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Affine sieve and expanders
ALIREZA SALEHI GOLSEFIDY

The goals of this article are to describe the affine sieve in its most general
setting and the fundamental theorem on the subject; to convey the main ideas
behind the proof of that theorem and its connection with expansion in linear
groups; to survey some of the results on the expansion in linear groups and
briefly explain what goes into their proofs; and to collect some questions and
conjectures.

1. The affine sieve

1.1. What is the affine sieve? Lots of problems and theorems in number theory
concern the existence of infinitely many primes in a subset of integers.

(1) Dirichlet’s theorem: For any integers a¤ 0 and b, there are infinitely many
integers x such that axC b is prime if there are no local obstructions — that is,
if gcd.a; b/D 1.

Instead of restricting ourselves to coprime pairs, we can work with ZŒ1=gcd.a; b/�
and say for any integers a¤ 0 and b there are infinitely many integers x such
that axC b is prime in ZŒ1=gcd.a; b/�.

(2) Twin prime conjecture: There are infinitely many positive integers x such
that x.xC 2/ has at most two prime factors.

This is a well-known long standing open problem. If we relax it and ask for
infinitely many almost primes instead, then we have an affirmative result. Brun
developed a combinatorial sieve and proved that there are infinitely many x

such that x.xC 2/ has at most 20 prime factors. Later more sophisticated sieve
methods were developed. As a result Chen proved that there are infinitely many
x such that x.xC 2/ has at most three prime factors.

As we see in this example, in many problems, sieve methods can help us to
see what should be expected and prove the existence of infinitely many almost
primes instead of primes [Halberstam and Richert 1974].

(3) Mersenne prime conjecture: There are infinitely many positive integers x

such that 2x � 1 is prime.
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This set is too sparse and so sieve methods do not give us anything. In fact, it is
unknown even whether there are integers r such that 2x � 1 has at most r prime
factors for infinitely many positive integers x.

In all these examples, we are dealing with a one-parameter subset of integers.
One can ask what happens in a multiparameter setting. What should be the
“right” question in this setting? In some sense it is not a good idea to just ask
about existence of infinitely many desired values, as one can just restrict to a
one-parameter subset for that purpose. Bourgain, Gamburd and Sarnak [Bourgain
et al. 2010] nicely suggest replacing “infiniteness” with “Zariski density”.1 They
also give the following reformulation of the Hardy–Littlewood conjecture, which
further convinces us that Zariski density should be the right notion to seek in a
multiparameter setting.

Hardy–Littlewood conjecture. Let Eb D .b1; : : : ; bn/ 2 Zn and let ƒ be a sub-
group of Zn. Let

ƒEb WD

�
E�D .�1; : : : ; �n/ 2ƒ

ˇ̌̌ nY
iD1

.�i C bi/ has at most n prime factors.
�
:

Then the Zariski closure of ƒEb is equal to the Zariski closure of ƒ if there are no
local obstructions, i.e., if for any square-free integer q there is E� 2ƒ such that
gcd.fEb.

E�/; q/D 1, where fEb.
E�/D

Qn
iD1.�i C bi/.2

In this formulation, we are looking at the action of the n-th power of the
additive group scheme, Gn

a, on An and investigating points in ƒ where the value
of fEb 2QŒAn� has at most n prime factors. This point of view makes us wonder
what one should expect for an arbitrary algebraic Q-group G, equipped with an
algebraic action on a Q-variety V and a regular function f on V.3

General setting of the affine sieve, I. Let ��G.Q/ be a Zariski-dense subgroup
of G, where G is a linear algebraic group defined over Q. Assume that G acts
on a Q-variety V and that the action is also defined over Q. Let f be a regular
function on V that is defined over Q and let x0 2 V.Q/. Under what conditions
can we find a positive integer r and a finite set of primes S such that

f
 2 � j f .
 �x0/ has at most r prime factors in ZSg

is Zariski-dense in G?
1Of course, a subset of the affine line is Zariski-dense if and only if it is infinite.
2If rank.ƒ/ is at least two, this conjecture is proved as a result of [Green and Tao 2010; 2012;

Green et al. 2012].
3We work with rational numbers instead of integers for simplicity. As a result we end up

working with S -integers instead of integers. And similarly to the above formulation of Dirichlet’s
theorem, we can avoid local obstructions.
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Since the action is algebraic, f 2QŒV� and x0 2V.Q/, we have that f .g �x0/

defines a regular function on G that is also defined over Q. So without loss of
generality, we can directly work with G and avoid introducing V.

General setting of the affine sieve, II. Let � �GLn.Q/ and let G be its Zariski
closure. Let f 2QŒGLn�. For a positive integer r and a finite set of primes S , let

�r;S .f / WD f
 2 � j f .
 / has at most r prime factors in ZSg:

Under what conditions can we find r and S such that �r;S .f / is Zariski-dense
in G?

Our goal here is to describe a general framework. In a given problem, not
only it is important to show the existence of r and S , but also to find the best
possible r and the right conditions on f and � which guarantee that S is empty.
(S will be called the set of ramified primes.) It should be added that this general
setting was formulated in [Bourgain et al. 2010] (slightly different notations are
used in [Bourgain et al. 2010] and the best possible r is called the saturation
number.)

Before formulating and justifying the needed conditions, let us quickly refor-
mulate the mentioned results and problems in terms of the above setting. We
denote by Ga and Gm the additive and multiplicative group schemes.

(1) Brun’s fundamental theorem of sieves: let �DZ�Ga.Q/ and f .x/2ZŒx�.
Then �r;¿.f / is Zariski-dense in Ga for some positive integer r .

