with the study of
Galois representations on torsion points of elliptic curves. In fact, in his book on
`-adic representations, Serre [1968] pretty much had this theorem for G D SL2

(at least, all the ingredients of the proof were there).
Parts (1) and (2) are proved in the same way, so let us focus our discussion

on the proof of (1) as this will allow us to keep our notations simple. First,
it is enough to prove that for almost all primes p, the closure �.p/ � G.Zp/

coincides with G.Zp/. This reduction step is achieved using .�/ in conjunction
with the fact that for almost all primes p, the group G has a smooth reduction
G.p/ modulo p and the groups G.p/.Fp/ are pairwise nonisomorphic almost
simple groups (for the reader who is interested only in the case GD SLn, we will
indicate that here, of course, G.p/ D SLn =Fp, and the structural facts quoted
above are well-known). Next, it turns out that for almost all p, proving that
�.p/DG.Zp/ reduces to showing that the reduction map �p WG.Zp/!G.p/.Fp/

has the property �p.�/DG.p/.Fp/.

Proposition 3.2 (compare [Matthews et al. 1984, 7.3]). For almost all p, if
��G.Zp/ is a closed subgroup such that �p.�/DG.p/.Fp/ then �DG.Zp/.

The proof for G D SL2 was given by Serre [1968, Chapter IV, 3.4].

Lemma 3.3. Let�� SL2.Zp/, where p > 3, be a closed subgroup such that for
the reduction map �p W SL2.Zp/! SL2.Fp/ we have �p.�/D SL2.Fp/. Then
�D SL2.Zp/.

Proof. By assumption, there exists g 2� such that

g D
�

1
1

0
1

�
Cps; with s 2M2.Zp/:

We claim that
gp D

�
1
p

0
1

�
Cp2t; with t 2M2.Zp/: (5)

Indeed,

gp D
�
I2C

��
0
1

0
0

�
Cps

��p
D

I2Cp
��

0
1

0
0

�
Cps

�
C
�
p
2

���
0
1

0
0

�
Cps

�2
C � � �C

��
0
1

0
0

�
Cps

�p
:
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But clearly ��
0
1

0
0

�
Cps

�k
�O2.mod p/; for any k > 2;

and in fact ��
0
1

0
0

�
Cps

�k
�O2.mod p2/ for any k > 4;

as
��

0
1

0
0

��2
DO2 (the zero matrix). So, since p > 3, Equation (5) follows.

As gp 2 �, we conclude from (5) that the image ˆ of the intersection
�\SL2.Zp;p/ with the congruence subgroup modulo p in

SL2.Zp;p/=SL2.Zp;p
2/' sl2.Fp/;

where sl2 is the Lie algebra of SL2 (i.e., 2 � 2-matrices with trace zero), is
nontrivial. On the other hand, ˆ is obviously invariant under �, and as �p.�/D

SL2.Fp/, it is actually invariant under SL2.Fp/. But since p ¤ 2, the group
SL2.Fp/ acts on sl2.Fp/ irreducibly, implying that �\SL2.Zp;p/ surjects onto
SL2.Zp;p/=SL2.Zp;p

2/. However, SL2.Zp;p/ is in fact the Frattini subgroup
of the pro-p group SL2.Zp;p/, so the latter fact implies that �\SL2.Zp;p/D

SL2.Zp;p/, and our claim follows. �
The general case in Proposition 3.2 is obtained by reduction to the case of

SL2. For this one observes that the group G is quasisplit, and therefore G.Zp/

contains H D SL2.Zp/, for almost all p. We refer the reader to [Matthews et al.
1984] for further details. (Note that one needs to argue a bit more carefully on
p. 529 in [Matthews et al. 1984] to make sure that �\H maps onto SL2.Fp/

surjectively; this can be achieved by choosing a special H .)
So, to complete the proof of (both parts of) Theorem 3.1, one needs to prove

the following.

Theorem 3.4. Let G be a connected absolutely almost simple simply connected
algebraic group over Q, and let � �G.Q/ be a finitely generated Zariski-dense
subgroup. Then there exists a finite set of primes …D fp1; : : : ;pr g such that

(1) � �G.Z…/, where Z… D Z Œ1=p1; : : : ; 1=pr �;

(2) for p 62… there exists a smooth reduction G.p/;

(3) if p 62… and �p WG.Zp/!G.p/.Fp/ is the corresponding reduction map
then �p.�/DG.p/.Fp/.

