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The Hirzebruch–Riemann–Roch Theorem
in true genus-0 quantum K-theory

ALEXANDER GIVENTAL1 AND VALENTIN TONITA2

We completely characterize genus-0 K-theoretic Gromov–Witten invariants of
a compact complex algebraic manifold in terms of cohomological Gromov–
Witten invariants of this manifold. This is done by applying (a virtual version
of) the Kawasaki–Hirzebruch–Riemann–Roch formula for expressing holo-
morphic Euler characteristics of orbibundles on moduli spaces of genus-0
stable maps, analyzing the sophisticated combinatorial structure of inertia
stacks of such moduli spaces, and employing various quantum Riemann–Roch
formulas from fake (i.e. orbifold–ignorant) quantum K-theory of manifolds
and orbifolds (formulas, either previously known from works of Coates–
Givental, Tseng, and Coates–Corti–Iritani–Tseng, or newly developed for this
purpose by Tonita). The ultimate formulation combines properties of overruled
Lagrangian cones in symplectic loop spaces (the language that has become
traditional in description of generating functions of genus-0 Gromov-Witten
theory) with a novel framework of adelic characterization of such cones. As
an application, we prove that tangent spaces of the overruled Lagrangian cones
of quantum K-theory carry a natural structure of modules over the algebra of
finite-difference operators in Novikov’s variables. As another application, we
compute one of such tangent spaces for each of the complete intersections
given by equations of degrees l1; : : : ; lk in a complex projective space of
dimension � l2

1 C � � �C l2
k
� 1.

0. Motivation

K-theoretic Gromov–Witten invariants of a compact complex algebraic manifold
X are defined as holomorphic Euler characteristics of various interesting vector
bundles over moduli spaces of stable maps of compact complex curves to X .
They were first introduced in [10] (albeit, in a limited generality of genus-0
curves mapped to homogeneous Kähler spaces), where it was shown that such

1 Partially supported by IHES.
1;2 This material is based upon work supported by the National Science Foundation under Grant
DMS-1007164.
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44 A. GIVENTAL AND V. TONITA

invariants define on K0.X / a geometric structure resembling Frobenius structures
of quantum cohomology theory.

At about the same time, it was shown [14] that simplest genus-0 K-theoretic
GW-invariants of the manifold X of complete flags in CnC1 are governed by the
finite-difference analogue of the quantum Toda lattice. More precisely, a certain
generating function for K-theoretic GW-invariants, dubbed in the literature the J-
function (and depending on n variables, namely, Novikov’s variables Q1; : : : ;Qn

introduced to separate contributions of complex curves in X by their degrees)
turns out to be a common eigenfunction (known in representation theory as
Whittaker’s function) of n commuting finite-difference operators, originating
from the center of the quantized universal enveloping algebra UqslnC1. In
quantum cohomology theory, the corresponding fact was established by B. Kim
[18], who showed that the cohomological J-function of the flag manifold X D

G=B of a complex simple Lie algebra g is a Whittaker function of the Langlands-
dual Lie algebra g0. The K-theoretic generalization involving quantized universal
enveloping algebras Uqg

0 was stated in [14] as a conjecture (confirmed recently
in [2]).

Foundations for K-theoretic counterpart of GW-theory were laid down by Y.-P.
Lee [20] in the reasonable generality of arbitrary complex algebraic target spaces
X (and holomorphic curves of arbitrary genus). While the general structure
and universal identities (such as the string equation, or topological recursion
relations) of quantum cohomology theory carry over to case of quantum K-theory,
the latter is still lacking certain computational tools of the former one, and for
the following reason.

The so-called divisor equations in quantum cohomology theory tell that the
number of holomorphic curves of certain degree d with an additional constraint,
that a certain marked point is to lie on a certain divisor p, is equivalent to (more
precisely, differs by the factor .p; d/ from) the number of such curves without
the marked point and without the constraint. Consequently, the dependence of
J-functions on Novikov’s variables is redundant to their behavior as functions on
H 2.X / introduced through constraints at marked points. In particular, differential
equations satisfied by the J-function in Novikov’s variables (e.g. the Toda
equations in the case of flag manifolds) are directly related to the quantum
cup-product on H�.X /.

In K-theory, however, any analogue of the divisor equation is seemingly miss-
ing, and respectively the K-theoretic analogue of the quantum cup-product, and
differential equations of the Frobenius-like structure on K0.X / are completely
detached from the way the J-functions depend on Novikov’s variables. Because
of this lack of structure with respect to Novikov’s variables, it appears even more
perplexing that in examples (such as projective spaces, or flag manifolds) the
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J-functions of quantum K-theory turn out to satisfy interesting finite-difference
equations.

The idea of computing K-theoretic GW-invariants in cohomological terms is
naturally motivated by the classical Hirzebruch–Riemann–Roch formula [15]

�.M;V / WD
X

k

.�1/k dim H k.M;V /D

Z
M

ch.V / td.TM /:

The problem (which is at least a decade old) of putting this idea to work encounters
the following general difficulty. The HRR formula needs to be applied to the
base M which, being a moduli space of stable maps, behaves as a virtual orbifold
(rather than virtual manifold). The HRR formula for orbibundles V on orbifolds
M was established by Kawasaki [17] and expresses the holomorphic Euler
characteristic (which is an integer) as an integral over the inertia orbifold IM

(rather than M itself). The latter is a disjoint union of strata corresponding to
points with various types of local symmetry (and M being one of the strata
corresponding to the trivial symmetry).

When M is a moduli space of stable maps, the strata of the inertia stack IM

parametrize stable maps with prescribed automorphisms. It is reasonable to
expect that individual contributions of such strata can be expressed as integrals
over moduli spaces of stable maps from quotient curves, and thus in terms
of traditional GW-invariants. However, the mere combinatorics of possible
symmetries of stable maps appears so complicated (not mentioning the complexity
of the integrands required by Kawasaki’s theorem), that obtaining a “quantum
HRR formula” expressing K-theoretic GW-invariants via cohomological ones
didn’t seem feasible.

In the present paper, we give a complete solution in genus-0 to the problem of
expressing K-theoretic GW-invariants of a compact complex algebraic manifold
in terms of its cohomological GW-invariants. The solution turned out to be
technology-consuming, and we would like to list here those developments of the
last decade that made it possible.

One of them is the Quantum HRR formula [7; 4] in fake quantum K-theory.
One can take the right-hand side of the classical Hirzebruch–Riemann–Roch
formula for the definition of �fake.M;V / on an orbifold M . Applying this idea
systematically to moduli spaces of stable maps, one obtains fake K-theoretic
GW-invariants, whose properties are similar to those of true ones, but the values
(which are rational, rather than integer) are different. The formula expresses fake
K-theoretic GW-invariants in terms of cohomological ones.

Another advance is the Chen–Ruan theory [1; 3] of GW-invariants of orbifold
target spaces, and the computation by Jarvis–Kimura of such invariants in the
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case when the target is the quotient of a point (or more generally a manifold) by
the trivial action of a finite group.

Next is the theorem of Tseng [24] expressing twisted GW-invariants of orbifold
target spaces in terms of untwisted ones.

Yet, two more “quantum Riemann–Roch formulas” of [4] had to be generalized
to the case of orbifold targets. This is done in [21; 23].

Finally, our formulation of the Quantum HRR Theorem in true quantum K-
theory is based on a somewhat novel form of describing generating functions
of GW-theory, which we call adelic characterization. For a general and precise
formulation of the theorem, the reader will have to wait until Section 6, but here
we would like to illustrate the result with an example that was instrumental in
shaping our understanding.

Let

J D .1� q/
X
d�0

Qd

.1�Pq/n.1�Pq2/n � � � .1�Pqd /n
:

Here P is unipotent, and stands for the Hopf bundle on CPn�1, satisfying the
relation .1�P /n D 0 in K0.CPn�1/. It is a power series in Novikov’s variable
Q with vector coefficients which are rational functions of q, and take values in
K0.CPn�1/. It was shown1 in [14] that J represents (one value of) the true
K-theoretic J-function of CPn�1.

On the other hand, one can use quantum Riemann–Roch and Lefschetz theo-
rems of [4] and [5] to compute, starting from the cohomological J-function of
CPn�1, a value of the J-function of the fake quantum K-theory. The result (see
Section 10) turns out to be the same: J . This sounds paradoxical, since — one
can check this directly for CP1 in low degrees! — contributions of non-trivial
Kawasaki strata neither vanish nor cancel out.

In fact this is not a contradiction, for as it turns out, coefficients of the series
J do encode fake K-theoretic GW-invariants, when J is expanded into a Laurent
series near the pole qD1. Furthermore, when J is expanded into a Laurent series
near the pole q D ��1, where � is a primitive m-th root of unity, the coefficients
represent certain fake K-theoretic GW-invariants of the orbifold target space
CPn�1=Zm. Moreover, according to our main result, these properties altogether
completely characterize those Q-series (whose coefficients are vector-valued
rational functions of q) which represent true genus-0 K-theoretic GW-invariants
of a given target manifold.

1Using birational invariance of holomorphic Euler characteristcs replacing certain moduli
spaces of stable maps to CPn�1 with toric compactifications.
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This fact is indeed the result of application of Kawasaki’s HRR formula to
moduli spaces of stable maps. Namely, the complicated combinatorics of strata
of the inertia stacks can be interpreted as a certain identity which, recursively in
degrees, governs the decomposition of the J-function into the sum of elementary
fractions of q with poles at all roots of unity. The theorem is stated in Section 6
(after the general notations, properties of quantum K-theory, Kawasaki’s HRR
formula, and results of fake quantum K-theory are described in Sections 1–5),
and proved in Sections 7 and 8.

In Section 10, we develop a technology that allows one to extract concrete
results from this abstract characterization of quantum K-theory. In particular,
we prove (independently of [14]) that the function J is indeed the J-function of
CPn�1, as well as similar results for codimension-k complete intersections of
degrees l1; : : : ; lk satisfying l2

1
C � � �C l2

k
� n.

Let qQ@Q denote the operator of translation through log q of the variable
log Q. It turns out that for every s 2 Z,�

PqQ@Q

�s
J D .1� q/P s

X
d�0

Qdqsd

.1�Pq/n.1�Pq2/n � � � .1�Pqd /n

also represent genus-0 K-theoretic GW-invariants of CPn�1. This example
illustrates a general theorem of Section 9, according to which J-functions of
quantum K-theory are organized into modules over the algebra Dq of finite-
difference operators in Novikov’s variables. This turns out to be a consequence of
our adelic characterization of quantum K-theory in terms of quantum cohomology
theory, and of the D-module structure (and hence of the divisor equation) present
in quantum cohomology theory.

1. K-theoretic Gromov–Witten invariants

Let X be a target space, which we assume to be a nonsingular complex projective
variety. Let MX ;d

g;n denote Kontsevich’s moduli space of degree-d stable maps
to X of complex genus-g curves with n marked points. Denote by L1; : : : ;Ln

the line (orbi)bundles over MX ;d

g;n formed by the cotangent lines to the curves at
the respective marked points. When a1; : : : ; an 2K0.X /, and d1; : : : ; dn 2 Z,
we use the correlator notation

ha1Ld1 ; : : : ; anLdni
X ;d
g;n

for the holomorphic Euler characteristic over MX ;d

g;n of the following sheaf:

ev�1.a1/L
d1

1
: : : ev�n.an/L

dn
n ˝Ovir :
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Here evi WM
X ;d

g;n !X are the evaluation maps, and Ovir is the virtual structure
sheaf of the moduli spaces of stable maps. The sheaf Ovir was introduced
by Yuan-Pin Lee [20]. It is an element of the Grothendieck group of coherent
sheaves on the stack MX ;d

g;n , and plays a role in K-theoretic version of GW-
theory of X pretty much similar to the role of the virtual fundamental cycle
ŒMX ;d

g;n �
vir in cohomological GW-theory of X . According to [20], the collection

of virtual structure sheaves on the spaces MX ;d

g;n satisfies K-theoretic counterparts
of Kontsevich–Manin’s axioms [19] for Gromov–Witten invariants.

Note that, in contrast with cohomological GW-theory, where the invariants
are rational numbers, K-theoretic GW-invariants are integers.

The following generating function for K-theoretic GW-invariants is called the
genus-0 descendant potential of X :

F WD
X
n;d

Qd

n!
ht.L/; : : : ; t.L/i

X ;d
0;n

:

Here Qd denotes the monomial in the Novikov ring, the formal series completion
of the semigroup ring of the Mori cone of X , where the monomial represents
the degree d of rational curves in X , and t stands for any Laurent polynomial of
one variable, L, with vector coefficients in K0.X /. Thus, F is a formal function
of t with Taylor coefficients in the Novikov ring.

2. The symplectic loop space formalism

Let CŒŒQ�� be the Novikov ring. Introduce the loop space

K WD
h
K0.X /˝C.q; q�1/

i
˝CŒŒQ��:

By definition, elements of K are Q-series whose coefficients are vector-valued
rational functions on the complex circle with the coordinate q. It is a CŒŒQ��-
module, but we often suppress Novikov’s variables in our notation and refer to
K as a linear “space.” Moreover, abusing notation, we write K D K.q; q�1/,
where K D K0.X /˝CŒŒQ��. We call elements of K “rational functions of q

with coefficients in K,” meaning that they are rational functions in the Q-adic
sense, i.e. modulo any power of the maximal ideal in the Novikov ring.

