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Flexible Weinstein manifolds
KAI CIELIEBAK AND YAKOV ELIASHBERG

To Alan Weinstein with admiration.

This survey on flexible Weinstein manifolds, which is essentially an extract
from [Cieliebak and Eliashberg 2012], provides to an interested reader a
shortcut to theorems on deformations of flexible Weinstein structures and their
applications.

1. Introduction

The notion of a Weinstein manifold was introduced in [Eliashberg and Gromov
1991], formalizing the symplectic handlebody construction from Alan Weinstein’s
paper [1991] and the Stein handlebody construction from [Eliashberg 1990].
Since then, the notion of a Weinstein manifold has become one of the central
notions in symplectic and contact topology. The existence question for Weinstein
structures on manifolds of dimension > 4 was settled in [Eliashberg 1990].
The past five years have brought two major breakthroughs on the uniqueness
question: From [McLean 2009] and other work we know that, on any manifold
of dimension > 4 which admits a Weinstein structure, there exist infinitely many
Weinstein structures that are pairwise nonhomotopic (but formally homotopic).
On the other hand, Murphy’s h-principle for loose Legendrian knots [Murphy
2012] has led to the notion of flexible Weinstein structures, which are unique up
to homotopy in their formal class. In this survey, which is essentially an extract
from [Cieliebak and Eliashberg 2012], we discuss this uniqueness result and
some of its applications.

1A. Weinstein manifolds and cobordisms.

Definition. A Weinstein structure on an open manifold V is a triple .!;X; �/,
where

� ! is a symplectic form on V ,

� � W V ! R is an exhausting generalized Morse function,

� X is a complete vector field which is Liouville for ! and gradient-like for �.
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The quadruple .V; !;X; �/ is then called a Weinstein manifold.

Let us explain all the terms in this definition. A symplectic form is a nonde-
generate closed 2-form !. A Liouville field for ! is a vector field X satisfying
LX! D !; by Cartan’s formula, this is equivalent to saying that the associated
Liouville form

� WD iX!

satisfies d�D !. A function � W V ! R is called exhausting if it is proper (i.e.,
preimages of compact sets are compact) and bounded from below. It is called
Morse if all its critical points are nondegenerate, and generalized Morse if its
critical points are either nondegenerate or embryonic, where the latter condition
means that in some local coordinates x1; : : : ; xm near the critical point p the
function looks like the function �0 in the birth–death family

�t .x/D �t .p/˙ tx1C x
3
1 �

kX
iD2

x2i C

mX
jDkC1

x2j :

A vector field X is called complete if its flow exists for all times. It is called
gradient-like for a function � if

d�.X/� ı.jX j2Cjd�j2/;

where ı W V ! RC is a positive function and the norms are taken with respect
to any Riemannian metric on V . Note that away from critical points this just
means d�.X/ > 0. Critical points p of � agree with zeroes of X , and p is
nondegenerate (resp. embryonic) as a critical point of � if and only if it is
nondegenerate (resp. embryonic) as a zero of X . Here a zero p of a vector field
X is called embryonic if X agrees near p, up to higher order terms, with the
gradient of a function having p as an embryonic critical point.

It is not hard to see that any Weinstein structure .!;X; �/ can be perturbed
to make the function � Morse. However, in 1-parameter families of Weinstein
structures embryonic zeroes are generically unavoidable. Since we wish to study
such families, we allow for embryonic zeroes in the definition of a Weinstein
structure.

We will also consider Weinstein structures on a cobordism, that is, a compact
manifold W with boundary @W D @CW q @�W . The definition of a Weinstein
cobordism .W; !;X; �/ differs from that of a Weinstein manifold only in replac-
ing the condition that � is exhausting by the requirement that @˙W are regular
level sets of � with �j@�W Dmin� and �j@CW Dmax�, and completeness of
X by the condition that X points inward along @�W and outward along @CW .
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A Weinstein cobordism with @�W D∅ is called a Weinstein domain. Thus
any Weinstein manifold .V; !;X; �/ can be exhausted by Weinstein domains
Wk Df� � ckg, where ck%1 is a sequence of regular values of the function �.

The Liouville form �D iX! induces contact forms ˛c WD �j†c and contact
structures �c WD ker.˛c/ on all regular level sets†c WD��1.c/ of �. In particular,
the boundary components of a Weinstein cobordism carry contact forms which
make @CW a symplectically convex and @�W a symplectically concave boundary
(i.e., the orientation induced by the contact form agrees with the boundary
orientation on @CW and is opposite to it on @�W ). Contact manifolds which
appear as boundaries of Weinstein domains are called Weinstein fillable.

A Weinstein manifold .V; !;X; �/ is said to be of finite type if � has only
finitely many critical points. By attaching a cylindrical end�

RC � @W; d.e
r�j@W /;

@

@r
; f .r/

�
(i.e., the positive half of the symplectization of the contact structure on the
boundary) to the boundary, any Weinstein domain .W; !;X; �/ can be completed
to a finite type Weinstein manifold, called its completion. Conversely, any finite
type Weinstein manifold can be obtained by attaching a cylindrical end to a
Weinstein domain.

Here are some basic examples of Weinstein manifolds:

(1) Cn with complex coordinates xj C iyj carries the canonical Weinstein
structure �X

j

dxj ^ dyj ;
1

2

X
j

�
xj

@

@xj
Cyj

@

@yj

�
;
X
j

.x2j Cy
2
j /

�
:

(2) The cotangent bundle T �Q of a closed manifold Q carries a canonical
Weinstein structure which in canonical local coordinates .qj ; pj / is given by�X

j

dpj ^ dqj ;
X
j

pj
@

@pj
;
X
j

p2j

�
:

(As it stands, this is not yet a Weinstein structure because
P
j p

2
j is not a

generalized Morse function, but a perturbation can easily be constructed to make
the function Morse.)

(3) The product of two Weinstein manifolds .V1;!1;X1;�1/ and .V2;!2;X2;�2/
has a canonical Weinstein structure .V1�V2; !1˚!2; X1˚X2; �1˚�2/. The
product V �C with its canonical Weinstein structure is called the stabilization
of the Weinstein manifold .V; !;X; �/.
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In a Weinstein manifold .V; !;X; �/, there is an intriguing interplay between
Morse theoretic properties of � and symplectic geometry: the stable manifold
W �p (with respect to the vector field X) of a critical point p is isotropic in the
symplectic sense (i.e., !jW �p D 0), and its intersection with every regular level
set ��1.c/ is isotropic in the contact sense (i.e., it is tangent to �c). In particular,
the Morse indices of critical points of � are � 1

2
dimV .

1B. Stein–Weinstein–Morse. Weinstein structures are related to several other
interesting structures as shown in the following diagram:

Stein
W
����! Weinstein

M
����! Morse??y

Liouville:

Here Weinstein denotes the space of Weinstein structures and Morse the space
of generalized Morse functions on a fixed manifold V or a cobordism W . As
before, we require the function � to be exhausting in the manifold case, and
to have @˙W as regular level sets with �j@�W D min� and �j@CW D max�
in the cobordism case. The map M WWeinstein!Morse is the obvious one
.!;X; �/ 7! �.

The space Liouville of Liouville structures consists of pairs .!;X/ of a
symplectic form ! and a vector field X (the Liouville field) satisfying LX! D !.
Moreover, in the cobordism case we require that the Liouville field X points
inward along @�W and outward along @CW , and in the manifold case we require
that X is complete and there exists an exhaustion V1 � V2 � � � � of V D[kVk
by compact sets with smooth boundary @Vk along which X points outward.
The map Weinstein! Liouville sends .!;X; �/ to .!;X/. Note that to each
Liouville structure .!;X/ we can associate the Liouville form � WD iX!, and
.!;X/ can be recovered from � by the formulas ! D d� and iXd�D �.

The space Stein of Stein structures consists of pairs .J; �/ of an integrable
complex structure J and a generalized Morse function � (exhausting resp. con-
stant on the boundary components) such that �ddC�.v; J v/ > 0 for all nonzero
v 2T V , where dC� WD d� ıJ . If .J; �/ is a Stein structure, then !� WD�ddC�

is a symplectic form compatible with J . Moreover, the Liouville field X�
defined by

iX�!� D�d
C�

is the gradient of � with respect to the Riemannian metric g� WD !�. � ; J � /. In
the manifold case, completeness of X� can be arranged by replacing � by f ı�
for a diffeomorphism f WR!R with f 00 � 0 and limx!1 f 0.x/D1; we will
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suppress the function f from the notation. So we have a canonical map

W WStein!Weinstein; .J; �/ 7! .!� ; X� ; �/:

It is interesting to compare the homotopy types of these spaces. For simplicity,
let us consider the case of a compact domain W and equip all spaces with the
C1 topology. The results which we discuss below remain true in the manifold
case, but one needs to define the topology more carefully; see Section 4C. Since
all the spaces have the homotopy types of CW complexes, any weak homotopy
equivalence between them is a homotopy equivalence.

The spaces Liouville and Weinstein are very different: there exist many
examples of Liouville domains that admit no Weinstein structure, and of contact
manifolds that bound a Liouville domain but no Weinstein domain. The first
such example was constructed in [McDuff 1991]: the manifold Œ0; 1��†, where
† is the unit cotangent bundle of a closed oriented surface of genus > 1, carries
a Liouville structure, but its boundary is disconnected and hence cannot bound a
Weinstein domain. Many more such examples are discussed in [Geiges 1994].

By contrast, the spaces of Stein and Weinstein structures turn out to be closely
related. One of the main results of [Cieliebak and Eliashberg 2012] is this:

Theorem 1.1. The map W WStein!Weinstein induces an isomorphism on �0
and a surjection on �1.

It lends evidence to the conjecture that W WStein!Weinstein is a homotopy
equivalence.

The relation between the spaces Morse and Weinstein is the subject of this
article. Note first that, since for a Weinstein domain .W; !;X; �/ of real dimen-
sion 2n all critical points of � have index � n, one should only consider the
subset Morsen �Morse of functions all of whose critical points have index
� n. Moreover, one should restrict to the subset Weinsteinflex

� � Weinstein

of Weinstein structures .!;X; �/ with ! in a fixed given homotopy class � of
nondegenerate 2-forms which are flexible in the sense of Section 2 below. The
following sections are devoted to the proof of the next theorem.

Theorem 1.2 [Cieliebak and Eliashberg 2012]. Let � be a nonempty homotopy
class of nondegenerate 2-forms on a domain or manifold of dimension 2n > 4.
Then:

(a) Any Morse function �2Morsen can be lifted to a flexible Weinstein structure
.!;X; �/ with ! 2 �.

(b) Given two flexible Weinstein structures .!0; X0; �0/ and .!1; X1; �1/ in
Weinsteinflex

� , any path �t 2Morsen, t 2 Œ0; 1�, connecting �0 and �1 can
be lifted to a path of flexible Weinstein structures .!t ; Xt ; �t / connecting
.!0; X0; �0/ and .!1; X1; �1/.
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In other words, the map M W Weinsteinflex
� ! Morsen has the following

properties:

� M is surjective;

� the fibers of M are path connected;

� M has the path lifting property.

This motivates the following:

Conjecture. On a domain or manifold of dimension 2n > 4, the map

M WWeinsteinflex
� !Morsen

is a Serre fibration with contractible fibers.

2. Flexible Weinstein structures

Roughly speaking, a Weinstein structure is “flexible” if all its attaching spheres
obey an h-principle. More precisely, note that each Weinstein manifold or
cobordism can be cut along regular level sets of the function into Weinstein
cobordisms that are elementary in the sense that there are no trajectories of the
vector field connecting different critical points. An elementary 2n-dimensional
Weinstein cobordism .W; !;X; �/, n>2, is called flexible if the attaching spheres
of all index n handles form in @�W a loose Legendrian link in the sense of
Section 2C below. A Weinstein cobordism or manifold structure .!;X; �/ is
called flexible if it can be decomposed into elementary flexible cobordisms.

A 2n-dimensional Weinstein structure .!;X; �/, n� 2, is called subcritical if
all critical points of the function � have index < n. In particular, any subcritical
Weinstein structure in dimension 2n > 4 is flexible.

The notion of flexibility can be extended to dimension 4 as follows. We call
a 4-dimensional Weinstein cobordism flexible if it is either subcritical, or the
contact structure on @�W is overtwisted (or both); see Section 2B below. In
particular, a 4-dimensional Weinstein manifold is then flexible if and only if it is
subcritical.

Remark 2.1. The property of a Weinstein structure being subcritical is not
preserved under Weinstein homotopies because one can always create index n
critical points (see Proposition 4.7 below). We do not know whether flexibility is
preserved under Weinstein homotopies. In fact, it is not even clear to us whether
every decomposition of a flexible Weinstein cobordismW into elementary cobor-
disms consists of flexible elementary cobordisms. Indeed, if P1 and P2 are
two partitions of W into elementary cobordisms and P2 is finer than P1, then
flexibility of P1 implies flexibility of P2 (in particular the partition for which
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each elementary cobordism contains only one critical value is then flexible), but
we do not know whether flexibility of P2 implies flexibility of P1.

