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We give a brief overview of the developments in the theory, especially the
fundamental expansion theorem. Applications to diophantine problems on
orbits of integer matrix groups, the affine sieve, group theory, gonality of
curves and Heegaard genus of hyperbolic three manifolds, are given. We also
discuss the ubiquity of thin matrix groups in various contexts, and in particular
that of monodromy groups.

1. The fundamental expansion theorem

The Chinese remainder theorem for SL,(Z) asserts, among other things, that
for g > 1, the reduction 7, : SL,,(Z) — SL,(Z/qZ) is onto. Far less elementary
is the extension of this feature to G (Z) where G is a suitable matrix algebraic
group defined over Q0. The general form of this phenomenon for arithmetic
groups is known as strong approximation and it is well understood [Platonov
and Rapinchuk 1994].

There is a quantification of the above that is not as well known as it should be,
as it turns out to be very powerful in many contexts. We call this “superstrong”
approximation and it asserts that if we choose a finite symmetric (s € S if s~ € 5)
generating set S of SL,(Z), then the congruence Cayley graphs (X, S) form an
expander family as g goes to infinity (see [Hoory et al. 2006] for the definition
and properties of expanders). Here the vertices x of the |S|-regular connected
graph (X,, §) are the elements of SL,(Z/qZ) and the edges run from x to sx,
s € §. The proof of this expansion property for SL,(Z) has its roots in Selberg’s
lower bound of 13—6 for the first eigenvalue A; of the Laplacian on the hyperbolic
surface I"\H, I" a congruence subgroup of SL,(Z) [Selberg 1965]. This bound is
an approximation to the Ramanujan/Selberg conjecture for automorphic forms on
GL, /Q. The generalizations of the expansion property to G(Z) where G is say a
semisimple matrix group defined over Q is also known thanks to developments to-
wards the general Ramanujan conjectures that have been established [Burger and
Sarnak 1991; Clozel 2003; Sarnak 2005]. This general expansion for these G (Z)
also goes by the name “property t”° for congruence subgroups [Lubotzky 2005].
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Let I" be a finitely generated subgroup of GL,,(Z) (more generally later on we
allow it to be in GL,,(K) where K a number field) and denote its Zariski closure:
Zcl(I'), by G. If I is of finite index in G (Z), then the discussion above of strong
and superstrong approximation can be applied. However, if I” is of infinite index
in G(Z), then Vol(I"\G(R)) = oo and the techniques used to prove both of these
properties don’t apply. In this case we call I" “thin”. It is remarkable that under
suitable natural hypotheses, strong approximation continues to hold in this thin
context. The first result in this direction is [Matthews et al. 1984], and Weisfeiler
extended it much further. More recent and effective treatments of this can be
found in [Nori 1987] and [Larsen and Pink 2011]. An example of the statement
of strong approximation in this context is: suppose that Zcl(I") = SL,,, then there
is a go = go(I") such that m, : I' — SL,(Z/qZ) is onto whenever (g, go) = 1.
That the expansion property might continue to hold for thin groups was first
suggested by Lubotzky [1993]. Thanks to a number of major developments by
many people [Sarnak and Xue 1991; Gamburd 2002; Helfgott 2008; Bourgain
and Gamburd 2008b; Bourgain et al. 2010; Pyber and Szab6 2010; Breuillard
et al. 2011; Varja 2012], the general expansion property is now known. The
almost final version (almost because of the restriction that g be squarefree) is
due to Salehi and Varjd [2012].

Theorem (the fundamental expansion). Let I' < SL,,(Q) be a finitely gener-
ated group with a symmetric generating set S. Then the congruence graphs
(w4 (I'), S), for q squarefree and coprime to a finite set of primes (which depend
on I'), are an expander family if and only if G°, the identity component of
G :=Zcl(I'), is perfect (i.e., [G, G°1 = G°). Moreover the determination of
the expansion constant is in principle effective, if not feasible.