We endow K with symplectic form�, which is a CŒŒQ��-valued non-degenerate
anti-symmetric bilinear form:

K 3 f;g 7! �.f;g/D
�
ResqD0CResqD1

� �
f .q/;g.q�1/

� dq

q
:
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Here .�; �/ stands for the K-theoretic intersection pairing on K:

.a; b/ WD �.X I a˝ b/D

Z
X

td.TX / ch.a/ ch.b/:

It is immediate to check that the following subspaces in K are Lagrangian and
form a Lagrangian polarization, KDKC˚K�:

KC DKŒq; q�1�; K� D ff 2K j f .0/¤1; f .1/D 0g ;

i.e. KC is the space of Laurent polynomials in q, and K� consists of rational
functions vanishing at q D1 and regular at q D 0.

The following generating function for K-theoretic GW-invariants is defined
as a map KC!K and is nicknamed the big2 J-function of X :

J .t/ WD .1� q/C t.q/C
X

a

ˆa
X
n;d

Qd

n!
h
ˆa

1� qL
; t.L/; : : : ; t.L/i

X ;d
0;nC1

:

The first summand, 1� q, is called the dilaton shift, the second, t.q/, the input,
and the sum of the two lies in KC. The remaining part consists of GW-invariants,
with fˆag and fˆag being any Poincaré-dual bases of K0.X /. It is a formal
vector-valued function of t 2KC with Taylor coefficients in K�.

Indeed, the moduli space MX ;d

0;nC1 is a “virtual orbifold” of finite dimension.
In particular, in the K-ring of it, the line bundle L�1

1
satisfies a polynomial

equation, P .L�1
1
/D 0, with P .0/¤ 0.3 From P .q/�P .L/DF.q;L/.L�q/,

where deg F < deg P , we find (by putting L D L�1
1

) that 1=.1 � qL1/ D

L�1
1

F.q;L�1
1
/=P .q/. Thus each correlator is a reduced rational function of q

with no pole at q D 0 and a zero at q D1.

Proposition. The big J-function coincides with the differential of the genus-
0 descendant potential, considered as the section of the cotangent bundle T �KC
which is identified with the symplectic loop space by the Lagrangian polarization
KDKC˚K� and the dilaton shift f 7! f C .1� q/:

J .t/D 1� qC t.q/C dtF :

Proof. To verify the claim, we compute the symplectic inner product of the
K�-part of J .t/, with a variation, ıt 2 KC, of the input, and show that it is

2In our terminology, specializing the Laurent polynomial t to a constant yields the J-function
(without the adjective “big”), while taking t D 0 makes it the small J-function.

3On a manifold of complex dimension <D we would have: .L� 1/D D 0 for any line bundle
L, i.e. L would be unipotent. This may be false on an orbifold, as the minimal polynomial of a
line bundle can vanish at roots of 1, but it does not vanish at 0 since L�1 exists.
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equal to the value of the differential dtF on ıt . Note that, since ıt has no poles
other than q D 0 or1, we have (think of L in this identity as a letter):

�

 X
a

ˆa
˝

ˆa

1� qL
; ıt

!
D��

 
ıt;
X

a

ˆa
˝

ˆa

1� qL

!
D

�
�
ResqD0CResqD1

� P
a ıt

a.q/ˆa

1� q�1L

dq

q
D ResqDL

ıt.q/

q�L
D ıt.L/:

Therefore the symplectic inner product in question is equal toX
n;d

Qd

n!
hıt.L/; t.L/; : : : ; t.L/i

X ;d
0;nC1

D .dtF/.ıt/;

as claimed.

3. Overruled Lagrangian cones

A Lagrangian variety, L, in the symplectic loop space .K; �/ is called an over-
ruled Lagrangian cone if L is a cone with the vertex at the origin, and if for
every regular point of L, the tangent space, T , is tangent to L along the whole
subspace .1� q/T . More precisely, (i) tangent spaces are QŒq; q�1�-mudules
and are, in particular, invariant with respect to multiplication by q� 1), (ii) the
subspaces .q � 1/T lie in L (so that L is ruled by a finite-parametric family
of such subspaces), and (iii) the tangent spaces at all regular points in a ruling
subspace .q� 1/T are the same and equal to T .

Theorem ([13]). The range of the big J-function J of quantum K-theory of X

is a formal germ at J .0/ of an overruled Lagrangian cone.

Proof. As explained in [13], this is a consequence of the relation between
descendants and ancestors.

The ancestor correlators of quantum K-theory

K0.X / 3 � 7! ha1
NLd1 ; : : : ; an

NLdni
X ;d
g;n .�/;

are defined as formal power series of holomorphic Euler characteristics
1X

lD0

1

l!
�
�
MX ;d

g;nCl IOvir ev�1.a1/ NL
d1

1
� � � ev�n.an/ NL

dn
n ev�nC1.�/ � � � ev�nCl.�/

�
;

where NLi , the “ancestor” bundles, are pull-backs of the universal cotangent
line bundles Li on the Deligne-Mumford space Mg;n by the contraction map

ct WMX ;d

g;nCl!Mg;n. The latter map involves forgetting the map of holomorphic
curves to the target space as well as the last l marked points.
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The genus-0 ancestor potential is defined by

F� WD
X
n;d

Qd

n!
hNt. NL/; : : : ; Nt. NL/i

X ;d
0;n

.�/

and depends on Nt and � . The graph of its differential is identified in terms of the
ancestor version of the big J-function:

J D 1� qC Nt.q/C
X
a;b

ˆaGab.�/
X
n;d

Qd

n!
h
ˆb

1� q NL
; Nt. NL/; : : : ; Nt. NL/i

X ;d
0;nC1

.�/:

Here
�
Gab

�
D .Gab/

�1, and

Gab.�/ WD .ˆa; ˆb/C
X
n;d

Qd

n!
hˆa; �; : : : ; �; ˆbi

X ;d
0;2Cn

:

In the ancestor version of the symplectic loop space formalism, the loop space
and its polarization KDKC˚K� are the same as in the theory of descendants,
but the symplectic form �� is based on the pairing tensor .Gab/ rather than the
constant Poincaré pairing .ˆa; ˆb/.

Let L � .K; �/ and L� � .K; �� / be Lagrangian submanifolds defined by
the descendant and ancestor J-functions J and J . Then

L� D S�L;

where S� WK!K� is an isomorphism of the symplectic loop spaces, defined by
the following matrix S� D .S

a
b
/:

Sa
b D ı

a
b C

X
l;d

Qd

l !

X
�

ga�
hˆ�; �; : : : ; �;

ˆb

1� qL
i
X ;d
0;2Cn

:

It is important that the genus-0 Deligne-Mumford spaces M0;n are manifolds
(of dimension n�3). Consequently, the line bundles NLi are unipotent. Moreover,
at the points Nt 2 KC with Nt.1/ D 0 the ancestor potential F� has all partial
derivatives of order < 3 equal to 0. In geometric terms, the cone L� is tangent to
KC along .1� q/KC. This means that the cone L is swept by ruling subspaces
.1�q/S�1

� KC parametrized by � 2K, and that each Lagrangian subspace S�KC
is tangent to L along the corresponding ruling subspace. The theorem follows.

The proof of the relationship LD S�L is based on comparison of the bundles
Li and NLi , and is quite similar to the proof of the corresponding cohomological
theorem given in Appendix 2 of [6]. It uses the K-theoretic version of the
WDVV-identity introduced in [10], as well as the string and dilaton equations.
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The genus-0 dilaton equation can be derived from the geometric fact
.ft1/�.1 � L1/ D 2 � n about the K-theoretic push-forward along the map
ft1 WM

X ;d

0;nC1!MX ;d

0;n forgetting the first marked point. It leads to the relation

h1�L; t.L/; : : : ; t.L/i
X ;d
0;nC1

D .2� n/ht.L/; : : : ; t.L/i
X ;d
0;n

:

The latter translates into the degree-2 homogeneity of F with respect to the
dilaton-shifted origin, and respectively to the conical property of L.

The string equation is derived from .ft1/�1D 1 (thanks to rationality of the
fibers of the forgetting map) and relationships between ft�1.Li/ and Li for i > 1

(see for instance [10]). It can be stated as the tangency to the cone L of the linear
vector field in K defined by the operator of multiplication by 1=.1� q/. The
operator of multiplication by

1

1� q
�

1

2
D

1

2

1C q

1� q

is anti-symmetric with respect to � and thus defines a linear Hamiltonian vector
field. Since L is a cone, this vector field is also tangent to L, which lies therefore
on the zero level of its quadratic Hamilton function. This gives another, Hamilton-
Jacobi form of the string equation.

4. Hirzebruch–Riemann–Roch formula for orbifolds

Given a compact complex manifold M equipped with a holomorphic vector
bundle E, the Hirzebruch–Riemann–Roch formula [15] provides a cohomolog-
ical expression for the super-dimension (i.e. Euler characteristic) of the sheaf
cohomology:

�.M;E/ WD dim H �.M;E/D

Z
M

td.TM / ch.E/:

The generalization of this formula to the case when M is an orbifold and E an
orbibundle is due to T. Kawasaki [17]. It expresses �.M;E/ as an integral over
the inertia orbifold IM of M :

�.M;E/D

Z
ŒIM �

td.TIM / ch

 
Tr.E/

Tr.
V�

N �
IM

/

!
:

By definition, the structure of an n-dimensional complex orbifold on M is
given by an atlas of local charts U ! U=G.x/, the quotients of neighborhoods
of the origin in Cn by (linear) actions of finite local symmetry groups (one group
G.x/ for each point x 2M ).

Charts on the inertia orbifold IM are defined to be U g!U g=Zg.x/, where
U g is the fixed point locus of g 2 G.x/, and Zg.x/ is the centralizer of g in
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G.x/. For elements g from the same conjugacy class, the charts are canonically
identified by the action of G.x/. Thus, locally near x2M , connected components
of the inertia orbifold are labeled by conjugacy classes, Œg�, in G.x/. Integration
over the fundamental class ŒIM � involves the division by the order of the stabilizer
of a typical point in U g (and hence by the order of g at least).

Near a point .x; Œg�/ 2 IM , the tangent and normal orbibundles TIM and
NIM are identified with the tangent bundle to U g and normal bundle to U g in
U respectively.

The Kawasaki’s formula makes use of the obvious lift to IM of the orbibundle
E on M . By

V�
N �

IM
, we have denoted the K-theoretic Euler class of NIM ,

i.e. the exterior algebra of the dual bundle, considered as a Z2-graded bundle
(the “Koszul complex”).

The fiber F of an orbibundle on IM at a point .x; Œg�/ carries the direct
decomposition into the sum of eigenspaces F� of g. By Tr.F / we denote the
trace bundle4, the virtual orbibundle

Tr.F / WD
X
�

�F�:

The denominator in Kawasaki’s formula is invertible because g does not have
eigenvalue 1 on the normal bundle to its fixed point locus.

Finally, td and ch denote the Todd class and Chern character.
When M is a global quotient, fM =G, of a manifold by a finite group, and

E is a G-equivariant bundle over fM , Kawasaki’s result reduces to Lefschetz’
holomorphic fixed point formula for super-traces in the sum

�.M;E/D dim H �.fM ;E/G D
1

jGj

X
g2G

tr
�
g j H �.fM ;E/

�
:

The orbifold M is contained in its inertia orbifold IM as the component cor-
responding to the identity elements of local symmetry groups. The corresponding
term of Kawasaki’s formula is

�fake.M;E/ WD

Z
M

td.TM / ch.E/:

We call it the fake holomorphic Euler characteristic of E. It is generally speaking
a rational number, while the “true” holomorphic Euler characteristic �.M;E/ is
an integer.

Note that the right hand side of Kawasaki’s formula is the fake holomorphic
Euler characteristic of an orbibundle, Tr.E/=Tr.

V�
.N �

IM
//, on the inertia

orbifold.

4In fact, super-trace, if the bundle is Z2-graded.
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Our goal in this paper is to use Kawasaki’s formula for expressing genus-0
K-theoretic GW-invariants in terms of cohomological ones. We refer to [22]
(see also the thesis [21]) for the virtual version of Kawasaki’s theorem, which
justifies application of the formula to moduli spaces of stable maps.

The moduli spaces of stable maps are Deligne–Mumford stacks, i.e. locally
are quotients of spaces by finite groups. The local symmetry groups G.x/ are
automorphism groups of stable maps. A point in the inertia stack IMX ;d

0;n is
specified by a pair: a stable map to the target space and an automorphism of the
map. In a sense, a component of the inertia stack parametrizes stable maps with
prescribed symmetry.

The components themselves are moduli spaces naturally equipped with virtual
fundamental cycles and virtual structure sheaves. In fact, they are glued from
moduli spaces of stable maps of smaller degrees — quotients of symmetric stable
maps by the symmetries. Thus the individual integrals of Kawasaki’s formula can
be set up as certain invariants of fake quantum K-theory, i.e. fake holomorphic
Euler characteristics of certain orbibundles on spaces glued from usual moduli
spaces of stable maps.