Conditions (1) and (2) are routine (in fact, (1) holds automatically if ��G.Z/),
so the main point is to ensure condition (3). The general idea is the following.
Let g and g.p/ be the Lie algebras of G and G.p/. Since � is Zariski-dense in G,
we conclude that Ad� acts on gQ absolutely irreducibly. By Burnside’s theorem
this means that Ad � spans EndQ gQ as a Q-vector space. Excluding finitely
many primes, we can achieve that for any of the remaining primes p, the group
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Ad �p.�/ acts on g.p/
Fp

absolutely irreducibly. This eventually implies that for
almost all p we have �p.�/DG.p/.Fp/. This implication would be obvious if
we could say that �p.�/ is necessarily of the form H.Fp/, where H �G.p/ is
some connected algebraic Fp-subgroup. (Indeed, then the Lie algebra h of H

would be a nonzero �p.�/-invariant subspace of g.p/, so hD g.p/ and H DG.p/,
as G.p/ is connected for almost all p, yielding the required fact.) Of course, such
an a priori description of �p.�/ would be too much to hope for, but important
information along these lines, which is sufficient for the proof of Theorem 3.4,
is contained in a theorem of Nori [1987].

3B. Nori’s Theorem. Let H be an arbitrary subgroup of GLn.Fp/. Set

X D fx 2H j xp
D 1g

(we will write 1 in place of In to simplify notations). Note that if we assume that
p > n (which we will throughout this subsection), then the condition xp D 1

characterizes precisely the unipotent elements, i.e., it is equivalent to the condition
.x� 1/n D 0. For x 2X , we can define

log x WD �

p�1X
iD1

.1�x/i

i
:

Furthermore, observing that .log x/n D 0, we see that for any t in the algebraic
closure of Fp, we can define

x.t/ WD exp.t � log x/; where exp z D

p�1X
iD0

zi

i !
:

(Note that x.1/D x.) We regard x.t/ as a one-parameter subgroup Ga! GLn.
Set

HC D hX i �H;

and let zH denote the connected Fp-subgroup of GLn generated by the 1-parameter
subgroups x.t/ for all x 2X .

Theorem 3.5 [Nori 1987]. If p is large enough (for a given n), then HC coin-
cides with zH .Fp/

C, the subgroup of zH .Fp/ generated by all unipotents contained
in it.

Thus, Nori’s theorem asserts that if p is large enough compared to n, then
any subgroup of GLn.Fp/ generated by p-elements is essentially the group of
Fp-points of some connected Fp-defined algebraic subgroup of GLn. Actually,
Nori [1987] proves a stronger result stating that for a field F which either has
characteristic zero or positive characteristic p that is large enough compared
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to n, the maps log and exp yield bijective correspondences between nilpotently
generated Lie subalgebras of Mn.F / and exponentially generated subgroups of
GLn.F / (we refer the reader to Nori’s paper for precise definitions and detailed
statements of these results). Nori’s argument was based on algebrogeometric
ideas; a different proof was given in [Hrushovski and Pillay 1995] using model-
theoretic techniques (the idea of their argument is explained in [Lubotzky and
Segal 2003, pp. 399–400]). A very strong result of Larsen and Pink [2011]
describing the structure of finite linear groups over fields of positive characteristic
gives yet another way of saying that a “typical” subgroup of GLn.Fp/ is algebraic.

Given the nature of this article, we will not be able to discuss any details of
Nori’s argument. All we can offer as compensation is a proof of Nori’s results
for GL2.Fp/.

Lemma 3.6. Let H � GL2.Fp/ be a subgroup of order divisible by p, and let
Hp �H be a Sylow p-subgroup. Then either Hp CH or H � SL2.Fp/.

Proof. We may assume that Hp coincides with

U WD

��
1 a

0 1

�
j a 2 Fp

�
:

It is well-known that the normalizer of U in GL2.Fp/ coincides with B D T U

where

T WD

��
a 0

0 b

�
j a; b 2 F�p

�
:

Furthermore, we have the Bruhat decomposition

GL2.Fp/D B [BwB; where w D
�

0 1

�1 0

�
(recall that w normalizes T ). Now, if Hp is not normal in H , then it follows
from the Bruhat decomposition that H contains an element of the form tw with
t 2 T . Consequently, it also contains

U� WD .tw/�1U.tw/D

��
1 0

a 1

�
j a 2 Fp

�
:

But hU;U�i D SL2.Fp/, and our assertion follows. �

So, for any subgroup H � GL2.Fp/, we have only the following three possi-
bilities:

(1) HC D f1g;

(2) HC is conjugate to U ;

(3) HC D SL2.Fp/.
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In either case, the assertion of Nori’s Theorem is valid.

3C. Proof of Theorem 3.4. Recall the famous theorem of Jordan:

There exists a function j .n/ on positive integers such that if G�GLn.K/

is a finite linear group over a field K of characteristic zero, then G

contains an abelian normal subgroup N such the index ŒG W N� divides
j .n/.