I will not review the techniques leading to the proof of this theorem (they
have been discussed in many places including Kowalski and Tao’s blogs) other
than to point out that it involves three steps, the opening, the middlegame and
the endgame. The endgame establishes the expansion by combining sufficiently
strong (but still quite crude) upper bounds for the number of closed circuits
in these graphs with largeness properties of the dimensions of the irreducible
representations of the finite groups G(Z/qZ). In some cases (indeed all for
which reasonable bounds for the expansion are known) the proof involves the
endgame only [Sarnak and Xue 1991; Gamburd 2002]. In the general case, the
upper bounds for the number of closed circuits is derived combinatorially. The
opening and middlegame involve showing that smaller subsets of G(Z/pZ) grow
substantially when multiplied by themselves at least three times (see [Helfgott

U1t remains an open problem how to match to some extent in this general setting the quality of
expansion that is known when I” is arithmetic.
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2008] and the extensions [Pyber and Szab6 2010] and [Breuillard et al. 2011]). A
critical ingredient in the early treatments was the “sum-product” theorem [Bour-
gain et al. 2004] in finite fields. The middlegame is concerned with moderately
large sets and is further handled by the crucial “flattening lemma” [Bourgain
and Gamburd 2008b]. The latter also has its roots in combinatorics appealing
to the Balog—Szemeredi theorem [Balog and Szemerédi 1994; Gowers 2001].
When ¢ is not prime, the analysis and combinatorics is far more complicated
and difficult due to the many subgroups of G(Z/qZ). It is handled in [Bourgain
et al. 2010] for SL; and in [Varjd 2012] in general.

2. Applications

2.1. The affine sieve and diophantine analysis. The impetus for developing the
expansion property for thin groups arose in connection with diophantine problems
(in particular sieve problems for values of polynomials) on orbits of such thin
groups [Bourgain et al. 2010]. Both strong approximation and superstrong
approximation are crucial ingredients in executing a Brun combinatorial sieve
in this setting. The theory is by now quite advanced and in particular the basic
theorem of the affine sieve has been established in all cases where it is expected
to hold [Salehi Golsefidy and Sarnak 2011].

For various special examples, such as for integral Apollonian packings, which
has turned out to be one of the gems of the theory [Sarnak 2011], much more
can be said thanks to special features. Firstly, in this case one can develop
an archimedean count for the number of points in an orbit in a large region.
This is done by combining spectral methods (using techniques which when
I' is a geometrically finite subgroup of O(n — 1, 1)(R) go back to [Patterson
1976; Sullivan 1979; Lax and Phillips 1982]) with ergodic theoretic methods
[Kontorovich and Oh 2011; Oh and Shah 2013; Lee and Oh 2013; Vinogradov
2012]. For the diophantine applications, one needs an archimedean spectral gap
for the induced congruence groups, rather than the combinatorial expansion.
[Bourgain et al. 2011] establishes the transfer of this information from the
combinatorial to archimedean setting in this infinite volume case.

Two recent highlights of these developments are the “almost all” local-to-
global results of [Bourgain and Kontorovich 2013a; 2013b]. The first concerns
integral Apollonian packings and the question is which numbers are curvatures?
The expected local-to-global conjecture [Graham et al. 2003; Fuchs and Sanden
2011] is proven for all but a zero density set of integers (the conjecture asserts
that there are only a finite number of exceptions). Prior to that Bourgain and
Fuchs [2011] had shown that the number of integers that are achieved is of
positive density. The second development concerns the Zaremba problem, which
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asserts that if A > 5, the set of integers ¢ > 1 for which thereisa 1 <b <g,
(b, g) = 1 and for which the coefficients of the continued fraction of b/q are
bounded by A, consists of all of N. In [Bourgain and Kontorovich 2013b] the
theory of thin subgroups of SL,(Z) is extended to thin semi(sub)groups (one has
to abandon direct spectral methods and replace them by dynamical ones [Lalley
1989; Bourgain et al. 2011]). In [Bourgain and Kontorovich 2013b] it is shown
that for A > 50, the set of exceptions to the Zaremba conjecture is of zero density
in N.

2.2. Random elements in I'. 1t is well known that for any reasonable notion
of randomness, the random f € Q[x] is irreducible and has Galois group the
full symmetric group on the degree of f symbols. In [Rivin 2008] the study of
such questions for the characteristic polynomial f,, of a random element y in
Sp(2g, Z) and more general I's, was initiated. The random element in Sp(2g, Z)
is generated by running a symmetric random walk with respect to a measure p
whose support generates Sp(2g, Z). The expansion property is used via a sieving
argument to show that the probability that f,, is reducible is exponentially small.
This and some generalizations are then coupled with the theory of the mapping
class group M to show that the random element in M is pseudo-Anosov. These
irreducibility questions and much more,? are extended and refined, especially
in terms of the sieves that are applied, in [Kowalski 2008; Jouve et al. 2013;
Lubotzky and Rosenzweig 2012]. Again, strong and superstrong approximation
plays a central role.