The remainder of this section is devoted to the definition of loose Legendrian
links and a discussion of the relevant h-principles.

2A. Gromov’s h-principle for subcritical isotropic embeddings. Consider a
contact manifold .M; � D ker˛/ of dimension 2n � 1 and a manifold ƒ of
dimension k � 1 � n � 1. A monomorphism F W Tƒ ! TM is a fiberwise
injective bundle homomorphism covering a smooth map f Wƒ!M . It is called
isotropic if it sends each Txƒ to a symplectically isotropic subspace of �f .x/
(with respect to the symplectic form d˛j�). A formal isotropic embedding of
ƒ into .M; �/ is a pair .f; F s/, where f Wƒ ,!M is a smooth embedding and
F s W Tƒ! TM , s 2 Œ0; 1�, is a homotopy of monomorphisms covering f that
starts at F 0 D df and ends at an isotropic monomorphism F 1 W Tƒ! � . In the
case k D n we also call this a formal Legendrian embedding.

Any genuine isotropic embedding can be viewed as a formal isotropic embed-
ding .f; F s � df /. We will not distinguish between an isotropic embedding and
its canonical lift to the space of formal isotropic embeddings. A homotopy of
formal isotropic embeddings .ft ; F st /, t 2 Œ0; 1�, will be called a formal isotropic
isotopy. Note that the maps ft underlying a formal isotropic isotopy form a
smooth isotopy.

In the subcritical case k < n, Gromov proved the following h-principle.

Theorem 2.2 (h-principle for subcritical isotropic embeddings [Gromov 1986;
Eliashberg and Mishachev 2002]). Let .M; �/ be a contact manifold of dimension
2n� 1 and ƒ a manifold of dimension k� 1 < n� 1. Then the inclusion of the
space of isotropic embeddings ƒ ,! .M; �/ into the space of formal isotropic
embeddings is a weak homotopy equivalence. In particular:

(a) Given any formal isotropic embedding .f; F s/ ofƒ into .M; �/, there exists
an isotropic embedding Qf Wƒ ,!M which is C 0-close to f and formally
isotropically isotopic to .f; F s/.

(b) Let .ft ; F st /, t 2 Œ0; 1�, be a formal isotropic isotopy connecting two isotropic
embeddings f0; f1 W ƒ ,! M . Then there exists an isotropic isotopy Qft
connecting Qf0 D f0 and Qf1 D f1 which is C 0-close to ft and is homotopic
to the formal isotopy .ft ; F st / through formal isotropic isotopies with fixed
endpoints.

Let us discuss what happens with this theorem in the critical case k D n. Part
(a) remains true in all higher dimensions k D n > 2:
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Theorem 2.3 (existence theorem for Legendrian embeddings for n > 2 [Eliash-
berg 1990; Cieliebak and Eliashberg 2012]1). Let .M; �/ be a contact manifold
of dimension 2n� 1� 5 and ƒ a manifold of dimension n� 1. Then given any
formal Legendrian embedding .f; F s/ ofƒ into .M; �/, there exists a Legendrian
embedding Qf Wƒ,!M which is C 0-close to f and formally Legendrian isotopic
to .f; F s/.

Part (b) of Theorem 2.2 does not carry over to the critical case k D n: For
any n� 2, there are many examples of pairs of Legendrian knots in .R2n�1; �st/

which are formally Legendrian isotopic but not Legendrian isotopic; see, for
example, [Chekanov 2002; Ekholm et al. 2005].

2B. Legendrian knots in overtwisted contact manifolds. Finally, we consider
Theorem 2.2 in the case k D nD 2, that is, for Legendrian knots (or links) in
contact 3-manifolds. Recall that in dimension 3 there is a dichotomy between
tight and overtwisted contact structures, which was introduced in [Eliashberg
1989]. A contact structure � on a 3-dimensional manifoldM is called overtwisted
if there exists an embedded disc D�M which is tangent to � along its boundary
@D. Equivalently, one can require the existence of an embedded disc with
Legendrian boundary @D which is transverse to � along @D. A disc with such
properties is called an overtwisted disc.

Part (a) of Theorem 2.2 becomes false for k D n D 2 due to Bennequin’s
inequality. Let us explain this for R3 with its standard (tight) contact structure
�st D ker˛st, ˛st D dz�p dq. To any formal Legendrian embedding .f; F s/ of
S1 into .R3; �st/ we can associate two integers as follows. Identifying �st to R2

via the projection R3! R2 onto the .q; p/-plane, the fiberwise injective bundle
homomorphism F 1 W TS1Š S1�R! �stŠR2 gives rise to a map S1!R2 n0,
t 7!F 1.t; 1/. The winding number of this map around 02R2 is called the rotation
number r.f; F 1/. On the other hand, .F 1; iF 1; @z/ defines a trivialization of the
bundle f �TR3, where i is the standard complex structure on �stŠR2ŠC. Using
the homotopyF s , we homotope this to a trivialization .e1; e2; e3/ of f �TR3 with
e1 D Pf (unique up to homotopy). The Thurston–Bennequin invariant tb.f; F s/
is the linking number of f with a push-off in direction e2. It is not hard to see
that the pair of invariants .r; tb/ yields a bijection between homotopy classes
of formal Legendrian embeddings covering a fixed smooth embedding f and
Z2. In particular, the pair .r; tb/ can take arbitrary values on formal Legendrian
embeddings, while for genuine Legendrian embeddings f W S1 ,! .R3; �st/ the

1The hypothesis in [Cieliebak and Eliashberg 2012] that ƒ is simply connected can be easily
removed.
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values of .r; tb/ are constrained by Bennequin’s inequality [1983]

tb.f /Cjr.f /j � ��.†/;

where † is a Seifert surface for f .
Bennequin’s inequality, and thus the failure of part (a), carry over to all

tight contact 3-manifolds. On the other hand, Bennequin’s inequality fails, and
except for the C 0-closeness Theorem 2.2 remains true, on overtwisted contact
3-manifolds:

Theorem 2.4 [Dymara 2001; Eliashberg and Fraser 2009]. Let .M; �/ be a
closed connected overtwisted contact 3-manifold, and D �M an overtwisted
disc.

(a) Any formal Legendrian knot .f; F s/ in M is formally Legendrian isotopic
to a Legendrian knot Qf W S1 ,!M nD.

(b) Let .ft ; F st /, s; t 2 Œ0; 1�, be a formal Legendrian isotopy in M connecting
two Legendrian knots f0; f1 W S1 ,! M nD. Then there exists a Legen-
drian isotopy Qft W S1 ,!M nD connecting Qf0 D f0 and Qf1 D f1 which
is homotopic to .ft ; F st / through formal Legendrian isotopies with fixed
endpoints.

Although Theorem 2.2 (b) generally fails for knots in tight contact 3-manifolds,
there are some remnants for special classes of Legendrian knots:

� any two formally Legendrian isotopic unknots in .R3; �st/ are Legendrian
isotopic [Eliashberg and Fraser 2009];

� any two formally Legendrian isotopic knots become Legendrian isotopic
after sufficiently many stabilizations (whose number depends on the knots)
[Fuchs and Tabachnikov 1997].

E. Murphy [2012] discovered that the situation becomes much cleaner for n > 2:
on any contact manifold of dimension � 5 there exists a class of Legendrian
knots, called loose, which satisfy both parts of Theorem 2.2. Let us now describe
this class.

2C. Murphy’s h-principle for loose Legendrian knots. In order to define loose
Legendrian knots we need to describe a local model. Throughout this section we
assume n > 2.

Consider a Legendrian arc �0 in the standard contact space .R3; dz�p1dq1/
with front projection as shown in Figure 1, for some a > 0. Suppose that the
slopes at the self-intersection point, as well as at end points of the interval are
˙1, and the slope is everywhere in the interval Œ�1; 1�, so the Legendrian arc �0
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a

−a

1−1

z

q1

Figure 1. Front of the Legendrian arc �0.

is contained in the box

Qa WD fjq1j; jp1j � 1; jzj � ag

and @�0 � @Qa. Take the standard contact space
�
R2n�1; dz �

Pn�1
iD1 pidqi

�
,

which we view as the product of the contact space .R3; dz�p1dq1/ and the Li-
ouville space

�
R2n�4; �

Pn�1
iD2 pidqi

�
. With q0 WD .q2; : : : ; qn�1/ and similarly

for p0, we set

jp0j WD max
2�i�n�2

jpi j and jq0j WD max
2�i�n�2

jqi j:

For b; c > 0 we define

Pbc WD fjq
0
j � b; jp0j � cg � R2n�4;

Rabc WDQa �Pbc D fjq1j; jp1j � 1; jzj � a; jq
0
j � b; jp0j � cg:

Let the Legendrian solid cylinder ƒ0 �
�
R2n�1; dz �

Pn�1
iD1 pidqi

�
be the

product of �0 � R3 with the Lagrangian disc fp0 D 0; jq0j � bg � R2n�4. Note
that ƒ0 � Rabc and @ƒ0 � @Rabc . The front of ƒ0 is obtained by translating
the front of �0 in the q0-directions; see Figure 2. The pair .Rabc ; ƒ0/ is called a
standard loose Legendrian chart if

a < bc:

2b

< 2a

Figure 2. Front of the Legendrian solid cylinder ƒ0.
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Given any contact manifold .M 2n�1; �/, a Legendrian submanifoldƒ�M with
connected components ƒ1; : : : ; ƒk is called loose if there exist Darboux charts
U1; : : : ; Uk �M such that ƒi \Uj D¿ for i ¤ j and each pair .Ui ; ƒi \Ui /,
i D 1; : : : ; k, is isomorphic to a standard loose Legendrian chart .Rabc ; ƒ0/.
A Legendrian embedding f W ƒ ,! M is called loose if its image is a loose
Legendrian submanifold.

Remarks 2.5. (1) By the contact isotopy extension theorem, looseness is pre-
served under Legendrian isotopies within a fixed contact manifold. Since any
two Legendrian discs are Legendrian isotopic, any Legendrian disc is isotopic to
its own stabilization (see Section 2D below), and, therefore, loose.

(2) By rescaling q0 and p0 with inverse factors one can always achieve cD1 in the
definition of a standard loose Legendrian chart. However, the inequality a<bc is
absolutely crucial in the definition. Indeed, it follows from Gromov’s isocontact
embedding theorem that around any point in any Legendrian submanifold ƒ one
can find a Darboux neighborhood U such that the pair .U;ƒ\U/ is isomorphic
to .R1b1; ƒ0/ for some sufficiently small b > 0.

(3) Figure 3, taken from [Murphy 2012], shows that the definition of looseness
does not depend on the precise choice of the standard loose Legendrian chart
.Rabc ; ƒ0/: Given a standard loose Legendrian chart with c D 1, the condition
a < b allows us to shrink its front in the q0-directions, keeping it fixed near
the boundary and with all partial derivatives in Œ�1; 1� (so the deformation
remains in the Darboux chart Rab1), to another standard loose Legendrian chart
.Ra0b01; ƒ

0
0/ with b0 � .b�a/=2 and arbitrarily small a0 > 0. Moreover, we can

arbitrarily prescribe the shape of the cross section �00 of ƒ00 in this process. So
if a Legendrian submanifold is loose for some model .Rabc ; ƒ0/, then it is also
loose for any other model. In particular, fixing b; c we can make a arbitrarily

Figure 3. Shrinking a standard loose Legendrian chart (courtesy
of E. Murphy).
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small, and we can create arbitrarily many disjoint standard loose Legendrian
charts.

Now we can state the main result from [Murphy 2012].

Theorem 2.6 (Murphy’s h-principle for loose embeddings). Let .M; �/ be a
contact manifold of dimension 2n� 1� 5 and ƒ a manifold of dimension n� 1.

(a) Given any formal Legendrian embedding .f; F s/ of ƒ into .M; �/, there
exists a loose Legendrian embedding Qf Wƒ ,!M which is C 0-close to f
and formally Legendrian isotopic to .f; F s/.

(b) Let ft Wƒ ,!M , t 2 Œ0; 1� be a smooth isotopy which begins with a loose
Legendrian embedding f0. Then there exists a loose Legendrian isotopy
Qft starting at f0 and a C 0-small smooth isotopy f 0t connecting Qf1 to f1

such that the concatenation of Qft and f 0t is homotopic to ft through smooth
isotopies with fixed endpoints.