(In a more common form, Jordan’s theorem provides a function j0.n/ for which
G;N as above satisfy ŒG WN�6 j0.n/; note that given such a function j0.n/, the
above statement holds with j .n/ D .j0.n//! .)2 What we need to observe for
the proof of Theorem 3.4 is that the assertion of Jordan’s theorem remains valid
(with the same j .n/) for any subgroup G�GLn.Fp/ of order not divisible by p.

Indeed, consider the reduction modulo p map � W GLn.Zp/! GLn.Fp/. The
kernel Ker�DGLn.Zp;p/ is a pro-p group, so since the order of G�GLn.Fp/

is prime to p there is a section � W G! GLn.Zp/ for � over G. Applying the
standard Jordan theorem for characteristic zero to QG WD �.G/, we obtain the
corresponding assertion for G. (For the sake of completeness, we would like to
indicate that there are various “modular” forms of Jordan’s theorem that treat
finite subgroups G�GLn.K/ of order divisible by p where pD char K, starting
with [Brauer and Feit 1966]; see [Collins 2008; Weisfeiler 1984a] for subsequent
results (we also note that [Bass 1983] provides a generalization to algebraic
groups). As we have already mentioned, the most general results about finite
linear groups in positive characteristic are contained in [Larsen and Pink 2011].)

Now, suppose that G�GLn. Let j D j .n/ be the value of the Jordan function
for this n. Set

�.j/ D h
 j
j 
 2 �i;

and ˆ D Œ�.j/; �.j/�. Since the regular map G ! G, x 7! xj , is dominant,
and G D ŒG;G�, we conclude that ˆ is Zariski-dense in G, in particular, it is
nontrivial. Then, by expanding …, which initially needs to be chosen to satisfy
conditions (1) and (2) of the theorem, we may assume that for all p 62… we have
�p.ˆ/¤ f1g where �p WG.Zp/!G.p/.Fp/ is the reduction modulo p map. In
addition, as we explained earlier, by expanding … further, we may assume for
p 62…, the group Ad �p.�/ acts on g.p/ (D the Lie algebra of G.p/) absolutely
irreducibly, and also Nori’s theorem is applicable to GLn.Fp/. We will now show
that the resulting … is as required.

Let p 62…, and set H D �p.�/� GLn.Fp/. First, we observe that p divides
the order of H . Indeed, otherwise by the version of Jordan’s theorem mentioned

2Various sources give different expressions for a Jordan function j0.n/; the optimal function is
known to be j0.n/D .nC 1/! for n> 71; see [Collins 2007].
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above, there would exist an abelian normal subgroup N �H of index dividing
j . Then �p.�

.j//�N , and therefore �p.ˆ/D f1g, a contradiction. This means
that if we define HC and zH as in the Nori’s theorem, then zH ¤ f1g, and hence
the Lie algebra zh of zH is a nonzero subspace of g.p/. On the other hand, by our
construction, zH is normalized by �p.�/, so the space zh is Ad�p.�/-invariant.
Combining this with the absolute irreducibility of the latter, we obtain that
zh D g.p/, that is, zH D G.p/. Furthermore, since G is simply connected, so
is G.p/, and therefore by the affirmative answer to the Kneser–Tits conjecture
over finite fields, we have G.p/.Fp/DG.p/.Fp/

C. Invoking Nori’s theorem, we
obtain

H D zH .Fp/
C
DG.p/.Fp/

C
DG.p/.Fp/;

as required. �

Remarks. 1. The proof of Theorem 3.4 sketched above is based on Nori’s
paper [Nori 1987], and is different from the original argument in [Matthews
et al. 1984]. The interested reader can find an outline of this argument (which
relied on the classification of finite simple groups) in [Lubotzky and Segal 2003,
pp. 397–398].

2. Combining Lemmas 3.3, 3.6 with the above argument, we obtain a virtually
complete proof of Theorem 3.1 for G D SL2, which, as we have pointed out
earlier, was essentially present already in [Serre 1968].

3. We stress that the simply connectedness of G was used again to conclude
that the group G.p/.Fp/ is generated by unipotent elements. This is yet another
manifestation of the connection between strong approximation and the Kneser–
Tits conjecture that was first pointed out by Platonov [1969].