In a different direction, Lubotzky and Meiri [2012] examine some group
theoretic questions for linear groups using a random walk and a sieve. An example
of what they show is: Let I” be a finitely generated subgroup of GL,, (C) which is
not virtually solvable, then the set of proper powers P := |- ,{y™ :y € '}, is
exponentially small (in terms of hitting P in a long random walk). In particular,
this resolved an open question as to whether finitely many translates of P can
cover I', the answer being no.

2.3. Gonality and Heegaard genus. A compact Riemann surface of genus g
can be realized as a covering of the plane of degree at most g+ 1 (Riemann—Roch).
The gonality d(X) of X is the minimal degree of such a realization. Unlike
g(X), d(X) is a subtle conformal invariant. In [Zograf 1984] (see also [Yau
1996; Abramovich 1996]) the differential geometric inequality of [Yang and Yau
1980] is extended to the setting of X = I"\H, a finite area quotient (orbifold) of
the hyperbolic plane. If A(X) is its area and A;(X) its first Laplace eigenvalue,

2For example to showing that it is very unlikely that a random three dimensional manifold in
the Dunfield—Thurston model [2006], has a positive first Betti number.
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then
A(X)A(X)

d(X) = -

@-1)
This together with the known bounds towards the Ramanujan/Selberg conjectures
for congruence (arithmetic) Xs (see [Blomer and Brumley 2011] for the best
bounds for GL; /K, where K is a number field which is what is relevant here)
imply that for these Xs, the ratio of any two of d(X), A(X) and (g(X) + 1) is
bounded universally from above and below.

There is a generalization of (2-1) to finite volume quotients X = I"'\H™
(orbifolds) of hyperbolic m-space [Agol et al. 2008]. This is stated in terms
of Li and Yau’s notion [1982] of conformal volume. It gives an inequality
between Vol(X), A1(X) and the conformal volume of a piecewise conformal
map of X into S”. Again, this, together with the known universal lower bounds
for 11(X) when X is congruence arithmetic [Burger and Sarnak 1991; Clozel
2003], gives a linear in the volume, lower bound for the conformal volume of
a conformal map of X to $™. This has a nice application to reflection groups.
A discrete group of motions of H" is called a reflection group if it is generated
by reflections (a reflection of H” is a nontrivial isometry which fixes an m — 1
dimensional hyperplane). Using the inequalities mentioned above, one shows
(see [Long et al. 2006] for m =2 and [Agol et al. 2008] for m > 2) that the set of
maximal arithmetic reflection groups is finite for each m. Now Vinberg [1984]
and Prokhorov [1986] have shown that for m > 1000, a reflection group can
never be a lattice. Thus the totality of all maximal arithmetic reflection groups is
finite.

Equation (2-1) has interesting applications to diophantine equations. As
observed in [Abramovich 1991; Frey 1994], Faltings’ finiteness theorem [1991]
for rational points on subvarieties of abelian varieties can be used to prove
finiteness of rational points on curves, whose coordinates lie in the union of all
number fields of a bounded degree, as long as one can show the gonality of the
curve is large enough. For example, if X(N)/Q is the familiar modular curve of
level N and if D is given, then for N > 230D (this value following from (2-1) and
explicit Ramanujan bounds), the set of points on Xy(N) with coordinates in the
union of all number of fields of degree at most D, is finite! Recently Ellenberg,
Hall and Kowalski [Ellenberg et al. 2012] have applied similar reasoning to a
diophantine problem on a tower of curves. It arises from questions of reducibility
and symmetry of specializations of members of a 1-parameter family of varieties.
The curves that arise (as the parameter) are determined by the monodromy group
I' of the family (see below), and it lies in Sp(2g, Z) and is assumed to be Zariski
dense in Sp(2g). In order to show that the gonalities of the curves in question
increase quickly enough, they use the combinatorial expansion that is provided
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by the fundamental expansion theorem. Typically it is not known if I" is thin or
not in this context (see Section 3), but the beauty of the fundamental theorem is
that one does not need to know!