Our plan is to identify these invariants in terms of conventional ones and
express them — and thereby the “true” genus-0 K-theoretic Gromov-Witten
theory — in terms of cohomological GW-invariants.

For this, a summary of relevant results about fake quantum K-theory, including
the Quantum Hirzebruch–Riemann–Roch Theorem of Coates–Givental [4; 7],
will be necessary.

5. The fake quantum K-theory

Fake K-theoretic GW-invariants are defined by

ha1Ld1 ; : : : ; anLdni
X ;d
g;n WDZ

h
MX;d

g;n

ivi r td
�

T
MX;d

g;n

�
ch
�

ev�1.a1/L
d1

1
: : : ev�n.an/L

dn
n

�
;

i.e. as cohomological GW-invariants involving the Todd class of the virtual
tangent bundle to the moduli spaces of stable maps.

The Chern characters ch.Li/ are unipotent, and as a result, generating function
for the fake invariants are defined on the space of formal power series of L� 1.
In particular, the big J-function

J fake
WD 1� qC t.q/C

X
a

ˆa
X
n;d

Qd

n!
h
ˆa

1� qL
; t.L/; : : : ; t.L/i

X ;d
0;nC1
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takes an input t5 from the space Kfake
C DKŒŒq�1�� of power series in q�1 with

vector coefficients, and takes values in the loop space

Kfake
WD

�
Q-series whose coefficients
are Laurent series in q� 1

�
:

The symplectic form is defined by

�fake.f;g/ WD �ResqD1

�
f .q/;g.q�1/

� dq

q
:

Expand 1=.1� qL/ into a series of powers of L� 1:

1

1� qL
D

X
k�0

.L� 1/k
qk

.1� q/kC1
:

According to [7], we obtain a Darboux basis:

ˆa.q� 1/k ; ˆaqk=.1� q/kC1; aD 1; : : : ; dim K0.X /; k D 0; 1; 2; : : :

Taking Kfake
� to be spanned over K by qk=.1� q/kC1, we obtain a Lagrangian

polarization of .Kfake; �fake/. As before, the big J-function coincides, up to the
dilaton shift 1� q, with the graph of the differential of the genus-0 descendant
potential: J fake.t/D 1� qC t.q/C dtF fake.

The range of the function J fake forms (a formal germ at J .0/ of) an overruled
Lagrangian cone, Lfake. The proof is based on the relationship [13] between
gravitational descendants and ancestors of fake quantum K-theory, which looks
identical to the one in “true” K-theory (although the values of fake and true
GW-invariants disagree).

In fact the whole setup for fake GW-invariants can be made purely topological,
extended to include K1.X /, and moreover, generalized to all complex-orientable
extraordinary cohomology theories (i.e. complex cobordisms). In this generality,
the quantum Hirzebruch–Riemann–Roch theorem of [4; 7] expresses the fake GW-
invariants (of all genera) in terms of the cohomological gravitational descendants.
The special case we need is stated below, after a summary of the symplectic loop
space formalism of quantum cohomology theory.

Take H DH even.X /˝QŒŒQ��, and .a; b/H D
R
X ab. Let H denote the space

of power Q-series whose coefficients are Laurent series in one indeterminate, z.

5Note that we still treat our generating functions as formal in t . In particular, an input here is
a series in q � 1 whose coefficients can be arbitrary as long as they remain ”small”. In practice
they will be the sums of indeterminates (like t , which are small in their own, t -adic topology) with
constants taken from the maximal ideal of Novikov’s ring (and thus small in the Q-adic sense).
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Abusing notation we write: HDH..z//, (remembering that elements of H are
Laurent series only modulo any power of Q). Define in H the symplectic form

�H .f;g/D ReszD0 .f .�z/;g.z//H dz;

and Lagrangian polarization

HC DH ŒŒz��; H� D z�1H Œz�1�:

Using Poincaré-dual bases of H , and the notation  D c1.L/, we define the big
J-function of cohomological GW-theory

J H
D�zC t.z/C

X
a

�a
X
n;d

Qd

n!
h

�a

�z� 
; t. /; : : : ; t. /i

X ;d
0;nC1

:

It takes inputs t from HC, takes values6 in H, and coincides with the graph of
differential of the cohomological genus-0 descendant potential, FH , subject to
the dilaton shift �z: J H .t/D�zC t.z/C dtFH . Here

FH
WD

X
n;d

Qd

n!
ht. /; : : : ; t. /i

X ;d
0;n

;

where for ai 2H and di � 0, we have:

ha1 
d1 ; : : : ; an 

dn
n i

X ;d
0;n
WD

Z
h
MX;d

0;nC1

i ev�1.a1/c1.L1/
d1 � � � ev�n.an/c1.Ln/

dn :

The range of the function J H is a Lagrangian cone, LH �H, overruled in the
sense that its tangent spaces, T , are tangent to LH along zT (see Appendix 2 in
[6]).

Theorem ([7], see details in [4]). Denote by4 the Euler–Maclaurin asymp-
totic of the infinite product

4�

Y
Chern roots x of TX

1Y
rD1

x� rz

1� e�xCrz
:

Identify Kfake with H using the Chern character isomorphism ch WK!H and
ch.q/D ez . Then Lfake is obtained from LH by the pointwise multiplication on
H by4:

ch
�
Lfake�

D4LH :

6The previous footnote about fake K-theory applies here too. In particular, for the formal
function, to assume values in H merely means that the coefficients of it as a formal t -series become
Laurent series in z when reduced modulo a power of Q.
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Remarks. (1) Given a function x 7! s.x/, the Euler–Maclaurin asymptotics
of
Q1

rD1 es.x�rz/ is obtained by the formal procedure:

1X
rD1

s.x� rz/D

 
1X

rD1

e�rz@x

!
s.x/D

z@x

ez@x � 1
.z@x/

�1s.x/

D
s.�1/.x/

z
�

s.x/

2
C

1X
kD1

B2k

.2k/!
s.2k�1/.x/z2k�1;

where s.k/ D dks=dxk , s.�1/ is the anti-derivative
R x

0 s.�/d�, and B2k are
Bernoulli numbers. Taking es.x/ to be the Todd series, x=.1�e�x/, and summing
over the Chern roots x of the tangent bundle TX , we get:

4D
1p

td.TX /
exp

8<:X
k�0

X
l�0

s2k�1Cl

B2k

.2k/!
chl.TX /z

2k�1

9=; ;
where the coefficients sl hide another occurrence of Bernoulli numbers:

e
P

l�0 slx
l= l !
D

x

1� e�x
D 1C

x

2
C

1X
lD1

B2l

.2l/!
x2l :

(2) Note that neither ch WK!H nor4 WH!H is symplectic: the former be-
cause .a; b/fakeD .ch.a/; td.TX / ch.b//H ¤ .ch.a/; ch.b//H , the latter because
of the factor td.TX /

�1=2. However the composition ch�1
ı4 W H! Kfake is

symplectic.
(3) The transformation between cohomological and K-theoretic J-functions

(or descendant potentials) encrypted by the theorem, involves three aspects. One
is the transformation 4, while the other two are the changes of the polarization
and dilaton shift. Namely, ch�1

WH!Kfake maps HC to KC but does not map
H� to Kfake

� , and there is a discrepancy between the dilaton shifts: ch�1.�z/D

log q�1 ¤ 1� q.
(4) Since Lfake is an overruled cone, it is invariant under the multiplication by

the ratio .1� q/= log q�1. This shows one way of correcting for the discrepancy
in dilaton shifts.

(5) The proof of the theorem does not exploit any properties of overruled
cones. One uses the family td�.x/ WD �x=.1� e��x/ of “extraordinary” Todd
classes to interpolate between cohomology and K-theory, and establishes an
infinitesimal version of the theorem. For this, the twisting classes td�.TMX;d

g;n

/ of

the moduli spaces are expressed in terms of the descendant classes by applying
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the Grothendieck–Riemann–Roch formula to the fibrations ftnC1 WM
X ;d

g;nC1!

MX ;d

g;n .
We refer for all details to the dissertation [4]. However, in Section 8, we

indicate geometric origins of the three changes described by the theorem: the
change in the position of the cone, in the dilaton shift, and in the polarization.

6. Adelic characterization of quantum K-theory

Recall that point f 2 K is a series in the Novikov variables, Q, with vector
coefficients which are rational functions of q˙1. For each � ¤ 0;1, we expand
(coefficients of) f in a Laurent series in 1� q� and thus obtain the localization
f� near qD ��1. Note that for �D 1, the localization lies in the loop space Kfake

of fake quantum K-theory. The main result of the present paper is the following
theorem, which provides a complete characterization of the true quantum K-
theory in terms of the fake one.

Theorem. Let L�K be the overruled Lagrangian cone of quantum K-theory
of a target space X . If f 2 L, then the following conditions are satisfied:

(i) f has no pole at q D ��1 ¤ 0;1 unless � is a root of 1.
(ii) When � D 1, the localization f� lies in Lfake.
In particular, the localization J .0/1 at � D 1 of the value of the J-function

with the input t D 0 lies in Lfake. In the tangent space to Lfake at the point J .0/1,
make the change q 7! qm, Qd 7!Qmd , and denote by T the resulting subspace
in Kfake. Let r� denote the Euler–Maclaurin asymptotics as q�! 1 of the infinite
product:

r� �q�!1

Y
K-theoretic Chern

roots P of T �
X

Q1
rD1.1� qmr P /Q1
rD1.1� qr P /

:

(iii) If � ¤ 1 be a primitive m-th root of 1, then
�
r�1
�
f�

�
.q=�/ 2 T .

Conversely, if f 2K satisfies conditions (i),(ii),(iii), then f 2 L.

Remarks. (1) The cone L is a formal germ at J .0/. The statements (direct
and converse) about “points” f 2 L are to be interpreted in the spirit of formal
geometry: as statements about families based at J .0/.

(2) K-theoretic Chern roots P are characterized by ch.P /D e�x where x are
cohomological Chern roots of TX .
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(3) After the substitution q� D ez the infinite product becomes

Y
Chern roots x

m�1Y
kD1

1Y
rD0

.1� ��kekze�xCmrz/�1:

The Euler–Maclaurin expansion has the form

logr� D
s.�1/

mz
C

s

2
C

X
k>0

B2k

.2k/!
.mz/2k�1s.2k�1/;

where s also depends on z as a parameter:

s.x; z/D� log
Y
x

m�1Y
kD1

.1� ��kekze�x/:

Note that since x are nilpotent, s.x; z/ is polynomial in x with coefficients which
expand into power series of z. The scalar factor of r� is es.0;0/=2 Dm� dim X=2

since for each of dim X Chern roots,

lim
x!0

m�1Y
kD1

.1� ��ke�x/D lim
x!0

1� e�mx

1� e�x
Dm:

(4) The (admittedly clumsy) definition of subspace T can be clarified as
follows. The tangent space to Lfake at the point J .0/1 is the range of the linear
map S�1 W Kfake

C ! Kfake, where S�1 is a matrix Laurent series in q � 1 with
coefficients in the Novikov ring (see Section 3). Let eS be obtained from S by
the change q 7! qm, Qd 7!Qmd . Then T WD eS�1Kfake

C .
(5) The condition (iii) seems ineffective, since it refers to a tangent space to

the cone Lfake at a yet unknown point J .0/1. However, we will see later that the
three conditions together allow one, at least in principle, to compute the values
J .t/ for any input t , assuming that the cone Lfake is known, in a procedure
recursive on degrees of stable maps. In particular, this applies to J .0/1. The
cone Lfake, in its turn, is expressed through LH , thanks to the quantum HRR
theorem of the previous section, by a procedure which in principle has a similar
recursive nature. Altogether, our theorem expresses all genus-0 K-theoretic
gravitational descendants in terms of the cohomological ones. Thus this result
indeed qualifies for the name: the Hirzebruch–Riemann–Roch theorem of true
genus-0 quantum K-theory.

We describe here a more geometric (and more abstract) formulation of the
theorem using the adelic version of the symplectic loop space formalism.
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For each � ¤ 0;1, let K� be the space of power Q-series with vector Laurent
series in 1� q� as coefficients. Define the symplectic form

��.f;g/D�ResqD��1

�
f .q/;g.q�1/

� dq

q
;

and put K�C WD KŒŒ1 � q���. The adele space is defined as the subset in the
Cartesian product: bK � Y

�¤0;1

K�

consisting of collections f� 2 K� such that, modulo any power of Novikov’s
variables, f� 2 KC for all but finitely many values of �. The adele space is
equipped with the product symplectic form:

b�.f;g/D�XResqD��1

�
f�.q/;g�.q

�1/
� dq

q
:

Next, there is a map K! bK W f 7! bf , which to a rational function of q˙1

assigns the collection .f�/ of its localizations at q D ��1 ¤ 0;1. Due to the
residue theorem, the map is symplectic:

�.f;g/D b�. bf ;bg/:
Given a collection L� � .K� ; ��/ of overruled Lagrangian cones such that
modulo any power of Novikov’s variables, L� D K�C for all but finitely many
values of �, the product

Q
�¤0;1 L��bK becomes an adelic overruled Lagrangian

cone in the adele symplectic space.
In fact, “overruled” implies invariance of tangent spaces under multiplication

by 1� q. Since 1� q is invertible at q D ��1 ¤ 1, all L� with � ¤ 1 must be
linear subspaces.