4. During the workshop, I. Rivin asked if one can give an explicit bound
N D N.�/ such that for any p > N we have �p.�/D G.p/.Fp/. In ongoing
work with my student A. Morgan, we have been able to produce some bounds of
this kind. More precisely, for g D .gij / 2 SLn.Z/, set

kgk Dmax
i;j
jgij j:

Furthermore, given a Zariski-dense subgroup � D hg1; : : : ;gd i � SLn.Z/, set

mD max
kD1;:::;d

kgkk:

Then there exists N D N.d;m; n/ such that for any prime p > N we have
�p.�/D SLn.Fp/. However, at the time of this writing our bounds are too large
to be of practical use.
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5. (Due to the referee.) It is worth pointing out two additional results. First,
Guralnick [1999, Theorem B] using the classification of finite simple groups
proved the following: Let G be a finite subgroup of GLn.k/ where k is a field
of characteristic p with p > max.n � 3; 12/. Assume that G has no normal
p-subgroups and that G is generated by its elements of order p. Then G is a
central product of finite quasisimple Chevalley groups in characteristic p. This
gives a very strong quantitative version of Nori’s theorem (under the assumption
that G has no normal p-subgroups). Second, it is proved in [Salehi Golsefidy
and Varjú 2012, Appendix] that the lower bound on characteristic in Nori’s
theorem is recursively defined; that is, there is a recursively defined function f
such that if p > f .n/ then for any subgroup H � GLn.Fp/ there is an algebraic
Fp-subgroup zH of GLn such that HC D zH .Fp/

C.

3D. Weisfeiler’s theorem. A far-reaching generalization of Theorem 3.1 was
given by B. Weisfeiler. We will state it using the original notation (which is
somewhat different from the notation used in the rest of our article).

Theorem 3.7 [Weisfeiler 1984b]. Let k be an algebraically closed field of char-
acteristic different from 2 and 3, and let G be an almost simple, connected and
simply connected algebraic group defined over k. Let � be a Zariski-dense
finitely generated subgroup of G.k/, and let A be the subring of k generated
by the traces tr Ad 
 , 
 2 � . Then there exists b 2 A, a subgroup � 0 � � , and
a structure GAb

of a group scheme over Ab on G such that � 0 �GAb
.Ab/ and

� 0 is dense in GAb
. yAb/.

(Here Ab denotes the localization of A with respect to b, and yAb the profinite
completion of the ring Ab , i.e., the completion with respect to the topology given
by all ideals of finite index. To connect this with our previous results, we note
that for ADZ, the ring Ab coincides with ZŒ1=p1; : : : ; 1=pr �, where p1; : : : ;pr

are the primes dividing b, and the completion yAb is precisely
Q

p 62fp1;:::;pr g
Zp;

that is, the ring of integral S -adeles for S D f1;p1; : : : ;pr g.)
In characteristic 2 and 3, one encounters additional problems due to the

existence of so-called nonstandard isogenies. We will not get into these technical
details here, but roughly speaking one of the problems is that in these exceptional
cases the “right” ring or field of definition of � may not be the trace ring or field
(the subring or subfield of the algebraically closed field k generated by the traces
tr Ad
 for 
 2 �). The adequate definitions were given by Pink using the notion
of so-called minimal triples (which we will not discuss here). In fact [Pink 2000]
proves an appropriate version of the openness statement for the adelic closures
of Zariski-dense subgroups in all characteristics, was really the final word in the
strong approximation saga.
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3E. Applications to group theory: Lubotzky’s alternative. One of the most
notable applications of strong approximation is the so-called Lubotzky alternative
for linear groups. It is discussed in detail in [Klopsch et al. 2011, Chapter II] and
[Lubotzky and Segal 2003, Window 9], so here we will only state it for linear
groups over fields of characteristic zero.

Theorem 3.8 [Lubotzky and Mann 1991]. Let � be a finitely generated linear
group over a field of characteristic zero. Then one of the following holds:

(a) � is virtually solvable;

(b) there exists a connected absolutely almost simple simply connected algebraic
Q-group G, a finite set … D fp1; : : : ;pr g of primes such that the group
G.Z…/, where Z…DZ

�
1=p1; : : : ; 1=pr

�
; is infinite, and a subgroup �1��

of finite index for which the profinite completion y�1 admits a continuous
epimorphism onto G.cZ…/.

This statement was applied in [Lubotzky and Mann 1991] to study the sub-
group growth (= number of subgroups of a given index n) of linear groups; in
particular, it leads to the following dichotomy (which we will state here only in
characteristic zero, referring the reader to [Lubotzky and Segal 2003] for some
minor distinctions that can occur in the case of positive characteristic): if a linear
group has polynomial subgroup growth, then it is virtually solvable, but if the
growth is not polynomial (hence the group is not virtually solvable), then it is at
least nlog n.

The interested reader will find more group-theoretic applications of strong
approximation in [Klopsch et al. 2011; Lubotzky and Segal 2003] and references
therein, and, of course, in other articles contained in this volume.
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