There is an inequality similar to (2-1) for the Heegaard genus of a hyperbolic
3-manifold X. It is known that such an X can be decomposed into two handle
bodies with common boundary a surface of genus / (called a Heegaard splitting).
The minimal genus of such a surface in a splitting is called the Heegaard genus
of X which we denote by g(X). Like the gonality, it is a much more subtle
(this time topological) invariant of X than its volume. In [Lackenby 2006] (see
Theorem 4.1 and [Buser 1982]) it is shown that for complete X of finite volume

- min[A;(X), 1]- Vol(X)
- 327 '

Applying this together with the universal lower bounds for A; for congruence
arithmetic X’s shows that the Heegaard genus of a congruence hyperbolic three
manifold is in order of magnitude, a linear function of its volume. In particular,
any arithmetic 3-manifold has an infinite tower (by congruence subgroups) of
coverings whose Heegaard genus grows linearly with the volume. One can ask
if the same is true for any hyperbolic 3-manifold and the answer is yes as was
shown in [Long et al. 2008]. Using local rigidity of lattices in SL,(C) one can
realize I" where X = I"\H>, as a finitely generated subgroup of SL,(K), where
K is some number field. If I' is not arithmetic then I” is thin (in SL,(Og)
perhaps allowing denominators at finitely many places), since its projection on
the identity embedding of K into C is discrete. Using the fundamental expansion
theorem gives a lower bound on A; for a “congruence tower” of I" and one then
applies (2-2).

A related application of the expansion is to some questions in knot theory.
Answering a question of Gromov, Pardon [2011] recently showed that there are
isotopy classes of knots in S> which have arbitrary large distortion. In fact he
shows that torus knots have this property. In [Gromov and Guth 2012] a large
family of knots with large distortion is constructed using hyperbolic 3-manifolds
X. Such an X can be realized as a degree 3 cover of S° branched over a knot
K [Hilden 1976; Montesinos 1976]. Gromov and Guth [2012] show that the
distortion §(K) of this K satisfies §(K) > Vol(X)A1(X), (the implied constant
being universal). From this and the lower bound for A; when X varies over
congruence arithmetic 3-manifolds (or a congruence thin tower and using the
fundamental expansion theorem) one concludes that K and all knots isotopic to
it has arbitrarily large distortion by choosing such X of large volume.

g(X) (2-2)

2.4. Rotation groups. Let I’ = (o1, 02, ..., 0y) be afinitely generated subgroup
of the group SO3(R). There is an archimedean analogue of the expander property
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for the congruence graphs in this setting and which likewise has many applications
[Lubotzky 1994; Sarnak 1990]. Define T, to be the averaging operator on
functions on the two sphere S? by:

t

T, f(x)=)_[flo;x)+ f(o;'0)]. (2-3)

j=1

T, is self adjoint on L?(S?%,dA), where d A is the rotation invariant area element
on §2, and its spectrum is contained in [—2¢, 2t]. The spectral gap property
is that 2¢ (which is an eigenvalue with eigenvector the constant function) is a
simple and isolated point of the spectrum. It is not hard to see that this property
depends only on I" and not on the generators. It is conjectured that I" has such
a spectral gap if and only if Zcl(I") = SOs (which in this case is equivalent
to the topological closure of I" being SO3(R)). A lot is known towards this
conjecture. The first example of a I" with a spectral gap was given by Drinfeld
[1984] and this provided the final step in the solution of the Ruziewicz problem;
that the only finitely additive rotationally invariant measure defined on Lebesgue
measurable subsets of S2, is a multiple of dA. His proof of the spectral gap
makes use of an arithmetic such I" together with the full force of automorphic
forms and the solution of the Ramanujan conjectures for holomorphic cusp forms
on the upper half plane. In [Gamburd et al. 1999] many thin I"s are shown to
have a spectral gap. The best result known is the analogue of the fundamental
expansion theorem in this context [Bourgain and Gamburd 2008a; 2010], and it
suffices for most applications. It asserts that if the matrix elements of members
of I" are algebraic, then the conjecture is true for I". Like the very thin cases
of the fundamental expansion theorem, part of the proof here relies on additive
combinatorics. This time one needs the full force of the proof of the local
Erdés—Volkmann ring conjecture [Edgar and Miller 2003; Bourgain 2003] — that
a subset of R which is closed under addition and multiplication has Hausdorff
dimension zero or one. As far as some concrete applications of the spectral
gap for these groups, we mention the speed of equidistribution of directions
associated with general quaquaversal tilings of three dimensional space [Draco
et al. 2000; Radin and Sadun 1998] and constructions of quantum gates in the
theory of quantum computation (the Solovay—Kitaev theorem; see [Harrow et al.
2002]).