According to the theorem, the image bL � bK of the cone L � K under the
mapbWK! bK followed by a suitable adelic (pointwise) completion, is an adelic
overruled Lagrangian cone:

bLD Y
�¤0;1

L� ;

where L� DK�C unless � is a root of 1, L� D Lfake when � D 1, and L� Dr�T �

when � ¤ 1 is a root of 1, T � �K� being obtained from the subspace T �Kfake

(described in the theorem) by the isomorphism Kfake!K� induced by the change
q 7! q�.
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Corollary. Two points f;g 2L lie in the same ruling space of L if and only
if their expansions f1;g1 near q D 1 lie in the same ruling space of Lfake.

Proof. If f1;g1 lie in the same ruling space of Lfake, then � bf C.1��/bg 2 bL
for each value of �, and therefore, by the theorem, the whole line �f C .1� �/g
lies in L. The converse is, of course, also true: if the line through f;g lies in L
then the line through f1;g1 lies in Lfake. It remains to notice that ruling spaces
of L or Lfake are maximal linear subspaces of these cones (because this is true
modulo Novikov’s variables, i.e. in the classical K-theory). �

7. Applying Kawasaki’s formula

Here we begin our proof of the theorem formulated in the previous section. The
big J-function (see Section 2) consists of the dilaton shift 1� q, the input t.q/,
and holomorphic Euler characteristics of bundles on virtual orbifolds MX ;d

0;nC1.
The Euler characteristics can be expressed, by applying Kawasaki’s formula, as
sums of fake holomorphic Euler characteristics over various strata of the inertia
stacks IMX ;d

0;nC1. A point in the inertia stack is represented by a stable map
with symmetry (an automorphism, possibly trivial one). A stratum is singled
out by the combinatorics of such a curve with symmetry. Figure 1 below is our
book-keeping device for cataloging all the strata.

Let us call what is written in a given seat of a correlator the content of that seat.
In the J-function, the content of the first marked point has the factor 1=.1� qL/.
We call this marked point the horn.

Given a stable map with symmetry, we focus our attention on the horn. The
symmetry preserves the marked point and acts on the cotangent line at this point
with an eigenvalue, which we denote �. In Figure 1, contributions of strata with
� D 1 are separated from those where � ¤ 1, in which case � is a primitive root
of 1 of certain order m¤ 1.

When �D 1, the symmetry is trivial on the irreducible component of the curve
carrying the horn. In the curve, we single out the maximal connected subcurve
containing the horn on which the symmetry is trivial, and call this subcurve (and
the restriction to it of the stable map) the head.

The heads themselves are stable maps without symmetry, and are parametrized

by moduli spaces MX ;d 0

0;n0C1. Apart from the horn, the n0 marked points are either
marked points of the whole curve or the nodes where “arms” are attached. An
arm is a stable map obtained as a connected component of what is left of the
original curve when the head is removed. The arm has its own horn — the
nodal point where it is attached to the head. An arm can be any stable map with
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1/m

(1−q) + t(q) + 

1
1−qL

ζ

+ 

stem

tail

points
marked

arms

roots of 1

horns

head
inputshift

dilaton

Cataloging the strata.Figure 1.

legs

1
1−qL ζ

symmetry, with the only restriction: at its horn, the eigenvalue of the symmetry
¤ 1 (because otherwise the head could be increased).

In Figure 1, contributions of the strata with the eigenvalues �¤ 1 are appended
into the sum

P
. If g denotes the symmetry of the stable map, and � is a primitive

mth root of 1, then gm acts trivially on the component carrying the horn. We
single out the maximal connected subcurve on which gm is trivial. Then the
restriction of the stable map to it has g as a symmetry of order m. We call the
quotient stable map (of the quotient curve) the stem. We will come back soon to
a detailed discussion of “legs” and “tails” attached to the stems.

Let us denote by L the universal cotangent line (on the moduli space of
stems) at the horn. The content in the fake holomorphic Euler characteristic
represented by this term in the sum

P
has the factor 1=.1� qL1=m�/. Indeed,

if L0 denotes the universal cotangent line to the original stable map, restricted to
the stratum in question, then (in the notation of Kawasaki’s formula in Section
4) ch.Tr L0/D �ec1.L/=m.

Note that c1.L/ is nilpotent on each of the stem or head spaces. Thus, Figure
1 provides the decomposition of J into the Laurent polynomial part 1�qC t.q/
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and elementary fractions 1=.1�q�/r at different poles q D ��1 ¤ 0;1. We are
ready for our first conclusion.

Proposition 1. The localization J� at � D 1 lies in the cone Lfake of fake
quantum K-theory.

Proof. Denote byet.q/ the sum of t.q/ and of all the terms of
P

with � ¤ 1.
Note that in genus 0, stable maps of degree 0 have no non-trivial automorphisms.
So all terms of the sum

P
have non-zero degrees. This shows that (thanks to

Novikov’s variables) the whole sumet makes sense as a q-series lying in Kfake
C ,

and is “small” in the .t;Q/-adic sense, hence qualifying on the role of an input
of fake quantum K-theory of X . We claim that the whole sum shown on Figure
1 is the value of J-function of this fake theory with the inputet .

Indeed, examine contributions into the virtual Kawasaki formula [22] of the
terms with �D 1. Denote by L� the cotangent line at a marked point of the head.
When the marked point of the head is that of the original curve, the content of
it is t.L�/. When this is a node where an arm is attached, denote by LC the
cotangent line to the arm. The only ingredients that do not factor into separate
contributions of the head and of the arms areP

aˆa˝ˆ
a

1�L� Tr.L0C/
:

The top comes from the gluing of the arm to the head, and the bottom from the
smoothing of the curve at the node, as a mode of perturbation normal to the
stratum of the inertia orbifold. We conclude that the content of the marked point
of the head correlator is exactlyet.L�/.

Thus J .t/ is represented as

1� qCet.q/CX
a

ˆa
X
n0;d 0

Qd 0

n0!
h
ˆa

1� qL
;et.L/; : : : ;et.L/iX ;d 0

0;n0C1
D J fake.et/;

since the correlators come from the fake K-theory of X . �

Let us return to the term with � ¤ 1. The stem curve itself is typically the
quotient of CP1 by the rotation through � about two points: the horn and one
more — let’s call it the butt — where the eigenvalue of the symmetry on the
cotangent line is ��1. In fact the stem can degenerate into the quotient of a
chain of several copies of CP1, with the same action of the symmetry on each
of them, and connected “butt-to-horn” to each other (and even further, with other
irreducible components attached on the “side” of the chain, see Figure 2 in the
next section). In this case the butt of the stem is that of the last component of
the chain. The butt can be a regular point of the whole curve, a marked point of
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it, or a node where the tail is attached (see Figure 1). The tail can be any stable
map with any symmetry, except that at the point where it is attached to the stem,
the eigenvalue of the symmetry cannot be equal to �. (Otherwise the stem chain
could be prolonged.) In Figure 1, put ıt.q/D 1� qC t.q/C Lt.q/, where Lt.q/ is
the sum of all remaining terms except the one with the pole at q D ��1 (with
this particular value of �). We claim that the expansion J� of the big J-function
near q D ��1 has the form

ıt.q/C
X

a

ˆa

X
n;d

Qmd

n!

�
ˆa

1� qL1=m�
;T .L/; : : : ;T .L/; ıt.L1=m=�/

�X ;d

0;nC2

;

where Œ: : : � are certain correlators of “stem” theory, and T .L/ are leg contribu-
tions, both yet to be identified.

Indeed, let LC denote the cotangent line at the butt of the stem, and L0C its
counterpart on the m-fold cover. When the butt is a marked point, its content is
t.L

1=m
C �/, and when it is the node with a tail attached, then it is Lt.L1=m

C �/. This
is because ch.Tr L0C/D �e

c1.LC/=m. The case when the butt is a regular point
on the original curve but a marked point on the stem, can be compared to the case
when the butt is a marked point on the original curve as well. In the former case,
the conormal bundle to the stratum of stable maps with symmetry is missing,
comparing to the latter case, the line L0C. In other words, one can replace the
former contribution with the latter one, by taking the content at the butt to be
1�L

1=m
C �, i.e. the K-theoretic Euler factor corresponding to the conormal line

bundle L0C. We summarize our findings.

Proposition 2. The expansion J� of J near q D ��1 is a tangent vector
to the range of the fake J-function of the “stem” theory at the “leg” point, T .

Our next goal is to understand leg contributions T .L/.

Proposition 3. Let eT .L/ denote the arm contribution et.L/ computed
when the input t D 0. Then

T .L/D‰m
�eT .L/� :

We recall that Adams’ operations ‰m are additive and multiplicative endomor-
phisms of K-theory acting on a line bundle by ‰m.L/DLm. In this proposition,
‰m acts not only on L and elements of K0.X /, but also by ‰m.Qd /DQmd

on Novikov’s variables.

Proof. The legs of a stable map with an automorphism, g, of order m¤ 1 on
the cotangent line at the horn, are obtained by removing the stem (and the tail).
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Each leg shown in Figure 1 represents m copies of the same stable map glued to
the m-fold cover of the stem and cyclically permuted by g. The automorphism
gm preserves each copy of the leg but acts non-trivially on the cotangent line
at the horn of the leg (i.e. the point of gluing), since otherwise the stem could
be extended. The only other restriction on what a leg could be is that it cannot
carry (or be) a marked point of the original curve, since the numbering of the m

copies of the marked point would break the symmetry. This identifies each of
the m copies of a leg with an arm carrying no marked points.

As in the proof of Proposition 1, denote by L� and L0C the cotangent lines at
the point of gluing to the m-fold cover of the stem and to the leg respectively. Then
the smoothing perturbation at the node of the curve with symmetry represents
a direction normal to the stratum of symmetric curves. In the denominator
of the virtual Kawasaki formula [22], it is represented by one Euler factor
1�L� Tr.L0C/ for each copy of the leg. As in the case of arms, the gluing factor
has the form P

aˆa˝ˆ
a

1�L� Tr.L0C/
:

Then ch.ˆa/ and ch
�
Tr.L0C/

�
are integrated out over the moduli space of legs,

and the leg contributes into the fake Euler characteristics over the space of stems
through ˆa and L�. We claim however that the contribution of the gluing factor
into the stem correlator has the form

‰m.ˆa/˝ˆ
a

1�Lm
� Tr.L0C/

:

This follows from the following general lemma.

Lemma. Let V be a vector bundle, and g the automorphism of V ˝m acting
by the cyclic permutation of the factors. Then

Tr.g j V ˝m/D‰m.V /:

We conclude that the contribution of the leg into stem correlators is obtained
fromet.L�/ (the contribution of the arm into head correlators) by computing it
at the input t D 0 (this eliminates those arms that carry marked points), then
applying ‰m, and also replacing Qd with Qmd , because the total degree of the
m copies of a leg is m times the degree of each copy. �

Proof of Lemma. It suffices to prove it for the universal UN -bundle, or
equivalently, for the vector representation V DCN of UN . Computing the value
at h 2 UN of the character of Tr.g j V ˝m/, considered as a representation of
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UN , we find that it is equal to tr.gh˝m/, because g and h˝m commute. Let ei

denote eigenvectors of h with eigenvalues xi . A column of the matrix of gh˝m

in the basis ei1
˝ � � �˝ eiN

has zero diagonal entry unless i1 D � � � D iN . Thus,
tr.gh˝N /D xm

1
C � � �Cxm

N
. This is the same as the trace of h on ‰m.V /. �

Remark. The lemma can be taken for the definition of Adams’ operations.
For a permutation g with r cycles of lengths m1; : : : ;mr , it implies:

Tr.g j V ˝m/D‰m1.V /˝ � � �˝‰mr .V /:

Proposition 4. Propositions 1,2,3 unambiguously determine the big J-
function J in terms of stem and head correlators.

Proof. Figure 1 can be viewed as a recursion relation that reconstructs
J .t/ by induction on degrees d of Novikov’s monomials Qd (in the sense of
the natural partial ordering on the Mori cone). The key fact is that in genus 0,
constant stable maps have no non-trivial automorphisms (and have > 2 marked
or singular points). Consequently, arms which are not marked points, as well as
legs, or stems with no legs attached, must have non-zero degrees. As a result,
setting t D 0, one can reconstruct J .0/ up to degree d from head and stem
correlators, assuming that tails and arms are known in degrees < d , and then
reconstruct the arm eT .q/ and tail ıt.q/ (at t D 0) up to degree d from projections
J .0/1 and J .0/� to Kfake

C and K�C respectively.
It is essential here that even when the head has degree 0, it suffices to know

the arms up to degree < d (since at least 2 arms must be attached to the head).
Also, when both the stem and the tail have degree 0, and there is only one leg
attached, Proposition 3 recovers the information about the leg up to degree d

from that of the arm up to degree d=m< d .
The previous procedure reconstructs eT (the arm at t D 0), and hence the leg

T D‰m.eT / in all degrees. Now, starting with any (non-zero) input t , one can
first determineet up to degree d from stem correlators, assuming that tails are
known in degrees < d , and then recover J .t/ (and hence arms and tails) up to
degree d . �

Thus, to complete the proof of the theorem, it remains to show that the tangent
spaces from Proposition 2 coincide with the Lagrangian spaces L� D r�T �
described in the adelic formulation of the theorem. This will be done in the next
section.
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8. Stems as stable maps to X=Zm

Let � ¤ 1 be a primitive mth root of 1, and let MX ;d

0;nC2.�/ denote a stem space.
It is formed by stems of degree d , considered as quotient maps by the symmetry
of order m acting by � on the cotangent line at the horn of the covering curve. It
is a Kawasaki stratum in MX ;md

0;mnC2.