(2) Dirichlet’s theorem: let � D Z�Ga.Q/ and 0¤ a; b 2 Z. Let S be the set
of prime factors of gcd.a; b/. Then �1;S .axC b/ is Zariski-dense in Ga.

(3) Twin prime conjecture: let � D Z � Ga.Q/ and f .x/ D x.xC 2/. Then
�2;¿.f / should be Zariski-dense in Ga. Chen proved �3;¿.f / is Zariski-
dense in Ga.

(4) Mersenne prime conjecture: let �Dh2i�Gm.Q/DQ� and f .x/Dx�1.
Then �1;¿.f / should be Zariski-dense in Gm.

(5) Hardy–Littlewood conjecture: let ��Zn and f .Ex/D
Qn

iD1.xiCbi/where
bi 2 Z. Then �n;¿.f / should be Zariski-dense in the Zariski closure of �
if there are no local obstructions.

(6) Bourgain–Gamburd–Sarnak’s result: let � D h�i � GLn.Z/, H be its
Zariski closure in .GLn/Z and f 2 ZŒH�. If HQ is isomorphic to SL2 and
f is absolutely irreducible and primitive4, then �r;¿.f / is Zariski-dense
in H for some positive integer r .

4We refer the reader to [Bourgain et al. 2010] for the definition. This condition essentially
takes care of local obstructions.
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In fact, a much stronger result is proved in [Bourgain et al. 2010]. In the
above setting, assume that the family of Cayley graphs Cay.�q.�/; �q.�//

form a family of expanders as q runs through square-free integers. Then if
f is absolutely irreducible and primitive, then �r;¿.f / is Zariski-dense in
H for some positive integer r .

1.2. What are the needed conditions? Statement of the main result. As we
mentioned earlier, if � D h2i �Gm.Q/ and f .x/D x�1, then we do not know
whether �r;S .f / is Zariski-dense in Gm for some r and S . Sieve methods do not
give us anything for this problem. In fact, the heuristics in [Salehi Golsefidy and
Sarnak 2013, Appendix] suggest that it is not just the weakness of the method.
And as Peter Sarnak says,5 “torus is the enemy!” Here we present two examples
where conjecturally the answer to the general setting of the affine sieve should
be negative.

Isotropic torus.6 Heuristics suggest that the number of prime factors of

.2n
� 1/.2n�1

� 1/

should go to infinity as n tends to infinity. This implies that if � D h2i �Gm.Q/

and f .x/D .x�1/.x�2/, then, for any r and S , �r;S .f / is not Zariski-dense
in Gm. See [Hardy and Wright 1979, p. 15] or the Appendix to [Salehi Golsefidy
and Sarnak 2013] for heuristic considerations of this kind.

Anisotropic torus. Let 
 D
�

0
1

1
1

�
. Then for any integer n


 n
D

�
fn�1 fn

fn fnC1

�
;

where fn is the n-th Fibonacci number. Let � D h
 2i. Note that the Zariski
closure G of � is isomorphic to the Q-anisotropic torus R

.1/
QŒ
p

5�=Q.Gm/. Let
f .Xij /D X12. Conjecturally, the number of prime factors of f .
 2n/ goes to
infinity [Bugeaud et al. 2005]. Hence again �r;S .f / cannot be Zariski-dense
in G for any r and S .

In general, I believe the following question should have an affirmative answer
(see [Salehi Golsefidy and Sarnak 2013, Appendix] for a heuristic consideration).

5Personal communication, 2007.
6Recall that if A is any commutative algebra, Gm.A/ is the group of units of A. A torus T

defined over a field k is called k-isotropic if there is a nontrivial k-homomorphism from T to Gm.
It is called k-anisotropic otherwise. Let l be a quadratic extension of k and let TDR

.1/
l=k
.Gm/

be the kernel of the norm map, for instance. Then T is k-anisotropic and l-isotropic; e.g.,
R
.1/
C=R

.Gm/.R/' S1 and R
.1/
C=R

.Gm/.C/' C�.
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Question 1. Let k be a Galois number field and H be a finitely generated
subgroup of k�. Is there a polynomial pH .x/D p.x/ 2 kŒx� such that for any
positive integer rˇ̌

fh 2H jNk=Q.p.h// has at most r prime factorsg
ˇ̌
<1?

If the answer to Question 1 is affirmative, then one can easily prove the
following.

Proposition 2. Assume Question 1 has an affirmative answer. Let � � GLn.Q/,
let G be its Zariski closure and Gı its (Zariski) connected component of identity.
If X.Gı/ WD Hom.Gı;Gm/ is nontrivial, then there is f 2 QŒG� (which is not
constantly zero on a connected component of G) such that �r;S .f / is not Zariski-
dense in G for any r and S .

The above discussion suggests that one has to assume that X.Gı/D f1g. This
condition is in fact sufficient:

Theorem 3 (fundamental theorem of the affine sieve [Salehi Golsefidy and
Sarnak 2013]). Let � � GLn.Q/, G be the Zariski closure of � , and f 2QŒG�.
If f is not constantly zero on a connected component of G and X.Gı/ D f1g,
then �r;S .f / is Zariski-dense in G for some positive integer r and a finite set of
primes S .

It is worth mentioning that the following conditions are equivalent.

(1) X.Gı/D f1g.

(2) No torus is a homomorphic image of Gı.

(3) X.R.G//D f1g where R.G/ is the radical of G.

(4) G=Ru.G/ is semisimple where Ru.G/ is the unipotent radical of G.

(5) G' Gss Ë U, where Gss is a semisimple group and U is a unipotent group.

(6) The Levi subgroup of G is semisimple.

A group is called Levi-semisimple if it satisfies these conditions.