3. Ubiquity of thin groups

Given a finitely generated group /" in GL,(Z), one can usually compute G =
Zcl(I") without too much difficulty. On the other hand, deciding if I” is thin
can be formidable. In fact one is flirting here with questions that have no
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decision procedures (I thank Rivin for alerting me to these pitfalls that are
close by). For example, if I = SLy(Z) x SLy(Z) then there is no decision
procedure to determine if an element A € I" is in the group generated by a general
set of say seven elements [Mikhailova 1958]. Even for Gromov hyperbolic
groups, the question of whether a finitely generated subgroup generates a finite
index subgroup, has no decision procedure [Rips 1982; Baumslag et al. 1994].
Mercifully strong and superstrong approximation only ask about Zcl(I™). Still
one is curious about thinness when applying these theorems and sometimes for
good reason. For example, in the affine sieve setting, the quality of the expansion
impacts the results dramatically (see [Nevo and Sarnak 2010] for the cases when
I’ is a lattice) while the diophantine orbit problems become more standard ones
of integer points on homogeneous varieties, when I” is a lattice. Whether the
typical I” is thin or not is not so clear, and may depend on how I arises.

3.1. Schottky, ping-pong. Schottky groups in which the generators play ping-
pong [Tits 1972; Breuillard and Gelander 2003] are one of the few classes of
discrete groups whose group theoretic structure is very simple. If one chooses
A1, Ay, ..., Ay independently and at random in SL,, (Z)(n > 2), then with high
probability I" = (Ay, ..., Ay) will be free on these generators, Zariski dense
in SL,, and thin. If the A; are chosen at the m-th step of a u-random walk
(m — oo) and support (u) generates SL, (Z), then this was proved in [Aoun
2011]. A more geometric version is proven in [Fuchs and Rivin > 2012] where
the As are chosen independently and uniformly by taking them from the set
of Bs with max(||B|[, |B~'||) less than X. Here || | is any euclidean norm on
the space of matrices and X — oo. Not only is I thin but it is very thin in the
sense that the Hausdorff dimension of the limit set of I" acting on P*~'(R) is
arbitrarily small.

3.2. Nonarithmetic lattices. If ' < G with G # SL;(R), is an irreducible
nonarithmetic lattice in a semisimple real group G, then I is naturally thin
in the appropriate product by its conjugates. The argument is the same as the
one in Section 2.3 using local rigidity. The certificate of being thin is that I" is
discrete in the factor corresponding to G. Examples of this kind which come
from monodromy of hypergeometric differential equations in several variables
are given in [Deligne and Mostow 1986] and in one variable in [Cohen and
Wolfart 1990]. It appears that these were the first examples of thin monodromy
groups (see Section 3.5 below). Other examples of thin monodromy groups in
products of SLys are given in [Nori 1986] and these examples aren’t even finitely
presented. Teichmiiller curves in the moduli space M of curves of genus 2, give
via Abel-Jacobi, curves in A» whose monodromies (inclusion of fundamental
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groups) are thin [McMullen 2003]. Here too the Zariski closure is a nontrivial
product in Sp, and the thinness follows from having a discrete projection.

3.3. Reflection groups in hyperbolic space. Let f be an integral quadratic form
in n-variables and of signature (n—1, 1). For n > 3, Oy (Z) the group of integral
automorphs of f is a lattice in G = O¢(R). The reflective subgroup Ry is the
subgroup of Or(Z) which is generated by all the hyperbolic reflections which
are in O¢(Z). Ry is a normal subgroup of O¢(Z) and if it is nontrivial, then
Zcl(Ry) = Oy. Vinberg [1984] and Nikulin [1987] have examined the question of
when Ry is of finite index in Oy (Z) (they call such an f reflective). In particular,
in [Nikulin 1987] it is shown that there are only finitely many f's (up to integral
equivalence) which are reflective. Thus for all but finitely many f's, Ry, if it
is nontrivial, is a thin group in GL,(Z) (albeit infinitely generated). Note that
Nikulin’s theorem fails for n = 2. If f is a binary quadratic form, then f is
reflective if and only if it is ambiguous in the sense of Gauss (see [Sarnak 2007])
and Gauss determined the ambiguous forms in his study of genus theory.