Proposition 5. The stem space MX ;d

0;nC2.�/ is naturally identified with the

moduli space MX=Zm;d

0;nC2 .g; 1; : : : ; 1;g�1/ of stable maps to the orbifold X=Zm.

Remark. This Proposition refers to the GW-theory of orbifold target spaces
in the sense of Chen–Ruan [3] and Abramovich–Graber–Vistoli [1]. In particular,
evaluations at marked points take values in the inertia orbifold, and notation of the
moduli space indicates the sectors, i.e. components of the inertia orbifold where
the evaluation maps land. In the case at hands the inertia orbifold is X �Zm,
and the string .g; 1; : : : ; 1;g�1/, where g is the generator of Zm, designates (in
a way independent of �) the sectors of the marked points.

Proof. The paper [16] by Jarvis–Kimura describes stable maps to the orbifold
point=Zm D BZm in a way that can be easily adjusted to our case X=Zm D

X�BZm. Namely, they are stable maps to X equipped with a principal Zm-cover
over the complement to the set of marked and nodal points, possibly ramified
over these points in a way balanced at the nodes (i.e. such that the holonomies
around the node on the two branches of the curve are inverse to each other). The
stem space is obtained when two marked points are assigned holonomies g˙1 of
maximal order, and all other marked points are unramified. �

Thus, introducing the simplifying notation M WDMX ;d

0;nC2.�/, we identify
stem correlators in the virtual Kawasaki formula [22] with integrals:h ˆ

1� q�L1=m
;T .L/; : : : ;T .L/; ıt.L/

iX ;d

0;nC2
D

Z
ŒM�vi r

td.TM/ ch

0@ev�
1
ˆ ev�

nC2
ıt.��1L

1=m
nC2

/
QnC1

iD2 ev�i T .Li/

.1� q�L
1=m
1

/ Tr
�V�

N �M

�
1A ;

Here ŒM�vir is the virtual fundamental cycle of the moduli space in GW-theory
of X=Zm, TM is the virtual tangent bundle to M, and NM is the normal bundle
to M considered as a Kawasaki stratum in the appropriate moduli space of stable
maps to X which are the m-fold covers of the stems. In several steps, we will
express stem correlators in terms of cohomological GW-theory of X .



68 A. GIVENTAL AND V. TONITA

Let .H; �/ be the symplectic loop space of cohomological GW-theory of X :

HDH..z//; �.f;g/D ReszD0.f .�z/;g.z// dz; .A;B/D

Z
X

AB:

Recall that the J -function of this theory is

J H
X .t/ WD �zC t.z/C

X
a

�a

X
n;d

Qd

n!
h

�a

�z� 
; t. /; : : : ; t. /i

X ;d
0;nC1

:

For the purpose of applications to K-theory, we will ignore all odd-degree
cohomology classes (that is, set all odd variables to 0), and respectively assume
that H here denotes the even-dimensional part of cohomology.

Our first task is to express in terms of J H
X

the J-function of the orbifold
X=Zm. The answer is immediately extracted from the paper [16] by Jarvis–
Kimura: one only needs to replace the ground field Q with the group ring QŒZm�

(in fact, the center of the group ring, but our group is abelian). In other words,
to parameterize the cone LH

X=Zm
, one needs to replace in the above formula for

J H
X

the variable t with
P

h2Zm
t .h/h, where each t .h/ 2H ŒŒz��. The resulting

J-function takes values in H ˝Q QŒZm�. The components corresponding to
different group elements are referred to as “sectors”. The Poincaré pairing on
X becomes divided by m (since the fundamental class ŒX=Zm�D ŒX �=m) and
coupled with the usual inner product on the group ring: .h; h0/D 0 for h0¤ h�1,
and .h; h�1/D 1=m (so that sector h pairs non-trivially only with sector h�1).

For the purpose of expressing stem correlators, we need only one type of
correlators for X=Zm. It is obtained by setting

P
h t .h/h D t � g0 C .ıt/g�1,

and differentiating the resulting J-function one time in the direction of ıt at the
point ıt D 0. Thus, this is a tangent vector to the cone LX=Zm

, but we also
need to keep track of its applications point (obtained by setting ıt D 0 before
differentiation), and so we give names to both, the application point: J H

X=Zm
.t/,

belonging to sector g0, and the tangent vector ıJ H
X=Zm

.t/, belonging to sector

g�1. Thus, we have the following Proposition.

Proposition 6. J H
X=Zm

.t/D J H
X
.t/, and

ıJ H
X=Zm

D ıt.z/C
X

a

�a

X
n;d

h
�a

�z� 
; t. /; : : : ; t. /; ıt. /i

X ;d
0;nC2

:

Remark. The Poincaré pairing on the identity sector differs from the usual
one by the factor 1=m. As a result, the basis Poincaré-dual to �a is m�a DW e�a

.
This change would show in the definition of the J-function of X=Zm. However,
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correlators in the orbifold theory also differ from the usual ones by the factor
1=m, and these two changes cancel out.

The sum TM ˚NM is the restriction to M of the virtual tangent bundle
to the moduli space of stable maps of degree md with mnC 2 marked points.
According to [4], in the Grothendieck group K0.M/, this tangent bundle is
represented by push-forward from the universal family e� W eC!M:7

e�� ev� TX Ce��.1�L�1/C
�
�e��ei�OeZ�_ ;

where L stands for the universal cotangent line at the “current” (mnC 3-rd)
marked point of the universal curve,ei W eZ! eC is the embedding of the nodal
locus, and _ means dualization. This decomposes the virtual bundle into the sum
of three parts, respectively responsible for: (i) deformations of maps to X of a
fixed complex curve, (ii) deformations of complex structure and/or configuration
of marked points, and (iii) bifurcations of the curve’s combinatorics through
smoothing at the nodes.

Part (i) is the index bundle

Ind.TX / WDe��eev�.TX /:

Here we use the following notation: maps � W C!M and ev W C!X=Zm form
the universal stable map diagram, while e� W eC!M and eev W eC! X are their
Zm-equivariant lifts to the family of ramified Zm-covers.

We need to extract from the index bundle the eigenspace of the generator, g, of
the group Zm, with the eigenvalue ��k . For this, we begin with the Zm-module
C where g acts by �k , denote C�k the corresponding line bundle over BZm,

and take
�
Ind.TX /˝C�k

�Zm . This (trivial) result can be expressed in terms of
orbifold GW-theory of X=Zm DX �BZm as �� ev�

�
TX ˝C�k

�
. Namely, as

we mentioned in Section 4, the K-theoretic push-forward operation on global
quotients considered as orbifolds automatically extracts the invariant part of
sheaf cohomology. Thus,

Tr.Ind.TX //D˚
m�1
kD0 �

�k�� ev�
�
TX ˝C�k

�
:

Recall that an invertible characteristic class of complex vector bundles is
determined by an invertible formal series in one variable, the 1st Chern class
x D c1.l/ of the universal line bundle. Alongside the usual Todd class td, we
introduce moving Todd classes (aka equivariant K-theoretic inverse Euler classes),

7In [4], we find TX � 1 in place of TX , but in genus 0,e��.1/D 1.
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one for each �¤ 1:

td.l/D
x

1� e�x
; td�.l/D

1

1��e�x
:

The contribution of Tr.Ind.TX // into our integral over M reads:

td
�
�� ev�.TX /

� m�1Y
kD1

td�k

�
�� ev�.TX ˝C�k /

�
: (*)

Introduce J tw
X=Zm

and ıJ tw
X=Zm

as twisted counterparts of J H
X=Zm

and ıJ H
X=Zm

.
Namely, following [6], one defines GW-invariants twisted by a chosen bundle,
E, over the target space, and a chosen multiplicative characteristic class, S , by
systematically replacing virtual fundamental cycles of moduli spaces of stable
maps with their cap-products (such as ŒM�vir \S.Ind.E// in our case) with the
chosen characteristic class of the corresponding index bundle.

Proposition 7. Denote by � and �� the Euler–Maclaurin asymptotics of
the infinite products

��
Y

Chern roots x of TX

1Y
rD1

x� rz

1� e�mxCmrz
;

�� �

Y
Chern roots x of TX

1Y
rD1

x� rz

1� ��r e�xCrz=m
:

Then J tw
X=Zm

lies in the overruled Lagrangian cone �LH
X

, and ıJ tw
X=Zm

lies in

the transformed tangent space ��T��1J tw
X=Zm

LH
X

.

Proof. The Quantum Riemann–Roch Theorem of [6], which expresses
twisted GW-invariants in terms of untwisted ones, was generalized to the case of
orbifold target spaces by Hsian-Hua Tseng [24]. The proposition is obtained by
direct applications of the Quantum RR Theorem of [24] to each of the twisting
data E D TX ˝C�k , S D td�k . For k D 0, the Euler–Maclaurin asymptotics
(for both J tw and ıJ tw) come from the product

1Y
rD1

x� rz

1� e�xCrz
;

and for k ¤ 0, from
1Y

rD1

1

1� �ke�xCrz
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for J tw, and
1Y

rD1

1

1� �ke�xCrz�kz=m

for ıJ tw. The extra factor e�kz=m in the denominator comes from the way
how in the orbifold HRR theorem of [5], the logarithm (k=m in our case) of
the eigenvalue (e2�ik=m), by which the symmetry g acts on the twisting bundle
(TX˝C�k ), enters the “Bernoulli polynomial” ingredient of the formula. Namely,
ekt=m

et�1
, where t D z@x , formally expands as

P1
rD1 e.k=m/z@x�rz@x .

Multiplying out the products over k D 0; : : : ;m� 1, and using �m D 1 andQm�1
kD0 .1� �

ku/D 1�um to simplify, we obtain the required results. �

Part (ii) of the bundle TM˚NM comes from deformations of the complex
structure and marked points. It can be described as the K-theoretic push-forwarde��.1�L�1/ along the universal curve e� W eC!M (think of H 1.†;T†/). To
express the trace Tr of it, one need to consider push-forwards of L�1˝C�k and
appropriately twisted GW-invariants of the orbifold X=Zm. More precisely, we
need the twisting classes to have the form:

td
�
��.1�L�1/

� m�1Y
kD1

td�k

�
��Œ.1�L�1/ ev�.C�k /�

�
:

The general problem of computing GW-invariants of orbifolds twisted by char-
acteristic classes of the formY

˛

S˛

�
��Œ.L

�1
� 1/ ev�.E˛/�

�
is solved in [23] (see also Chapter 2 of thesis [21]). The answer is described
as the change of the dilaton shift.8 Namely, if �z D c1.L

�1/, and S˛ denote
the twisting multiplicative characteristic class, then the dilaton shift changes
from �z to �z

Q
˛ S˛.L

�1E˛/. In our situation, ˛ D 0; : : : ;m� 1, S0 D td�1,
Sk D td�1

� for k ¤ 0, and Ek D C�k . Respectively, the new dilaton shift is

�z
.1� ez/

.�z/

m�1Y
kD1

.1� �kez/D 1� emz :

Thus, the dilaton shift changes from �z to 1� emz .

Parts (i) and (ii) together form the part of the virtual tangent bundle to
Mmd;X

0;mnC2 (albeit restricted to M) logarithmic with respect to the nodal divisor.

8 Generalizing the case of manifold target spaces discussed in [4].
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What remains is part (iii), supported on the nodal divisor, which consists of one-
dimensional summands (one per node), the smoothing mode of the glued curve
at the node. Contributions of part (iii) into the ratio td.TM/= ch.Tr

V�
.N �M/ in

the virtual Kawasaki formula is described in terms of yet another kind of twisted
GW-invariants of the orbifold X=Zm, where the twisting classes are supported
at the nodal locus. The effect of such twisting on GW-invariants can be found by
a recursive procedure based on ungluing the curves at the nodes. As it is seen in
[4], this does not change the overruled Lagrangian cones, but affects generating
functions through a change of polarization. Referring to [23] (or [21]) for the
generalization to orbifold target spaces needed here, we state the results.