1.3. Outline of the proof of Theorem 3. From this point on, we work in the
setting of Theorem 3.

Let us first remark that any unipotent group is a Levi-semisimple group. But
the Cayley graphs of finite quotients of a unipotent group cannot form a family
of expanders. So one cannot directly appeal to [Bourgain et al. 2010] (see item
(6) in page 327). In order to handle this difficulty, stronger results for unipotent
groups and perfect groups7 are proved.

7A group G is called perfect if ŒG;G�D G.
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In what follows let us also assume that G is Zariski-connected. So its derived
subgroups Di.G/ are also Zariski-connected. Let us recall that D0.G/D G and

DiC1.G/D ŒDi.G/;Di.G/�:

Hence after dim G steps, we get a perfect group HDDdim G.G/. We call it the
perfect core of G. Since G is Levi-semisimple, G=H is a unipotent group U and
we get the following diagram where each row is an exact sequence

1! H ! G
�
�! U ! 1

" " "

1! H\� ! �
�
�! �.�/ ! 1:

(1)

We also notice that �H WD�\H is Zariski-dense in H, and �.�/ is Zariski-dense
in U. Furthermore since U is a unipotent Q-group, there is a Q-section s WU!G

(alternatively G is isomorphic to H�U as a Q-variety (and not as a Q-group)).
This way we view G as a fiber bundle over U and each fiber is a shifted copy of
the perfect group H.

The general idea is that in order to find “lots” of desirable points in � . First
we find “lots” of desirable base points in �.�/ and then above each one of them
in the fiber we find “lots” of desirable points. It is clear that for the above scheme
to work we need to prove certain “uniformity” for the number of prime factors r

and ramified primes S for the base points and the fibers.
Let us make these more precise. Since G as a Q-variety is isomorphic to

H�U, there are fi 2QŒH� and pi 2QŒU� such that fi are linearly independent
over Q and f D

P
fi ˝ qi , i.e.,

f .g/D
X

i

qi.�.g//fi

�
s.�.g//�1g

�
;

for any g2G. Since U is unipotent, QŒU� is isomorphic to the ring of polynomials
in dim U many variables. Let p WD gcd qi and pi D qi=p. So, for any 
 2 � ,

f .
 /D p.�.
 //
X

i

pi.�.
 //fi

�
s.�.
 //�1


�
: (2)

So if f .
 / has few prime factors, then p.�.
 // and gcdi.pi.�.
 /// also have
few prime factors. Thus, in the unipotent case, we need a stronger result:

Theorem 4 [Salehi Golsefidy and Sarnak 2013, Theorem 4]. Let ƒ be a finitely
generated Zariski-dense subgroup of U.Q/ where U is a unipotent Q-group. Let
p;p1; : : : ;pk 2QŒU�. Assume gcd.p1; : : : ;pk/D 1. Then there are a positive
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integer r and a finite set of primes S such that

ƒr;S .pIp1; : : : ;pk/ WD
n
� 2ƒ

ˇ̌̌
p.�/ has at most r prime factors in ZS

and gcdi.pi.�//D 1 in ZS

o
is Zariski-dense in U.

The main tools in the proof of Theorem 4 are Malcev theory of lattices in
unipotent Lie groups [Raghunathan 1972] and Brun’s combinatorial sieve.

First we notice that ƒ is a discrete subgroup of U.R/. Then, by Malcev
theorem, since ƒ is discrete and Zariski-dense in U.R/, it is a lattice in U.R/.
Thus log.ƒ/ contains a lattice of Lie.U/.Q/. Since U is a unipotent group, the
logarithm is a polynomial map. Hence it is enough to handle the vector group
case. We handle this using Brun’s combinatorial sieve and a careful induction
on the dimension.

By Theorem 4, X D �.�/r;S .pI .pi/i/ is Zariski-dense in U. We treat any
x 2X as a base point and look at the fiber above it. For any x 2X , fix 
x 2 �

such that �.
x/D x. By (2), for any 

H
2 � \H, we have

f .
x
H /D p.x/
X

i

pi.x/fi.s.x/
�1
x
H /

D p.x/L
xs.x/�1

�X
i

pi.x/fi

�
.
H /: (3)

From (3) and Theorem 4, one can easily prove Theorem 3 using the following.

Theorem 5 [Salehi Golsefidy and Sarnak 2013, Theorem 6]. Let � be a finitely
generated, Zariski-dense subgroup of a perfect, Zariski-connected Q-group
G � GLn. Let S0 be a finite set of primes and f1; : : : ; fm 2 QŒG� be linearly
independent over Q. Then there are a positive integer r and a finite set of primes
S such that �r;S .Lg.

P
i vifi// is Zariski-dense in G for any g 2G\GLn.ZS0

/

and primitive integer vector .v1; : : : ; vn/.

To prove Theorem 5, we start with a single regular function and describe how
r and S depend on f and � . And then using our description, we uniformly
control these parameters for Lg

�P
i vifi

�
.

We must carefully define a set of ramified primes S�;f with respect to �
and f . For given q, let �q denote the reduction map modulo q, and fq the finite
field of order q. The set S�;f will essentially consists of primes where either
�p.�/ is “small” or V .f /.fp/

8 is “large”. By strong approximation [Nori 1987],
one knows that S�;f is finite.

Using the Bourgain–Gamburd–Sarnak sieve method, we prove the following.

8Here we are abusing notation: V .f /.fp/ denotes the set of solutions of f in H.fp/.
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Theorem 6 [Salehi Golsefidy and Sarnak 2013, Theorem 5]. In the above setting
if H is perfect and Zariski-connected and f 2QŒH�, then �r;S�;f

.f / is Zariski-
dense for some positive integer r which depends on the spectral gap of the
congruence quotients of � , the degree of V .f / and jS�;f j.