(c) Let .ft ; F st /, s; t 2 Œ0; 1�, be a formal Legendrian isotopy connecting two
loose Legendrian knots f0 and f1. Then there exists a Legendrian isotopy Qft
connecting Qf0 D f0 and Qf1 D f1 which is homotopic to the formal isotopy
.ft ; F

s
t / through formal isotopies with fixed endpoints.

Note that (b) is a direct consequence of (c) and a 1-parametric version of (a).
Part (a) is a consequence of Theorem 2.3 and the stabilization construction which
we describe next.

2D. Stabilization of Legendrian submanifolds. Consider a Legendrian sub-
manifold ƒ0 in a contact manifold .M; �/ of dimension 2n� 1. Near a point of
ƒ0, pick Darboux coordinates .q1; p1; : : : ; qn�1; pn�1; z/ in which

� D ker
�
dz�

X
j

pjdqj

�
z

q

2

1

0

−1

f

t0f

q0
{f ≥ 1}

Pfront(Λ0)

Figure 4. Stabilization of a Legendrian submanifold.



FLEXIBLE WEINSTEIN MANIFOLDS 13

and the front projection of ƒ0 is a standard cusp z2 D q31 . Deform the two
branches of the front to make them parallel over some open ball Bn�1 � Rn�1.
After rescaling, we may thus assume that the front ofƒ0 has two parallel branches
fz D 0g and fz D 1g over Bn�1; see Figure 4.

Pick a nonnegative function � W Bn�1! R with compact support and 1 as a
regular value, so N WD f� � 1g � Bn�1 is a compact manifold with boundary.
Replacing for each t 2 Œ0; 1� the lower branch fz D 0g by the graph fz D t�.q/g
of the function t� yields the fronts of a path of Legendrian immersions ƒt �M
connecting ƒ0 to a new Legendrian submanifold ƒ1. Note that ƒt has a self-
intersection for each critical point of t� on level 1.

We count the self-intersections with signs as follows. Consider the immersion
� WD

S
t2Œ0;1�ƒt � ftg � M � Œ0; 1�. After a generic perturbation, we may

assume that � has finitely many transverse self-intersections and define its self-
intersection index

I� WD
X
p

I�.p/ 2

�
Z if n is even,
Z2 if n is odd,

as the sum over the indices of all self-intersection points p. Here the index
I�.p/ D ˙1 is defined by comparing the orientations of the two intersecting
branches of � to the orientation of M � Œ0; 1�. For n even this does not depend
on the order of the branches and thus gives a well-defined integer, while for n
odd it is only well-defined mod 2. By a theorem of Whitney [1944], for n > 2,
the regular homotopy ƒt can be deformed through regular homotopies fixed at
t D 0; 1 to an isotopy if and only if I� D 0.

Proposition 2.7 [Murphy 2012]. For n>2, the Legendrian regular homotopyƒt
obtained from the stabilization construction over a nonempty domain N �Bn�1

has the following properties:

(a) ƒ1 is loose.

(b) If �.N/D 0, then ƒ1 is formally Legendrian isotopic to ƒ0.

(c) The regular homotopy .ƒt /t2Œ0;1� has self-intersection index

.�1/.n�1/.n�2/=2�.N/:

Proof. (a) Recall that in the stabilization construction we choose a Darboux
chart in which the front of ƒ0 consists of the two branches fz D˙q3=21 g of a
standard cusp, and then deform the lower branch to the graph of a function �
which is bigger than q3=21 over a domain N � Rn�1; see Figure 5. Performing
this construction sufficiently close to the cusp edge, we can keep the values
and the differential of the function � arbitrarily small. Then the deformation is
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Figure 5. A standard loose Legendrian chart appears in the
stabilization procedure.

localized within the chosen Darboux neighborhood, and comparing Figures 5
and 2 we see that ƒ1 is loose.

(b) Consider again the stabilization construction on the two parallel branches
fz D 0g and fz D 1g of ƒ0 over the domain N D f� � 1g. Since �.N/ D 0,
there exists a nowhere vanishing vector field v on N which agrees with r�
near @N . Linearly interpolating the p-coordinate of ƒ1 from r�.q/ to v.q/
(keeping .q; z/ fixed), then pushing the z-coordinate down to 0 (keeping .q; p/
fixed), and finally linearly interpolating v.q/ to 0 (keeping .q; z/ fixed) defines
a smooth isotopy ft Wƒ0 ,!M from f0 D 1 Wƒ0!ƒ0 to a parametrization
f1 W ƒ0 ! ƒ1. On the other hand, the graphs of the functions t� define a
Legendrian regular homotopy from f0 to f1, so their differentials give a path
of Legendrian monomorphisms Ft from F0 D df0 to F1 D df1. Now note that
over the region N all the dft and Ft project as the identity onto the q-plane, so
linearly connecting dft and Ft yields a path of monomorphisms F st , s 2 Œ0; 1�,
and hence the desired formal Legendrian isotopy .ft ; F st / from f0 to f1.

To prove (c), make the function � Morse on N and apply the Poincaré–Hopf
index theorem. �

Since for n>2 there exist domains N �Rn�1 of arbitrary Euler characteristic
�.N/ 2 Z, we can apply Proposition 2.7 in two ways: Choosing �.N/D 0, we
can C 0-approximate every Legendrian submanifold ƒ0 by a loose one which
is formally Legendrian homotopic to ƒ0. Combined with Theorem 2.3, this
proves Theorem 2.6(a). Choosing �.N/¤ 0, we can connect each Legendrian
submanifoldƒ0 to a (loose) Legendrian submanifoldƒ1 by a Legendrian regular
homotopy ƒt with any prescribed self-intersection index. This will be a crucial
ingredient in the proof of existence of Weinstein structures.
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Figure 6. Stabilization in dimension 3.

Remark 2.8. For n D 2 we can still perform the stabilization construction.
However, since every domain N � R is a union of intervals, the self-intersection
index �.N/ in Proposition 2.7 is now always positive and hence cannot be
arbitrarily prescribed. Figure 6 shows two front projections of the stabilization
over an interval (related by Legendrian Reidemeister moves; see [Etnyre 2005],
for example). Thus our stabilization introduces a downward and an upward
zigzag, which corresponds to a positive and a negative stabilization in the usual
terminology of 3-dimensional contact topology. It leaves the rotation number
unchanged and decreases the Thurston–Bennequin invariant by 2, in accordance
with Bennequin’s inequality. In particular, stabilization in dimension 3 never
preserves the formal Legendrian isotopy class.

2E. Totally real discs attached to a contact boundary. The following Theo-
rems 2.9 and 2.10 are combinations of the h-principles discussed in Sections 2A
and 2C with Gromov’s h-principle [1986] for totally real embeddings.

Let .V; J / be an almost complex manifold and W � V a domain with smooth
boundary @W . Let L be a compact manifold with boundary. Let

f W L ,! V n IntW

be an embedding with f .@L/D f .L/\ @W which is transverse to @W along
@L. We say in this case that f transversely attaches L to W along @L. If,
in addition, Jdf .TLj@L/ � T .@W /, then we say that f attaches L to W J -
orthogonally. Note that this implies that df .@L/ is tangent to the maximal
J -invariant distribution � D T .@W /\JT .@W /. In particular, if the distribution
� is a contact structure, then f .@L/ is an isotropic submanifold for the contact
structure �.

Theorem 2.9. Let .V; J / be an almost complex manifold of real dimension 2n,
and W � V a domain such that the distribution � D T .@W / \ JT .@W / is
contact. Suppose that an embedding f WDk ,! V; k � n; transversely attaches
Dk to W along @Dk . If k D n D 2 we assume, in addition, that the induced
contact structure on @W is overtwisted. Then there exists an isotopy ft WDk ,!V ,
t 2 Œ0; 1�, through embeddings transversely attachingDk toW , such that f0Df ,
and f1 is totally real and J -orthogonally attached to W . Moreover, in the case
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k D n > 2 we can arrange that the Legendrian embedding

f1j@Dk W @D
k ,! @W

is loose, while for kD nD 2 we can arrange that the complement @W nft .@D2/
is overtwisted for all t 2 Œ0; 1�.

We will also need the following 1-parametric version of Theorem 2.9 for
totally real discs attached along loose knots.

Theorem 2.10. Let Jt ; t 2 Œ0; 1�, be a family of almost complex structures on
a 2n-dimensional manifold V . Let W � V be a domain with smooth boundary
such that the distribution �t D T .@W /\JtT .@W / is contact for each t 2 Œ0; 1�.
Let

ft WD
k ,! V n IntW; t 2 Œ0; 1�; k � n;

be an isotopy of embeddings transversely attaching Dk to W along @Dk . Sup-
pose that for i D 0; 1 the embedding fi is Ji -totally real and Ji -orthogonally
attached to W . Suppose that either k < n or k D n > 2 and the Legendrian
embeddings fi j@D , i D 0; 1 are loose. Then there exists a 2-parameter family of
embeddings f st WD

k ,! V n IntW with the following properties:

� f st is transversely attached to W along @Dk and C 0-close to ft for all
t; s 2 Œ0; 1�.

� f 0t D ft for all t 2 Œ0; 1� and f s0 D f0, f s1 D f1 for all s 2 Œ0; 1�.

� f 1t is Jt -totally real and Jt -orthogonally attached to W along @Dk for all
t 2 Œ0; 1�.

3. Morse preliminaries

In this section we gather some notions and results from Morse theory that are
needed for our main results. We omit most of the proofs and refer the reader to
the corresponding chapter of [Cieliebak and Eliashberg 2012]. Throughout this
section, V denotes a smooth manifold and W a cobordism, both of dimension m.

3A. Gradient-like vector fields. A smooth function � W V ! R is called Lya-
punov for a vector field for X , and X is called gradient-like for �, if

X �� � ı.jX j2Cjd�j2/ (1)

for a positive function ı W V ! RC, where jX j is the norm with respect to some
Riemannian metric on V and jd�j is the dual norm. By the Cauchy–Schwarz
inequality, condition (1) implies

ıjX j � jd�j �
1

ı
jX j: (2)
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In particular, zeroes of X coincide with critical points of �.

Lemma 3.1. (a) If X0; X1 are gradient-like vector fields for �, then so is
f0X0Cf1X1 for any nonnegative functions f0; f1 with f0Cf1 > 0.

(b) If �0; �1 are Lyapunov functions for X , then so is �0�0 C �1�1 for any
nonnegative constants �0; �1 with �0C�1 > 0.

In particular, the following spaces are convex cones and hence contractible:

� the space of Lyapunov functions for a given vector field X ;

� the space of gradient-like vector fields for a given function �.

Proof. Consider two vector fields X0; X1 satisfying Xi �� � ıi .jXi j2Cjd�j2/
and nonnegative functions f0; f1 with f0 C f1 > 0. Then the vector field
X D f0X0Cf1X1 satisfies (1) with ı WDminfı0=2f0; ı1=2f1; f0ı0Cf1ı1g W

X �� � f0ı0jX0j
2
Cf1ı1jX1j

2
C .f0ı0Cf1ı1/jd�j

2

� 2ı.jf0X0j
2
Cjf1X1j

2/C ıjd�j2

� ı.jX j2Cjd�j2/:

Positive combinations of functions are treated analogously. �

3B. Morse and Smale cobordisms. A (generalized) Morse cobordism is a pair
.W; �/, where W is a cobordism and � W W ! R is a (generalized) Morse
function which has @˙W as its regular level sets such that �j@�W < �j@CW . A
(generalized) Smale cobordism is a triple .W; �;X/, where .W; �/ is a (gener-
alized) Morse cobordism and X is a gradient-like vector field for �. Note that
X points inward along @�W and outward along @CW . A generalized Smale
cobordism .W; �;X/ is called elementary if there are no X -trajectories between
different critical points of �.

If .W; �;X/ is an elementary generalized Smale cobordism, then the stable
manifold of each nondegenerate critical point p is a disc D�p which intersects
@�W along a sphere S�p D@D

�
p . We callD�p and S�p the stable disc (resp. sphere)

of p. Similarly, the unstable manifolds and their intersections with @CW are
called unstable discs and spheres. For an embryonic critical point p, the closure
of the (un)stable manifold is the (un)stable half-disc yD˙p intersecting @˙W along
the hemisphere yS˙p .

An admissible partition of a generalized Smale cobordism .W; �;X/ is a
finite sequence mD c0 < c1 < � � �< cN DM of regular values of �, where we
denote �j@�W Dm and �j@CW DM , such that each subcobordism

Wk D fck�1 � � � ckg; k D 1; : : : ; N;

is elementary. The following lemma is straightforward.
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Lemma 3.2. Any generalized Smale cobordism admits an admissible partition
into elementary cobordisms. Similarly, for any exhausting generalized Morse
function � and gradient-like vector field X on a noncompact manifold V , one
can find regular values c0 < min� < c1 < � � � ! 1 such that the cobordisms
Wk Dfck�1�� � ckg, kD 1; : : : , are elementary. If � has finitely many critical
points, then all but finitely many of these cobordisms have no critical points.