Let M denote a moduli space of stable maps to the orbifold X=Zm, and
� W C !M the projection of the universal family of such stable maps. Let
Z D [h2Zm

Zh be the decomposition of the nodal stratum Z � C into the
disjoint union according to the ramification type of the node, and i W Zh! C
denote the embedding. Let Sh;a be invertible multiplicative characteristic classes,
and Eh;˛ arbitrary orbibundles over X=Zm, where h 2 Zm, ˛ D 1; : : : ;Kh. The
twisting in question is obtained by systematically including into the integrands
of GW-theory of X=Zm the factors

Y
h2Zm

KhY
˛D1

Sh;˛

�
��Œi�OZh

˝ ev�Eh;˛ �
�
:

According to the results of [23] (Theorem 1.10.3 in [21]), the effect of such
twisting is completely accounted by a change of polarization in the symplectic
loop space of GW-theory of X=Zm, described separately for each sector. Namely,
for the sector corresponding to h2Zm, define a power series uh.z/D zCa2z2C

a3z3C � � � by

z

uh.z/
D

KhY
˛D1

S�1
h:a

�
Eh;a˝L

�
; where c1.L/ WD z.

Define the Laurent series vh;k ; k D 0; 1; 2; : : : , by

1

uh.� � z/
D

X
k�0

.uh. //
k vh;k.z/;

which is the expansion of the L.H.S. in the region j j< jzj. Then, as one can
check, �azk ; �avh;k.z/, aD 1; : : : ; dim H , k D 0; 1; 2; : : : , form a (topological)
Darboux basis in the sector h of the symplectic loop spaces of the GW-theory of
X=Zm. The genus-0 descendant potential of the twisted theory is expressed from
that of untwisted one by taking the overruled Lagrangian cone of the untwisted
theory for the graph of differential of a function in the Lagrangian polarization
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associated with this basis. Note that the positive space polarization, which is
spanned by f�azkg, stays the same as in the untwisted theory, while the negative
space, which is spanned by f�avh;k.z/g, differs from that of untwisted theory,
which is spanned by f�az�1�kg.

Remarks. (1) The standard polarization H˙ of the symplectic loop space of
quantum cohomology theory of a manifold is obtained by the same formalism:

1

� � z
D

X
k�0

 k

.�z/kC1
;

and H� is spanned by �a.�z/�1�k ; k D 0; 1; 2; : : : .
(2) As it was mentioned in Section 5, in fake K-theory one obtains a Darboux

basis from z=u.z/D td.L/, and respectively the expansion:

1

1� e Cz
D

X
k�0

.e � 1/k
ekz

.1� ez/kC1
:

Consequently, Kfake
C and Kfake

� are spanned respectively by ˆa.q � 1/k and
ˆaqk=.1� q/kC1, aD 1; : : : ; dim K, k D 0; 1; 2; : : : .

In stem theory, there are two types of nodes (Figure 2). When a stem acquires
an unramified node (as shown in the top picture), the covering curve carries
a Zm-symmetric m-tuple of nodes. The smoothing bundle has dimension m

and carries a regular representation of Zm. When a stem degenerates into a
chain of two components glued at a balanced ramification point of order m (the
bottom picture), the smoothing mode is one-dimensional and carries the trivial
representation of Zm. Contributions of these smoothing modes into the ratio
td.TM/= ch.Tr

V�
.N �M/ is accounted by the following twisting factors in the

integrals over M, considered as orbifold-theoretic GW-invariants:

td
�
���i�OZg

�_ td
�
���i�OZ1

�_ m�1Y
kD1

td�k

�
���.ev� C�k ˝ i�OZ1

/
�_
;

where Z1 stands for the unramified nodal locus, and Zg for the ramified one.
This twisting results in the change of polarizations. In the g-ramified sector, the
new polarization is determined from the expansion of

1

1� e. Cz/=m
D

1

1� q1=mL1=m
:

Here the factor 1=m occurs because what was denoted L in the GW-theory of
X=Zm is the universal cotangent line at the ramification point to the quotient
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curve, which is L1=m in our earlier notations of stem spaces (where L stands
for the universal cotangent line to the covering curve). In the unramified sector,
the new polarization is found from

z

u.z/
D td.L/

m�1Y
kD1

td�k .C�k ˝L/D
z

1� e�z

m�1Y
kD1

1

1� �ke�z
D

z

1� e�mz
;

and consequently the expansion of

1

1� em Cmz
D

1

1� qmLm
:

We conclude that the negative space of polarizations in the ramified and unrami-
fied sectors are spanned respectively by

ˆaqk=m=.1�q1=m/kC1 and ˆaqmk=.1�qm/kC1
Dˆa ‰m

�
qk=.1� q/kC1

�
:

Remark. The occurrence of Adams’ operation ‰m here is not surprising. The
smoothing modes at m cyclically permuted copies on an unramified node of the
stem curve form an m-dimensional space carrying the regular representation of
Zm. The trace Tr of the bundle formed by these modes is, according to Lemma
of the previous section, ‰m.L�˝LC/ (in notation of Figure 2, the top picture).

L

L

L

L +_

_

+

stem
butt

Figure 2.

horn

Two types of stem nodes.

It remains to apply the above results to those generating functions of stem
theory which occur in the virtual Kawasaki formula. Introduce a generating
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function, ıJ st
X=Zm

, of stem theory as the image under the Chern character map
ch WKfake!H of

ıt.q1=m/C
X

a;n;d

ˆa
Qd

n!

�
ˆa

1� q1=mL1=m
;T .L/; : : : ;T .L/; ıt.L1=m/

�X ;d

0;nC2

:

Replacing q1=m with �q and Qd with Qmd , we would obtain the sum of cor-
relators of stem theory as they appeared in Section 7. On the other hand, the
interpretation of stem correlators as GW-invariants of X=Zm twisted in three
different ways (corresponding to parts (i), (ii), (iii) of the tangent space), and
the previous results on the effects of these twistings, provide the following
description of ıJ stX=Zm in terms of GW-theory of X .

Proposition 8. ıJ st
X=Zm

.ıt;T / lies in ����1TJ tw
X=Zm

�LH
X

, where the

input T is related to the application point J tw
X=Zm

by the projection Œ� � � �C along
the negative space of the polarization of the unramified sector:

ch
�
1� qm

CT .q/
�
D

h
J tw

X=Zm

i
C
:

Proof. According to Proposition 7, J tw
X=Zm

lies in the cone �LH , and

ıJ tw
X=Zm

lies in the space ����1T , where T is the tangent space to �LH at
the point J tw

X=Zm
. It follows from the previous discussion that ıJ st

X=Zm
, being

obtained from ıJ tw
X=Zm

by changing dilaton shift and polarizations only, lies in
the same space. Changing the content of the horn in the definition of ıJ tw

X=Zm

from e�a
=.�z� /D�a=.�z=m� =m/ to �a=.1�ez=mC =m/ is equivalent to

applying to the same space the polarization associated with the g-ramified sector.
However, the new dilaton shift and polarization in the unramified sector both
affect the way the input T of ıJ st

X=Zm
is computed in terms of J tw

X=Zm
. Namely,

ch.T /D ŒJ tw
X=Zm

�C� .1� emz/. �

To put the next proposition into context, let us recall that the stem correlators
of Section 7, in order to represent the expansion J .t/� of the true K-theoretic
J-function J at q D ��1, need to be computed at a specific input T , the leg,
which is characterized in a rather complex way. Namely, the expansion J .0/1 of
the value of J at the input t D 0 lies in the cone Lfake of fake quantum K-theory
of X (Proposition 1). The contribution eT , i.e. the arm corresponding to t D 0,
is obtained as the input point of J .0/1, i.e. by applying the projection .: : : /C
along the negative space of polarization (described in Remark 2) and the dilaton
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shift of fake quantum K-theory:

1� qC eT .q/D .J .0/1/C :
According to Proposition 3, T D‰m.eT / (where Adams’ operation acts also on
q and Q).

On the other hand, Proposition 7 locates the stem generating function ıJ st
X=Zm

in terms of the tangent space TJ tw
X=Zm

�LH
X

. Furthermore, according to the

Quantum HRR Theorem stated in Section 5, LH
X
D4�1 ch

�
Lfake

�
, and hence

the cone and its tangent space in question are the images under �4�1 ch of
Lfake and of a certain tangent space to it. The following proposition implies that
when the input T is the leg, the requisite tangent space is exactly TJ .0/1Lfake.

Proposition 9. ch�1.�LH
X
/ D ‰m.Lfake/, where the Adams operation

‰m WKfake!Kfake acts on q by ‰m.q/ WD qm.

Proof. From the QHRR theorem of Section 5 and Proposition 7, we have:

4
�1 ch.J fake

X /D J H
X D��1J tw

X=Zm
:

We intentionally neglect to specify the arguments, since they are determined by
the argument, t , of J H

X
, by polarizations, and by the transformations 4 and �

themselves. The Adams operation ‰m acts on cohomology classes via the Chern
isomorphism:

ch
�
‰m.ch�1 a/

�
Dmdeg.a/=2a:

The J-function t 7!J H
X
.t/ has degree 2 with respect to the grading, defined by the

usual grading in cohomology, deg z D 2, deg Qd D 2
R

d c1.TX /, and deg t D 2.
The latter means that in the expression t D

P
k;˛ t˛

k
�˛zk the variable t˛

k
is

assigned degree 2� deg�˛ � 2k. Therefore, writing J H
X
=.�z/D

P
d JdQd ,

and rescaling the variables byet˛k Dm1�deg�˛=2�k t˛
k

, we find

m�1‰m.J H
X .t//D

X
d

m� deg Qd

Jd .et/Qd
D e�.log m/ c1.TX /=zJ H

X .et/:
The second equality is an instance of the genus-0 divisor equation (see [6]).
Thus, Proposition 9 would follow from the identity

�Dm
1
2

dimC X‰m.4/ e�.log m/ c1.TX /=z :
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To establish it, note that both 4 and � are the Euler–Maclaurin asymptotics of
infinite products Y

Chern roots x of TX

1Y
rD1

S.x� rz/;

where S is respectively

x

1� e�x
and

x

1� e�mx
Dm�1 ‰m

� x

1� e�x

�
:

The factor m�1 contributes into the asymptotics in the formY
Chern roots x of TX

e�.log m/ x=zm1=2
D e�.log m/ c1.TX /=zm

1
2

dimC X : �

Remark. Most steps of our arguments apply to the case of twisted coho-
mological GW-invariants. The previous proof, however, employs the grading
in cohomology, and does not work therefore for twisted GW-invariants unless
the twisted virtual fundamental classes are homogeneous, and the degrees of
Novikov’s variables are adusted accordingly. Still, these assumptions are correct
in the case of twisting by (equivariant) Euler classes. This is why our main
theorem applies to such, Euler-twisted theories. We will use this fact in some
applications given in the last section.

Corollary. ıJ st
X=Zm

.ıt;T / lies in the space ��4
�1T

J fake.eT /
Lfake, where

T D‰m.eT /.
Proof. According to Proposition 8, the series ıJ st

X=Zm
lies in the space

����1TJ tw
X=Zm

�LH , where the input T of ıJ st
X=Zm

is determined by T D

ŒJ tw
X=Zm

�C � .1� qm/. By Proposition 9, J tw
X=Zm

D ‰m.J fake/, and the input
of J fake is determined as eT D �J fake

�
C
� .1� q/. Here .� � � /C refers to the

projection to Kfake
C along Kfake

� , i.e. the polarization described in Remark 2, while
the projection Œ� � � �C refers to the polarization in the unramified sector. The latter
polarization is obtained from the former by the Adams operation: ‰m WKfake!

Kfake, and the relation between dilaton shifts is the same: 1� qm D‰m.1� q/.
Therefore T D‰m.eT /, and the tangent space TJ tw

X=Zm

�LH can be described as

�4�1T
J fake.eT /

Lfake. The result follows. �

We note that

��4
�1
�

Y
Chern roots x of TX

1Y
rD1

1� qr e�x

1� ��r qr=me�x
:
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One obtain r� by replacing in this formula q1=m with q� and computing the
Euler–Maclaurin asymptotics of the result as q�! 1.

According to Proposition 2, the expansion J .t/� near q D ��1 of the true
K-theoretic J-function is expressed in terms of correlators of stem theory (as they
appeared in Section 7), computed at the input T equal to the leg contribution.
More precisely, J .t/� is obtained from ıJ st

X=Zm
, defined as

ıt.q1=m/C
X

a;n;d

ˆa
Qd

n!

�
ˆa

1� q1=mL1=m
;T .L/; : : : ;T .L/; ıt.L1=m/

�X ;d

0;nC2

;

by changing q1=m!q� (including such change in ıt ) and Qd!Qmd (excluding
such a change in ıt ).

Combining these facts with Corollary, we conclude that r�1
�

J .t/� , after the
change q 7! q=�, falls into the subspace T of Kfake which is obtained from the
tangent space TJ .0/1Lfake by the changes q1=m 7! q and Qd 7!Qmd .

This completes the proof of the Hirzebruch–Riemann–Roch Theorem in true
quantum K-theory.

9. Floer’s S 1-equivariant K-theory, and Dq-modules

In this section, we show that tangent spaces to the overruled Lagrangian cone L
of quantum K-theory on X carry a natural structure of modules over a certain
algebra Dq of finite-difference operators with respect to Novikov’s variables.
This structure, although manifest in some examples (see [14]) and predictable on
heuristic grounds of S1-equivariant Floer theory [8; 9], has been missing so far
in the realm of K-theoretic GW-invariants. We first recall the heuristics, and then
derive the Dq-invariance of the tangent spaces to L from the divisor equation in
quantum cohomology theory and our HRR Theorem in quantum K-theory.