To execute the Bourgain–Gamburd–Sarnak sieve method, one needs to estimate
the number of elements of V .f /.fp/. This can be done using [Lang and Weil
1954] and Chebotarev density theorem (this is needed as V .f / is not necessarily
geometrically irreducible).

After proving Theorem 6, we can finish proof of Theorem 5 using this:

Proposition 7 [Salehi Golsefidy and Sarnak 2013, Proposition 29]. In the above
setting, [

g2H\GLn.ZS0
/

gcdi viD1

S�;Lg.
P

i vifi /

is finite.

Theorem 8 ([Salehi Golsefidy and Varjú 2012, Theorem 1]). Let � be a fi-
nite symmetric subset of GLn.ZS / and � D h�i. Let G be its Zariski clo-
sure and Gı be its Zariski-component of the identity. Then the Cayley graphs
Cay.�q.�/; �q.�// form a family of expanders as q runs through square-free
S -integers if and only if Gı is perfect.

Theorem 8 is the main analytic tool in the proof of the fundamental theorem
of the affine sieve. In the next section, I explain very briefly the outline of proof
of Theorem 8 and the groundbreaking results which are behind its proof.

2. Expansion properties of linear groups

2.1. Expanders, “thin” subgroups and triple-product: formulation and recent
results. In lots of problems in communication, one needs high connectivity and
low cost. In other words, arbitrarily large highly connected sparse graphs. Such
a family of finite graphs is called a family of expanders. Expanders have various
interesting applications in computer science and number theory. I refer the reader
to the beautiful surveys by A. Lubotzky [2012] and E. Kowalski [2010]. Here I
mostly discuss the recent breakthroughs related to Theorem 8.

The first explicit construction of expanders is due to Margulis. He made a
remarkable observation that the Cayley graphs of finite quotients of a discrete
group with property (T) form expanders. The same ideas show that using
Selberg’s theorem one can deduce that the Cayley graphs

Cay
�
SL2.Z=nZ/;

˚�
1
0
˙1
1

�
;
�

1
˙1

0
1

�	�
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form expanders though SL2.Z/ does not have property (T) (in fact it is virtually
free). As a result of works of many mathematicians (to name a few Kazhdan,
Selberg, Margulis, Burger, Sarnak and Clozel) using automorphic forms and
representation theory, the following is proved [Kazhdan 1967; Margulis 1973;
Selberg 1965; Sarnak and Xue 1991; Burger and Sarnak 1991; Clozel and Ullmo
2004; Clozel 2003].

Theorem 9. Let G � GLn be a semisimple simply connected Q-group, and
assume � D G\GLn.ZS /D h�i is an infinite group. Then the Cayley graphs
Cay.�m.�/; �m.�// form a family of expanders as m runs through positive
integers.

Lubotzky was the first to ask if a thin group, that is, a Zariski-dense subgroup
of infinite index in an arithmetic lattice, has the same property. He asked if

Cay
�
SL2.fp/;

˚�
1
0
˙3
1

�
;
�

1
˙3

0
1

�	�
form expanders or not.9 Y. Shalom [1997; 1999] constructed the first thin
group with certain finite quotients whose Cayley graphs form expanders (not
congruence quotients). A. Gamburd [2002] is the first to prove Lubotzky’s
question for “large” thin subgroups of SL2.Z/. He proved that if the Hausdorff
dimension of the limit set of a subgroup of SL2.Z/ is larger than 5=6, then
the Cayley graphs of its congruence quotients modulo primes form a family of
expanders.

Bourgain and Gamburd [Bourgain and Gamburd 2008b] completely answered
Lubotzky’s question in groundbreaking work. They proved that, if � D h�i �
SL2.Q/ is Zariski-dense in SL2, then Cay.�p.�/; �p.�// form expanders as p

runs through large primes. The steps and the ideas of their proof also gave the
general framework for all recent work on this area. One of the main tools in
their proof is a breakthrough by Helfgott [2008], who proved that if a symmetric
generating set A of SL2.fp/ is not very large — jAj � jSL2.fp/j

1�" — then its
triple-product gets exponentially larger — jA:A:Aj � jAj1Cı. Using this result
coupled with Tao’s noncommutative version [2008] of Balog–Szemerédi–Gowers,
Bourgain and Gamburd proved a measure-theoretic version of the triple-product
theorem (“l2-flattening phenomena”). (In the next section, I elaborate on this.)
Then using Kesten’s bound concerning the random walk on a free group and the
fact that any proper algebraic subgroup of SL2 is virtually solvable, they proved
that the probability of being in a proper subgroup of SL2.fp/ after an l � log.p/-
step random walk is small (“Escape from proper subgroups”). They finished the
proof using a lower bound on the dimension of a nontrivial complex irreducible
representation of SL2.fp/ (this idea goes back to [Sarnak and Xue 1991]).

9Now it is called Lubotzky’s 1-2-3 problem.
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To execute the affine sieve method, Bourgain, Gamburd and Sarnak [2010]
considered square-free congruences. They proved that Cay.�q.�/; �q.�// form
expanders as q runs through square-free integers if � is a Zariski-dense subgroup
of SL2.Z/. They also conjectured that the “if” part of Theorem 8 should hold if
G is a semisimple group and � � G\GLn.Z/. First they proved a sum-product
theorem for Z=qZ, where q is a square-free integer. Then following Helfgott’s
argument they proved a triple-product theorem for SL2.Z=qZ/ for a square-free
integer q. They continued similar to [Bourgain and Gamburd 2008b]. Later P.
Varjú [2012] gave an elegant proof that if a family of finite quasisimple groups
satisfy a Helfgott-type triple-product property and some additional technical
conditions, then any product of them also satisfies the triple-product property.
He further showed how to use Tits’s kind of argument to escape from proper
subgroups when G'Rk=Q.SLn/ (k is a number field) and � � SLn.Ok/.