3C. Morse and Smale homotopies. A smooth family .W; �t /, t 2 Œ0; 1�, of
generalized Morse cobordism structures is called a Morse homotopy if there is a
finite set A� .0; 1/ with the following properties:

� for each t 2 A the function �t has a unique birth-death type critical point
et such that �t .et /¤ �t .q/ for all other critical points q of �t ;

� for each t … A the function �t is Morse.

A Smale homotopy is a smooth family .W;Xt ; �t /, t 2 Œ0; 1�, of generalized
Smale cobordism structures such that .W; �t / a Morse homotopy. A Smale
homotopy St D .W;Xt ; �t /, t 2 Œ0; 1� is called an elementary Smale homotopy
of Type I, IIb, IId, respectively, if the following holds:

� Type I. St is an elementary Smale cobordism for all t 2 Œ0; 1�.

� Type IIb (birth). There is t0 2 .0; 1/ such that for t < t0 the function �t
has no critical points, �t0 has a birth type critical point, and for t > t0 the
function �t has two critical points pt and qt of index i and i�1, respectively,
connected by a unique Xt -trajectory.

� Type IId (death). There is t0 2 .0; 1/ such that for t > t0 the function �t
has no critical points, �t0 has a death type critical point, and for t < t0
the function �t has two critical points pt and qt of index i and i � 1,
respectively, connected by a unique Xt -trajectory.

We will also refer to an elementary Smale homotopy of Type IIb (resp. IId) as a
creation (resp. cancellation) family.

An admissible partition of a Smale homotopy St D .W;Xt ; �t /, t 2 Œ0; 1�,
is a sequence 0 D t0 < t1 < � � � < tp D 1 of parameter values, and for each
k D 1; : : : ; p a finite sequence of functions

m.t/D ck0 .t/ < c
k
1 .t/ < � � �< c

k
Nk
.t/DM.t/; t 2 Œtk�1; tk�;

wherem.t/ WD�t .@�W / andM.t/ WD�t .@CW /, such that ckj .t/, j D 0; : : : ; Nk
are regular values of �t and each Smale homotopy

Skj WD
�
W k
j .t/ WD

˚
ckj�1.t/� �t � c

k
j .t/

	
; Xt jW k

j
.t/; �t jW k

j
.t/

�
t2Œtk�1;tk�

is elementary.



FLEXIBLE WEINSTEIN MANIFOLDS 19

Lemma 3.3. Any Smale homotopy admits an admissible partition.

Proof. Let A� .0; 1/ be the finite subset in the definition of a Smale homotopy.
Using Lemma 3.2, we now first construct an admissible partition on OpA and
then extend it over Œ0; 1� nOpA. �

3D. Equivalence of elementary Smale homotopies. We define the profile (or
Cerf diagram) of a Smale homotopy St D .W;Xt ; �t /, t 2 Œ0; 1�, as the subset
C.f�tg/� R�R such that C.f�tg/\ .t �R/ is the set of critical values of the
function �t . We will use the notion of profile only for elementary homotopies.

The following two easy lemmas are proved in [Cieliebak and Eliashberg 2012].
The first one shows that if two elementary Smale homotopies have the same
profile, then their functions are related by diffeomorphisms.

Lemma 3.4. Let St D .W;Xt ; �t / and QSt D .W; QXt ; Q�t /, t 2 Œ0; 1�, be two
elementary Smale homotopies with the same profile such that S0 D QS0. Then
there exists a diffeotopy ht WW !W with h0 D 1 such that �t D Q�t ı ht for all
t 2 Œ0; 1�. Moreover, if �t D Q�t near @CW and/or @�W we can arrange ht D 1
near @CW and/or @�W .

The second lemma provides elementary Smale homotopies with prescribed
profile.

Lemma 3.5. Let .W;X; �/ be an elementary Smale cobordism with �j@˙W D
a˙ and critical points p1; : : : ; pn of values �.pi / D ci . For i D 1; : : : ; n let
ci W Œ0; 1�! .a�; aC/ be smooth functions with ci .0/ D ci . Then there exists
a smooth family �t , t 2 Œ0; 1�, of Lyapunov functions for X with �0 D � and
�t D � on Op @W such that �t .pi /D ci .t/.

Here we use Gromov’s notation OpA for an unspecified neighborhood of a subset
A�W .

3E. Holonomy of Smale cobordisms. Let .W;X; �/ be a Smale cobordism
such that the function � has no critical points. The holonomy of X is the
diffeomorphism

�X W @CW ! @�W;

which maps x 2 @CW to the intersection of its trajectory under the flow of �X
with @�W .

Consider now a Morse cobordism .W; �/ without critical points. Denote
by X.W; �/ the space of all gradient-like vector fields for �. Note that the
holonomies of all X 2 X.W; �/ are isotopic. We denote by D.@CW; @�W / the
corresponding path component in the space of diffeomorphisms from @CW to
@�W . All spaces are equipped with the C1-topology.
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Recall that a continuous map p W E ! B is a Serre fibration if it has the
homotopy lifting property for all closed discs Dk , that is, given a homotopy
ht WD

k!B , t 2 Œ0; 1�, and a lift Qh0 WDk!E with p ı Qh0 D h0, there exists a
homotopy Qht WDk!E with p ı Qht D ht . We omit the proof of the following
easy lemma.

Lemma 3.6. Let .W; �/ be a Morse cobordism without critical points. Then the
map X.W; �/! D.@CW; @�W / that assigns to X its holonomy �X is a Serre
fibration. In particular:

(i) Given X 2 X.W; �/ and an isotopy ht 2 D.@CW; @�W /, t 2 Œ0; 1�, with
h0D�X , there exists a pathXt 2X.W; �/ withX0DX such that �Xt D ht
for all t 2 Œ0; 1�.

(ii) Given a pathXt 2X.W; �/, t 2 Œ0; 1�, and a path ht 2D.@CW; @�W / which
is homotopic to �Xt with fixed endpoints, there exists a path QXt 2 X.W; �/

with QX0 DX0 and QX1 DX1 such that � QXt D ht for all t 2 Œ0; 1�.

As a consequence, we obtain:

Lemma 3.7. Let Xt , Yt be two paths in X.W; �/ starting at the same point
X0 D Y0. Suppose that for a subset A � @CW , one has �Xt .A/D �Yt .A/ for
all t 2 Œ0; 1�. Then there exists a path yXt 2 X.W; �/ such that

(i) yXt DX2t for t 2
�
0; 1
2

�
;

(ii) yX1 D Y1;

(iii) � yXt .A/D �Y1.A/ for t 2
�
1
2
; 1
�
.

Proof. Consider the path 
 W Œ0; 1�! D.@CW; @�W / given by the formula


.t/ WD �X1 ı�
�1
Xt
ı�Yt :

We have 
.0/ D �X1 and 
.1/ D �Y1 . The path 
 is homotopic with fixed
endpoints to the concatenation of the paths �X1�t and �Yt . Hence by Lemma 3.6
we conclude that there exists a path X 0t 2X.W; �/ such that X 00DX1, X 01D Y1,
and �X 0t D 
.t/ for all t 2 Œ0; 1�. Since

�X 0t .A/D �X1
�
��1Xt .�Yt .A//

�
D �X1.A/D �Y1.A/;

the concatenation yXt of the paths Xt and X 0t has the required properties. �

4. Weinstein preliminaries

In this section we collect some facts about Weinstein structures needed for the
proofs of our main results. Most of the proofs are omitted and we refer the
reader to [Cieliebak and Eliashberg 2012] for a more systematic treatment of the
subject.
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4A. Holonomy of Weinstein cobordisms. In this subsection we consider Wein-
stein cobordisms WD .W; !;X; �/ without critical points (of the function �).
Its holonomy along trajectories of X defines a contactomorphism

�W W .@CW; �C/! .@�W; ��/

for the contact structures �˙ on @˙W induced by the Liouville form �D iX!.
We say that two Weinstein structures W D .!;X; �/ and QW agree up to

scaling on a subset A � W if QWjA D .C!;X; �/ for a constant C > 0. Note
that in this case QWjA has Liouville form C�.

Let us fix a Weinstein cobordism WD .W; !;X; �/ without critical points.
We denote by W.W/ the space of all Weinstein structures W D .W; !;X; �/

with the same function � such that

� W coincides with W on Op @�W and up to scaling on Op @CW ;

� W and W induce the same contact structures on level sets of �.

Equivalently, W.W/ can be viewed as the space of Liouville forms �Df N�Cg d�
with f � 1 near @�W , f �C near @CW , and g� 0 near @W , where � denotes
the Liouville form of W.

Denote by D.W/ the space of contactomorphisms .@CW; �C/! .@�W; ��/,
where �˙ is the contact structure induced on @˙W by W. Note that �W 2D.W/

for any W 2W.W/. The following lemma is the analogue of Lemma 3.6 in the
context of Weinstein cobordisms.

Lemma 4.1. Let W be a Weinstein cobordism without critical points. Then the
map W.W/!D.W/ that assigns to W its holonomy �W is a Serre fibration. In
particular:

(i) Given W 2W.W/ and an isotopy ht 2 D.W/, t 2 Œ0; 1�, with h0 D �W,
there exists a path Wt 2W.W/ with W0 DW such that �Wt

D ht for all
t 2 Œ0; 1�.

(ii) Given a path Wt 2 W.W/, t 2 Œ0; 1�, and a path ht 2 D.W/ which is
homotopic to �Wt

with fixed endpoints, there exists a path QWt 2W.W/

with QW0 DW0 and QW1 DW1 such that � QWt
D ht for all t 2 Œ0; 1�.

4B. Weinstein structures near stable discs. The following two lemmas concern
the construction of Weinstein structures near stable discs of Smale cobordisms.

Lemma 4.2. Let S D .W;X; �/ be an elementary Smale cobordism and ! a
nondegenerate 2-form onW . LetD1; : : : ;Dk be the stable discs of critical points
of �, and set� WD

Sk
jD1Dj . Suppose that the discsD1; : : : ;Dk are !-isotropic

and the pair .!;X/ is Liouville on Op .@�W /. Then for any neighborhood U of
@�W [� there exists a homotopy .!t ; Xt /, t 2 Œ0; 1�, with these properties:
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(i) Xt is a gradient-like vector field for � and !t is a nondegenerate 2-form on
W for all t 2 Œ0; 1�;

(ii) .!0; X0/D .!;X/, and .!t ; Xt /D .!;X/ outsideU and on�[Op .@�W /
for all t 2 Œ0; 1�;

(iii) .!1; X1/ is a Liouville structure on Op .@�W [�/.

Lemma 4.2 has the following version for homotopies.

Lemma 4.3. Let St D .W;Xt ; �t /, t 2 Œ0; 1�, be an elementary Smale homotopy
and !t , t 2 Œ0; 1�, a family of nondegenerate 2-forms on W . Let �t be the union
of the stable (half-)discs of zeroes of Xt and set

� WD
[
t2Œ0;1�

ftg ��t � Œ0; 1��W:

Suppose that �t is !t -isotropic for all t 2 Œ0; 1�, the pair .!t ; Xt / is Liouville on
Op .@�W / for all t 2 Œ0; 1�, and .!0; X0/ and .!1; X1/ are Liouville on all ofW .
Then, for any open neighborhood V D

S
t2Œ0;1�ftg � Vt of �, there exists an

open neighborhood U D
S
t2Œ0;1�ftg �Ut � V of � and a 2-parameter family

.!st ; X
s
t /, s; t 2 Œ0; 1�, with the following properties:

(i) Xst is a gradient-like vector field for �t and !st is a nondegenerate 2-form
on W for all s; t 2 Œ0; 1�.

(ii) .!0t ; X
0
t /D .!t ; Xt / for all t 2 Œ0; 1�, .!s0; X

s
0/D .!0; X0/ and .!s1; X

s
1/D

.!1; X1/ for all s 2 Œ0; 1�, and .!st ; X
s
t / D .!t ; Xt / outside Vt and on

�t [Op .@�W / for all s; t 2 Œ0; 1�.

(iii) .!1t ; X
1
t / is a Liouville structure on Ut for all t 2 Œ0; 1�.

4C. Weinstein homotopies. A smooth family .W; !t ; Xt ; �t /; t 2 Œ0; 1�; of Wein-
stein cobordism structures is called a Weinstein homotopy if the family .W;Xt ;�t /
is a Smale homotopy in the sense of Section 3C. Recall that this means in
particular that the functions �t have @˙W as regular level sets, and they are
Morse except for finitely many t 2 .0; 1/ at which a birth-death type critical point
occurs.