Let X be a compact symplectic (or Kähler) target space, which for sim-
plicity is assumed simply-connected in this preliminary discussion, so that
�2.X /DH2.X /. Let kD rk H2.X /, let dD .d1; : : : ; dk/ be integer coordinates
on H2.X;Q/, and !1; : : : ; !k be closed 2-forms on X with integer periods,
representing the corresponding basis of H 2.X;R/.

On the space L0X of contractible parametrized loops S1! X , as well as
on its universal cover AL0X , one defines closed 2-forms �a, that to two vector
fields � and � along a given loop associates the value

�a.�; �/ WD

I
!a.�.t/; �.t// dt:
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A point 
 2AL0X is a loop in X together with a homotopy type of a disk
u WD2!X attached to it. One defines the action functionals Ha W

AL0X ! R

by evaluating the 2-forms !a on such disks:

Ha.
 / WD

Z
D2

u�!a:

Consider the action of S1 on AL0X , defined by the rotation of loops, and
let V denote the velocity vector field of this action. It is well-known that V is
�a-hamiltonian with the Hamilton function Ha, i.e.:

iV�aC dHa D 0; aD 1; : : : ; k:

Denote by z the generator of the coefficient ring H�.BS1/ of S1-equivariant
cohomology theory. The S1-equivariant de Rham complex (of AL0X in our
case) consists of S1-invariant differential forms with coefficients in RŒz�, and is
equipped with the differential D WD d C ziV . Then

pa WD�aC zHa; aD 1; : : : ; k;

are degree-2 S1-equivariantly closed elements of the complex: DpaD 0. This is
a standard fact that usually accompanies the formula of Duistermaat–Heckman.

Furthermore, the lattice �2.X / acts by deck transformations on the universal
covering AL0X ! L0X . Namely, an element d 2 �2.X / acts on 
 2AL0X

by replacing the homotopy type Œu� of the disk with Œu�C d . We denote by
Qd DQ

d1

1
� � �Q

dk

k
the operation of pulling-back differential forms by this deck

transformation. It is an observation from [8; 9] that the operations Qa and the
operations of exterior multiplication by pa do not commute:

paQb �Qbpa D�zQaıab:

These are commutation relations between generators of the algebra of differential
operators on the k-dimensional torus:�

�z@�a
; e�b

�
D�ze�aıab:

Likewise, if Pa denotes the S1-equivariant line bundle on AL0X whose Chern
character is e�pa , then tensoring vector bundles by Pa and pulling back vector
bundles by Qa do not commute:

PaQb D qQaPbıab:

These are commutation relations in the algebra of finite-difference operators,
generated by multiplications and translations:

Qa 7! e�a ; Pa 7! ez@�a D q@�a ; where q D ez :
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Thinking of these operations acting on S1-equivariant Floer theory of the loop
space, one arrives at the conclusion that S1-equivariant Floer cohomology (K-
theory) should carry the structure of a module over the algebra of differential
(respectively finite-difference) operators. Here is how this heuristic prediction
materializes in GW-theory.

Proposition 10. Let D denote the algebra of differential operators gener-
ated by pa; aD 1; : : : ; k, and Qd , with d lying in the Mori cone of X . Define a
representation of D on the symplectic loop space HDH�.X;CŒŒQ��/˝C..z//

using the operators pa�zQa@Qa
(where pa acts by multiplication in the classical

cohomology algebra of X ) and Qd (acting by multiplication in the Novikov ring).
Then tangent spaces to the overruled Lagrangian cone LH �H of cohomological
GW-theory on X are D-invariant.

Proof. Invariance with respect to multiplication by Qd is tautological since
the Novikov ring QŒŒQ�� (which contains the semigroup algebra of the Mori
cone: we assume that da D

R
d pa � 0 for all a and all d in the Mori cone) is

considered as the ground ring of scalars. To prove invariance with respect to
operators pa � zQa@Qa

, recall from [13] that tangent spaces to LH have the
form S�1

� HC, where H 3 � 7! S� .z/ is a matrix power series in 1=z whose
matrix entries are the following cohomological GW-invariants:

Sb
a D ı

b
a C

X
l;d

Qd

l !

X
�

h�a; �; : : : ; �;
�b

z� 
i
X ;d
0;nC2

:

The matrix S� lies in the twisted loop group, i.e. S�1
� .z/D S�� .�z/ (where by

“�” we denote transposition with respect to the Poincaré pairing). Let @�a
denote

the differentiation in � in the direction of the degree 2 cohomology class pa.
According to the divisor equation,

zQa@Qa
S� .z/CS� .z/pa D z@�a

S� .z/:

In fact z@�a
S D pa �S , where � stands for quantum cup-product. (This follows

from the property of LH to be overruled.) Transposing, we get:

.pa� zQa@Qa
/S�1
� .z/D�z@�a

S�1
� .z/D S�1

� .z/.pa�/:

Also, if � D
P
� ���� 2H , then for any �

z@��S� .z/D .���/S� .z/; and hence � z@��S�1
� .z/D S�1

� .���/:
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Thus, if � D
P
��.Q/�� and h 2HC, so that f .z;Q/D S�1

� .z/h.z;Q/ lies in
T� , then

.pa� zQa@Qa
/f D S�1

� .z/

"
.pa�/� zQa@Qa

� z
X
�

.���/Qa@Qa
��

#
h:

Since HC is invariant under the operator in brackets, the result follows. �

Remarks. (1) Each ruling space zT� , and therefore the whole cone LH , is
D-invariant, too.

(2) Symbols of differential operators annihilating all columns of S provide
relations between operators pa� in the quantum cohomology algebra of X (see
[11]).

Corollary 1. Tangent and ruling spaces of Lfake are D-invariant.

Proof. In the QHRR formula ch.Lfake/D4LH of Section 5, the operator
4 commutes with D, since it does not involve Novikov’s variables, and since the
operators (which do occur in 4) of multiplication in the classical cohomology
algebra of X commute with pa. �

Lemma. The subspace T � Kfake obtained from TJ .0/1Lfake by the change
z 7!mz;Q 7!Qm, is D-invariant.

Proof. The tangent space in question is 4.z/S�1
�.0/.Q/

.z;Q/HC for some

� .0/D
P
� �

.0/
� ��2H . (Recall thatHCDH ŒŒz��, and HDH�.X;CŒŒQ��/.) The

space T is therefore 4.mz/S�1
�.0/.Qm/

.mz;Qm/HC, where HC is D-invariant,
and4 commutes with D. Since zQa@Qa

DmzQm
a @Qm

a
, we find that the divisor

equation still holds in the form:

.pa� zQa@Qa
/S�1
� .mz;Qm/D S�1

� .mz;Qm/.pa�.�;Qm//;

where the last subscript indicates that the matrix elements of pa� depend on �
and Qm. The result now follows as in Proposition 10. �

Corollary 2. Let � be a primitive mth root of unity. Then the factor
L� Dr�T � of the adelic cone bL is D-invariant.

Proof. Recall that the space T � is related to T by the change q D �ez , and
the action of z in the operator pa� zQa@Qa

should be understood in the sense
of this identification. The result follows from Lemma since r� commutes with
D (like 4, in Corollary 1). �

Theorem. Let Dq denote the algebra of finite-difference operators, generated
by integer powers of Pa; aD 1; : : : ; k, and Qd , with d lying in the Mori cone
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of X . Define a representation of Dq on the symplectic loop space K, using
the operators PaqQa@Qa (where Pa acts by multiplication in K0.X / by the
line bundle with the Chern character e�pa) together with the operators of
multiplication by Qd in the Novikov ring. Then tangent (and ruling) spaces
to the overruled Lagrangian cone L � K of true quantum K-theory on X are
Dq-invariant.

Proof. Thanks to the adelic characterization of the cone L and its ruling
spaces, given by Theorem of Section 6 and its Corollary, this is an immediate
consequence of the following Lemma.

Lemma. The adelic cone bL is Dq-invariant.

Proof. It is obvious that the factors L� are D-invariant for � other than roots
of unity, since in this case L� DKfake

C . For �D 1, it follows from Corollary 1 that
the family of operators e�.zQa@Qa�pa/ preserves Lfake, and so does the operator
with � D 1, which coincides with PaqQa@Qa . When � ¤ 1 is a primitive mth
root of unity, the family of operators e�.zQa@Qa�pa/ preserves L� by Corollary 2.
However, at � D 1, the operator of the family differs from PaqQa@Qa (because
qD �ez) by the factor �Qa@Qa , which acts as Qa 7!Qa�. It is essential that this
extra factor commutes with S�1

�.0/.Qm/
.mz;Qm/ (due to �m D 1). Since it also

preserves HC, the result follows. �

Example. It is known9 [14] that for X D CPn�1,

J .0/D .1� q/

1X
dD0

Qd

.1�Pq/n � � � .1�Pqd /n
;

where P 2K0.Cn�1/ represents the Hopf line bundle. It follows (from the string
equation) that .J .0/=.1� q/ lies in the tangent space TJ .0/L. Applying powers
T r of the translation operator T WD PqQ@Q , we conclude that, for all integer r ,
the same tangent space contains

P r
1X

dD0

Qdqrd

.1�Pq/n � � � .1�Pqd /n
:

In fact, J .0/ satisfies the nth order finite-difference equation DnJ .0/DQJ .0/,
where D WD 1 � T . Therefore the Dq-module generated by J .0/=.1 � q/ is
spanned over the Novikov ring by T rJ .0/=.1� q/ with r D 0; : : : ; n� 1. The
projections of these elements to KC are P r ; r D 0; : : : ; n� 1, which span the

9This result is derived from birational isomorphisms between some genus-0 moduli spaces of
stable maps to CPn�1 �CP1 and toric compactifications of spaces of maps CP1! CPn�1.
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ring K0.CPn�1/D ZŒP;P�1�=.1�P /n. The K-theoretic Poincaré pairing on
this ring is given by the residue formula:

.ˆ.P /; ˆ0.P //D�ResPD1

ˆ.P /ˆ0.P /

.1�P /n
dP

P
:

By computing the pairings with the above series we actually evaluate K-theoretic
GW-invariants:

.ˆ.P /;T rJ .0/=.1� q//D
X

d

Qd
h
ˆ.P /

1� qL
;P r
i
X ;d
0;2

; r D 0; : : : ; n� 1:

Thus, we started with known values of all hˆLk ; 1i
X ;d
0;2

and computed all

hˆLk ; ˆ0i
X ;d
0;2

(and hence, by virtue of general properties of genus-0 GW-

invariants, all hˆLk ; ˆ0Lli
X ;d
0;2

) using the Dq-module structure alone.

10. Quantum K-theory of projective complete intersections

Theorem. Let X be a complete intersection in the projective space CPn�1, n>4,
given by k.� 0/ equations of degrees l1; : : : ; lk > 1, such that l2

1
C � � �C l2

k
� n.

Then the following series represents a point in the overruled Lagrangian cone of
true quantum K-theory of X :

IX WD .1� q/
X
d�0

Qk
jD1

Qljd

rD0
.1�P lj qr /Qd

rD1.1�Pqr /n
Qd :

More precisely, IX D ��JX .0/, where �� W K0.X / ! K0.CPn�1/ is the K-
theoretic push-forward induced by the embedding � WX ! CPn�1, and JX .0/

is the value of the J-function of true quantum K-theory of X at the input t D 0.

Remarks. (1) To clarify this formulation, we remind that P represents the
Hopf line bundle in K0.CPn�1/. By Lefschetz’ hyperplane section theorem, the
inclusion X � CPn�1 induces an isomorphism H2.X;Q/!H2.CPn�1;Q/,
whenever 2� n�k�2. The latter holds true under our numerical restrictions on
lj and n. Consequently, the degrees of holomorphic curves in X are represented
in IX by their degrees d in the ambient projective space.

(2) When
P

l2
j � n, we also have

P
lj < n�2 (strictly, unless k D 1, l1D 2,

while nD 4). Since we assumed n> 4, we have for each d > 0:

1C
X lj d.lj d C 1/

2
< n

d.d C 1/

2
:
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This means that the coefficient of IX at Qd is a reduced rational function of q.
Thus, the projection of IX to KC is 1� q, i.e. IX corresponds to the input value
t D 0.

(3) Note that the example nD 4; kD 1; l1D 2 of the conic CP1�CP1�CP3

is exceptional in the sense of both previous remarks. It would be interesting to
analyze the role of the series IX in quantum K-theory of the conic.

Corollary. For all s 2 ZX
d

Qd
h
��ˆ.P /

1� qL
; ��P s

i
X ;d
0;2
D .ˆ.P /;T sIX =.1� q//;

where .�; �/ is the K-theoretic Poincaré pairing on K0.CPn�1/, and

T sIX =.1� q/D P s
X
d�0

Qk
jD1

Qljd

rD0
.1�P lj qr /Qd

rD1.1�Pqr /n
Qdqsd :

When k D 0, it is known from [14], that the formula for IX represents
the value J .0/ of the K-theoretic J-function of the projective space. We will
begin our proof of the theorem, however, with re-deriving this fact (and without
the restriction n > 4, of course) from the main theorem of this paper. After
that we explain how to adjust the argument to the case of projective complete
intersections.