The next groundbreaking result is the generalization of Helfgott’s result to
any quasisimple finite group due to independent works of Breuillard, Green and
Tao [Breuillard et al. 2011] and Pyber and Szabó [2010]. The main tools in
their proofs are Helfgott’s ideas (specially the ideas presented in [Helfgott 2011],
where he proved that SL3.fp/ has the triple-product property) and Larsen–Pink
inequality [2011].

Theorem 8 mostly relies on [Bourgain and Gamburd 2008b; Breuillard et al.
2011; Pyber and Szabó 2010; Varjú 2012].

2.2. Outline of the proof of Theorem 8. For the “only if” part, it is enough
to know that Cay.�qi

.�/; �qi
.�// form expanders for an infinite sequence of

positive integers qi . One can easily prove this using the following.

(1) � \Gı is a congruence subgroup of � . And so without loss of generality
one can assume that G is Zariski-connected.

(2) There is a uniform upper bound for the order
ˇ̌
�qi
.�/=Œ�qi

.�/; �qi
.�/�

ˇ̌
of

the abelianization of �qi
.�/.

(3) �=Œ�; �� is a Zariski-dense finitely generated subgroup of .G=ŒG;G�/.Q/.

(4) �qi
commutes with � W G ! G=ŒG;G� when qi has large enough prime

factors.

To prove the “if” part, similar to all the recent works on this subject [Bourgain
and Gamburd 2008b; 2008a; 2009; Bourgain and Varjú 2012], we prove escape
from proper subgroups and l2-flattening.

The general picture of a random walk on the Cayley graph of �q.�/. Let us
first remark that Gq;� WD Cay.�q.�/; �q.�// form a family of expanders if
and only if the random walk on �q.�/ with the probability law �q ŒP�� gets
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arbitrarily close to the equidistribution in l � log q-steps. So we essentially study
this random walk and the idea is this:

(1) If � is chosen carefully, then after O.log q/-steps not only the probability
law is not concentrated on any point but even it is not concentrated on any
coset of a proper subgroup. This is called escape from proper subgroups.

(2) If we start with a probability law which is not concentrated on a coset of a
proper subgroup, then either already the probability of being at the identity
is pretty close to 1=j�q.�/j or the probability of returning to identity gets
much closer in the next step of the random walk (we get a power-saving).
This is called l2-flattening.

(3) At this stage, we can appeal to [Sarnak and Xue 1991] and use representation
theory to say that in finitely many steps we get a flat probability law.

The precise formulation of “escape from proper subgroups” and the ideas
behind its proof. First for simplicity, let us assume that � freely generates � .
So Cay.�;�/ is a regular tree which is the covering space of all the finite graphs
Gq;�. And the random walk on �q.�/ in O.log q/-steps can be completely
understood by the random walk on the tree. This means in order to understand
the behavior of the random walk on �q.�/ in O.log q/-steps, one can focus on
the behavior of the random on � and study “small” lifts of elements of �q.�/

(here we view ZS as a discrete subgroup of R �
Q

p2S Qp and use the S -norm).
On the other hand, notice that the weight of a proper subgroup H with

respect to the normalized counting (probability) measure on �q.�/ is equal
to Œ�q.�/ W H ��1. If we want to get arbitrarily close to this probability law
in l � log q-steps, we should be able to get �q ŒP.l/� �.H /� Œ�q.�/ W H ��ı in
l DO.log q/-steps.

Proposition 10. Let � � GLn.Q/ be a finite set and � D h�i. Assume the
Zariski closure G of � is Zariski-connected and perfect. Then there are ı > 0

and a finite symmetric subset �0 � � such that

�q ŒP.l/�0 �.H /� Œ�q.�/ WH ��ı;

for any proper subgroup H of �q.�/ and any even integer l � log q.

Here �.l/ is the l-fold convolution of � with itself and for any S and q, �q is
either the quotient map from ZS ! ZS=qZS or any other similar map.

To prove Proposition 10, by the above discussion, we have to look at small
lifts of elements of H . Using Nori’s theorems [1987], we prove that small lifts
of a large subgroup of H are in a proper algebraic subgroup of G. So we have to
prove that the weight of any proper algebraic subgroup of G in the random walk
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on � with respect to the probability law P�0 exponentially decays (for some
choice of �0 � �).

In the spirit of Chevalley’s theorem, we look for projective representations
such that a proper algebraic subgroup fixes a point in one of them. If we had
finitely many irreducible representations �i W G! GL.Vi/ such that

(1) for any i , �i.�/ contains proximal elements, and

(2) any proper connected algebraic subgroup fixes a point in P.Vi/ for some i ,

then we could have used Tits’s method to find “ping-pong players” which move
around any projective point in all of these representations. And then finish the
proof using Kesten’s bounds for random walks on a tree.

In fact, if � � G\GLn.Z/ and G is semisimple, then it is relatively easy to
construct such representations (using [Goldsheid and Margulis 1989]). However,
if G is not semisimple, then the unipotent radical is in the kernel of any irreducible
representation. So one needs another technique to detect proper subgroups of G

which map onto the semisimple part of G. Even when G is semisimple and we are
in S -arithmetic setting, finding these representations would be still challenging
(as [Goldsheid and Margulis 1989] does not work over nonarchimedean fields).