3.4. Rotation groups. An interesting family of rotation groups are the groups
I'(m,n), m >3, n >3 generated by o, and 7, where

cos2r/m sin2mx/m 0O 1 0 0
om=|—sin2x/m cos2w/m 0|, t,=|0 cos2mw/n sin2n/n
0 0 1 0 —sin2xw/n cos2m/n

Thatis, I"(m, n) is a subgroup of SO¢(R), f(x1, x2, x3) = x12+x§ +x32, generated
by two rotations about orthogonal axes and of orders m and n respectively. These
arise in the theory of quaquaversal tilings of 3-space and their generalizations
[Conway and Radin 1998; Radin and Sadun 1998].

As abstract groups, these are free products of two cyclic (or dihedral) groups
amalgamated over a similar such group (except for I"(4, 4) which is finite and
which we avoid); see [Radin and Sadun 1999]. This description can be used to
decide the question of whether I" (i, n) is thin or not and also to show that thin
is the rule rather than the exception. If

K = Q(cos 27 /m, sin 27w /m, cos 27 /n, sin 27 /n),

then K is a totally real Galois extension of @ with abelian Galois group G, ,,. It
is plain that I" (m, n) is a subgroup of SO¢ (O [%]), where O is the ring of integers
of K. Moreover, since I" (m, n) is infinite, the powers of 2 in the denominators of
the matrix entries of I" (m, n) must be unbounded (otherwise I” (m, n) would be a
discrete subgroup of the compact group ]_[U‘ 00 S0 (Ky)). Hence the smallest S-
arithmetic group to contain a subgroup commensurable with I" (m, n) is SO (Oy)
where Oy are the S-integers of K, and S consists of the places of K dividing
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2. Our thinness question is whether I"(m, n) is of finite or infinite index in the
latter. If |S| > 2, then any finite index subgroup of SO (Oyg) is a lattice in the
higher rank group, Hvl @) SO (Ky). By well known rigidity properties of such
lattices [Margulis 1991] (or one can argue with vanishing of first cohomology
groups) and the description of I"(m, n) mentioned above, it follows that I"(m, n)
cannot be such a lattice. That is if |S| > 2, then I"(m, n) is thin and the former
holds most of the time (for example if G, , is not cyclic then |S| > 2). If |[S| =1,
then I"(m, n) may be arithmetic and it is so in some special cases.> Perhaps the
most interesting cases where |S| = 1 are when m =4 and n = 2", v > 3, for
which 2 is totally ramified. These have been investigated in [Robinson 2006;
Serre 2009]. Serre shows that for v = 3 and 4, I" (4, 2") is arithmetic (in fact,
r4,2") = SOf(O[%])) while for v > 5, it is thin. The thinness is proven by
comparing the Euler characteristics X(SOf(O[%])) and x(I"(4,2")), the first
using a Tamagawa number computation and the second from the abstract group
description of I"(4,2").

3.5. Monodromy groups. The oldest and perhaps most natural source of finitely
generated linear groups comes from monodromy in all of its guises. These include
the very classical case of monodromy of the hypergeometric differential equation
which we discuss further below, as well as that of a family of varieties varying
over a base with its monodromy action on cohomology. For large families, and
in cases where the monodromy has been computed, it appears almost always
to be arithmetic. The question as to whether such monodromy groups are
arithmetic was first raised in [Griffiths and Schmid 1975]. For example for the
universal family of smooth projective hypersurfaces of degree d and dimension
n in projective space, the monodromy representation on H"(Xg, Z), Xo a base
hypersurface, is an arithmetic subgroup of GL(H" (Xg))(Z); see [Beauville 1986]
where the exact level in G(Z) is determined. For smaller families such as cyclic
covers of P!, which have recently been studied in [McMullen 2013] in connection
with the thinness question, the story is similar. More precisely, consider the
family of curves (in affine coordinates) given by

Co:yl=(—aD(x—ay) - (x —any1), (3-1)

where the parameters a vary so that a; # a;, for i # j. The fundamental group of
the space of as is the pure braid group and it has a monodromy representation on
H;(C,Z) =77, g the genus of C,, and again C is a fixed base curve. Answering
a question in [McMullen 2013], Venkataramana [2012] shows that if n > 2d, then

3The quaquaversal tiling [Conway and Radin 1998] has symmetry group I" (3, 6), which is
arithmetic [Serre 2009], while the dite/kart tiling [Radin and Sadun 1998] has symmetry 17 (10, 4),
for which K = Q(cos 7/10), G104 = Z/2Z x Z/27 and |S| = 2; hence the latter is thin.
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the image of the monodromy representation of the braid group in GL(H;(C))(Z)
is arithmetic. This generalizes a result of [A’Campo 1979] for d = 2. The proof
is based on another result of Venkataramana [1994] which asserts that for @ rank
two or higher arithmetic groups, a Zariski dense subgroup which contains enough
elements from opposite horospherical subgroups is necessarily arithmetic. If
n < 2d, then as observed in [McMullen 2013], there are examples based on the
nonarithmetic lattices of [Deligne and Mostow 1986] in SU(2, 1) which are thin
(one such is n =3 and d = 18).