To prove the theorem for X D CPn�1, we will show that expansions of the
series I near q D ��1 pass the tests required by the Quantum HRR Theorem of
Section 6.

The technique we use goes back to the method developed in [6] for the proof
of the “Quantum Lefschetz Principle.” Let us first outline the method in its
generalized form introduced in [5].

Suppose we are given a point (e.g. J H
X
.0/) on an overruled Lagrangian

cone (such as LH
X

, for instance). Consider a pseudo-differential operator in the
Novikov’s variables in the form

exp

8<:ˆ�1.zQ@Q/

z
C

X
k�0

ˆk.zQ@Q/z
k

9=; :
Here zQi@Qi

is supposed to act (as in the previous section) by �piCzQi@=@Qi ,
where pi is the degree 2 class corresponding to Qi@Qi

. It follows from Lemma
in [6] (in the proof of the quantum Lefschetz theorem) that by applying the
operator to a point on the overruled Lagrangian cone one obtains a point also
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lying on the cone. More precisely, as we already know from the previous section,
ruling spaces to the cone are D-modules with respect to Novikov’s variables.
Therefore the terms of the exponent with k � 0 are only capable of adding to
a point on the cone a vector from the same ruling space. However, the action
of the term ˆ�1, generally speaking, moves the point to another ruling space.
For example, the action expfz�1

P
i z�iQi@Qi

g changes a point J D
P

JdQd

to J.�/D e�p�=z
P

Jded�Qd , which lies on the same cone due to the divisor
equation. Furthermore, the action of expfˆ�1.zQ@Q/=zg is equivalent to that
of expfˆ�1.z@=@�/=zg, which in its turn, modulo relations in the D-module
generated by the J-function, and modulo higher order terms in z, is equavalent
to the translation in the space H of parameters of ruling spaces (by the vector,
expressible under some simplifying assumptions as ˆ�1.p�/, i.e. the value of
the function ˆ�1 computed in the quantum cohomology algebra).

Next, given a point J on an overruled Lagrangian cone L, one constructs a
point on the rotated cone e�ˆ.�p;z/=zL, where eˆ.�p;z/=z is the Euler-Maclaurin
asymptotics of an infinite product

Q0
rD�1 S.�pC rz/ as follows. We have

S.zQ@QC rz/Qd D S.�pCp.d/zC rz/, where p.d/ denotes the value
R

d p

on d of the degree 2 class p. Therefore

eˆ.zQ@Q;z/=zQd
D eˆ.�p;z/=zQd

Q0
rD�1 S.�pC rz/Qp.d/
rD�1 S.�pC rz/

:

The fraction on the right is known as the modifying factor Md . Rewriting
J D

P
d JdQd , we conclude that since eˆ.zQ@Q;z/=zJ lies in the cone L, the

modified series
P

d JdQdMd lies on the rotataed cone e�ˆ.�p;z/=zL.
Returning now to our problem for X D CPn�1, we begin with a point on the

cone LH
X

(see [9]; we will tend to omit the subscript X in this example):

J H .0/D�z
X
d�0

QdQd
rD1.p� rz/n

:

Here p is the hyperplane class in H 2.CPn�1/. We employ the above method
to construct a point on Lfake. Recall from Section 5 that Lfake D ch�1

4LH ,
where

log4�
1X

rD1

X
x

s.x� rz/; s.u/ WD log
u

1� e�u
;

and x runs Chern roots of TCPn�1 . We claim that in fact

log4�
1X

rD1

.n s.p� rz/� s.�rz// :
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Indeed, TCPn�1 D nP�1 � 1, and the construction of the operator log4 from
(Chern roots of) a bundle is additive. Note that the last summand does not affect
the way 4 acts on LH , since, being overruled, the cone LH is invariant under
multiplication by functions of z.

As the method requires, replacing p in log4 with �zQ@Q and applying the
resulting operator to Qd , we find the modifying factor

Md D

dY
rD1

en s.p�rz/
D

dY
rD1

.p� rz/n

.1� e�pCrz/n
:

Thus

I fake
WD �z

X
d�0

QdQd
rD1.1� e�pCrz/n

lies in Lfake, the overruled Lagrangian cone of fake quantum K-theory of CPn�1.
Multiplying this by .1� ez/=.�z/ (which is a scalar z-series and thus preserves
the overruled cone), and replacing e�p D ch.P / with P , and ez with q, we
obtain the same expression as IX from Theorem for X D CPn�1:

I D .1� q/
X
d�0

Qd

.1�Pq/n.1�Pq2/n � � � .1�Pqd /n
:

We have proved therefore, that the expansion of I near q D 1 lies in Lfake as
required.

To analyze the expansion of I near q D ��1 where � is an m-th root of 1,
we begin again with the point J H .0/ in LH and generate a point I tw on the
cone Ltw

X=Zm
and a tangent vector ıI tw to this cone at this point, applying the

above method to the twisting operators � and �� from Proposition 7. Again,
the description of the tangent bundle T CPn�1 D nP�1� 1 allows us to replace
Chern roots of in the definition of � and �� with n copies of p:

��
1Y

rD1

.p� rz/n

.1� e�mpCmrz/n
; �� �

1Y
rD1

.p� rz/n

.1� ��r e�pCrz=m/n
:

Replacing p with �zQ@Q and applying the operators to Qd we find the modi-
fying factors (alternatively one can read them off the formulation in [5] of the
orbifold Qauntum Lefschetz Theorem specialized to the case of X=Zm and the
sectors g0 and g�1) and respectively

I tw
D�z

X
d�0

QdQd
rD1.1� e�mpCmrz/n

;
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ıI tw
D

X
d�0

QdQmd
rD1.1� �

�r e�pCrz=m/n
:

Multiplying I tw with .1� emz/=.�z/ (which leaves it on the cone Ltw
X=Zm) and

replacing e�p with P , ez with q, and Qd with Qmd , we obtain

.1� qm/
X
d�0

Qmd

.1�Pmqm/n.1�Pmq2m/n � � � .1�Pmqmd /n
;

which is exactly ‰m.I/. This provides the compatibility check: the series I

considered as a point in the loop space K of true K-theory, projects to KC to
1� q, i.e. corresponds to the input T D 0. Thus the application point I tw of the
tangent vector ıI tw would pass the test for zero input. What is left is to check
that the expansion of I at q D ��1 lies in the tangent space to the cone Ltw at
this point.

To this end, we perform in ıI tw the appropriate change of notation: ez=mD �q,
e�p D P , Q 7!Qd , and obtain

eI � WDX
d�0

Qmd

.1�Pq/n.1�Pq2/n � � � .1�Pqmd /n
:

This should be understood as a Laurent series expansion near q D ��1 and
compared with such expansion I� for

I D
X
d�0

Qd

.1�Pq/n.1�Pq2/n � � � .1�Pqd /n
:

We see that Qd -terms with d multiple to m agree, but all other terms present in
I� are missing in eI � . Nevertheless we deduce from this that I� lies in the same
tangent space to Ltw as eI � (i.e. in r�T ). Namely, introduce the operator

D WD

m�1X
ıD0

Qı 1Qı
rD1.1� qQ@Qqr /n

:

It should be understood as an expansion near q D ��1, and it is important that
within the given range 0 < r � ı <m of the indices ı and r the denominators
have no zeroes at q D ��1, and thus D is a power series in zQ@Q (z D log q).
Since tangent spaces to Ltw are D-modules in Novikov’s variables, we conclude
that DeI � lies in the same tangent space as eI � . It remains to note that DeI �
coincides with I� .
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What we have established about the series I means that the decomposition of
it into elementary fractions obeys the recursion relations of Section 7, with the
leg contribution obtained by Adams’ operation ‰m from the arm contribution,
corresponding to the input point t.q/ D ŒI �C � .1� q/. Since the projection
Œ: : : �C of I to KC is 1� q, we find that t D 0 as required, and hence I D J .0/.
�

Remark. With the exception of the last property ŒI �CD 1�q, this seemingly
sophisticated argument is in fact general enough to work for q-hypergeometric
series IX that can be associated to any symplectic toric manifold X as follows.
Let X be obtained by symplectic reduction X D Cn==T k by the action of the
subtorus T k � T n of the maximal torus, the embedding being determined (in
some basis of �1.T

k/) by the integer matrix .mij /, i D 1; : : : ; k, j D 1; : : : ; n

(see [8; 12] for more details). Let Qd DQ
d1

1
� � �Q

dk

k
represent a point in the

Mori cone of X in coordinates .d1; : : : ; dk/ on H2.X / corresponding to the
chosen basis of �1.T

k/, and P�1
i , i D 1; : : : ; k, denote the line bundles over X

whose 1st Chern classes form the dual basis of H 2.X /. In this notation:

IX D

X
d

Qd
nY

jD1

Q0
rD�1.1� qr

Qk
iD1 P

mij

i /QP
i di mij

rD�1 .1� qr
Qk

iD1 P
mij

i /
:

The property ŒIX �C D 1� q, however, does not hold unless X is a product of
complex projective spaces. It would be interesting to find out if nevertheless
IX 2 LX .

The above computation will also work for the series IX corresponding to
projective complete intersection described in the theorem. However, there is
a catch here, related to the fact that cohomology and K-theory of X may not
be entirely describable in terms of the ambient projective space, and thus the
information gained about IX won’t yet allow to make a legitimate application of
our Quantum HRR Theorem. More specifically, our computation would only
be concerned with the properties of ��.IX / expressed in terms of ��.I fake/, and
the latter may not even lie on Lfake.

In order to bypass the difficulty, we introduce a model of quantum K-theory
of a supermanifold …E, interpolating between those of X and CPn�1. Let
E be the total space of the sum of the line bundles over CPn�1 of degrees
l1; : : : ; lk , while … indicates the fiberwise parity change. By definition, genus-0
moduli spaces of stable maps to …E are the same as to CPn�1, but the virtual
structure sheaf is changed, by tensoring the structure sheaf Ovir

0;r;d
with the

S1-equivariant K-theoretic Euler class of the bundle E0;r;d (i.e. the Koszul
complex of the dual, E�

0;r;d
). Here E0;r;d stands for the bundle �� ev�E whose
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fiber over a stable map f W † ! CPn�1 is H 0.†; f �E/. The circle S1 is
made to act by multiplication by unitary scalars fiberwise on E, and hence on
E0;r;d . Respectively, correlators of quantum K-theory of …E take values in the
representation ring CŒS1�D CŒƒ;ƒ�1�. Their algebraic-geometrical meaning
(instead of holomorphic Euler characteristics of a sheaf) is the trace of S1 on
the sheaf cohomology. The ring K0.…E/ coincides with K0.CPn�1/˝CŒS1�,
and is equipped with the K-theoretic Poincaré pairing

.ˆ;ˆ0/…E D�ResPD1ˆ.P /ˆ
0.P /

Qk
jD1.1�P ljƒ/

.1�P /n
dP

P
:

This pairing becomes non-degenerate if division by 1�ƒ is allowed. After this
localization, the resulting quantum K-theory of the supermanifold …E satisfies
all the axioms of genus-0 quantum K-theory.

Furthermore, the Quantum HRR Theorem of Section 6 and its proof given in
Sections 7 and 8 work verbatim for true quantum K-theory of …E.10

Thus, applying the same technology as in the case of X DCPn�1, we establish
that under the numerical assumptions of Theorem, we have J…E.0/ D I…E ,
where

I…E WD .1� q/
X
d�0

Qd

Qk
jD1

Qljd

rD1
.1�P ljƒqr /Qd

rD1.1�Pqr /n
:

Here are a few formulas that elucidate this claim:

J H
…E.0/D�z

X
d�0

Qd

Qk
jD1

Qljd

rD1
.�C lj p� rz/Qd

rD1.p� rz/n
;

where � is the 1st Chern class of the universal S1-bundleƒ�1 (i.e. ch.ƒ/De��);

eI � WDX
d�0

Qmd

Qk
jD1

Qmljd

rD1
.1�ƒP lj qr /Qmd

rD1.1�Pqr /n
I

D WD

m�1X
ıD0

Qı

Qk
jD1

Qlj ı

rD1
.1�ƒqljQ@Qqr /Qı

rD1.1� qQ@Qqr /n
:

Once the equality J…E.0/D I…E is proved, the equality ��JX .0/D IX is
established by verifying that for all s 2 Z

.��P s;JX .0//X D .P
s;J…E.0//…E jƒD1:

10Note that we are not using any geometric fixed point localization with respect to S1, so that
all moduli spaces, Kawasaki strata, etc. remain the same, and only the meaning and values of the
correlators are modified appropriately.
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Indeed, when X is given in CPn�1 by a section of E, the moduli space X0;r;d

is given in .CPn�1/0;r;d by the corresponding section of the bundle E0;r;d ,
and (according to [21; 22]) the virtual structure sheaf of X0;r;d is described in
K0..CPn�1/0;r;d / by tensoring the virtual structure sheaf of .CPn�1/0;r;d with
the K-theoretic Euler class of E0;r;d , albeit, the non-equivariant one, and hence
the specialization to ƒD 1.
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