To overcome these difficulties, we construct finitely many irreducible repre-
sentations �i WG!GL.Vi/ (which factor through the semisimple part of G) and
algebraic families f�i;w W G! Aff.Vi/gw2Wi

of affine representations defined
over local fields Ki (the base parameter w changes in a vector group Wi) such
that:

(1) The linear part of �i;w is �i and G.Ki/ does not fix any point in Vi.Ki/

via �i;w for any w ¤ 0 (the representations above 0 take care of proper
subgroups which do not surject onto the semisimple part of G).

(2) For any i , �i.�/ is unbounded in GL.Vi.Ki//.

(3) Any proper connected algebraic subgroup H of G either

(a) fixes a projective point in P.Vi.Ki// via �i for some i , or
(b) fixes a point v in Vi.Ki/ via �i;w for some i and norm one vector

w 2Wi.Ki/.

We also give a somewhat new technique for constructing “ping-pong players”
which does not rely on the existence of proximal elements.

We finish the proof of Proposition 10 studying random walks in affine spaces
and proving that the probability of staying in a bounded set decays exponentially.

The precise statement of l2-flattening. I have already given its formulation in
item (2). Let us see the precise statement.
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Proposition 11. Let � and G be as in Proposition 10. Then for any " > 0, there
is ı > 0 such that the following holds:

Let � be a probability measure on �q.�/. Assume that

k�k2 > j�q.�/j
�1=2C" and �.gH / < Œ�q.�/ WH ��";

for any g 2 �q.�/ and any proper subgroup H < �q.�/. Then

k���k2 < k�k
1Cı
2

;

for any square-free integer q.

As I said earlier, [Bourgain and Gamburd 2008b] (also see [Varjú 2012]) used
Tao’s noncommutative version of Balog–Szemerédi–Gowers theorem to prove
that, for a symmetric probability measure � on a group, ��� is not substantially
flatter than � only when � �� is concentrated on an almost subgroup. So to
prove Proposition 11, one has to understand almost subgroups of �q.�/; or
alternatively prove a triple-product theorem.

When G is semisimple, one can get such a result using works of [Breuillard
et al. 2011] or [Pyber and Szabó 2010] (to get prime modulus for simple groups)
and [Varjú 2012] (to extend it to square-free modulus for semisimple groups).
(I refer the reader to a nice survey by B. Green [2010]).

To extend it to perfect groups, we prove a kind of bounded generation result
and the general idea has some similarities with [Alon et al. 2001].

3. Final remarks and questions

Finding the best possible r (in [Bourgain et al. 2010], it is called the satura-
tion number) and S for a given � and f in the setting of Theorem 3 is an
extremely hard task. I have already mentioned the connection of this question
with twin prime and Hardy–Littlewood conjectures. In [Bourgain et al. 2010],
more interesting connections are mentioned, for example, divisibility of area of
Pythagorean triangles and integral Apollonian circle packings (ACP). And since
then, there have been lots of works on integral ACP, for example: [Bourgain
and Fuchs 2011; Kontorovich and Oh 2011; Bourgain and Kontorovich 2012].
The main tool in the study of an integral ACP is its group A of symmetries. It
is observed that A is a Kleinian group which is generated by a set of Möbius
inversions S D fs1; s2; s3; s4g (see [Graham et al. 2003] or [Sarnak 2007]). For
instance, already in [Sarnak 2007], it is showed that in any primitive ACP there
are infinitely many pairs of tangent circles with prime curvatures. In fact, much
stronger result is proved. Sarnak considered the nerve N.P/ of a given ACP P ,
that is, a graph whose vertices are circles in P and, for C1;C2 2 P , fC1;C2g is
an edge if and only if C1 and C2 are tangent. Then he considered the subgraph
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generated by vertices N P .P/ with prime curvature and proved that this subgraph
is a union of trees all of whose vertices are of infinite degree (in particular, there
are arbitrarily large chain of circles).

Now I would like to add a bit more structure to the nerve N.P/ of P . Let
us attach 2-cells and 3-cells to N.P/ to get a contractible space and call it the
simplicial complex C.P/ of P . For a given positive integer r , let CP

r .P/ be
the contractible subcomplex generated by the vertices whose curvature has at
most r prime factors, for example, CP

1
.P/ D N P .P/. A corollary of Fuchs’

result [2010] implies that CP
28
.P/ has infinitely many 3-cells (her result even

implies that the boundary of the nerve of the 3-cells in CP
28
.P/ is also infinite).

Conjecturally the same result should be true for CP
2
.P/.

In light of the recent advancements, it seems interesting to study these com-
plexes.

Question 12. In the above setting:

(1) [Sarnak 2007] Study the densities and the distributions of the connected
components of N P .P/.

(2) What can we say about the 2-cells and the 3-cells of CP
r .P/?

(3) Is there any r such that CP
r .P/ contains arbitrarily large chains of 3-cells?

For each 3-cell C in C.P/, let p.C / be the product of the curvatures of its
vertices. For any path w D .1 D 


1
; : : : ; 


k
/ of length k in the Cayley graph

Cay.A;S/ which starts from the identity and any 3-cell C , we can consider
fw.C / WD

Q
i p.
i �C /. So fw is a polynomial of degree 4k which is a product

of 4k linear functions. Then Theorem 3 (together with the bound on r given
in the proof!) says that there is a positive integer r0 such that �r0k2;¿.fw/ is
Zariski-dense in �; in particular, there are infinitely many chains of length k

in CP
r0k2.P/. The third part of Question 12 (in average) asks if �r0k;¿.fw/ is

infinite for some w.
Question 12 can be a test to see how much we can push affine sieve methods

and get better bounds for the saturation number. When � is a lattice in a
semisimple Lie group, using best bounds toward Ramanujan conjecture, Nevo
and Sarnak [2010] gave sharp bounds on the saturation number which are similar
to the bounds known for the classical case of one variable. I believe the next
place to look for such bounds is where � is a thin group which contains a lattice
in a subgroup (similar to the group of isometries of the ACP).