The thinness story for monodromy groups of one parameter families is less
clear. We discuss in some detail the very rich examples of the classical hypergeo-
metric equation. Let «, 8 € Q" and consider the , F,,_; algebraic hypergeometric
equation:

Du =0, (3-2)

where D=0+ — DO+ -0 —B— 1) —20+a)- - (0 +a)
and 0 = zd/dz.
The equation is regular outside {0, 1, oo} and the fundamental group

71 (P' =10, 1, 00})

has a representation in GL,, gotten by analytic continuation of a basis of solutions
to (3-2) along curves in the thrice punctured sphere. Its image in GL,, is denoted
by H(«, ) and is the monodromy group in question (defined up to conjugation
in GL,). H(«, B) is generated by the local monodromies A, B, C (C = A7'B)
gotten from loops about 0, co and 1, respectively; see [Beukers and Heckman
1989] for a detailed description. We restrict to Hs which can be conjugated into
GL, (Z), which is equivalent to the characteristic polynomials of A and B being
products of cyclotomic polynomials.* Such H («, B) are self-dual and according
to [Beukers and Heckman 1989], their Zariski closures G («, 8) are either finite,
O, or Sp,,, and they determine which it is explicitly in terms of o and 8. Our
interest is whether H (, 8) is of finite or infinite index in G(«, 8)(Z). Other
than the cases where H («, 8) (or equivalently G(«, 8)) are finite, all of which
are listed in [Beukers and Heckman 1989], there are few cases where H («, B)
itself is known.
Recently Venkatamarana [2012] has shown that for n even and

(1,11, 2 Lon
T a2 hrr 2 )
1

g (ol 11,2 1 -
2T w2 2 o )

4We assume further that (o, ) are primitive in the sense of [Beukers and Heckman 1989].

(3-3)




354 PETER SARNAK

H(a, B) is arithmetic (here G (o, ) = Sp(n)). He deduces this by showing that
for these exact parameters, the monodromy representation of 7y (P! — {0, 1, co})
factors through a representation of the braid group on (3-1) with d = 2. In
particular the arithmeticity follows from the arithmeticity of the latter.
The very fruitful Dwork family (see [Katz 2009; Harris et al. 2010]) n > 4
even, and
a=1(0,0,...,0),

5= 1 2 n
T \n+1n+1""n+1)

is apparently different. Again G(«, 8) = Sp(n) and for n = 4, the local mon-
odromies are

(3-4)

000 —1 100 5

100 —1 010 -5
A=lo10-1] ™M C=lo01 s (3-3)

001 —1 000 1

Very recently, Brav and Thomas [2012] have shown that A and C in (3-5)
play generalized ping-pong on certain subsets of 3, from which it follows that
H(a, B) =7/57 % Z. From rigidity, or the first cohomology properties of finite
index subgroups of Sp(4, Z), it follows that H («, 8) must be thin. It seems
likely that H (¢, B) is thin for the whole Dwork family, that is, n > 4, but other
than showing that the corresponding A and Cs play ping-pong, there appear
to be no known means of proving this and no infinite family of thin H (¢, 8)s
with G («, B) symplectic is known. For n = 4 there are 112 such H («, §)s in
Sp(4, Z) [Singh and Venkataramana 2012].> Using extensions of the technique
in [Venkataramana 2012] it is shown in [Singh and Venkataramana 2012] that of
these, 63 are arithmetic. Of these, three® correspond to the 14 hypergeometrics
associated with certain Calabi—Yau three folds (see [Doran and Morgan 2006;
Chen et al. 2008]). Of the other 11, seven are shown to be thin in [Brav and
Thomas 2012], again by finding ping-pong sets in [P>. This leaves four of these
Calabi—Yau’s for which the thinness question is open. It would be interesting to
understand the geometric significance, if there is one, for H («, 8) being thin or
not in these families.