The definition of a Weinstein homotopy on a manifold V requires more care.
Consider first a smooth family �t W V ! R, t 2 Œ0; 1�, of exhausting generalized
Morse functions such that there exists a finite set A � .0; 1/ satisfying the
conditions stated at the beginning of Section 3C. We call �t a simple Morse
homotopy if there exists a sequence of smooth functions c1 < c2 < � � � on the
interval Œ0; 1� such that for each t 2 Œ0; 1�, ci .t/ is a regular value of the function
�t and

S
kf�t � ck.t/g D V: A Morse homotopy is a composition of finitely

many simple Morse homotopies. Then a Weinstein homotopy on the manifold



FLEXIBLE WEINSTEIN MANIFOLDS 23

V is a family of Weinstein manifold structures .V; !t ; Xt ; �t / such that the
associated functions �t form a Morse homotopy.

The main motivation for this definition of a Weinstein homotopy is the fol-
lowing result from [Eliashberg and Gromov 1991] (see also [Cieliebak and
Eliashberg 2012]).

Proposition 4.4. Any two Weinstein manifolds W0D .V; !0; X0; �0/ and W1D

.V; !1; X1; �1/ that are Weinstein homotopic are symplectomorphic. More pre-
cisely, there exists a diffeotopy ht W V ! V with h0 D 1 such that h�1�1 � �0
is exact, where �i D iXi!i are the Liouville forms. If W0 and W1 are the
completions of homotopic Weinstein domains, then we can achieve h�1�1��0D 0
outside a compact set.

Remark 4.5. Without the hypothesis on the functions ck.t/ in the definition of
a Weinstein homotopy, Proposition 4.4 would fail. Indeed, it is not hard to see
that without this hypothesis all Weinstein structures on R2n would be homotopic.
But according to McLean [2009], there are infinitely many Weinstein structures
on R2n which are pairwise nonsymplectomorphic.

Remark 4.6. It is not entirely obvious but true (see [Cieliebak and Eliashberg
2012]) that any two exhausting Morse functions on the same manifold can be
connected by a Morse homotopy.

The notion of Weinstein (or Stein) homotopy can be formulated in more
topological terms. Let us denote by Weinstein the space of Weinstein structures
on a fixed manifold V . For any W0 2Weinstein, " > 0, A� V compact, k 2N,
and any unbounded sequence c1 < c2 < � � � , we define the set

U.W0; "; A; k; c/ WD

fWD .!;X; �/2Weinstein j kW�W0kCk.A/<"; ci regular values of �g:

It is easy to see that these sets are the basis of a topology on Weinstein, and a
smooth family of Weinstein structures satisfying the conditions at the beginning
of Section 3C defines a continuous path Œ0; 1�!Weinstein with respect to this
topology if and only if (possibly after target reparametrization of the functions)
it is a Weinstein homotopy according to the definition above. A topology on the
space Morse of exhausting generalized Morse functions can be defined similarly.

4D. Creation and cancellation of critical points of Weinstein structures. A
key ingredient in Smale’s proof of the h-cobordism theorem is the creation and
cancellation of pairs of critical points of a Morse function. The following two
propositions describe analogues of these operations for Weinstein structures.
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Proposition 4.7 (creation of critical points). Let .W; !;X; �/ be a 2n-dimen-
sional Weinstein cobordism without critical points. Given any point p 2 IntW
and any integer k 2 f1; : : : ; ng, there exists a Weinstein homotopy .!;Xt ; �t /
with the following properties:

(i) .X0; �0/D .X; �/ and .Xt ; �t /D .X; �/ outside a neighborhood of p.

(ii) �t is a creation family such that �1 has a pair of critical points of index k
and k� 1.

Proposition 4.8 (cancellation of critical points). Let .W; !;X; �/ be a Weinstein
cobordism with exactly two critical points p; q of index k and k�1, respectively,
which are connected by a unique X-trajectory along which the stable and un-
stable manifolds intersect transversely. Let � be the skeleton of .W;X/, that
is, the closure of the stable manifold of the critical point p. Then there exists a
Weinstein homotopy .!;Xt ; �t / with the following properties:

(i) .X0; �0/D .X; �/, and .Xt ; �t /D .X; �/ near @W and outside a neighbor-
hood of �.

(ii) �t has no critical points outside �.

(iii) �t is a cancellation family such that �1 has no critical points.

5. Existence and deformations of flexible Weinstein structures

In this section we prove Theorem 1.2 from Section 1B and some other results
about flexible Weinstein manifolds and cobordisms. For simplicity, we assume
that individual functions are Morse and 1-parameter families are Morse homo-
topies in the sense of Section 3C. The more general case of arbitrary (1-parameter
families of) generalized Morse functions is treated similarly.

5A. Existence of Weinstein structures. The next two theorems imply Theorem
1.2(a) from Section 1B.

Theorem 5.1 (Weinstein existence theorem). Let .W; �/ be a 2n-dimensional
Morse cobordism such that � has no critical points of index > n. Let � be a
nondegenerate (not necessarily closed) 2-form on W and Y a vector field near
@�W such that .�; Y; �/ defines a Weinstein structure on Op @�W . Suppose
that either n > 2, or n D 2 and the contact structure induced by the Liouville
form � D iY � on @�W is overtwisted. Then there exists a Weinstein structure
.!;X; �/ on W with the following properties:

(i) .!;X/D .�; Y / on Op @�W .

(ii) The nondegenerate 2-forms ! and � on W are homotopic rel Op @�W .

Moreover, we can arrange that .!;X; �/ is flexible.
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Theorem 5.1 immediately implies the following version for manifolds.

Theorem 5.2. Let .V; �/ be a 2n-dimensional manifold with an exhausting
Morse function � that has no critical points of index > n. Let � be a nondegener-
ate (not necessarily closed) 2-form on V . Suppose that n > 2. Then there exists
a Weinstein structure .!;X; �/ on V such that the nondegenerate 2-forms ! and
� on V are homotopic. Moreover, we can arrange that .!;X; �/ is flexible.
�

Proof of Theorem 5.1. By decomposing the Morse cobordism MD .W; �/ into
elementary ones, W DW1[ � � � [WN , and inductively extending the Weinstein
structure over W1; : : : ; WN , it suffices to consider the case of an elementary
cobordism. To simplify the notation, we will assume that � has a unique critical
point p; the general case is similar. Let us extend Y to a gradient-like vector
field for � on W and denote by � the stable disc of p.

Step 1. We first show that, after a homotopy of .�; Y / fixed on Op @�W , we may
assume that � is �-isotropic.

The Liouville form � D iY � on Op @�W defines a contact structure � WD
ker.�j@�W / on @�W . We choose an auxiliary �-compatible almost complex
structure J on W which preserves � and maps Y along @�W to the Reeb vector
field R of �j@�W . We apply Theorem 2.9 to find a diffeotopy ft WW !W such
that the disc �0 D f1.�/ is J -totally real and J -orthogonally attached to @�W .
This is the only point in the proof where the overtwistedness assumption for
nD 2 is needed. Moreover, according to Theorem 2.9, in the case dim�D n

we can arrange that the Legendrian sphere @�0 in .@�W; �/ is loose (meaning
that @�W n @�0 is overtwisted in the case nD 2).

Next we will modify the homotopy f �t J to keep it fixed near @�W . Because
of J -orthogonality, @�0 is tangent to the maximal J -invariant distribution � �
T .@�W / and thus �j@�0 D 0. Since the spaces T�0 and spanfT @�0; Y g are
both totally real and J -orthogonal to T .@�W /, we can further adjust the disc �0

(keeping @�0 fixed) to make it tangent to Y in a neighborhood of @�0. It follows
that we can modify ft such that it preserves the function � and the vector field Y
on a neighborhood U of @�W (extend ft from @�W to U using the flow of Y ).

Hence, there exists a diffeotopy gt W W ! W , t 2 Œ0; 1�, which equals ft
on W n U , the identity on Op @�W , and preserves � (but not Y !) on U ; see
Figure 7. Then the diffeotopy kt WD f �1t ıgt equals the identity on W nU , f �1t
on Op @�W , and preserves � on all of W . Thus the vector fields Yt WD k�t Y
are gradient-like for � D k�t � and coincide with Y on .W n U/ [ Op @�W .
The nondegenerate 2-forms �t WD g�t � are compatible with Jt WD g�t J and
coincide with � on Op @�W . Moreover, since �0 is J -totally real, the stable
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Figure 7. Deforming the disc � to one which is totally real and
J -orthogonally attached.

disc �1 WD k�11 .�/ D g�11 .�0/ of p with respect to Y1 is J1-totally real and
J1-orthogonally attached to @�W .

After renaming .�1; Y1; �1/ back to .�; Y;�/, we may hence assume that �
is J -totally real and J -orthogonally attached to @�W for some �-compatible
almost complex structure J on W which preserves � and maps Y to the Reeb
vector field R along @�W . In particular, @� is �-isotropic and �\ Op @�W
is �-isotropic. Since the space of nondegenerate 2-forms compatible with J
is contractible, after a further homotopy of � fixed on Op @�W and outside a
neighborhood of �, we may assume that � is �-isotropic.

Step 2. By Lemma 4.2 there exists a homotopy .�t ; Yt /, t 2 Œ0; 1�, of gradient-
like vector fields for � and nondegenerate 2-forms on W , fixed on �[Op @�W
and outside a neighborhood of �, such that .�0; Y0/ D .�; Y / and .�1; Y1/ is
Liouville on Op .@�W [�/. After renaming .�1; Y1/ back to .�; Y /, we may
hence assume that .�; Y / is Liouville on a neighborhood U of @�W [�.

Step 3. Pushing down along trajectories of Y , we construct an isotopy of em-
beddings ht WW ,!W , t 2 Œ0; 1�, with h0 D 1 and ht D 1 on Op .@�W [�/,
which preserves trajectories of Y and such that h1.W /� U . Then .�t ; Yt / WD
.h�t �; h

�
t Y / defines a homotopy of nondegenerate 2-forms and vector fields on

W , fixed on Op .@�W [�/, from .�0; Y0/ D .�; Y / to the Liouville structure
.�1; Y1/DW .!;X/. Since the Yt are proportional to Y , they are gradient-like for
� for all t 2 Œ0; 1�.

The Weinstein structure .!;X; �/ will be flexible if we choose the stable
sphere @� in Step 1 to be loose, so Theorem 5.1 is proved. �

5B. Homotopies of flexible Weinstein structures. Theorems 5.3 and 5.4 for
cobordisms, and Theorems 5.5 and 5.6 for manifolds, are our main results con-
cerning deformations of flexible Weinstein structures. They imply Theorem 1.2(b).

Theorem 5.3 (first Weinstein deformation theorem). Let WD .W; !;X; �/ be
a flexible Weinstein cobordism of dimension 2n. Let �t , t 2 Œ0; 1�, be a Morse
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homotopy without critical points of index > n with �0 D � and �t D � near
@W . In the case 2n D 4 assume that either @�W is overtwisted, or �t has no
critical points of index > 1. Then there exists a homotopy Wt D .W; !t ; Xt ; �t /,
t 2 Œ0; 1�, of flexible Weinstein structures, starting at W0 DW, which is fixed
near @�W and fixed up to scaling near @CW .

Theorem 5.4 (second Weinstein deformation theorem). Let W0 D .!0; X0; �0/

and W1 D .!1; X1; �1/ be two flexible Weinstein structures on a cobordism W

of dimension 2n. Let �t , t 2 Œ0; 1�, be a Morse homotopy without critical points
of index > n connecting �0 and �1. In the case 2nD 4 assume that either @�W
is overtwisted, or �t has no critical points of index > 1. Let �t , t 2 Œ0; 1�, be a
homotopy of nondegenerate (not necessarily closed) 2-forms connecting !0 and
!1 such that .�t ; Yt ; �t / is Weinstein near @�W for a homotopy of vector fields
Yt on Op @�W connecting X0 and X1.

Then W0 and W1 can be connected by a homotopy Wt D .!t ; Xt ; �t /; t 2

Œ0; 1�; of flexible Weinstein structures, agreeing with .�t ; Yt ; �t / on Op @�W ,
such that the paths of nondegenerate 2-forms t 7! �t and t 7! !t , t 2 Œ0; 1�, are
homotopic rel Op @�W with fixed endpoints.

Theorems 5.3 and 5.4 will be proved in Sections 5C and 5D. They have the
following analogues for deformations of flexible Weinstein manifolds, which are
derived from the cobordism versions by induction over sublevel sets.

Theorem 5.5. Let WD .V; !;X; �/ be a flexible Weinstein manifold of dimen-
sion 2n. Let �t , t 2 Œ0; 1�, be a Morse homotopy without critical points of index
> n with �0 D �. In the case 2n D 4 assume that �t has no critical points of
index > 1. Then there exists a homotopy Wt D .V; !t ; Xt ; �t /, t 2 Œ0; 1�, of
flexible Weinstein structures such that W0 DW.