The general philosophy behind Lubotzky’s 1-2-3 problem is that the Zariski-
topology of � not only dictates the congruence topology on � (by strong approx-
imation [Weisfeiler 1984], when G is simply connected semisimple) but also
tells us about the analytical behavior of the congruence quotients. Theorem 8
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says that indeed this way of thinking is completely true if � � GLn.Q/. To be
precise, if �1 and �2 generate two Zariski-dense subgroups of G\GLn.ZS /,
then either both of the families fGq;�1

g and fGq;�2
g as q runs through square-

free S-integers are expanders or neither of them are. However as soon as we
enlarge Q, Zariski-topology might not detect some of the properties of � (see
[Salehi Golsefidy and Varjú 2012, Example 5]):10

Example 13. There are finite subsets�1 and�2 of GLn.ZŒi �/ such that fGq;�1
g

is a family of expanders as q runs through square-free Gaussian integers and
fGq;�2

g is NOT a family of expanders as q runs through square-free Gaussian
integers.

Let H be the Heisenberg group scheme over Z and C be its scheme-theoretic
center. Then it is well-known that the symplectic group scheme Sp.V/ acts on
H (where dimVQ D dimHQ�1). Let LD Sp.V/ËH. And let �1 be the group
generated by L.Z/ and C.ZŒi �/ in �2 D L.ZŒi �/. Then one can show that for any
generating sets �1 and �2 of �1 and �2, respectively, we have:

(1) �1 and �2 are both Zariski-dense in LQŒi�;

(2) fCay.�q.�1/; �q.�1//g is not a family of expanders as q runs through
square-free Gaussian integers;

(3) fCay.�q.�2/; �q.�2//g is a family of expanders as q runs through square-
free Gaussian integers.

Though Example 13 says that in general even over a number field one should
be cautious, it should be said that if the Zariski closure is semisimple we are in
good shape [Salehi Golsefidy and Varjú 2012, Corollary 6]:

Corollary 14. If a finite set � � GLn.Q/ generates a Zariski-dense subgroup
of an adjoint form semisimple group, then fGq;�g is a family of expanders as q
runs through square-free ideals of Ok.S/ for some S , where k is the trace-field
of h�i.

Now one can ask if Corollary 14 is true for a linear group over C (or any
other field) and arbitrary finite index ideals. (This is a form of [Lubotzky 2012,
Conjecture 2.25]; also, see [Salehi Golsefidy and Varjú 2012, Question 4]).

Question 15. If a finite set �� GLn.C/ generates a Zariski-dense subgroup of
an adjoint form semisimple group, then is fGa;�g a family of expanders as a runs
through finite index ideals of the trace ring of h�i?

If one just wants to relax the square-free condition, then it should be true in
the generality of Theorem 8:

10This shows [Lubotzky 2012, Conjecture 2.25] as written is not correct.



340 ALIREZA SALEHI GOLSEFIDY

Conjecture 16. If a finite subset � � GLn.Q/ generates a Zariski-dense sub-
group of a perfect Zariski-connected group, then fGm;�g is a family of expanders
as m runs through all the positive integers.

Bourgain and Varjú [2012] proved Conjecture 16 when � � SLn.Z/ is Zariski-
dense in SLn (earlier a similar result for powers of primes was proved by Bourgain
and Gamburd [2008a; 2009]).

Another interesting question is if the positive characteristic analogue of
Theorem 8 (or its generalizations to arbitrary modulus) holds [Salehi Golsefidy
and Varjú 2012, Question 3].

Question 17. If a finite subset � � GLn.fl.t// generates a Zariski-dense sub-
group of a perfect Zariski-connected group, then is fGq.t/;�g a family of ex-
panders as q.t/ runs through square-free polynomials with large degree prime
factors?

Since Nori’s theorems are extensively used in [Salehi Golsefidy and Varjú
2012] and they do not hold over fl.t/, one needs new ideas to handle Question 17.
An affirmative answer to Question 17 have immediate applications to arithmetic
over global function fields and sieve methods in group theory in the sense of
[Lubotzky and Meiri 2012].

Acknowledgments

I am grateful to Peter Sarnak and Peter Varjú for their collaborations. I am in
debt to Peter Sarnak for pointing out his description of the “prime subgraph” of
the nerve of an integral ACP. I would like to thank the anonymous referee for
comments and suggestions.

References

[Alon et al. 2001] N. Alon, A. Lubotzky, and A. Wigderson, “Semi-direct product in groups
and zig-zag product in graphs: connections and applications (extended abstract)”, pp. 630–637
in 42nd IEEE Symposium on Foundations of Computer Science (Las Vegas, NV, 2001), IEEE
Computer Soc., Los Alamitos, CA, 2001.

[Bourgain and Fuchs 2011] J. Bourgain and E. Fuchs, “A proof of the positive density conjecture
for integer Apollonian circle packings”, J. Amer. Math. Soc. 24:4 (2011), 945–967.

[Bourgain and Gamburd 2008a] J. Bourgain and A. Gamburd, “Expansion and random walks in
SLd .Z=p

nZ/, I”, J. Eur. Math. Soc. .JEMS/ 10:4 (2008), 987–1011.

[Bourgain and Gamburd 2008b] J. Bourgain and A. Gamburd, “Uniform expansion bounds for
Cayley graphs of SL2.Fp/”, Ann. of Math. .2/ 167:2 (2008), 625–642.

[Bourgain and Gamburd 2009] J. Bourgain and A. Gamburd, “Expansion and random walks in
SLd .Z=p

nZ/, II”, J. Eur. Math. Soc. .JEMS/ 11:5 (2009), 1057–1103.