What is lacking above is a certificate for H(«, 8) being thin that can be
applied for example to families (i.e., » — 00). A robust such certificate has been
provided in the case that G (¢, 8)(R) is of rank one and n > 3 [Fuchs et al. 2013].
In these cases G(a, B), as a group defined over Q is Oy, where f is a rational

Remarkably, all of these are realized geometrically [Doran and Morgan 2006, Theorem 2.12].
6((0.0,0,0). (3. £.2.2)). ((0.0,0.0). (3. %.32.2). ((0.0,0.0). ({5. 15 15+ 10))-
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quadratic form in an odd number of variables and of signature (n — 1, 1) (over
R). We call these («, 8)s hyperbolic hypergeometrics and besides a (long) list of
sporadic examples, they come in seven infinite parametric families [Fuchs et al.
2013]. Our conjecture for these is that thin rules, that is for all but finitely many
of the hyperbolic hypergeometrics, H («, ) is thin. This is proved in [Fuchs
et al. 2013] for a number (but not all) of the seven families. For example for n
odd consider the two families

a—(O 1 2 n—1 n+3 n)
S\ 41 a4+ 2(n4+1) 2(n+1)" T n 1)

112 n—1
=)

a_<1 I 3 2n—3>
“\2’2m—2"21-2"""" 2m—2)

(3-6)

and

(3-7)

1 2 n—3)

p= <0’ 0.0, n—2"n=2""n=-2

Both of these families are hyperbolic hypergeometrics and for both H (¢, B) is
thin for n > 5 and is arithmetic for n = 3.

The proof is based on the following principle: if ¢ : G(Z) — K is a morphism
onto a group K for which |y (H (¢, 8))\K| = oo, then certainly H («, B) is of
infinite index in G(Z). Now in the higher rank cases there are no useful such
¥s (by the Margulis normal subgroup theorem [1991] in these cases if K is
infinite then ker (y) is finite), however, in the rank one case such ¥s may exist
and yield a certificate of thinness. Indeed in this hyperbolic case if Ry is the
Vinberg reflection subgroup described in Section 3.3, then as mentioned there,
except for finitely many fs, K r := O¢(Z)/Ry is infinite. To use this one needs
to analyze the image of H(a, B) in K ;. The key observation is that up to the
finite index the hyperbolic hypergeometrics are generated by Cartan involutions.’
These are linear reflections of @" which induce isometries on hyperbolic space
given by geodesic inversions in a point [the hyperbolic reflections are generated
by root vectors v in Z" outside the light cone (f(v) > 0) while the Cartan
involutions by root vectors w in Z" inside the light cone, in fact f(w) = —2].
In order to examine the image of a group generated by such Cartan involutions
in Kz, consider the “minimum distance graph,” X . Its vertices are the integral
Cartan root vectors V_,(Z) = {v e Z" : f(v) = —2}, and v and w are joined
if f(v, w) = —3. One can show that the components of X s consist of finitely
many isomorphism types and each is the Cayley graph of a finitely generated

"The local monodromy C about 1 is always a pseudoreflection and in these cases yields a
Cartan involution.
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Coxeter group. The main lemma [Fuchs et al. 2013] asserts that if X C V_,(2)
is a connected component of X ; then the image of the group generated by the
Cartan involutions r, with roots v € X, is a finite subgroup of K f.8 This together
with Vinberg and Nikulin’s theorems gives a robust certificate for the thinness of
these hyperbolic hypergeometric monodromies. As far as I know (3-6) and (3-7)
give the first family of thin monodromy groups in high dimensions for which G
is simple.

We end with some comments about the arithmetic Ramanujan conjectures.
The gonality of a congruence arithmetic surface being linear in its genus and the
Heegaard genus of a congruence hyperbolic three manifold being linear in its
volume, as well as the proof that there are only finitely many maximal arithmetic
reflection groups, all appeal to the uniform lower bounds for A; for all such
manifolds. This follows from what is known towards the Ramanujan conjectures
but it does not follow from the fundamental expansion theorem since the latter
only applies to one tower at a time. As far as the general Ramanujan conjectures,
some progress has been made since [Sarnak 2005]. Namely in [Arthur 2013]
a precise formulation of the Ramanujan conjectures for these groups is given,
and moreover it is shown (assuming forms of the fundamental lemma which
themselves should be theorems before too long) that these conjectures will follow
if one can prove the Ramanujan conjectures for GL,,.
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