If the Morse homotopy �t are fixed outside a compact set, then the Weinstein
homotopy Wt can be chosen fixed outside a compact set. �

Theorem 5.6. Let W0 D .!0; X0; �0/ and W1 D .!1; X1; �1/ be two flexible
Weinstein structures on the same manifold V of dimension 2n. Let �t , t 2 Œ0; 1�,
be a Morse homotopy without critical points of index > n connecting �0 and
�1. In the case 2n D 4, assume that �t has no critical points of index > 1.
Let �t be a homotopy of nondegenerate 2-forms on V connecting !0 and !1.
Then there exists a homotopy Wt D .!t ; Xt ; �t / of flexible Weinstein structures
connecting W0 and W1 such that the paths !t and �t of nondegenerate 2-forms
are homotopic with fixed endpoints. �

5C. Proof of the first Weinstein deformation theorem. The proof of Theorem 5.3
is based on the following three lemmas.
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Lemma 5.7. Let W D .W; !;X; �/ be a flexible Weinstein cobordism and Y
a gradient-like vector field for � such that the Smale cobordism .W; Y; �/ is
elementary. Then there exists a family Xt , t 2 Œ0; 1�, of gradient-like vector fields
for � and a family !t , t 2

�
0; 1
2

�
, of symplectic forms on W such that

� Wt D .W; !t ; Xt ; �/, t 2
�
0; 1
2

�
, is a flexible Weinstein homotopy with

W0 DW, fixed on Op @�W and fixed up to scaling on Op @CW ;

� X1 D Y and the Smale cobordisms .W;Xt ; �/, t 2
�
1
2
; 1
�
, are elementary.

Proof. Step 1. Let c1 < � � � < cN be the critical values of the function �. Set
c0 WD �j@�W and cNC1 WD �j@CW . Choose

" 2

�
0;minjD0;:::;N

cjC1� cj

2

�
and define (see Figure 8)

W1 WD f� � c1C "g;

Wj WD fcj � "� � � cj C "g; j D 2; : : : ; N � 1;

WN WD f� � cN � "g;

Vj WD fcj C "� � � cjC1� "g; j D 1; : : : ; N � 1;

†˙j WD f� D cj ˙ "g; j D 1; : : : ; N I

φ

cN

cj

c1

SN−
j

S1+
j

WN

VN−1

Vj

Wj

Vj−1

V1

W1

Figure 8. The partition of W into subcobordisms.
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Thus we have

†Cj D @�Vj D @CWj for j D 1; : : : ; N � 1;

†�j D @CVj�1 D @�Wj for j D 2; : : : ; N:

We denote by �˙j the contact structure induced by the Liouville form iX! on
†˙j , j D 1; : : : ; N .

For k � j we denote by Sk�j the intersection of the union of the Y -stable
manifolds of the critical points on level ck with the hypersurface †�j . Similarly,
for i � j we denote by S iCj the intersection of the union of the Y -unstable
manifolds of the critical points on level ci with the hypersurface†Cj ; see Figure 8.
Set

S�j WD
[
k�j

Sk�j ; SCj WD
[
i�j

S iCj :

The assumption that the Smale cobordism .Y; �/ is elementary implies that S˙j
is a union of spheres in †˙j .

Consider on
SN
jD1Wj the gradient-like vector fields Yt WD .1� t /Y C tX ,

t 2 Œ0; 1�, for �. Let us pick " so small that for all t 2 Œ0; 1� the Yt -unstable
spheres in †Cj of the critical points on level cj do not intersect the Y -stable
spheres in †Cj of any critical points on higher levels. By Lemma 3.1 we can
extend the Yt to gradient-like vector fields for � on W such that Y0 D Y and
Yt D Y outside Op

SN
jD1Wj for all t 2 Œ0; 1�. By Lemma 3.6, this can be done

in such a way that the intersection of the Yt -stable manifold of the critical point
locus on level ci with the hypersurface †Cj remains unchanged. This implies
that the cobordisms .W; Yt ; �/ are elementary for all t 2 Œ0; 1�. After renaming
Y1 back to Y and shrinking the Wj , we may hence assume that Y D X on
Op

SN
jD1Wj .

We will construct the required homotopies Xt , t 2 Œ0; 1�, and !t , t 2
�
0; 1
2

�
,

separately on each Vj , j D 1; : : : ; N � 1, in such a way that Xt is fixed near
@Vj for all t 2 Œ0; 1� and !t is fixed up to scaling near @Vj for t 2

�
0; 1
2

�
. This

will allow us then to extend the homotopies Xt and !t to
SN
jD1Wj as constant

(resp. constant up to scaling).

Step 2. Consider Vj for 1� j �N � 1. To simplify the notation, we denote the
restriction of objects to Vj by the same symbol as the original objects, omitting
the index j . Let us denote by X.Vj ; �/ the space of all gradient-like vector
fields for � on Vj that agree with X near @Vj . We connect X and Y by the path
Yt WD .1� t /X C tY in X.Vj ; �/.

Denote by �Yt W†
�
jC1!†Cj the holonomy of the vector field Yt on Vj and

consider the isotopy gt WD �Yt jS�jC1 W S
�
jC1 ,! †Cj : Suppose for the moment
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that S�jC1 �†
�
jC1 is isotropic and loose (this hypothesis will be satisfied below

when we perform induction on descending values of j ).
Since �Y0 D �X is a contactomorphism, this implies that the embedding g0

is loose isotropic. Hence, by Theorem 2.2 for the subcritical case, Theorem 2.4
for the Legendrian overtwisted case in dimension 4, and Theorem 2.6 in the
Legendrian loose case in dimension 2n > 4, there exists a (loose) isotropic
isotopy Qgt starting at g0 and a C 0-small smooth isotopy g0t connecting Qg1 to
g1 such that the concatenation of Qgt and g0t is homotopic to gt through smooth
isotopies with fixed endpoints. More precisely, by the isotopy extension theorem,
we find diffeotopies ıt ; yıt W†Cj !†Cj with the following properties:

� ı0 D yı0 D Id and ı1 D yı1;

� the diffeotopies ıt and yıt are homotopic with fixed endpoints;

� yıt is C 0-small and yıt ıg1.S�jC1/\S
C
j D¿ for all t 2 Œ0; 1�;

� ıt ıgt is loose isotropic in †Cj with respect to the contact structure �Cj ;

� ı1 ıg1 is loose isotropic in †Cj nS
C
j .

The path �Yt , t 2 Œ0; 1�, in Diff.†�jC1; †
C
j / is homotopic with fixed endpoints to

the concatenation of the paths ıt ı�Yt (from �Y0 to ı1 ı�Y1) and yı�1t ı ı1 ı�Y1
(from ı1ı�Y1 to �Y1). Hence by Lemma 9.41 we find paths Y 0t and Y 00t , t 2 Œ0; 1�,
in X.Vj ; �/ such that

� Y 00 DX , Y 01 D Y
00
0 and Y 001 D Y ;

� �Y 0t D ıt ı�Yt and �Y 00t D
yı�1t ı ı1 ı�Y1 , t 2 Œ0; 1�.

Note that �Y 0t jS�jC1 is loose isotropic. Moreover, �Y 00t .S
�
jC1/\S

C
j D¿ in †Cj

and �Y 01.S
�
jC1/ is loose in †Cj n S

C
j . So the image of �Y .S�jC1/ under the

holonomy of the elementary Weinstein cobordism .Wj ; !;X D Y; �/ is loose
isotropic in †�j . Since the union S�j of the stable spheres of .Wj ; Y / are loose
by the flexibility hypothesis on W, this implies that S�j �†

�
j is loose isotropic.

Now we perform this construction inductively in descending order over Vj for
j DN �1; N �2; : : : ; 1, always renaming the new vector fields back to Y . The
resulting vector field Y is then connected to X by a homotopy Yt such that the
manifolds S�jC1 � †

�
jC1 and the isotopies �Yt jS�jC1 W S

�
jC1 ,! †Cj ; t 2 Œ0; 1�;

are loose isotropic for all j D 1; : : : ; N � 1.

Step 3. Let Y and Yt be as constructed in Step 2. Now we construct the desired
homotopies Xt and !t separately on each Vj , j D 1; : : : ; N � 1, keeping them
fixed near @Vj . We keep the notation from Step 2. By the contact isotopy
extension theorem, we can extend the isotropic isotopy �Yt jS�jC1 W S

�
jC1 ,!†Cj
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to a contact isotopy

Gt W .†
�
jC1; �

�
jC1/! .†Cj ; �

C
j /

starting at G0 D �Y0 D �X . By Lemma 4.1, we find a Weinstein homotopy
QWt D .Vj ; Q!t ; QXt ; �/ beginning at QW0 DW with holonomy � QWt

DGt for all
t 2 Œ0; 1�. Now Lemma 3.7 provides a path Xt 2 X.Vj ; �/ such that

(i) Xt D QX2t for t 2
�
0; 1
2

�
;

(ii) X1 D Y1 D Y ;

(iii) �Xt .S
�
jC1/D �Y .S

�
jC1/ for t 2

�
1
2
; 1
�
.

Over the interval
�
0; 1
2

�
the Smale homotopy St D .Vj ; Xt ; �/ can be lifted to

the Weinstein homotopy Wt D .Vj ; !t ; Xt ; �/, where !t WD Q!2t .
Condition (iii) implies that �Xt .S

�
jC1/\ S

C
j D ¿ for all t 2

�
1
2
; 1
�
, so the

resulting Smale homotopy on W is elementary over the interval
�
1
2
; 1
�
. �

The following lemma is the analogue of Lemma 5.7 in the case that the
Smale cobordism .W; Y; �/ is not elementary, but has exactly two critical points
connected by a unique trajectory.

Lemma 5.8. Let W D .W; !;X; �/ be a flexible Weinstein cobordism and Y
a gradient-like vector field for �. Suppose that the function � has exactly two
critical points connected by a unique Y -trajectory along which the stable and
unstable manifolds intersect transversely. Then there exists a familyXt , t 2 Œ0; 1�,
of gradient-like vector fields for � and a family !t , t 2

�
0; 1
2

�
, of symplectic

forms on W such that

� Wt D .W; !t ; Xt ; �/, t 2
�
0; 1
2

�
, is a flexible Weinstein homotopy with

W0 DW, fixed on Op @�W and fixed up to scaling on Op @CW ;

� X1D Y and for t 2
�
1
2
; 1
�

the critical points of the function � are connected
by a unique Xt -trajectory.

Proof. Let us denote the critical points of the function � by p1 and p2 and the
corresponding critical values by c1 < c2. As in the proof of Lemma 5.7, for
sufficiently small " > 0, we split the cobordism W into three parts:

W1 WD f� � c1C "g; V WD fc1C "� � � c2� "g; W2 WD f� � c2� "g:

Arguing as in Step 1 of the proof of Lemma 5.7, we reduce to the case that
Y DX on Op .W1[W2/.

On V consider the gradient-like vector fields Yt WD .1� t /X C tY for �. Let
† WD f� D c1C"g D @�V . Denote by St �† the Yt -stable sphere of p2 and by
SC�† the Y -unstable sphere of p1. Note that SC is coisotropic, S0 is isotropic,
and S1 intersects SC transversely in a unique point q. We deform S1 to S 01 by a



32 KAI CIELIEBAK AND YAKOV ELIASHBERG

C 0-small deformation, keeping the unique transverse intersection point q with
SC, such that S 01 is isotropic near q. Connect S0 to S 01 by an isotopy S 0t which
is C 0-close to St . Due to the flexibility hypothesis on W, the isotropic sphere
S 00 D S0 is loose. Hence by Theorems 2.2, 2.4, and 2.6, we find an isotropic
isotopy QSt with the following properties:

� QS0 D S
0
0 D S0;

� QS1 is connected to S 01 by a C 0-small smooth isotopy that coincides with S 01
near q and has q as its unique transverse intersection point with SC.

Arguing as in Steps 2 and 3 of the proof of Lemma 5.7, we now construct a
Weinstein homotopy Wt D .V; !t ; Xt ; �/, t 2

�
0; 1
2

�
, fixed near @�V and fixed

up to scaling near @CV , and Smale cobordisms .V;Xt ; �/, t 2
�
1
2
; 1
�
, fixed near

@V , such that

� W0 DWjV and X1 D Y jV ;

� the Xt -stable sphere of p2 in † equals QS2t for t 2
�
0; 1
2

�
, and QS1 for

t 2
�
1
2
; 1
�
.

In particular, for t 2
�
1
2
; 1
�

the Xt -stable sphere of p2 in † intersects SC

transversely in the unique point q, so the two critical points p1; p2 are connected
by a unique Xt -trajectory for t 2

�
1
2
; 1
�
. �

The following lemma will serve as induction step in proving Theorem 5.3.