[Bourgain and Kontorovich 2012] J. Bourgain and A. Kontorovich, “On the strong density
conjecture for integral Apollonian circle packings”, preprint, 2012. arXiv 1205.4416



AFFINE SIEVE AND EXPANDERS 341

[Bourgain and Varjú 2012] J. Bourgain and P. P. Varjú, “Expansion in SLd .Z=qZ/, q arbitrary”,
Invent. Math. 188:1 (2012), 151–173.

[Bourgain et al. 2010] J. Bourgain, A. Gamburd, and P. Sarnak, “Affine linear sieve, expanders,
and sum-product”, Invent. Math. 179:3 (2010), 559–644.

[Breuillard et al. 2011] E. Breuillard, B. Green, and T. Tao, “Approximate subgroups of linear
groups”, Geom. Funct. Anal. 21:4 (2011), 774–819.

[Bugeaud et al. 2005] Y. Bugeaud, F. Luca, M. Mignotte, and S. Siksek, “On Fibonacci numbers
with few prime divisors”, Proc. Japan Acad. Ser. A Math. Sci. 81:2 (2005), 17–20.

[Burger and Sarnak 1991] M. Burger and P. Sarnak, “Ramanujan duals, II”, Invent. Math. 106:1
(1991), 1–11.

[Clozel 2003] L. Clozel, “Démonstration de la conjecture �”, Invent. Math. 151:2 (2003), 297–
328.

[Clozel and Ullmo 2004] L. Clozel and E. Ullmo, “Équidistribution des points de Hecke”, pp.
193–254 in Contributions to automorphic forms, geometry, and number theory, edited by H. Hida
et al., Johns Hopkins Univ. Press, Baltimore, 2004.

[Fuchs 2010] E. Fuchs, Arithmetic properties of Apollonian circle packings, Ph.D. thesis, Princeton
University, 2010, http://math.berkeley.edu/~efuchs/efuchsthesis.pdf.

[Gamburd 2002] A. Gamburd, “On the spectral gap for infinite index “congruence” subgroups of
SL2.Z/”, Israel J. Math. 127 (2002), 157–200.

[Goldsheid and Margulis 1989] I. Y. Goldsheid and G. A. Margulis, “Lyapunov exponents of a
product of random matrices”, Uspekhi Mat. Nauk 44:5(269) (1989), 13–60. In Russian. Transla-
tion in Russian Math. Surveys 44:5 (1989), 11–71.

[Graham et al. 2003] R. L. Graham, J. C. Lagarias, C. L. Mallows, A. R. Wilks, and C. H. Yan,
“Apollonian circle packings: number theory”, J. Number Theory 100:1 (2003), 1–45.

[Green 2010] B. Green, “Approximate groups and their applications: work of Bourgain, Gamburd,
Helfgott and Sarnak”, 2010. Lecture at the Joint Mathematics Meetings of the American Math.
Soc., San Francisco, January 15, 2010).

[Green and Tao 2010] B. Green and T. Tao, “Linear equations in primes”, Ann. of Math. .2/ 171:3
(2010), 1753–1850.

[Green and Tao 2012] B. Green and T. Tao, “The Möbius function is strongly orthogonal to
nilsequences”, Ann. of Math. .2/ 175:2 (2012), 541–566.

[Green et al. 2012] B. Green, T. Tao, and T. Ziegler, “An inverse theorem for the Gowers U sC1ŒN �-
norm”, Ann. of Math. .2/ 176:2 (2012), 1231–1372.

[Halberstam and Richert 1974] H. Halberstam and H. Richert, Sieve method, Academic Press,
New York, 1974.

[Hardy and Wright 1979] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers,
5th ed., Oxford University Press, New York, 1979.

[Helfgott 2008] H. A. Helfgott, “Growth and generation in SL2.Z=pZ/”, Ann. of Math. .2/ 167:2
(2008), 601–623.

[Helfgott 2011] H. A. Helfgott, “Growth in SL3.Z=pZ/”, J. Eur. Math. Soc. .JEMS/ 13:3 (2011),
761–851.

[Kazhdan 1967] D. A. Kazhdan, “On the connection of the dual space of a group with the structure
of its closed subgroups”, Funkcional. Anal. i Prilozhen. 1 (1967), 71–74. In Russian. Translation
in Functional Analysis and its Applications, 1 (1967) (1) 63–65.



342 ALIREZA SALEHI GOLSEFIDY

[Kontorovich and Oh 2011] A. Kontorovich and H. Oh, “Apollonian circle packings and closed
horospheres on hyperbolic 3-manifolds”, J. Amer. Math. Soc. 24:3 (2011), 603–648.

[Kowalski 2010] E. Kowalski, “Sieve in expansion”, Preprint, 2010. arXiv 1012.2793v1

[Lang and Weil 1954] S. Lang and A. Weil, “Number of points of varieties in finite fields”, Amer.
J. Math. 76 (1954), 819–827.

[Larsen and Pink 2011] M. J. Larsen and R. Pink, “Finite subgroups of algebraic groups”, J. Amer.
Math. Soc. 24:4 (2011), 1105–1158.

[Lubotzky 2012] A. Lubotzky, “Expander graphs in pure and applied mathematics”, Bull. Amer.
Math. Soc. .N.S./ 49:1 (2012), 113–162.

[Lubotzky and Meiri 2012] A. Lubotzky and C. Meiri, “Sieve methods in group theory I: Powers
in linear groups”, J. Amer. Math. Soc. 25:4 (2012), 1119–1148.

[Margulis 1973] G. A. Margulis, “Explicit constructions of expanders”, Problemy Peredači
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