Lemma 5.9. Let WD .W; !;X; �/ be a flexible Weinstein cobordism of dimen-
sion 2n. Let St D .W; Yt ; �t /, t 2 Œ0; 1�, be an elementary Smale homotopy
without critical points of index > n such that �0 D � on W and �t D � near
@W (but not necessarily Y0 D X!). If 2n D 4 and St is of Type IIb assume
that either @�W is overtwisted, or �t has no critical points of index > 1. Then
there exists a homotopy Wt D .W; !t ; Xt ; �t /, t 2 Œ0; 1�, of flexible Weinstein
structures, starting at W0DW, which is fixed near @�W and fixed up to scaling
near @CW .

Proof. Type I. Consider first the case when the homotopy St is elementary of
Type I. We point out that .W;X; �/ need not be elementary. To remedy this, we
apply Lemma 5.7 to construct families Xt and !t such that

� Wt D .W; !t ; Xt ; �/, t 2
�
0; 1
2

�
, is a Weinstein homotopy with W0 DW,

fixed on Op @�W and fixed up to scaling on Op @CW ;

� X1 D Y0 and the Smale cobordisms .W;Xt ; �/, t 2
�
1
2
; 1
�
, are elementary.

Thus it suffices to prove the lemma for the Weinstein cobordism .!1=2; X1=2; �/

instead of W, and the concatenation of the Smale homotopies .Xt ; �/t2Œ 1
2
;1� and

.Yt ; �t /t2Œ0;1� instead of .Yt ; �t /. To simplify the notation, we rename the new
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Weinstein cobordism and Smale homotopy back to WD .!;X; �/ and .Yt ; �t /.
So in the new notation we now have X D Y0.

According to Lemma 3.5 there exists a family Q�t , t 2 Œ0; 1�, of Lyapunov
functions for X with the same profile as the family �t , and such that Q�0 D �
and Q�t D �t on Op @W . Then Lemma 3.4 provides a diffeotopy ht WW !W ,
t 2 Œ0; 1�, such that h0 D Id, ht jOp @W D Id, and �t D Q�t ı ht for all t 2 Œ0; 1�.
Thus the Weinstein homotopy .W; !t D h�t !;Xt D h

�
tX; �t D h

�
t
Q�t /, t 2 Œ0; 1�,

has the desired properties. It is flexible because the Xt -stable spheres in @�W
are loose for t D 0 and moved by an isotropic isotopy, so they remain loose for
all t 2 Œ0; 1�.

Type IId. Suppose now that the homotopy St is of Type IId. Let t0 2 Œ0; 1� be
the parameter value for which the function �t has a death-type critical point. In
this case the function � has exactly two critical points p and q connected by a
unique Y0-trajectory.

Arguing as for Type I, but using Lemma 5.8 instead of Lemma 5.7, we
can again reduce to the case that X D Y0. Then Proposition 4.8 provides an
elementary Weinstein homotopy .W; !; QXt ; Q�t / of Type IId starting from W

and killing the critical points p and q at time t0. One can also arrange that
. QXt ; Q�t / coincides with .X; �/ on Op @W , and (by composing Q�t with suitable
functions R ! R) that the homotopies Q�t and �t have equal profiles. Then
Lemma 3.4 provides a diffeotopy ht W W ! W , t 2 Œ0; 1�, such that h0 D Id,
ht jOp @W D Id, and �t D Q�t ı ht for all t 2 Œ0; 1�. Thus the Weinstein homotopy
.W; !t D h

�
t !;Xt D h

�
t
QX; �t D h

�
t
Q�t /, t 2 Œ0; 1�, has the desired properties. It

is flexible because the intersections of the Xt -stable manifolds with regular level
sets remain loose for t 2 Œ0; t0� and there are no critical points for t > t0.

Type IIb. The argument in this case is similar, except that we use Proposition 4.7
instead of Proposition 4.8 and we do not need a preliminary homotopy. However,
the flexibility of Wt for t � t0 requires an additional argument.

Consider first the case 2n> 4. Suppose �1 has critical points p and q of index
n and n� 1, respectively (if they have smaller indices flexibility is automatic).
Then the closure � of the X1-stable manifold of the point p intersects @�W
along a Legendrian disc @�� The boundary S�q of this disc is the intersection
with @�W of the X1-stable manifold D�q of q. According to Remark 2.5(1) all
Legendrian discs are loose, or more precisely, @��nS�q is loose in @�W nS�q . Let
c be a regular value of �1 which separates �1.q/ and �1.p/ and consider the level
set † WD f�1 D cg. Flowing along X1-trajectories defines a contactomorphism
@�W n S

�
q ! † nDCq mapping @�� n S�q onto �\† n frg, where r is the

unique intersection point of � and the X1-unstable manifold DCq in the level set



34 KAI CIELIEBAK AND YAKOV ELIASHBERG

†. It follows that �\† n frg is loose in † n frg, and hence �\† is loose in
†. This proves flexibility of W1, and thus of Wt for t � t0.

Finally, consider the case 2nD 4. If the critical points have indices 1 and 0,
flexibility is automatic. If they have indices 2 and 1 and @�W is overtwisted, we
can arrange that @��� @�W (in the notation above) has an overtwisted disc in
its complement, hence so does the intersection of � with the regular level set
f� D cg. �

Proof of Theorem 5.3. Let us pick gradient-like vector fields Yt for �t with
Y0 D X and Yt D X near @W to get a Smale homotopy St D .W; Yt ; �t /,
t 2 Œ0; 1�. By Lemma 3.3 we find an admissible partition for the Smale homotopy
St . Thus we get a sequence 0D t0 < t1 < � � �< tp D 1 of parameter values and
smooth families of partitions

W D

Nk[
jD1

W k
j .t/; W k

j .t/ WD
˚
ckj�1.t/� �t � c

k
j .t/

	
; t 2 Œtk�1; tk�;

such that each Smale homotopy

Skj WD
�
W k
j .t/; Yt jW k

j
.t/; �t jW k

j
.t/

�
t2Œtk�1;tk�

is elementary. We will construct the Weinstein homotopy .!t ; Xt ; �t / on the
cobordisms

S
t2Œtk�1;tk�

W k
j .t/ inductively over k D 1; : : : ; p, and for fixed k

over j D 1; : : : ; Nk .
Suppose the required Weinstein homotopy is already constructed on W for

t � tk�1. To simplify the notation we rename �tk�1 to �, the vector fields Xtk
and Ytk to X and Y , and the symplectic form !tk�1 to !. We also write N
instead of Nk , Wj and Wj .t/ instead of W k

j .tk�1/ and W k
j .t/, and replace the

interval Œtk�1; tk� by Œ0; 1�.
There exists a diffeotopy ft W W ! W , fixed on Op @W , with f0 D Id and

such that ft .Wj / D Wj .t/ for all t 2 Œ0; 1�. Moreover, we can choose ft and
a diffeotopy gt W R! R with g0 D 1 such that the function y�t WD gt ı �t ı ft
coincides with � on Op @Wj for all t 2 Œ0; 1�, j D 1; : : : ; N . Set yYt WD f �t Yt . So
we have a flexible Weinstein cobordism

WD

�
W D

N[
jD1

Wj ; !;X; � D y�0

�

and a Smale homotopy . yYt ; y�t /, t 2 Œ0; 1�, whose restriction to each Wj is
elementary. (But the restriction of W to Wj need not be elementary.)

Now we apply Lemma 5.9 inductively for j D1; : : : ; N to construct Weinstein
homotopies yWj

t D .Wj ; y!t ;
yXt ; y�t /, fixed near @�Wj and fixed up to scaling
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near @CWj , with yWj
0 DWjWj . Thus the W

j
t fit together to form a Weinstein

homotopy yWt D .y!t ; yXt ; y�t / on W . The desired Weinstein homotopy on W is
now given by

Wt WD
�
ft� y!t ; ft� yXt ; g

�1
t ı
y�t ıf

�1
t

�
: �

5D. Proof of the second Weinstein deformation theorem. Let us extend the
vector fields Yt from Op @�W to a path of gradient-like vector fields for �t on
W connecting X0 and X1. We will deduce Theorem 5.4 from Theorem 5.3 and
the following special case, which is just a 1-parametric version of the Weinstein
existence theorem (Theorem 5.1).

Lemma 5.10. Theorem 5.4 holds under the additional hypothesis that �t D � is
independent of t 2 Œ0; 1� and the Smale homotopy .W; Yt ; �/ is elementary.

Proof. The proof is just a 1-parametric version of the proof of Theorem 5.1,
using Theorem 2.10 and Lemma 4.3 instead of Theorem 2.9 and Lemma 4.2. �
Lemma 5.11. Theorem 5.4 holds under the additional hypothesis that �t D � is
independent of t 2 Œ0; 1�.

Proof. Let us pick regular values

�j@�W D c0 < c1 < � � �< cN D �j@CW

such that each .ck�1; ck/ contains at most one critical value. Then the restriction
of the homotopy .Yt ; �/, t 2 Œ0; 1�, to each cobordism W k WD fck�1 � � � ckg

is elementary.
We apply Lemma 5.10 to the restriction of the homotopy .�t ; Yt ; �/ to W 1.

Hence W0jW 1 and W1jW 1 are connected by a homotopy W1
t D .!

1
t ; X

1
t ; �/,

t 2 Œ0; 1�, of flexible Weinstein structures on W 1, agreeing with .�t ; Yt ; �t / on
Op @�W , such that the paths t 7! !1t and t 7! �t , t 2 Œ0; 1�, of nondegenerate
2-forms on W 1 are connected by a homotopy �st , s; t 2 Œ0; 1� rel Op @�W with
fixed endpoints. We use the homotopy !st to extend !1t to nondegenerate 2-forms
�1t on W such that �10 D !0, �11 D !1, �1t D �t outside a neighborhood of W 1,
and the paths t 7! �1t and t 7! �t , t 2 Œ0; 1�, of nondegenerate 2-forms on W are
homotopic rel Op @�W with fixed endpoints. By Lemma 3.1, we can extend X1t
to gradient-like vector fields Y 1t for � on W such that Y 10 DX0 and Y 11 DX1.
Now we can apply Lemma 5.10 to the restriction of the homotopy .�1t ; Y

1
t ; �/ to

the elementary cobordism W 2 and continue inductively to construct homotopies
.�kt ; Y

k
t ; �/ on W which are Weinstein on W k , so .�Nt ; Y

N
t ; �/ is the desired

Weinstein homotopy. Note that .�Nt ; Y
N
t ; �/ is flexible because its restriction to

each W k is flexible. �
Proof of Theorem 5.4. Let us reparametrize the given homotopy .�t ; Yt ; �t /,
t 2 Œ0; 1�, to make it constant for t 2

�
1
2
; 1
�
. After pulling back .�t ; Yt ; �t / by
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a diffeotopy and target reparametrizing �t , we may further assume that �t is
independent of t on Op @W .

By Theorem 5.3, W0 can be extended to a homotopy Wt D .!t ; Xt ; �t /,
t 2

�
0; 1
2

�
, of flexible Weinstein structures on W , fixed on Op @�W . We can

modify Wt to make it agree with .�t ; Yt ; �t / on Op @�W . Note that W1=2 and
W1 share the same function �1=2 D �1. We connect !1=2 and !1 by a path �0t ,
t 2 Œ1

2
; 1� of nondegenerate 2-forms by following the path !t backward and then

�t forward. Since !t D �t on Op @�W for t 2
�
0; 1
2

�
, we can modify the path

�0t to make it constant equal to !1=2 D !1 on Op @�W . By Lemma 3.1, we can
connect X1=2 and X1 by a homotopy Y 0t , t 2

�
1
2
; 1
�
, of gradient-like vector fields

for �1 which agree with X1=2 DX1 on Op @�W .
So we can apply Lemma 5.11 to the homotopy .�0t ; Y

0
t ; �1/, t 2

�
1
2
; 1
�
. Hence

W1=2 and W1 are connected by a homotopy Wt D .!t ; Xt ; �1/, t 2
�
1
2
; 1
�
,

of flexible Weinstein structures, agreeing with .!1; X1; �1/ on Op @�W , such
that the paths of nondegenerate 2-forms t 7! !t and t 7! �0t , t 2

�
1
2
; 1
�
, are

homotopic rel Op @�W with fixed endpoints. It follows from the definition of �0t
that the concatenated path !t , t 2 Œ0; 1�, is homotopic to �t , t 2 Œ0; 1�. Thus the
concatenated Weinstein homotopy Wt , t 2 Œ0; 1�, has the desired properties. �

6. Applications

6A. The Weinstein h-cobordism theorem. Most of our applications are based
on the following result, which is a direct consequence of the two-index theorem
of Hatcher and Wagoner; see [Cieliebak and Eliashberg 2012] for its formal
derivation from the results in [Hatcher and Wagoner 1973; Igusa 1988].

Theorem 6.1. Any two Morse functions without critical points of index > n on
a cobordism or a manifold of dimension 2n > 4 can be connected by a Morse
homotopy without critical points of index > n (where, as usual, functions on a
cobordism W are required to have @˙W as regular level sets and functions on a
manifold are required to be exhausting).

Corollary 6.2. In the case 2n>4, we can remove the hypothesis on the existence
of a Morse homotopy �t from Theorems 5.3, 5.4, 5.5 and 5.6 and still conclude
the existence of the stated Weinstein homotopies. �

In particular, we have the following Weinstein version of the h-cobordism
theorem.

Corollary 6.3 (Weinstein h-cobordism theorem). Any flexible Weinstein struc-
ture on a product cobordism W D Y � Œ0; 1� of dimension 2n > 4 is homotopic
to a Weinstein structure .W; !;X; �/, where � WW ! Œ0; 1� is a function without
critical points. �
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6B. Symplectomorphisms of flexible Weinstein manifolds. Theorem 5.6 has
the following consequence for symplectomorphisms of flexible Weinstein mani-
folds.

Theorem 6.4. Let WD .V; !;X; �/ be a flexible Weinstein manifold of dimen-
sion 2n > 4, and f W V ! V a diffeomorphism such that f �! is homotopic to
! through nondegenerate 2-forms. Then there exists a diffeotopy ft W V ! V ,
t 2 Œ0; 1�, such that f0 D f , and f1 is an exact symplectomorphism of .V; !/.

Proof. By Theorem 5.6 and Corollary 6.2, there exists a Weinstein homotopy
Wt connecting W0 DW and W1 D f

�W. Thus Proposition 4.4 provides a
diffeotopy ht W V ! V such that h0 D 1 and h�1f

���� is exact, where � is the
Liouville form of W. Now ft D f ı ht is the desired diffeotopy. �
Remark 6.5. Even if W is of finite type and f D 1 outside a compact set, the
diffeotopy ft provided by Theorem 6.4 will in general not equal the identity
outside a compact set.

6C. Symplectic pseudo-isotopies. Let us recall the basic notions of pseudo-
isotopy theory from [Cerf 1970; Hatcher and Wagoner 1973]. For a manifold W
(possibly with boundary) and a closed subset A�W , we denote by Diff.W;A/
the space of diffeomorphisms of W fixed on Op .A/, equipped with the C1-
topology. For a cobordism W , the restriction map to @CW defines a fibration

Diff.W; @W /! Diff.W; @�W /! DiffP.@CW /;

where DiffP.@CW / denotes the image of the restriction map Diff.W; @�W /!
Diff.@CW /: For the product cobordism I �M , I D Œ0; 1�, @M D¿,

P.M/ WD Diff.I �M; 0�M/

is the group of pseudo-isotopies of M . Denote by DiffP.M/ the group of
diffeomorphisms ofM that are pseudo-isotopic to the identity, that is, that appear
as the restriction to 1�M of an element in P.M/. Restriction to 1�M defines
the fibration

Diff.I �M; @I �M/! P.M/! DiffP.M/;

and thus a homotopy exact sequence

� � � ! �0Diff.I �M; @I �M/! �0P.M/! �0DiffP.M/! 0:

We will use the following alternative description of P.M/; see [Cerf 1970].
Denote by E.M/ the space of all smooth functions f W I �M ! I without
critical points and satisfying f .r; x/D r on Op .@I �M/. We have a homotopy
equivalence

P.M/! E.M/; F 7! p ıF;
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where p W I �M ! I is the projection. A homotopy inverse is given by fixing a
metric and sending f 2 E.M/ to the unique diffeomorphism F mapping levels
of f to levels of p and gradient trajectories of f to straight lines I � fxg. Note
that the last map in the homotopy exact sequence

� � � ! �0Diff.I �M; @I �M/! �0E.M/! �0DiffP.M/

associates to f 2 E.M/ the flow from 0�M to 1�M along trajectories of a
gradient-like vector field (whose isotopy class does not depend on the gradient-
like vector field).

For the symplectic version of the pseudo-isotopy spaces, it will be convenient
to replace I �M by R �M as follows: We replace E.M/ by the space of
functions f W R �M ! R without critical points and satisfying f .r; x/ D r
outside a compact set; Diff.I �M; @I �M/ by the space Diffc.R �M/ of
diffeomorphisms that equal the identity outside a compact set; and P.M/ by the
space of diffeomorphisms of R�M that equal the identity near f�1g�M and
have the form .r; x/ 7! .r Cf .x/; g.x// near fC1g�M . The last map in the
exact sequence

� � � ! �0Diffc.R�M/! �0E.M/! �0DiffP.M/

then associates to f 2 E.M/ the flow from f�1g �M to fC1g �M along
trajectories of a gradient-like vector field which equals @r outside a compact set.

We endow the spaces P.M/, E.M/ and Diffc.R�M/ with the topology of
uniform C1-convergence on R �M (and not the topology of uniform C1-
convergence on compact sets), with respect to the product of the Euclidean
metric on R and any Riemannian metric on M . In other words, a sequence
Fn 2 P.M/ converges to F 2 P.M/ if and only if kFn�F kCk.R�M/! 0 for
every k D 0; 1; : : : . For example, consider any nonidentity element F 2 P.M/

and the translations �c.r; x/D .r C c; x/, c 2 R, on R�M . Then the sequence
Fn WD �nıF ı��n does not converge as n!1 to the identity in P.M/, although
it does converge uniformly on compact sets. With this topology, the obvious
inclusion maps from the spaces on I �M to the corresponding spaces on R�M

are weak homotopy equivalences.

Remark 6.6. Cerf [1970] proved that �0P.M/ is trivial if dimM � 5 and M
is simply connected. In other words, under these assumptions pseudo-isotopy
implies isotopy. In the nonsimply connected case and for dimM � 6, Hatcher
and Wagoner [1973] (see also [Igusa 1988]) have expressed �0P.M/ in terms
of algebraic K-theory of the group ring of �1.M/. In particular, there are many
fundamental groups for which �0P.M/ is not trivial.
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Let us now fix a contact manifold .M 2n�1; �/ and denote by .SM; �st/ its
symplectization with its canonical Liouville structure .!st D d�st; Xst/. Any
choice of a contact form ˛ for � yields an identification of SM with R�M and
the Liouville structure �st D e

r˛, !st D d�st, Xst D @r . However, the following
constructions do not require the choice of a contact form. We will refer to the
two ends of SM as f˙1g�M .

We define the group of symplectic pseudo-isotopies of .M; �/ as

P.M; �/ WD
˚
F 2 Diff.SM/ j F �!st D !st; F D 1 near f�1g�M;

F ��st D �st near fC1g�M
	
:

Moreover, we introduce the space

E.M; �/ WD f.�; �/ Weinstein structure on SM without critical points j

d�D !st; .�; �/D .�st; �st/ outside a compact setg

and its image NE.M; �/ under the projection .�; �/ 7! �. We endow the spaces
P.M; �/, E.M; �/, and NE.M; �/ with the topology of uniform C1-convergence
on SM D R�M as explained above.

Lemma 6.7. The map

E.M; �/! NE.M; �/; .�; �/ 7! �;

is a homotopy equivalence and the map

P.M; �/! NE.M; �/; F 7! F ��st;

is a homeomorphism.

Proof. The first map defines a fibration whose fiber over � is the contractible
space of Lyapunov functions for X which are standard at infinity. The inverse of
the second map associates to � the unique F 2Diff.SM/ satisfying F�X DXst

on SM and F D 1 near f�1g�M (which implies F ��st D � on SM ). �

Since F 2 P.M; �/ satisfies F ��st D �st near fC1g�M , it descends there
to a contactomorphism FC W M ! M . By construction, FC belongs to the
group DiffP.M/ of diffeomorphisms that are pseudo-isotopic to the identity, so
it defines an element in

DiffP.M; �/ WD fFC 2 DiffP.M/ j F �C� D �g:

Moreover, FC D 1 if and only if F belongs to the space

Diffc.SM;!st/ WD fF 2 Diffc.SM/ j F �!st D !stg

of compactly supported symplectomorphisms of .SM;!st/. Thus we have a
fibration
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Diffc.SM;!st/! P.M; �/! DiffP.M; �/:

The corresponding homotopy exact sequence fits into a commuting diagram

�0Diffc.SM;!st/ ����! �0P.M; �/ ����! �0DiffP.M; �/ ����! 0??y ??y ??y
�0Diffc.R�M/ ����! �0P.M/ ����! �0DiffP.M/ ����! 0

(3)

where the vertical maps are induced by the obvious inclusions.
We now state the main result of this section.

Theorem 6.8. For any closed contact manifold .M; �/ of dimension 2n� 1� 5,
the map �0P.M; �/! �0P.M/ is surjective.

Proof. By the discussion above, it suffices to show that the map �0E.M; �/!

�0E.M/ induced by the projection .�; �/ 7! � is surjective. So let  2 E.M/,
that is,  W R�M ! R is a function without critical points which agrees with
�st.r; x/D r outside a compact setW D Œa; b��M . By Theorem 6.1, there exists
a Morse homotopy �t WR�M!R without critical points of index>n connecting
�0 D �st with �1 D  such that �t D �st outside W for all t 2 Œ0; 1�. We apply
Theorem 5.3 to the Weinstein cobordism WD .W; !st; Xst; �st/ and the homotopy
�t WW ! R. Hence there exists a Weinstein homotopy Wt D .W; !t ; Xt ; �t /,
fixed on Op @�W and fixed up to scaling on Op @CW , such that W0 DW. Note
that �t D ct�st on Op @CW for constants ct with c0 D 1. So we can extend Wt

over the rest of R�M by the function �st and Liouville forms ft .r/�st such that
Wt DW on fr �ag and on fr � cg for some sufficiently large c >b. By Moser’s
stability theorem, we find a diffeotopy ht W SM ! SM with h0 D 1, ht D 1
outside Œa; c��M , and h�tWt DW. Thus h�1W1 D .�; �/ with the function
� WD ıh1 and a Liouville form � which agrees with �st outside Œa; c��M and
satisfies d�D !st. Hence .�; �/ 2 E.M; �/ and � is homotopic (via  ıht ) to
 in E.M/, that is, Œ��D Œ � 2 �0E.M/. �

By Theorem 6.8, the second vertical map in the diagram (3) is surjective and
we obtain:

Corollary 6.9. Let .M; �/ be a closed contact manifold of dimension 2n�1� 5.
Then every diffeomorphism ofM that is pseudo-isotopic to the identity is smoothly
isotopic to a contactomorphism of .M; �/.

Remark 6.10. Considering in the diagram (3) elements in �0P.M/ that map to
12�0DiffP.M/, we obtain the following (nonexclusive) dichotomy for a contact
manifold .M; �/ of dimension at least 5 for which the map �0 Diffc.R�M/!

�0P.M/ is nontrivial: either there exists a contactomorphism of .M; �/ that is
smoothly but not contactly isotopic to the identity, or there exists a compactly
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supported symplectomorphism of .SM;!st/ that represents a nontrivial smooth
pseudo-isotopy class in P.M/. Unfortunately, we cannot decide which of the
two cases occurs.

6D. Equidimensional symplectic embeddings of flexible Weinstein manifolds.
Finally, let us mention a recent result concerning equidimensional symplectic
embeddings of flexible Weinstein manifolds. Its proof goes beyond the methods
discussed in this paper.

Theorem 6.11 [Eliashberg and Murphy 2013]. Let .W; !;X; �/ be a flexible
Weinstein domain with Liouville form �. Let ƒ be any other Liouville form on W
such that the symplectic forms ! and � WD dƒ are homotopic as nondegenerate
(not necessarily closed) 2-forms. Then there exists an isotopy ht W W ,! W

such that h0 D Id and h�1ƒ D "� C dH for some small " > 0 and some
smooth function H WW ! R. In particular, h1 defines a symplectic embedding
.W; "!/ ,! .W;�/.

Corollary 6.12 [Eliashberg and Murphy 2013]. Let .W; !;X; �/ be a flexible
Weinstein domain and .X;�/ any symplectic manifold of the same dimension.
Then any smooth embedding f0 WW ,!X such that the form f �0 � is exact and
the differential df W T W ! TX is homotopic to a symplectic homomorphism is
isotopic to a symplectic embedding f1 W .W; "!/ ,! .X;�/ for some small " > 0.
Moreover, if �D dƒ, then the embedding f1 can be chosen in such a way that
the 1-form f �1 ƒ� iX! is exact. If , moreover, the Liouville vector field dual toƒ
is complete, then the embedding f1 exists for arbitrarily large constant ". �
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